SCS ENGINEERS

Hardee County Landfill Expansion Construction Permit Application Hardee County, Florida Volume 2 of 2

ENVINORMENTAL PROJECTION

APR - 8 2004

Prepared for:

Hardee County
Board of County Commissioners
412 West Orange Street
Wauchula, Florida 33873

Prepared by:

SCS Engineers 3012 U.S. Highway 301 North Suite 700 Tampa, Florida 33619 (813) 621-0080

INCLUDES INFORMATION RECEIVED 11/19/04, 5/23/05, 11/30/05 and 1/25/06

April 2004 File No. 09199033.09

CONSTRUCTION PERMIT APPLICATION FOR HARDEE COUNTY LANDFILL EXPANSION

VOLUME 2 OF 2

Prepared for:

Hardee County
Board of County Commissioners
412 West Orange Street
Wauchula, Florida
863-773-5089

Prepared by:

SCS Engineers 3012 U.S. Highway 301 North, Suite 700 Tampa, Florida 33619 (813) 621-0080

SCS Engineers
Florida Certificate of Authorization No. 00004892

File No. 09199033.09 April 2004

VOLUME 2 OF 2

TABLE OF CONTENTS

Section	1		Page
J	Geotec	chnical Investigation Requirements	J-1
K	Vertica	al Expansion of Landfills	K-1
	K.1	Leachate Leakage	K-1
	K.2	Vertical Expansion Over Unlined Landfills	K-1
	K.3	Foundation and Settlement Analysis	K-1
	K.4	total Settlement Calculations	K-1
	K.5	Landfill Stability	K-1
	K.6	Surface Water Management System	K-2
	K.7	Landfill Gas Control System	K-2
L	Landfi	ill Operation Requirements	L-1
M	Water	Quality and Leachate Monitoring Requirements	M-1
N	Specia	al Waste Handling Requirements (62-701.520 FAC)	N-1
	N.1	Procedures for Managing Motor Vehicle Disposal	N-1
	N.2	Procedures for Landfilling Shredded Waste	N-1
	N.3	Procedures for Asbestos Waste Disposal	N-1
	N.4	Procedures for Contaminated Soil Disposal	N-1
	N.5	Biological Wastes	N-2
O	Gas M	Management System Requirements	O-1
	O.1	Design of the Gas Management System	O-1
		O.1.a Combustible Gas Control	O-1
		O.1.b Site Specific Conditions Considerations	O-2
		O.1.c Reduction of Gas Pressure within the Landfill	
		O.1.d Interaction with Liner, Leachate Collection System, and Final Co	ver O-2
	O.2	Gas Monitoring Program	O-2
	O.3	Gas Remediation Plan	O-3
	0.4	Landfill Gas Recovery Facilities	O-4
P	Land	fill Final Closure Requirements	P-1
	D 1	Closure Schedule	P-1

CONTENTS (Continued)

Section	<u>on</u>		<u>Page</u>
Q	Closu	re Procedures	Q-1
R		Term Care Requirements	
	R.1	Gas Collection and Monitoring	R-1
	R.2	Right of Property Access	
	R.3	Successors In Interest	R-1
	R.4	Replacement of Monitoring Devices	R-1
	R.5	Completion of Long-Term Care	R-1
S	Finar	S-1	
	S.1	Cost Estimates	S-1
	S.2	Annual Cost Estimates	S-1
	S.3	Funding Mechanisms	S-1
Attac	hment	t <u>s</u>	
J-1	Geot	echnical Report	
J-2	Settle	ement Calculations	
L-1		Ifill Operation Plan	•
M-1	Grou	indwater Monitoring Plan	
O-1	Land	Ifill Gas Management System Calculations	
S-1	Fina	ncial Assurance	

SECTION J

GEOTECHNICAL INVESTIGATION REQUIREMENTS

Please attachment J-1 for the Geotechnical Report.

ATTACHMENT J-1 GEOTECHNICAL REPORT

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

NOV 19 2004

SOUTHWEST DISTRICT TAMPA

GEOTECHNICAL REPORT

ATTACHMENT J-1 TO THE

CONSTRUCTION PERMIT APPLICATION FOR HARDEE COUNTY LANDFILL EXPANSION

Prepared for:

Hardee County Solid Waste Department 685 Airport Road Wauchula, Florida 863-773-5089

Prepared by:

SCS Engineers 3012 U.S. Highway 301 North, Suite 700 Tampa, Florida 33619 (813) 621-0080

SCS Engineers Florida Certificate of Authorization No. 00004892

> File No. 09199033.09 April 2004

GEOTECHNICAL REPORT

ATTACHMENT J-1 TO THE

CONSTRUCTION PERMIT APPLICATION FOR HARDEE COUNTY LANDFILL EXPANSION

Prepared for:

Hardee County Solid Waste Department 685 Airport Road Wauchula, Florida 863-773-5089

Prepared by:

SCS Engineers 3012 U.S. Highway 301 North, Suite 700 Tampa, Florida 33619 (813) 621-0080

SCS Engineers
Florida Certificate of Authorization No. 00004892

File No. 09199033.09 April 2004

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
Geotechnical Report.	1
Subsurface Investigation Background Information	1
Subsurface Investigation Plan Outline	1
Subsurface Soil Borings	
Muck, previously filled areas, soft ground, lineaments, and sinkholes	
Fault areas, seismic impact zones, unstable areas	
Estimated average and High Groundwater table elevations across the site	
Geotechnical Design Recommendations	
Estimated Settlement at the Bottom of the Expansion Area	7
Settlement Calculation Procedure	8
Effect of vertical expansion on the existing leachate collection	10
Bearing Capacity	
Slope Stability	11
Slope Stability Analyses	12
Groundwater Control Plan	15
TABLES	
Table No.	<u>Page</u>
Monitoring Points, Groundwater Elevations, and Cell Elevations	ches 9 10

ATTACHMENTS

- A Previous Geotechnical Information
- B PSI Geotechncial Report
- C FDEP/FGS Sinkhole Database Information Hardee County, Florida
- D Seismic Database
- E Estimated Groundwater Elevations
- F Estimated Settlement Calculations in Expansion
- G Estimated Settlement of the Existing Landfill
- H Slope Stability
- I Groundwater Control System Calculations

ENGINEERING CERTIFICATION

This Geotechnical Report (Report) was prepared specifically for the permit application prepared for the expansion of the Hardee County Landfill. The geotechnical subsurface investigation, interpretations, and design recommendations were completed under my direct supervision and have been reviewed by SCS Engineers for engineering accuracy and completeness. This Report has been prepared in accordance with accepted professional engineering practices.

Joseph H. G.Neill T. F. P. F. Registration No. 05204

SCS Engineers

Florida Certificate of Authorization No. 00004892

The recommendations submitted in this Report are based on the available subsurface information contained within this report. If there are revisions to the plans and recommendations for this project or if deviations from the subsurface conditions noted in this Report are encountered, SCS Engineers should be notified immediately to determine if changes in the project recommendation are required.

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

MAY 23 2005

SOUTHWEST DISTRICT TAMPA

ENGINEERING CERTIFICATION

This Geotechnical Report (Report) was prepared specifically for the permit application prepared for the expansion of the Hardee County Landfill. The geotechnical subsurface investigation, interpretations, and design recommendations were completed under my direct supervision and have been reviewed by SCS Engineers for engineering accuracy and completeness. This Report has been prepared in accordance with accepted professional engineering practices.

(Signature / Date)
Joseph H. O'Neill, P.E.

P.E. Registration No. 052049
(State of Florida)

SCS Engineers Florida Certificate of Authorization No. 00004892

The recommendations submitted in this Report are based on the available subsurface information contained within this report. If there are revisions to the plans and recommendations for this project or if deviations from the subsurface conditions noted in this Report are encountered, SCS Engineers should be notified immediately to determine if changes in the project recommendation are required.

GEOTECHNICAL REPORT

This Geotechnical Report (Report) was prepared by SCS Engineers (SCS) for the expansion of the Hardee County Landfill (Facility) located in Hardee County, Florida. The proposed expansion includes development of a new double-lined disposal area and vertical expansion of the existing landfill disposal area. The new double-lined disposal area is designated as Phase II area and the existing disposal area was designated as Phase I. The site investigation, soil boring logs, laboratory data, calculations, and subsequent design recommendations outlined in this Report were prepared to address the requirements outlined in Rule 62-701.410(2) and 62-701.430, F.A.C.

SUBSURFACE INVESTIGATION BACKGROUND INFORMATION

Prior to conducting the site investigation, SCS reviewed previous geotechnical information that had been collected at the Facility. The previous geotechnical information, reviewed by SCS, included the following reports or boring logs:

- 1. November 1982," Hardee County Landfill" Envisors, Incorporated.
- 2. March 1997, "Geotechnical Engineering Services, Hardee County Sanitary Landfill, PSI Report No. 757-75054", PSI.
- 3. November 1997, "SPT Boring Log SB-01", PSI.

Copies of the above information is contained in Attachment A of this Report.

SUBSURFACE INVESTIGATION PLAN OUTLINE

SCS prepared a site specific geotechnical subsurface investigation for the area designated for the expansion of the Hardee County Landfill. SCS subcontracted the drilling and laboratory sampling to Professional Services, Incorporated (PSI) of Tampa, Florida. Based upon the proposed limits of the expansion and previously collect boring information, SCS selected the locations for seven geotechnical borings. The location for the seven geotechnical borings was established to obtain subsurface information directly within the expansion footprint as well as to estimate the perimeter subsurface soil strata conditions that may influence the design of the expansion.

After reviewing the previously collected subsurface information, SCS estimated that the upper soil strata consisted of approximately 15 feet of silty and poorly graded sands. The next soil strata was a clayey sand, approximately 5 to 10 feet thick, above a stiff low plasticity clay. Below the stiff clay layer, the previous investigations indicate a dense to very dense sand with phosphate particles. SCS prepared a drilling and testing plan to classify the soils, estimate the relative density of the subsurface soil layers using Standard Penetration Tests (SPT), estimate the insitu permeability of the soils, and retrieving samples of the sandy clay and stiff clay layers for

shear strength estimations and consolidation properties. The soil investigation testing methods are outlined below:

- Subsurface Soil Classification Field classification, SPT N-values, grain size
 analysis, atterberg limits. Based upon field classification, grain size and atterberg
 limits the soils were classified using the Unified Soil Classification System (USCS).
 Blow counts from the Standard Penetration Testing were used to estimate the in-situ
 density of the soil layers.
- Soil borings were conducted by PSI using a CME-45 drill rig capable of conducting Standard Penetration Tests (SPT) and retrieving both spilt spoon samples and undisturbed Shelby Tube soil samples. Spilt spoon samples were used to field classify the soils and Shelby tubes were used to recover undisturbed samples for the laboratory sampling.
- Permeability A flexible wall permeameter was used to test the soil samples retrieved from the Shelby tubes.
- Tri-Axial Consolidated Undrained (CU) Testing Samples retrieved from the Shelby tubes were consolidated under various loads and then loaded until the samples sheared under undrained conditions. The shear strength parameters, cohesion and phi angle, were estimated over a range of loading conditions to estimate the soils strength.
- Consolidation Testing The consolidation test conducted was to estimate the amount of consolidation (settlement) in the soil layer that could be expected due to the additional loading and stresses induced by the overlying landfill waste material.

A copy of the boring logs and laboratory test results prepared by PSI (April through September 2003) is contained in Attachment B of this Report.

SUBSURFACE SOIL BORINGS

The field work for the expansion soils boring was conducted from April 22 through 24, 2003. The drilling logs for the soil borings are contained in Attachment B of this Report. The seven geotechnical boreholes were designated as Test Hole Numbers 1 through 7 (TH-1 through TH-7). SCS has summarized the boring log information for each borehole below:

TH-1: From ground surface to approximately eighteen feet below land surface (bls) the soils consist of poorly graded and silty sands. SPT N-values range from 8 to 13 with an average of about 10. Based on N-values, this sand layer would be classified as loose to medium dense soil layers. Groundwater was estimated to be approximately seven feet bls. The next major soil stratum, from eighteen to twenty-eight feet bls, encountered was a low plasticity clay. The upper five feet had a blow count of approximately 7 (a medium stiff layer) over a very stiff lower five feet of clay with a blow count of 19. A Shelby tube, Undisturbed Sample No.1 (US-1) was collected in the upper clay layer for tri-axial

testing since the upper layer had a lower density and anticipated shear strength. A Shelby tube were also taken in the lower stiffer clay to estimate consolidation however the sample in the tube had too much silty sand, probably from miscellaneous drill cuttings, and was not representative of the in-situ, stiff clay layer. Hence US-2, was disregarded. The soils strata below the clay layer were generally sandy clays and clays with sand and phosphates. The blow counts from approximately twenty-eight feet bls to seventy feet bls (the end of the boring) had blow counts ranging from 19 to 50 blows per inch with the majority of the blow county above 50. Below twenty-eight feet bls the soils would be classified as dense to very dense soils. Very high shear strengths and little settlement would be anticipated in these layers due to the high density of the soils. Upon completion of the boring the borehole was grouted, with portland cement and bentonite, from boring terminus to ground surface.

TH-2: From ground surface to approximately eight feet below land surface (bls) the soils consist of poorly graded and silty sands. SPT N-values range from 6 to 11 with an average of about 11. Based on N-values, this sand layer would be classified as a medium dense soil layer. Groundwater was estimated to be approximately six and half feet bls. A five- foot clayey sand layer was encounter next. From thirteen to twenty-three feet bls, poorly graded to silty sands with SPT N-values ranging from 12 to 28 were encountered. From twenty three to thirty three feet bls, a very stiff to hard low plasticity clay layer was encountered. From thirty-three to forty-five feet bls, the soils were generally sandy clays and clays with sand and phosphates. The blow counts ranging from approximately 47 to 50 blows per 5-inches with the majority of the blow county above 50. The soils would be classified as dense to very dense soils. Very high shear strengths and little settlement would be anticipated in these layers due to the high density of the soils. Upon completion of the boring the borehole was grouted, with portland cement and bentonite, from boring terminus to ground surface.

TH-3: From ground surface to approximately eighteen feet below land surface (bls) the soils consist of poorly graded and silty sands. SPT N-values range from 5 to 20 with an average of about 10. Based on N-values, this sand layer would be classified as loose to medium dense layer soil layers. Groundwater was not measured in this borehole. A five-foot highly weather fragmented limestone layer was encounter next. From thirteen to twenty-three feet bls, low plasticity clay layer with SPT N-values ranging from 38 to 69 were encountered. This is would be classified as a hard to very hard clay layer. From thirty-three to forty-five feet bls, a sand clay to clayey soils were encountered with blow counts ranging from approximately 32 to 50 blows per 6-inches. These soils would be classified as dense to very dense soils. Very high shear strengths and little settlement would be anticipated in these layers due to the high density of the soils. Upon completion of the boring the borehole was grouted, with portland cement and bentonite, from boring terminus to ground surface.

TH-4: From ground surface to approximately thirteen feet below land surface (bls) the soils consist of poorly graded and silty sands. SPT N-values range from 6 to 21. Based on N-values, this sand layer would be classified as loose to medium dense soil layers.

Groundwater was measured approximately five and half feet bls in this borehole. A five-foot sandy clay layer with a blow count of 19 was encountered next. From eighteen to twenty-four feet bls, low plasticity clay layer with SPT N-values of 10 was encountered. This is would be classified as a stiff clay layer. A Shelby tube (US-3) sample was collected from this layer however insufficient sample material was retrieved to accurately test. From twenty four to twenty eight feet bls, the clay transitioned to a more sandy clay material with a blow county of 24. A Shelby tube (US-4) was collected from the lower more stiff clays and this sample was tested for shear strength. From twenty eight to forty five feet bls, clayey sands were encountered with blow counts ranging from approximately 24 to 45 blows per 6-inches. These soils would be classified as dense to very dense soils. Very high shear strengths and little settlement would be anticipated in these layers due to the high density of the soils. Upon completion of the boring the borehole was grouted, with portland cement and bentonite, from boring terminus to ground surface.

TH-5: From ground surface to approximately thirteen feet below land surface (bls) the soils consist of poorly graded and silty sands. SPT N-values range from 8 to 27. Based on N-values, this sand layer would be classified as loose to medium dense soil layers. Groundwater was measured approximately five and half feet bls in this borehole. From thirteen to twenty-three feet bls, a low plasticity clay layer with SPT N-values ranging from 8 to 18 was encountered. This is would be classified as a stiff to very stiff clay layer. A Shelby tube (US-5) was collected from the upper stiff clay for shear strength testing. From twenty-three to forty five feet bls, a clayey sands were encountered with blow counts ranging from approximately 21 to 51 blows. These soils would be classified as medium to very dense soils. Very high shear strengths and little settlement would be anticipated in these layers due to the high density of the soils. Upon completion of the boring the borehole was grouted, with portland cement and bentonite, from boring terminus to ground surface.

TH-6: From ground surface to approximately eighteen feet below land surface (bls) the soils consist of poorly graded and silty sands. SPT N-values range from 10 to 50 blows for 6 inches. Based on N-values, this sand layer would be classified as a medium to very dense soil layers. Groundwater was not measured in this borehole. From thirteen to twenty-three feet bls, a low plasticity clay layer with SPT N-values of 5 was encountered. This is would be classified medium stiff clay layer. A Shelby tube (US-6) was collected from the upper stiff clay for shear strength testing. From twenty three to thirty five feet bls, clayey sands were encountered with blow counts ranging from approximately 51 to 51 blows for 4 inches. These soils would be classified very dense soils. Very high shear strengths and little settlement would be anticipated in these layers due to the high density of the soils. Upon completion of the boring the borehole was grouted, with portland cement and bentonite, from boring terminus to ground surface.

TH-7: From ground surface to approximately thirteen feet below land surface (bls) the soils consist of poorly graded and silty sands. SPT N-values range from 7 to 28 blows. Based on N-values, this sand layer would be classified as a loose to medium dense soil

layers. Groundwater was measured approximately six and half feet bls in this borehole. From thirteen to twenty-three feet bls, a low plasticity clay layer with SPT N-values ranging from 7 to 9 was encountered. This is would be classified medium stiff clay layer. A Shelby tube (US-7) was collected from the upper stiff clay for permeability and shear strength testing. In the upper portion of the Shelby tube a sandy clay sample was identified for permeability testing as well as a clay sample for permeability testing. The sandy clay transition was present at all the transition zones of the borings so the permeability would transition from a clayey sand to a clay. A consolidation sample was also retrieved from the tube estimate the amount of settlement could be anticipated in the medium stiff clays. From twenty three to thirty five feet bls, clayey sands and low plasticity clays were encountered with blow counts ranging from approximately 22 to 50 blow for 5 inches. These soils would be classified very stiff to hard, very dense soils. Very high shear strengths and little settlement would be anticipated in these layers due to the high density of the soils. Upon completion of the boring the borehole was grouted, with portland cement and bentonite, from boring terminus to ground surface.

MUCK, PREVIOUSLY FILLED AREAS, SOFT GROUND, LINEAMENTS, AND SINKHOLES

A review of the all borings contained in Attachments A and B indicated no muck or high organic soils layers are present within or adjacent to the expansion or existing landfill disposal areas.

The area within the Phase II area has remained undisturbed since operations began in 1983. During the subsurface investigation conducted by PSI, SCS examined the spilt spoon samples retrieved from the borings. The split spoon samples did not have multiple soils types or colors that are generally found in filled areas. This indicates that the area has not been disturbed or previously filled.

No soft ground depressions or weak subsurface soil layers were noted in the borings.

SCS reviewed the sinkhole activity information that is currently available for Hardee County on the Florida Department of Environmental Protection/Florida Geology Survey's Sinkhole Database. A copy of the sinkhole activity available for Hardee County is contained in Attachment C.

FAULT AREAS, SEISMIC IMPACT ZONES, UNSTABLE AREAS

A review of the revised Seismic Impact Zone Map, contained with the Municipal Solid Waste Disposal Facility Criteria Technical Manual published by the United States Environmental Protection Agency, the Hardee County Landfill is not in a known fault area or in a high probability seismic impact zone. A copy of the Seismic Impact Zone Map is contained in Attachment D.

A review of the subsurface information contained in Attachment A and B indicates no unstable subsurface soil layers were present within the proposed expansion area.

ESTIMATED AVERAGE AND HIGH GROUNDWATER TABLE ELEVATIONS ACROSS THE SITE

To estimate the average and high groundwater table elevations across the site, SCS reviewed the groundwater elevation data collected for the piezometers and groundwater monitoring wells on-site. The period reviewed was from June 1997 to December 2003. The Facility had a leachate spray irrigation system in operation until April of 1999. Consequently, groundwater elevation data prior to April of 1999 may have been influenced to some extent by the underdrain system or spray field operations. SCS also collected rainfall data from a NOAA weather station, Weather station COOP ID # 089401, located in the City of Wauchula, Florida. The weather station is approximately three miles of the landfill. The rainfall data reviewed was from January 1990 through December 2003. According to the NOAA rainfall data, the average yearly rainfall for the area is approximately 52.2 inches. It should be noted that during 1997, 1998, and 2002 the yearly rainfall amounts were 65.8, 66.1, and 62.2 inches, respectively.

The estimated average groundwater elevations across the site range from approximately EL. 81.7 at MW-1 located on the north side of the site to approximately EL. 77.5 in MW-7 located south of the existing Phase I disposal area.

The high groundwater elevations across the site range from approximately EL. 84.1 at MW-1 located on the north side of the Facility to approximately EL. 83.44 in MW-6 located south of the existing Phase I disposal area.

No piezometers or wells are located within the borrow pit area. To estimate the seasonal high groundwater table, SCS had the County dig test holes in five locations, several feet below existing grade, surrounding the borrow pit. Soil staining observations, made in accordance with SFWMD district guidelines, were used to estimate the groundwater elevations. Pits Number 1 and 5 were used to estimate the seasonal high water table. In Pits Number 2, 3, and 4 no distinct soil staining layers were observed possibly due to the close proximity to the adjoining former borrow pit. Groundwater is pumped out of the existing borrow pit into the former borrow pit so the water levels are not representative of natural groundwater levels. The County surveyed in the stained soil layer in Pit Numbers 1 and 5. Based upon the survey, the average groundwater elevation in the borrow pit was estimated to be at approximately Elevation 78.53, which is consistent with the elevations observed in the piezometers located on the southern end of the former spray field, specifically piezometers P-13 and P-14.

SCS plotted the groundwater elevations within the proposed expansion area and checked the geomembrane and six-inch subbase materials to make certain that the bottom of the subbase material would above the average groundwater elevations. A groundwater control system was designed to collect groundwater the rises above the average elevations within the expansion area. The average groundwater elevations and the expansion cell elevations are shown Table 1.

TABLE 1. MONITORING POINTS, GROUNDWATER ELEVATIONS, and CELL ELEVATIONS

Monitorin g Point	Average Elevation of Groundwater	Elevation of Geomembrane	Elevation of bottom of 6-in subbase	Location of Points on Geomembrane
MW-5	79.26	83.15	82.65	Leachate trench west of MW-5
MW-8	78.36	81.36	80.86	Leachate trench south of MW-8
MW-9	77.61	79.00	78.50	Low Point of Cell – Sump Area
P-3	78.95	82.69	82.19	Leachate trench south of P-3
P-4	77.57	79.70	79.20	Leachate trench east of P-4
P-5	78.40	81.75	81.25	Leachate trench north of P-5

Please refer to Attachment E for the estimated average and high groundwater table elevation maps, groundwater data, and rainfall information.

GEOTECHNICAL DESIGN RECOMMENDATIONS

Based upon the previously collected geotechnical information collected for the site and the subsurface investigation plan outlined by SCS for the expansion area, SCS has prepared the following geotechnical design recommendations for the construction and operations of the expansion and existing landfill disposal areas.

ESTIMATED SETTLEMENT AT THE BOTTOM OF THE EXPANSION AREA

Two conditions were analyzed for the leachate collection and detection systems in the expansion area. Settlement, due to the proposed waste loading, will influence the conveyance of leachate to the leachate collection and detection pumps. The two bottom cell conditions analyzed are as follows:

Leachate Collection/Detection Trenches --

• The leachate Collection/Detection trenches were designed to convey the leachate collected from the geocomposite drainage layer to the leachate sump. The slope of the trenches were designed to convey the high flow rates during the initial open cell condition as well as retain sufficient slope after settlement to convey the estimated flow rates as filling occurs in the expansion area.

Cross Slope of the Cell --

• The design of the bottom of the expansion area included a typical "saw-tooth" pattern or a series of peaks (ridgelines) and valleys (leachate collection/detection trenches). This pattern, and the spacing of the trenches, was designed to limit the potential

hydrostatic head above the primary and secondary containment geomembrane. The flow rate and transmissivity of the geocomposite drainage layer and cross slope between the peaks and valleys was used in the USEPA's HELP model to estimate the potential head above the various geomembrane layers. As the expansion area is loaded, settlement will decrease the initial cross slopes. Settlement of several cross slopes was computed, the resultant slopes estimated, and the long-term slopes were then used in the USEPA's HELP model to estimate the head of the geomembrane layers.

Settlement Calculation Procedure

The estimated settlement of the subsurface soil layers in the expansion area was computed at several points, specifically along the length of each segment of pipeline and at points in the trenches and ridgeline. The location of the points was selected in areas of maximum anticipated loading (stress), along the tie-in between the existing and expansion area, at the sump, and along the outer toe of slope. At these locations the deflection of the pipes in the trenches and the cross slope of the cell was computed.

At each selected point, the pre-existing (prior to excavation for the expansion) stress in the various subsurface layers was estimated based upon the effective (buoyant) overburden stress at the mid-point of each soil type. Soil layers were grouped together based upon similar soil classification and blow counts. Settlement estimates were terminated in very dense layers since these layers are at or near the maximum anticipated density for that layer. SCS estimated the unit weight of each soil types over a range of relative densities that are representative of SPT N-values recorded in the field. The unit weight of the clay soils was tested in the laboratory. The soil stratification at each point was estimated using the nearest borehole. Groundwater levels were estimated from the nearest monitoring well and the lowest water elevations taken to maximize the overburden stress in the soil layers.

Next the SCS estimated the unit weight of the waste material to be placed in the expansion cell. To conservatively estimate the anticipated settlement, SCS maximized the unit weight of the waste material. In the settlement calculations, the waste material was assumed to be fully saturated. In addition, the drainage sand and cover soils were computed using saturated soil weights. The incoming waste is compressed in a baler at the MRF. The baled waste has an approximate unit weight of 43 pounds per cubic foot. The incoming moisture content was estimated to be approximately 12 percent based upon estimated composition and average moisture contents. The baled waste initial moisture content was then raised to approximately 40 percent. Above 40 percent moisture is generally considered for very wet waste materials that are associated with a bio-reactor landfill. Hardee County is not considering a bio-reactor cell however using a 40 percent moisture content is a very conservative estimate for the moisture content and unit weight of the material. In addition, the daily cover soils were computed as saturated soils. A composite unit weight of 56 pcf was estimated for fully saturated waste materials and daily cover soil. This was rounded up to 60 pcf for settlement calculations.

SCS computed the maximum anticipated settlements for the leachate collection trenches and cross slopes based upon the procedures outlined. Refer to Attachment F for the settlement calculations. The locations of the settlement points is shown on Figure 1 and 2 within Attachment F. The results of the settlement estimates are summarized in Tables 2 and 3.

TABLE 2. SUMMARY OF ESTIMATED SETTLEMENT AND SLOPES LEACHATE COLLECTION/DETECTION TRENCHES

e de la companya de		Initial Conditions	Final Conditions			
Points	Initial Elevation (ft NGVD)	Distance Between Points (ft)	Initial Slope (%)	Settlement (ft)	Long Term Elevation (ft NGVD)	Long Term Slope (%)
9C	79.0	(11)	(70)	0.53	78.5	(70)
11C	80.7	324.9 326.2	0.52 0.28	1.45	79.2	0.24 0.41
5C	81.6	320.2	0.20	1.01	80.6	0.41
3C	82.6	433.0 597.9	0.24 0.26	0.45	82.2	0.37
1	84.2	371.5	0.20	0.48	83.7	0.20
12	79.7			0.53	79.2	
8C	81.6	385.9 386.1	0.49	1.15	80.5	0.33
6	83.5		0.50	0.53	83.0	0.00
				**************************************	40.00	
10	80.0	408.9	0.50	0.44	79.6	0.48
8A	82.1	332.0	0.50	0.54	81.5	0.51
. 7	83.7			0.53	83.2	
10	80.0			0.44	79.6	
10	80.0	90.0	0.33		/9.0	0.43
12	79.7	116.0	0.60	0.53	79.2	0.61
9C	79.0	116.0	0.60	0.53	78.5	0.61

TABLE 3. SUMMARY OF ESTIMATED SETTLEMENT AND SLOPES CROSS (PERPENDICULAR) TO TRENCHES

	Initial Conditions Final Conditio						nditions	
Points	Initial Elevation (ft NGVD)	Difference (ft)	Distance (ft)	Slope (%)	Settlement (ft)	Elevation (ft NGVD)	Difference (ft)	Slope (%)
8A	82.1	1.3	47.2	2.84	0.54	81.5	1.0	2.02
8B	83.4	1.8	63.7	2.81	0.92 1.15	82.5 80.5	2.0	3.17
8C 8D	81.6 82.8	1.2	44.0	2.70	1.13	81.4	0.9	2.11
11C	80.7	2.1	67.0	3.13	1.45	79.2	2.1	3.20
11B	81.7	1.0	45.6	2.19	1.52	80.2	0.9	2.04
3B	84.6	2.0	70.8	2.75	0.73	83.9	1.7	2.37
3C	82.6	1.9	68.1	2.75	0.45	82.2	2.0	3.00
3D	84.5			Say 1	0.28	84.2		
2A	85.8	2.1	77.3	2.75	1.56	84.2	1.7	2.14
2B	83.7	2.0	73.9	2.75	1.09	82.6	2.5	3.34
2C	85.7				0.65	85.1		

Results: Based upon the maximum anticipated settlements in the Phase II area, the designed leachate collection and cross slopes are adequate maintain the flow within the pipelines and minimize the head over liner.

EFFECT OF VERTICAL EXPANSION ON THE EXISTING LEACHATE COLLECTION

To estimate the effects of adding additional waste on top of the existing Phase I landfill's perimeter leachate collection system, SCS computed the anticipated settlement along the western and southern sides of the Phase I disposal area. Using the estimated settlement at points along the leachate collection system, the anticipated long-term slope of the pipeline was computed. The maximum settlement occurs along the south side. After settlement, the slope on the pipeline between Manhole No. 7 and Manhole No. 8 (the lift station) will essentially be flat. In addition,

a pipe separation was noted during the latest video inspection between Manhole No. 7 and Manhole No. 6.

Results: The recommendation is to repairs the pipe separation and install a new leachate collection line extending from Manhole No. 6 to Manhole No. 8. After settlement, the long-term slope on the new leachate collection line will be sufficient to carry a maximum flow rate that can be handled by the two pumps located in the lift station. A pipe crushing analysis was also computed to ensure the proposed 10-inch SDR 11 HDPE pipe has sufficient strength to carry the maximum loads anticipated during the final buildout of the Phase II area.

The loading across the western and southern sides of the Phase I area will be uniformly distributed along the perimeter and along the interface between the Phase I and II area. No differential settlement is anticipated along the length of the pipeline or along the interface between the Phase I and II areas.

Calculations for the existing landfill and collection system are contained in Attachment G of this Report.

BEARING CAPACITY

The estimated foundation bearing capacity of the foundation soils beneath the expansion area estimated to be a minimum of 4,800 pounds per square foot. This is based upon a very conservative estimate for the unit weight of the waste material (60 pcf at 40 percent saturation) and a maximum depth of waste, sand, and cover materials of approximately 75 feet at the center of the expansion.

Results: The results of the slope stability analysis of the foundation soils and the maximum anticipated settlements indicate that the design of the expansion area meets regulatory requirements. Therefore, the foundation soils have sufficient bearing capacity to support the proposed final buildout plans presented with this Permit Application.

SLOPE STABILITY

A circular and non-circular slope stability search was conducted on the existing slope with various waste shear strength properties. The circular analysis was analyzed to identify potential global circular failure planes extending through the waste material and foundation soils. The non-circular block models were used to analyze the horizontal bale to bale interface friction shear strength properties or potential defined failure planes.

To compute the slope stability of the expansion, SCS first modeled the existing conditions, as of March 2003, to estimate the baled and loose waste shear strength properties. The existing conditions of the landfill were taken from the aerial topography survey conducted by I.F. Rooks, and Associates. The existing southern sideslope was modeled with the CAT D7R Series II dozer on the top of the landfill at the edge of the upper slope. Since no slippage or failures have been observed when the dozer is operating on the slope, the slope stability models were run to

estimate the minimum waste strength properties that would be needed to maintain a minimum factor of safety equal to 1.0. The minimum waste shear strength values estimated from the existing conditions would be used for the basis of all other models. The slope stability analysis models are contained in Attachment H.

Slope Stability Analyses

Two cross section were modeled for the expansion area. One cross section runs north and south through the highest buildout elevation of the expansion. The other cross section runs east and west through the middle of the westside of the expansion. The following potential failure planes were analyzed;

Potential Failure through the waste mass – A circular failure analysis was conducted from outside the toe of slope to the upper surface. All failure planes passed through the foundation soils and waste material. Non-circular (block) models analyzed potential failure planes extending through the baled and loosed waste and extending horizontally along potential bale to bale failure planes.

Potential Failure along the liner system – A non-circular (block) failure analysis was performed along the liner system to simulate potential slip failure planes between geosynthetic components of the liner system.

Potential Failure through the foundation soils – A circular failure analysis was performed from outside the toe of slope to the upper surface. All failure planes passed through the foundation soils and waste material. Non-circular (block) models analyzed potential deep failure planes along the expansion foundation.

Potential Failure along the liner interface along the existing slope – A non-circular (block) failure analysis model was performed to simulate various pieces of equipment that may be traversing the sideslopes during construction and operations of the expansion area.

TABLE 4. SUMMARY OF SLOPE STABILITY EVALUATIONS SLOPE STABILITY WITH EQUIPMENT LOADS

Potential	N	S	E/W		
Failure Surface	Circular	Block	Circular	Block	
Pass through waste mound	1.9	1.7	1.6	\$	
Along liner system ¹	NA	1.7	NA	1.5	
Pass through foundation soils	1.9	1.7	1.6	1.6	
Liner interface with existing slope with D7R ²	NA	1.5	NA	1.5	
Liner interface with existing slope with D6 ³	NA	1.5	NA	1.5	
Liner interface with existing slope with D5N ⁴	NA	1.5	NA	1.5	
Initial Filling of Phase II Section I – El 96 ⁵		1.5		1.5	
Filling Phase II Section I El 110 ⁵		1.8		1.8	
Filling Phase II Section I El 150 ⁵		2.2		2.2	
Initial Excavation of Phase II Section I ⁶	1.6	1.7	NA	NA	

¹Minimum interface friction angle of 15 degree along the bottom; 15 degrees on the sideslope

Results: Based upon the results of the slope stability analysis the following recommendations are proposed for excavation, equipment loading, and geosynthetic interface friction properties;

- Excavation of the Phase II Section I and II areas; Prior to excavation, the
 groundwater control system should be installed, at a minimum, and the contractor
 should provide additional dewatering of ponded surfacewater. This will keep the
 excavation dry for subbase placement as well as improve the stability of the north and
 east sideslopes.
- The north and east sideslopes were designed to keep construction equipment away from the existing geomembrane that forms the southern barrier wall for the Phase I

²Minimum interface friction angle of 26.9 degree peak; equipment pressure 1617.6 psf

³Minimum interface friction angle of 26.5 degree; equipment pressure 983.4 psf

⁴Minimum interface friction angle of 26.3; equipment pressure 945.4 psf

⁵ Minimum interface friction angle of 26.5 degree; equipment used CAT D7R The N/S and E/W direction are the same since filling will occur in any direction

⁶ During Excavation of Phase II Section I CAT D6 (construction) and CAT D7 (operations)

disposal area. When excavation of the Phase II cell begins, only equipment (total operating weight of 44,000 pounds and a contact pressure less than 6.6 psi) such as a CAT 6R Series dozer are recommended near the top of the excavation of the Phase II Section I cell. The recommendation also applies to placement of sand over the geomembrane on the sideslopes.

- During operations, the existing D7R dozer for operations should only be used on the Phase II cell ramp. Waste placement should begin along the northern and eastern toe of slope to form a buttress to improve stability. Once the waste has reached Elevation 86 then, equipment can traverse the site freely.
- Geosynthetic interface friction requirements;
 - 1. Upon final buildout of Phase I and II, the minimum friction angle needed for a factor of safety above 1.5 is approximately 15 degrees on the both the sideslope and bottom liners. The low interface friction angle is due to the toe buttress provided by the western and southern berms of Phase II.
 - 2. During filling of Phase II Section I and construction of Phase II Section II, the berm between the two section will be removed and the liners system connected. This will form a long slip plane with minimal cover over the geosynthetic materials. To provide stability during operation of Phase II Section I and construction of Phase II Section II, a minimum interface friction angle of 26.5 degrees is recommended to achieve a minimum factor of safety equal to 1.5.
 - 3. During placement of sand over the geomembrane cover on the sideslope of the Phase I, the slope stability analysis indicated the minimum interface friction angle recommended for both construction and operations is 26.9 for a factor of safety equal to 1.5.
 - 4. As required by FDEP regulations and SCS, the interface friction angle testing should be conducted and approved prior to construction in accordance with ASTM D 5321. The following testing requirements are recommended;
 - Initial loading Interface Friction Angle (ASTM D 5321) test: One representative test with the proposed geocomposite and the geomembrane material. The testing criteria is as follows: The direct shear box shall be a minimum of 12 inches by 12 inches. Each normal load shall be preload at the specified normal load, for a minimum of 1 hour, prior to testing. Each test shall be conducted under fully saturate conditions for each normal load. The specified testing Normal Stresses are 1000, 3000, and 6,000 psf. The strain rate is1 mm/min (0.04 in/min). The minimum PEAK interface friction angle shall be 26.9 degrees. The interface friction angle shall be the result of a linear regression line drawn continuously through the three shear strength results obtained for the normal loads specified following the procedures outlined in

ASTM D 5321. Provide the results of peak and residual values. Adhesion value may be considered in determining the effective interface friction angle.

Based upon the above recommendations, the estimated shear strength properties of the waste materials, the foundation soil test results, the proposed geosynthetic materials, and the slope stability model results, the design of the expansion cell will meet the regulatory requirements.

GROUNDWATER CONTROL PLAN

A groundwater control system was designed to control and minimize the upward migration of the groundwater into the subbase layer of the expansion area containment layers. As discussed previously in this Report, the average groundwater elevation for the expansion area varies, but the Seasonal High Groundwater Table (SHGWT) is at approximately Elevation 77.6 NGVD in the area for the proposed leachate collection sump. However, high groundwater elevations, recorded as a result of heavy rainfall in December of 2002, indicate that groundwater levels within the area of the sump have been recorded as high as Elevation 83.5 NGVD.

The proposed elevation of the top of geomembrane in the sump of the expansion cell is Elevation 79.0 NGVD. The bottom of the 6-inch subbase would therefore be at Elevation 78.5 NGVD. The proposed groundwater control system was designed to collect groundwater if it rises above the SHGWT elevations across the expansion area and minimize the amount of groundwater entering the 6-inch subbase soil materials.

The groundwater control system is a series of collection trenches and pipes spaced at selected intervals to collect the rising groundwater. The collection trenches and pipes are spaced so the mounded groundwater between the trenches and pipes is below the bottom of the subbase soil materials. The closer the spacing, the lower the mounding of groundwater between the pipes and likewise the farther the spacing, the higher the groundwater will mound between pipes. The spacing of the pipe was design to keep the highest point of the groundwater from rising into the subbase materials.

The collection trenches and pipes are sloped to allow for gravity collection of the groundwater. The groundwater will be conveyed to a central groundwater pump station. As the groundwater collection pump station fills, the groundwater will be pumped into the stormwater collection swale located immediately east of the station. The anticipated pumping rate (only when groundwater elevations rise above the SHGWT elevations in the expansion area) will be approximately 600 to 700 gallons per minute. The stormwater collection system will convey the collected groundwater toward the former borrow pit area located on the southern side of the Facility. The former borrow pit will be converted into a wet detention stormwater management area. The stormwater management area will be designed as a detention system and discharge from the stormwater management area will be in accordance with the water quality criteria established for the Facility.

The pipelines for the groundwater collection system will have cleanouts at the end of the individual pipelines. The cleanout will allow access to the pipeline for periodic maintenance

jetcleaning to ensure the pipeline remain in operation. To ensure long-term operation of the collection system, the slope on the pipelines was checked to ensure proper flow capacity. Pipe crushing analyses were also computed for construction and final buildout loading on the groundwater collection pipelines.

Calculations for the groundwater control system are contained in Attachment I of this Report.

ATTACHMENT A PREVIOUS SITE GEOTECHNICAL INFORMATION

ENVISOR PERMIT PLANS 1983

Hardee County

Sanitary Landfill

For

Board Of County Commissioners

MAURICE HENDERSON SAMUEL A. RAWLS BENNY W ALBRITTON ROLAND (I. SKIPPER JOHN ROX GOUGH

HARRY EL LAMPE,

AVICE-CHAIRMAN COMMISSIONER

COMMISSIONER COMMISSIONER

JEFFREY J. WCKIBBEN

COUNT ADMINISTRATOR & CONTY ENGINEER

COUNTY ATTORNEY

CONTRACTOR CONSTRUCTION DRAWINGS

L) COVER SHEET

2.) GENERAL NOTES & VICINITY 3.) SOILS INFORMATION

5.) PHASE I SITE PLAN 6.) CONSTRUCTION DETAILS

TY DEWATERING STATION AND DETAILS &) GATE HOUSE, SITE PLAN AND DETAILS

9) GATE HOUSE, EXTERIOR ELEVATIONS IO, MAINTENANCE BLDG., SITE PLAN &

II.) WELL & MISC. DETAILS

12.) MONITORING WELL DETAILS

14.) WATER STANDARD DETAILS

ENVISORS, Inc.

MARGATE . TAMPA . WINTER HAVEN, FLORIDA

FLORIDA PROFESSIONAL ENGINEER NO. 13097

PROJECT NO. 81014-82(1) DATE NOVEMBER 1982

GENERAL NOTES

- 1) LOCATIONS, ELEVATIONS, AND DIMENSIONS OF EXISTING UTILITIES, STRUCTURES, AND OTHER FEATURES ARE SHOWN ACCORDING TO THE BEST INFORMATION AVAILABLE AT THE TIME OF PREPARATION OF THESE DRAWINGS BUT DO NOT PURPORT TO BE ABSOLUTELY CORRECT. THE CONTRACTOR SHALL VERIFY LOCATIONS, ELEVATIONS, AND DIMENSIONS OF ALL EXISTING UTILITIES, STRUCTURES, AND OTHER FEATURES AFFECTING HIS WORK PRIOR TO CONSTRUCTION.
- 2) THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY WHEN CONFLICI BETMEEN THE DRAWINGS AND ACTUAL CON-DITIONS ARE DISCOVERED DURING THE COURSE OF CONSTRUCTION OF ANY IMPROVEMENTS SHOWN ON THESE DRAWINGS.
- 3) IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO VISIT THE SITE PRIOR TO BIDDING THE WORK AND TO PERFORM SUCH TESTS, STUDIES, AND SURVEYS AS HE DEEMS RECESSARY TO SATISFY HIMSELF AS TO THE ACTUAL SURFACE AND SUBSURFACE CONDITIONS ENISTING AT THE SITE. ACTUAL CONDITIONS DIFFERENT FROM THOSE SHOWN ON THE DRAWINGS SHALL NOT CONSTITUTE GROUNDS FOR AN EXTRA.
- 4) ALL CONCRETE SHALL BE 3,750 PSI UNLESS OTHERWISE INDICATED AND SHALL BE IN CONFORMANCE WITH THE LATEST A.C.I. CODE, REQUIREMENTS.
- 5) ALL ELEVATIONS ARE REFERRED TO THE MEAN SEA LEVEL DATUM OF THE NATIONAL GEODETIC DATUM.
- 6) ALL COMPACTED BACKFILL, MHERE INDICATED, SHALL BE COMPACTED IN EIGHT INCH (8") MAXIMUM LAYERS AT 92 PER-CENT DENSITY OF THE ORIGINAL UNDISTURBED MATERIAL IN COMPORANCE WITH ASTM DISST, METHOD "A".
- 7) ALL HOSE BIBBS SHOWN ON PLANS SHALL RECEIVE AN ANTI-SIPHON VACUUM BREAKER, WATTS SERIES 288A OR EQUAL.
- 8) FINISHED GRADE FOR GROUND ELEVATIONS ON DRAWINGS REFER TO GRADE AFTER SOUDING.
- 9) THE CONTRACTOR SHALL PROVIDE AT LEAST 48 HOURS NOTICE TO THE VARIOUS UTILITY COMPANIES IN ORDER TO PER-MIT THE LOCATION OF EXISTING UNDERGROUND UTILITIES IN ADVANCE OF CONSTRUCTION.
- 10) AERIAL SURVEY FLOWN ON FEBRUARY 1982. SUBSEQUENT EVENTS MAY MAYE ALTERED INFORMATION PRESENTED MERCON AND NEITHER THE COUNTY NOR THE ENGINEER MAY BE HELD RESPONSIBLE FOR SUCH CHANGES. THE CONTRACTOR IS REQUESTED TO VERIFY ALL FIELD CONDITIONS AND ADVISE THE ENGINEER OF ANY CHANGES.
- 11) SUBSURFACE SOILS INFORMATION PRESENTED HEREIN REPRESENTS THE RESULTS OF FIELD WORK AND NEITHER THE ENGINEER NOR THE COUNTY MAY BE HELD RESPONSIBLE OR LIABLE FOR SUBSURFACE CONDITIONS THAT VARY FROM THE INFORMATION PRESENTED HEREIN.
- 12) BOUNDARY SURVEY SHOWN ON PLANS OF TOWNSHIP 33 SOUTH, RANGE 25 EAST, IN SECTION 35, DERIVED FROM SURVEY PERFORMED BY HARK P. PORTER, R.L.S., CHASTAIN-SKILLMAN, INC., LAKELAND FLORIDA, 9 DECEMBER 1981.
- 131 AERIAL PHOTOGRAMMETRY PERFORMED BY KUCERA & ASSOCIATES, INC., FEBRUARY 1982.

POTABLE WATER NOTES.

- 1) ALL MATER MAINS SHALL MAYE A MINIMUM COVER OF 36 INCHES BELOW FINISHED GRADE AND SHALL BE LOCATED AS SHOWN ON THE DRAWINGS, UNLESS OTHERWISE DIRECTED BY THE ENGINEER. ALL MATER FACILITIES AND ACCESSORIES SHALL BE INSTALLED IN COMFORMACE WITH THE "MATER STANDARDS" DRAWINGS AND THE REQUIREMENTS OF HARDEE COUNTY, THE FLORIDA DEPARTMENT UP ENVIRONMENTAL MEGICATION (FULK), AND THE MEALTM DEPARTMENT.
- 2) ALL PIPE, FITTINGS, SPECIALS, AND VALVES, INCLUDING LINING AND COATINGS, PRESSURE TESTING, DISINFECTION, AND PIPE INSTALLATION SHALL COMPORT TO THE SPECIFICATIONS.
- 3) ALL WATER MAINS, WHERE INDICATED, UNLESS OTHERNISE SHOWN OR DIRECTED, SHALL BE POLYVINY: CHLORIDE (PVC) PIPE WITH PUSH-ON JOINTS. PIPE AND ACCESSORIES SHALL COMPORN TO PRODUCT STANDARDS 22-70 OR ASTM SPECIFICATIONS D-2241 AND D-1784, AS IT APPLIES TO CLASS 12455-B OR 12455-A PVC PLASTIC PIPE, SOR-26 AND A MORKING PRESSURE RATING OF 160 PSI AT 23°C (73.4). PIPE SHALL BE DESIGNED AND LAID IN CONFORMANCE WITH TRENCH LAYING COMDITION TYPE 2.
- 4) ALL GATE VALVES FOUR JICHES (4") TO 12 INCHES SHALL BE RESILIENT SEATED, CAST IRON BODY, AND SHALL BE FURNISHED WITH HECHANICAL JOINT ENDS AND SUITABLE FOR 200 PSI WORKING PRESSURE. CATE VALVES LARGER THAN 12 INCHES AND SMALLER THAN FOUR INCHES (4") SHALL BE OF THE CONVENTIONAL TIPE SUITABLE FOR 150 PSI WORKING PRESSURE AND BE IN CONFORMANCE WITH THE SPECIFICATIONS.
- 5) ALL TEES, CROSSES, BENDS (HORIZONTAL AND VERTICAL), DEFLECTING 11-1/4" OR MORE, PLUSS, FIRE HYDRANTS, AND OTHER APPURTEMANCES FOUR INCHES (4") AND LARGER SHALL BE INSTALLED WITH A CONCRETE THRUST BLOCK OF THE SIZE SHOWN ON THE "MATER STANDANDS" DRAWINGS.
- 6) SPECIAL PIPE FOUNDATIONS, IF REQUIRED, SHALL BE DETERMINED IN THE FIELD AND THE TYPE REQUIRED WILL BE AS DIRECTED BY THE ENGINEER OR COUNTY.
- 7) ARRIAL SURVEY FLOWN ON FEBRUARY 1992. SUBSEQUENT EVENTS MAY HAVE ALTERED INFORMATION PRESENTED HEREON AND NEITHER THE COUNTY NOR THE ENGINEER MAY BE HELD RESPONSIBLE FOR SUCH CHANGES. PROSPECTIVE BIDDERS ARE REQUIRED TO VERIFY CONDITIONS, ADVISE THE RESINEER OF ANY CHANGES, AND ACCOUNT FOR ANY CHANGES IN THEIR CONSTRUCTION COST BID.
- 8) ALL FITTINGS FOR PMC OR C.I./D.I. WATER MAINS SHALL BE CAST IRON/DUCTILE IRON, SHORT BODY WITH MEDIANICAL JOINTS, AND SHALL BE PROVIDED WITH HIGH STRENGTH CORROSION RESISTANT ALLOY, T-HEAD BOLTS, IN COMFORMANCE WITH THE SPECIFICATIONS.
- 9) ALL COLD MATER SERVICE CONNECTIONS SHALL BE POLYETHYLENE (P.E.) TUBING TYPE 111, GRADE 3, CLASS 160. SINCLE SERVICE CONNECTIONS SHALL BE A MINIMUM OF ONE INCH (1") P.E. AND DOUBLE SERVICE CONNECTIONS SHALL BE ONE AND ONE-HALF INCH (1-1/2") P.E. AND SHALL BE INSTALLED IN CONFORMACE WITH THE "WATER STANDARDS" DRAWINGS AND THE REQUIREMENTS OF HARDEE COUNTY.
- 10) A MINIMUM OF 18 (\$\frac{1}{10}\) S VERTICAL CLEARANCE AND TEN FEET (101) HORIZONTAL CLEARANCE SHALL BE MAINTAINED BETWEEN ALL MATER AND SEMER LINES. MIMEN THIS IS NOT POSSIBLE OR FEASIBLE, THE SAMITARY LINE SHALL BE ENCASED IN SIX INCHES (6*) OF CONCRETE FOR A DISTANCE OF TEN FEET ZERO INCHES (101-0*) ON BOTH SIDES OF THE CONFLICT IN CONFORMACE WITH THE "MATER STANDARDS" DRAWINGS.

EVI ENVISORS

MAP

-B-VICINITY

NOTES

ERAL

GEN

RECORD DRAWING

NOTE. The information presented hereon is based upon drawings, specificulties, addends, shop drawings, modifications, etc. amolates by the contractor during the constitution period to retact the in-fit parameter of the Empresentation to constitution.

the Engineer, Envisors, time, is not responsible for the excute or valuely of the Record Drawing Information depicted barron.

2

SHEET NUMB

INFORMATION

SOILS

PSI GEOTECHNICAL REPORT (MARCH 1997)

Report
Geotechnical Engineering Services
Hardee County Sanitary Landfill
PSI Project No. 757-75054

Information To Build On

March 10, 1997

Attention:

Mr. Bob Mackey, P.E.

Project Manager

RE: Report

Geotechnical Engineering Services
Hardee County Sanitary Landfill
PSI Project No.: 757-75054

Dear Mr. Mackey:

In accordance with our proposal to you dated February 5, 1997, Professional Service Industries, Inc. (PSI) has provided geotechnical engineering services in connection with the referenced project. This report includes an overview of the field work and laboratory testing that we completed for the assignment. Also provided are preliminary recommendations for site preparation and foundation design of the leachate storage tanks.

PROJECT CONSIDERATIONS

The Hardee County Sanitary Landfill is located in northeast Hardee County, east of U.S. 17 and north of County Road 636. The property is located in Section 35, Township 33 South, Range 25 East. The landfill site is generally rectangular in shape occupying a plan area of approximately 100 acres.

At the present time, geotechnical engineering services have been directed at the northwest corner of the site, where a liner wall will be constructed as well as above ground leachate storage tanks. The liner wall will be located south of the existing dewatering ditch and will consist of installing a High Density Polyethylene (HDPE) liner in a trench. The HDPE liner will be keyed into low permeable clays at depth providing a hydraulic cut off barrier.

The leachate storage tanks are to be built near the maintenance building. They will comprise two 50,000 gallon above ground tanks. It is proposed that the tanks be supported on a shallow foundation system.

A generalized plan view of the facility and the area of interest at this time is included on Sheet 1.

Information To Build On

SUBSOIL AND GROUNDWATER CONDITIONS

General

To evaluate subsoil and groundwater conditions in the area of interest to this assignment, we drilled/sampled six Standard Penetration Test (SPT) borings. These borings were completed in general accordance with the procedures outlined in ASTM D-1586. The borings were advanced to depths in the range 25 to 40 feet below grade. The approximate locations at which the borings were drilled are indicated on Sheet 1.

In the upper 10 feet, SPT samples were recovered continuously then at 5 foot centers thereafter to boring termination. Samples recovered from the borings were visually stratified in the laboratory by a geotechnical engineer, following guidelines contained in the Unified Soil Classification System (USCS). Records of the materials encountered in the borings are presented as soil profiles on Sheet 2. Sheet 2 includes a legend describing the various materials in USCS format.

Stratigraphy

The borings disclosed reasonably consistent subsoil conditions in the area of evaluation. For the purpose of discussions, these conditions have been generalized as follows. From the ground surface to depths in the range 12 to 18 feet below grade is a varying sequence of fine sands. These sands grade from being relatively clean to slightly silty and silty/clayey in composition (i.e. SP, SP/SM, SM and SC materials). Based on the SPT blow counts, these materials are in a loose to medium dense condition.

Underlying the upper sands is clays. These clays grade from being sandy to silty in composition and from soft to extremely hard in consistency. There are clay zones that are primarily derived from weathered limestone, with SPT blow counts in excess of 50 blows for a few inches. All four of the proposed liner wall borings were terminated in clay.

Groundwater

Groundwater level measurements were made in the borings at the time of drilling. These measurements disclosed the water table at depths in the range 4.0 to 7.8 feet below grade. As a result of recharge during the rainy season, the water table will rise some 2 to 3 feet above current levels. The groundwater levels at the site will also be impacted by construction activities.

LABORATORY TESTING

As noted earlier, the laboratory testing work included the stratification of all soil samples in accordance with USCS procedures. Additionally, we carried out four laboratory permeability tests plus nominal classification tests to determine pertinent engineering characteristics/parameters. All permeability tests were performed in a triaxial cell at a

confining pressure of 5 psi. Results of the laboratory tests are presented in Table 1. This table also includes details on boring numbers and sample depths for the test specimens.

SUMMARY OF FINDINGS AND RECOMMENDATIONS

General

The results of the borings and laboratory testing indicate low permeable soils at depth in the area of the proposed liner wall. Subsoils at the site of leachate storage tanks are considered generally suitable for grade support of these structures. In order to enhance foundation performance, the tanks should be supported on subgrade soils that have been densified by surface proof rolling. A design bearing value of 3000 pounds per square foot can be used to size foundations.

Site Preparation For Storage Tanks

At the outset of construction, the site should be stripped of the existing vegetation cover and topsoils. Next, the subgrade soils should be compacted in-situ by surface rolling with a large self propelled vibratory roller. The roller should be capable of imparting a dynamic drum force of at least 36,000 pounds. The tank subgrade soils should be uniformly compacted with the roller to attain a degree of densification that is at least 95 percent of the materials ASTM D-1557 maximum dry density for a depth of 2 feet.

Proof rolling operations should be observed by a representative of this office. Observations would be made as to the general stability of the subgrade in response to rolling. In the event that yielding/pumping soils are encountered during vibratory compaction, such materials should be removed and replaced with clean granular fill. The replacement fill should also be thoroughly compacted to provide a stable subgrade.

Fill required to raise site grades should comprise clean sand with less than 12 percent by dry weight passing the U.S. Standard Number 200 sieve. The fill should be placed in one foot lifts and be compacted to 95 percent or more of the materials ASTM D-1557 maximum dry density.

Foundation Support

Results of our evaluations indicate that the subsurface materials have adequate shear strength to support fully loaded tanks. We estimate that foundations designed for a bearing pressure of 3000 psf will have a factor of safety against a bearing capacity failure in excess of three. This value is based on the assumption that the structures will be founded on thoroughly compacted native soils and/or engineered fill. The outside foundations/edges of the tank should be adequately protected by soil as to prevent undermining.

Based on our current understanding of the general loading conditions for the tanks, we anticipate settlement performance being within tolerable structural limits. We would be pleased to address settlement matters more fully when actual design loads are known.

PSI appreciates the opportunity to be of service to you on this assignment and we trust that the foregoing and accompanying attachments are of assistance to you at this time. In the event that you have any questions on the report or if you require additional information, please call.

Very truly yours,

PROFESSIONAL SERVICE INDUSTRIES, INC.

Ian Kinnear, P. E.

Senior Geotechnical Engineer

FL Registration No. 32614

IK:cd IK\75775054.311

Attachments

- Table 1
- Sheets 1 and 2

TABLE 1
SUMMARY OF LABORATORY TEST RESULTS
HARDEE COUNTY SANITARY LANDFILL

Permeal	oility To	est Results								
Boring TB-1 at 15 Feet										
Permeability = 3.3 x 10 ⁻⁷ cm/sec										
Wet Density	=	104.4 pcf								
Moisture Content	=	56.4 %								
Confining Pressure	=	5 psi								
Boring	TB-2	at 25 Feet								
Permeability	. =	7.7 x 10 ⁸ cm/sec								
Wet Density	=	89.0 pcf								
Moisture Content	= (112.7 %								
Confining Pressure	=	5 psi								
Boring	g TB-3	at 25 Feet								
Permeability	=	$4.3 \times 10^{-7} \text{ cm/sec}$								
Wet Density	=	93.5 pcf								
Moisture Content	=	80.7 %								
Confining Pressure	=	5 psi								
Boring TB-4 at 17 Feet										
Permeability	=	$6.1 \times 10^{-8} \text{ cm/sec}$								
Wet Density	=	118.9 pcf								
Moisture Content	=	30.8 %								
Confining Pressure	=	5 psi								

- 07/99033.09

TE RMI OUN	BEGA T° ID BL ING	RFACE)-97 ELEV. 1	 otory, 10 7/	DATE FINISHED: SECTION: TOWNSHIP: 8"5it RANGE:	<u>11-24-57</u>	DRILL EC	IST: C. Cum D BY: CPTH: 1.5' DUIP: Dietric IIME: 11-20-	aine ch
	EPTH (FT)	FIELD SAMPLE TYPE AND NO.	ASTM (N)	ט ער טוי איזוי	DESCRIPTION			HELL CONS MONITOR MELL MO BOREHOLE DIAMET SURFACE CASCIG: SORZEN LENSTH: SEAL TYPE: DEVELOPMENT TO	
z	0.30 -	86,4			SAND: Quartz, white, fine gra to rounded, moderate sorting. SILTY SAND: Quartz, brown, fi grained, subrounded, poor to minor amount of roots (1.5-2.	•			=
	5.00 -	EL BIH	2, 2 4 2, 10 /5 4, 9 /8 7, 10 /7		CLAYEY SAND: Cuartz, gray/bro grained, rounded to subrounde poor sorting, minor amount of	own, fine			
	-10.00 -	76.4	10 10 /9 10 1020 7, 12 /9 12 12 20		SANDY CLAY TO CLAY: Light gre Quartz and phosphorite sand to very fine grained, rounded poor sorting; very stiff area lense 19.0-19.33 ft.	een, eoft: matrix: medium d to subrounded nge/brown clay			
	-15.00	71.4	7.8 /5 7.5 /0 7.12 U 3.5 9						
	-20.00	66.4	2. 11 2 10. 223 18. 203 2. 6. 9	NAME OF TAXABLE PARTY.					
	-25.00	61.4	50 . 33		SANDY CLAY: Light green, eti quartz matrix: fine grained rounded to subrounded, poor refusai at 24.33 ft. NO SAMPLE:	earting:			
	-30.00	56.4 56.4	10, 32 ° 50 ° 51, 22 ° 27, 45	0	CLAYEY SAND: Quartz, light orange/brown mottled. Fine of counded to subrounded, poor friable: refueal at 26 Ft. NO SAMPLE: SANDY CLAY: Crange/ light or	grained, acting; dry;			
	-35.00		14 80 27, 50 13, 15 21, 35	77 20 20	etiff, fricible; quartz sand grained rounded to subround high sand content; refued (MO SAMPLE: SANDY CLAY: Light orange/ bi green, stiff, fricible, phos	at 28.5 ft.	ine .		
	sut	`]	15, 26 50/.3: 50/.5		SANDY CLAY: Light orange/ biggreen, etiff to very etiff;	crown to light cobundant granule to in lense of hard clay			

)	•						
SIT	EL	DCAT:	ION:	Hardee	County Landfill	PAGE:	2 DF : 3
		NO: 778-					L*: SB-01
		AN: 11-2			DATE FINISHED: 11-24-97		SIST: C. Cummins
PERM	1 T :			· · · · · · · · · · · · · · · · · · ·	SECTION:	CHECKED	
			ELEV.		TOWNSHIP:	GHL DE	PTH: 1.5'
i		METHOI OR: PSI	D: Mud Ro	otory, 10 7/		DRILL EC	
CON	RHUI		T I	P		SHL-UNIE/I	MELL CONSTRUCTION MONITOR WELL CONSTRUCTION
HATER	NT930	FIELD SAMPLE TYPE AND NO	ASTM	K 0F	35330707760		PORDIOLE STANETER:
TABLE	(FT)	AND NO.	ASTM	FI	DESCRIPTION		GUNFACE CARING:
	45.55						GEAL TYPE: DEVELOPMENT TIME:
	-40.00				CLAYEY SAND TO SANDY CLAY		
			13 50/		Groy/green, stiff, friable; phosphorite and quertz sand matrix: fine to very fine grained,		
		1	12 SC/	Sa rangan da s	rounded, poor sorting, thir lense of moderctaly indurated cemented sand at 52 ft., refusal at 42 ft.		
					ND SAMPLE:	_	
[-15.00	<u>. </u>	12, 10		SANDY CLAY: Gray/green to buff, etiff, fricble; phosphorite and quartz and matrix: fine to very		
].	20, 50/		Fine grained, rounded, poor sorting; thin lesse of moderately indurated sudetone at 45 ft.; refued		
	İ		5, 20	ation distribution	at 46.75 Ft.		
	Ì	1	20/.5 6		NO SAMPLE: SAMDY CLAY: Groy/green mottled, etiff, Frioble:		
	-50.00 ·	1		·	phosphatic; relatively high clay content; refusal at 49.5 Ft.	1	
l]	1 1		NO SAMPLE:	-	
]					
		4	27, 19 20, 23		SANDY CLAY: Gray/green mottled, stiff, friable; phospharite and quartz sand matrix: fine grained,	. .	
	-55.00	4	20, 23		rounded, poor earting.		
		1					
]]					
	1		50/.13		phosphanite and quantz eand matrix: fine to very		• .
	-60.00	4			Fine grained, rounded, poor sorting; refueal at 58.13 ft.		
		1			NO SAMPLE:		
		1	İ				
]	10, 29		CLAYEY SAND: Quartz and prosphor te, light gray. Fine to very fine grained, rounded, poor		
	-65.00	4	50/.5 5		sorting; refusal at 64.5 ft.		
1		1			NO SAMPLE:		
1		1	}				
		1	50/.33		SANDY CLAY: Light gray, hard, friable,	_	
	-70.00]		 	phosphatic, refuect at 68.33 Ft. NO SAMPLE:		
!	1.	1					
İ		1					
		1	50/.33	Capital Control	SANDY CLAY: Light gray, hard, friable, phosphatic, refusal at 73.33 Ft.		
	-75.00]			phosphatic, refusal at 73,33 Ft. NO SAMPLE:		
	13.30						
		1					
1		1	50/.33	den en			
L		1			phosphatic, refusal at 78.33 ft.		

TE L	OCAT:	ION:	Handes	County Landfill	PAGE:	3 DF : 3
∠ BEG/ RMIT*:	NO: 778- NN: 11-2 URFACE	<u>0-9</u> 7		DATE FINISHED: 11-24-97 SECTION:	GEOLDG: CHECKED	*: SB-01 IBT: C. Cummins BY: PTH: 1,5'
				B"bit RANGE		UIP: Dietrich
NTRACT					GHL-DATE/T	IME: 11-20-97
B DEPTH	FIELD SAMPLE TYPE AND NO.	ASTM (N)	פעטיאאו	DESCRIPTION		HELL CONSTRUCTION MONITOR NELL NO. SORDHOLE DIZMETER SOREHOLE CARDING SCREEN LENGTH SEAL TYPE DEVELOPMENT TIME
			F	NO SAMPLE:		
95 00 -		50/.33		SANDY CLAY: Light gray, hard, Friable, phosphotic, refusal at 83.33 ft. NO SAMPLE:		
-85.00 -						
-90.00		50/5F		SANDY CLAY: Light gray, very stiff, friable, phosphotic, refusal at 88.5 ft. NO SAMPLE:		
		38, 25.		SANDY CLAY: Light gray hand Enjoble		
-95.00		50 /5F		SANDY CLAY: Light gray, hand, friable, phosphatic, refusal at 94.5 ft. NO SAMPLE:		
Jan 40		50/.5 r		SANDY CLAY: Light gray, hard, Friable, phosphotic, refueal at 98.5 Ft. NO SAMPLE:		
-106.00						
-105.00		50/.13		SANDY CLAY: Light gray, hard, Friable, phospratic, refusal at 103.13 ft. ND SAMPLE:	\exists	
		15, 50,		phosphatic, refusal at 108.75 ft.		
-110.00	1			NO SAMPLE: Termination of Boring.		
-115.00						
	1					

ATTACHMENT B PSI GEOTECH REPORT (2003)

GEOTECHNICAL ENGINEERING SERVICES REPORT

For the

PROPOSED LANDFILL EXPANSION HARDEE COUNTY, FLORIDA

Prepared for

SCS Engineers 3012 US Highway 301 North Suite 700 Tampa, FL 33619-2242

Prepared by

Professional Service Industries, Inc. 5801 Benjamin Center Drive Suite 112 Tampa, Florida 33634 Telephone (813) 886-1075 Fax (813) 888-6514 Engineering Business No. 3684

PSI Project No. 775-35140

September 25, 2003

Larry P. Moore, P.E. Vice President Florida Registration No. 47673

John Run

Robin Saunders, E Staff Engineer

Martin E. Millburg, P.E.

Geotechnical Department Manager

Florida Registration No. 36584

TABLE OF CONTENTS

1.0	PROJECT INFORMATION 1.1 PROJECT AUTHORIZATION 1.2 PROJECT DESCRIPTION 1.3 PURPOSE AND SCOPE OF WORK	1
2.0	SITE AND SUBSURFACE CONDITIONS 2.1 SITE LOCATION AND DESCRIPTION 2.2 SUBSURFACE CONDITIONS 2.2 SUBSURFACE CONDITIONS 2.4 GROUNDWATER INFORMATION	2 2 3
3.0	REPORT LIMITATIONS	4
LIS BOP SOII	RING LOCATION PLAN SIL PROFILES	SHEET 1
TAE	BLES	
	PENDIX I AIN SIZE ANALYSES	
-	PENDIX II NSOLIDATION TEST RESULTS	
	PENDIX III DISTURE- DENSITY (PROCTOR)	
	PENDIX IV I-AXIAL STRENGTH TEST RESULTS	

1.0 PROJECT INFORMATION

1.1 PROJECT AUTHORIZATION

Authorization to proceed with this project was provided SCS Engineers in the form of Work Order Hardee-01, which was executed 5/1/2003. This study was conducted in accordance with the Scope of Work outlined in the PSI proposal for these services dated April 17, 2003, PSI Proposal No. 775-3G0159.

1.2 PROJECT DESCRIPTION

The existing Hardee County landfill is planned to be expanded. Geotechnical data is required to design the planned expansion. A geotechnical study with soil borings and laboratory testing has been performed to provide data to assist with the design of the planned landfill expansion.

If this information is incorrect, PSI should be notified to determine if either changes in the recommendations are required or additional deeper borings may be necessary.

1.3 PURPOSE AND SCOPE OF WORK

The following services have been provided in order to provide the requested geotechnical data:

- 1. Executed an program of subsurface exploration consisting of subsurface sampling and field testing. PSI performed seven (7) Standard Penetration Test (SPT) borings. One of these borings was extended to a depth of 70 feet below the ground surface. Four borings were advanced to a depth of 45 feet, and two borings were advanced to a depth of 35 feet. In each boring, samples were collected and Standard Penetration Test resistances have been measured virtually continuously for the top 10 feet and on intervals of 5 feet thereafter.
- 2. After the performance of the soil borings, five soil borings were performed by drilling without sampling to various depths. At those various depths, thinwalled (Shelby) tube samples were obtained. A list of the samples obtained is presented in the table below:

Boring No.	Depth, feet	Sample Name
TH-1	18.0-20.0	US1
TH-1	23.5-25.0	US2
TH-4	23.0-24.0	US3
TH-4	23.0-24.0	US4
TH-5	13.0-15.0	US5
TH-6	18.0-20.0	US6_
TH-7	13.0-15.0	US7

- 3. Visually classified representative soil samples in the laboratory using the Unified Soil Classification System (USCS). In addition to the visual classifications, an extensive laboratory testing was performed to help define the characteristics of the subsurface materials at this site.
- 4. Collected groundwater level measurements and estimated normal wet seasonal high groundwater tables.
- 5. The results of the exploration were used in the engineering analysis and the formulation of recommendations. The results of the subsurface exploration, including the recommendations and the data on which they are based, are presented in this written report prepared by a professional engineer.

The scope of our services did not include an environmental assessment for determining the presence or absence of wetlands or hazardous or toxic materials in the soil, bedrock, groundwater, or air, on or below or around this site. Any statements in this report or on the boring logs regarding odors, colors, unusual or suspicious items or conditions are strictly for the information of our client. It is our understanding that an environmental site assessment is currently being performed at this site.

2.0 SITE AND SUBSURFACE CONDITIONS

2.1 SITE LOCATION AND DESCRIPTION

The site is located at the existing Hardee County landfill located on Airport Road, approximately 2 miles east and 2 miles north of Wauchula, Florida.

2.2 SUBSURFACE CONDITIONS

The subsurface conditions were explored using seven (7) Standard Penetration Test (SPT) borings drilled depths ranging from 35 to 70 feet below the existing ground surface. The borings were located in the field by SCS personnel who directed the location and depth of each soil boring. The approximate boring locations and soil profiles are presented on Sheet 1 in the Appendix of this report.

SPT soil borings were advanced utilizing rotary mud drilling methods and soil samples were routinely obtained at select intervals during the drilling process. Drilling and sampling techniques were accomplished in general accordance with ASTM standards. Select soil samples were returned to our laboratory for visual classification and laboratory testing. After the performance of the SPT borings, soil borings were advanced without sampling until desired depths were attained. Then, 3 inch diameter thin-wall (Shelby) tube samples were obtained at depths ranging from 13 to 25 feet.

A generalized description of the subsurface stratigraphy at this site is presented in the table below:

Depth, Feet	Description	Range of N-values
0-18	Sand, slightly silty fine sand, and silty sand (SP/SP-SM, SM)	5 - >50
18-70	Clayey sand, silty clay, sandy clay (SC, CL/CH)	5 - >50

Exceptions to this general pattern occurred at boring TH-3, where highly weathered limestone was encountered from 18 to 23 feet. Also, at TH-2, a clayey sand (SC) was found from 8 to 13 feet.

The previous descriptions are of a generalized nature to highlight the major subsurface stratification features and material characteristics. The soil profiles included on Sheet 2 should be reviewed for specific information at individual boring locations. These profiles include soil descriptions, groundwater levels, stratification, and penetration resistance. The stratifications shown on the boring profiles represent the conditions only at the actual boring locations. The stratifications represent the approximate boundary between subsurface materials and the actual transition may be gradual.

2.3 LABORATORY TESTING PROGRAM

Laboratory testing was performed as directed by SCS. Laboratory testing included moisture content, Atterberg limits, sieve analyses, tri-axial strength, permeability, standard Proctor and consolidation testing.

A summary of laboratory test results is presented in the Appendix of this report. Detailed laboratory reports are also presented in the Appendix of this report.

2.4 GROUNDWATER INFORMATION

Groundwater levels were recorded immediately after drilling, during the time of the subsurface exploration and corroborated through a visual examination of the obtained soil samples. Groundwater was found at a depth of 5 ½ to 7 feet below the current ground surface.

It should be noted that groundwater levels tend to fluctuate during periods of prolonged drought and extended rainfall and may be affected by man-made influences. A seasonal effect will occur in which higher groundwater levels are normally recorded in rainy seasons. Groundwater levels presented in this report are the levels that were measured at the time of our field activities. Based on the upper limit of the iron oxidation and the observed groundwater levels, the seasonal high depth to groundwater at this site is estimated to be on the order of 3 ½ feet below the existing ground surface at the boring locations.

3.0 REPORT LIMITATIONS

The Geotechnical Engineer warrants that the findings, recommendations, specifications, or professional advice contained herein have been made in accordance with generally accepted professional geotechnical engineering practices in the local area. No other warranties are implied or expressed.

The recommendations submitted are based on the available subsurface information obtained by PSI and design details furnished by SCS Engineers for the proposed project. If there are any revisions to the plans for this project or if deviations from the subsurface conditions noted in this report are encountered during construction, PSI should be notified immediately to determine if changes in the foundation recommendations are required. The State of Florida is underlain by a soluble limestone formation. This limestone can be dissolved, resulting in the formation of sinkholes. An evaluation for the existence of or the potential for sinkhole development was not a part of the scope of services for this project.

After the plans and specifications are more complete, the Geotechnical Engineer should be retained and provided the opportunity to review the final design plans and specifications to check that our engineering recommendations have been properly incorporated into the design documents. At that time, it may be necessary to submit supplementary recommendations. This report has been prepared for the exclusive use of SCS Engineers in Hardee County, Florida.

SHEETS

BOIRNG LOCATION PLAN

SOIL PROFILES

BORING LOCATION PLAN

APPROXIMATE PLAN SCALE

NOTE: PROVIDED TO PSI BY SCS ON 7/25/03.

LEGEND

◆ Approximate SPT boring location

DRAWN	DJG	
CHECKED	GC	
APPROVED	мЕМ	-11

PROPOSED LANDFILL EXPANSION

HARDEE COUNTY, FLORIDA

GEOTECHNICAL SERVICES

ED **Engineering** • Cons

NOTED

DATE JUNE 03 PROL NO. 775-35140 SHEET 1

TABLES

TABLE 1 SUMMARY OF LABORATORY TEST RESULTS PROPOSED LANDFILL EXPANSION HARDEE COUNTY, FLORIDA PSI PROJECT NO. 775-35140

Boring Number	Sample Depth (feet)	mple Depth Sieve Analysi (feet)			(%)			rg Limits %)	USGS Group	Stratum Number
		#10	#40	#60	#100	#200	LL	PI		
TH-1	4.0 - 6.0	98	93	75	48	13	-	*	SP-SM/SM	2
TH-1	13.5 - 15.0	99	71	36	22	17	-	-	SP-SM/SM	2
TH-1	18.0 - 20.0	-	100	-	85	41	-		CL/CH	4
TH-1	23.0 - 25.0	85	74	67	58	36	92	47	CL/CH	4
TH-1	33.5 - 35.0	99	89	64	24	21	-	-	SC	7
TH-2	2.0 - 4.0	100	95	76	50	8	-	-	SP/SP-SM	1
TH-2	18.5 - 20.0	100	81	41	27	25	-	-	SP-SM/SM	2
TH-2	28.5 - 30.0	100	100	98	87	61	152	86	CL/CH	4
TH-3	2.0 - 4.0	100	95	75	50	12	-	-	SP/SP-SM	1
TH-3	13.5 - 15.0	100	88	47	22	18	-	-	SP-SM/SM	2
TH-3	28.5 - 30.0	100	99	97	95	87	204	152	CL/CH	4
TH-4	4.0 - 6.0	100	93	71	48	17	-	-	SP-SM/SM	2
TH-4	23.0 - 24.0	100	100		95	63	111	82	CL/CH	4
TH-4	24.0 - 25.0		~	-	-	45	-	-	SM/SC	5
TH-4	38.5 - 40.0	99	86	53	25	23	-	-	SM/SC	9
TH-5	2.0 - 4.0	100	93	70	43	8		-	SP/SP-SM	1
TH-5	13.0 - 15.0	92	50	-	27	14	84	63	CL/CH	4
TH-5	28.5 - 30.0	99	81	49	36	34		-	SM/SC	9
TH-6	4.0 - 6.0	100	95	78	. 56	23	-		SP/SP-SM	2
TH-6	13.5 - 15.0	100	72	31	16	12	-	-	SP/SP-SM	1
TH-6	18.0 - 20.0	100	98	-	82	76	109	84	CL/CH	4
TH-7	4.0 - 6.0	99	95	77	52	10			SP/SP-SM	1
TH-7	13.0 - 14.0	100	96	-	32	24	61	39	CL/CH	- 4
TH-7	14.0 - 15.0	-	-	-	-	41	50	26	CL/CH	4

TABLE 2 SUMMARYOF CONSOLIDATION PARAMETER TEST RESULTS PROPOSED LANDFILL EXPANSION HARDEE COUNTY, FLORIDA PSI PROJECT NO. 775-35140

Boring Sample Depth Content Density Ratio Liquid Index Pressure Index	Number TH-7	Number US-7	13.0 – 15.0		74	1.28	61	39	1250	0.44
				Moisture		1000				

	SUMMAR	Y OF STANDARD PRO PROPOSED LA HAR	TABLE 3 CTOR COMPACTION TEST NDFILL EXPANSION DEE, FLORIDA CT NO. 775-35140	RESULTS	
Boring " Number	Sample Depth (ft)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	USGS Group	Stratum Number
TH-1	0.0 - 4.0	112.1	10.5	SP-SM/SM	2

	TABLE 4 SUMMARY OF PERMEABILITY TEST TABLE PROPOSED LANDFILL EXPANSION HARDEE, FLORIDA PSI PROJECT NO. 775-35140									
Boring Number	Sample Number	Sample Depth (ft)		Average Hydraulic Conductivity(ft/day)	USGS Group	Stratum Number	Confining Pressure, psi			
TH-1	Bulk	0.0-4.0	100	2.1	SP-SM/SM	2	*			
TH-7	US-7	13.0 - 14.0	98	0.039	CL/CH	4	70			
7117	110.7	14.0. 15.0	98	0.0003	CL∕CH	4	45			

TH-1 Bulk sample remolded to 95% of 112.1 pcf.

^{*}Permeability test performed on remolded sample placed in permeameter to attain required unit weight, no confining pressure imposed.

TABLE 5

SUMMARY OF TRIAXIAL COMPRESSION TEST (CONSOLIDATED-UNDRAINED) RESULTS PROPOSED LANDFILL EXPANSION HARDEE COUNTY, FLORIDA PSI PROJECT NO. 775-35140

	表面对比例的 多位。 是是这个	AND AND SET OILE	KOSECT NO.	113-33170			
	Sample		Effecti	ve Stress	USGS	Stratum	
Boring Number	Sample Number	Depth (feet)	Cohesion (psf)	Angle of Friction	Group	Number	
TH-1	US-1	18.0-20.0	0	13	CL/CH	4	
TH-4	US-4	23.0-24.0	300	9	CL/CH	4	
TH-5	US-5	13.0-15.0	0	28	CL/CH	4	
TH-6	US-6	18.0-20.0	0	30	CL/CH	4	

6 -4-2		Sample	Tota	l Stress	USGS	Stratum	
Boring Number	Sample Number	Depth (feet)	Cohesion Angle of (psf) Friction		Group	Number	
TH-1	US-1	18.0-20.0	500	7	CL/CH	4	
TH-4	US-4	23.0-24.0	300	5	CL/CH	4	
TH-5	US-5	13.0-15.0	0	16	CL/CH	4	
TH-6	US-6	18.0-20.0	500	13	CL/CH	4	

APPENDIX I

GRAIN SIZE ANALYSES

2/2

Project No. <u>35140</u>		Date: 5/20/2003
Project: <u>Hardee</u>	County Landfill	
Sample Location:	TH1 15'	
Soil Description:	0	· · · · · · · · · · · · · · · · · · ·
Soil Classification:		PI
	GRAIN SIZE DISTRIBU	ITION
Sieve 3/8 4 10	20 40 60	100 140 200
80.0 80.0 Line 20.0 20.0 20.0		
0.0	1 GRAIN SIZE, m	0.1 0.01 m
% Gravel 0.0	% Sand 83.0	%-200 17.0
D60	D30 D10	CC CU

PROFESSIONAL SERVICE INDUSTRIES, INC.

Project No. 35140 Date: 6/11/03 Hardee County Landfill Project: Sample Location: TH1 18-20' Soil Description: Soil Classification: PI **GRAIN SIZE DISTRIBUTION** 100 140 100.0 80.0 PERCENT FINER 0.09 20.0 0.1 0.01 GRAIN SIZE, mm % Sand %-200 % Gravel 0.0 59.3 40.7 CC CU D60 D30 D10

Project No. <u>775-35</u> 1	40	Date: 6/10/03						
Project: Hardee County Landfill								
Sample Location: US-2 TH-1 @ 23.5'-25'								
Soil Description:	Tan and Light Green Clay With	n Rock						
Soil Classification:	0 LL 92	PI47						
NMC % 47.4								
	GRAIN SIZE DISTRIBUTION							
Sieve 3/8 4 10	20 40 60 100 140	0 200						
80.0								
E								
0.00 PERCENT FINER								
₩ 40.0								
20.0								
0.0	1 GRAIN SIZE, mm	0.1 0.01						
% Gravel	% Sand	%-200 35.5						
5.5 D60	59.0 D30 D10	35.5 CC CU						

·	Project No	351/0			Date: 5/23/2003	
	Project No	·			Date. 0/20/2000	
1	Project:	Hardee	County L	andfill	·	
. ;	Sample Location:			5'		
,	Soil Descr	iption:	0			
	Soil Classi		0	LL	PI	!
	· · · · · · · · · · · · · · · · · · ·					
			GI	RAIN SIZE DISTRIBUTION		
Sieve 3/		10	20	40 60 100 140	200	
100.0				*		
80.0		•				
PERCENT FINER)					
20.0						
0.0	10		1	GRAIN SIZE, mm	0.1	0.01
	% Gravel			% Sand	%-200	-
	0.0 D60		D30	79.5 D10	20.5 CC CU	

Р	roject No. <u>35140</u>			Date: 5/23/2003	
Р	roject: <u>Hardee</u>	County La	andfill		
s	ample Location:	TH2 4'			
s	oil Description:	0	·		
s	oil Classification:	0	LL	PI	
					·
		GR	AIN SIZE DISTRIBUTION	·	:
Sieve 3/8	3 4 10	20	40 60 100 1	140 200	
0.08					
PERCENT FINER 0.09					
20.0					
0.0	10	. 1	GRAIN SIZE, mm	0.1	0.01
9	% Gravel 0.0		% Sand 88.1	%-200 11.9	
	D60	D30	D10	CC CU	<u></u>

PROFESSIONAL SERVICE INDUSTRIES, INC.

Project No. 35140 Date: 5/23/2003 Project: Hardee County Landfill Sample Location: TH2 20' Soil Description: Soil Classification: 0 PI **GRAIN SIZE DISTRIBUTION** 100.0 80.0 PERCENT FINER 0.09 20.0 0.0 10 0.1 0.01 **GRAIN SIZE, mm** % Gravel % Sand %-200 0.0 75.3 24.7 D30 D10 CC D60 CU

Pr	roject No	. 35140					Date:	5/21/2003	
Pı	roject:	Hardee (County L	andfill			· .		
Sample Location:			TH2 30'						
S	oil Descr	iption:	0						
S	oil Class	ification:	0_		LL_		PI		
			G	RAIN SIZE I	DISTRIE	BUTION			-
Sieve 3/8 100.0	4	10	20	40	60	100 140 2	00		
0.08 80.0	· · · · ·						/		
PERCENT FINER									
2 40.0			····						
20.0							·		
0.0	10			l GRA	AIN SIZE,		 		0.0
9/	6 Gravel 0.0	· · · · · · · · · · · · · · · · · · ·	· ·		Sand 8.8			%-200 61.2	
	D60		D30		10	1	CC	CU	

Р	Project No. <u>35140</u>	·		Date:	5/22/2003
1		County L	andfill		A.
			anam.	······································	
S	Sample Location:	TH3 4'			
s	Soil Description:	0			
s	Soil Classification:	0	LL	PI_	
		4,4			
	·	GI	RAIN SIZE DISTRIBUTI	ON	
Sieve 3/8	4 10	20	40 60 100	140 200	
0.08					
PERCENT FINER					
20.0					
0.0					
	0	_ 1	GRAIN SIZE, mm	0.1	0.01
%	6 Gravel		% Sand		%-200
	0.0 D60	D30	86.3 D10	CC	13.7 CU

Pro	oject No	. 35140			Date:	5/22/2003	
Pro	oject:	Hardee	County L	andfill	·		
Sa	mple Lo	ocation:	TH3 15				
So	il Descr	iption:	0				
So	il Class	ification:	0	LL	Pl_		
			GI	RAIN SIZE DISTRIBUTION	l		
Sieve 3/8	4	. 10	20	40 60 100 14	0 200		
100.0							
80.0 -							
PERCENT FINER 0.09							
20.0							
0.0)		1	GRAIN SIZE, mm	0.1		0.01
%	Gravel		· · · · · · · · · · · · · · · · · · ·	% Sand		%-200 17.9	
	0.0 D60		D30	82.1 D10	CC	CU	

P	Project No	o. <u>35140</u>					Date	: 5/22	2/2003	
F	Project:	Hardee (County L	andfill				·		
S	Sample Lo	ocation:	TH3 30	ļ¹						
s	Soil Desci	ription:	0							
s	oil Class	ification:	0		LL_		_ P	l <u></u>		
	· ·				•					
			G	RAIN SIZE	DISTRI	BUTION				
Sieve 3/8 100.0	4	10	20	40	60	100 140	200			
				•						
80.0				·						
8 60.0 ER					,			·		
0.04 PERCENT FINER										
40.0				 					····	
20.0						·		· · · · · · · · · · · · · · · · · · ·		
	į									
0.0	10		1	GP	AIN SIZE,	mm	0.1	-1 -1 -1	· · · · · · · · · · · · · · · · · · ·	0.01
				GR/	1111 SIZE,	,				· .
9/	6 Gravel 0.0				Sand 3.5			%-2 86	200 5.5	
	D60		D30		10	•	CC		CU	

P	roject No. 35	140	- -	Date:	5/23/2003
Р	roject: <u>Ha</u>	ardee County	Landfill		<u> </u>
S	ample Locat	ion: <u>TH4</u>	5'		
S	oil Descriptio	on: <u>0</u>			
S	oil Classifica	ition: 0	LL	PI	
					
			GRAIN SIZE DISTRIBUTI	ION	
Sieve 3/8	4	10	20 40 60 100	0 140 200	
80.0					
PERCENT FINER 0.09					
20.0					
0.0	10		1 GRAIN SIZE, mm	0.1	0.01
9	% Gravel 0.0		% Sand 83.2		%-200 16.8
	D60	D30	D10	CC	CU

	Pro	ojec	t N	o. 3	351	40	<u> </u>										Da	ate:	. 6	3/1	1/20	03		
	Pro	ojec	t:	- -	Har	dee (Coun	ity L	and	lfill	-													
							TH4	- -							·									
					tior									 =	÷					•			•	
						on:		-					.L					Р	1	•		•	•	
					Jati	<u> </u>								-				. •					•	
											_													
								GR	AIN	SIZ	ZE [DIST	ribu	OITL										
Siew 100			4			10		20		T	40		60	100	140	200	· T	1		-		T		7
							•							<u> </u> 										
80	.0 -														/			1.						
ER 60	.0		-		-			_			+	-					*					-		
PERCENT FINER																						į		
40	.0										-					\parallel				}				
20	.0																							
														-										
0	.0 L				;			<u> </u> 1		_	_				. (<u> </u>	<u> </u>	Ш			_		0.01
											GRA	NN S	IZE, m	m										
	%	Gra					<u> </u>					3.0	d				-				-200 32.0			
-		0.0 D6	_				D30)				10				CC	5			<u> </u>		CU		

PROFESSIONAL SERVICE INDUSTRIES, INC.

Date: 6/11/03 Project No. 35140 Project: Hardee County Landfill Sample Location: TH4 24-25' Soil Description: LL PI____ Soil Classification: 0 **GRAIN SIZE DISTRIBUTION** 100.0 80.0 PERCENT FINER 20.0 0.01 0.1 GRAIN SIZE, mm %-200 % Sand % Gravel 8.0 54.6 D30 CC CU D10 D60

PROFESSIONAL SERVICE INDUSTRIES, INC.

Project No. 35140 5/22/2003 Date: Hardee County Landfill Project: Sample Location: TH4 40' Soil Description: Soil Classification: 0 **GRAIN SIZE DISTRIBUTION** Sieve 3/8 100.0 80.0 PERCENT FINER
0.09 20.0 0.0 0.1 10 GRAIN SIZE, mm %-200 % Sand % Gravel 22.6 0.0 77<u>.4</u> CC D30 CU D10 D60

Р	roject No	. 35140				Date: 5	5/27/2003	!
Р	Project:	Hardee (County La	ndfill	· · · · · · · · · · · · · · · · · · ·			
S	Sample Lo	ocation:	TH5 4'				·	
S	Soil Descr	iption:	0	·				
S	Soil Class	ification:	0	LL	· .	PI		
	- · · · ·	· · · · · ·						
			GR	AIN SIZE DISTRIB	UTION	÷		
Sieve 3/8	B 4	10	20	40 60	100 140 200			
80.0 &								
PERCENT FINER 0.09	·	·				•		
20.0						•		
0.0	10	· · · · · · · · · · · · · · · · · · ·	. 1	GRAIN SIZE, r	0.1 nm			0.01
0	% Gravel			% Sand 91.9			%-200 8.1	
	0.0 D60		D30	D10	CC	<u> </u>	CU	·-··

Project No. <u>35140</u>			Date:	6/11/2003
Project: <u>Hardee</u>	County Landfill		· 	·
Sample Location:	TH5 13-15'			
Soil Description:				
Soil Classification:	· · · · · · · · · · · · · · · · · · ·	LL	PI	
	GRAIN SIZ	ZE DISTRIBUT	ION	
<u> </u>	••	·•		
100.0				
80.0				
60.0 E KC E KC E KC E KC E KC E KC E KC E K				
20.0			*	
0.0 10	1	GRAIN SIZE, mm	- 0.1	0.01
% Gravel 1.0	C	% Sand 85.0		%-200 14.0
D60	D30	D10	CC	CU

	Pr	ojec	t N	o. <u>3</u>	<u>351</u>	<u>40</u>				-											D	ate	9:	6	/11	/2	00	3		
	Pr	ojeo	ct:	<u>}</u>	lar	dee	C	our	าty	Li	and	lift	<u>l</u> .									-								
	S	amp	le L	.oc	atic	n:		TH	6 1	15'																		<u>.</u>		
	S	oil D	esc	crip	tior	1:																	_					- .		
	S	oil C	las	sifi	cati	ion:									LL							F	기_							
	•	,							,			•																		
									G	R.	AIN	SI	ΖE	DIS	STI	RIBU	JTI	ON												
		•			,								•-					-	·	••	•							_	_	
	100.0																													
ER	80.0																											•		
ERCENT FIN	60.0															\								•						
۵	20.0						,	,								4														
																		×	7		•				. ,					
	0.0	0	-							1			GF	RAIN	SIZ	ZE, π	ım		(0.1						-			0	.01
	%	ຜ Gr	ave .0	1										Sa 38.		i										-20 2.0				
			<u>.0</u> 60					D3	30					D10	_					C	C							U		

PROFESSIONAL SERVICE INDUSTRIES, INC.

Project No. <u>35140</u> Date: 6/11/03

Project: Hardee County Landfill

Sample Location: TH6 18-20'

Soil Description: 0

Soil Classification: 0 LL Pl____

Р	roject No. <u>35140</u>			Date: 5/27/20	003
P	roject: <u>Hardee</u>	County L	andfill		· ·
s	ample Location:	TH7 5'			
S	oil Description:	0			 .
S	oil Classification:	0	LL_	PI	
					-
100.0		G	RAIN SIZE DISTRIBUTIO	N.	
80.0					:
PERCENT FINER					
40.0					
20.0		3			
0.0	10		1 GRAIN SIZE, mm	0.1	0.01
9	% Gravel 0.6		% Sand 89.3	%-20 10.1	
	D60	D30	D10	CC	CU

	Ρ	ro	jec	t t	Vο	. <u>3</u>	51	40)	——			_	٠											D	ate	∋:	6	3/1	1/2	20	03		ļ
	P	ro	je	ct:		F	lar	de	e	<u>Cc</u>	our	nty	/ L	_a	nc	lfi	Ιĺ												_	1				
	S	аг	np	le	Lc	oca	atic	n:			ΓН	7	13	3-1	15	' (<u> </u>)N	SC)L														
	s	oi	I D	es	scr	ipt	ioi	า:			-	-							٠															
	S	oi	l C	la	SS	ific	at	ior	1:	_									Ĺ	L_		61				F	기.			39)			
	÷														_		-	٠		•									-					
													GR	₹A	IN	s	ΙZΙ	Ε [ois.	TRIE	3U	ITION			-									
Siev 100	e 3/8	3			4				10				20				40	o ·		60		100 1	40	200)									
80	*																	**													•			
PERCENT FINER	.0																			\	\								-					
																						Jac.		/	•									
20																						·						-					٠	
0	.0 I	0		-	-								1				G	RA	IN S	ize,	mr	n	0	.1		•	•					•	0.	.01
	%	6 (Gra		el														an 3.0	d										-2 24.	00)		
			De	_)3(0							10				(CC)·		•					CU		

	Pr	ojec	t No	o. <u>3</u>	351	40													[Dat	e:	6	/11	/20	03	-	
	Pr	ojec	t:	<u> </u>	l ar	dee	Cc	oun	ty l	_ar	ndf	ill_															
.	Sa	ampl	e L	.oca	atic	n:	_]	<u>ГН7</u>	13	3-1	5'	PE	RI	VI							_						i
	So	oil D	esc	rip	tior	ղ:	_				· ——																
	So	oil C	las	sific	cati	ion:	_					_		L	L	5	0				ΡI	-		26		٠.	
		<u> </u>		-		_						•				v											
							***		GF	RAI	N S	SIZ	EC	IST	RIB	JTI	ION										
	 100.0 #								-	-			-		•				·	4					,		_
										•	+		***							ŀ				-			
	80.0											+				-		-		+			-				
NER	60.0														*					-							
PERCENT FINER	50.0		i														, a	-		1							
PER	40.0		-				-					-				+		_				-			+		1
	20.0																										
	20.0													ļ. !										i i			
	0.0			<u> </u>			<u> </u>					<u> </u>						0.	.1			_			<u> </u>		0.01
												(GR/	IN S	IZE, n	nm											
Γ	%	Gra 1.		1								9		3an 9.0	d			. — 						-20 0.0			
		De						D3(Ö				_	10	_	-		(CC						CU		

APPENDIX II

CONSOLIDATION TEST RESULTS

Hardee County Landfill e-log p Curve TH-1, 23.5-25'

CONSOLIDATION TEST RESULTS

Sample I.D.:	US-7 13'-15'	befo	ore test	
Sample Classification:		Moisture, %:	48.8	·
Liquid Limit:	61	Void Ratio:	1.279	
Plasticity Index:	39	Saturation, %:	100.0	
Dry Density:	73.9 pcf	Specific Gravity:		2.7

PROJECT:	FILE NO:		
Hardee Landfill	775-35140		
	DATE:		
	6/10/03		

APPENDIX III

MOISTURE-DENSITY (PROCTOR)

Proctor

Water content. %
Test specification: ASTM D 698-91 Procedure A, Standard

MOISTURE-DENSITY RELATIONSHIP TEST PSI, Inc.

Elev/	Classifi	cation	Not.				7. >	· ·	
Depth	USCS	AASHTO	Moist.	SpG.	<u> </u>	PI	No.4	No . 200	

TEST RESULTS

MATERIAL DESCRIPTION

Maximum dry density = 112.1 pcf
Optimum moisture = 10.5 %

Project No.: 761

Project: HARDEE COUNTY LANDFILL

Location: TH-1 (4' BELOW SURFACE)

Date: 5-19-2003

Fig. No.

APPENDIX IV

TRI-AXIAL STRENGTH TEST RESULTS

Triaxial R Test US-1 18.5'-20' (Effective Stress) ASTM D-4767

-q3' = 3.41 ksf - q3' = 7.28 ksf

Triaxial R Test US-1 18.5'-20' (Total Stress) ASTM D-4767

--- q3 = 2.8 ksf --- q3 = 11.2 ksf

Triaxial R Test US-4 23'-24' (Effective Stress) ASTM D-4767

--- q3' = 0.49 ksf --- q3' = 0.71 ksf --- q3' = 1.75 ksf

Triaxial R Test US-4 23'-24' (Total Stress) ASTM D-4767

--- q3 = 0.8 ksf --- q3 = 1.6 ksf --- q3 = 3.2 ksf

Triaxial R Test US-5 13.5'-15' (Effective Stress) ASTM D-4767

Effective Normal Stress (ksf)

$$----$$
 q3' = 1.2 ksf $----$ q3' = 1.5 ksf

Triaxial R Test US-5 13.5'-15' (Total Stress) ASTM D-4767

- q3 = 2.3 ksf - q3 = 3.9 ksf

Triaxial R Test US-6 18'-20' (Effective Stress) ASTM D-4767

q3' = 1.78 ksf - q3' = 3.77 ksf

Triaxial R Test US-6 18'-20' (Total Stress) ASTM D-4767

- q3 = 2.8 ksf - q3 = 11.2 ksf

ATTACHMENT C FLORIDA GEOLOGICAL SURVEY

SINKHOLE DATABASE

Florida Geo Survey Sinkhu .ex

				DATE															LOCATION
Reference Number	Date Added	Date Revised	Month Occur	Day Occur	Year Occur	Time Occur	Degrees	Longitude Minutes	Seconds	Degrees	Latitude Minutes	Seconds	County	Township	Location Range	Section	Qtr. Section of	Qtr. Section	USGS Topographic Quadrangle
REF NUM	DATE ADD	DATE REV	MONTH	DAY	YEAR			LONG_MM	LONG_SS	LAT_DD	LAT_MM	LAT_SS	co	TWNSHP	RANGE	ECTIO	QTRSECT		
06-001			1	1	60	999	81	49	3	27	34		HARDEE		25E	28			WAUCHULA(CC37)
06-002			5	23	89	999	81	40	20	27	29		HARDEE		26E	25		NM.	SWEETWATER(DD38)
06-003	-		5	23	89	999	81	40	20	27	29		HARDEE	34S	26E	25			SWEETWATER(DD38)
06-004			5	23	89	999	81	40	20	27	29		HARDEE		26E	25		NW	SWEETWATER(DD38)
06-005			5	23	89	999	81	40	20		29		HARDEE		26E	25		NW	SWEETWATER(DD38)
06-006			5	23	89	999	81	40	20		29		HARDEE		26E	25	,	NW	SWEETWATER(DD38)
06-007			5	23	89	999	81	40	20		29	45	HARDEE		26E	25			SWEETWATER(DD38)
06-008			5	23	89	999	81	40	20	27	29		HARDEE		26E	25		NW	SWEETWATER(DD38)
06-009			5	23	89	999	81	40	20		29		HARDEE	348	26E	25			SWEETWATER(DD38)
06-010			5	23	89	999	81	40	20	27	_29		HARDEE	34S	26E	25		NW	SWEETWATER(DD38)
06-011			5	23	89	999	81	40	20	27	29		HARDEE		26E	25		NW	SWEETWATER(DD38)
06-012			5	23	89	999	81	40			29		HARDEE		26E	25			SWEETWATER(DD38)
06-013			5	23	89	999	81	40			29		HARDEE		26E	25		NW	SWEETWATER(DD38)
06-014			5	23	89	999	81	40		27	29		HARDEE		26E	25		NW	SWEETWATER(DD38)
06-015		<u> </u>	5	23	89	999	81	40	20	27	29		HARDEE		26E	25		NW	SWEETWATER(DD38)
06-016			5	23	89	999	81	40	20	27	29	45	HARDEE	34S	26E	25		NW	SWEETWATER(DD38)

SNR271-01 22:08:43

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT REGULATORY DATA BASE SYSTEM

01-03-03 PAGE: 1

SINKHOLE INFORMATION REPORT

T/R/S	COUNTY: HARDEE ADDRESS	CITY	OCCURRENCE DATE	SIŤE #
332431 332431 332528 342625 342625 342625 342625 342625 342625 342625 342625 342625 342625 342625 342625	FORT GREEN RD FORT GREEN ROAD OLD BRADENTON RD & SMITH RD CLIFTON BRYAN RD/DEER RUN ESTATE CLIFTON BRYAN RD/DEER RUN ESTATE CLIFTON BRYAN RD/DEER RUN EST. DEER RUN ESTATES DEER RUN ESTATES CLIFTON BRYAN RD DEER RUN ESTATES/CLIFTON BRYAN DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES DEER RUN ESTATES	ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS ZOLFO SPRINGS	02/10/1997 06/30/1996 03/02/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989 05/23/1989	335 2072 319 320 322 324 325 326 327 328 329 330 331 332 334 2130
352716	6126 SR 66 E	ZOLFO SPRINGS	01,12,2000	==

COUNTYNAME	S ,ADDRESS	,CITY	, LAT	LON , LL S
HARDEE	, 2431, "FORT GREEN RD	", "WAUCHUL		,81571900,UNKN
HARDEE	,332431, "FORT GREEN ROAD	","WAUCHULA		,81571921,FIEL
HARDEE	,332528, "OLD BRADENTON RD & SMITH RD	","WAUCHULA		,81490300,UNKN
HARDEE	,342625, "CLIFTON BRYAN RD/DEER RUN EST.	ATE", "ZOLFO SPRINGS		,81402000,UNKN
HARDEE	,342625, "CLIFTON BRYAN RD/DEER RUN EST.			,81402000,UNKN
HARDEE	,342625, "CLIFTON BRYAN RD/DEER RUN EST		,	,81402000,UNKN
HARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS		,81402000,UNKN
HARDEE	,342625, "DEER RUN ESTATES	","ZOLFO SPRINGS		,81402000,UNKN
HARDEE	,342625, "CLIFTON BRYAN RD	","ZOLFO SPRINGS		,81402000,UNKN
HARDEE	,342625, "DEER RUN ESTATES/CLIFTON BRYA			,81402000,UNKN
HARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	•	,81402000,UNKN
HARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS		,81402000,UNKN
HARDEE	,342625, "DEER RUN ESTATES	","ZOLFO SPRINGS		,81402000,UNKN
HARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS		,81402000,UNKN
HARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS		,81402000,UNKN
HARDEE	.352716."6126 SR 66 E	","ZOLFO SPRINGS	", 27270307,	,81391337,FIEL

NR271-01 2:08:43

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT REGULATORY DATA BASE SYSTEM

01-03-03 PAGE: 1

SINKHOLE INFORMATION REPORT

	COUNTY: HARDEE		OCCURRENCE	
/R/S	ADDRESS	CITY	DATE	SITE #
32431	FORT GREEN RD	WAUCHULA	02/10/1997	335
32431	FORT GREEN ROAD	WAUCHULA	06/30/1996	2072
32528	OLD BRADENTON RD & SMITH RD	WAUCHULA	03/02/1989	319
42625	CLIFTON BRYAN RD/DEER RUN ESTATE	ZOLFO SPRINGS	05/23/1989	320
42625	CLIFTON BRYAN RD/DEER RUN ESTATE	ZOLFO SPRINGS	05/23/1989	322
42625	CLIFTON BRYAN RD/DEER RUN EST.	ZOLFO SPRINGS	05/23/1989	324
42625	DEER RUN ESTATES	ZOLFO SPRINGS	05/23/1989	325
42625	DEER RUN ESTATES	ZOLFO SPRINGS	05/23/1989	326
142625	CLIFTON BRYAN RD	ZOLFO SPRINGS	05/23/1989	327
142625	DEER RUN ESTATES/CLIFTON BRYAN	ZOLFO SPRINGS	05/23/1989	328
142625	DEER RUN ESTATES	ZOLFO SPRINGS	05/23/1989	329
342625	DEER RUN ESTATES	ZOLFO SPRINGS	05/23/1989	330
342625	DEER RUN ESTATES	ZOLFO SPRINGS	05/23/1989	331
342625	DEER RUN ESTATES	ZOLFO SPRINGS	05/23/1989	332
342625	DEER RUN ESTATES	ZOLFO SPRINGS	05/23/1989	334
352716	6126 SR 66 E	ZOLFO SPRINGS	04/12/2000	2130

Page 1 of

:OUNTYNAME	TRS , ADDRESS	,CITY	,LAT ,LON
ARDEE	,332431, "FORT GREEN RD	","WAUCHULA	",27332900,8157
ARDEE	,332431,"FORT GREEN ROAD	","WAUCHULA	",27332907,8157
IARDEE	,332528, "OLD BRADENTON RD & SMITH	RD ","WAUCHULA	",27342300,8149
IAR'	,342625, "CLIFTON BRYAN RD/DEER RU	N ESTATE", "ZOLFO SPRINGS	",27294500,8140
IARL	,342625, "CLIFTON BRYAN RD/DEER RU	N ESTATE","ZOLFO SPRINGS	",27294500,8140
IARDEE	,342625, "CLIFTON BRYAN RD/DEER RU	N EST. ","ZOLFO SPRINGS	",27294500,8140
IARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	",27294500,8140
IARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	",27294500,8140
IARDEE	,342625, "CLIFTON BRYAN RD	","ZOLFO SPRINGS	",27294500,8140
IARDEE	,342625,"DEER RUN ESTATES/CLIFTON	BRYAN ","ZOLFO SPRINGS	",27294500,814(
IARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	",27294500,814(
IARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	",27294500,8140
IARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	",27294500,8140
IARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	",27294500,814(
IARDEE	,342625,"DEER RUN ESTATES	","ZOLFO SPRINGS	",27294500,8140
IARDEE	,352716,"6126 SR 66 E	","ZOLFO SPRINGS	",27270307,8139

ATTACHMENT D SEISMIC IMPACT ZONES

Figure 2-6. Seismic Impact Zones (Areas with a 10% or greater probability that the maximum horizontal acceleration will exceed .10g in 250 years)

Source: USEPA Solid WASTE DISPOSAL FACILITY CRITERIA TECK. MANUAL NOV 93 EPA 530-R-93-017 http://www.EpA.gov/EPAOSWER/NON-HW/MUNCPL/LANDHII/TECKMAN

ATTACHMENT E AVERAGE AND HIGH GROUNDWATER ELEVATIONS

Figure E-1. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
June 1999

Figure E-2. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
December 1999

Figure E-3. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
June 2000

Figure E-4. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
December 2000

Figure E-5. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
June 2001

Figure E-6. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
December 2001

Figure E-7. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
June 2002

Figure E-8. Surficial Aquifer Potentiometric Map, Hardee County Solid Waste Disposal Facility
December 2002

Figure E-9. June 2003 Groundwater Contour Map, Hardee County Solid Waste Disposal Facility

Figure E—10. December 2003 Groundwater Contour Map, Hardee County Solid Waste Disposal Facility

Figure E-11. July 2004 Groundwater Contour Map, Hardee County Solid Waste Disposal Facility

Average Groundwater Contour Map, Hardee County Solid Waste Disposal Facility

December 2002 Groundwater Contour Map, Hardee County Solid Waste Disposal Facility

Hardee County Landfill Average Groundwater Elevations Across the Site

MW-4

→ MW-5

-- MW-9

P-3 P-4

P-5 -<u></u> P-11

Time

Hardee County Landfill Groundwater Elevation in Expansion Area

Time

Hardee County Landfill In Proposed Low Area of Expansion

GW Elevations (ft NGVD)

October 15, 2003 File No. 09199033.09

INTEROFFICE MEMORANDUM

TO:

Joseph O'Neill, P.E.

FROM: 4 Kim Byer

THRU:

Robert L. Westly, P.G.

SUBJECT: Hardee County Landfill Mean High Water Level Determination

On September 12, 2003 SCS staff evaluated five test pits in order to determine the mean high water table in the vicinity of the stormwater management area (SWMA) at the Hardee County Landfill (site). The mean high water table was determined using techniques outlined in the document *Methods for Identifying Soils and Determining Seasonal High Ground Water Table (SHGWT) Elevations* prepared by the Southwest Florida Water Management District (SWFWMD). These methods consisted of excavating five test pits in close proximity to the SWMA then observing and marking soil staining or mottling in the pits. The staining of the soils at each pit consisted of black to gray mottling ranging in depths from 2.5 to 4 feet below land surface. The soil-stained areas in each pit were marked by SCS and later surveyed by Hardee County. The locations of the test pits and the elevations of the field determined mean high water tables are shown on the attached figure.

The soil staining observed at test pits number one and five were utilized to determine the mean high water level at the site because the other pits appeared to be influenced by nearby water bodies. The soil staining at test pits one and five indicate the mean high water table at the site is 78.53 feet NGVD.

Locations of Test Pits at the Hardee County Landfill.

								6/10/2002	12/16/2002
			Jus	ne 1999 through December 20	102	6/6/2001	12/10/2001	0/10/2002	GW Elevation (NGVD)
				6/8/2000	12/6/2000	@0/2001	GW Elevation (NGVD)	GW Elevation (NGVD)	
	and the second s	6/1/1999	12/6/1999	GW Elevation (NGVD)	GW Elevation (NGVD)	GW Elevation (NGVD)		79.97	84.12**
		GW Elevation (NGVD)	GW Elevation (NGVD)		81.77	81.67	81.17	76.36	82.46**
Location	Top of Casing Elevation (NGVD)		82.17	78.27*		77.06	78.16		83.06**
	87.97	79.97	78.76	75.56*	77.56	77.86	79.96	77.56	81.56**
MW-I	85.86	76.86		76.56*	78.66		79.51	77.46	83.44**
MW-2		77.71	79.96	76.46*	77.96	76.56	77.44	74.54°	
MW-4	87.16	77.71	79.76		75.54	74.64		74.91	83.26**
MW-5	88.76		ND	74.54	75.51	74.41	75.91	76.38	83.18**
MW-6	87.94	75.59	ND	74.36*		75.58°	80.2B		83,11**
	87.51	75.86	ND	76.18	77.58	75.31*	78.31	76.21	78.57
MW-7	88.98	ND		75.51	76.91		81.37**	77.47*	78.46
MW-8		ND	ND	80.02	80.47	80.27	79.76**	74.11*	
MW-9	88.71	79.92	80.87		77.61	76.46		75.70*	80.70**
P-1 4	91.27	77.56	79.46	76.56	77.83	77.98	80.75	72.44*	80.39**
P-2 Z	90.66		ND	ND		Dry	78.74		80.55**
9 .	89,23	77.45	77.64	75.39	76.5	Dry	OBSTRUCTED	74.45*	ND
P-3	88.34	76.44		76.65	76.85		78.56	ND	76.96
P-4		77.05	77.95	75.71	76.66	75.66	79.16	74.06*	
P-5	89.25	76.56	78.86		77.46	Dry		72.96*	78.06**
P-9 4	87.06		80.06**	ND	76.36	76.06	77.76	71.26*	78.41**
P-10 Z	88,56	Dry	ND	75.86		74.56	ND		79.69**
U	87.16	76.01		ND	75.81		75.55	70.33*	
P-11	89.21	ND	ND	72.65	76.33	Dry			
P-15 ∠		ND		72.03					
P-16 4	88.83								

Sounce: BIENNAL GOODDWATER REPORT JUN99-DEC 2002 HARDER COUNTY LANDAIL, MAY 2003 By SCS ENGINEERS

^{1.} ND = No Data Reported

^{2.} NGVD = National Geodetic Vertical Datum.

^{3.} TOC = top of casing.

^{4. * =} Minimum groundwater level for the reporting period

^{5. ** =} Maximum groundwater level for the reporting period

Water Level Elevation Data (Feet Above Mean Sea Level)

		Collecti	on Date	
Monitor Well	10-Jun-97	08-Dec-97	01-Jun-98	08-Dec-98
MW-1	81.92	83.77	81.97	82.27
MW-2	78.91	81.89	80.26	78.66
MW-3	79.45	84.25	81.45	80.45
MW-4	79.76	82.86	80.21	80.16
MW-5	79.26	82.91	81.21	80.01
MW-6	78.84	83.24	79.04	78.74
MW-7	78.61	82.66	78.91	78.11
P-1	80.37	NA*	88.97	80.77
P-2	79.21	NA*	NA*	79.86
P-3	79.65	NA*	80.75	80.05
P-4	79.89	NA*	80.39	79.94
P-5	79.75	NA*	81.15	80.80
P-6	78.69	NA*	78.54	79.69
P-7	77.59	NA*	76.14	75.44
P-8	77.89	NA*	76.94	76.04
P-9	78.41	NA*	79.51	78.26
P-10	78.96	NA*	79.86	79.36
P-11	79.26	NA*	79.61	79.26
P-12	79.41	NA*	80.21	79.41
P-13	78.65	NA*	79.10	78.30
P-14	78.25	NA*	77.70	77.35

NA = Not Available

Source: Biennal Groundwater Technical Report (Jun97-DEC98)
Handec County Landfill, Nov 2000
By Hander County

Joe O'Neill

Teresa Carver [teresa.carver@hardeecounty.net] From:

S Monday, February 16, 2004 11:05 AM

joneill@scsengineers.com To:

Subject: ground water ele

June 2003

MW-1 83.72 MW-2 80.26 MW-4 81.36 MW-5 79.81 MW-8 78.39 MW-9 77.11

P-1 80.67 P-2 76.76 P-3 78.45 P-4 74.44 P-9 77.36 P-10 77.86 P-11 78.06 P-15 76.51 P-16 75.73

December 2003

M١ 81.27 MW-∠ 78.16 MW-4 79.66 MW-5 79.41 MW-8 79.28

MW-9 78.41

For some reason I do not have Piezometers for December.

We will try to find out why and get back with you.

Rainfall

Aug 12.28 Sept 3.95 Oct. 1.27 Nov. .76 Dec. 2.61

Sorry no January yet.

Joe O'Neill

From: Teresa Carver [teresa.carver@hardeecounty.net]

Sent: Monday, February 16, 2004 11:09 AM

To: joneill@scsengineers.com

Subject: piezometer

Sorry I was looking in the wrong place

P-1 80.87 P-2 79.26 P-3 79.15 P-4 78.64 P-5 78.75

P-10 78.41

P-11 77.86

P-15 77.41

P-16 76.43

HARDEE COUNTY LANDFILL HARDEE COUNTY, FLORIDA MONTHLY RAINFALL DATA 1990-2003

_	
Month	Rainfall
Month	(inch)
Jan-90	0.14
Feb-90	4.96
Mar-90	0.68
Apr-90	2.71
May-90	2.05
Jun-90	5.34
Jul-90	10.76
Aug-90	10.8
Sep-90	5.65
Oct-90	1.43
Nov-90	0.45
Dec-90	1.03
1990 Total:	46.00

	Rainfall
Month	(inch)
Jan-91	2.59
Feb-91	1.31
Mar-91	4.35
Apr-91	4.18
May-91	4.05
Jun-91	12.94
Jul-91	10.25
Aug-91	7.37
Sep-91	2.21
Oct-91	3.47
Nov-91	0.12
Dec-91	0.28
1991 Total:	53.12

14	Rainfall
Month	(inch)
Jan-92	0.3
Feb-92	5.21
Mar-92	2.07
Apr-92	6.44
May-92	1.61
Jun-92	12.75
Jul-92	2.91
Aug-92	12.76
Sep-92	4.95
Oct-92	2.95
Nov-92	1.55
Dec-92	0.69
1992 Total:	54.19

	_	
Month	Rainfall	Month
	(inch)	
Jan-93	5.93	Jan-94
Feb-93	2.15	Feb-94
Mar-93	5.52	Mar-94
Арт-93	4.34	Apr-94
May-93	2.42	May-94
Jun-93	7.62	Jun-94
Jul-93	7.47	Jul-94
Aug-93	6.24	Aug-94
Sep-93	5.23	Sep-94
Oct-93	5.16	Oct-94
Nov-93	0.72	Nov-94
Dec-93	1.27	Dec-94
993 Total:	54.07	1994 Total:

Rainfall	Month	Rainfall (inch)
(inch)		
3.2	Jan-95	no data
1.58	Feb-95	no data
3.34	Mar-95	no data
1.45	Apr-95	6.6
2.71	May-95	0.65
13.04	Jun-95	8.56
7.29	Jul-95	11.41
7.44	Aug-95	9.99
no data	Sep-95	5.58_
no data	Oct-95	8.64
no data	Nov-95	1.45
no data	Dec-95	0.33
40.05	1995 Total:	53.21

Month	Rainfall
	(inch)
Jan-96	2.67
Feb-96	1.38
Mar-96	3.79
Apr-96	0.76
May-96	4.25
Jun-96	4.24
Jul-96	3.71
Aug-96	8.56
Sep-96	7.83
Oct-96	3.49
Nov-96	0.74
Dec-96	2.51
1996 Total:	43.93

Rainfall

	Month	Rainfall	
	Month	(inch)	
	Jan-98	6.09	١.,
- 1	Feb-98	8.82	" [
9	Mar-98	12.14	37
•	Apr-98	2.53	93 ¹
	May-98	3.57	13-
	Jun-98	1.69	Ľ
	Jul-98	6.78	Γ
	Aug-98	7.58	٠, ا
	Sep-98	10.19	3/3/
	Oct-98_	1.76	$N_{J_{f}}$
	Nov-98	3.34	١,,
	Dec-98	1.56	
	1998 Total:	66.05	J

		Rainfall	1 [
	Month	(inch)	ļĮ
	Jan-99	3.73	1 [
"	Feb-99	0.8	l u
7	Mar-99	0.87	1 1
,	Apr-99	2.65	14.60
j	May-99	2.47	1/40
i	Jun-99	4.08	l_
- 1	Jul-99	2.9]
. :	Aug-99	7.26] .[
11	Sep-99	5.5]
'n	Oct-99	5.61	25,64
	Nov-99	2	175.27
	Dec-99		ا ۱
	1999 Total:	40.27	JI

	Month	Rainfall (inch)	
ı	Jan-00	0	
u	Feb-00	0] (
	Mar-00	0.85	3,43
o	Apr-00	1.4	־דוּ כ
	May-00	0	
	Jun-00	3.18	
	Jul-00	5.8	
	Aug-00	5.62	
4	Sep-00	10.47	ه. ا
7	Oct-00	0	24.1
, o	Nov-00	0.79	
	Dec-00	1.45]
	2000 Total:	29.56	

	Month	Rainfall	
	WOHIT	(inch)	
	Jan-01	0	
ţ,	Feb-01	0	
,	Mar-01	6.98	
'	Apr-01	0	21.51
	May-01	5.37	
	Jun-01	9.16	_
	Jul-01	13.31	_
μ	Aug-01	6.15	
	Sep-01	7.03	27.96
3	Oct-01	0.67	11.10
	Nov-01	0.8	
	Dec-01	0	
	2001 Total:	49.47	

AVERAGE MONTHLY RAINFALL DISTRIBUTION

Month	Rainfall (inch)		Month
Jan-02	2.02	1	Jan-03
Feb-02	6.03	۱, ۱	Feb-03
Mar-02	0		Mar-03
Apr-02	4.28	23/2	Apr-03
May-02	1.77	1/3/	May-03
Jun-02	9.02	1_	Jun-03
Jul-02	7.17	1	Jul-03
Aug-02	7.24] ,	Aug-03
Sep-02	3.46		Sep-03
Oct-02	4.87	29.09	Oct-03
Nov-02	8.46	יי כן	Nov-03
Dec-02	7.89	1	Dec-03
2002 Total:	62.21] `	2003 Total:

1 14	Haintaii		Month	naiiliaii
Month	(inch)		IVIOTILLI	(inch)
Jan-02	2.02		Jan-03	1.28
Feb-02	6.03		Feb-03	2.05
Mar-02	0	"	Mar-03	2.02
Apr-02	4.28	20 B	Apr-03	3.45
May-02	1.77	23,12	May-03	5.07
Jun-02	9.02	<u> </u>	Jun-03	11.9
Jul-02	7.17		Jul-03	4.4
Aug-02	7.24	ď	Aug-03	12.28
Sep-02	3.46		Sep-03	3.95
Oct-02	4.87	39.09	Oct-03	1.27
Nov-02	8.46	יי כן	Nov-03	0.76
Dec-02	7.89	1	Dec-03	2.61
2002 Total:	62.21	· .	2003 Total:	51.04
Source:	NOAA Wea		tation - Wach	nula

r—-	Rainfall
Month	
	(inch)
Jan	2.18
Feb	2.66
Mar	3.48
Apr	3.34
May	2.77
Jun	7.92
Jul	7.60
Aug	8.43
Sep	5.96
Oct	3.27
Nov	2.43
Dec	2.18
Average:	52.22

Note: Monthly averages do not include months with "No Data' Reported.

ATTACHMENT F SETTLEMENT CALCULATIONS

SETTLEMENT CALCULATION PROCEDURES

																			HEET			OF	
CLIENT	tandec	(2	· A TV	IF	PRO	NECT	Ha	~ 9	150	1.	- 70	. ()	45	V. A	ر ۸ ۸	1/0~				JOB	NO.	23.0	5
SUBJECT		<u> </u>	15015			/	FIN	<u> </u>	7	<u>uu</u> /4	1.	7.10	<u> </u>	~~	1	BY	14-			1	DATE	<u> </u>	<i>-</i>
<u> </u>						52	<u> E^</u> -	<u>~7 .</u>	100	100	<u>(A11</u>	مح	7			CHE	CKEL	}			DATE	=	
	:::	:			In	०८६	du	<u> </u>			:	: -											
						ļ	ļ				ļ						ļ				,		
55	ettlen	25	1						<u></u>		ļ;												
_																				7	4/41	LINC	185
λ	Est	m	075	- 5	2.1	7	تدمد	75	ילב: וי	ے سے										,			
	A		1			/		p	KZ.Z.	4 ,										V	۲.۱	D.,	VINGS.
	1	 1			<i>y</i> _	. بد	_				//	_	, <u></u>		ļ	ጉ /	-)				: :		- 1
	7	j		ررت	/ 3	HA	٢	5.7	w	nn	119	>	1119	بد بر -	ons	7	7	٦,	100	1	- :		6097 -097
			+	50,0		<u></u>		<u>!</u>				Fo	nli	15	140	EU 7	500	01	(11)	<i>!</i>		:	ES 97
										ļ <u>,</u>	·	CI	Dys	cy	501	دل	150		مه	1	:	:	9pn 200
					_			<u></u>		_	ساح	PL	RS 77	LIT	y C	1/27	s (C	()			ENU	son	1983
	ļ				(1	1078	<u>.</u> . <i>C</i>	2	Pro	per	7195	Fn	m	LA	3 78	57	PSE	200	3)				
															<u>.</u>		<u> </u>		,				
	3)) =	SPI	- 31	on	C	مرمان	L73	U	150	4	En	מנט-	\sim	5 n	。>	50						
					•	: .	: .					:		: .	:								
				7219	7		Cal	- 1		+ ,	n - /	77	10	<u> </u>	رورين رورم		40	J					
		-	÷	:							25/.		V.L.	ر ب	٠.,	17	~						
		-				ب و بر	(L.Z)		m	Sm	_		ļ			ļ		<u></u>					
ł	λ		ا	 		.i	į į	ļ		ļ		/				/.		ļ					
1	(۲		70	\$ 5)																			
			-	USE	رک	PT	3	lon	2 ب	ررن	175	7	ر م	25	ΠM	1-075				ļ:			
		ļ		ME													ļ			ļ			
				BA													7E	ļ					
		<u>.</u>																<u></u>		<u></u>			
				,	rd Rnio)	co.	m /s	,,,-	,	U	N/7	-	UK	ah.	7							
				-				7	رين	L		.X.A.A.		ffe.r.s	4	6.*			 !				
	7		1/	J., ,		777	7 1/4	<u></u>	25	1/2		/		7, ,7			-	ļ					
	A)		V	SING													_						
				Blo				:				:	•			•	: /	`	ļ				<u>i</u>
ļ		<u>.</u>			epn		:		:			. :		:	:		:						
				70					1			;			5,	PT	\sim	VA	وبمراء	<u> </u>			
				n.	T (0.	20	GJ.		~	ア	٧٢	F	116	J		.ļ	ļ	.ļ					ļ
						<u>.</u>								<u>.</u>	<u>.</u>		<u>.</u>			K	EFEN	اجمو	<u> </u>
						5	5P,	7 N	101	No	٤		Ra	LATI	105	044	ιΓΥ			Pa	inci	ok	s of
								10		-			: -	30 F			T		1,		075C	: :	: 1
														:	,						-51~	1 1	1 1
								30					1		.5 [>	- 1	ļ	-					
														:	:	·				13.	٢٠٠٠	17((1985
							>	×40				<u></u>	7	75 9	10		ļ						

JECT	nda	<	Car	MTV	, 4	۲	PHU	JECI	HA	-rd	٤c	Co	رمر	4	LF	Ex	PA	MSI	0~			09	199	033	05	
JECT				1			Sξ.	n/r	<u></u>	 ساست	Ch	les	lar	Jon	5			BY	1/2			,	DATE	É	,	
										dur						•		CHE	CKED				DATI	E		
																										-
		7																			- †					
Sź	771	192	79	1																	‡					
1 1	•	į	/ ;	ì	Ì												<u>\</u>									
/	/)		ء =	ח	nA	TC		501	/	Pr	0/	4	172	-5	_(}	00	τ									
							: :		;	;						•	•					P	F	NSI	42	
						5)	9	25%	m	173	_	N	201	4	M	¥	501	/			:	LAM				
	Ť					· J	G	A	יהמנ	~	_	٠.		1		7						196				
								P	/		7.1.	%)										•				
++							 						ļ	2	1		را .	2/-				Œ,	YOU	ر		 !
ļļ							ļ	V,	52	-5	141	y 5	AN	(1)	מון	ייכ	וכע	150	<u>ج</u> ــــــــــــــــــــــــــــــــــــ							
·						ļ	 	Vo	0 1	ATT	2 '		1	ono	in			1	m	UG	1 17	-				į
1							C	4),		C	n	/	Λ	MA	X	Vm.	ربرا	1	dm	UĘ,	11	برد				÷
						<u> </u>		190	,		30	<u> </u>		41	<u></u>	23			57		12	2				
								1																		Ĺ
							1																			-
1				İ	ļ		·	ļ	ļ	·			1	1		1		!								-
+					F	<u> </u>	_	 	ח מ	/_		7	j		1	1	n.	ļ						ļ		-
						<u></u>	ru		KG	1.47	UE		برجار	11/7	(<u>)</u>	n)	71/	۵.								÷
			ļ	ļ	ļ	ļ	ļ	S	<u> </u>	P	cqui	<u> </u>	755	//	<i>u</i> 2	\mathcal{E}	19	57	m	97 S		<u> </u>				1
			ļ	ļ	ļ	ļ	بـــــــــــــــــــــــــــــــــــــ	UN	7	6	41	47	<u> </u>		ļ	<u> </u>	<u> </u>	ļ	ļ			ļ	ļ	ļ	ļ	1
			ļ	.ļ	ļ	ļ	, h	, 	ļ	ļ	ļ	ļ	ļ	ļ	.ļ	<u> </u>	ļ	ļ				ļ	ļ	ļ		ļ
]//8	K	pm	2/0		<u> </u>				<u>.</u>	<u></u>	<u> </u>				<u> </u>				
			57	TI	/ :	10	2		bn	3	2	7														
					1				I. X								Ī	T	1							
				-		†	-	ا			1		- 	9	1	13			·					-		+
		<u> </u>	 -				-	477	V37.	7	Va L	142	<u></u>	7	10	/+3 /+7					 	 	ļ	·	ļ	
			ļ					 			V d.	144	K	141	10	lti		-		 		 	ļ		-	
	ļ		ļ				-		مأر		- 	<u> </u>	-	4,	7/ 7/	,	ļ			ļ	ļ	ļ	ļ		 	-
	ļ	<u> </u>	ļ			<u>.</u>			od e	3	25	-/	- 5	16	DA	3	ļ	ļ	40		η	 	ļ			-
							1				1		<u></u>		ļ	ļ				ļ	11	<u> </u>	ļ		ļ	-
			ج	a a	3.1				\supset	<u>.</u> =	= 7	Sdn	XA	1		1-8	/ A A .	بنر								
	Ī	10	200	7 4	h	M	ر					١٦		* (,	<u>ا - کی</u> مدیم	Ţ	+ 6)						
	†'						.I¥	1			1	N.C.	1		1		1	×-C	-44-	-	1	1			1	-4
	ļ	L	M	PTE	7	3					 >>	10=	2	16	1-	82	-				++-	÷	†		1	-
		 	-			+						47	×		2 7	87)			-		 			-
		 										16		- /	4/			4								
	ļ	ļ	<u>.</u>				<u>.</u>	<u>.</u>	<u>. </u>							<u>.</u>	.				<u> </u>	. 	-			
	<u> </u>	<u> </u>	<u>.</u>				<u>.</u>		DR	=		Us.	20				<u> </u>		1		₩ 	.				
							į										•	•	1		1	1		•	•	- 1

CLIÉ	NT ,	, 					7.	PRC	JECT			_				7/	—	_				HEET	LIOB	NO	_ OF		-
SUB	IFCT	4AM	<u>.dr</u>	<u> </u>	241	TY	<u>(F)</u>	<u> </u>		140	110	<u> </u>	Lov	Ny	<u></u>	<u></u>	<u> </u>	Kp.	ANJ TRY	10%	<u>J</u>		09	155 TDA	03) IF	7.09	
						<u>.</u>	`	<u>51</u>	<u>: 17 </u>	12m	192	<u></u>	Calc	NAT	70N	<u>u</u>		<u>'</u>		<u>_</u>	AU				•		
								/	12	oc	5 d.v	16	<u>ک</u>	NTY	-		-		CHE	CKEL	, ——			DAT	,E		
	, ,																							, '			
	5	<u></u>	15		المك		,															,		[,		
		21.13	1.6.5	77	<u> </u>	-	ſ -					ļ'		<u> </u>			 			·		-	ļ 	<u> </u>			[
	i	<u>;</u>	<u>اا</u>	<u> </u>			<u> </u>	<u> </u>	ļ		ļ ^j	 	1	ļi		ļ	 	<u>†</u>	<u></u>	ii	·	iI	<u> </u>	<u> </u>		ļ	
	1)		85	77 1	nAT	2	<u> </u>	501	L_/	pr	OP	E-1	175	5	(Co	M	J j	ļ	ļļ	ļ ¹	ļļ	ļ ¹	14		-	ļ'	ļ
	ļ ^j	ļ	<u> </u>	ļ		.ij	jj	.ii	.ii	.ii	.jj	. j j		.ii	.ii		1 1	: :	 	ļ		ļ!	PLa	49	11 20	we c	↓
	ļ	1		ļ		6)	E	57/	mi	DVE		/N	מנוצ	! 6	YOIC	2 n	1977	Þ			الــــــــــــــــــــــــــــــــــــ	<i>u</i> '				
													-				1 1	1 1					50	11.	Mei	CHAN	איוכב
	; •								US	٤	50	3,	/		0		_	0		_		,	: ,:	:		ΛITM	:
							/	4	12.75	- W	LL	1 41	//	7		h-1-7	<u>K</u>		2	= 1	7				969	i 4	Α
	i		<u> </u>				1	[19	سر ا	XII	Jun.	 		مسك	74×	- 4	11/10	ļ					1	1.2.1	7	
	i		ļ	†	-				1.1.4	-			<i>‡</i>		ļ			 	 		ļi	ļ	۲	-4.	ŊΤ	رد	
	<u></u>		 						// ,	<u></u>			1/	 				<u> </u>						ļ			
·			-	-			+		416	XN	M	14	4/					ļ	ļi		 		 				
 	!	!	ļ			<u> </u>											<u>-</u>	ļ'	-		<u> </u>	<u> </u>	ļ'	 	-		<u> </u>
ļ	ļ		ļ	ļ			=======================================	501		<i>y</i> =	10	4	2	n î	اک 🛎	0	10	.ļ		ļ	⁾	ļ		ļ		ļ	ļ
		<u> </u>	<u></u>	ļ													<u>.</u>	<u> </u>		<u> </u>	1!	<u> </u>	ļ				
						3	Er	18		e	ره	<u>.</u> -	- 0	2		3											
				Ī		,								n .√													
					1							2		14:-		_	1~	מהני	1 vo	(V)					-		
			<u> </u>	†	1	ļ,	<u> </u>	ļ		5	. 0,	90	1-1	2,7	シクド	1	/2	תמ	\$ €	<u> </u>							-
<u>†</u>				ļ						-/								ļ		<u> </u>	ļ)		<u> </u>	-	-	-	
ļ i	ļ		ļ	-							UI	70	- 6	213	7			<u> </u>			<u> </u>		ļ	 		-	-
<u> </u>		 	-				 	 	10	چـ ا	<u> </u>	-		-		 	1.						+	 			
ļļ	 		ļ				<u> </u>		<u></u>	, -,	7 6	ئ د رخ	50	ļ			<u> </u>	<u> </u>		ļ	······'	ļ	<u> </u>	<u></u>			-
	ļ	ļ	<u> </u>				<u> </u>	<u> </u>	ļ		<u>_</u>	ļ	1		ļ	<u> </u>	ļ	ļ,				<u> </u>	<u>.</u>				ļ
	Ĺ		<u> </u>			-	H	1)	25	770	100	Z	52	אעע	417	Ed	501	IW	1815	4		<u></u>	<u></u>				
]																					,						
		1	AM	185	ih.	AMA		17	7	=	= /	6,	45	1/	<i>k</i> -		6	=	50%	4	6	עמל	77.				
					in 3			† t	Tot	701	1			a f	W	1	-	 	Spri	<u>، را ا</u> کی ا	1.7	//	7,	, , , ,	-		+
			11	1	VV -	1	-	 	 	-		-					 	 	· ,		14/0-	10	= -	9/		-	+
ļ;		 	-	-	1/2	<u> </u>		1/2	1/	/		-	+			-	1	 	1,	-	+	1/_	+			-	
ļi		ļ	. 		IF	XA	into	<u> </u>	//		-		-		-	-	0 1	4 -	ln.	77	421	147	<u></u>	1//			
 i	-						'						-					-	we	+Tc	7-1	62	#	10/A	رنام.		
	7	7	N	=/	0	7/	2.	2	0/	b	6 =	= 2,0	4								4	1		ļ			<u>.</u>
			e	= (0,7	22	<u> </u>	YL	, =	6	2,5	/					=	=	Voi	10	ns	010	,				
							<u>,</u>			į			1		Ĭ									1			
				1	,:	#/	12	.6t	-///	0.7.	2]]/	1/	472	362	44		5	7	DE	\$no	£ 2	ar					1
			7	701																	1077			1		-	
			ļ	-	-	+	7	20	1,4	t	6/1	13	+	 		-	 		= /	-+		- 4		177	.,,,,		+
4	1	1	1	1	-	7	11/	4	1 1	:	11 11	41	•	1	1	1	1	-	1	100	1/0	\$144	VIV	AVV	1/2	9	1

Estimated Soil Properties Hardee County Landfill

SPT N values 10 of	approx)		36367-776-7740-7	alues of 20 (a		
Soil Type	SM/SC	Silty sands and clayey sands	Soil Type	e	SM/SC	Silty sands and clayey sands
			D. //	-41	0.45	Target Relative Density
Or (target)	0.3	Target Relative Density	Dr (targe	et)	0,40	Target Melative Denoty
- u 1. /u.a	0.7		Density	min (dry)	87	pcf
Density min (dry)		pcf		max (dry)	127	•
Density max (dry)	127	•	**************************************	initial (dry)	101.5	•
Density initial (dry)	96	pcf	Density	initial (di y)	, , , , ,	
Dr computed	0.30	Computed Relative Density	Dr comp	outed	0.45	Computed Relative Density
5. 00pu.ou		•		_		
Void Ratio max	0.9		Void Ra		0.9	
Void Ratio min	0.3		Void Ra		0.3	
Void Ratio init	0.72		Void Ra	tio init	0.63	
					0.45	Computed Relative Density
Dr computed	0.30	Computed Relative Density	Dr comp	outea	0.45	Computed Relative Density
	4	Pore space fully sat. @ Relative Density	Degree	of Saturation	. 1	Pore space fully sat. @ Relative Densit
Degree of Saturation		role space fully sat. @ Relative Delisity		Gravity soil	2.6	
Specific Gravity soil	2.6	* A service As all	Density			pcf (saturated)
Density (sat)		pcf (saturated)	/occurs	es pore space		
(assumes pore space	e filled with	water)	(assume	es hore shace	miso will we	
			1 2 1			
CDT Name 20 of	(anneav)		SPT N	values 40 to g	reater than	50 of (approx)
SPT N values 30 of Soil Type	(approx) SM/SC	Silty sands and clayey sands	Soil Typ		SM/SC	Silty sands and clayey sands
Sui Type	CIVITO	Only odilad and diaje; dalled				•
Dr (target)	n e	Target Relative Density	Dr (targe	et)	0.95	Target Relative Density
Dr (target)	0.0	raigot itolatio bollony		•		
Doneity min (day)	97	pcf	Density	min (dry)	87	pcf
Density min (dry)		pcf	122.202.2000.1	max (dry)	127	pcf
Density max (dry)		•	Density	initial (dry)	124	pcf
Density initial (dry)	107.4	poi	[] -	·- • ·		
D	0.50	Computed Relative Density	Dr comp	puted	0.95	Computed Relative Density
Dr computed	0.00	Computed Relative Bellotty				
Void Ratio max	. 0.9		yoid Ra	itio max	0.9	
Void Ratio max	0.3		Void Ra	itio min	0.3	•
			Void Ra	itio init	0.33	
Void Ratio init	0.54					
D- computed	0.60	Computed Relative Density	Dr com	puted	0.95	Computed Relative Density
Dr computed		Computed Neighbor Density				
Dograp of Caturation	, 1	Pore space fully sat. @ Relative Density	Degree	of Saturation		Pore space fully sat. @ Relative Densi
Degree of Saturation			Specific	Gravity soil	2.6	
Specific Gravity soil			Density		137.5	pcf (saturated)
Density (sat) (assumes pore spac		pcf (saturated)		es pore space		

f:/projects/hardee/09199033.09/geo/soilprop.xls

NT_	4	1		1			IL	PRC	JECT	. //	/	d	. /	,		16	_					HEE.	Line	NO		7 X	
77 JECT	41	199	<u> </u>	0 U	<u>17</u>	7		<u> </u>	- /	_#	AN	196	1	unt	7	<u>~</u>	Z	40.	BY	101	<u>/</u>		107	DAT	105) TE /	7. Œ 00 Z	
			-			•		r	17/5	n	EINT	<u>- 7.</u>	ALL	ulp	770	N5			CHE	CKEI	$\frac{U}{D}$			DAY	<u>/</u> /	003	
	;	;		-	- ;				<u> P</u>	20	222	du	125 !	-		· · · ·											·
		<u> </u>	<u> </u>	1				:	<u> </u>		<u> </u>		<u> </u>	<u> </u>				<u> </u>					<u> </u>				
<	5	\$ 77	1/9	m	4	- ~	7																				
	-	1		7						!		 	 			ļ							 				
	 	1.1	 	-				<u> </u>	 -		ļ		 	 		ļ		 	<u></u>				- 7	ļ		<u> </u>	
	. 	<i>!)</i>	ļ	2	5	7	70	73	ļ	ەك	<u>}/</u>	11	20	PS	77	5	(0	٠٥٠	7			11.	4/1	ne	VCK		ļ
		/	ļ				•			1	•			ì	:	ì			i				/	ļ			
		<u> </u>	<u> </u>			U.	510	15	<u>.</u>	IA	_	11	/	C	3	DV.	18										
	ļ.														7							4	th	50,	150	Dsh	857
	†	<u> </u>	İ				V	AN	ענונ	· ·(6	7	00					<u> </u>	ļ				v.	•	•	į	•
	 		ļ				ļ 			<u> </u>	رن د	¥,	7754	107		72)		7/ (روا			1	2	9	V. L.	419	, _
		 	ļ				المــــــا	M	nı	יעס			E	107	10	<u> </u>	Di	FNS	17/2	J		ļ	U	VIT	W	9191	573
	ļ	ļ	ļ				ļ	ļ	ļ			ļ	ļ	ļ	}	ļ	<u>.</u>	<u> </u>	ļ	ļ		ļ	<u> </u>	ļ			ļ
	1	1	1				<u> </u>	ļ				<u> </u>		<u> </u>			<u> </u>		<u> </u>	<u> </u>		<u> </u>					<u> </u>
	1	1	5	-	7	m	07	5		7		1.	,),	77.	~	/		te -	ے را	7		 	1	L	رر ہے	we	·
]	-	2			142	:Le			12.	217		770		.يــ		17/4	yn	٠.		<u> </u>	-	4	7/17	VC	<u> </u>
	- 			Ú	μ	7	${\mathscr P}$	مرع	+77	55	ļ	ļ	 -	 		ļ	ļ	 		ļ	ļ		4	<u> </u>	ļ	ļ	<u> </u>
	ļ	. 					<u> </u>	i		i	<u>;</u>	<u> </u>	į						:			ļ	1	كەڭ	765	of	£
							(TD.	4	0	نر يا	50	1/5	(7	PS	I.	200	3)	, ~	UN	18	0	-	/, o /	En	بدري	EW
									0	18	W.	m	ليدرنج	ron	ral	6	021	dol	2	700						tou	
								1	Ī	_	سيد	1		1	<	-	Ð	- 	,	400	,	1	Ť				
	†	†	·					†	†	′	7	.5/	 	1	اب		 Y	14	1/6	7.0	.Y])	†	i .	à .	59	i
		· 								.j	ļ			ļ		· 			ļ	ļ	<u> </u>	<u> </u>	·}		1997	5 1.	
					ļ.,j		ک إ	M		Sp	ļ	10	1/5	<u>.</u>	US	\$	1	17	100	ļ	. .	ļ	-¦	ļ	ļ
	<u> </u>	<u> </u>	<u>.</u>					<u> </u>	مرح	25	FA	TE	0	10	1	B	25/1	کے	OF	So	1	<u> </u>	<u> </u>	<u> </u>			
								\neq	المرا] ~	55,	10	1	10	∌,,	رالخ	H	ا مالا	4)								
									7				7	1			1	4	7				1	1	1	·	1
	+	-	·				†	†	 	 	 	†	†	 	 	 	 	 	 		 	 -	 	 		 	
		. 					-f					. 	. .	·	·		 		 	ļ	 	 -	· 		 	 	ļ
							K	Th.	>	C	ک	01	15	US	Έ	N	127	7/0	الخ		ļ	<u> </u>		ļ	ļ	·	ļ
	<u> </u>	ļ	ļ				<u> </u>	1./	PS	٤3	121	TE	0	11	<u> </u>		3/	510	سرار	à F	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	
											E	ر رس کم	بجريج	5121	سر	11	B	K	1	400	14						
											1		1		7		1					1	1		1	1	1
	†	†	-				†	 				 	†		 	 			 	 	 	†	†	 	1		+
							<u> </u>	ļ			-j	- <u> </u>	1	<u>.</u>	7	γ	 	-	 	- 	ļ	 	-	ļ	-	 -	
		-					ļ		6	1		a	10	<u> </u>	6	<u> </u>	ļ		ļ	-		ļ	. 	ļ		 	ļ
ļ	<u> </u>	ļ	<u>.</u>				<u> </u>	ļ		<u> </u>	<u>.</u>	1	<u>.</u>	<u> </u>			<u> </u>	<u> </u>	1	ļ	<u> </u>						
												-		1	=	m	TA	10	(010)	nn	חח						
	1	1	-				Ī	1	1	1		-	†	6 -	<i>'</i>								1	†	-	1	†
	+	-							 				-	/	<u> </u>		g ry	DUT	20	no	<i>71 -</i>	4-0(2)	\ \	-	 	+
ļ		-					ļ	. 			-		- }	<i>b</i> =		N	بمرا	(0	20	UTE	4	ب ـ ن	٤ ٤	!			ļ
ļ		- ‡	.				ļ	ļ	ļ	ļ	ļ	ļ	1 (A =	ڪ	0.1	P	201	151	77/					1	-	ļ
1	1	1						1	1	1					1-	AL	2/6	5	۱ ـ	Y /	1.50	. 1	Faria	. ()		•	1

PROJECT HANCKE COUNTY LF EXPANSION JOB NO. 9/99037.09 CLIENT/ANGE CO ESTIMATED STATEMENTS DATE Somely Soil Properties ESTMATED COADNESSION INDEX VALVES Sirry and clayen sands From As 5-12 (Basic Soit Ensure mins Hough 2 meled) 6~a(6-6) Coefficient From Task 5-1 Coeffee T From TN3k5-1 Soils one SILTY sands (Sm) AND 101701 VOID 10170 Clayey SANDS (SC) = MINIMUM VOID ANTIO Sikry sands (SM) a = 0.15 703/8 5-1 (Bosies of Soils Eng. Hough) B= C= 0.30 (Sques in Soils Fayingerias, Combi Chayan 773/4 3.2 j Clayey SANDS (SC) 1152 a = 0.23 Tx3/6 5-1/ Borres of Sols & Hough) b = em = 0,30 703/5 3,2/ SENES OF Soils Engineering Lanor whirman) SILTY SANCE BM Co Relative DEWING SPTN Cc a a 043 0,30 0.72 0.15 30 % 10 0,050 0.30 0.63 4590 0,15 20 0115 6.30 0.54 0+036 6090 30 0.005 0,30 0,33 95% >40 0.15 Clasey (and) (SC) 0.30 30 90 0.72 0.23 0,097 10 6,27 0 076 45 90 Zo 6.30 0,63 0.54 0.055 60 % 30 0,23 0.30 280 0.23 0,30 0.37 0 20017

NT _/	001	165	Co	(11)	براس	LF	PRO	JECT	HA	nd	E4	6	/1.T	ا سا	LF	Ex	pa	ا د کوسہ	v~√			JOB 1	NO. 1990 DATE	33,	07
JECT	Anc				1		5,	7/0	10 9	سمده	- /	Al	· NA	770	<u></u> _ለ ታ			BY	$\overline{}$	/// v)	7	DATE		
							T=	200	100	lun	E							CHE	CKE)			DATE		
		:																							
			/_																			****			
=	25		anarae		2																				
ļ		}									,						/		1						
	3	/	0	- 5 7	7.M	47	75		⊃ૄ	77/	SN	مبرح	7	<u> </u>	7	76	7	<u>י</u> ט כ י	1						
					A	79	1		3 <i>0</i> .5	20		po	W	.50	//	J	<i>][</i>]		7						
					7.	25	7 E 2 107) V E	V4	رع ر	رير	7	7	Ź.	37/	no	7E	pi	gon	5417	757				
	<u> </u>					ļ	!					 	ļ	ļ	ļ		!	 	ļ	ļ					
	<u> </u>			4	55	 	2	20	177	D ~	7	<i>v</i>	25	711	473		522	7/2	n'	47	<u> </u>				
	ļ	ļ		 V/		ļ	ļ			<u></u>		1	//	/	ļ		ļ	ار م ا		ļ	<u> </u>				
	NI	•	٠		!* \	ļ	 		4	/=	-	C	H	LO	9/	Po	+ 1	7							
ļ	don	:	! .	:	0		!					+00	<u> </u>		(J	ပ	,			<u> </u>				
	-	Sa	15	ļ	ļ	ļ	<u> </u>	<u> </u>		ļ	ļ	 	ļ			ļ,	ļ		<u> </u>	<u>-</u>	ļ				
	ļ	ļ		ļ		<u> </u>	ļ	ļ			<u> </u>	ļ	ļ	ļ	ļ	1	Η:	•			W	:			
ļ	ļ	ļ	ļ		ļ	ļ	ļ	ļ	ļ	ļ	ļ	 		ļ		ļ	ļ	•			077				
	ļ	ļ	ļ		ļ	ļ	ļ	ļ				ļ	ļ	ļ	ļ	ļ	ļ		5 47	7/41	7827	-14	1		
	<u> </u>	<u> </u>	<u> </u>			<u>.</u>	ļ		ļ	ļ	<u> </u>	ļ	<u> </u>		.ļ	H	_	50	/ 1	NIC	Kr	£55	(fi	}	
	<u> </u>	<u> </u>						ļ			<u> </u>	ļ	ļ	ļ		6	- /	יו מיני	741	v	old 1	2010			
	<u> </u>			<u>.</u>	<u> </u>	<u> </u>	ļ				ļ	ļ	ļ			R	<u>-</u>	in	MA	1 8	Hec	יחי	τ"		
		ļ			<u> </u>	<u> </u>	<u>.</u>	ļ			ļ	ļ				ļ	ļ	M	25	ارراد	ik 1	(05/	7		
											<u> </u>	ļ	<u>.</u>				. 4		i	4	-4	· 			
						<u> </u>						<u> </u>				ΔP	-	26	A~	55	1~	Dn4	SSUA	٤	
		Ī												<u> </u>	1		<u> </u>	•	. ,	SF	•				
																			ľ						
		1	_	Z	=	+ 5	H	CT	VE		577	163	5	#	#	18	_	- 8.		.\					
	1		1	₩			7 +								//	71	(V)		777	7					
-	<u> </u>		†	-	-	1	Ţ.,	uu.		/		Ť			21	Fil	، (۲	14	57	ngs	ج ؟	- /	4.45	500	٠٤
		†	†	 	†	1				/	1	<u> </u>	-		1.	/=	=	dd	13)+	()	Sor-	Ku	14	2
	+	-			-	+	†	V	7	7		a			V	7-1	2012	,	2			T			
		†	 				†	=	7	Z	05	4		-	-				-			1	1		
		-	<u> </u>	 	-			 		0							- 						-	 	
			†					†	1-1	<u> </u>	1						†								†
		L	/	Ľ		-		, , , .	-	و		1			1/			سين		a11 .			2.4	ا	<u>ــــــــــــــــــــــــــــــــــــ</u>
		1	7	/	1		l An	7:22	-	000	n p	JUT	٤	٤	116	<u>(7) u</u>	<u> </u>) IN	5.51	// /	Z	791	טנקט	4/	- d
		-			6	14	Ti	5		<u>.</u>	17	<u>.</u>		-	- 	Po		-				-			
		-						4-13	750	1 -	+	41				10	آمهر	1							
		<u>.</u>						<u>.</u>		-	14	772			2										

SHEET _

CLIEN	т		_					PRO	OJECT	<u> </u>										JOB	NO.						7
SUBJE	ECT			-		_	•	ш			-								BY	<u> </u>				DAT	E		7
	—			—		_	_												CHI	ECKE	<u></u>	_		DAT	E		
		_										7					\Box		- 								
K		 مبد م	_	15	20	,	5	 پـــو عظ	-k,	رم مد	777	•			†******************				1								
-	<u> </u>	<u> </u>	<u>~</u>	<u>~/_</u>	بي د			2,	//	<u> </u>	<u> </u>	T															
-	+	-										 		-	1							! i					
							<u></u>	<u></u>	7	4		In	/	PI	1 Ni	174											
	-					<u></u> -		\	11	+ <u>'`</u>	·	17		F	<u> </u>	ブ					1						_
								1.		2	-			/ 0			-	6	7 :	Co	م سا	165	1192	In	da	ید	,,
			<u> </u>				ļ		-	 	1			<u> </u>				_	Z =	+	4	4	nt	GN	DTT	1/4	-)
		[]	<u> </u>	ļ	-				<u> </u>	1	 	 		-			j	11	1 =	//	את,	16	(,,)	No	גר <i>ד</i>	117	<i>}</i>
		<u></u>	ļ		-	Í		-	-	-	-		-	-	-		1	D	- ا	1	מאיני	5/	TA	655	last) (F) MAN	
			-		1	<u> </u>		-					-					76		5	Th	ילדו	a (psf	1	1	
		ļ			-	<u> </u>	<u> </u>		+	-				+		-		XF	<u>-</u>		4.0	200	الاست. مرار	ו בייקי ודת	n 45	u.	
				-	-	-					-					-		471	+	1,	77/	57	ma	יינ מד	/	orll	 \
						-	-		-	-	-	-	-			1			1	اص	. 4.		.	(·	717	
		-	<u> </u>						-		-	+	-			-					1		+				
ļ			-		-		-		-							+	-						-				
ļ	1.			-												+		-					-	1			 !
	11	pv	7 3	-		-		-	-		-			-			-			+				<u> </u>			í
		1	/	- 1/	· • • •	4		7, 7	(1-	+,	<u>ال</u> م		\mathcal{L}	. (1	1		, (1/20	- ک ای	o. /	,				
	<u> </u>	(4		V-	(1 <u>)</u> (1)	7	5/11	- 1	770	-	1410	-77	4.	<u> </u>	5/11/2	17		100	1,	1	1	112		-	-		
	-	-	-	- V _	<u> </u>		200	1011	an.	1107	<u> </u>	<u> </u>	ب	1	νι	-	4	رند	17		+	-		+	 		
		1/	=	-	40	 	/-	1	1	. (5/	7	ر المسر	17	a	115;		Ba	11/		Los	,	En	am			
-	-	D_{-}	-		44	4	ا ا مرسم د	- ,	ne	٠,٠);; 	7	150	57	7.	زرم زرم ر	, 7	To .	1	1	17	1	1/1	KG:	হ)		
-	 	+-	+	+		<i></i>	عرد		22/1	U11.	7.3	+	+	1	1	CKV -	1	4	+		<u> </u>	1-4		1			
-	۲,	هنتهم	+	+	25,	+	1-	<u></u>	+	100	, , ,	1	17	<u>+</u>		_	12.	1	7 1	15	15	15:	717	0.			-
-	L	- 0_	-	+	3	- 1		75			10	- 4	VIL		7,	+	D 6	1.	1	4_	-	1	-		Ť	+	\vdash
-	+	+	+	+		10.	5	12	1	+	+	_	+	+	-	+	+	+	+	-	+	+			+		+
<u> </u>		P	-	2	1,,,	7			(2)		/_	4	_ ب_ بـ	_	1+3)	Q _C	_	10	22 1	77	1	. 6	/			
ļ		10	-		/w T	1/1	27/		1/11	2751		<u> </u>	5//	MI	7/6		7	1				7		47	755		+
<u> </u>				-	1	200	2,0,	ام تکے	715	2		27,5	27		181.	11/1	VK	المنتفا	(Ke	1112	,	1			1~	1	-
	-			-	, ,	<u></u>		1	۔ ہے		ر برسز	_	4,		ודי יני	-	10			an,	-51/4-	1	da	, A []	יאמיי	, ,	+
<u></u>					مام م	///	110	/	ر ر	72)	ر 4 ک		10	611/2	2018	21	5	7	7	1,70-	/6/10	0,	7	-74/	. 4	12.10	ן. קד
-	1			(150	111	24	<u></u>	115	771/1	ر ٍ ر	11	mi	711	100	رد	1//	14	4	14 5	210	AN	0~	3/2/	_ 71	7V/W	
	-				, ,	-	4			. A	· ·		¥ .	in .		1/.)	- " n .	∟ -^.		J	4	1					- 7
				-(/5v /5v	۷5	7 <u>7</u> .	3,67,	V/ ,	9/	Gn	ova	، ().	<i>الا</i> ب	742	1	CP	0 11.	\perp	200	311		1/2	. مه			7
		P	=	- ((50 06	ر <u>ح</u> نامرز	- ¹ ∠ }-	3,60, ,/~	v/. 1 5	01 Tn	62 [5]	DUA	ا اس اس		792 70	12	CCK	100	79 i	1	1/2	0,	ph	1091	ηE	ng 1	• /

SCS ENGINEERS

CLIE	ENT	_						PR	OJEC	π		_								JOE	B NO.	_					\Box
SUE	SJECT							٠											ВҮ					DAT	ΓE		\exists
																			CHE	ECKE	5			DA	TE		
																					-						
	43	ПМ	ΝĪ	3	So	//	pro	ope.	1 <i>17•</i>	<u>در</u>		<u> </u>										\vdash				_	_
l		1 :	1						1		1	<u> </u>	A.									 					_
	(5	M	<u>_</u>	5/	ing	-	SAM	ds	<u> </u>	Rn	U		n	g Ey	ک	ono) (5	2]	<u>-</u> -			- h		-
	(S		1/	1.	-	Z_1	<u> </u>	<i>N</i> -	VAI	<u>یں</u>	<u> </u>	2		· //	y	1	4	-			22 F	² /C	Clai	<i>7</i> 1√9	Der	451M	H
	7	J /	VVA	נזעו	/	orn	רמר	10	-30	, 3	ير .	126		, A	20	20	10			か	 	11		V	- }		
			ļ					30.	-50	6	0-	KŽ	7	51	3	25	5			1/2		1	Ay,	401	i - ()	F	
	D.	-	30	7				سين	· ·												<u> </u>	₫d		4d	₩X	M./	V
	١		′																								
	دا	ny	=	90	60	icf							-	ļ							ļ!	5.	1 1	: :	AX d		
		1					-				-					 					ļ	1100		.	ILVA	η	
	Osx	17	[/	120.5	pc	1															ļ	OJ.	w	19.	in d Densi	m	
	<i>e</i>	,	=	O.	72	1							ļ				ļl			ļ		7.		و مر, د	rd.	M	n.
				٠,	11				-	ļ			-						i			Ŋ	= (1/	الما	UPM.	"
						<u> </u>	-																		12)		
	Dn	=	60	る						•					,				Ľ	1	=	l.	HAX	- {			
	1							-			-					ļ			ļ			M	MAA Ay	· C,	1	<u> </u>	
	02	ny	-	10	7,4	PI	ct			<u> </u>											-						
	Ts.	AY	‡	12	7,21	PCF	•		-										-	-	P	-	1,	/\	1		
-	L		E	Ui.	3/	-	-			-	-	<u> </u>									0	Ax.	16	210	NAI	10	4
\vdash	<i>√V′</i>	\	G	75 %	2	+	+	-	+		+	 	<u> </u>						<u> </u>	-	0		:		LATI.	: :	
	\					+			+-															1/5-	V V,	<u>) •></u>	4 6 2 2
	dd	m		12	24	pc	<u> </u>																				
	ds.	NT	5	137	7.5	þ	cf				Ī	<u> </u>							<u></u>				·				
	٤	_	=	0.	30	-											-		-	-	-		-	-		<u> </u>	
		1	1			ر مز	,	1,		4	1/			al	-	1		1 1	<u></u>		-						
-		4	104	189	2 ر	So. K	4	12	1 W	10	IRS	nei	3	1/9.	ע ער	10	L	ن م	#	· ·							
-	+}	-	つ:	29.		4	+	,		1),		T)(<u> </u>	<u></u>			-								
ļ	00		, ن	11/10	4	1	Tom	(0.	2501	וטאו	7702	د۱/ ۱				-	<u> </u>	<u></u>	M	2015	tun	٤,	CON	TEN	十.	-C(7	
<u> </u>	Y		-	87	•	<u></u>	 ≥>	K	-	+ }	1/	1+4) 	> 7	351	114	0,4	138	FRE	200	(,0	ه در المحادة	3110.	4710	7	E.	
	ď	1	7	+6	v		>	7,	ITAI		0	<u></u>	<i>'</i> <i>≟</i>	*>	//	6,	DC f	4									
									T					1	1	/	/	Ī	1	T		T					

REFERENCE MATERIAL

Principles of Geotechnical Engineering

BRAJA M. DAS

e area ratio is

n. Hence

 $d D_o = 2 in.$

cted by split nm) diameter d above. For Note that the r.

by split-spoon bution, liquid tests such as undisturbed

was outlined nonly used to lualitative del compressive ssion strength d penetration reen the stanne unconfined dependent on explained by geneous sand ill be equal to

(13.4)

(13.5)

: γ, and hence igher effective

Table 13.2 Approximate Correlation of Standard Penetration Number and Consistency of Clay

Consistency	Unconfined compression strength, q_u (ton/ft ²)
	0
	0.25
Soft	
	0.5
Medium stiff	
	1
Stiff	
	2
Very stiff	
	4
Hard	>4
	Very soft Soft Medium stiff Stiff Very stiff

Note: $1 \text{ ton/ft}^2 = 95.76 \text{ kN/m}^2$

Sounce: B. Das
"Principles of Gentsch,
Engineering" FBS

Blow COUNT US SniffNESS (Clays)

overburden pressure (and hence higher lateral confining pressure) at depth h_2 will contribute to a higher value of the standard penetration number. This fact has clearly been demonstrated by Gibbs and Holtz (1957). The results of their findings are shown in Figure 13.10. As an example, one can see that at $D_r \approx 80\%$, the standard penetration number is about 12 with $\sigma' = 0$ lb/ft². It increases to about 50 with $\sigma' = 40$ lb/in.² (276 kN/m²). For that reason, it is necessary to convert the standard penetration numbers obtained at various depths to reflect a constant effective overburden pressure. Peck, Hanson, and Thornburn (1974) proposed the following empirical correlation for converting the field standard penetration number to an effective overburden pressure of $\sigma' = 1$ ton/ft² (95.6 kN/m²).

$$N' = C_N N_F = 0.77 N_F \log \left(\frac{20}{\sigma'}\right)$$
 (for $\sigma' > 0.25 \text{ ton/ft}^2$) (13.6)

where

N' =corrected standard penetration number

 N_F = field standard penetration number

 $C_N =$ correction factor

The unit of σ' is in ton/ft².

In SI units, the preceding equation can be expressed as

$$N' = 0.77N_F \log \left(\frac{20}{0.0105 \ \sigma'} \right) \qquad \text{(for } \sigma' > 23.9 \ \text{kN/m}^2\text{)}$$
 (13.7)

The unit of σ' in Eq. (13.7) is in kN/m^2 .

Table 13.3 Approximate Relation Between Corrected Standard Penetration Number, Angle of Friction, and Relative Density of Sand

Corrected standard	Relative	Angle of
penetration	density, D_r	friction, ϕ
number, N	(%)	(degrees)
0-5	0-5	26-30
5-10	5-30	28-35
10-30	30-60	35-42
30–50	6095	38–46

Sounce: B. DAS 541

"Principle of Georgeh.
Engineering" 1885

Blow Counts Density

Pelative
SANDS

The standard penetration number is a very useful guideline in soil exploration and assessment of subsoil conditions, provided that the results are interpreted correctly. Note that all equations and correlations relating to the standard penetration numbers are approximate. Since soil is not homogeneous, a wide variation in the N-value may be obtained in the field. In soil deposits

Figure 13.11 Variation of N'/N_F with vertical effective stress, σ' (after Peck, Hanson, and Thornburn, 1974)

Soil Mechanics

T. William Lambe • Robert V. Whitman

Massachusetts Institute of Technology

1969

30 PART II THE NATURE OF SOIL

Fig. 3.1 Relationships among soil phases. (a) Element of natural soil. (b) Element separated into phases.

Volume

Porosity:

$$n = \frac{V_v}{V} \times 100 = \frac{7}{0}$$

Void ratio:

$$e = \frac{V_v}{V_s}$$

Degree of saturation:

$$S = \frac{V_w}{V_v} \times 100 = 5$$

$$n = \frac{e}{1 + e}; \qquad e = \frac{n}{1 - n}$$

Weight

Water content:

$$w = \frac{W_w}{W_o} \times 100 = \frac{7}{6}$$

Specific Gravity

Mass:

$$G_m = \frac{\gamma_t}{\gamma_0}$$

Water:

$$G_w = \frac{\gamma_c}{\gamma_c}$$
Solids:
$$G = \frac{\gamma_s}{\gamma_c}$$

 $\gamma_0 = \text{Unit weight of water at } 4^{\circ}\text{C} \approx \frac{\gamma_w}{V_v}$ Note that Gw = Se $\zeta_e = \frac{V_w}{V_v} \frac{V_v}{V_s} = \frac{V_w}{V_s}$

Unit Weight Total:

at
$$C_{T} W = \frac{\Upsilon_{S}}{\Upsilon_{0}} \cdot \frac{W_{W}}{W_{S}} = \frac{W_{W}}{\Upsilon_{0}} \cdot \left(\frac{1}{\frac{W_{S}}{\Upsilon_{S}}}\right) = \frac{V}{V}$$

$$\gamma_{t} = \frac{W}{V} = \frac{G + Se}{1 + e} \gamma_{w} = \frac{1 + w}{1 + e} G\gamma_{w}$$

Solids:

$$\gamma_s = \frac{W_s}{V_s}$$

Water:

$$\gamma_w = \frac{W_w}{V_w}$$

Dry:

$$\gamma_d = \frac{W_s}{V} = \frac{G}{1+e} \gamma_w = \frac{G\gamma_w}{1+wG/S} = \frac{\gamma_t}{1+w}$$

Submerged (buoyant): Effective

$$\gamma_b = \gamma_t - \gamma_w = \frac{G - 1 - e(1 - S)}{1 + e} \gamma_w$$

Submerged (saturated soil):

$$\gamma_b = \gamma_t - \gamma_w = \frac{G-1}{1+e} \gamma_w$$

Specific gravity is the unit weight divided by the unit weight of water. Values of specific gravity of solids G for a selected group of minerals³ are given in Table 3.1.

Table 3.1 Specific Gravities of Minerals

Quartz	2.65
K-Feldspars	2.54-2.57
Na-Ca-Feldspars	2.62-2.76
Calcite	2.72
Dolomite	2.85
Muscovite	2.7-3.1
Biotite	2.8-3.2
Chlorite	2.6-2.9
Pyrophyllite	2.84
Serpentine	2.2-2.7
Kaolinite	2.61 ^a
	2.64 ± 0.02
Halloysite (2 H ₂ O)	2.55
Illite	2.84 ^a
	2.60-2.86
Montmorillonite	2.74 ^a
	2.75-2.78
Attapulgite	2.30

^a Calculated from crystal structure.

The expression $\underline{Gw} = \underline{Se}$ is useful to check computations of the various relationships.

The student in soil mechanics must understand the meanings of the relationships in Fig. 3.1, convince himself once and for all that they are correct, and add these terms to his active vocabulary. These relationships are basic to most computations in soil mechanics and thus are an essential part of soil mechanics.

Typical Values of Phase Relationships for Granular Soils

Figure 3.2 shows two of the many possible ways that a system of equal-sized spheres can be packed. The dense packings represent the densest possible state for such a system. Looser systems than the simple cubic packing can be obtained by carefully constructing arches within the packing, but the simple cubic packing is the loosest of the stable arrangements. The void ratio and porosity of

³ Chapter 4 discusses the common soil minerals.

Source: T. LAMBE R. WHITMAN "Soil MECHANICS" FI69

Fig. 3.2 Arrangements of uniform spheres. (a) Plan and elevation view: simple cubic packing. (b) Plan view: dense packing. Solid circles, first layer; dashed circles, second layer; o, location of sphere centers in third layer: face-centered cubic array; ×, location of sphere centers in third layer: close-packed hexagonal array. (From Deresiewicz, 1958.)

these simple packings can be computed from the geometry of the packings, and the results are given in Table 3.2.

This table also gives densities for some typical granular soils in both the "dense" and "loose" states. A variety of tests have been proposed to measure the maximum and

Table 3.2 Maximum and Minimum Densities for Granular Soils

	Void]	Ratio	Porosit	y (%)	Dry Unit Weight (pcf)		
Description	e _{max}	e_{\min}	n _{max}	n _{min}	$\gamma_{d \min}$	γ _{dmax}	
Uniform spheres	0.92	0.35	47.6	26.0			
Standard Ottawa sand	0.80	0.50	44	33	92	110	
Clean uniform sand	1.0	0.40	50	29	83	118	
Uniform inorganic	1.1	0.40	52	29	. 80	118	
Silty sand	0.90	0.30	47	23	87	127	
Fine to coarse sand	0.95	0.20	49	17	85	138	
Micaceous sand Silty sand and	1.2	0.40	55	29	76	120	
gravel	0.85	0.14	46	12	89	146	

B. K. Hough, Basic Soils Engineering. Copyright © 1957, The Ronald Press Company, New York.

minimum void ratios (Kolbuszewski, 1948). The test to determine the maximum density usually involves some form of vibration. The test to determine minimum density usually involves pouring oven-dried soil into a container. Unfortunately, the details of these tests have

Ch. 3 Description of an Assemblage of Particles

not been entirely standardized, and values of the maximum density and minimum density for a given granular soil depend on the procedure used to determine them. By using special measures, one can obtain densities greater than the so-called maximum density. Densities considerably less than the so-called minimum density can be obtained, especially with very fine sands and silts, by slowly sedimenting the soil into water or by fluffing the soil with just a little moisture present.

The smaller the range of particle sizes present (i.e., the more nearly uniform the soil), the smaller the particles, and the more angular the particles, the smaller the minimum density (i.e., the greater the opportunity for building a loose arrangement of particles). The greater the range of particle sizes present, the greater the maximum density (i.e., the voids among the larger particles can be filled with smaller particles).

A useful way to characterize the density of a natural granular soil is with relative density D_r , defined as

$$D_{\tau} = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}} \times 100\%$$

$$= \frac{\gamma_{d \text{max}}}{\gamma_{d}} \times \frac{\gamma_{d} - \gamma_{d \text{min}}}{\gamma_{d \text{max}} - \gamma_{d \text{min}}} \times 100\% \quad (3.1)$$
where

 e_{\min} = void ratio of soil in densest condition

 e_{max} = void ratio of soil in loosest condition

e = in-place void ratio

 $\gamma_{a \max}$ = dry unit weight of soil in densest condition

 $\gamma_{d \min}$ = dry unit weight of soil in loosest condition

 $\gamma_d = \text{in-place dry unit weight}$

Table 3.3 characterizes the density of granular soils on the basis of relative density.

	Descriptive Term	Relative Density (%)
1	Very loose	0–15
MOISTUR	Loose	15–35
	Medium	35–65
NIs	Dense	65–85
W= MW	Very dense	85-100

Values of water content for natural granular soils vary from less than 0.1% for air-dry sands to more than 40% for saturated, loose sand.

Typical Values of Phase Relationships for Cohesive Soils

The range of values of phase relationships for cohesive soils is much larger than for granular soils. Saturated sodium montmorillonite at low confining pressure can exist at a void ratio of more than 25; saturated clays B. K. Hough, formerly Professor of Civil Engineering at Cornell University and Lehigh University, is presently a consulting engineer with his own consulting firm in Ithaca, N. Y. He has also taught at Massachusetts Institute of Technology. He received his undergraduate and graduate degrees from Massachusetts Institute of Technology. A former student of Professor Terzaghi at M. I. T., he has worked chiefly in soil mechanics ever since, and now has a record of forty years of extensive and varied experience in professional practice, teaching, and research.

BASIC SOILS ENGINEERING

B. K. HOUGH

SECOND EDITION SEALURES SANDERS

THE RONALD PRESS COMPANY . NEW YORK

ditions, the slope of the recompression diagram gives a more realistic indication of the compressibility of the formation than the slope of the virgin curve. One would then represent in the diagram the anticipated load increment Δp and establish the prospective change in void ratio as the difference between the values of e_1 and e_2 . For these conditions, the change in thickness of a compressible soil layer would be calculated by substitution of these values in Eq. (5-4).

5-14. LIMITATIONS OF COMPRESSION TESTING

In order to evaluate the compression index of soil in the manner described above, suitable specimens must be obtained or prepared and one or more laboratory compression tests must be conducted. In most cases, undisturbed specimens are considered necessary. Because of the limitations of present-day sampling equipment, however, especially the equipment in the hands of most contract drillers, it is for all practical purposes impossible to obtain undisturbed samples except in stone-free clay and silt formations. Testing equipment is at present also similarly limited to use with these particular soil types. Thus there remains the problem of establishing the compression index or some similar parameter for mixed soils containing significant amounts of gravel or stone fragments as well as clay or silt, and for cohesionless formations in general. There has been some tendency in the past to dismiss this problem with the assertion that the last-mentioned soil types are relatively incompressible. While this is true in certain cases (as with hardpan or dense sand and gravel formations), there are many occasions when the problem cannot be thus dismissed. The fact is that all particulate materials are compressible to some degree. Some fine-grained cohesionless soil formations, especially those containing significant amounts of mica or organic matter, for example, are considerably more compressible than certain clays while many others are at least equally compressible. Furthermore, with unusual combinations of loading and settlement limitations,12 the compressibility of even the most compact sand and gravel formation or compacted fill may become a matter of practical importance.

Perhaps the most important consideration, however, is that what is known as the allowable bearing capacity of soil formations for support of spread foundations is directly related to soil compressibility. Evaluation of bearing capacity, which is an essential preliminary step in the design of spread foundations (footings in particular), cannot be accom-

plished except by the most empirical procedures, unless the compressibility of the bearing materials is known at least approximately; this is true whether the soil happens to be stoney or stone-free.

An alternative to use of data from conventional compression tests for evaluating the compression index is therefore an evident necessity in many cases. Even with stone-free, cohesive materials, some alternative is often desirable since there are many occasions when preliminary settlement estimates or bearing capacity evaluations must be made before laboratory testing programs can be completed or even initiated. The following section deals with one such alternative.

Compression Index as a Function of Initial Density

5-15. SUPPORTING EVIDENCE AND DEVELOPMENT OF RELATIONSHIP

Virgin compression curves and typical C_c values for specimens of many different types of soil are presented in Fig. 5-11. Some of the specimens were undisturbed (U); some remolded (R). Examination of the converging pattern of these curves clearly indicates that, in a general way, compressibility varies with initial void ratio; the looser the specimen initially, the more compressible it is over any given loading range, and vice versa.

The nature of the relationship between the compression index, C_c , and no-load void ratio, e_0 , for certain types of material can be established by conducting tests on remolded specimens prepared at densities which vary over a significant range. It is then possible to plot C_c as a function of e_0 . In Fig. 5-12, curves plotted on this basis for remolded specimens of four different types of sand are presented. For each individual type and within the range of densities characteristic of the type, the relationship appears to be approximately linear. When this is true, the relationship may be expressed by the equation

$$C_a = a(e_0 - b) ag{5-7}$$

In Eq. (5-7), the terms C_c and e_0 are the dependent variables, the terms a and b constants for a particular soil type. From presently available information it appears that the term a, which represents the slope of a given diagram, is dependent chiefly on particle shape, size, and gradation. The term b, the value of the intercept on the X-axis, is apparently a close approximation of the minimum void ratio of the material. Values of a and b for the sand specimens represented in Fig. 5-12 are given in the figure and values for other materials are given in a later section.

[&]quot;See Jour. Soil Mech. & Fdns. Div., ASCE, April 1960, discussion by Lev Zetlin of paper by B. K. Hough, "Compressibility as the Basis for Soil Bearing Value."

Similar

Soils.

Fig. 5-11. Variation in slope of p-e curves with initial void ratio.

5-171

135

values 0.285 and 0.270, respectively; a curve plotted on this basis is included in Fig. 5-12 for comparative purposes.

BASIC SOILS ENGINEERING

Values of the constants a and b of Eq. (5-7) obtained from tests on laboratory prepared specimens of many different soil types, including those described above, are summarized in Table 5-1. The values given

TABLE 5-1
Values of the Constants of Equation (5-7) for Typical Materials

T 40.1	Value of	Value of Constant			
Type of Soil	a	(b*)			
Uniform cohesionless material $(C_n \leq 1)$	2)				
Clean gravel	0.05	0.50			
Coarse sand	0.06	$\sqrt{0.5q}$			
Medium sand	0.07	\0.5¢			
Fine sand	0.08	n.5/b			
Inorganic silt	0.10	þ. #0			
Well-graded, cohesionless soil		\ //-			
Silty sand and gravel	0.09	d./20			
Clean, coarse to fine sand	0.12	0√35			
S/N — Coarse to fine silty sand	0.15	0125			
Sandy silt (inorganic)	0.18	g.\25			
Inorganic, cohesive soil	(0.23)	- 11			
Silt, some clay; silty clay; clay	n 29	/h. \$7			
Organic, fine-grained soil		- / \			
Organic silt, little clay	0.35	0.50			

^{*} The value of the constant b should be taken as e_{\min} whenever the latter is known or can conveniently be determined. Otherwise, use tabulated values as a rough approximation.

for materials such as sand and gravel, which are too coarse for testing in consolidometers of conventional size, represent assumptions based on study of available settlement records.

5-16. GENERALIZATIONS AS TO COMPRESSIBILITY

Before describing procedures for utilizing Eq. (5-7) for evaluation of the compression index in practical applications, it may be instructive to consider certain general aspects of compressibility which are evident from the discussion which has thus far been presented. These generalities may be stated in the following manner.

At a given void ratio, a (confined) uniform material is less compressible than one which is well graded.

Cr idering (confined) uniform materials at a given void ratio, the fine particle size, the more compressible is the material.

Soils in general with bulky, angular, or rounded particles are less compressible than those with flat particles.

Clays with needle-shaped particles, such as attapulgite (and to a lesser degree, halloysite), are less compressible than those with plate-shaped particles, montmorillonite (plate-shaped particles plus expanding lattice) in particular.

Materials of any given type which include significant amounts of mica and/or organic matter are more (sometimes considerably more) compressible than those of the same type which do not.

As an overall generalization, the greater its void ratio prior to loading, the greater is the compressibility of any given soil type; and vice versa.¹⁵

5-17, INITIAL DENSITY OF SOIL FORMATIONS

It is evident that information on the original, "no-load" void ratio of a formation must be available if the C_c , e_0 relationship is to be used directly for estimating soil compressibility. A rather general impression apparently exists to the effect that sedimentary formations, at least, are laid down initially in a condition approximating their maximum void ratio. Skempton's work suggests that this is true in the case of fine-grained sedimentary formations, clay in particular. Coupled with this belief is the assumption that the present, in-place condition of such formations is entirely the result of loading subsequent to deposition. If these assumptions could be completely accepted, the value e_{\max} could be substituted for e_0 in Eq. (5-7) and application of the equation would be greatly simplified.

Unfortunately, there are many reasons for doubting the general are cability of such assumptions as the above. For example, in a texturary uniform deposit of fine-grained sand or silt, if these assumptions were valid, the void ratio of the material would steadily decrease with depth and at any given depth would have the same value at points which laterally are some distance apart. The finding of such a condition in a natural formation, however, is very much more the exception than the rule. In many cases, void ratio varies quite unpredictably both laterally and with depth. Most surprising to the layman, perhaps, is the finding that void ratio often increases with depth, loose sand layers being found beneath more compact surface layers and soft clay intervals underlying stiff clay.

The construction of compression diagrams based on use of the C_c , e_o relationship in the manner described in the next section is often helpful

[&]quot;This, of course, is the justification for the expenditure of siderable sums of money to compact both earth fills and natural soil formations, to loading.

slon index without recourse to undisturbed sampling and laboratory testing.

Field Compression Diagrams

5-18. DEFINITION

As the term is used in this book, a field compression diagram is a pressure-void ratio curve originating at or passing through a point which represents the in-place density of an element in a natural soil formation or earth fill and the existing overburden pressure.

5-19. CONSTRUCTION AND UTILIZATION

The recommended construction should be performed on semilog paper with pressure and void ratio scales appropriate to the conditions of the problem. The void ratio scale should cover the range from e_{max} to e_{min} for the material in question. For the pressure scale, it is usually sufficient to make provision for two logarithmic cycles ranging from 0.1 to 1.0 and from 1.0 to 10.0 tons per sq. ft., respectively.

A pressure-void ratio curve originating at $e = e_{\text{max}}$ and p = 0.1 ton per sq. ft. is then constructed as shown in Fig. 5-14, by utilization of the relationship,

$$C_e = a(e_{max} - b)$$

For clay soils, e_{\max} can be taken as the void ratio at the liquid limit. For other soil types, an indication of e_{\max} can be obtained by reference to Table 2-3 or by test on representative material. Although of less practical importance, it may be of interest to draw a second diagram, originating at e_{\min} . The latter may be assumed to be a horizontal line.

The two diagrams described above establish limits on the area within which a point representing the in-place condition of the soil will fall except in a very few cases, which are mentioned later. Points A, B, and C in Fig. 5-14 represent examples of in-place condition points for ordinary situations.

If a plotting of the in-place void ratio and overburden pressure for a soil element of any type results in a point such as point Λ , close to the uppermost limiting diagram, it may reasonably be assumed that the material was laid down in an approximation of its loosest condition and that the subsequent reduction in void ratio was due entirely to weight of present overburden. If the soil is a cohesive type it would

to obtain an approximation of the compression index for this material.

the soil is a clay which is in such a condition that the in-r red ratio and pressure plot at point B, it should be presumed, init of at least, that it is precompressed and that the field compression diagram

Fig. 5-14. Illustration of procedure for constructing field compression diagrams.

will resemble that shown by the full line diagram through B in Fig. 5-14. This plotting provides a reasonable basis for recommending a program of undisturbed sampling and laboratory testing even though greater than ordinary expense may be involved.

SOIL PROPERTIES

Estimated Soil Properties Hardee County Landfill

SPT N values 10 of	(арргох)		SPT N values of 20 (approx)
Soil Type	SM/SC	Silty sands and clayey sands	Soil Type SM/SC Silty sands and clayey sands
•		·	
Dr (target)	0.3	Target Relative Density	Dr (target) 0.45 Target Relative Density
			97 625
Density min (dry)		pcf	Density min (dry) 87 pcf
Density max (dry)	127	pcf	Density max (dry) 127 pcf
Density initial (dry)	96	pcf	Density initial (dry) 101.5 pcf
			Dr computed 0.45 Computed Relative Density
Dr computed	0.30	Computed Relative Density	Dr computed 0.45 Computed Relative Density
	0.0		Void Ratio max 0.9
Void Ratio max	0.9		Void Ratio min 0.3
Void Ratio min	0.3		The state of the s
Void Ratio init	0.72		Void Ratio init 0.63
D	0.00	Computed Bolotive Density	Dr computed 0.45 Computed Relative Density
Dr computed	0.30	Computed Relative Density	o, to somption
Dograp of Caturation	. 4	Pore space fully sat. @ Relative Density	Degree of Saturation 1 Pore space fully sat. @ Relative Density
Degree of Saturation			Specific Gravity soil 2.6
Specific Gravity soil	2.6		Density (sat) 123.7 pcf (saturated)
Density (sat)	120.4	pcf (saturated) Solls water) WFTN~10	
(assumes pore spac	e filled with	water) $\omega / \leq \rho / \sqrt{4}$	(assumes pore space filled with water) \(\omega/spr \nu \gamma 20
		·	
SPT N values 30 of	(annrow)		SPT N values 40 to greater than 50 of (approx)
Soil Type	SM/SC	Silty sands and clayey sands	Soil Type SM/SC Silty sands and clayey sands
Sui Type	SIVIISC	Sity sailes and ciayey sailes	
Dr (target)	0.6	Target Relative Density	Dr (target) 0.95 Target Relative Density
Di (taiget)		, angulation beautiful	
Density min (dry)	87	pcf	Density min (dry) 87 pcf
Density max (dry)		pcf	Density max (dry) 127 pcf
Density initial (dry)	107.4	·	Density initial (dry) 124 pcf
Density initial (dry)	. 107.4	, boi	
Dr computed	0.60	Computed Relative Density	Dr computed 0.95 Computed Relative Density
Di computed	0.00	Compared Holding Bollery	
Void Ratio max	0.9	•	Void Ratio max 0.9
Void Ratio max	0.3		Void Ratio min 0.3
	0.54	•	Void Ratio init 0.33
Void Ratio init	0.54		
Dr computed	0.60	Computed Relative Density	Dr computed 0.95 Computed Relative Density
Di computeu	0.00	Computed Relative Deliving	
		Barrier Adlivert & Boletine Density	Degree of Saturation 1 Pore space fully sat. @ Relative Density
Dograp of Saturation	. 4		
		Pore space fully sat. @ Relative Density	Specific Gravity soil 2.6
Specific Gravity soil	2.6		
Degree of Saturation Specific Gravity soil Density (sat) (assumes pore spac	2.6 127.2	pcf (saturated) - Soils	Specific Gravity soil 2.6 Density (sat) 137.5 pcf (saturated) (assumes pore space filled with water) Sprw 40-

f:/projects/hardee/09199033.09/geo/soilprop.xls

ESTIMATED INITIAL MOISTURE CONTENT OF BALE/LOOSE WASTE

Estimated Waste Properties Moisture Content Moisture Content & Waste Density Hardee County Landfill

	% Total	Wet	% Moisture	Dry	Ref. Waste
		(tons)		(tons)	(See Note 2)
Metals	24	3,197.0	3.0	3,103.9	Other Metal
Plastic	4	532.8	2.0	522.4	Plastic
Other Paper	13	1,731.7	5.0	1,649.2	Carboard
Misc	28	3,729.8	25.0	2,983.8	
Newspaper	2	266.4	6.0	251.3	Paper
Glass	3	399.6	2.0	391.8	Glass
Yard Trash	8			0.0	
Tires	1			0.0	
C&D	8	1,065.7	15.0	926.7	Rubbish
Food Waste	7	932.5	70.0	548.5	Food Waste
Textile	2	266.4	10.0	242.2	Textile
	100	12,121.9		10,619.8	

Total Tons Landfill Recycled	18,501.0 tons 13,320.7 tons 5,180.3 tons	Landfill Recycled	72.0% See Note 1 28.0% $BalE \ \omega_{ES}hT = 2150 \ lbs$ $BalE \ volume = 2.b' \times 3.8' \times 5.1' = 50.388 \ f 3$ $BalE \ Density = 42.67 \ lb/63$
Percent Moist Wet Dry Moisture	12,121.9 Tons 10,619.8 Tons 12.4 %	Waste Density Wet Moisture Dry	42.67 pcf ESTIMATED INITIAL MOISTURE 12.39 % 37.97 pcf ESTIMATED UNIT WEIGHT OF SOLIDS

Note

1) Source: Waste Composition - FDEP "Solid Waste Management in Florida 2000-2001"

2) Source: Waste Moisture Contents - "Intergrated Solid Waste Management" 1993 ed Chapter 4 ISBN 0-07-063237-5

Hardee County (Jan. 1, 1999 - Dec. 31, 1999)

1. Population ¹	22,594
2. MSW Management (tons) ²	
A. Landfilled	13,324
B. Combusted	0
C. Recycled	5,177
D. Total	18,501
E. Total Pounds per Capita Per Day ¹	4.49

3. MSW Collected & Recycled

A. Mi	nimum Five Wastes 3	Collected	Recycled
		(tons)	(%)
1.	Newspaper	412	19
2.	Glass	541	9
3.	Aluminum Cans	320	20
4.	Plastic Bottles	312	0
5.	Steel Cans	392	0

B. Special Wastes ⁵	Collected (tons)	Recycled (%)
1. C&D Debris	1,519	0
2. Yard Trash	1,399	100
3. White Goods	465	100
4. Tires	. 96	100
Process Fuel	• 0	0

13,045

23

28

28

C. Other Wastes

F. Waste Reduction Per Capita (%) (A negative number indicates an increase in the MSW disposal rate per capita.)

*	
1. Base Year: July 1988-June 1989	63
2. Base Year: July 1989-June 1990	37
3. Base Year: July 1990-June 1991	55
4. Base Year: July 1991-June 1992	39
5. Base Year: July 1992-June 1993	21
6. Base Year: July 1993-June 1994	16

G. Participation in Recycling ⁷	Units	Percer
1. Single-family Curbside	10,174	10
2. Multi-family Curbside 9	640	3
3. Commercial 10	882	
a) Scheduled collection		34
b) On call collection		0

Participation means availability and usage of recycling services (As of June 1999). ⁸ Percentage of total county units (single/multi-family dwellings and commercial establishments) participating in recycling ⁹ Includes apartments, condominiums and others.

Source: FDEP "Solid WASTE MANAGEMENT IN FLORIDA 2000-2001" 1/30/2003 1777: //www. FDEP. STATE. FL. US/WASTE/CATESONIES/RELYCLING

Official 1999 Governor's Office estimate.

² From 2000 - 2001 Recycling and Education grant applications.

³ The Legislature established a goal of 50 percent for each material by the end of 1994.

Some materials have been combined: Metals include Aluminum Cans, Steel Cans, Ferrous and Non-ferrous metals, and White Goods;

Other Paper includes Corrugated, Office and Other Paper; and Plastics include Plastic Bottles and Other Plastics.

⁵ The total of Special Wastes can count towards no more than one half of the recycling goal for each county.

⁶ The legislature established a goal of 30 percent by the end of 1994 for all counties with a population of over 75,000.

¹⁰ May also include government and institutional.

^{*} Calendar year data.

INTEGRATED SOLID WASTE MANAGEMENT

Engineering Principles and Management Issues

1993 Edinon

George Tchobanoglous

Professor of Civil and Environmental Engineering University of California, Davis

Hilary Theisen

Vice President Brown & Caldwell, Consulting Engineers

Samuel Vigil

Professor of Civil and Environmental Engineering California Polytechnic State University San Luis Obispo, California

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

15BN 0-07-063237-5

referred to in the solid waste literature incorrectly as density. In U.S. customary units density is expressed correctly as slug/ft³.) Because the specific weight of MSW is often reported as loose, as found in containers, uncompacted, compacted, and the like, the basis used for the reported values should always be noted. Specific weight data are often needed to assess the total mass and volume of waste that must be managed. Unfortunately, there is little or no uniformity in the way solid waste specific weights have been reported in the literature. Frequently, no distinction has been made between uncompacted or compacted specific weights. Typical specific weights for various wastes as found in containers, compacted, or uncompacted are reported in Table 4-1.

TABLE 4-1
Typical specific weight and moisture content data for residential, commercial, industrial, and agricultural wastes

	Specific weig	ht, lb/yd³	Moisture content, % by weight		
Type of waste	Range	Typical	Range	Typica	
Residential (uncompacted)					
Food wastes (mixed)	220-810	490	50–80	70	
Paper	70-220	150	4–10	6	
Cardboard	70–135	85	4–8	5	
Plastics	70–220	110	1-4	2	
Textiles	70–170	110	6–15	10	
Rubber	170-340	220	1–4	2	
Leather	170-440	270	8–12	10	
Yard wastes	100-380	170	30–80	60	
Wood	220-540	400	15-40	20	
Glass	270-810	330	1–4	2	
Tin cans	85-270	150	2–4	3	
Aluminum	110-405	270	2-4	2	
Other metals	220-1940	540	2–4	. 3	
Dirt, ashes, etc.	540-1685	810	6–12	8	
Ashes	1095-1400	1255	612	6	
Rubbish	150-305	220	5–20	15	
Residential yard wastes					
Leaves (loose and dry)	50-250	100	20-40	30	
Green grass (loose and moist)	350-500	400	40-80	60	
Green grass (wet and compacted)	1000-1400	1000	50-90	80	
Yard waste (shredded)	450600	500	20-70	50	
Yard waste (composted)	450-650	550	40–60	50	
Municipal					
In compactor truck	300-760	500	15-40	. 20	
In landfill					
Normally compacted	610-840	760	15-40	25	
Well compacted	995-1250	1010	15-40	25	
Commercial					
Food wastes (wet)	8001600	910	50-80	70	
Appliances	250-340	305	0–2	4.	

(continued)

COMPOSITE UNIT WEIGHT OF WASTE ESTIMATES

Estimated Composite Waste & Soil & Water Weight Hardee County Landfill

	· ·	WAST	TE & DAILY &	WATER		CLC	SURE CAP & IN	ITERMED	IATE & DRA	INAGE SA		
10.0	Height	Dry	Moisture	Total	Stress		Height	Dry	Moisture	Total	Stress	
	(ft)	(pcf)	(%)	(pcf)	(psf)		(ft)	(pcf)	(%)	(pcf)	(psf)	
Closure Cap				<u></u>			2.0	112.1		123.9	247.7	
Intermed							1.5	112.1	10.5	123.9	185.8	
waste	6.5	38.0	40.0	53.1	345.5							
daily	0.5	112.1	10.5	123.87	61.9							_
waste	10.0	38.0	40.0	53.1	531.5							
daily	0.5	112.1	10.5	123.9	61.9				ļi			
waste	10.0	38.0	40.0	53.1	531.5							
daily	0.5		10.5	123.9	61.9							
waste	10.0	38.0	40.0	53.1	531.5							
daily	0.5	112.1	10.5	123.9	61.9				ļ. <u> </u>			
waste	10.0	38.0	40.0	53.1	531.5							
daily	0.5	112.1	10.5	123.9	61.9							
waste	10.0	38.0		53.1	531.5				_			
daily	0.5	112.1	10.5	123.9	61.9							
waste	10.0	38.0	40.0	53.1	531.5				10.5	400.0	247.7	
Drain Sand							2.0	112.1	10.5	123.9		- of
	69.5	ft			3905.9	psf	5.5	it			681.3	hei '
Total Height	ght 69.5 ft (Daily+waste) 5.5 ft (Cap,Intermed,Sand) 75.0 ft (Bottom to Final Cap)				Total Stress	681.3	3905.9 psf (Daily+waste) 681.3 psf (Cap, Intermed,Sand) 4587.2 psf (Bottom to Final Cap)					
 Soil			Initial Waste				Composite		_			
Dry Weight	112.1	pcf	Dry Weight	38.0	pcf		Daily Cover	+ Waste	e + Moistı	ıre		1
Moisture	10.5	•	Moisture	12.4	%					CONS	ENUATIVE	14
Total Weight	123.9		Total Weight	42.7	pcf		Total Stress	3905.9	•	A USE		1
		•	J				Height	69.5		/ Y	eauative _{te} = 60pc	4
l							Comp. Weight	56.2	2 lb/ft^3	- CAS	10 - 1-1	

SETTLEMENT CALCULATIONS POINTS

Figure 1 - Settlement Calculation Points w/ Bottom Layout, Hardee County Landfill Expansion

Figure 1 — Settlement Calculation Points w/ Bottom Layout, Hardee County Landfill Expansion

FOUNDATION SOIL STRESS CALCULATIONS

HARDL OUNTY ESTIMATED STRESS

Point 1

Ground Surface

Water Table

Initial Stress Conditions (Use Boring TH-7 PSI 2003)

> 84.2 77.4

Buildout Stress Conditions

Final Closure Elev	94	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	92	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	84.2	Waste/Daily	4.3 ft	60.0 pcf	258.0 psf
Depth	9.8	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	77.4	Depth	9.8 ft	Total Bottom Stress	939.3 psf

	-	Initial	Conditions			Final Cond	ditions		Change In Stress
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
Point 1 (SP)	84.2 75.2		96.0 120.4	432.0	9.0	432.0	939.3	1,371.3	. 939.3
							r, eria		
Point 2	75.2	4.0	107.4	909.6	4.0	910.0		1,849.3	939.7
(SP-SM)	71.2		127.2					pag	
	1			7-			-14	1	
Point 3	71.2	10.0	73.9	1,277.2	10.0	1,277.6		2,216.9	939.7
(SC)	61.2		110.0						
						9847			
Point 4	61.2	2.0	124.0	1,590.3	2.0	1,590.7		2,530.0	939.7
sc	59.2		137.5						L

Point 2A

Initial Stress Conditions

(Use Boring TH-7 PSI 2003)

Ground Surface Water Table 84.2 77.4 **Buildout Stress Conditions**

Danacat Choos Cons	1010110				
Final Closure Elev	140	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	138	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	85.8	Waste/Daily	48.7 ft	60.0 pcf	2,922.0 psf
Depth	54.2	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	77.4	Depth	54.2 ft	Total Bottom Stress	3,603.3 psf

		Initial	Conditions				Change In Stress		
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
Point 1 (SP)	84.2 75.2	9.0	96.0 120.4	432.0	10.6	508.8	3,603.3	4,112.1	3,680.1
		Service Contract	2.00						
Point 2	75.2	4.0	107.4	909.6	4.0	1,063.6	·	4,666.9	3,757.3
(SP-SM)	71.2		127.2						
		1 1 1 1 1 1 1 1							
Point 3	71.2	10.0	73.9	1,277.2	10.0	1,431.2		5,034.5	3,757.3
(CL)	61.2		110.0						
20 ± 2 ± 1						***			
Point 4	61.2	2.0	124.0	1,590.3	2.0	1,744.3		5,347.6	3,757.3
sc	59.2		137.5						

HARDEE COUNTY ESTIMATED STRESS

Point 2B

Initial Stress Conditions (Use Boring TH-7 PSI 2003)

Ground Surface Water Table **Buildout Stress Conditions**

247.7 psf 123.9 pcf 2.0 ft Cover Soil 112 Final Closure Elev 185.8 psf 123.9 pcf Intermed Soil 1.5 ft 110 Intermed Cvr Elev 60.0 pcf 1,369.8 psf Waste/Daily 22.8 ft Bottom Elev 83.67 247.7 psf 123.9 pcf Drainage Sand 2.0 ft 28.33 Depth 2,051.1 psf **Total Bottom Stress** Depth 28.3 ft 77.4 Water Table

		Initial	Conditions			Final Cond			Change In Stress
Soil Layers	Elevation (ft NGVD)		Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SP)	84.2 75.2	9.0	96.0 120.4	432.0		406.6	2,051.1	2,457.7	2,025.7
Point 2 (SP-SM)	75.2 71.2	4.0	. 107.4 127.2	909.6	4.0	860.6		2,911.7	2,002.0
Point 3 (CL)	71.2 61.2	10.0	73.9 110.0	1,277.2	10.0	1,228.2		3,279.3	2,002.0
Point 4	61.2 59.2	2.0	124.0 137.5	1,590.3	2.0	1,541.3		3,592.4	2,002.0

Point 2C

Initial Stress Conditions (Use Boring TH-7 PSI 2003)

Ground Surface Water Table 84.2 77.4

84.2

77.4

Buildout Stress Conditions

247.7 psf 2.0 ft 123.9 pcf Cover Soil 92 Final Closure Elev 185.8 psf 123.9 pcf 1.5 ft Intermed Soil Intermed Cvr Elev 90 48.0 psf 0.8 ft 60.0 pcf Waste/Daily **Bottom Elev** 85.7 247.7 psf 123.9 pcf Drainage Sand 2.0 ft 6.3 Depth **Total Bottom Stress** 729.3 psf Depth 6.3 ft Water Table 77.4

		Initial	Conditions		***		Change In Stress		
Soil	Elevation		Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
Point 1 (SP)	84.2 75.2	9.0	96.0 120.4	432.0	10.5	504.0	729.3	1,233.3	801.3
(0.7									
Point 2	75.2	4.0	107.4	909.6	4.0	1,054.0		1,783.3	873.7
(SP-SM)	71.2		127.2						
4.5			T			<u> </u>			070.7
Point 3	71.2	10.0	73.9	1,277.2	10.0	1,421.6		2,150.9	873.7
(CL)	61.2		110.0						
(CL)	1 - 15							0.464.0	873.7
Point 4	61.2	2.0	124.0	1,590.3	2.0	1,734.7	}	2,464.0	013.1
sc	59.2		137.5			<u>L</u>		<u> </u>	L

HARL. COUNTY ESTIMATED STRESS

Point 3A Initial Stress Conditi	ons	Buildout Stress Cond	litions				
(Use Boring TH-6 PSI		Final Closure Elev	142	Cover Soil	2.0 ft	123.9 pcf	. 247.7 psf
· · · · · · · · · · · · · · · · · · ·		Intermed Cvr Elev	140	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Ground Surface	86.77	Bottom Elev	86	Waste/Daily	50.5 ft	60.0 pcf	3,030.0 psf
Water Table	76.32	Depth	56	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
		Water Table	76.32	Depth	56.0 ft	Total Bottom Stress	3,711.3 psf

		Initial	Conditions				Change In Stress		
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
							3,711.3		
Point 1	86.77	5.0	96.0	240.0	4.2	203.0		3,914.3	3,674.3
(SP)	81.77		120.4						
		15.0				6.04			
Point 2	81.77	13.0	107.4	1,133.4	13.0	1,059.5		4,770.7	3,637.4
(SP-SM)	68.77	_	127.2						
									100
Point 3	68.77	5.0	73.9	1,673.6	5.0	1,599.7	-	5,310.9	3,637.4
(SC)	63.77		110.0						
						32.000	100	15 72 A 25	
Point 4	63.77	2.0	124.0	1,867.7	2.0	1,793.8		5,505.0	3,637.4
SC	61.77	_	137.5						<u> </u>

Point 3B Initial Stress Conditi	ons	Buildout Stress Cond	Buildout Stress Conditions							
(Use Boring TH-6 PSI		Final Closure Elev	132	Cover Soil	2.0 ft	123.9 pcf	247.7 psf			
(000 000 000	,	Intermed Cvr Elev	130	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf			
Ground Surface	86.77	Bottom Elev	84.58	Waste/Daily	41.9 ft	60.0 pcf	2,515.2 psf			
Water Table	76.32	Depth	47.42	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf			
		Water Table	76.32	Depth	47.4 ft	Total Bottom Stress	3,196.5 psf			

		Initial	Conditions				Change In Stress		
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
							3,196.5		
Point 1	86.77	5.0	96.0	240.0	2.8	134.9	. :	3,331.4	3,091.4
(SP)	81.77	ĺ	120.4						
Point 2	81.77	13.0	107.4	1,133.4	13.0	924.1		4,120.6	2,987.2
(SP-SM)	68.77		. 127.2						
						7	2		
Point 3	68.77	5.0	73.9	1,673.6	5.0	1,464.3		4,660.8	2,987.2
(SC)	63.77		.110.0						
5.00		F = (4)		4					
Point 4	63.77	2.0	124.0	1,867.7	2.0	1,658.4		4,854.9	2,987.2
SC	61.77		137.5			<u></u>			<u> </u>

HARDEE COUNTY ESTIMATED STRESS

Point 3C

Initial Stress Conditions (Use Boring TH-6 PSI 2003)		Buildout Stress Cond Final Closure Elev Intermed Cyr Elev	litions 112 110	Cover Soil	2.0 ft 1.5 ft	123.9 pcf 123.9 pcf	247.7 psf 185.8 psf
Ground Surface Water Table	86.77 76.32	Bottom Elev Depth Water Table	82.63 29.37 76.32	Waste/Daily Drainage Sand Depth	23.9 ft 2.0 ft 29.4 ft	60.0 pcf 123.9 pcf Total Bottom Stress	1,432.2 psf 247.7 psf 2,113.5 psf

		Initial	Conditions			Change In Stress			
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SP)	86.77 81.77	5.0	96.0 120.4	240.0		41.3	2,113.5	2,154.8	1,914.8
Point 2 (SP-SM)	81.77 68.77	13.0	107.4 127.2	1,133.4	13.0	735.9		2,849.4	1,716.1
Point 3	68.77	5.0	73.9 110.0	•	5.0	1,276.1	¥ , , , , , , , , , , , , , , , , , , ,	3,389.6	1,716.1
(SC) Point 4 SC	63.77 63.77 61.77	2.0	124.0 137.5	1,867.7	2.0	1,470.2		3,583.7	1,716.1

Point 3D Initial Stress Conditions (Use Boring TH-6 PSI 2003)		Buildout Stress Co	Buildout Stress Conditions							
		Final Closure Elev Intermed Cvr Elev	9 4 92	Cover Soil Intermed Soil	2.0 ft 1.5 ft	123.9 pcf 123.9 pcf	247.7 psf 185.8 psf			
Ground Surface Water Table	86.77 76.32	Bottom Elev Depth Water Table	84.5 9.5 76.32	Waste/Daily Drainage Sand Depth	4.0 ft 2.0 ft 9.5 ft	60.0 pcf 123.9 pcf Total Bottom Stress	240.0 psf 247.7 psf 921.3 psf			

W.		Initial	Conditions				Change In Stress		
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SP)	86.77 81.77	5.0	96.0 120.4	240.0	2.7	131.0	921.3	1,052.3	812.3
Point 2 (SP-SM)	81.77 68.77	13.0	107.4 127.2	1,133.4	13.0	919.9	1	1,841.2	707.8
Point 3 (SC)	68.77 63.77	5.0	73.9 110.0	-	5.0	1,460.1	31 / Žir	2,381.4	707.8
Point 4 SC	63.77 61.77	2.0	124.0 137.5		2.0	1,654.2		2,575.5	707.8

HARDL OUNTY **ESTIMATED STRESS**

Po	ii	٦t	4

Initial Stress Conditions (Use Boring TH-6 PSI 2003)

Ground Surface Water Table

86.77 76.32

Buildout Stress Conditions

Dullacat Guess Gold	21(10110				
Final Closure Elev	112	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	110	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	82.9	Waste/Daily	23.6 ft	60.0 pcf	1,416.0 psf
Depth	29.1	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	76.32	Depth	29.1 ft	Total Bottom Stress	2,097.3 psf

3.831.3 psf

Total Bottom Stress

58.0 ft

		Initial	Conditions				Change In Stress		
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
							2,097.3		
Point 1	86.77	5.0	96.0	240.0	1.1	54.2		2,151.5	1,911.5
(SP)	81.77		120.4						
						4.7			
Point 2	81.77	13.0	107.4	1,133.4	13.0	761.9		2,859.1	1,725.8
(SP-SM)	68.77		127.2						
- 1					-				30.2
Point 3	68.77	5.0	73.9	1,673.6	5.0	1,302.1		3,399.3	1,725.8
(SC)	63.77		110.0						
								7.5	
Point 4	63.77	2.0	124.0	1,867.7	2.0	1,496.2		3,593.4	1,725.8
sc	61.77		137.5						

Point 5A

Point 4 sc

Buildout Stress Conditions Initial Stress Conditions 247.7 psf 2.0 ft 123.9 pcf Final Closure Elev 144 Cover Soil (Use Boring SB-01 PSI Nov 1997) 185.8 psf 123.9 pcf Intermed Soil 1.5 ft 142 Intermed Cvr Elev 3,150.0 psf 52.5 ft 60.0 pcf Waste/Daily Bottom Elev 86 **Ground Surface** 86.4 247.7 psf 123.9 pcf 58 Drainage Sand 2.0 ft Depth 75.58 Water Table

75.58

1,642.0

Depth

Change In Stress **Final Conditions** Initial Conditions Final Stress Stress Elevation Thickness Unit Weight Initial Stress Excavation Waste/Soil Thickness Soil (psf) (psf) (psf) (psf) (pcf) (psf) (ft) Layers (ft NGVD) (ft) 3,831.3 3,812.1 4,052.1 5.0 96.0 240.0 4.6 220.8 Point 1 86.4 120.4 (SP) 81.4 695.4 4,526.6 3,792.9 101.5 733.8 5.0 5.0 Point 2 81.4 (SP-SM) 76.4 123.7 3,793.4 5,111.4 13.0 1,280.1 13.0 73.9 .1,317.9 Point 3 76.4 (SC) 63.4 110.0 27.1 3.0 3.793.4 5,473.3

1.4

124.0

137.5

1,679.9

Water Table

63.4

62

1.4

HARDEE COUNTY **ESTIMATED STRESS**

Point :	5B
---------	----

Initial Stress Conditions (Use Boring SB-01 PSI Nov 1997)		Buildout Stress Cond Final Closure Elev Intermed Cvr Elev	itions 144 142	Cover Soil Intermed Soil	2.0 ft 1.5 ft	123.9 pcf 123.9 pcf	247.7 psf 185.8 psf
Ground Surface Water Table	86.4 75.58	Bottom Elev Depth Water Table	86 58 75.58	Waste/Daily Drainage Sand Depth	52.5 ft 2.0 ft 58.0 ft	60.0 pcf 123.9 pcf Total Bottom Stress	3,150.0 psf 247.7 psf 3,831.3 psf

		Initial	Conditions	·			Change In Stress		
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SP)	86.4 81.4	5.0	96.0 120.4	240.0	4.6	220.8	3,831.3	4,052.1	3,812.1
Point 2	81.4	5.0	101.5 123.7	733.8	5.0	695.4		4,526.6	3,792.9
(SP-SM) Point 3	76.4 76.4	13.0	73.9	1,317.9	13.0	1,280.1	3	5,111.4	3,793.4
(SC) Point 4	63.4 63.4	1.4	110.0 124.0		1.4	1,642.0		5,473.3	3,793.4
SC	63.4	1.4	137.5						

Point 5C Initial Stress Conditions		Buildout Stress Cond	litions				0.477
(Use Boring SB-01 PS		Final Closure Elev Intermed Cvr Elev	112 110	Cover Soil Intermed Soil	2.0 ft 1.5 ft	123.9 pcf 123.9 pcf	247.7 psf 185.8 psf
Ground Surface Water Table	86.4 75.58	Bottom Elev Depth Water Table	81.6 30.4 75.58	Waste/Daily Drainage Sand Depth	24.9 ft 2.0 ft 30.4 ft	60.0 pcf 123.9 pcf Total Bottom Stress	1,494.0 psf 247.7 psf 2,175.3 psf

-		Initial Conditions Final Conditions							
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1	86.4	5.0	96.0 120.4			9.6	2,175.3	2,184.9	1,944.9
Point 2	81.4	5.0	101.5 123.7	733.8	5.0	272.9		2,448.2	1,714.5
(SP-SM) Point 3	76.4 76.4	13.0	73.9 110.0	1,317.9	13.0	857.7		3,033.0	1,715.0
Point 4	63.4 63.4 62	1.4	124.0 137.5		1.4	1,219.6		3,394.9	1,715.0

HARDL JOUNTY **ESTIMATED STRESS**

Point 6
Initial Stress Conditions
(Use Boring TH-5 PSI 2003)

Ground Surface Water Table

85.5 75.58

Bullaout Stress Cond	มเนอกร				
Final Closure Elev	96	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	94	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	83.54	Waste/Daily	7.0 ft	60.0 pcf	417.6 psf
Depth	12.46	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75.58	Depth	12.5 ft	Total Bottom Stress	1,098.9 psf

		Initial	Conditions		Final Conditions				Change In Stress
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
	•	•					1,098.9		
Point 1	85.5	13.0	101.5	659.8	11.0	560.3		1,659.2	999.4
(SP)	72.5		123.7						
	3.77		74.5						
Point 2	72.5	10.0	73.9	1,433.7	10.0	1,234.7		2,333.6	900.0
(CL)	62.5		110.0						
								1.0	
Point 3	62.5	7.0	101.5	1,886.2	7.0	1,687.3		2,786.2	900.0
(SM)	55.5		123.7	_					

Point 7 Initial Stress Conditions (Use Boring TH-5 PSI 2003)

Ground Surface 85.5 Water Table 75.58

Buildout Stress Cond	litions				
Final Closure Elev	94	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	92	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	83.73	Waste/Daily	4.8 ft	60.0 pcf	286.2 psf
Depth	10.27	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75.58	Depth	10.3 ft	Total Bottom Stress	967.5 psf

		Initial	Conditions		Final Conditions				Change In Stress
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft) -	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
Point 1 (SP)	85.5 72.5	13.0	101.5 123.7	659.8			967.5	1,537.4	877.7
Point 2	72.5	10.0	73.9	1,433.7	10.0	1,252.6		2,220.1	786.4
(CL)	62.5		110.0						
								A SHEET WAY	
Point 3	62.5	7.0	101.5	1,886.2	7.0	1,705.2		2,672.7	786.4
(SM)	55.5	<u> </u>	123.7						<u></u>

HARDEE COUNTY **ESTIMATED STRESS**

Point 8	١
---------	---

Initial Stres	s Cor	nditions
(Use Boring	TH-1	PSI 2003)

Ground Surface Water Table

85.96 75.45

Bulldout Stress Con	aitions				0.47.7
Final Closure Elev	97	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	95	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	82.06	Waste/Daily	9.4 ft	60.0 pcf	566.4 psf
Depth	14.94	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
F	75.45	Depth	14.9 ft	Total Bottom Stress	1,247.7 psf
Water Table	75.45	Depth	(4.5 1)	Total Dottom Office	., [-

	··	Initial Conditions Final Conditions							Change in Stress
Soil Layers	Elevation (ft NGVD)	Thickness (ft)		Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SM)	85.96 67.96	18.0		864.0	14.1	660.1	1,247.7	1,907.8	1,043.8
(0,111)								0.554.3	070.0
Point 2 (CL)	67.96 57.96	10.0	73.9 110.0	1,681.4	10.0	1,307.0		2,554.7	873.3
					7.0	4 007 0		3,055.5	873.3
Point 3 (SC)	57.96 50.96	7.0	124.0 137.5	2,182.2	7.0	1,807.8		3,055.5	070.0

Point 8B

Initial Stress Conditions (Use Boring TH-1 PSI 2003)

Ground Surface Water Table

85.96 75.45

Buildout Stress Cond	ditions				
Final Closure Elev	112	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	110	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	83.4	Waste/Daily	23.1 ft	60.0 pcf	1,386.0 psf
Depth	28.6	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
	75.45	Depth	28.6 ft	Total Bottom Stress	2,067.3 psf
Water Table	73.43	Debut	20.0 11	Total Bottom Care	_,,

		Initial	Conditions		Final Conditions				Change In Stress
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SM)	85.96 67.96	18.0	96.0 120.4	864.0	15.4	741.1	2,067.3	2,808.4	1,944.4
Point 2	67.96			1,681.4	10.0	1,435.6		, 3,502.9	1,821.5
(CL)	57.96		110.0		7.0	4 026 F		4.003.8	1,821.5
Point 3 (SC)	57.96 50.96	7.0	124.0 137.5		7.0	1,936.5		4,000.0	1,021.0

HARDL JOUNTY **ESTIMATED STRESS**

|--|

Initial Stress Conditions
(Use Boring TH-1 PSI 2003)

Ground Surface 85.96 Water Table 75.45

Buildout Stress Conditions

Dunaout oucas con	aitions				
Final Closure Elev	128	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	126	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	81.609	Waste/Daily	40.9 ft.	60.0 pcf	2,453.5 psf
Depth	46.391	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75.45	Depth	46.4 ft	Total Bottom Stress	3,134.8 psf

		Initial	Conditions			Final Conditions			
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
							3,134.8		
Point 1	85.96	18.0	96.0	864.0	13.6	629.3	1	3,764.0	2,900.0
(SM)	67.96		120.4						
						4.			
Point 2	67.96	10.0	73.9	1,681.4	10.0	1,262.8		4,397.6	2,716.2
(CL)	57.96		110.0						
Point 3	57.96	7.0	124.0	2,182.2	7.0	1,763.7	,	4,898.4	2,716.2
(SC)	50.96		137.5						

Point 8D Initial Stress Conditions

minual Suesi	Containons
(Use Boring	TH-1 PSI 2003)

Ground Surface Water Table

85.96 75.45

Buildout Stress Co	naitions				
Final Closure Elev	144	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	142	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	82.799	Waste/Daily	55.7 ft	60.0 pcf	3,342.1 psf
Depth	61.201	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75.45	Depth	61.2 ft	Total Bottom Stress	4,023.4 psf

		Initial	Conditions	-	Final Conditions				Change In Stress
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
							4,023.4		
Point 1	85.96	18.0	96.0	864.0	14.8	709.7		4,733.0	3,869.0
(SM)	67.96		120.4						
7. 2									
Point 2	67.96	10.0	73.9	1,681.4	10.0	1,378.0		5,401.4	3,720.0
(CL)	57.96		110.0						
							37	•	
Point 3	57.96	7.0	124.0	2,182.2	- 7.0	1,878.9		5,902.2	3,720.0
(SC)	50.96		137.5						

HARDEE COUNTY ESTIMATED STRESS

Point 9A

Initial Stress Conditions

(Use Boring TB-04 PSI 1997)

Ground Surface Water Table 84.7 75.31 Buildout Strees Conditions

Buildout Stress Cond	มแบทธ			400.0	247.7 nof
Final Closure Elev	110	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	108	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
			18.5 ft	60.0 pcf	1,110.0 psf
Bottom Elev	. 86	Waste/Daily			
Depth	24	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Mater Table	75.31	Depth	24.0 ft	Total Bottom Stress	1,791.3 psf

		Initial	Conditions		Final Conditions				Change In Stress
Soil Layers	Elevation (ft NGVD)	Thickness (ft)		Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1	84.7 71.2	13.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	648.0	14.8	710.4	1,791.3	2,501.7	1,853.7
Point 2	71.2 64.7	6.5	73.9 110.0	1,294.9	6.5	1,419.3		3,210.6	1,915.7

Point 9B

Initial Stress Conditions

(Use Boring TB-04 PSI 1997)

Ground Surface Water Table 84.7 75.31 Buildout Stress Conditions

Final Closure Elev Intermed Cvr Elev Bottom Elev Depth Water Table	110 108 80.5 29.5	Cover Soil Intermed Soil Waste/Daily Drainage Sand Depth	2.0 ft 1.5 ft 24.0 ft 2.0 ft 29.5 ft	123.9 pcf 123.9 pcf 60.0 pcf 123.9 pcf Total Bottom Stress	247.7 psf 185.8 psf 1,440.0 psf 247.7 psf 2,121.3 psf
Water Table	75.31	Depth	29.5 ft	Total Bottom Stress	2,121.5 psi

	Initial Conditions				Tillal Collegione				Change In Stress
Soil Lavers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1	84.7	13.5	96.0		9.3	446.4	2,121.3	2,567.7	1,919.7
(SM)	71.2		120.4					3.012.6	1,717.7
Point 2 (CL)	71.2 64.7	6.5	73.9 110.0	,	6.5	891.3		3,012.6	1,7 (7.7

HARDL OUNTY **ESTIMATED STRESS**

Point 9C

Ground Surface

Water Table

Initial Stress Conditions (Use Boring TB-04 PSI 1997)

> 84.7 75.31

Dulluout Stress Com	มแบบเอ				
Final Closure Elev	104	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	102	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	79	Waste/Daily	19.5 ft	60.0 pcf	1,170.0 psf
Depth	25	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75.31	Depth	25.0 ft	Total Bottom Stress	1,851.3 psf

		Initial	Conditions		Final Conditions				Change In Stress
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil		Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
Point 1	84.7 71.2	13.5	96.0 120.4		7.8	366.4	1,851.3	2,217.7	1,569.7
(SM)						705.4		2,586,4	1.291.5
Point 2 (CL)	71.2 64.7	6.5	73.9 110.0	,	6.5	735.1		2,300.4	1,291.5

Point 10

Initial Stress Conditions (Use Borings TH-1 & TH-2 PSI 2003)

Ground Surface 84.81 72.44 Water Table

litions				
94	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
92	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
80	Waste/Daily	8.5 ft	60.0 pcf	510.0 psf
14	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
72.44	Depth	14.0 ft	Total Bottom Stress	1,191.3 psf
	94 92 80 14	94 Cover Soil 92 Intermed Soil 80 Waste/Daily 14 Drainage Sand	94 Cover Soil 2.0 ft 92 Intermed Soil 1.5 ft 80 Waste/Daily 8.5 ft 14 Drainage Sand 2.0 ft	94 Cover Soil 2.0 ft 123.9 pcf 92 Intermed Soil 1.5 ft 123.9 pcf 80 Waste/Daily 8.5 ft 60.0 pcf 14 Drainage Sand 2.0 ft 123.9 pcf

		Initial	Conditions		Final Conditions				Change In Stress
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
Point 1 (SM)	84.81 64.31	20.5	96.0 120.4	984.0	15.7	742.3	1,191.3	1,933.6	949.6
Point 2 (CL)	64.31 54.31	10.0	73.9 110.0	1,902.1	10.0	1,435.3		2,626.6	724.5

HARDEE COUNTY **ESTIMATED STRESS**

Point 11A

Initial Stress Conditions

(Use Borings TH-1 & TB-02 PSI 2003, PSI 1997)

Ground Surface Water Table

85.96 75.45

Bulldont Stress Coll	aitions				2477
Final Closure Elev	158	Cover Soil	2.0 ft	. 123.9 pcf	247.7 psf
Intermed Cvr Elev	156	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
			66.5 ft	60.0 pcf	3.990.0 psf
Bottom Elev	86	Waste/Daily			
Depth	72	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75.45	Depth	72.0 ft	Total Bottom Stress	4,671.3 psf

		Initial	Conditions				Change In Stress		
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SM)	85.96 67.96	. 18.0	96.0 120.4	864.0	18.0	865.9	4,671.3	5,537.2	4,673.2
Point 2	67.96	10.0	73.9	1,681.4	10.0	1,685.2		6,356.5	4,675.1
(CL)	57.96		110.0		7.0	2.186.1		6,857.4	4,675.1
Point 3 (SC)	57.96 ¹ 50.96		124.0 137.5		7.0	2,100.1		0,007.1	.,,

Point 11B

Initial Stress Conditions

(Use Borings TH-1 & TB-02 PSI 2003, PSI 1997)

Ground Surface Water Table

85.96 75.45

Buildout Stress Cond	litions				047.7 == 6
Final Closure Elev	156.7	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	154.7	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Intermed CVI Elev			69.5 ft	60.0 pcf	4.170.0 psf
Bottom Elev	81.7	Waste/Daily			
Depth	75	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75 45	Depth	75.0 ft	Total Bottom Stress	4,851.3 psf

	· ·	Initial Conditions Final Conditions						Change In Stress	
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1	85.96	18.0		864.0		636.0	4,851.3	5,487.3	4,623.3
(SM) Point 2	67.96 67.9 6	10.0			10.0	1,272.4		6,123.7	4,442.3
(CL)	57.96		110.0 124.0		7.0	1,773.3		6,624.6	4,442.3
Point 3 (SC)	57.96 50.96	l .	137.5	· ·	, , , ,	.,,,,,,,,			

HARD. JOUNTY ESTIMATED STRESS

<u>Poir</u>	<u>nt</u>	<u>11C</u>	
Initi	al	Stress	Conditions

(Use Boring	s TH-1 & TB-02	PSI 2003,	PSI 1997)

0.10

Ground Surface Water Table 85.96 75.45

Buildout Stress Conditions

Final Closure Elev	154	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	152	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	80.7	Waste/Daily	67.8 ft	60.0 pcf	4,068.0 psf
Depth	73.3	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	75.45	Depth	73.3 ft	Total Bottom Stress	4,749.3 psf

		Initial	Conditions				Change In Stress		
Soil	Elevation	Thickness	Unit Weight	Initial Stress	Thickness	Excavation	Waste/Soil	Final Stress	Stress
Layers	(ft NGVD)	(ft)	(pcf)	(psf)	(ft)	(psf)	(psf)	(psf)	(psf)
							4,749.3		
Point 1	85.96	18.0	96.0	864.0	12.7	548.9		5,298.2	4,434.2
(SM)	67.96		120.4						
(0)		4							22.00
Point 2	67.96	10.0	73.9	1,681.4	10.0	1,147.6		5,896.9	4,215.5
(CL)	57.96	!	110.0						
ŧ.				Y fa		7.00			
Point 3	57.96	7.0	124.0	2,182.2	7.0	1,648.5		6,397.8	4,215.5
(SC)	50.96		137.5						

Point 12 Initial Stress Conditions

(Use Borings TH-1 & TH-2 PSI 2003)

Ground Surface Water Table 84.81 72.44

Buildout Stress Conditions

Dulluout Stress Com	uluolis				
Final Closure Elev	97	Cover Soil	2.0 ft	123.9 pcf	247.7 psf
Intermed Cvr Elev	95	Intermed Soil	1.5 ft	123.9 pcf	185.8 psf
Bottom Elev	79.7	Waste/Daily	11.8 ft	60.0 pcf	708.0 psf
Depth	17.3	Drainage Sand	2.0 ft	123.9 pcf	247.7 psf
Water Table	72.44	Depth	17.3 ft	Total Bottom Stress	1,389.3 psf

		Initial	Conditions				Change In Stress		
Soil Layers	Elevation (ft NGVD)	Thickness (ft)	Unit Weight (pcf)	Initial Stress (psf)	Thickness (ft)	Excavation (psf)	Waste/Soil (psf)	Final Stress (psf)	Stress (psf)
Point 1 (SM)	84.81 64.31	20.5	96.0 120.4	984.0	15.4	738.7	1,389.3	2,128.0	1,144.0
Point 2 (CL)	64.31 54.31	10.0	73.9 110.0	1,902.1	10.0	1,439.6		2,828.9	926.8

SETTLEMENT CALCULATIONS

Da	i	n	٠	1
ru	1	п	L	. 1

Point 1								
	Soil Type	Dr	Н	Сс	eo	Ро	Delta P	Settlement
	00m . , po	(%)	(ft)		00	(psf)	(psf)	(ft)
Point 1	SM	30	9	0.063	0.72	432.00	939.29	0.17
Point 2	SM	60	4	0.036	0.54	1849.29	939.65	0.02
Point 3	CL		10	0.440	1.25	2216.89	939.65	0.30
Point 4	SC	95	2	0.007	0.33	2529.99	939.65	0.00
1 Ollit 4	00	00	_	0.007	0.00		total	0.48 ft
						•		5.80 in
								0.00 111
Point 2A								
	Soil Type	Dr	H	Сс	eo	Po	Delta P	Settlement
		(%)	(ft)			(psf)	(psf)	(ft)
Point 1	SM	30	10.6	0.063	0.72	432.00	3680.09	
Point 2	SM	60	4	0.036	0.54	909.64	3757.25	
Point 3	CL		10	0.440	1.25	1277.24	3757.25	
Point 4	SC	95	2	0.007	0.33	1590.34	3757.25	
						1	total	1.56 ft
								18.75 in
Point 2E	2							
1 Ollit ZL	,							
	Soil Type	Dr	Н	Сс	eo	Ро	Delta P	Settlement
	, .	(%)	(ft)			(psf)	(psf)	(ft)
Point 1	SM	30	8.47	0.063	0.72	432.00	2025.65	
Point 2	SM	60	4	0.036	0.54	909.64	2002.01	0.05
Point 3	CL		10	0.440	1.25	1277.24	2002.01	0.80
Point 4	SC	95	2	0.007	0.33	1590.34	2002.01	0.00
						•	total	1.09 ft
								13.03 in
	_							
Point 20	;						•	
	Soil Type	Dr	Н	Сс	eo	Po	Delta P	Settlement
٠	Con Typo	(%)	(ft)	00	00	(psf)	(psf)	(ft)
Point 1	SM	30	10.5	0.063	0.72	432.00	801.29	
Point 2	SM	60	4	0.036	0.54	909.64	873.65	
Point 3	CL		10	0.440	1.25	1277.24	873.65	
Point 4	SC	95	2	0.007	0.33	1590.34	873.65	
							total	0.65 ft
								7.77 in
Point 3A	١					•		
	Cail Tuna	D-	ш	Co	00	De.	Dolto D	Settlement
	Soil Type	Dr (%)	H /#\	Сс	ео	Po (psf)	Delta P	
Doint 1	CM	(%) 30	(ft)	0.063	0.70	(psf)	(psf)	(ft)
Point 1 Point 2	SM SM	60	4.23	0.063 0.036	0.72 0.54	240.00 1133.37	3674.33	
Point 2 Point 3	CL	00	13 5	0.036	1.25	1673.57	3637.37 3637.37	
Point 4	SC	95	2	0.440	0.33	1867.67	3637.37	
i Oliil 4	00	55	2	0.007	0.00		total	0.87 ft
							total .	0.07 it

10.47 in

Point 3B

	•	•						
Point 1 Point 2 Point 3 Point 4	Soil Type SM SM CL SC	Dr (%) 30 60 95	H (ft) 2.81 13 5	0.063 0.036 0.440 0.007	0.72 0.54 1.25 0.33	Po (psf) 240.00 1133.37 1673.57 1867.67	Delta P S (psf) 3091.37 2987.21 2987.21 2987.21 otal	Settlement (ft) 0.12 0.17 0.43 0.00 0.73 ft 8.73 in
Point 3C								
Point 1 Point 2 Point 3 Point 4	Soil Type SM SM CL SC	Dr (%) 30 60 95	H (ft) 0.86 13 5	0.063 0.036 0.440 0.007	eo 0.72 0.54 1.25 0.33	Po (psf) 240.00 1133.37 1673.57 1867.67	Delta P (psf) 1914.77 1716.05 1716.05 1716.05	Settlement (ft) 0.03 0.12 0.30 0.00 0.45 ft 5.45 in
Point 3D)		·					
Point 1 Point 2 Point 3 Point 4	Soil Type SM SM CL SC	Dr (%) 30 60 95	H (ft) 2.73 13 5 2	0.063 0.036 0.440 0.007	eo 0.72 0.54 1.25 0.33	Po (psf) 240.00 1133.37 1673.57 1867.67	Delta P (psf) 812.33 707.83 707.83 707.83 total	Settlement (ft) 0.06 0.06 0.15 0.00 0.28 ft 3.35 in
Point 4						•		
Point 1 Point 2 Point 3 Point 4	Soil Type SM SM CL SC	Dr (%) 30 60 95	H (ft) 1.13 13 5 2	0.063 0.036 0.440 0.007	eo 0.72 0.54 1.25 0.33	Po (psf) 240.00 1133.37 1673.57 1867.67	Delta P (psf) 1911.53 1725.77 1725.77 1725.77 total	Settlement (ft) 0.04 0.12 0.30 0.00 0.47 ft 5.59 in
Point 5/	A							
Point 1 Point 2 Point 3 Point 4	Soil Type SM SM CL SC	Dr (%) 30 45	H (ft) 4.6 5 13 1.4	0.063 0.050 0.440 0.007	0.72 0.63 1.25 0.33	Po (psf) 240.00 733.75 1317.94 1679.91	Delta P (psf) 3812.09 3792.89 3793.42 3793.42 total	0.12 1.50

Point 5B

Point 1 Point 2 Point 3 Point 4	Soil Type SM SM CL SC	Dr (%) 30 45 95	H (ft) 4.6 5 13 1.4	0.063 0.050 0.440 0.007	eo 0.72 0.63 1.25 0.33	Po (psf) 240.00 733.75 1317.94 1679.91	Delta P (psf) 3812.09 3792.89 3793.42 3793.42 otal	Settlement (ft) 0.21 0.12 1.50 0.00 1.83 ft 21.94 in
Point 50	;				•			
Point 1 Point 2 Point 3 Point 4	Soil Type SM SM CL SC	Dr (%) 30 45 95	H (ft) 0.2 5 13 1.4	Oc 0.063 0.050 0.440 0.007	eo 0.72 0.63 1.25 0.33	Po (psf) 240.00 733.75 1317.94 1679.91 t	Delta P (psf) 1944.89 1714.49 1715.02 1715.02 otal	Settlement (ft) 0.01 0.08 0.92 0.00 1.01 ft 12.12 in
Point 6								
Point 1 Point 2 Point 3	Soil Type SM CL SM	Dr (%) 45 45	H (ft) 11.04 10 7	0.050 0.440 0.050	eo 0.63 1.25 0.63	Po (psf) 659.75 1433.68 1886.23	Delta P (psf) 999.42 899.95 899.95 otal	Settlement (ft) 0.14 0.41 0.04 0.59 ft 7.03 in
Point 7		. •						
Point 1 Point 2 Point 3	Soil Type SM CL SM	Dr (%) 45 45	H (ft) 11.23 10 7	Cc 0.050 0.440 0.050	eo 0.63 1.25 0.63	Po (psf) 659.75 1433.68 1886.23	Delta P (psf) 877.66 786.43 786.43 otal	Settlement (ft) 0.13 0.37 0.03 0.53 ft 6.37 in
Point 8	A							
Point 1 Point 2 Point 3	Soil Type SM CL SC	Dr (%) 30 95	H (ft) 14.1 10 7	Oc 0.063 0.440 0.007	eo 0.72 1.25 0.33	Po (psf) 864.00 1681.38 2182.23	Delta P (psf) 1043.77 873.29 873.29 total	Settlement (ft) 0.18 0.36 0.01 0.54 ft 6.46 in

Point 8B

Point 1 Point 2 Point 3	Soil Type SM CL SC	Dr (%) 30 95	H (ft) 15.44 10 7	0.063 0.440 0.007	eo 0.72 1.25 0.33	Po (psf) 864.00 1681.38 2182.23	Delta P 5 (psf) 1944.41 1821.53 1821.53 otal	Settlement (ft) 0.29 0.62 0.01 0.92 ft 11.07 in
Point 80	•							
Point 1 Point 2 Point 3	Soil Type SM CL SC	Dr (%) 30 95	H (ft) 13.649 10 7	0.063 0.440 0.007	eo 0.72 1.25 0.33	Po (psf) 864.00 1681.38 2182.23	Delta P (psf) 2900.01 2716.19 2716.19 total	Settlement (ft) 0.32 0.82 0.01 1.15 ft 13.79 in
Point 8								÷
Point 1 Point 2 Point 3	Soil Type SM CL SC	Dr (%) 30 95	H (ft) 14.839 10 7	Oc 0.063 0.440 0.007	eo 0.72 1.25 0.33	Po (psf) 864.00 1681.38 2182.23	Delta P (psf) 3869.01 3719.99 3719.99 total	Settlement (ft) 0.40 0.99 0.02 1.41 ft 16.90 in
Point 9	Ą							
Point 1 Point 2	Soil Type SM CL	Dr (%) 30	H (ft) 14.8 6.5	Cc 0.063 0.440	eo 0.72 1.25	Po (psf) 648.00 1294.90	Delta P (psf) 1853.69 1915.71 total	Settlement (ft) 0.32 0.50 0.82 ft 9.83 in
Point 9	В							
Point 1 Point 2	Soil Type SM CL	Dr (%) 30	H (ft) 9.3 6.5	Cc 0.063 0.440	eo 0.72 1.25	Po (psf) 648.00 1294.90	Delta P (psf) 1919.69 1717.71 total	Settlement (ft) 0.20 0.47 0.67 ft 8.04 in

Ρ	οi	nt	9	С

Point 1 Point 2	Soil Type SM CL	Dr (%) 30	H (ft) 7.8 6.5	0.063 0.440	eo 0.72 1.25	Po (psf) 648.00 1294.90	Delta P (psf) 1569.71 1291.53 total	Settlement (ft) 0.15 0.38 0.53 ft 6.41 in
Point 10	1							
Point 1 Point 2	Soil Type SM CL	Dr (%) 30	H (ft) 15.69 10	0.063 0.440	eo 0.72 1.25	Po (psf) 984.00 1902.06	Delta P (psf) 949.58 724.53 total	Settlement (ft) 0.17 0.27 0.44 ft 5.31 in
Point 11	A							
Point 1 Point 2 Point 3	Soil Type SM CL SC	Dr (%) 30 95	H (ft) 18.04 10 7	0.063 0.440 0.007	0.72 1.25 0.33	Po (psf) 864.00 1681.38 2182.23	Delta P (psf) 4673.21 4675.13 4675.13 total	Settlement (ft) 0.53 1.13 0.02 1.68 ft 20.17 in
Point 11	В							
Point 1 Point 2 Point 3	Soil Type SM CL SC	Dr (%) 30	H (ft) 13.74 10 7	0.063 0.440 0.007	eo 0.72 1.25 0.33	Po (psf) 864.00 1681.38 2182.23	Delta P (psf) 4623.25 4442.33 4442.33 total	1.10
Point 11	С							·
Point 1 Point 2 Point 3	Soil Type SM CL SC	Dr (%) 30 95	H (ft) 12.74 10 7	0.063 0.440 0.007	eo 0.72 1.25 0.33	Po (psf) 864.00 1681.38 2182.23	4215.53	1.07
Point 12	2							
Point 1	Soil Type (SM) (CL)	Dr (%) 30	H (ft) 15.39 10	Cc 0.063 0.440	eo 0.72 1.25	Po (psf) 984.00 1902.06		(ft) 0.19

PIPELINE SETTLEMENT CROSS SLOPE SETTLEMENT

Figure. Pipeline Alignment on Westside of Existing Landfill, Hardee County, Florida

Hardee County Landfill Settlement Cross Slope

	<u>In</u>	itial Conditi	ons		Final Conditions								
Points	Initial Elevation	Difference	Distance	Slope	Settlement	Elevation	Difference	Slope					
	(ft NGVD)	(ft)	(ft)	(%)	(ft)	(ft NGVD)	(ft)	(%)					
8A	82.1	-, \ -			0.54	81.5							
		1.3	47.2	2.84			1.0	2.02					
8B	83.4				0.92	82.5							
		1.8	63.7	2.81			2.0	3.17					
8C	81.6				1.15	80.5							
		1.2	44.0	2.70			0.9	2.11					
8D	82.8				1.41	81.4							
		2.1	67.0	3.13			2.1	3.20					
11C	80.7				1.45	79.2		0.04					
		1.0	45.6	2.19	4.50	00.0	0.9	2.04					
11B	81.7				1.52	80.2							
					0.72	83.9							
3B	84.6		70.0	0.75	0.73	63.9	1.7	2.37					
20	00.0	2.0	70.8	2.75	0.45	82.2	1.7	2.51					
3C	82.6	1.9	68.1	2.75	0.45	02.2	2.0	3.00					
20	04.5	1.9	00.1	2.75	0.28	84.2	2.0	0.00					
3D	84.5				0.20	04.2							
2A	85.8			2	1.56	84.2		201-1200-120-2-1-1-1-1-1-1-1-1-1-1-1-1-1					
47	03.0	2.1	77.3	2.75	1.55		1.7	2.14					
2B	83.7	- .'	,,,,	2	1.09	82.6	·						
20	00.7	2.0	73.9	2.75			2.5	3.34					
2C	85.7				0.65	85.1							

Hardee County Landfill
Settlement
Leachate Collection/Detection Pipelines

		Initial Conditions	Final Conditions							
	Initial	Distance	Initial	Settlement	Long Term	Long Term				
Points	Elevation	Between Points	Slope		Elevation	Slope				
	(ft NGVD)	(ft)	(%)	(ft)	(ft NGVD)	(%)				
9C	79.0			0.53	78.5					
		324.9	0.52			0.24				
11C	80.7			1.45	79.2					
		326.2	0.28		1	0.41				
5C	81.6			1.01	80.6					
		433.0	0.24			0.37				
3C	82.6			0.45	82.2					
,		597.9	0.26			0.26				
1	84.2			0.48	83.7					
			Company Control							
12	79.7			0.53	79.2					
	1	385.9	0.49			0.33				
8C	81.6			1.15	80.5					
	'	386.1	0.50			0.65				
6	83.5			0.59	83.0					
10	80.0			0.44	79.6					
		408.9	0.50			0.48				
8A	82.1			0.54	81.5					
0, 1	V	332.0	0.50			0.51				
7	83.7	332.0		0.53	83.2					
				4 (4.1)	1					
10	80.0			0.44	79.6					
		90.0	0.33			0.43				
12	79.7			0.53	79.2					
, <u>-</u>	'5	116.0	0.60			0.61				
9C	79.0		1	0.53	78.5					

ATTACHMENT G

EFFECT OF EXPANSION ON EXISTING LANDFILL (PHASE I) LEACHATE COLLECTION SYSTEM

SCS ENGINEERS

SUBJECT	AN	144	4	ク う			PRC	JECT	#	AN	र्रहर	: (/) ()	LTY	1	and	She	1 8	(X)-	ממי	/	JOB リク	NO. 1980	בצו	05	
SUBJECT				- (ϵ_{κ}	151) N	5	La	ACI	AT	£		7				BY (H	5					,	
					ali	180	776	<u> </u>	ک	45	412	7						CHE	CKEE)			DATE	Ξ		
•												1					- 1			- 1	;					
E	57)~~	N1	٤	1	4 E	-	EM	60	75	U	F	5	£ 7	7/2	778	~? 15/	- /	يما(7	بر 0	2)177	مرر	0/	
	4	25%	E	Z	OA	0	N	77	0	N		42	57	-/	501	NTA	15,	DΣ	Ć	P	2	21	dh	//		
					- F. Jr 4		/						4										/	7		
	É	X1	5 7	7~	5	N	2/AM	Ho	155		D .	DE	-4	NE	5											
									/																	
	<u> </u>	<u> </u>			540m/	-fa	4-1			<u></u>																- -
				/	11/	<i>f</i>	7	ļ																		
		_		-1	λ.	PI	PE	11	VV.	٤٤	٤	10, .	34													
	<u> </u>	<u> </u>							ļ,													<u></u>				. .
L	تبريل	+3	96'			ļ			51	ope	^_		(8	0,3	4-	19	r, Y Z	-/^	10	, 2	3/	<i>y</i>				
		<u> </u>	ļ				ļ		Ī	4-	5	<u> </u>			39	61		<i>/</i> 		ļ						
	<u>.</u>	ļ	ļ			TH	Ħ	5	ļ	ļ	ļ	ļ			ļ	<u> </u>										
				_	<u></u>	p	P	Ł	1~	V,	50	<u> </u>	79	, 4	2											
· · · · · · · · · · · · · · · · · · ·	ļ		ļ,	i .	L	<u>i</u>	<u>i</u>		. i	<u>. i</u>	<u> </u>	<u>:</u>	<u> </u>	1	1		1			ļ	ļ. 	<u> </u>				
4	=	39	9'	ļi	į	ļ	ļ	ļ,	5/	PE		^	<u>.</u>	0	, 2	9	Z			ļ	ļ	<u> </u>				
	ļ	<u></u>			.		<u> </u>	<u>.</u>			اسط		ļ	ļ	ļ	ļ			ļ		ļ	ļ				
	ļ	ļ	ļ		1	m	/ -	# 6	ļ		ļ	ļ	ļ	ļ,	ļ		ļ		ļ			ļ				
			-	-()	p	٤٥٩	-	M	, ,	ساتة	7	8.	28		ļ	<u></u>				ļ	ļ				
	<u> </u>	1,7	,		Ĭ	ļ	ļ		<u> </u>			ļ	•	1		9	ļ				ļ	ļ				
2	9	16	0	ļ		<u> </u>			54	400	26	-7	-	، کے	52	10	 							./	<u>r</u>	
		ļ	 			<u> </u>	<u>.</u>	, 7		<u></u>		<u> </u>		ر ــــــــــــــــــــــــــــــــــــ	ļ.,	7//	2/1	ļ !	ļ	ļ	ļ	:	H	:	:	
		ļ	 		•	M	4 !	1	ļ	1	12	//	VV	u	<u> </u>	177	24					1	108	11	VV.	2 10
		 	-	 - (4	-	-	-			•				-	-	-	4	 	+		71	1/2	,6
						 	 	-		=			1	ļ		ļ		ļ		1			ļ		ļ	
	-				-		-	1	<u> </u>		6	-22					 				 				ļ	
		 	ļ						1-	8	<u> </u>		<u> </u>					5			ļ		ļ			ļ
		ļ				 	 				 	-5	20	75		0	25	fo				ļ				ļ
						 						ļ	ļ	6	-	 					-	-				
	-	 				+			-		 	+	 		-	-	-			-	-	 	<u> </u>			
	-	-	-			 	+	-	-		-	-			-	-										
		<u> </u>				 		-			<u> </u>	 	 		-	 		 		-	-		ļ	ļ	ļ	
 		 					-									- 	 				-					 -
ļ							-				-	 						 			-	-‡		 	· 	

Hardee County Landfill Settlement

Existing Leachate Collection System

Manholes	Pipe Length (ft)	Existing Invert Elevations (ft.NGVD)	Difference (ft)	Slope (%)	Settlement (In)	Settlement	Elevations (ft NGVD)	Difference (ft)	Slope (%)
MH-4		80.34			0.00	0.00	80.34		
	396		0.92	0.23				2.14	0.54_
MH-5		79.42			14.61	1.22	78.20		
10111-0	399		1.14	0.29				1.75	0.44
MH-6		78.28			21.94	1.83	76.45		
1911 1-0	160	7 0.20	4.04	2.53				4.04	2.53
MH-7	100	74.24	1		21.94	1.83	72.41		ļ
1411.1-1	622	17.47	1.57	0.25				-0.26	-0.04
MH-8	022	72.67	+		0.00	0.00	72.67		

Notes:

- 1) Settlement for MH-5 the average of Points 2A and 3A
- 2) Settlement for MH-6 the average of Points 5B3) Settlement for MH-7 the average of Points 5A
- 4) Settlement for MH-4 & MH-8 no loads; no anticipated settlement

Proposed Pipeline Addition

Manholes	Pipe Length (ft)	Proposed Invert : Elevations (ft NGVD)	Difference (ft)	Slope (%)	Settlement (in)	(ft)	(ft NGVD)	Difference (ft)	Slope (%)
MH-6		78.28			21.94	1.83	76.45		1 70
	156.00	·	2.78	1.78				2.78	1.78
Deint 4	100.00	75.50			21.94	1.83	73.67		
Point 1	500.00	13.30	2.83	0.48				1.00	0.17
	590.00		2.03	0.40	0.00	0.00	72.67		
MH-8		72.67			0.00	0.00	12.01	J	L

Total 746

Notes:

1) Point 1 immediately northeast of MH-7

Figure. Pipeline Alignment on Westside of Existing Landfill, Hardee County, Florida

Proposed 10-in pipe in exist cell Worksheet for Circular Channel

Project Description	on
Project File	c:\haestad\fmw\hardee.fm2
Worksheet	Existing Leachate Collection Pipe
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data			
Mannings Coefficient	0.011		
Channel Slope	0.0016	00 ft/ft	Slope (Afra SETKEMENT)
Depth	0.33	ft	
Diameter	10.00	in	

Results			•			
Discharge	150	gal/min —		RATINS	ON ONS	OUMA
Flow Area	0.20	ft²			ON ONE	bomb
Wetted Perimeter	1.13	ft		IN Lift	STATION	
Top Width	0.82	ft		•		
Critical Depth	0.25	ft				
Percent Full	39.60		•			
Critical Slope	0.0042	71 ft/ft				
Velocity	2	ft/s				
Velocity Head	0.05	ft				
Specific Energy	0.38	ft				
Froude Number	0.61				•	
Maximum Discharge	1.11	cfs				
Full Flow Capacity	1.04	cfs				
Full Flow Slope	0.0001	75 ft∕ft				
Flow is subcritical.						

Proposed 10-in pipe in exist cell Worksheet for Circular Channel

Project Descriptio	n
Project File	c:\haestad\fmw\hardee.fm2
Worksheet	Existing Leachate Collection Pipe
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data					
Mannings Coefficient	0.011				,
Channel Slope	0.0016	0,0 ft/ft	4	STOPE A Fran	SITTEMENT)
Depth	0.49	ft			
Diameter	10.00	in		•	

Results			
Discharge	300	gal/min	MAX, ANTICIPATED NATE
Flow Area	0.33	ft²	
Wetted Perimeter	1.46	ft	(Two pump in Lift
Top Width	0.82	ft	
Critical Depth	0.36	ft	STATION PUMPING AT
Percent Full	58.80		77/1
Critical Slope	0.0044	55 ft/ft	THE SAME TIME)
Velocity	2	ft/s	·
Velocity Head	0.06	ft	
Specific Energy	0.55	ft	
Froude Number	0.56		
Maximum Discharge	1.11	cfs	
Full Flow Capacity	1.04	cfs	
Full Flow Slope	0.0006	379 ft/ft	
Flow is subcritical.			

SCS ENGINEERS

CLIENT /	<u>/</u>	<i> </i>	1	7	-		PRO.	ECT	//		ررا	. 10		_	/	a . (1//	1/1		24	ı.	JOB I	NO.	- x ^	2 2 44	<u>, </u>
CLIENT // SUBJECT	AN	466	<u>(</u>	<u> </u>	<u> </u>				#	770	ગુર <u>ા</u> 	<u> </u>	<u>^</u>	-74 1/2	س)	<u> </u>	7	BY	<u>~}_</u> _	<u> </u>		0	NO. 2/5' DATE	<u>ر 0 7</u>	ا پ ر	Ч
				<u> </u>	- <u>XX</u>	57) <u> </u>	~ 5		- <u>E</u> ,	906	1 17	2	61	100	110~			CHE	KED	<u> </u>		-	DATE			\dashv
- :					755	19	<u>n</u>		· / ·	ع ربر. :	. <u>(</u>	20	J-7.				∤		- 1	- ;		- !	<u> </u>			
														,		<u>፡</u> -										
]->	20	B/2	M	•		4	(چ)	سريح	M	رمدر	£	-4		1	אהא	177	יתנו	<u> </u>	7	10	17€	578			
					<u> </u>		7	01	01	1/5	Ĺ	~11	7.	É,	HE	CT		بريرسح	57	ورمر	<u>-</u>	5y.	578	<u></u>		
	6	IVE	N		ę			n	V/	mo	ړمر		D	10	pa	5 50)	73	ull	20	VT	6	(sy			
								5-1	25	55		O o	/ /~	_	/	11 %	1		524	-	52	11	5M	α	_	!
		<u> </u>						-			1	7				_							7			
		 				7	~~		7				Ez	75	8	BN	21				7	,	مرا	12	39	
									1	2 /+		ρ	=/_	156		10/T		d			2/	/-	ر ار ادک	r .	/-	
		 					بِب	مټ	X	25/			-	100	·····	,,,		ged			1.5	-/2	1,	=	123	9
	 	 	ļ				نه. ار		چسلے ح			E	-L	/.S¥	٠.٠٠							././	/20	Ŧ		. <u></u>
		 	ļ <i>-</i>				<u>'</u> ./.	WK	151	É	Z										//	c/2		,	1,	
	 	 	<u> </u>	ļ				//	1	Z											661	1/	- }		60	
40			ω.ν.	٤			يمدي					ϵ	·	88)						7	14	}		/22	
7 70	173	13.					-	-	A.		-	ϵ	L	\mathcal{B}	6						_		75,	T	125	7
	 	 						·	·	·	•	·			;											<u></u>
								ļ	ļ	50	<u>د ۲</u>									,	31	7	Sou	ļ=.	123	5
/	1	/	-	ļ					27	<u></u>	£x	757	و	311.	<i>{</i>						/				!	<u> </u>
	/	ļ	ļ					00	Ď		1	enn		DE.		FL	73				<u></u>					
	!		ļ					Ü	U J) 	ļ	ļ	/	ļ 												ļ
	<u> </u>	ļ									<u> </u>	ļ			ļ									,		
		<u> </u>	<u></u>	<u> </u>								<u></u>				<u> </u>										
	5	1/0	776		•	— ے	\supset	2	برنج	m,	~~	<u> </u>	4	m	5 55	0	\sim	Z	P	٤	10	\sim	12			
						0	52		Z	10	٢	0	1	100	77.0	\sim	(nu	116	in	1	50	18	رها	she	77
						B	u		AT	5	PI	PE	7							-		7			,	
	<u> </u>	†		-			1			7.3	7															
	-	†		†	5	-77	1 < 5	-	h./	 	<u>ا</u>	PE								ļ						
						2.7.	-,,	f	9,4	ļ,	7	, , ,				 	 	 			 	 				
l			·						-		/	//	7 ,	<u> </u>	5/4	3).	<u> </u>	/5	1/12	7 4	5) L	- 4	66.	-/	Z_{α}	<u> </u>
	-						_<	- /		, 2	1/	(!	72,	 	<i>Y []</i>	1		(//	1/2	21	7.		,0,			ļ
										7	ک		1C	5,	4.	T		3 (ļ			<u> </u>	ļ
							ļ			<u> </u>	 	70	/)/	, ,					V	سري	ģ	CON.	1961	NV	97)	18.
			-		ļ		ļ	ļ	•		•	_•	•	•		r •	•	•	:	:	: .	:	レス	1	:	<u></u>
<u> </u>	<u>.</u>	-	<u>.</u>				<u> </u>	 	<u> </u>	<u> </u>		4:	3.6	عم	Z)	ļ	ļ	ļ	i				1180	i	i .	*
		ļ	ļ		-	ļ	ļ		-	ļ	ļ	ļ	ļ		ļ	-	 	ļ	W	DJT	E	45.	מני	16	2	ļ
	<u>.</u>	<u>.</u>					ļ	ļ	ļ		ļ	ļ	ļ	ļ	ļ	ļ	ļ		ک	177	in	17	4 D	ļ		.
						•	}					}	1	1	1				}	•	1		1		1	

THE PARTY AND ADDITION OF THE C				F	RESPON		CALCULATION OF RING SHORTENING									
PIPE PARAMETERS - AASHTO M294, Type C	deg	radial		_ 	circum	wall	ring	inner	outer	tot	al	deg	ring	ring	ring	
effective radius (in), R = 4.39	c.c.w.	soil	radial	tang	wall	bend	comp	bend	bend	stre	ess	c.c.w.	comp	comp	shortening	
outside diameter (in), D = 9.45 thickness (in), t = 0.655	from	press	defi	defl		mom(M)	stress	stress	stress	inner	outer	from	stress	strain	<u> </u>	
unit area of wall (in $^2/in$), $A = 0.128$	horiz	P _r (psi)	w(in)	v(in)	N(#/in)	(#-lb/in)	(psi)	(psi)	(psi)	(psi)	(psi)	horiz	(psi)	(in/in)	(in)	
unit moment of inertia (in 4 /in), $I = 0.0066$	0	30.4	-0.086	0.000	147	17	-1146	-796	843	-1942	-303	0	-1146	-0.010419	-0.0080	
flexural modulus (psi), $E_1 = 110,000$	10	30.5	-0.079	0.023	146	16	-1145	-752	797	-1897	-347	10	-1145	-0.0104	-0.0080	
ring compression modulus (psi), $E_{rc} = 110,000$	20	30.9	-0.056	0.042	146	13	-1140	-628	666	-1768	-474	20	-1140	-0.010363	-0.0079	
flexural stiffness (psi), $K_1 = 6E_1 I/R^3 = 52$	30	31.5	-0.021	0.057	145	9	-1133	-438	465	-1571	-668	30	-1133	-0.010299	-0.0079	
ring compression stiffness (psi), $K_{rc} = E_{rc}A/R = 3,209$	40	32.3	0.022	0.065	144	4	-1124	-205	217	-1329	-907	40	-1124	-0.010221	-0.0078	
distance from inner wall to n.a. (in), $c = 0.32$	50	33.1	0.067	0.065	143	-1	-1115	43	-45	-1072	-1161	50	-1115	-0.010138	-0.0078	
uistance nom inner wan to m.a. (iii), c = 0.02	60	33.8	0.110	0.057	142	-6	-1107	276	-293	-830	-1399	60	-1107	-0.010059	1	
 SOIL PARAMETERS - good granular soil		70 34.4 0.145 0.042 141 -10 -1099 466 -494 -633										70	-1099	-0.009995		
mod of soil reaction at 5' of cover (psi), E' 5 = 709	80	34.8	0.168	0.023	140	-12	-1095	590	-625	-505	-1720	80	-1095	-0.009954		
modulus of soil reaction (psi), E' = 1,416	90	35.0	0.176	0.000	140	-13	-1093	633	-671	-460	-1764	90	-1093	-0.009939	1	
Poisson's ratio, u = 0.30	100	34.8	0.168	-0.023	140	-12	-1095	590	-625	-505	-1720	100	-1095	-0.009954	1	
constr mod (psi), M*=E*(1-u)/((1+u)(1-2u))= 1906.16	110	34.4	0.145	-0.042	141	-10	-1099	466	-494	-633	-1593	110	-1099	-0.009995	1	
lateral stress ratio = K = u/(1-u) = 0.429	120	33.8	0.110	-0.057	142	-6	-1107	276	-293	-830	-1399	120	-1107	-0.010059	1	
sym lateral stress ratio = B = $(1/2)(1+K) = 0.714$	130	33.1	0.067	-0.065	143	-1	-1115	43	-45	-1072	-1161	130	-1115	-0.010138	1	
antisym lat stress ratio = $C = (1/2)(1-K) = 0.286$	140	32.3	0.022	-0.065	144	4	-1124	-205	217	-1329	-907	140	-1124	-0.010221	-0.0078	
aritisyin lat sitess ratio = 0 = (1/2)(1/1) 0.200	150	31.5	-0.021	-0.057	145	9	-1133	-438	465	-1571	-668	150	-1133	-0.010299		
SOIL/STRUCTURE PARAMÈTERS (full slippage)	160	30.9	-0.056	-0.042	146	13	-1140	-628	666	-1768	-474	160	-1140	-0.010363	1	
ring flexibility ratio, UF = $(1+K)M^*/K_{rc} = 0.85$	170	30.5	-0.079	-0.023	146	16	-1145	-752	797	-1897	-347	170	-1145	-0.0104	-0.0080	
bending flexibility ratio, VF = $(1-K)M^+/K_f = 21.1$	180	30.4	-0.086	0.000	147	17	-1146	-796	843	-1942	-303	180	-1146	-0.010419		
bending flexibility ratio, vi (119)			COMI	<u> 1ENTS</u>	 -						İ			(I/2 circle) =	-0.1483	
STRESS FUNCTION COEFFICIENTS			eter ADS									MISC CAL		(0() -	4.00	
constant term, $a_0^* = -0.045$	2. Flex	ural and d	ompress	ive modu	ılus are ta	iken as 1	10,000 ps	si.					Vertical def			
$\cos(2^*\text{theta}), a_2^{**} = 0.938$	3. Typic	al E' ₅ va	lues (in p	si) for va	rious soils	s are liste	d in the ta	ble below	v:		ļ		orizontal def			
$\sin(2^* \text{theta}), b_2^{**} = 0.908$								1	idard AAS				kling Pressu			
,			•	Type of s	ioil				tive Comp		j Rad	dial Soil Pres				
LOAD PARAMETERS								85%	90%	95%	-	Arc le	ngth of each	1 Sector (III) -		
unit weight of soil (lb/ft ³) = 120	Fine-grained soils with less than 25% sand (CE, WE, BE-WE)									1000	CIRCUMFERENCE SHORTENS= +0.30					
height of fill above crown (ft) = 52.5	Coarse-grained soils with fines (SM, SC) 600 10									1200	-	CIRCUMF	EKENCE SI	IOIVILING-	inches	
surcharge pressure (psi), P = 43.8	Coarse	-grained s	oils with l	ittle or no	fines (S	P, SW, G		700	1000	1600	- Ch	ortoning 9/ /C	(veM 300			
	-	ompressi					nsile Stre			/		Shortening % (2% Max)				
	(-1941.6	6 OK (< -	3000))		-303.07	7 OK (< 1	000)) (0.0099	l	OK)				

Surcharge Pressure = 42 8> Stress on Pipe = 43. 6 PSI

Engineer

ATTACHMENT H SLOPE STABILITY

SLOPE STABILITY MODEL PROCEDURES

PCSTABL6 FOR DOS

VERSION 6.0

USER'S MANUAL

EDITED BY:

Paola Bandini Research Assistant, Purdue University

and

Rodrigo Salgado
Associate Prof., Purdue University

March 1999

BOUNDARY LOADS

Uniformly distributed boundary loads applied to the ground surface are specified by defining their extent, intensity, and direction of application (Figure 8). The limit equilibrium model used for analysis treats the boundary loads as strip loads of infinite length. The major axis of each strip load is normal to the two-dimensional X-Y plane within which the geometry of slope stability problems is solved. Therefore, the extent of a boundary load is its width in the two-dimensional plane.

Data for each boundary load consist of the left and right X coordinates which defines the horizontal extent of load application, the intensity of the loading, and its inclination. The intensity specified should be in terms of the load acting on a horizontal projection of the ground surface rather than the true length of the ground surface. Inclination is specified positive counterclockwise from the vertical. The boundaries must be ordered from left to right and are not allowed to overlap.

A boundary load whose intensity varies with position can be approximated by substituting a group of statically equivalent uniformly distributed loads which abut one another. The sum of the widths of the substitute loads should equal the width of the load being approximated. The inclinations should be equivalent, and the intensities of substitute loads should vary, as does the load being approximated.

SEARCHING ROUTINES

STABL can generate any specified number of trial failure surfaces in random fashion. The only limitation is computation time. Usually 100 surfaces are adequate. Each surface must meet specified requirements. As each acceptable surface is generated, the corresponding factor of safety is calculated. The ten most critical are accumulated and sorted by the values of their factors of safety. After all the specified number of surfaces are successfully generated and analyzed, the ten most critical surfaces are plotted so that the pattern may be studied.

Circular and Irregular Surfaces

The searching routines, which generate circular and irregularly shaped trial failure surfaces, are basically similar in use and are, therefore, discussed together.

Trial failure surfaces are generated from the left to the right. Each surface is composed of a series of straight-line segments of equal length, except for the last segment, which will most likely be shorter. The length used for the line segments is specified by the user and should be sufficiently small for the accuracy desired.

Generation of an individual trial failure surface begins at an initiation point on the ground surface. The direction of the first line segment of the trial failure surface is chosen randomly between two direction limits. An angle of 5° less than the inclination of the ground surface to the right of the initiation point is one limit, while an angle of -45° to the horizontal is another limit (Figure 12). The first line segment can fall anywhere between these two limits, but the technique of choosing its position is biased so that it will lie closer to the -45° limit more often than to the other.

By specifying zero values for both of the direction limits, the direction limits as described above are implicitly selected. However, the counterclockwise and clockwise direction limits may also be specified. After a preliminary search for the critical surface, it is usually found that all or most of the ten most critical surfaces have about the same angle of inclination for the initial line segments. By restricting the initial line segment within direction limits having a directional range smaller than that which would be used automatically by **PCSTABL6**, and at inclinations which would bracket the initial line segments of surfaces previously determined to be critical, subsequent searches can be conducted more efficiently.

Figure 12. Generation of the first line segment to define a trial failure surface.

After establishment of the first line segment, a circular shaped trial failure surface is generated by changing the direction of each succeeding line segment by some constant angle (Figure 13) until an intersection of the trial failure surface with the ground surface occurs. In effect, the chords of a circle are generated rather than the circle itself. The constant angle of deflection is obtained randomly.

An irregular shaped surface is generated somewhat differently after establishment of the first line segment. The direction of each succeeding line segment is chosen randomly within limits determined by the direction of the preceding line segment. Surfaces with reverse curvature are likely, and if a very short length is used for the line segments, a significant amount of kinkiness in the surfaces will be inevitable. Some reverse curvature is desirable but extreme kinkiness is not. To avoid the second case the length of the line segment selected should in general not be shorter than 1/4 to 1/3 the height of the slope.

When using either of these generation techniques to search for a critical failure surface, the following scheme is employed. **STABL** directs computation of a specified number of initiation points along the ground surface. The initiation points are equally spaced horizontally between two specified points, which are the leftmost and rightmost initiation points. Only the X-coordinates of these two points, specified in left-right order, are required. From each initiation point, a specified number of trial failure surfaces are generated. If the left point coincides with the right, a single initiation point results, from which all surfaces are generated. The total number of surfaces generated will equal the product of the number of initiation points and the number of surfaces generated from each.

Termination limits are specified to minimize the chance of proceeding with a calculation of the factor of safety for an unlikely failure surface. If a generated trial failure surface terminates at the ground surface short of the left initiation limit (Figure 14), the surface is rejected prior to calculation of a factor of safety and a replacement is generated. If a generating surface goes beyond the right termination limit, it will be rejected requiring a replacement. The termination limits are also specified in left-right order.

A depth limitation is imposed by specifying an elevation below which no surface is allowed to extend. This is used, for example, to eliminate calculation of the factor of safety for generated surfaces that would extend into a strong horizontal bedrock layer. When a shallow failure surface is expected, the use of the depth limitation prevents generation and analysis of deep trial failure surfaces.

An additional type of search limitation may be imposed to handle situations such as variable elevation of bedrock or delimitating a weak zone and confining the search for a critical surface to that area. This type of limitation will be discussed later.

Figure 13. Circular surface generation.

Figure 14. Trial failure surface acceptance criteria.

Sliding Block Surfaces

A sliding block trial failure surface generator provides a means through which a concentrated search for the critical failure surface may be performed within a well-defined weak zone of a soil profile.

In a simple problem involving a sliding block shaped failure face (Figure 15), the following procedure is used. Two boxes are established within the weak layer with the intent that from within each, a point will be chosen randomly. The two points once chosen define a line segment that is then used as the base of the central block of the sliding mass. Any point within each box has equal likelihood of being chosen. Therefore, a random orientation, position and width of the central block is obtained. The boxes are required to be parallelograms with vertical sides. The top and bottom of a box may have any common inclination. Each box is specified by the length of its vertical sides and two coordinate points that define the intersections of its centerline with its vertical sides (Figure 16).

After the base of the central block is created, the active and passive portions of the trial failure surface are generated using line segments of equal specified length by techniques similar to those used by the circle and irregular trial failure surface generators.

Starting at the left end of the central block base, a line segment of specified length is randomly directed between the limits of 0° and 45° with respect to the horizontal (Figure 17). The chosen direction is biased towards selection of an angle closer to 45°. This process is repeated as necessary until intersection of a line segment with the ground surface occurs, completing the passive portion of the trial surface.

For the active portion of the trial failure surface, a similar process is used with the limits for selection of the random direction being 0° and 45° with respect to the vertical (Figure 17). The chosen direction is biased towards selection of an angle nearer 45°.

A modified version of the sliding block surface generator, named BLOCK2, generates active and passive portions of the sliding block surface according to the Rankine's theory. To avoid the problem of the active or passive wedges terminating out of the defined slope boundaries, sketches should be drawn.

STABL allows the use of more than two boxes for the formation of the central block (Figure 18). The search may be limited to an irregularly shaped weak zone in this way. Another

Figure 15. Simple sliding block problem.

Figure 16. Sliding block box specifications.

Figure 17. Generation of active and passive sliding surface.

a. Intensive search of critical zone previously defined by CIRCLE or RANDOM.

b. Search in irregular weak layer.

Figure 18. Sliding block generator using more than two boxes.

application might be to conduct a search within a zone previously defined as being critical by use of the analysis command RANDOM.

Degenerate cases of parallelogram boxes are permitted. For example, if both points specified as the intersections of a parallelogram centerline with its vertical sides are identical, and the length of the parallelograms vertical sides is non-zero, then a vertical line segment, in effect, is defined. When a trial failure surface is generated, each point along the vertical line segment's length has an equal likelihood of becoming a point defining the surface. The vertical line segment could further degenerate into a point if a zero value is specified for the length of the parallelogram vertical sides. Then all surfaces generated would pass through the single point. One more case of a degenerate parallelogram is a line segment whose inclination and position is that of the parallelogram's centerline. For this case, the length of the vertical sides is zero but the intersections of the parallelogram centerline with its vertical sides are not identical. Again, any point along the length of the line segment has equal likelihood of becoming a point defining a generated trial failure surface.

Surface Generation Boundaries

As an additional criterion for acceptance of generated trial failure surfaces, an ability to establish boundaries through which a surface may NOT pass has been provided. Such boundaries may be used with all surface- generating routines except BLOCK2. Each generation boundary specified is defined by two coordinate points. If a generating surface intersects the line segment defined by the pair of coordinate points, it will either be rejected and a replacement surface will be generated, or the surface will be deflected so that it may be successfully completed. The amount of deflection permitted for a trial failure surface is limited, and when it is insufficient to clear the surface generation boundary intersected, the surface is rejected.

When specifying surface generation boundaries the coordinate points of the left end point should precede those of the right end point. For the case of vertical boundaries, the order is not important. Along with the total number of boundaries, the number of vertical boundaries that deflects generating surfaces upward is specified. The data for these boundaries are required to precede the data for boundaries that deflect downward.

As mentioned previously, a variable elevation bedrock surface can be bounded so that no generated surfaces will pass through the rock. For this case, all the surface generation boundaries defining the bedrock surface would be specified to deflect intersecting trial failure surfaces upward. Another use might occur after a critical zone has been roughly defined by a searching technique.

This zone could be bound so that the subsequent search will be completely confined to it. Surface generation boundaries above the zone would be specified to deflect downward, and those below the zone would be specified to deflect upward.

An important consideration that should be given whenever any type of limitation is imposed for conducting a search for a critical surface is how many generating surfaces are likely to be rejected. A rejected surface is lost effort regardless of how efficiently it was generated by **STABL**. Perhaps for example, a multiple box search using the command BLOCK would be more efficient than using the command RANDOM with strict limitations.

Individual Failure Surface

If the failure of the slope is being studied and the location of the actual failure surface is known, **STABL** offers the option of specifying the known surface as an individual surface for analysis. Another situation for which this option would be useful is when the geologic pattern and shear strength data indicate one or more well-defined weak paths along which failure would be expected to occur.

An individual failure surface is approximated by straight-line segments defined by a series of points. The end points of the specified trial failure surface are checked for proper location within the horizontal extent of the defined ground surface. The Y-coordinates for these two points need not be correctly specified. **STABL** directs the calculation of the Y-coordinate, for each of these two points, from the intersection of a vertical line defined by the specified X-coordinate and the ground surface. Data for the coordinate points must be ordered from left to right.

SLOPE STABILITY MODEL RESULTS FOR EXISTING LANDFILL AS OF MARCH 2003

Figure 1 — Slope Stability Section Locations, Hardee County Landfill Expansion

SCS ENGINEERS

SHEET _ JOB NO. 09/99033.09 HANDER COUNTY LANDAU (BY Hander Gunty Egripment Loading DATE Equipment Goods CAT DIR SENES II Dozan EXISTEN EQUIPMENT OPERATING WEIGHT 55, 852 16 LEIGHT OF TRACK ON SHOWN = 9'-5" = 9.4967 A WICHTH OF TRACK = 22 MGT (1.83 Fear) 55852 165 27,926 B zan mack A= (Lange of track) builder track) STARST = 1/A = 27926 16 (9.41 (1.833) SF Pressure = 1617.6 por 1/23 ps ALTERNATIVE EQUIPMENT CAT DOR WHA SENES I 82580 16 pendong WEIGHT = Kensth of Track on sports = 10-6" (105/4) 22 m (1.833 f) GUDTH OF MACK 82 800 16 41440 16 Par Track 41480 13 (10.5 11.8333) SF FRESTURE = 2152. 8 PSF (14.95 ACE)

D7R Series II

Other Models:

D7R Series II

-

Printer Friendly

Engineered for demanding work. The D7R Series II is designed to be productive in a variety of applications. It keeps material moving with the reliability and low operating costs you expect from Cat machines.

Features & Benefits

Standard Equipment

Optional Equipment

Specification Graphics (PDF: 167K)

Related Industries: Agriculture,

Construction, Forestry, Heavy Construction,

Industrial,

Quarry/Aggregate,

Waste

Detailed Specifications

Engine

Engine Model Cat 3176C

Flywheel Power 179 kW / 240 hp

Maximum Flywheel Power	192 kW / 258 hp. 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
Net Power - Caterpillar-2 2013 18 19 19 19 19 19 19 19 19 19 19 19 19 19	179 kW/240 hp: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Net Power - ISO 9249	179 kW / 240 hp
Net Power: SAE J1349	177 kW / 238 hp
Net Power - EU 80/1269	179 kW //240 hp
Net Power = DIN 70020 + 123 - 3	248 PS
Bore	125 mm / 4:9 in
Stroke	140 mm / 5.5 m 💢 💢 📜 🖖 📜
Displacement	10.3 L / 629 in 3-
Weights	
Operating Weight - Std:	24758'kg://545821b;
Shipping Weight - Std : ;	20084 kg / 44278 lb
Operating Weight - XR	25334 kg://55852 lb
Shipping Weight - XR	20660 kg/45548 lb
Operating Weight a LiGP	26897/kg//59299 lb
Shipping Weight - LGP:	22176 kg / 48890 lb
Transmission	
1 Forward	3.52 kph / 2.19 mph
2 Forward	6.1 kph/3.79 mph
3 Forward 2 6 f	10.54 kph/6.55 mph
1 Reverse Transfer to the second seco	4.54 kph / 2.82 mph → 🔑 🗀
2 Réverse	7.85 kph/4:88 mph
3 Reverse	13.58 kph// 8.44 mph
Undercarriage - Std.	
Shoe Type	Extreme Service
Pitch	216 mm / 8.5 in
Number Shoes/Side	140 m $^{-12}$ $^{-12}$ $^{-12}$ $^{-12}$ $^{-12}$ $^{-12}$ $^{-12}$ $^{-12}$
Grouser Height	71.5 mm / 3 in
Track Rollers/side	
Width of Shoe	600 mm / 22 in
Track on Ground	2870 mm/94ft
Track Gauge	1981 mm// 78 in
Ground Contact Area	3.21 m2/4972 in2
Ground Pressure (Std.)	7.58 kPa / 11 psi

Ground Clearance	414 mm // 1613 in 4
Service Refill Capacities	
Fuel Tank	479 L / 126.5 gal
Cooling System	77/4 L//20 4 gal
Engine Crankcase	31 L / 8.2 gal
Power Train 1929 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17/8 E // 47, gal production of the control of the
Final Drives (each)	13 L/ 3:4 gal
Roller Frames (each)	24.6 L / 6.5 gal 10 - 4 - 5 - 5 - 5 - 5
Attachment Hydraulic System Tank Only	54.L//14.3 gal
Pivot-Shaft Compartment	1.9 L // 0.5 gal
Hydraulic Controls - Maximum Operating Press	sure
Bulldozer	22800 kPa// 3307 psi
Hilt Cylinder as the same way and the same a	17225 kPa/-2498 psi
Ripper (Lift)	22750 kPa//3300 psi =
Ripper (Pitch)	227501dPa-/3300psi
Steering The steering the steer	38000 kPa / 551 l psi
Hydraulic Controls - Pump	
Pump Capacity at the second second	7/000 kPa//1015 psi
RPM at Rated Engine Speed	2231_RPM / 2231_RPM
Pump Output (Clutch Brake)	2221/mii//586/gal/min
Pump Output (Differential Steering)	295 L/min / 77.9 gal/min = 400 100
Lift Cylinder Flow	18011/min//47/6:gal/min
Tilt Cylinder Flow	80 L/min / 21.1 gal/min
Ripper Cylinder Flow	18014/min//47.6.gal/min
Hydraulic Controls - Main Relief Valve Setting	gs
Clutch Brake Models	27000 kPa / 3916 psi
Differential Steering Models	42000 kPa/6092 psi 5 z 3 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Winch Specifications	
Winch Model	PA110VS Variable Speed
Weight 122-A Mark 1985 The Second Sec	1894 kg / 4176 lb 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Winch and Bracket Length	1461 mm / 57.5 in
Winch Case Width	1171 mm / 46.1 in - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Increased Tractor Length - STD	742 mm / 29.2 in
Increased Tractor Length : XR :	587 mm / 23.1 in - 1.5.5 to 1.5 to 1.5.

Hardee County Landfill - Existing 2003 Hardee County, Florida

** PCSTABL5M **

by

Purdue University
--Slope Stability Analysis--

 Run Date:
 2/19/2004

 Time of Run:
 2:03PM

 Run By:
 JHO

Input Data Filename: F:hard-ex.
Output Filename: F:hard-ex.OUT

Unit: ENGLISH

Plotted Output Filename: F:hard-ex.PLT

PROBLEM DESCRIPTION Hardee County Landfill - Existing 2003 Hardee County, Florida

BOUNDARY COORDINATES

4 Top Boundaries 34 Total Boundaries

Boundary					il Type
No.	(ft)	(ft)	(ft)	•	elow Bnd
1	.00	85.00	100.00	85.00	1
2	100.00	85.00	241.00	132.00	2
3	241.00	132.00	391.00	135.00	2 2
4	391.00	135.00	600.00	135.00	
5	100.00		104.74	85.00	1
6	104.74	85.00	140.74	97.00	3
7	140.74	97.00	142.24	97.50	4
8	142.24	97.50	176.74	109.00	. 3
. 9	176.74	109.00	178.24	109.50	3
10	178.24	109.50	208.24	119.50	3
_ 11	208.24	119.50	209.74	120.00	4
12	209.74	120.00	241.27	130.50	3
13	241.27	130.50	391.00	133.50	3
14	391.00	133.50	600.00	133.50	3
15	209.74	120.00	600.00	120.00	4
16	208.24	119.50	600.00	119.50	3
17	178.24	109.50	600.00	109.50	4
18	176.74	109.00	600.00	109.00	.3
19	142.24	97.50	600.00	97.50	4
20	140.74	97.00	600.00	97.00	3
21	104.74	85.00	120.00	85.00	1
22	120.00	85.00	138.00	76.00	. 1
23	.00		138.00	76.00	1
24	138.00		142.00	74.00	1
25	142.00		177.00	74.00	1
26	177.00		199.00	85.00	1
27	199.00		209.00	85.00	1
28	209.00		235.00	72.00	1
29	235.00		600.00	72.00	1
. 30	.00		28.56	70.00	
31	28.56		600.00	67.00	5
32	.00		27.00	61.43	6
33	27.00		600.00	61.00	6
34	.00	46.07	600.00	53.50	7

ISOTROPIC SOIL PARAMETERS

7 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
			(psf)		Param.	(psf)	No.

1	105.0	120.0	.0	28.0	.00	. 0	1
2	105.0	110.0	. 0	30.0	.00	. 0	1
3	60.0	60.0	250.0	27.0	.00	. 0	1
4	60.0	60.0	. 0	21.5	.00	.0	1
5	107.0	127.0	. 0	13.0	.00	. 0	1
6	75.0	110.0	300.0	9.0	.00	. 0	1
7	124.0	137.5	. 0	35.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	2 Coordinate Points
Point	X-Water	Y-Water	
No.	(ft)	(ft)	
1	.00	83.00	
2	600.00	83.00	

BOUNDARY LOAD (S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	241.00	250.50	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 8.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	210.00	119.75	225.00	119.75	.20
2	230.00	119.75	250.00	119.75	.20

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 5 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	206.15	120.38
2	213.45	119.76
3	241.00	119.81
4	245.89	126.14
5	248.97	132.16

FACTOR OF SAFETY = 1.0 (With Equipment Load - This Model only used to estimate minimum waste strength parameters)

Hardee County Landfill - Existing 2003 Hardee County, Florida

** PCSTABL5M **

by

Purdue University --Slope Stability Analysis--

Run Date: Time of Run: 2/23/2004 11:48AM

Run By:

JHO

Input Data Filename:

F:hard-ex. F:hard-ex.OUT

Output Filename: Unit:

ENGLISH

Plotted Output Filename:

F:hard-ex.PLT

PROBLEM DESCRIPTION

Hardee County Landfill - Existing 2003 Hardee County, Florida

BOUNDARY COORDINATES

4 Top Boundaries 34 Total Boundaries

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft) .	Below Bnd
1	.00	85.00			
2	100.00	85.00			
. 3	241.00	132.00			
4	391.00	135.00			
5	100.00	85.00			
6	104.74	85.00			
7	140.74	97.00			
. 8	142.24	97.50			and the second s
9	176.74	109.00			
10	178.24	109.50			
11	208.24	119.50			
12	209.74	120.00			
13	241.27	130.50			3
14	391.00	133.50) 3
15	209.74	120.00			
16	208.24	119.50			
17	178.24	109.50			
18	176.74	109.00			
19	142.24	97.50			
20	140.74	97.00			
21	104.74	85.00			
22	120.00	85.00			
23	.00	76.00			
24	138.00	76.00			
25	142.00	74.00			
26	177.00	74.0			
27	199.00	85.0			
28	209.00	85.0			
29	235.00	72.0			0 1
30	.00	70.0			
31	28.56	70.0	·		0 5
32	.00	61.4			
33	27.00	61.4			
34	.00	46.0	7 600.0	0 53.5	0 7

ISOTROPIC SOIL PARAMETERS

7 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No.

			_			•	-
1	105.0	120.0	. 0	28.0	.00	. 0	1
2	105.0	110.0	. 0	30.0	.00	. 0	1
3	60.0	60.0	250.0	27.0	.00	. 0	1
4	60.0	60.0	. 0	21.5	.00	. 0	1
5	107.0	127.0	. 0	13.0	.00	. 0	1
6	75.0	110.0	300.0	9.0	.00	. 0	1
7	124.0	137.5	.0	35.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	2	Coordinate	Points
Point	X-Water	Y-Water			
No.	(ft)	(ft)			
1	.00	83.00			
2	600.00	83.00			

BOUNDARY LOAD (S)

1	Load(s) Specified			
Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	241.00	250.50	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 8.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	173.25	109.25	177.00	109.25	.25
2	234.00	109.25	260.00	109.25	.25

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 7 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	174.63	109.88
2	175.64	109.21
3	235.09	109.34
4	240.73	115.01
5	244.46	122.09
6	248.36	129.08
7	249.55	132.17

FACTOR OF SAFETY = 1.3 (With Equipment Loads - This model used only to estimate minimum waste strength parameters)

Hardee County Landfill - Existing 2003 Hardee County, Florida

** PCSTABL5M **

by

Purdue University
--Slope Stability Analysis--

Run Date: Time of Run: Run By: 2/23/2004 12:09PM JHO

Input Data Filename:
Output Filename:

F:hard-ex. F:hard-ex.OUT

Unit:

ENGLISH

Plotted Output Filename:

F:hard-ex.PLT

PROBLEM DESCRIPTION

Hardee County Landfill - Existing 2003 Hardee County, Florida

BOUNDARY COORDINATES

4 Top Boundaries 34 Total Boundaries

Boundary No.	X-Left Y	Y-Left X- (ft)	-Right Y- (ft)		il Type elow Bnd
1	.00	85.00	100.00	85.00	1
2	100.00	85.00	241.00	132.00	2
3	241.00	132.00	391.00	135.00	2
. 4	391.00	135.00	600.00	135.00	2
5	100.00	85.00	104.74	85.00	1
6	104.74	85.00	140.74	97.00	3
7	140.74	97.00	142.24	97.50	4
. 8	142.24	97.50	176.74	109.00	. 3
9	176.74	109.00	178.24	109.50	3
10	178.24	109.50	208.24	119.50	3
11	208.24	119.50	209.74	120.00	4
12	209.74	120.00	241.27	130.50	3
13	241.27	130.50	391.00	133.50	3
14	391.00	133.50	600.00	133.50	
15	209.74	120.00	600.00	120.00	4
16	208.24	119.50	600.00	119.50	3 4
17	178.24	109.50		109.50	
18	176.74	109.00		109.00	.3
19	142.24	97.50		97.50	4
20	140.74	97.00		97.00	3
21	104.74	85.00		85.00	` 1
22	120.00	85.00		76.00	. 1
23	.00	76.00		76.00	1
24	138.00	76.00		74.00	1
25	142.00			74.00	1
26	177.00			85.00	1 1
27	199.00	85.00		85.00	
28	209.00			72.00	1
29	235.00			72.00	1
30	.00			70.00	5 5
31	28.56			67.00	6
32	.00			61.43	6
33	27.00			61.00	7
34	.00	46.07	600.00	53.50	,

ISOTROPIC SOIL PARAMETERS

7 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No.

1	105.0	120.0	.0	28.0	.00	. 0	1
2	105.0	110.0	. 0	30.0	.00	. 0	1
3	60.0	60.0	250.0	27.0	.00	. 0	1
4	60.0	60.0	. 0	21.5	.00	. 0	1
5	107.0	127.0	.0	13.0	.00	. 0	1
6	75.0	110.0	300.0	9.0	.00	.0	1
7	124.0	137.5	. 0	35.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	2 Coordinate Points
Point	X-Water	Y-Water	
No.	(ft)	(ft)	
1	.00	83.00	
2	600.00	83.00	

BOUNDARY LOAD (S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	241.00	250.50	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 8.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	140.00	97.25	180.00	97.25	.25
2	210.00	97.25	260.00	97.25	.25

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 10 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	154.11	103.04
2	155.86	101.29
3	162.69	97.13
4	231.02	97.32
5	236.25	103.37
6	241.72	109.21
7	244.24	116.80
8	248.31	123.69
9	250.61	131.35
10	251.46	132.21

FACTOR OF SAFETY = 1.5 (With Equipment Loads - This model only used to estimate minimum waste strength

parameters)

Hardee County Landfill - Existing 2003 Hardee County, Florida

** PCSTABL5M **

by

Purdue University
--Slope Stability Analysis--

Run Date: Time of Run: 2/23/2004 12:16PM JHO

Run By:
Input Data Filename:
Output Filename:

F:hard-ex. F:hard-ex.OUT

Unit:

ENGLISH

Plotted Output Filename:

F:hard-ex.PLT

PROBLEM DESCRIPTION

Hardee County Landfill - Existing 2003 Hardee County, Florida

BOUNDARY COORDINATES

4 Top Boundaries

34 Total Boundaries

Boundary	X-Left				Soil Type
No.	(ft)	(ft)	(ft)		Below Bnd
1	.00	85.00	100.00	85.00	
2	100.00	85.00	241.00	132.00	
3	241.00	132.00		135.00	
4	391.00	135.00	600.00	135.00	
5	100.00	85.00		85.00	
6	104.74	85.00		97.00	
7	140.74	97.00	142.24	97.50	
. 8	142.24	97.50	176.74	109.00	
9	176.74	109.00	178.24	109.50	
10	178.24	109.50	208.24	119.50	
11	208.24	119.50	209.74	120.00	
12	209.74	120.00	241.27	130.50	3
13	241.27	130.50	391.00	133.50	3
14	391.00	133.50	600.00	133.50	
15	209.74	120.00	600.00	120.00). <u>4</u>
16	208.24	119.50		119.50) 3
17	178.24	109.50	600.00	109.50) 4
18	176.74	109.00	600.00	109.00	, 3
19	142.24	97.50	600.00	97.50) 4
20	140.74	97.00	600.00	97.00) 3
21	104.74	85.00		85.00) 1
22	120.00	85.00	138.00	76.00	1
23	.00	76.00	138.00	76.00) 1
24	138.00	76.00	142.00	74.00	
25	142.00	74.00	177.00	74.00	1
26	177.00	74.00	199.00	85.06	. 1
27	199.00			85.00	1
28	209.00	85.00	235.00		
29	235.00	72.00	600.00	72.0) 1
30	.00		28.56		
31	28.56				
32	.00				
33	27.00				
34	.00			· ·	

ISOTROPIC SOIL PARAMETERS

7 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No.

1	105.0	120.0	. 0	28.0	.00	.0	1
2	105.0	110.0	. 0	30.0	.00	. 0	1
3	60.0	60.0	250.0	27.0	.00	. 0	1
4	60.0	60.0	. 0	21.5	.00	. 0	1
5	107.0	127.0	. 0	13.0	.00	. 0	1
6	75.0	110.0	300.0	9.0	.00	. 0	1
7	124.0	137.5	0	35.0	.00	.0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	2	Coordinate	Points
Point	X-Water	Y-Water			
No.	(ft)	(ft)			
1	.00	83.00			
2	600.00	83.00		•	

BOUNDARY LOAD (S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	241.00	250.50	1618.0	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 40.00 ft. and X = 100.00 ft.

Each Surface Terminates Between X = 241.00 ft. and X = 500.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

The Following is the Ten Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Bishop Method

Failure Surface Specified By 23 Coordinate Points

	-	-
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	71.84	85.00
2	80.10	79.37
3	88.81	74.45
4	97.90	70.28
5	107.31	66.90
6	116.97	64.32
7	126.81	62.56
8	136.77	61.64
9	146.77	61.56
10	156.74	62.33
11	166.61	63.93

12	176.31	66.36
13	185.77	69.61
14	194.92	73.63
15	203.71	78.42
16	212.05	83.92
17	219.91	90.11
18	227.21	96.95
19	233.91	104.37
20	239.96	112.33
21	245.32	120.77
22	249.95	129.64
23	251.02	132.20

Circle Center At X = 142.7; Y = 180.0 and Radius, 118.5

FACTOR OF SAFETY = 1.6 (With Equipment Loads - This model is only used to estimate minimum waste parameters)

COMPARISON TO TYPICAL WASTE SHEAR STRENGTH VALUES

Geotechnicsof

Theory and Practice

Landva/Knowles, editors

457) STP 1070

in the

Source SANE As Sheet 1/2

STABILITY OF SANITARY LANDFILLS

of 15 was used by Dames & Moore (20) after rejecting values larger than 50 that may represent the encounter of obstructions. Earth Tech Corporation (9) reported the results of a vane shear test and a standard penetration test. These results are shown in Figure 3.

Finally, the results of all the foregoing tests are plotted in Figure 4.

Because of the scatter and scarcity of the data, it is difficult to draw any definitive conclusions on the shear strength characteristics of sanitary fill material.

EXPANSION NORTH/SOUTH SECTION FINAL BUILDOUT

Figure 1 — Slope Stability Section Locations, Hardee County Landfill Expansion

Expansion Operations - Final - N/S Hardee County, Florida F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-NS.PL2 Run By: LEK 2/11/2004 4:14PM

Saturated Cohesion Friction Piez. Unit Wt. Intercept Angle Surface Load Value Total # FS Soil Soil 1618 psf a 1.9 Type Unit Wt. Desc. No. (deg) (psf) b 1.9 (pcf) (pcf) No. W1 120.0 0.0 28.0 105.0 c 2.0 Subgrade W1 10.0 0.0 62.4 62.4 d 2.0 Existgeo W1 105.0 110.0 0.0 30.0 Cover e 2.0 250.0 27.0 W1 60.0 60.0 waste f 2.0 W1 27.0 60.0 250.0 g 2.0 Mod Bale 60.0 WITH EOUPMENT WORDS 60.0 127.0 0.0 21.5 60.0 H. Bale h 2.0 200 0.0 300.0 W1 13.0 107.0 SC i 2.0 9.0 W1 W1 CL 75.0 110.0 j 2.1 35.0 137.5 0.0 SPw/Phos 124.0 9 0.0 15.0 W1 BotGeo 10 62.4 62.4 W1 15.0 62.4 62.4 0.0 SideGeo 11 1200 1000 800 600 400 200

SCS ENGINEERS

PCSTABL5M/si FSmin=1.9
Safety Factors Are Calculated By The Modified Bishop Method

** PCSTABL5M **

by

Purdue University --Slope Stability Analysis--

Run Date:

2/11/2004 4:14PM

Time of Run:

LEK

Run By:

Input Data Filename: Output Filename:

F:ex-f-ns. F:ex-f-ns.OUT

Unit:

ENGLISH

Plotted Output Filename:

F:ex-f-ns.PLT

PROBLEM DESCRIPTION

Expansion Operations - Final - N/S Hardee County, Florida

BOUNDARY COORDINATES

12 Top Boundaries 84 Total Boundaries

01 1000	2 204.144.200			•	•
Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	.00	84.00	281.90	85.00	1
2	281.90	85.00	284.90	84.00	1 .
3	284.90	84.00	294.90	84.00	1
4	294.90	84.00	303.90	87.00	1
5	303.90	87.00	326.90	87.00	1
6	326.90	87.00	327.32	87.00	1
7	327.32	87.00	396.32	110.00	4
8	396.32	110.00	416.32	110.00	4
9	416.32	110.00	536.32	150.00	4
10	536.32	150.00	686.32	157.50	4
11	686.32	157.50	1136.32	157.50	4
12	1136.32	157.50	1200.00	150.00	4
13	327.32	87.00	328.90	87.00	10
14	328.90	87.00	343.72	82.06	10
15	343.72	82.06	349.72	82.06	10
16	349.72	82.06	400.60	83.40	10
17	400.60	83.40	463.60	81.60	10
18	463.60	81.60	469.60	81.60	10
19	469.60	81.60	513.60	82.80	10
20	513.60	82.80	580.60	80.70	10
21	580.60	80.70	586.60	80.70	10
22	586.60	80.70	632.80	81.70	10
23	632.80	81.70	650.00	86.00	10
24	650.00	86.00	676.42	86.00	11
25	676.42	86.00	749.92	110.50	11
26	749.92	110.50	769.92	110.50	11
27	769.92	110.50	874.91	145.50	11
28	874.91	145.50	974.98	150.50	11
29	974.98	150.50	985.00	150.00	11
30	326.90	87.00	327.01	86.53	1
31	327.01	86.53	328.74	86.53	1
32	328.74	86.53	343.72	81.56	1
33	343.72	81.56	349.72	81.56	1 .
34	349.72	81.56	400.61	82.90	1 .
35	400.61	82.90	463.60	81.10	1
36	463.60	81.10	469.60	81.10	1
37	469.60	81.10	513.59	82.30	1
38	513.59	82.30	580.60	80.20	1
39	580.60	80.20	586.60	80.20	1 .
40	586.60	80.20	632.82	81.20	1 .
41	632.82	81.20	650.00	85.50	1
42	650.00	85.50	676.50	85.50	1
43	658.00	85.00	658.56	85.00	2
44	658.56	85.00	675.00	85.00	1
45	675.00	85.00	750.00	110.00	. 3
46	750.00	110.00	770.00	110.00	3

47	770.00	110.00	875.00	145.00	3
48	875.00	145.00	975.00	150.00	3
49	975.00	150.00	1200.00	150.00	3
50	.00	76.00	640.00	76.00	1
51	640.00	76.00	658.00	85.00	2
52	640.00	76.00	640.46	76.00	2
53	640.46	76.00	658.56	85.00	1
54	675.00	85.00	679.74	85.00	1
55	679.74	85.00	750.24	108.50	4
56	750.24	108.50	770.24	108.50	4
57	770.24	108.50	875.28	143.51	4
58	875.28	143.51	975.00	148.50	4
59	975.00	148.50	1200.00	148.50	4
60	675.00	85.00	720.00	85.00	1
61	720.00	85.00	738.00	76.00	1
62	640.56	76.00	738.00	76.00	1
63	738.00	76.00	742.00	74.00	1
64	742.00	74.00	777.00	74.00	1
65	777.00	74.00	799.00	85.00	1
66	799.00	85.00	809.00	85.00	1
67	809.00	85.00	835.00	72.00	1
68	835.00	72.00	1200.00	72.00	1
69	.00	60.31	15.00	60.31	8
70	15.00	60.31	195.00	63.66	7
71	195.00	63.66	418.00	67.96	7
72	418.00	67.96	628.00	70.00	. 7
73	628.00	70.00	640.00	76.00	2
74	628.00	70.00	628.56	70.00	7
75	628.56	70.00	640.56	76.00	1
76	628.56	70.00	1200.00	67.00	7
77	15.00	60.31	195.12	57.66	. 8
78	195.12	57.66	418.12	61.96	8
79	418.12	61.96	627.00	61.40	8
80	627.00	61.40	1200.00	61.40	8
81	.00	50.31	195.12	50.31	9
82	195.12	50.31	418.12	57.96	9
83	418.12	57.96	627.00	46.40	. 9 9
84	627.00	46.40	1200.00	53.50	9

ISOTROPIC SOIL PARAMETERS 11 Type(s) of Soil

Soil		Saturated				Pressure	Piez.
Type	Unit Wt	. Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	105.0	120.0	. 0	28.0	.00	. 0	1
2	62.4	62.4	. 0	10.0	.00	. 0	1
3	105.0	110.0	. 0	30.0	.00	.0	1
4	60.0	60.0	250.0	27.0	.00	. 0	1
5	60.0	60.0	250.0	27.0	.00	. 0	1
6	60.0	60.0	. 0	21.5	.00	.0	1
7	107.0	127.0	. 0	13.0	.00	.0	1
8	75.0	110.0	300.0	9.0	.00	. 0	1
9	124.0	137.5	. 0	35.0	.00	. 0	1
10	62.4	62.4	.0	15.0	.00	. 0	1
11	62 4	62 4	. 0	15.0	. 0.0	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40

Piezometric Point	Surface No. X-Water	1 Specified by Y-Water	7 Coordinate Points
No.	(ft)	(ft)	
1	.00	83.50	
2	313.05	83.50	
3	337.75	77.00	
4	580.60	79.00	•
5	638.17	79.00	
6	652.00	82.00	
7	1200.00	82.00	

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	536.32	545.82	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft.

and X = 327.00 ft.

Each Surface Terminates Between X = 396.32 ft. and X = 1000.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

The Following Is The Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Bishop Method

Failure Surface Specified By 31 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	293.08	84.00
2	301.86	79.20
3	310.87	74.87
4	320.09	71.01
5	329.51	67.63
6	339.08	64.75
7	348.79	62.37
8	358.62	60.50
9	368.53	59.15
9 10	378.49	58.31
11	388.49	57.99
	398.48	58.20
12	408.46	58.92
13 14	418.38	60.16
	428.23	61.92
15		64.18
16	437.97 447.57	66.95
17		70.22
18	457.03	
19	466.29	73.97
20	475.35	78.20
21	484.18	82.90
22	492.75	88.05
23	501.05	93.64
24	509.04	99.66
25	516.70	106.08
26	524.02	112.89
27	530.98	120.07
28	537.55	127.61
29	543.73	135.48
30	549.48	143.65
31	554.02	150.89

Circle Center At X = 389.6; Y = 250.0 and Radius, 192.0

Expansion Operations - Final - N/S Hardee County, Florida
F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-NS.PL2 Run By: LEK 2/11/2004 4:26PM

PCSTABL5M/si FSmin=1.9
Safety Factors Are Calculated By The Modified Janbu Method

SCS ENGINEERS

Expansion Operations - Final - N/S Hardee County, Florida
F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-NS.PL2 Run By: LEK 2/11/2004 4:23PM

Load Ll Value Saturated Cohesion Friction Piez. # FS Soil Total Soil 1618 psf Type Unit Wt. Unit Wt. Intercept Angle Surface a 1.7 Desc. (deg) (psf) No. (pcf) No. (pcf) W1 28.0 105.0 120.0 0.0 c 1.9 Subgrade LITH - EOU PMUT WORDS 10.0 W1 62.4 Existgeo 62.4 30.0 W1 0.0 105.0 110.0 Cover 60.0 250.0 27.0 60.0 waste 250.0 0.0 27.0 W1 Mod Bale H. Bale 60.0 60.0 g 1.9 60.0 60.0 h 1.9 200 127.0 110.0 0.0 13.0 W1 107.0 SC i 1.9 9.0 W1 300.0 CL 8, 75.0 CAT DZ W1 W1 35.0 SPw/Phos 0.0 124.0 137.5 0.0 15.0 62.4 BotGeo 10 62.4 W1 15.0 SideGeo 11 62.4 62.4 1200 1000 800 600 400 200 0

SCS ENGINEERS

PCSTABL5M/si FSmin=1.7
Safety Factors Are Calculated By The Modified Janbu Method

** PCSTABL5M **

by Purdue University --Slope Stability Analysis--

Run Date: Time of Run: 2/11/2004

Run By:

4:26PM LEK

Input Data Filename: Output Filename:

F:ex-f-ns.F:ex-f-ns.OUT

Unit:

ENGLISH

Plotted Output Filename: F:ex-f-ns.PLT

Expansion Operations - Final - N/S PROBLEM DESCRIPTION Hardee County, Florida

BOUNDARY COORDINATES

12 Top Boundaries 84 Total Boundaries

Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 84.00 281.90 85.00 1 2 281.90 85.00 284.90 84.00 1 3 284.90 84.00 303.90 87.00 326.90 87.00 1 6 326.90 87.00 326.90 87.00 1 1 6 326.90 87.00 326.32 110.00 4 1 7 327.32 87.00 396.32 110.00 4 1 9 416.32 110.00 46.32 150.00 4 1 10 536.32 150.00 686.32 157.50 4 1 11 686.32 157.50 136.32 157.50 4 1 12 1136.32 157.50 1200.00 150.00 4 1 <						
1 .00 84.00 281.90 85.00 1 2 281.90 85.00 284.90 84.00 1 3 284.90 84.00 294.90 84.00 1 4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 396.32 110.00 4 8 396.32 110.00 416.32 110.00 4 9 416.32 110.00 536.32 150.00 4 10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06	_					
2 281.90 85.00 284.90 84.00 1 3 284.90 84.00 294.90 84.00 1 4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 326.90 87.00 1 7 327.32 87.00 396.32 110.00 4 8 396.32 110.00 416.32 110.00 4 9 416.32 110.00 536.32 150.00 4 10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 136.32 157.50 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 400.60 83.40 10 17 400.60 83.40 </td <td></td> <td>(ft)</td> <td></td> <td></td> <td></td> <td>Below Bnd</td>		(ft)				Below Bnd
3 284.90 84.00 294.90 84.00 1 4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 396.32 110.00 4 8 396.32 110.00 46.32 110.00 4 9 416.32 150.00 686.32 157.50 4 10 536.32 150.00 4 1 11 686.32 157.50 4 1 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 343.72 82.06 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 349.72 82.06<				·		
4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 396.32 110.00 4 8 396.32 110.00 4 10.00 4 9 416.32 110.00 46.32 150.00 4 10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 136.32 157.50 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 328.90 87.00 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60						
5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 1 1 8 396.32 110.00 416.32 110.00 4 9 416.32 110.00 536.32 150.00 4 10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 1200.00 150.00 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60						
6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 396.32 110.00 4 9 416.32 110.00 536.32 150.00 4 10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 1136.32 157.50 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 349.72 82.06 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 469.60 81.60 10 20 513.60 82.80 10 10 21 580.60 80.70 58					1	
7 327.32 87.00 396.32 110.00 4 8 396.32 110.00 416.32 110.00 4 9 416.32 110.00 536.32 150.00 4 10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 120.00 150.00 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
8 396.32 110.00 416.32 110.00 4 9 416.32 110.00 536.32 150.00 4 10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 1136.32 157.50 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 400.60 83.40 10 16 349.72 82.06 10 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 10 10 10 19 469.60 81.60 10 10 20 513.60 82.80 80 10 20 513.60 82.80 580.60 80.70 10 21 586.60 80.70 10 21 580.60 80.70						
9						
10 536.32 150.00 686.32 157.50 4 11 686.32 157.50 1136.32 157.50 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 10 25 676.42						
11 686.32 157.50 1136.32 157.50 4 12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 586.60 80.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42						
12 1136.32 157.50 1200.00 150.00 4 13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 586.60 80.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 27 769.92 <	. 10	536.32				
13 327.32 87.00 328.90 87.00 10 14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 650.00 86.00 10 24 650.00 86.00 76.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 749.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 <						
14 328.90 87.00 343.72 82.06 10 15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 29 974.98		1136.32				
15 343.72 82.06 349.72 82.06 10 16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 650.00 86.00 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98		327.32		328.90		
16 349.72 82.06 400.60 83.40 10 17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01	14	328.90		343.72	82.06	10
17 400.60 83.40 463.60 81.60 10 18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01		343.72	82.06	349.72		
18 463.60 81.60 469.60 81.60 10 19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 769.92 110.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 3 1 32 328.74 86.53 <td< td=""><td>16</td><td>349.72</td><td></td><td>400.60</td><td>83.40</td><td>10</td></td<>	16	349.72		400.60	83.40	10
19 469.60 81.60 513.60 82.80 10 20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 1 33 433.72 81.56 1 33 343.72 81.56 349.72 81.56 1	17	400.60	83.40			
20 513.60 82.80 580.60 80.70 10 21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 349.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72	18	463.60	81.60	469.60	81.60	10
21 580.60 80.70 586.60 80.70 10 22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 349.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 <	19	469.60	81.60	513.60	82.80	10
22 586.60 80.70 632.80 81.70 10 23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 <t< td=""><td>20</td><td>513.60</td><td>82.80</td><td>580.60</td><td>80.70</td><td>10</td></t<>	20	513.60	82.80	580.60	80.70	10
23 632.80 81.70 650.00 86.00 10 24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 513.59 82.30 1 39 580.60 <td< td=""><td>21</td><td>580.60</td><td>80.70</td><td>586.60</td><td>80.70</td><td>10</td></td<>	21	580.60	80.70	586.60	80.70	10
24 650.00 86.00 676.42 86.00 11 25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 513.59 82.30 1 39 580.60 80.20 586.60 80.20 1 40 586.60	22	586.60		632.80	81.70	10
25 676.42 86.00 749.92 110.50 11 26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 1 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 40 586.60 80.20 586.60	23	632.80	81.70	650.00	86.00	10
26 749.92 110.50 769.92 110.50 11 27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 40 586.60 80.20 586.60 80.20 1 40 586.60 80.	24	650.00	86.00	676.42	86.00	11
27 769.92 110.50 874.91 145.50 11 28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 1 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 40 586.60 80.20 586.60 80.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50	25	676.42	86.00	749.92	110.50	11
28 874.91 145.50 974.98 150.50 11 29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 40 586.60 80.20 586.60 80.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	26	749.92	110.50	769.92	110.50	11
29 974.98 150.50 985.00 150.00 11 30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 586.60 80.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	27	769.92	110.50	874.91	145.50	. 11
30 326.90 87.00 327.01 86.53 1 31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 586.60 80.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	28	874.91	145.50	974.98	150.50	11
31 327.01 86.53 328.74 86.53 1 32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 586.60 80.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	29	974.98	150.50	985.00	150.00	11
32 328.74 86.53 343.72 81.56 1 33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 586.60 80.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	30	326.90	87.00	327.01	86.53	1
33 343.72 81.56 349.72 81.56 1 34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	31	327.01	86.53	328.74	86.53	1
34 349.72 81.56 400.61 82.90 1 35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	32	328.74	86.53	343.72	81.56	1
35 400.61 82.90 463.60 81.10 1 36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	33	343.72	81.56	349.72	81.56	1
36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	34	349.72	81.56	400.61	82.90	1
36 463.60 81.10 469.60 81.10 1 37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3		400.61	82.90	463.60	81.10	1
37 469.60 81.10 513.59 82.30 1 38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 658.56 85.00 2 44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3		463.60		469.60	81.10	· 1
38 513.59 82.30 580.60 80.20 1 39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 658.56 85.00 2 44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3	37	469.60	81.10	513.59	82.30	· 1
39 580.60 80.20 586.60 80.20 1 40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 658.56 85.00 2 44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3				580.60	80.20	
40 586.60 80.20 632.82 81.20 1 41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 658.56 85.00 2 44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3		580.60			80.20	
41 632.82 81.20 650.00 85.50 1 42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 658.56 85.00 2 44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3						
42 650.00 85.50 676.50 85.50 1 43 658.00 85.00 658.56 85.00 2 44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3						
43 658.00 85.00 658.56 85.00 2 44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3						
44 658.56 85.00 675.00 85.00 1 45 675.00 85.00 750.00 110.00 3						
45 675.00 85.00 750.00 110.00 3						

47	770.00	110.00	875.00	145.00	3
48	875.00	145.00	975.00	150.00	3
49	975.00	150.00	1200.00	150.00	. 3
50	.00	76.00	640.00	76.00	1
51	640.00	76.00	658.00	85.00	2
52	640.00	76.00	640.46	76.00	2
53	640.46	76.00	658.56	85.00	1
54	675.00	85.00	679.74	85.00	1
55	679.74	85.00	750.24	108.50	4
56	750.24	108.50	770.24	108.50	4
57	770.24	108.50	875.28	143.51	4
58	875.28	143.51	975.00	148.50	4
59	975.00	148.50	1200.00	148.50	4
60	675.00	85.00	720.00	85.00	1
61	720.00	85.00	738.00	76.00	1
62	640.56	76.00	738.00	76.00	. 1
63	738.00	76.00	742.00	74.00	1
64	742.00	74.00	777.00	74.00	1
65	777.00	74.00	799.00	85.00	1
66	799.00	85.00	809.00	85.00	1
67	809.00	85.00	835.00	72.00	1
68	835.00	72.00	1200.00	72.00	1
69	.00	60.31	15.00	60.31	8
70	15.00	60.31	195.00	63.66	7
71	195.00	63.66	418.00	67.96	7
72	418.00	67.96	628.00	70.00	7
73	628.00	70.00	640.00	76.00	2
74	628.00	70.00	628.56	70.00	. 7
75	628.56	70.00	640.56	76.00	1
76	628.56	70.00	1200.00	67.00	7
77	15.00	60.31	195.12	57.66	8
78	195.12	57.66	418.12	61.96	8
79	418.12	61.96	627.00	61.40	8
80	627.00	61.40	1200.00	61.40	8
81	.00	50.31	195.12	50.31	9
82	195.12	50.31	418.12	57.96	9
83	418.12	57.96	627.00	46.40	9
84	627.00	46.40	1200.00	53.50	9

ISOTROPIC SOIL PARAMETERS

11 Type(s) of Soil

Soil	Total	Saturated	Cohesion			Pressure	Piez.
Type	Unit Wt	. Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	105.0	120.0	. 0	28.0	.00	.0	1
2	62.4	62.4	.0	10.0	.00	. 0	1
3	105.0	110.0	. 0	30.0	.00	. 0	1
4	60.0	60.0	250.0	27.0	.00	. 0	1
5	60.0	60.0	250.0	27.0	.00	.0	1
6	60.0	60.0	. 0	21.5	.00	. 0	1
7	107.0	127.0	. 0	13.0	.00	. 0	1
8	75.0	110.0	300.0	9.0	.00	. 0	1
9	124.0	137.5	. 0	35.0	.00	. 0	1
10	62.4	62.4	. 0	15.0	.00	. 0	1
11	62.4	62.4	. 0	15.0	.00	.0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40

Piezometric Point No.	Surface No. X-Water (ft)	1 Specified by Y-Water (ft)	7 Coordinate Points
1	.00	83.50	
2	313.05	83.50	
3	337.75	77.00	
4	580.60	79.00	•
5	638.17	79.00	
6	652.00	82.00	
7	1200.00	82.00	

BOUNDARY LOAD (S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	536.32	545.82	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

SURCHARGE BOUNDARY LOAD DATA HAS BEEN SUPPRESSED

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 6.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	220.00	64.87	347.00	64.87	20.00
2	363.00	64.87	800.00	64.87	20.00

The Following Is The Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 28 Coordinate Points

allulc	Durrace opecara	Cu 2, 20
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	258.65	84.92
. 2	260.80	82.78
3	265.86	79.55
4	271.82	78.87
5	277.00	75.85
6	282.79	74.26
7	288.35	72.00
8	293.40	68.76
9	299.25	67.45
10	304.48	64.51
11	491.32	67.58
12	494.97	72.34
13	499.01	76.79
14	500.53	82.59
15	504.70	86.90
16	508.91	91.18
17	512.95	95.61
18	516.76	100.25
19	518.73	105.91
20	522.39	110.67
21	524.96	116.09
22	526.14	121.97
23	528.67	127.41
24	532.90	131.67
25	536.93	136.12
26	541.13	140.40
27	543.90	145.72
28	545.00	150.43

FACTOR OF SAFETY = 1.9 (Without Equipment Loads = Critical Failure plane along geosynthetic interface)

FACTOR OF SAFETY = 1.7 (With Equipment Loads = Critical Failure plane along geosynthetic interface)

EXPANSION EAST/WEST SECTION FINAL BUILDOUT

Figure 1 — Slope Stability Section Locations, Hardee County Landfill Expansion

Hardee County Landfill Expansion Final Buildout - East/West Slope F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-EW.PL2 Run By: JHO 2/9/2004 10:32PM

Hardee County Landfill Expansion Final Buildout - East/West Slope F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-EW.PL2 Run By: JHO 2/9/2004 10:29PM Load Saturated Cohesion Friction Piez. Value Total # FS Soil Soil 1618 lb/sqft Unit Wt. Intercept Angle Surface Type Unit Wt. a 1.6 Desc. (psf) (deg) No. (pcf) (pcf) No. b 1.6 28.0 W1 ο̈.ο΄ 120.0 105.0 subgrade 27.0 W1 60.0 60.0 250.0 waste d 1.7 15.0 W₁ 0.0 62.4 Botgeo 62.4 e 1.7 W₁ 15.0 62.4 62.4 Sidegeo f 1.7 W₁ 110.0 0.0 30.0 105.0 Cover W₁ 60.0 250.0 27.0 60.0 ModBale h 1.7 21.5 W₁ 60.0 60.0 H.Bale i 1.7 W₁ 62.4 0.0 10.0 62.4 WITH CONJUNCT Exgeo 1.7 W1 13.0 127.0 0.0 107.0 SC W1 9.0 75.0 110.0 300.0 CL 10 35.0 W1 137.5 SPw/Phos 11 124.0 200 1200 0 1000 800 600 400 200 STABL6H FSmin=1.6

Safety Factors Are Calculated By The Modified Bishop Method

SCS ENGINEERS

** STABL6H **

by

Purdue University --Slope Stability Analysis--

 Run Date:
 2/9/2004

 Time of Run:
 10:32PM

 Run By:
 JHO

Input Data Filename: F:ex-f-ew.
Output Filename: F:ex-f-ew.OUT
Plotted Output Filename: F:ex-f-ew.PLT

PROBLEM DESCRIPTION Hardee County Landfill Expansion Final Buildout - East/West Slope

BOUNDARY COORDINATES

13 Top Boundaries 99 Total Boundaries

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	.00	85.0	0 436.	50 85	.00 1
2	436.50	85.0	0 442.	50 87	.00 1
3	442.50	87.0	00 445.	.50 87	.00 1
. 4	445.50	87.0	00 450.	.00 85	.50 1
5	450.00	85.5			.50 1
. 6	460.00				.00 1
7	464.50				.00 1
8	487.50				.00 3
. 9	487.92				
10	556.92	110.0			
. 11	576.92				
12	696.92				
. 13	796.92				
14	487.92				.00 3
15	489.50				.50
16	497.00				.60 3
17	567.50				.60 3
18	573.53				.50 3
19	644.0				.00 3
20	650.00				.00 3
21	675.00				.50 4
22	760.79				.50 4
23	785.79				50 4
24	908.24				.50 4
25	1008.24				.00 4
26	1018.24				.00 5
27	487.50				.50 1
28	487.6				.50 1
29	489.42				.00 1
30	496.9				.10 1
31	567.4				.10 1
32	573.5				.00 1
33	644.0				.50 1
34	650.0				.50 1
35	675.0				.00 5
36	760.8				5
37	785.83				5.00 5
38	908.3				5
39	1008.2				5
40	1008.3				6.50
41	908.5				5.50 6
42	847.2	3 126.0	00 908	.56 143	.51 6

43	845.53	125.50	847.28	126.00	6.
44	847.28	126.00	867.16	126.00	6
45	867.16	126.00	892.16	126.00	7
46	892.16	126.00	902.16	126.00	6
47	902.16	126.00	1200.00	126.00	7
48	845.53	125.50	865.66	125.50	6
49	865.66	125.50	867.16	126.00	7
50	865.66	125.50	890.66	125.50	6
51	890.66	125.50	892.16	126.00	6
52	892.16	125.50	900.66	125.50	6
53	900.66	125.50	902.16	126.00	7
54	900.66	125.50	1200.00	125.50	6
55	791.28	110.00	845.53	125.50	6
56	789.53	109.50	791.28	110.00	6
57	791.28	110.00	811.16	110.00	6
58	811.16	110.00	836.16	110.00	7
59	836.16	110.00	846.16	110.00	6
60	846.16	110.00	1200.00	110.00	7
61	789.53	109.50	809.66	109.50	6
62	809.66	109.50	811.16	110.00	7
63	809.66	109.50	834.66	109.50	6
64	834.66	109.50	836.66	110.00	6
65	834.66	109.50	844.66	109.50	6
66	844.66	109.50	846.16	110.00	7
67	844.66	109.50	1200.00	109.50	6
68	786.09	108.50	789.03	109.50	. 6
69	761.03	108.50	786.03	108.50	6
70	722.53	97.50	761.03	108.50	6
71	720.78	97.00	722.53	97.50	6
72	722.53	97.50	742.41	97.50	6
73	742.41	97.50	767.41	97.50	7
74	767.41	97.50	777.41	97.50	6 ¹
75	777.41	97.50	1200.00	97.50 97.00	, 6
76	720.78	97.00 97.00	740.91 742.41	97.50	7
77 70	740.91	97.00	765.91	97.00	6
78 70	740.91 765.91	97.00	767.41	97.50	6
79 80	765.91	97.00	775.91	97.00	6
81	775.91	97.00	777.41	97.50	6
82	775.91	97.00	1200.00	97.00	6
83	678.78	85.00	720.78	97.00	6
84	658.00	85.00	658.56	85.00	8
85	658.56	85.00	678.78	85.00	1
86	678.78	85.00	685.00	85.00	1
87	.00	76.00	640.00	76.00	1
88	640.00	76.00	658.00	85.00	8
89	640.00	76.00	640.56	76.00	1
90	640.56	76.00	658.56	85.00	1
. 91	685.00	85.00	703.00	76.00	1
92	703.00	76.00	711.00	72.00	1
93	711.00	72.00	1200.00	72.00	1
94	.00	70.00	628.00	70.00	9
95	628.00	70.00	640.00	76.00	8
96	628.00	70.00	628.56	70.00	. 9
97	628.56	70.00	1200.00	70.00	9
98	.00	60.00	1200.00	60.00	10
99	.00	49.00	1200.00	49.00	11

ISOTROPIC SOIL PARAMETERS 11 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Туре	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.

1	105.0	120.0	.0	28.0	.00	. 0	1
2.	60.0	60.0	250.0	27.0	.00	. 0	1
3	62.4	62.4	. 0	15.0	.00	. 0	1
4	62.4	62.4	.0	15.0	.00	.0	1
5	105.0	110.0	. 0	30.0	.00	. 0	1
6	60.0	60.0	250.0	27.0	.00	. 0	1
7	60.0	60.0	.0	21.5	.00	. 0	1
8	62.4	62.4	. 0	10.0	.00	. 0	1
9	107.0	127.0	. 0	13.0	.00	.0	1
10	75.0	110.0	300.0	9.0	.00	.0	1
11	124.0	137.5	. 0	35.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

]	Piezometric	Surface No.	1 Specified by	у 6	Coordinate	Points
	Point	X-Water	Y-Water			
	No.	(ft)	(ft)			
	1	.00	83.50			
	2	487.50	83.50			
	3 .	567.50	81.60			
	4	573.50	81.60			
	5	652.00	83.50			
	6	1200.00	83.50			

BOUNDARY LOAD (S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deģ)
1	696.92	706.42	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

SURCHARGE BOUNDARY LOAD DATA HAS BEEN SUPPRESSED

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

10000 Trial Surfaces Have Been Generated.

100 Surfaces Initiate From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 200.00 ft. and X = 487.00 ft.

Each Surface Terminates Between X = 555.00 ft.and X = 1100.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

15.00 ft. Line Segments Define Each Trial Failure Surface.

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Bishop Method

Failure Surface Specified By 22 Coordinate Points

	_	_
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	446.41	86.70
2	458.85	78.31

```
471.96
                        71.01
3
                         64.85
          485.63
                         59.86
          499.78
5
                         56.08
6
          514.30
                         53.55
          529.08
7
                         52.27
          544.02
 8
                         52.26
          559.02
9
                         53.51
          573.97
10
                         56.02
11
           588.76
                         59.78
12
           603.28
                         64.75
13
           617.44
           631.12
                         70.89
14
                         78.17
15
           644.23
           656.69
                         86.53
16
                         95.92
           668.39
17
                        106.26
           679.26
18
                        117.48
19
           689.21
                        129.50
           698.18
20
           706.11
                        142.23
21
                        150.67
22
           710.42
```

Circle Center At X = 551.7; Y = 229.5 and Radius, 177.4

- FACTOR OF SAFETY = 1.7 (Without Equipment Loads Critical failure plane along geosynthetic interface)
- FACTOR OF SAFETY = 1.6 (With Equipment Loads Critical failure plane along geosynthetic interface)

** STABL6H **

by

Purdue University --Slope Stability Analysis--

 Run Date:
 2/9/2004

 Time of Run:
 10:21PM

 Run By:
 JHO

Input Data Filename: F:ex-f-ew.
Output Filename: F:ex-f-ew.OUT
Plotted Output Filename: F:ex-f-ew.PLT

PROBLEM DESCRIPTION Hardee County Landfill Expansion Final Buildout - East/West Slope

BOUNDARY COORDINATES

13 Top Boundaries 99 Total Boundaries

Boundary	X-Left Y	-Left X	-Right Y	-Right S	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
	.00	85.00	436.50	85.00	
1 2	436.50	85.00	442.50	87.00	
3	442.50	87.00	445.50	87.00	
3 4	445.50	87.00	450.00	85.50	
. 5	450.00	85.50	460.00	85.5	
6	460.00	85.50	464.50	87.00	
7	464.50	87.00	487.50	87.0	
8	487.50	87.00	487.92	87.0	
9	487.92	87.00	556.92	110.0	
10	556.92	110.00	576.92	110.0	
11	576.92	110.00	696.92	150.0	
12	696.92	150.00	796.92	155.0	
13	796.92	155.00	1200.00		
14	487.92	87.00	489.50		
15	489.50	87.00	497.00		
. 16	497.00	84.50	567.50		
17	567.50	82.60	573.51	82.6	
18	573.51	82.60	644.07	84.5	
19	644.07	84.50	650.00	86.0	
20	650.00	86.00	675.00	86.0	
21	675.00	86.00	760.75	110.5	0 4
22	760.75	110.50	785.75	110.5	0 4
23	785.75	110.50	908.24		
24	908.24	145.50	1008.24		0 4
25	1008.24	150.50	1018.24		
26	1018.24	150.00	1200.00		
27	487.50	87.00	487.61		
28	487.61	86.50	489.42		
29	489.42	86.50	496.91		
30	496.91	84.00	567.49		
31	567.49	82.10	573.51	82.1	
32	573.51	82.10	644.07		
. 33	644.07	84.00	650.06		
34	650.06	85.50	675.07		
35	675.07	85.50	760.82		
36	760.82	110.00	785.82		
37	785.82	110.00	908.32		
38	908.32	145.00	1008.26		
39	1008.26	150.00	1018.24		
40	1008.34	148.50	1200.00		
41	908.56	143.51	1008.34		
42	847.28	126.00	908.56	143.5	1 6

43	845.53	125.50	847.28	126.00			6
44	847.28	126.00	867.16	126.00			6
				126.00			7
45	867.16	126.00	892.16				
46	892.16	126.00	902.16	126.00			6
47	902.16	126.00	1200.00	126.00			7
48	845.53	125.50	865.66	125.50			6
49	865.66	125.50	867.16	126.00			7
50	865.66	125.50	890.66	125.50			6
			892.16	126.00			6
51	890.66	125.50					
52	892.16	125.50	900.66	125.50	*.		6
53	900.66	125.50	902.16	126.00			7
54	900.66	125.50	1200.00	125.50			6
55	791.28	110.00	845.53	125.50			6
56	789.53	109.50	791.28	110.00			6
57	791.28	110.00	811.16	110.00			6
	811.16	110.00	836.16	110.00			7
58							
59	836.16	110.00	846.16	110.00			6
60	846.16	110.00	1200.00	110.00			7
61	789.53	109.50	809.66	109.50			6
62	809.66	109.50	811.16	110.00			7
63	809.66	109.50	834.66	109.50			6
64	834.66	109.50	836.66	110.00			6
65	834.66	109.50	844.66	109.50			6
	844.66	109.50	846.16	110.00			7
66							
67	844.66	109.50	1200.00	109.50			6
68	786.09	108.50	789.03	109.50			6
69	761.03	108.50	786.03	108.50			6
70	722.53	97.50	761.03	108.50			6
71	720.78	97.00	722.53	97.50			6
72	722.53	97.50	742.41	97.50			6
73	742.41	97.50	767.41	97.50			7
74	767.41	97.50	777.41	97.50			6
							7
75	777.41	97.50	1200.00	97.50			
76	720.78	97.00	740.91	97.00			6
77	740.91	97.00	742.41	97.50			7
78	740.91	97.00	765.91	97.00			6
79	765.91	97.00	767.41	97.50			6
80	765.91	97.00	775.91	97.00			6
81	775.91	97.00	777.41	97.50			6
82	775.91	97.00	1200.00	97.00			6
83	678.78	85.00	720.78	97.00			6
84	658.00	85.00	658.56	85.00			8
85	658.56	85.00	678.78	85.00			1
86	678.78	85.00	685.00	85.00			1
87	.00	76.00	640.00	76.00			1
88	640.00	76.00	658.00	85.00			8,
89	640.00	76.00	640.56	76.00			1
90	640.56	76.00	658.56	85.00			1
91	685.00	85.00	703.00	76.00			1
92	703.00	76.00	711.00	72:00			1
93	711.00	72.00	1200.00	72.00			1
94	.00	70.00	628.00	70.00			9
95	628.00	70.00	640.00	76.00			8
96	628.00	70.00	628.56	70.00			. 9
97	628.56	70.00	1200.00	70.00		-	9
98	.00	60.00	1200.00	60.00			10
99	.00	49.00	1200.00	49.00			11
,	.00	10.00		2 - 3 0			

isotropic soil parameters 11 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No.

1	105.0	120.0	. 0	28.0	.00	. 0	1
2	60.0	60.0	250.0	27.0	.00	. 0	1
3	62.4	62.4	. 0	15.0	.00	.0	1
4	62.4	62.4	.0	15.0	.00	. 0	1
5	105.0	110.0	. 0	30.0	.00	.0	1
6	60.0	60.0	250.0	27.0	.00	. 0	1
7	60.0	60.0	. 0	21.5	.00	. 0	1
8	62.4	62.4	. 0	10.0	.00	.0	1
9	107.0	127.0	. 0	13.0	.00	. 0	1
10	75.0	110.0	300.0	9.0	.00	. 0	1
11	124.0	137.5	. 0	35.0	.00	.0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	6	Coordinate	Points
Point	X-Water	Y-Water			
No.	(ft)	(ft)			
1	.00	83.50			
2	487.50	83.50			
3	567.50	81.60			
4	573.50	81.60			
5	652.00	83.50			
6	1200.00	83.50			

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	696.92	706.42	1618.0	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

5000 Trial Surfaces Have Been Generated.

100 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 200.00 ft. and X = 487.00 ft.

Each Surface Terminates Between X = 696.92 ft. and X = 1100.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

15.00 ft. Line Segments Define Each Trial Failure Surface.

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Bishop Method

Failure Surface Specified By 23 Coordinate Points

		2	
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	434.29	85.00	
2	446.99	77.02	
3	460.26	70.04	
4	474.03	64.09	

5	488.22	59.22
6	502.74	55.44
7	517.50	52.79
8	532.42	51.27
9	547.42	50.90
10	562.40	51.68
11	577.27	53.61
12	591.96	56.67
13	606.37	60.84
14	620.41	66.10
15	634.02	72.43
16	647.09	79.77
17	659.57	88.10
18	671.37	97.36
19	682.43	107.49
20	692.69	118.44
21	702.07	130.14
22	710.53	142.53
23	715.37	150.92

Circle Center At X = 544.7; Y = 246.7 and Radius, 195.8

FACTOR OF SAFETY = 1.6 (With Equipment Loads - Critical failure plane along geosynthetic interface)

FACTOR OF SAFETY = 1.7 (Without Equipment Loads - Critical failure plane along geosynthetic interface)

Hardee County Landfill Expansion Final Buildout - East/West Slope F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-EW.PL2 Run By: JHO 2/9/2004 9:52PM

Hardee County Landfill Expansion Final Buildout - East/West Slope F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-EW.PL2 Run By: JHO 2/9/2004 9:50PM

** STABL6H **

bу

Purdue University --Slope Stability Analysis--

 Run Date:
 2/9/2004

 Time of Run:
 9:53PM

 Run By:
 JHO

Input Data Filename: F:ex-f-ew.
Output Filename: F:ex-f-ew.OUT
Plotted Output Filename: F:ex-f-ew.PLT

PROBLEM DESCRIPTION Hardee County Landfill Expansion Final Buildout - East/West Slope

BOUNDARY COORDINATES

13 Top Boundaries 99 Total Boundaries

Boundary	X-Left	Y-Left :	X-Right	Y-Right	Soil	Туре
No.	(ft)	(ft)	(ft)	(ft)	Below	
1	.00	85.00	436.		.00	1
2	436.50	85.00	442.		.00	1
3	442.50	87.00	445.		.00	1
4	445.50	87.00	450.		.50	1
5	450.00	85.50	460.		.50	ī
6	460.00		464.		.00	1
7	464.50	87.00	487.		.00	1
8	487.50	87.00	487.		.00	3
9	487.92	87.00	556.		.00	2
10	556.92	110.00	576.		.00	2
11	576.92	110.00	696.		.00	2
12	696.92	150.00	796.		.00	2
13	796.92	155.00	1200.		.00	2
14	487.92	87.00	489.		.00	3
15	489.50	87.00	497.		.50	3
16	497.00	84.50	567.	50 82	.60	3
17	567.50	82.60	573.		.60	3
18	573.51	82.60	644.	07 84	.50	3
19	644.07	84.50	650.	00 86	.00	.3
20	650.00	86.00	675.	00 86	.00	3
21	675.00	86.00	760.	75 110	.50	4
22	760.75	110.50	785.	75 110	.50	4
23	785.75	110.50	908.	24 145	.50	4
24	908.24	145.50	1008.	24 150	.50	4
25	1008.24	150.50	1018.	24 150	.00	4
26	1018.24	150.00	1200.	00 150	.00	5
27	487.50	87.00	487.	61 86	.50	. 1
28	487.61	86.50	489.	42 86	.50	1
29	489.42	86.50	496.		.00	1
30	496.91	84.00	567.		.10	1
31	567.49	82.10	573.	51 82	.10	1
32	573.51	82.10	644.		.00	1
33	644.07	84.00	650.		.50	1
34	650.06	85.50	675.	07 85	.50	1
35	675.07	85.50	760.	82 110	.00	5
36	760.82	110.00	785.	82 110	.00	5
37	785.82	110.00	908.	32 145	.00	5
38	908.32	145.00	1008.	26 150	.00	5
. 39	1008.26	150.00	1018.		.00	5
40	1008.34	148.50	1200.		.50	6
41	908.56	143.51	1008.	34 148	.50	6
42	847.28	126.00	908.	56 143	.51	- 6

43	845.53	125.50	847.28	126.00	6
44	847.28	126.00	867.16	126.00	6
		126.00	892.16	126.00	7
45	867.16			126.00	6
46	892.16	126.00	902.16		7
47	902.16	126.00	1200.00	126.00	
48	845.53	125.50	865.66	125.50	6
49	865.66	125.50	867.16	126.00	7
50	865.66	125.50	890.66	125.50	6
51	890.66	125.50	892.16	126.00	6
52	892.16	125.50	900.66	125.50	6
53	900.66	125.50	902.16	126.00	7
54	900.66	125.50	1200.00	125.50	6
55	791.28	110.00	845.53	125.50	6
56	789.53	109.50	791.28	110.00	6
	791.28	110.00	811.16	110.00	6
57 50		110.00	836.16	110.00	7
58	811.16		846.16	110.00	6
- 59	836.16	110.00		110.00	7
60	846.16	110.00	1200.00		
61	789.53	109.50	809.66	109.50	6
62	809.66	109.50	811.16	110.00	7
63	809.66	109.50	834.66	109.50	6
64	834.66	109.50	836.66	110.00	6
65	834.66	109.50	844.66	109.50	6
66	844.66	109.50	846.16	110.00	7
67	844.66	109.50	1200.00	109.50	6
68	786.09	108.50	789.03	109.50	. 6
69	761.03	108.50	786.03	108.50	6
70	722.53	97.50	761.03	108.50	6
71	720.78	97.00	722.53	97.50	6
	722.53	97.50	742.41	97.50	6
72		97.50	767.41	97.50	7
73	742.41	97.50	777.41	97.50	6
74	767.41				7
75	777.41	97.50	1200.00	97.50	6
76	720.78	97.00	740.91	97.00	
77	740.91	97.00	742.41	97.50	7
78	740.91	97.00	765.91	97.00	. 6
79	765.91	97.00	767.41	97.50	6
80	765.91	97.00	775.91	97.00	6
81	775.91	97.00	777.41	97.50	6
82	775.91	97.00	1200.00	97.00	6
83	678.78	85.00	720.78	97.00	6
84	658.00	85.00	658.56	85.00	8
85	658.56	85.00	678.78	85.00	1
86	678.78	85.00	685.00	85.00	1
87	.00	76.00	640.00	76.00	1
88	640.00	76.00	658.00	85.00	8
89	640.00	76.00	640.56	76.00	1
90	640.56	76.00	658.56	85.00	1
91	685.00	85.00	703.00	76.00	1
92	703.00	76.00	711.00	72.00	1
93	711.00	72.00	1200.00	72.00	1
		70.00	628.00	70.00	9
94	.00		640.00	76.00	8
95	628.00	70.00			. 9
96	628.00	70.00	628.56	70.00	9
97	628.56	70.00	1200.00	70.00	
98	.00	60.00	1200.00	60.00	10
99	.00	49.00	1200.00	49.00	11

ISOTROPIC SOIL PARAMETERS

11 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No.

1	105.0	120.0	. 0	28.0	.00	. 0	1
2	60.0	60.0	250.0	27.0	.00	. 0	1
3	62.4	62.4	. 0	15.0	.00	. 0	1
4	62.4	62.4	. 0	15.0	.00	. 0	1
5	105.0	110.0	. 0	30.0	.00	. 0	1
6	60.0	60.0	250.0	27.0	.00	. 0	1
7	60.0	60.0	. 0	21.5	.00	. 0	1
8	62.4	62.4	. 0	10.0	.00	.0	1
9	107.0	127.0	.0	13.0	.00	.0	1
10	75.0	110.0	300.0	9.0	.00	.0	1
11	124.0	137.5	.0	35.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	6	Coordinate Points
Point	X-Water	Y-Water		
No.	(ft)	(ft)		
1	.00	83.50		
2	487.50	83.50		
3	567.50	81.60		
4	573.50	81.60		•
5	652.00	83.50		
6	1200.00	83.50		

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	696.92	706.42	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

2000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 5.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	400.00	66.00	600.00	66.00	25.00
2	630.00	66.00	900.00	66.00	25.00

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 35 Coordinate Points

	Durrant product		•
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	448.88	85.87	
2	449.39	85.67	
3	453.52	82.86	
4	457.42	79.72	
5	461.88	77.47	

6	465.42	73.94
7	469.18	70.64
8	472.79	67.18
9	476.93	64.37
10	481.82	63.37
11	645.94	53.88
12	648.44	58.21
13	651.41	62.24
14	654.56	66.11
15	656.87	70.55
16	660.40	74.10
17	663.89	77.67
18	666.07	82.17
19	668.81	86.36
20	669.91	91.23
21	673.38	94.83
22	676.87	98.41
23	680.36	102.00
24	682.42	106.55
25	685.69	110.33
26	688.46	114.49
27	691.82	118.19
28	695.09	121.98
29	698.35	125.77
30	700.92	130.06
31	703.37	134.42
32	706.21	138.53
33	706.77	143.50
34	710.30	147.04
35	710.76	150.69

FACTOR OF SAFETY = 1.6 (With Equipment Loads - Critical failure plane along geosynthetic interface)

FACTOR OF SAFETY = 1.7 (Without Equipment Loads - Critical failure plane along geosynthetic interface)

EXPANSION GEOMEMBRANE INTERFACE NORTH/SOUTH SECTION

Expansion Operations - Final - N/S Hardee County, Florida
F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-NS.PL2 Run By: LEK 2/11/2004 6:14PM

SCS ENGINEERS

Expansion Operations - Final - N/S Hardee County, Florida F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-NS.PL2 Run By: JHO 2/19/2004 4:42PM

Soil Total Saturated Cohesion Friction Type Unit Wt. Unit Wt. Intercept Angle # FS Soil Surface a 1.9 Desc. (deg) 28.0 No. (psf) (pcf) (pcf) b 1.9 No. W1 120.0 0.0 105.0 c 1.9 Subgrade W1 10.0 0.0 62.4 62.4 d 1.9 Existgeo W1 105.0 110.0 Cover e 1.9 60.0 250.0 60.0 f 1.9 waste 250.0 60.0 60.0 Mod Bale g 1.9 60.0 0.0 60.0 h 1.9 H. Bale △ 127.0 0.0 107.0 SC i 1.9 9.0 110.0 300.0 75.0 CL 35.0 W1 0.0 137.5 124.0 SPw/Phos W1 15.0 62.4 62.4 0.0 BotGeo 10 W1 0.0 15.0 62.4 11 62.4 SideGeo WITHOUT EQUIPMENT GADI 200 W1 W1 1200 1000 800 0 600 400 200 PCSTABL5M/si FSmin=1.9

SCS ENGINEERS Safety Factors Are Calculated By The Modified Janbu Method

** PCSTABL5M ** by Purdue University

--Slope Stability Analysis--

 Run Date:
 2/19/2004

 Time of Run:
 4:43PM

 Run By:
 JHO

Input Data Filename: F:ex-f-ns.
Output Filename: F:ex-f-ns.OUT

Unit: ENGLISH

Plotted Output Filename: F:ex-f-ns.PLT

PROBLEM DESCRIPTION Expansion Operations - Final - N/S Hardee County, Florida

BOUNDARY COORDINATES

12 Top Boundaries 84 Total Boundaries

Boundary	X-Left	Y-Left X	-Right Y	-Right S	Soil Type
No.	(ft)	(ft)	(ft)		Below Bnd
1	.00	84.00	281.90	85.00	1
2	281.90	85.00	284.90	84.00	1
. 3	284.90	84.00	294.90	84.00	1
4	294.90	84.00	303.90	87.00	1
5	303.90	87.00	326.90	87.00	1
6	326.90	87.00	327.32	87.00	1
. 7	327.32	87.00	396.32	110.00	. 4
8	396.32	110.00	416.32	110.00	4
9	416.32	110.00	536.32	150.00	4
10	536.32	150.00	686.32	157.50	4
11	686.32	157.50	1136.32	157.50	4
12	1136.32	157.50	1200.00	150.00	4
13	327.32	87.00	328.90	87.00	10
14	328.90	87.00	343.72	82.06	10
15	343.72	82.06	349.72	82.06	10
16	349.72	82.06	400.60	83.40	10
17	400.60	83.40	463.60	81.60	10
18	463.60	81.60	469.60	81.60	10
19	469.60	81.60	513.60	82.80	10
20	513.60	82.80	580.60	80.70	10
21	580.60	80.70	586.60	80.70	10
22	586.60	80.70	632.80	81.70	10
23	632.80	81.70	650.00	86.00	10
24	650.00	86.00	676.42	86.00	11
25	676.42	86.00	749.92	110.50	11
26	749.92	110.50	769.92	110.50	11
27	769.92	110.50	874.91	145.50	11
28	874.91	145.50	974.98	150.50	11
29	974.98	150.50	985.00	150.00	11
30	326.90	87.00	327.01	86.53	1
31	327.01	86.53	328.74	86.53	1
32	328.74	86.53	343.72	81.56	1
33	343.72	81.56	349.72	81.56	1
34	349.72	81.56	400.61	82.90	1
35	400.61	82.90	463.60	81.10	1
36	463.60	81.10	469.60	81.10	1
37	469.60	81.10	513.59	82.30	. 1
, 38	513.59	82.30	580.60	80.20	1
39	580.60	80.20	586.60	80.20	1
40	586.60	80.20	632.82	81.20	· 1

41	632.82	81.20	650.00	85.50	1.
42	650.00	85.50	676.50	85.50	1
43	658.00	85.00	658.56	85.00	2
44	658.56	85.00	675.00	85.00	1
45	675.00	85.00	750.00	110.00	. 3
46	750.00	110.00	770.00	110.00	3
47	770.00	110.00	875.00	145.00	3
48	875.00	145.00	975.00	150.00	3
49	975.00	150.00	1200.00	150.00	3
50	.00	76.00	640.00	76.00	1
51	640.00	76.00	658.00	85.00	2
52	640.00	76.00	640.46	76.00	2
53	640.46	76.00	658.56	85.00	1
54	675.00	85.00	679.74	85.00	1
55	679.74	85.00	750.24	108.50	4
56	750.24	108.50	770.24	108.50	4
57	770.24	108.50	875.28	143.51	4
58	875.28	143.51	975.00	148.50	4
59	975.00	148.50	1200.00	148.50	4
60	675.00	85.00	720.00	85.00	1
61	720.00	85.00	738.00	76.00	1
62	640.56	76.00	738.00	76.00	. 1
63	738.00	76.00	742.00	74.00	1
64	742.00	74.00	777.00	74.00	1
65	777.00	74.00	799.00	85.00	1
66	799.00	85.00	809.00	85.00	1
67	809.00	85.00_	835.00	72.00	1
68	835.00	72.00	1200.00	72.00	1
69	.00	60.31	15.00	60.31	8
70	15.00	60.31	195.00	63.66	7
71	195.00	63.66	418.00	67.96	7
72	418.00	67.96	628.00	70.00	7
73	628.00	70.00	640.00	76.00	2
74	628.00	70.00	628.56	70.00	7
75	628.56	70.00	640.56	76.00	1
76	628.56	70.00	1200.00	67.00	7
77	15.00	60.31	195.12	57.66	8
78	195.12	57.66	418.12	61.96	8
79	418.12	61.96	627.00	61.40	8
80	627.00	61.40	1200.00	61.40	8
81	.00	50.31	195.12	50.31	9
82	195.12	50.31	418.12	57.96	9
83	418.12	57.96	627.00	46.40	9
84	627.00	46.40	1200.00	53.50	9

ISOTROPIC SOIL PARAMETERS 11 Type(s) of Soil

Soil Type No. 1 2 3 4 5 6	Unit Wt (pcf) 105.0 62.4 105.0 60.0 60.0 60.0	Saturated Unit Wt. (pcf) 120.0 62.4 110.0 60.0 60.0 60.0 127.0				Pressure Constant (psf) .0 .0 .0 .0 .0 .0 .0	
7						_	1 1
7 8	107.0 75.0	127.0 110.0	.0 300.0	9.0	.00	.0	1
9	124.0	137.5	.0	35.0	.00	. 0	1
10	62.4	62.4	. 0	15.0	.00	. 0	1
11	62.4	62.4	. 0	15.0	.00	. 0	1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 7 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	83.50
2	313.05	83.50
3	337.75	77.00
4	580.60	79.00
,5	638.17	79.00
6	652.00	82.00
7	1200.00	82.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	536.32	545.82	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

4 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 6.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(Ēt)
1	343.72	81.81	397.60	83.07	.25
. 2	399.95	83.13	401.35	83.13	.25
3	465.93	81.35	468.25	81.35	.25
4	468.26	81.35	514.25	82.53	.25

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 23 Coordinate Points

Point	X-Surt	Y-Suri
No.	(ft)	(ft)
1	343.60	92.43
2	347.68	91.23
3	351.93	86.99
4	357.87	86.18
5	362.30	82.14
6	400.88	83.04
7	466.27	81.43
8	503.46	82.28
9	507.18	86.99
10	511.37	91.28
11	515.42	95.71
12	518.87	100.62
13	522.75	105.20
14	526.87	109.56

15	531.07	113.84
16	534.82	118.52
17	536.40	124.31
18	537.56	130.20
19	541.23	134.94
20	545.24	139.41
21	548.14	144.66
22	548.99	150.60
23	548.99	150.63

FACTOR OF SAFETY = 1.7 (With Equipment Loads - Critical Failure Plane along geosynthetic interface)

FACTOR OF SAFETY = 1.9 (Without Equipment Loads - Critical Failure Plane along geosynthetic interface)

EXPANSION EAST/WEST SECTION GEOMEMBRANE INTERFACE

Hardee County Landfill Expansion Final Buildout - East/West Slope F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-EW.PL2 Run By: JHO 2/9/2004 8:32PM

Hardee County Landfill Expansion Final Buildout - East/West Slope F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EX-F-EW.PL2 Run By: JHO 2/9/2004 8:41PM

** STABL6H **

by

Purdue University --Slope Stability Analysis--

 Run Date:
 2/9/2004

 Time of Run:
 8:32PM

 Run By:
 JHO

Input Data Filename: F:ex-f-ew.
Output Filename: F:ex-f-ew.OUT
Plotted Output Filename: F:ex-f-ew.PLT

PROBLEM DESCRIPTION Hardee County Landfill Expansion Final Buildout - East/West Slope

BOUNDARY COORDINATES

13 Top Boundaries 99 Total Boundaries

Boundary	X-Left	Y-Left X	-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	.00	85.00	436.50	85.00	
2	436.50	85.00	442.50		
3	442.50	87.00	445.50	87.00	
4 .	445.50	87.00	450.00		
5	450.00	85.50	460.00	85.50	
6	460.00	85.50	464.50	87.00	
7	464.50	87.00	487.50		
8	487.50	87.00	487.92		
9	487.92	87.00	556.92		
10	556.92	110.00	576.92		
11	576.92	110.00	696.92		
12	696.92	150.00	796.92		
13	796.92	155.00	1200.00		
14	487.92	87.00	489.50		
15	489.50	87.00	497.00		
16	497.00	84.50	567.50		
17	567.50	82.60	573.51		
18	573.51	82.60	644.07		
19	644.07	84.50	650.00		
20	650.00	86.00	675.00		
21	675.00	86.00	760.75		
22	760.75	110.50	785.75		
23	785.75	110.50	908.24		
24	908.24	145.50	1008.24		
25	1008.24	150.50	1018.24	150.00	
26	1018.24	150.00	1200.00	150.00	5
27	487.50	87.00	487.61	86.50	. 1
28	487.61	86.50	489.42	86.50	1
29	489.42	86.50	496.91	84.00) 1
30	496.91	84.00	567.49	82.10) 1
31	567.49	82.10	573.51	82.10	1
32	573.51	82.10	644.07	84.00) 1
33	644.07	84.00	650.06	85.50	1
34	650.06	85.50	675.07	85.50	
35	675.07	85.50	760.82	110.00	
36	760.82	110.00	785.82	110.00	
37	785.82	110.00	908.32	145.00	
38	908.32	145.00	1008.26		
39	1008.26	150.00	1018.24		
40	1008.34	148.50	1200.00		
41	908.56	143.51	1008.34	148.50	
42	847.28	126.00	908.56	143.5	L 6

43 845.53 125.50 847.28 126.00 6 44 847.28 126.00 892.16 126.00 7 46 892.16 126.00 7 126.00 7 46 892.16 126.00 902.16 126.00 7 48 845.53 125.50 865.66 125.50 6 49 865.66 125.50 867.16 126.00 7 50 865.66 125.50 890.66 125.50 6 51 890.66 125.50 892.16 126.00 7 52 892.16 125.50 892.16 126.00 7 54 900.66 125.50 900.66 125.50 6 53 900.66 125.50 902.16 126.00 7 54 900.66 125.50 1200.00 125.50 6 55 791.28 110.00 845.53 125.50 6 55 791.2						
44 847.28 126.00 867.16 126.00 6 45 867.16 126.00 92.16 126.00 7 46 892.16 126.00 902.16 126.00 7 48 845.53 125.50 865.66 125.50 6 49 865.66 125.50 867.16 126.00 7 50 865.66 125.50 867.16 126.00 6 51 890.66 125.50 890.66 125.50 6 51 890.66 125.50 900.66 125.50 6 53 900.66 125.50 900.66 125.50 6 55 791.28 110.00 845.53 125.50 6 56 789.53 109.50 791.28 110.00 6 57 791.28 110.00 811.16 110.00 6 58 811.16 110.00 836.16 110.00 7 59 836.16 110.00 846.16 110.00 7 61 789.53 109.50 809.66 109.50 66 62 809.66 109.50 811.16 110.00 7 63 834.66 109.50 811.16 110.00 7 64 834.66 109.50 811.16 110.00 7 67 844.66 109.50 811.16 110.00 7 68 834.66 109.50 809.66 109.50 6 69 761.03 109.50 786.03 109.50 6 60 846.16 109.50 806.66 109.50 6 61 844.66 109.50 846.16 110.00 7 62 809.66 109.50 809.66 109.50 6 63 834.66 109.50 809.66 109.50 6 64 834.66 109.50 809.66 109.50 6 65 834.66 109.50 809.66 109.50 6 66 844.66 109.50 809.66 109.50 6 67 844.66 109.50 809.66 109.50 6 68 844.66 109.50 809.66 109.50 6 68 761.03 108.50 786.03 108.50 6 69 761.03 108.50 786.03 108.50 6 67 77.41 97.50 777.41 97.50 6 67 77.40.91 97.00 742.41 97.50 6 67 77.50 97.00 775.91 97.00 6 68 765.91 97.00 775.91 97.00 6 68 765.91 97.00 775.91 97.00 6 68 765.91 97.00 775.91 97.00 6 68 765.91 97.00 775.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 6 69 765.91 97.00 765.91 97.00 760.00 99.00	43	845.53	125.50			
45 867.16 126.00 892.16 126.00 7 466 892.16 126.00 902.16 126.00 6 47 902.16 126.00 1200.00 126.00 7 48 845.53 125.50 865.66 125.50 6 49 865.66 125.50 890.66 126.50 6 51 890.66 125.50 890.66 125.50 6 52 892.16 125.50 902.16 126.00 7 53 900.66 125.50 902.16 126.00 6 55 791.28 110.00 845.53 125.50 6 56 789.53 109.50 791.28 110.00 6 57 791.28 110.00 811.16 110.00 6 58 811.16 110.00 836.16 110.00 6 60 846.16 110.00 836.16 110.00 6 61 789.53 109.50 809.66 109.50 6 63 809.66 109.50 809.66 109.50 6 64 834.66 109.50 814.66 109.50 6 65 834.66 109.50 834.66 109.50 6 66 844.66 109.50 834.66 109.50 6 67 844.66 109.50 844.66 109.50 6 68 761.03 108.50 785.03 109.50 6 67 722.53 97.50 767.41 97.50 6 77 774.21 97.50 767.41 97.50 6 77 774.91 97.50 767.41 97.50 77 78 774.91 97.50 767.41 97.50 77 78 774.91 97.00 765.91 97.00 6 79 765.91 97.00 765.91 97.00 6 70 722.53 97.50 767.41 97.50 77 740.91 97.00 765.91 97.00 6 75 777.41 97.50 767.41 97.50 77 76 720.78 97.00 772.53 97.50 6 77 770.91 97.00 765.91 97.00 6 78 765.91 97.00 765.91 97.00 6 79 765.91 97.00 765.91 97.00 6 79 765.91 97.00 765.91 97.00 6 70 70.75.91 97.00 765.91 97.00 6 70 765.91 97.00 772.41 97.50 6 70 775.91 97.00 765.91 97.00 6 70 760.00 885.00 88.00 88.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88 640.00 76.00 658.56 85.00 88		847.28	126.00	867.16	126.00	
46		867.16	126.00	892.16		
## 845.53	46	892.16	126.00			
49 865.66 125.50 867.16 126.00 7 50 865.66 125.50 890.66 125.50 6 51 890.66 125.50 890.66 125.50 6 52 892.16 125.50 900.66 125.50 6 53 900.66 125.50 902.16 126.00 7 54 900.66 125.50 1200.00 125.50 6 55 791.28 110.00 845.53 125.50 6 56 789.53 109.50 791.28 110.00 6 57 791.28 110.00 836.16 110.00 6 58 811.16 110.00 836.16 110.00 7 59 836.16 110.00 1200.00 110.00 7 61 789.53 109.50 89.66 109.50 6 62 809.66 109.50 834.66 109.50 6 64		902.16				
\$50 865.66 125.50 890.66 125.50 6 \$1 890.66 125.50 892.16 126.00 6 \$2 892.16 125.50 902.16 126.00 7 \$4 900.66 125.50 1200.00 125.50 6 \$55 791.28 110.00 845.53 125.50 6 \$56 789.53 109.50 791.28 110.00 6 \$57 791.28 110.00 811.16 110.00 6 \$58 811.16 110.00 836.16 110.00 7 \$59 836.16 110.00 846.16 110.00 7 \$59 836.16 110.00 846.16 110.00 7 \$61 789.53 109.50 899.66 109.50 6 \$62 809.66 109.50 809.66 109.50 6 \$63 809.66 109.50 811.16 110.00 7 \$63 809.66 109.50 834.66 109.50 6 \$64 834.66 109.50 834.66 109.50 6 \$65 834.66 109.50 846.16 110.00 6 \$66 844.66 109.50 846.16 110.00 6 \$67 844.66 109.50 846.16 100.00 7 \$68 786.09 108.50 786.03 109.50 6 \$69 761.03 108.50 789.03 109.50 6 \$69 761.03 108.50 780.03 108.50 6 \$70 722.53 97.50 761.03 108.50 6 \$71 720.78 97.00 722.53 97.50 6 \$72 722.53 97.50 761.03 108.50 6 \$73 742.41 97.50 767.41 97.50 6 \$74 767.41 97.50 767.41 97.50 6 \$75 777.41 97.50 767.41 97.50 6 \$76 720.78 97.00 742.41 97.50 6 \$77 740.91 97.00 742.41 97.50 6 \$79 765.91 97.00 765.91 97.00 6 \$84 658.00 85.00 658.56 85.00 88 \$86 640.00 76.00 640.00 76.00 18 \$86 6678.8 85.00 668.56 85.00 88 \$86 640.00 76.00 658.56 85.00 19 \$98 628.00 70.00 628.56 70.00 99 \$98 00 60.00 1200.00 70.00 99 \$98 00 60.00 1200.00 70.00 99 \$98 00 60.00 1200.00 70.00 99 \$98 00 60.00 1200.00 70.00 99 \$98 00 60.00 1200.00 70.00 99 \$98 00 60.00 1200.00 70.00 99 \$98 00 60.00 1200.00 97.00 99 \$98 00 60.00 1200.00 97.00 99 \$98 00 60.00 1200.00 97.00 99 \$98 00 60.00 1200.00 97.00 99 \$99 628.56 70.00 1200.00 97.00 99 \$99 628.56 70.00 1200.00 97.00 99 \$90 640.56 76.00 658.56 85.00 99 \$90 640.56 76.00 658.56 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99 \$90 660.00 1200.00 70.00 99	48	845.53				
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	49	865.66	125.50			
\$22 892.16	50	865.66	125.50			
53 900.66 125.50 902.16 126.00 7 54 900.66 125.50 1200.00 125.50 6 55 791.28 110.00 845.53 125.50 6 56 789.53 109.50 791.28 110.00 6 57 791.28 110.00 811.16 110.00 6 58 811.16 110.00 846.16 110.00 7 60 846.16 110.00 846.16 110.00 7 61 789.53 109.50 809.66 109.50 6 62 809.66 109.50 809.66 109.50 6 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 844.66 109.50 6 65 834.66 109.50 846.16 110.00 7 67 844.66 109.50 846.16 110.00 7 68	51	890.66	125.50			
54 900.66 125.50 1200.00 125.50 6 55 791.28 110.00 845.53 125.50 6 56 789.53 109.50 791.28 110.00 6 57 791.28 110.00 811.16 110.00 6 58 811.16 110.00 846.16 110.00 6 60 846.16 110.00 1200.00 110.00 6 60 846.16 110.00 1200.00 110.00 7 61 789.53 109.50 809.66 109.50 809.66 109.50 809.66 109.50 809.66 109.50 809.66 109.50 809.66 109.50 834.66 109.50 6 64 834.66 109.50 844.66 109.50 6 6 844.66 109.50 844.66 109.50 6 6 844.66 109.50 846.16 110.00 7 7 7 844.66 109.50 846.16 110.00	52	892.16	· ·			
55 791.28 110.00 845.53 125.50 6 56 789.53 109.50 791.28 110.00 6 57 791.28 110.00 811.16 110.00 6 58 811.16 110.00 836.16 110.00 7 59 836.16 110.00 1200.00 110.00 6 60 846.16 110.00 1200.00 110.00 7 61 789.53 109.50 809.66 109.50 6 62 809.66 109.50 811.16 110.00 7 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 844.66 109.50 6 6 65 834.66 109.50 844.66 109.50 6 6 844.66 109.50 846.16 110.00 7 6 7 844.66 109.50 846.16 110.00 7 110.00 7 <	53	900.66				
56 789.53 109.50 791.28 110.00 6 57 791.28 110.00 811.16 110.00 6 58 811.16 110.00 836.16 110.00 7 59 836.16 110.00 1200.00 110.00 6 60 846.16 110.00 1200.00 110.00 7 61 789.53 109.50 809.66 109.50 6 62 809.66 109.50 834.66 109.50 6 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 844.66 109.50 6 65 834.66 109.50 846.16 110.00 7 67 844.66 109.50 846.16 110.00 7 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 7 70 <td< td=""><td>54</td><td></td><td></td><td></td><td></td><td></td></td<>	54					
57 791.28 110.00 811.16 110.00 6 58 811.16 110.00 836.16 110.00 7 59 836.16 110.00 846.16 110.00 6 60 846.16 110.00 1200.00 110.00 7 61 789.53 109.50 809.66 109.50 6 62 809.66 109.50 834.66 109.50 6 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 834.66 109.50 6 65 834.66 109.50 846.16 110.00 7 67 844.66 109.50 846.16 110.00 7 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 7 71 <td< td=""><td>55</td><td></td><td></td><td></td><td></td><td></td></td<>	55					
58 811.16 110.00 836.16 110.00 7 59 836.16 110.00 846.16 110.00 6 60 846.16 110.00 1200.00 110.00 7 61 789.53 109.50 809.66 109.50 6 62 809.66 109.50 834.66 109.50 6 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 834.66 109.50 6 65 834.66 109.50 844.66 109.50 6 66 844.66 109.50 846.16 110.00 7 67 844.66 109.50 846.16 110.00 7 67 844.66 109.50 846.16 110.00 7 67 844.66 109.50 846.16 110.00 7 67 761.03 108.50 789.03 109.50 6 79	56					
59 836.16 110.00 846.16 110.00 6 60 846.16 110.00 1200.00 110.00 7 61 789.53 109.50 809.66 109.50 6 62 809.66 109.50 811.16 110.00 7 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 836.66 110.00 6 65 834.66 109.50 846.16 110.00 7 66 844.66 109.50 846.16 110.00 7 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 789.03 109.50 6 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 789.03 109.50 6 67 720.253 97.50 761.03 108.50 6 71 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
60 846.16 110.00 1200.00 110.00 7 61 789.53 109.50 809.66 109.50 6 62 809.66 109.50 811.16 110.00 7 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 844.66 109.50 6 65 834.66 109.50 844.66 110.00 7 66 844.66 109.50 844.61 110.00 7 67 844.66 109.50 846.16 110.00 7 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 71 720.78 97.00 722.53 97.50 7 72 722.						
61						
62 809.66 109.50 811.16 110.00 7 63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 846.66 110.00 6 65 834.66 109.50 846.16 110.00 7 66 844.66 109.50 1200.00 109.50 6 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 786.03 109.50 6 69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 761.03 108.50 6 73 742.41 97.50 767.41 97.50 7 7 7 7 7 7 7 7 7 7 7 7						
63 809.66 109.50 834.66 109.50 6 64 834.66 109.50 836.66 110.00 6 65 834.66 109.50 844.66 109.50 6 66 844.66 109.50 844.66 109.50 6 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 761.03 108.50 7 74 767.41 97.50 767.41 97.50 7 74 767.41 97.50 1200.00 97.50 7 76 720.78 97.00 740.91 97.00 6 77 740.91 97.00 742.41 97.50 7 78 740.91 97.00 742.41 97.50 7 78 740.91 97.00 765.91 97.00 6 79 765.91 97.00 765.91 97.00 6 80 765.91 97.00 767.41 97.50 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 777.41 97.50 6 83 678.78 85.00 658.56 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 99.60						
64 834.66 109.50 836.66 110.00 6 65 834.66 109.50 844.66 109.50 6 66 844.66 109.50 846.16 110.00 7 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 7 7 7 6 7 7 7 6 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
65 834.66 109.50 844.66 109.50 6 66 844.66 109.50 846.16 110.00 7 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 742.41 97.50 6 73 742.41 97.50 767.41 97.50 7 74 767.41 97.50 777.41 97.50 7 75 777.41 97.50 1200.00 97.50 7 76 720.78 97.00 740.91 97.00 6 77 740.91 97.00 765.91 97.00 6 78 740.91 97.00 767.41 97.50 6 80 765.91 97.00 767.41 97.50 6 81 775.91 97.00 767.41 97.50 6 82 775.91 97.00 767.41 97.50 6 83 678.78 85.00 777.41 97.50 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 658.56 85.00 1 86 678.78 85.00 658.50 85.00 1 87 00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 658.50 85.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 720.78 85.00 1 92 703.00 76.00 640.56 76.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.56 70.00 9 95 628.00 70.00 628.50 70.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 76.00 9 97 628.56 70.00 1200.00 70.00 9 97 628.56 70.00 1200.00 70.00 9						
66 844.66 109.50 846.16 110.00 7 67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 742.41 97.50 6 72 722.53 97.50 742.41 97.50 6 73 742.41 97.50 767.41 97.50 7 74 767.41 97.50 7 76.41 97.50 7 75 777.41 97.50 720.78 97.00 740.91 97.50 7 76 720.78 97.00 742.41 97.50 7 7 78 740.91 97.00 765.91 97.00						
67 844.66 109.50 1200.00 109.50 6 68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 761.41 97.50 7 74 767.41 97.50 767.41 97.50 7 74 767.41 97.50 777.41 97.50 6 75 777.41 97.50 1200.00 97.50 7 76 720.78 97.00 740.91 97.00 6 77 740.91 97.00 765.91 97.00 6 78 740.91 97.00 765.91 97.00 6 80 765.91 97.00 765.91 97.00 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 777.41 97.50 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 8 86 678.78 85.00 685.00 85.00 8 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 640.00 76.00 1 89 640.56 76.00 658.56 85.00 8 89 640.00 76.00 640.00 76.00 1 90 640.56 76.00 658.56 85.00 8 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 640.00 76.00 1 93 711.00 72.00 1200.00 97.00 1 94 .00 70.00 628.56 70.00 99 95 628.00 70.00 640.00 76.00 99 96 628.00 70.00 628.56 70.00 99 97 628.56 70.00 1200.00 97						
68 786.09 108.50 789.03 109.50 6 69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 742.41 97.50 6 73 742.41 97.50 767.41 97.50 7 74 767.41 97.50 777.41 97.50 7 7 75 777.41 97.50 740.91 97.50 7						
69 761.03 108.50 786.03 108.50 6 70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 742.41 97.50 6 73 742.41 97.50 767.41 97.50 7 74 767.41 97.50 777.41 97.50 7 75 777.41 97.50 740.91 97.00 740.91 97.00 6 77 740.91 97.00 742.41 97.50 7 78 740.91 97.00 765.91 97.00 6 79 765.91 97.00 765.91 97.00 6 80 765.91 97.00 775.41 97.50 6 81 775.91 97.00 765.91 97.00 6 82 775.91 97.00 777.41 97.50 6 83 678.78 85.00 720.78 97.00 6 84						
70 722.53 97.50 761.03 108.50 6 71 720.78 97.00 722.53 97.50 6 72 722.53 97.50 742.41 97.50 6 73 742.41 97.50 767.41 97.50 7 74 767.41 97.50 777.41 97.50 6 75 777.41 97.50 1200.00 97.50 7 76 720.78 97.00 740.91 97.00 6 77 740.91 97.00 765.91 97.00 6 79 765.91 97.00 765.91 97.00 6 80 765.91 97.00 765.41 97.50 6 81 775.91 97.00 77.41 97.50 6 82 775.91 97.00 77.41 97.50 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.						
71						
71 722.753 97.50 742.41 97.50 7 73 742.41 97.50 767.41 97.50 7 74 767.41 97.50 777.41 97.50 6 75 777.41 97.50 1200.00 97.50 7 76 720.78 97.00 740.91 97.00 6 77 740.91 97.00 742.41 97.50 7 78 740.91 97.00 765.91 97.00 6 79 765.91 97.00 765.91 97.50 6 80 765.91 97.00 775.91 97.00 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 777.41 97.50 6 83 678.78 85.00 658.56 85.00 8 85 658.56 85.00 658.50 85.00 1 86 678.78 8						
73 742.41 97.50 767.41 97.50 7 74 767.41 97.50 777.41 97.50 6 75 777.41 97.50 1200.00 97.50 7 76 720.78 97.00 740.91 97.00 6 77 740.91 97.00 742.41 97.50 7 78 740.91 97.00 765.91 97.00 6 79 765.91 97.00 767.41 97.50 6 80 765.91 97.00 767.41 97.50 6 81 775.91 97.00 775.91 97.00 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 720.78 97.00 6 83 678.78 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85						
74 767.41 97.50 777.41 97.50 7 75 777.41 97.50 1200.00 97.50 7 76 720.78 97.00 740.91 97.00 6 77 740.91 97.00 742.41 97.50 7 78 740.91 97.00 765.91 97.00 6 79 765.91 97.00 767.41 97.50 6 80 765.91 97.00 775.91 97.00 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 770.74 97.00 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 8 60 1 89 640.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
75						
76 720.78 720.78 97.00 740.91 97.00 740.91 97.00 742.41 97.50 7 78 740.91 97.00 765.91 97.00 765.91 97.00 80 765.91 97.00 775.91 97.00 81 775.91 97.00 777.41 97.50 82 775.91 97.00 1200.00 97.00 83 678.78 85.00 85.68.56 85.00 85 658.56 85.00 85 668.78 85.00 678.78 85.00 685.00 85 678.78 85.00 685.00 85 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.56 85.00 85 89 640.00 76.00 658.56 85.00 85 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 76.00 76.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 95 628.00 70.00 628.56 70.00 99 628.56 70.00 99 628.56 70.00 99 97 628.56 70.00 1200.00 99 97 628.56 70.00 1200.00 99 97 628.56 70.00 1200.00 99						
77 740.91 97.00 742.41 97.50 7 78 740.91 97.00 765.91 97.00 6 79 765.91 97.00 767.41 97.50 6 80 765.91 97.00 775.91 97.00 6 81 775.91 97.00 1200.00 97.00 6 82 775.91 97.00 1200.00 97.00 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 685.00 8 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 1 89 640.00 76.00 658.56 85.00 1 90 640.56 <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td>						6
78 740.91 97.00 765.91 97.00 6 79 765.91 97.00 767.41 97.50 6 80 765.91 97.00 775.91 97.00 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 1200.00 97.00 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 658.56 85.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 70.00 72.00 1 92 703.00 76.00 <						
79 765.91 97.00 767.41 97.50 6 80 765.91 97.00 775.91 97.00 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 1200.00 97.00 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 658.56 85.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 76.00 1 92 703.00 76.00 71.00 72.00 1 93 711.00 72.00 1200.00						6
80 765.91 97.00 775.91 97.00 6 81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 1200.00 97.00 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 1 89 640.00 76.00 658.56 85.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>6</td></t<>						6
81 775.91 97.00 777.41 97.50 6 82 775.91 97.00 1200.00 97.00 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 71.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 <td< td=""><td></td><td></td><td></td><td>775.91</td><td>97.00</td><td></td></td<>				775.91	97.00	
82 775.91 97.00 1200.00 97.00 6 83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 70.00 9 95 628.00 70.00 628.00 70.00 9 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00					97.50	
83 678.78 85.00 720.78 97.00 6 84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 628.56 70.00 9 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 <td< td=""><td></td><td></td><td>97.00</td><td>1200.00</td><td>97.00</td><td>6</td></td<>			97.00	1200.00	97.00	6
84 658.00 85.00 658.56 85.00 8 85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 628.56 70.00 9 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 60.00 10 98 .00			85.00		97.00	6
85 658.56 85.00 678.78 85.00 1 86 678.78 85.00 685.00 85.00 1 87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 9 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	84	658.00	85.00	658.56		
87 .00 76.00 640.00 76.00 1 88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10			85.00	678.78		
88 640.00 76.00 658.00 85.00 8 89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10		678.78	85.00	685.00		
89 640.00 76.00 640.56 76.00 1 90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	87	.00	76.00	640.00		
90 640.56 76.00 658.56 85.00 1 91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	88	640.00	76.00			
91 685.00 85.00 703.00 76.00 1 92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	89					
92 703.00 76.00 711.00 72.00 1 93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	90	640.56				
93 711.00 72.00 1200.00 72.00 1 94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	91					
94 .00 70.00 628.00 70.00 9 95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	92					
95 628.00 70.00 640.00 76.00 8 96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	93					
96 628.00 70.00 628.56 70.00 9 97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	94					
97 628.56 70.00 1200.00 70.00 9 98 .00 60.00 1200.00 60.00 10	95					
98 .00 60.00 1200.00 60.00 10						
30	97					
99 .00 49.00 1200.00 49.00 11						
	99	.00	49.00	1200.00	49.00	1.1

ISOTROPIC SOIL PARAMETERS 11 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.

1	105.0	120.0	.0	28.0	.00	. 0	1
2	60.0	60.0	250.0	27.0	.00	. 0	1
3	62.4	62.4	. 0	15.0	.00	. 0	1
4	62.4	62.4	. 0	15.0	.00	. 0	1
5	105.0	110.0	.0	30.0	.00	. 0	1
6	60.0	60.0	250.0	27.0	.00	. 0	1
7	60.0	60.0	0	21.5	.00	. 0	1
8	62.4	62.4	. 0	10.0	.00	. 0	1
9	107.0	127.0	. 0	13.0	.00	. 0	1
10	75.0	110.0	300.0	9.0	.00	. 0	1
11	124.0	137.5	. 0	35.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified	by	6	Coordinate Points
Point	X-Water	Y-Water			
No.	(ft)	(ft)	,		
1	.00	83.50			
2	487.50	83.50			
3	567.50	81.60			
4	573.50	81.60			
5	652.00	83.50			
6	1200.00	83.50			•

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	775.00	784.50	1618.0	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

6 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 5.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	469.99	84.25	567.07	82.36	.25
2	567.50	82.35	573.50	82.35	.25
3 ·	643.00	84.22	644.00	84.25	.25
4	648.97	85.48	650.00	84.74	.25
5	674.00	85.75	675.44	85.74	.25
6	675.45	85.74	760.91	110.32	.25

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 20 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	478.57	87.00

2	481.42	85.23
3	486.27	83.99
4	573.42	82.35
5	643.88	84.27
6	649.04	85.52
7	674.74	85.86
.8	756.34	108.91
.9	759.47	112.81
10	763.00	116.35
11	765.59	120.62
12	769.09	124.20
13	772.60	127.76
14	775.98	131.44
15	778.90	135.50
16	781.88	139.51
17	782.89	144.41
18	785.44	148.71
19	788.75	152.46
20	790.82	154.69

FACTOR OF SAFETY = 1.5 (With Equipment Loads - Critical failure plane along geosynthetic interface)

FACTOR OF SAFETY = 1.7 (Without Equipment Loads - Critical failure plane along geosynthetic interface)

SLOPE STABILITY EQUIPMENT LOADS ON SIDESLOPES

SHEET _____ OF_______

CLIENT Hardee Co	PROJECT // / Jee	Co Constill		JOB NO. 93 (9				
SUBJECT CON ECSUS FOR	PROJECT //Lee	+ Lucksteet	BY 571-	DATE / P/4				
6 -1	<u> </u>	3	CHECKED TO	DATE				
Unit weigh	+ of cover	Sai/ = X						
WWT COLIN	N 01 2 906	59// - 1/						
X- 115 14								
STAT 770 78	5 (6/ven	 						
+	4 3	 -	 	1-1-1-1-1-				
Conversion Fe		 -						
CO1041 31 31 10								
150 9 11		15209 51	()					
157.09 N		3/9/1/1	3					
			-	 				
<u> </u>		16						
12-3		123						
		+ TV						
- X	// 8 1/ 0	153.97	4 ,	+				
San d = 1/0	0/65 40.		7	+				
SW1 e	45	117		+				
		+		+				
		12						
	_	At 3						
- V - V-	78 41							
/ = 17.	48 470	+						
	m ³							
motion angle	or goves	30,1 - 6						
C=30° (6								
<u> </u>	SIVEL)							
		_						

UBJECT	colo.	_	<u></u>	<u></u>		PRO	JECT	d		ے مہ	,			/	10	- 11	,				JOB	g,	AC.	, 2	20
UBJECT	100	ک		<u>ر</u> 7			- //	770	<u> </u>	*/	<u> </u>	<u> </u>	10	<u> </u>	0		BY (2			DATE	779	133	Ħ
	ر ام در	312°	ر	72	<u> </u>	<u></u>	<i>91 [</i>	اب	90	-//) 6	~~	7		-	· · · -	CHE	CKEL)11		_	DATE	_//	9/0	\mathcal{H}
· · · ·		Ţ ;													:	;	<u></u>		14	<u> </u>		<u> </u>		- ;	4
					7													·							
	He.	5,5	\sim	al	- (بال	er	٠ <	50	:/	_	C		_(0	10	91)	<u> </u>						
														_									i		ı
/	<u> </u>		`	k	V															i					-;
	•			سد.	~ 7	ŧ					·														
‡					-1	=				<u> </u>	 									i				····	
										<u> </u>	 														
1	dhe			7		<u>.</u>				<u>.</u> ,					7				/	<u>-</u>					•
	<u>a</u> re	17.7	~	ي	ET	<u> </u>	e-e	\triangle		كلاغ	<u>U</u>	ے	2//	⊁	ી	e		<i>P/</i> ~	00	<i>ĭ</i> ∧€		٢	2	(0)	
										ļ	ļ	 													
4	<u>a</u> :	Ŧ (<u>ر</u>	V	<u> </u>	-	ļ				 	ļ	ļ				<u></u>	ļ							
				n	7~	<u> </u>	<u></u>			!	<u> </u>	ļ					<u> </u>	!							
						<u>†</u>	ļ		ļ	<u> </u>	<u> </u>	ļ	<u></u>				<u></u>								
		ļ			<u>.</u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>														
\mathcal{A}	ce	lerc	4	<u>ک</u>	/	bc	el	er	1/0	<u> </u>	01	_ (56	20	Γ	=	_	Q							
				, ,		•		1		1	•														
Q	. 🛨	3	5/	50		7	1	1	2	le															
	+		-	/_]		//		2/	1	1													
			,,	<u></u>		İ		• (X) /	*	ـ ال					 	<u> </u>								
		<u> </u>				<u> </u>				 			 			 	<u> </u>	<u> </u>							
	·	7	10	כ	<	n		25	<u> </u>	<u> </u>						 -	ļ	<u> </u>							
Ť	3	٠.	/ 0	/	<u> </u>		1// !-		<u>></u>				 		<u> </u>	ļ	 		ļ						
+++	===			<u> </u>	-			<u> </u>		.;	!			<u> </u>				- 							
											-				<u> </u>	 	 		<u> </u>						
					<u> </u>	 	 	ļ		 	!		 		!	<u> </u>	 		<u>.</u>	<u> </u>				 	
	_					ļ		ļ	ļ	<u> </u>	-	-			<u> </u>	<u> </u>	ļ		ļ	<u> </u>	ļ				
				ļ	ļ	ļ	ļ	·	ļ	ļ	ļ	ļ	ļ			ļ	ļ		ļ	<u> </u>	 	ļ 			
			ļ	ļ	<u> </u>		ļ		ļ	<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u></u>	<u> </u>	<u> </u>	ļ	ļ		
					ļ	<u> </u>	<u> </u>			-			<u> </u>		<u> </u>					<u> </u>	<u> </u>				
																1			-	Ī					
		-				<u> </u>	-		<u> </u>	<u> </u>	1				1	†	1	1	-	1	†				
	-	-			<u> </u>	†	†	-		†	†	·			†	†				†	†	ļ	<u> </u>		
				1	 	+				 	-				 		 			 	 				
					 					 				 		!	-			<u> </u>		<u> </u>			
				 	<u> </u>	-				+	-				 -	<u> </u>	<u>.</u>		 	<u> </u>	<u> </u>				<u> </u>
				 	<u> </u>	ļ			 	 					ļ	. <u>.</u>	- 			<u> </u>	÷	ļ			ļ
				ļ	ļ	-	ļ	ļ	ļ		.			ļ	ļ	-			ļ	ļ	ļ	ļ	ļ		<u> </u>
		ŀ	:	1	;	1	:	1	:	•	1	:	1	;	:	1			1	1	•	1	•	•	

SHEET ______ OF _____

CLIENT Hardee Co Land Fill JOBNA.	99033.09
SUBJECT A SUIT BY COST	2/17/04
CONVASAMS FOR DITS FOR DITS WIRSHOOF SHEET DA	TIE /
Conth of Equipment track = W	
- CFJ - OT - FF P - T - T - T - T - T - T - T - T - T -	
D5N=7.83A+ = 2.3866m	
068xw=92A+=2.804zm	
07R Series II = 9.467 At = 2.8702 m	
08R WHA Seres II = 0.5P+ = 3.2004m	
1 2010 00777 - 3723 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
1111 1 2 0 4 400 6 - 6	
andth of grand track = 6	
DSN= 18384 = 0.5578m = 552.789	1 000
1 P3/4 - 1-0 5 T 1 - 2 3 3 / P / / - 3 3 / P	77377
DBRXW= 2.5PH = 0.7GZOM = 762.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 106×20 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 3	7977
D7R Senas II = 1,83 Dt = 0.5578m =	55778400
1 10/10 Jenes 14 - 1, 83 PT - 0, 33/07/1 =	33 / 10 911311
DERWHA Somes II = 1,833 Pt = 0.5587	= = 55 69m
D&U MH/+ DUES TT - 12 22 24 - 0. 220 1	7 - 330.00
┃ ─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼	
Influence factor @ Jeanentrane interface =	4
Based on track with in mm (See above	* attachas
te ble on	Specistant)
D6 ex w = 0.7	
07R Spries 27 = 0.7	
D8R WHA Series IX = 0.7	
	. i. i. i

$Geosynthetic\,Research Institute$

33rd & Lancaster Walk Rush Building - West Wing Philadelphia, PA 19104 TEL 215 895-2343 FAX 215 895-1437

COVER SOIL SLOPE STABILITY INVOLVING GEOSYNTHETIC INTERFACES

bу

Te-Yang Soong, Ph.D. Research Engineer

and

Robert M. Koerner, Ph.D., PE Director and Professor

Geosynthetic Research Institute Drexel University West Wing - Rush Building Philadelphia, PA 19104

GRI Report #18

December 9, 1996

Figure 9 - Graphic relationship of construction equipment speed and rise time to obtain equipment acceleration

The acceleration of the bulldozer, coupled with an influence factor "I" (from Figure 7), results in the dynamic force per unit width at the cover soil to geomembrane interface, "Fe". The relationship is as follows:

$$F_{\epsilon} = W_{\epsilon} \left(\frac{a}{g}\right) I \tag{17}$$

where

F_e = dynamic force per unit width parallel to the slope at the geomembrane interface,

 W_e = equivalent equipment (bulldozer) force per unit width at geomembrane interface, recall Equation (16).

 β = soil slope angle beneath geomembrane

a = acceleration of the bulldozer

g = acceleration due to gravity

I = influence factor at the geomembrane interface, see Figure 7

SCS ENGINEERS

Hersee County PROJECT HE Eggipment Coads Construction Equipment Dozer CAT DSN Gerann weight Quer Sift FTC-XC=28258165 Length of track on pourd = 940 = 7.83 Pt Wilth of track or front = 22m = 183 At 28,252/65 2 Trecks => 28,258/65 = 14/29/65 track Sinfice Aren of track = A A = (Congth of track) * (wilth of track) A= (7.83 C+) + (1.83 A+) A = 14.36 Pt 3/treck Stress = force = E = 14/29/65/frack
Area A 14:36 Pt 2/track => Pressure = 983.84 (65 = 6.83 psi

D5N

Other Models:

D5N

Ŧ

Back to Track-Type Tractors

Printer Friendly

Engineered to excel on the most demanding work sites. Combining power, rugged components and superior balance, the versatile D5N is designed for tough working conditions. It keeps material moving with the reliability and durability you expect from Caterpillar Machines.

Features & Benefits

Standard Equipment

Specification Graphics (PDF: 85K)

Related Industries: Construction, Forestry, Industrial, Quarry/Aggregate, Waste

Detailed Specifications

Engine

Engine Model

Cat 3126B

Flywheel Power	86 kW / 115 hp
Maximum Flywheel Power	88 kW / 119 hp
Net Power - Caterpillar	86 kW / 115 hp
Net Power - ISO 9249	86 kW / 115 hp
Net Power - SAE J1349	86 kW / 115 hp
Net Power - EU 80/1269	86 kW / 115 hp
Bore.	110 mm / 4.33 in
Stroke	127 mm / 5 in
Displacement: A Prince Service Control of the Contr	7.2 L / 439 in3
Transmission	
1 Forward	3.1 kph / 1.9 mph
2 Forward	5.4 kph / 3.3 mph
3 Forward	9.1 kph/ 5.6 mph
1 Reverse	3.8 kph / 2.3 mph
2 Reverse	6.7 kph / 4.1 mph
3 Reverse	11.3 kph / 6.9 mph
Undercarriage - Std.	
Number Shoes Side - XL	41
Number Shoes Side - LGP	44, the state of 1 and 1
Track Rollers/Side - XL	7.
Track Rollers/Side - LGP	
Width of Shoe - XL	560 mm / 22 in 🚄
Width of Shoe - LGP	760 mm / 30 in
Track on Ground - XL	2388 mm / 94 in 1 4 1/14 1/14
Track on Ground - LGP	2604·mm /. 103 in
Track Gauge - XL	1770 mm / 70 in
Track Gauge - LGP	2000 mm / 79 in
Ground Contact Area - XL	2.67 m2 / 4146 in2
Ground Contact Area - LGP	3.96 m2 / 6135 in2
Ground Pressure (Std.) - XL	47.kPa / 6.81 psi
Ground Pressure (Std.) - LPG	32.8 kPa / 4.76 psi
Service Refill Capacities	
Fuel Tank	257 L / 67.9 gal
Cooling System	48 L / 12.6 gal

Final Drives (each)	6-L/1.6 gal
Hydraulic Tank	29.5 ∐/,7.7 gal 🛒 🔆 🗀 🗀
Winch Specifications	
Winch Model	PA 55
Weight	l180 kg//.2602 lb :
Winch and Bracket Length	1120 mm / 44.1 in
Winch Case Width	975 mm / 38:4 in . —
Flange Diameter	504 mm / 19.8 in
Drum Width	330 mm / 13 in
Drum Diameter, and the second	254 mm / 10 in
Drum Capacity - 22 mm (:88 in)	88m/289ft
Ferrule Size (O.D. X Length)	54 x 65 mm 2.13 x 2.56 in
Oil Capacity	74.1 L / 19.6 gal
Blades	
Blade Type	V PAT
XL PAT Blade Capacity	2.6 m3 // 3.4 yd3
XL PAT Blade Width	3077 mm / 10 ft
EGP PAT Blade Capacity	2.6 m3 / 3.4 yd3
LGP PAT Blade Width	3360 mm / 11 ft
Multi-Shank Ripper	
Type (3) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fixed Radial
Beam width	1951 mm / 76.8 in
Beam cross section	165 x 211 mm 6.5 x 8.3 in.
Maximum Penetration - XL	350 mm / 13.8 in
Maximum Penetration - LGP	298 mm // 11.7 in
Number of pockets	
Weight: each additional shank	34 kg / 75 lb
Weights	·
Operating Weight Power Shift FTC - XL	12818 kg / 28258 lb 🗲
Operating Weight Power Shift FTC - LGP	13665 kg/30131 lb
Shipping Weight FTC - XL	12541 kg / 27647 lb
Shipping Weight FTC - LGP	12975 kg/28606 lb

Cover Soil Stability Worksheet for Example #2

Uniform Cover Soil Thickness with the Incorporation of Equipment Loads (Moving Up or Down Slope)

Calculation of FS Active Wedge: Wa= 363.9 kN Na= 345.3 kN

Passive Wedge: Wp===10.7_kN

$$FS = -b + \sqrt{\frac{b_{-}^{2} - 4ac}{2a}}$$

$$= 136.3$$

$$b = -229$$

c = 37.8

FS= 1.50

0.9
787
74.7
3.9
2

*Influence Factor Default Values

Cover Soil	Equipment Track Width												
Thickness .	Very Wide	Wide	Standard										
² 300 mm	1.00	0.97	0.94										
300-1000 mm	0.97	0.92	0.70										
³ 1000 mm	0.95	0.75	0.30										

Note: numbers in boxes are input values

numbers in Italics are calculated values

SCS ENGINEERS

																						HEET			_ OF		
CLIE	NT /	lard	lee	Co	6/4	4		PRO	JECT	4cr	10	< 0	w	4	1	/ = ~.(SF.	11	,				JOB	NO.	,9	903	0
SUB	JECT					Ŧ	1	/		1	· ·			0				<u>· · · </u>	BY	7	7	,	1	DAT	<u></u>	903) 18/3	\Box
		-	40	-i P	<u>n 1</u>		5	<u>Lo</u>	<u> </u>	216	//-								CHE	CKE	<u>/</u>			DAT	[//	10/0	, 7
	,	·	/ 	,		,		,		,	<u> </u>	,	,	-			,		<u> </u>	·	49	,	,	L,		-	
																											1
	5	ر. ر	20	o.	L	/		/-					<u> </u>														1
	25		//	-/-	7			رد				<u> </u>										 					
	:	: :		•				i	:	:		<u> </u>	<u> </u>	ļ		ļ				ļ		<u> </u>	ļ		!	ļļ	
	4	25	for	1	უ		5	7	بمرو		1	L	ba	e/	^	A	1	ĺ) 4		λ	K)				
								V																			
				1		<i>/</i>				<u> </u>	,		-	ļ	U	28	F	- /	Z <	<u> </u>		 -	 -			<u> </u>	
		æ	ف		- (<i>(</i>		1	Υ	- ^	4	<u>"</u>	<u> </u>		/ \	3	00	/^	در	<u> </u>	 	 			<u></u>	 	
	:	:	:	. —	;		•	;	:		i	;	i	:	;	;	:		i				ļ				
			4	; (£	7	2	L			\sim	روج	no	Ï =	-	9	2	ہلر	1								
		J)		1					. /	 !	<u> </u>	:	<u> </u>	<u>†</u>	i	1		
																					-	 	<u> </u>	ļ	<u> </u>		
	u	11	14	<u> </u>	1	_//	a	人	ļ		ب	<u>ر</u>	10	C^	e.	<u>د</u>	=	_		1 4	1	 	}	ļ	ļ		
	<u>!</u>		<u> </u>														<u> </u>	<u>:</u>	<u>:</u>	<u> </u>	<u>!</u>	<u>!</u>	<u> </u>	<u> </u>			
										4.	بح رب	8	\$1/	2¢													
	 					<u></u>			X			 	 		 		 -					 	 	 -	·		
		<u> </u>	ļ	ļ		ļ	<u> </u>				 -	 	<u> </u>		·	ļ	 	<u> </u>			 -		-	ļ			
	<u> </u>	<u> </u>	ļ	ļ				X		7	\geq	<u> </u>	ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ			.ļ	ļ	ļ	ļ		
						~		20		\approx	3	3	Se Se	<u> </u>													
		Ì	-							~			Y	Ð					;	-		1	1	†		1	
	 	 	!	 		 	 -	-		-		 		<u> </u>			 -			 -	 	+		 	-		
	 	<u> </u>	 _	ļ	ļ ₁										<u></u>	ļ	<u> </u>		<u> </u>			 	1	ļ		<u>-</u>	
		_		ركر	C	< >	<u>}</u>	=	=)		13		100	1/1	25	5	=	ے	2/	7	4	1	<u>Z</u>	5		<u>.</u>	
l		Z										<u>ک</u>	to	2	k	ż			′			-		6			
Ì	<u> </u>		†	†	!		<u> </u>	1								7		†		1				1			
			÷	₹	ļ	Λ	<u> </u>		 -	<u></u>	0	<u> </u>	-	j	1-	٨	 		 				- -	 	-		
	ء	\sum	$\mathcal{L}^{\mathcal{L}}$	cc	e	14	∕ ∙e	-		4 د	Y.	/ c	حرلا]	= 1	<u>}</u>	.	<u> </u>		<u> </u>	 	 	.	ļ	<u>.</u>		!
		A	F	1	10	2	11		26	1	6	e F	- \	X	/	U	, , /	14		مرد کارد	7	6	-	7			
	 -			-	7	24			κ) V	17			- -			10,	20	<u>;</u> c	\sim	X . /	\ <u>\</u>			<u> </u>	 	-	
 	<u>-</u>	1	ļ		<u> </u>		\geqslant	ļ,		-			itr	J	\			٤	٠		-	<u>'</u>	- -	- 	- -		ļ
		A	=		7,	2	\mathcal{L}	_) 5	* (2	_ <	34	十	<u>)</u>			<u>.</u>	ļ			1	<u> </u>	ļ			
		•	•	1	1	1	:	1	1	:	1	•															
		Д	=	1		3	\sim	7	1	1		Ť-	أ	<u> </u>		-	Ť	†	†	-	<u> </u>		-	Ť	-		†
}		1/ 1				∼.	_		<u> </u>	1	MC	سا	-				+	 	 -			-					
]		<u> </u>	<u> </u>	<u> </u>	ļ	<u>.</u>	ļ	<u>. </u>	<u> </u>	.ļ			<u> </u>	ļ			<u> </u>	ļ	<u>.</u>		<u> </u>	<u>,</u>	<u>.</u>	ļ			<u> </u>
1		7	计	je	22	=	-	tò	tc	2	=	-	F		=		2	/	79	14	1	55	11				
<u> </u>		<u> </u>	1	Ī				Δ		2.0		-	1					7						جند		1	
				- 	-		 -	6	. 	-	· 		<u> </u>		·	-	-	-	-	 	1	. 2	/	 	+		
ļ		-	 		-	 	.	. 	-	-	<u> </u>	-	- 	-				4 .	\$.	\mathbf{O}	17		/ 2	ra	CK		
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u>.</u>			<u> </u>				-					•	1	÷	- 1		:	:	•		
		=		F	10	55	-	re	=	=	4	15		39		16	S N	-	*	6	'	57	0	5/	, 4		
1	·- 		1		1		1		-	-	/	_	<u>-</u>		-	, ,	7					- /	1	- >	<u></u>		 -
}		+			-	 	 									4	\vdash	÷				<u>-</u>					
ļ		<u> </u>	ļ		ļ		<u> </u>	ļ	ļ			ļ	<u> </u>														
	<u>.i</u>		<u>!</u>	<u> </u>	<u> </u>			<u> </u>	-					<u>.</u>								i					

D6R II XW

Other Models:

D6R II XW

Ŧ

Back to Track-Type Tractors

Printer Friendly

The D6R Series II XW arrangement is best suited for steep slope applications or where customers need additional flotation and the ability to work in a mixture of soft to moderate dozing conditions.

Features & Benefits

Related Industries: Construction, Heavy
Construction

Detailed Specifications

Engine

Engine Model Cat C-9
Flywheel Power 138 kW / 185 hp

Net Power - Caterpillar	138 kW / 185 hp
Net Power - ISO 9249	138 kW /4185 hp
Net Power - SAE J1349	136 kW / 183 hp
Net Power - EU 80/1269	138.kW / 185 hp
Net Power - DIN 70020	192 PS
Bore	112 mm / 4.4 in
Stroke	149 mm / 5.9 in
Displacement	8:8 L ¹ /537 in3
Transmission	
1 Forward	3.8 kph // 2.4 mph
2 Forward	6:6 kph / 4.1 mph
3 Forward	11.5 kph / 7.1 mph
1 Reverse	4.8 kph /-3 mph
2 Reverse	8.4 kph / 5.2 mph
3 Reverse	14.6 kph / 9.1 mph
Undercarriage - Std.	
Track Rollers/side	
Width of Shoe	762 mm / 30 in
Track on Ground	2822 mm / 9.2 ft
Track Gauge	2032 mm / 80 in
Ground Pressure (Std.)	47.82 kPa / 6.94 psi
Ground Clearance	383 mm / 14:8 in
Ground Contact Area w/Shoe	4.33 m2 / 6661 in2
Service Refill Capacities	
Cooling System	76.8 L / 20.3 gal
Engine Crankcase	28 L / 7.4 gal
Power Train	145.7 L / 38.5 gal
Final Drives (each)	13.6 L / 3.6 gal
Roller Frames (each)	24.6 L / 6.5 gal
Hydraulic Tank	47.3 L / 12.5 gal
Pivot Shaft Compartment	1.9 L // 0.5 gal
Hydraulic Controls - Maximum Operating Pressur	
Bulldozer	19300 kPa / 2799 psi
Bulldozer Tilt	19300 kPa / 2799 psi

Tilt Cylinder	19300 kPa / 2799 psi
Ripper (Lift)	19300 kPa / 2799 psi
Ripper (Pitch)	19300 kPa / 2799 psi
Steering:	38000 kPa / 5511 psi
Hydraulic Controls - Pump	
Pump Capacity at	6900 kPa / 1001 psi
RPM at Rated Engine Speed	2125 RPM / 2125 RPM
Pump Output (Clutch Brake)	212 L/min / 56 gal/min
Pump Output (Differential Steering)	217 L/min / 57.3 gal/min
Lift Cylinder Flow	190 L/min / 50.2 gal/min
Tilt Cylinder Flow	80 L/min / 21.1 gal/min
Ripper Cylinder Flow	160 L/min / 42.3 gal/min
Hydraulic Controls - Main Relief Valve Sett	
Clutch Brake Models	19300 kPa / 2799 psi
Differential Steering Models	42000 kPa / 6092 psi
Winch Specifications	
Winch Model	PA 56:
Weight	1179 kg / 2600 lb
Winch and Bracket Length	1210 mm / 47.6 in
Winch Case Length	1210 mm / 47.6 in
Winch Case Width	975 mm / 38.4 in 🚃 🔠 👢
Flange Diameter	504 mm / 19.8 in
Drum Width	330.mm / 13 in
Drum Diameter	254 mm / 10 in
Drum Capacity - 22 mm (!88 in)	88 m / 290 ft
Drum Capacity - 25 mm (1.0 in)	67 m./ 220 ft
Drum Capacity - 29 mm (1.13 m)	67 m / 220 ft
Ferrule Size (O.D. X-Length)	54 x 67 mm (2.10 x 2.63 in)
Oil Capacity	67 L / 17.7 gal
Dimensions	
Height	2380 mm / 7.8 ft
Height ROPS/Canopy	3190 mm / 10.4 ft
Length w/Blade	5.71 m / 18.75 ft

Blades

Diadeo	
Blade Type	SU, A, PAT
XW SU Blade Capacity	5.62 m3 / 7.35 yd3
XW SU Blade Width	3556 mm / 11.7 ft
XW A Blade Capacity	4.3·m3 / 5.62 yd3
XW A Blade Width	4200 mm / 13.78 ft
XW PAT Blade Capacity	5.08 m3 //6.65 yd3
XW PAT Blade Width	3794 mm / 12.45 ft
Multi-Shank Ripper	
Type	Fixed Parallelogram
Beam width	2202 mm / 87 in
Beam cross section	216 x 254 mm (8:5 x 10:0 in)
Maximum penetration	500 mm / 19.7 in
Maximum clearance raised (shank tip)	511 mm / 20:1 in
Number of pockets	3 - 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Maximum penetration force	6603 kg / 14557 lb
Maximum pryout force	9134 kg://20137 lb
Weight - with one shank	1634 kg / 3603 lb
Weight - each additional shank	74 kg / 163 lb .
Weights	
Operating Weight Power PSDS	19960 kg / 44000 lb
Operating Weight - XW	19904 kg / 43888 lb
Shipping Weight - XW	16043 kg / 35374 lb
Fuel Tank	
Fuel Tank Capacity	383 L/·101 gal :

Cover Soil Stability Worksheet for Example #2

Uniform Cover Soil Thickness with the Incorporation of Equipment Loads (Moving Up or Down Slope)

FS≈ 1.50

thickness of cover soil = h =	:0.61_m	<i>b/h</i> ==	1.3
equipment ground pressure (= wt. of equipment/(2wb)) = q =	45.3 kN/m^2	We=q w i=	88 9
length of each equipment track = w =	2.8 m	Ne=Wecos β=	84.3
width of each equipment track = b =	0.8 m	Fe=We (a/g) =	4.4
influence factor* at geomembrane interface = I =	0.70		
acceleration/deceleration of the hulldozer = a =	: 0.05 a		

*Influence Factor Default Values

Cover Sail	Equipment TrackWidth												
Thickness	Very Wide	Wide	Standard										
² 300 mm	1.00	0.97	0.94										
300-1000 mm	0.97	0.92	0.70										
³ 1000 mm	0.95	0.75	0.30										

Note: numbers in boxes are input values

numbers in Italics are calculated values

SCS ENGINEERS

NT Ha des Courty PROJECT Honder Courty Londold 108 NO 1985 133 55 JOHN DATE Equipment Londons By DATE Equipment Londons CAT DITE Son 155 III Openating wester 55, 852 lb Length of mark or sound = 9-5" = 9-447 ft Airchin of mark = 22 m/hr (188 feer) 55852 lbs 27 marks 27,926 & 342 mark 27,	<u>::</u>	ta~	189	_0	UN	79				[]	MU	222		INI	7		<u>ارت -</u>	71	TBY		1 /	77	- (1)	7.05 IDAT		
SQUEMENT GOODS EXISTERS EQUIPMENT DOZEN CAT DITE SELES IT OPERATING WEIGHT 55, 852 4 LENGTH OF TRACK ON SHOWD = 9'-5' = 9.467 ft AIRCHIN OF TRACK = 22 m/6 to (1.25 fear) SSBSC 1/5 2 TRACKS 27,726 5 32 mack SUMBER ASSO A=(Vengle of TRACK) budth that STASS = 16126 psf (1.25 ft) CAT DOZ WHA SENES IT OPERATOR (1.25 ft) LIDTH OF TRACK ON SHOWD = 22 m (1.883 ft) LIDTH OF TRACK ON SHOWD = 22 m (1.883 ft) BERNING 1/6 TRACK ON SHOWD = 22 m (1.883 ft) BERNING 1/6 TRACK ON SHOWD = 22 m (1.883 ft) BERNING 1/6 TRACK ON SHOWD = 22 m (1.883 ft) BERNING 1/6 TRACK ON SHOWD = 10 fc mack FINESTORIES ON SHOWD = 14400 1/5	ECT						E	qui	pn	182	شهر	1	-2 A	Din	_ح_			,	L	\sqrt{x}	<u> </u>					
Existing Equipment Dazan CAT DTR Saves IT openating weight 55, 852 18 Length of mack on sound = 9 - 5" = 7.447 ft archir of mack of sound = 22 m/h = 1.08 fear) 55852 165 2 macks 27,726 & gan mack 200000000000000000000000000000000000			•				•	— 7						_			_		СН	ECKE) 			DAT	E	
Existing Equipment Dazan CAT DTR Saves IT openating weight 55, 852 18 Length of mack on sound = 9 - 5" = 7.447 ft archir of mack of sound = 22 m/h = 1.08 fear) 55852 165 2 macks 27,726 & gan mack 200000000000000000000000000000000000																					-					-
Existing Equipment Dazan CAT DTR Saves IT openating weight 55, 852 18 Length of mack on sound = 9 - 5" = 7.447 ft archir of mack of sound = 22 m/h = 1.08 fear) 55852 165 2 macks 27,726 & gan mack 200000000000000000000000000000000000			٠. د			/		7																		
Open 17 mg weight 55, 852 16 Length of Track on Snown = 9-5" = 7:467 ft Lindry of Track = 22 mcht (188 fear) 55852 165 2 Tracks 27,726 13 gen mack 200000000000000000000000000000000000	29	701		121	<i>\(\)</i>		V~ (_	\dagger
Open 17 mg weight 55, 852 16 Length of Track on Snown = 9-5" = 7:467 ft Lindry of Track = 22 mcht (188 fear) 55852 165 2 Tracks 27,726 13 gen mack 200000000000000000000000000000000000								-											_							+
Open 17 mg weight 55, 852 16 Length of Track on Snown = 9-5" = 7:467 ft Lindry of Track = 22 mcht (188 fear) 55852 165 2 Tracks 27,726 13 gen mack 200000000000000000000000000000000000			3	EK.	<u>خ</u> ی	سرو	5	EQ	vip	Mc	u7	-		Di	29	1_	C	AT	D	712		Er.	125	<u>ZZ</u> '	_	\dashv
### OF Track on Snown = 9'-5" = 7.447 ft Wich of Track = 22 mchor (188 fear) \$55,852 lbs 2 Tracks 2,7926 lb 3en mack \$500000000000000000000000000000000000		_	l				İ			<u> </u>				<u> </u>	<u> </u>	ļ						ļ				\bot
### DER WHA SENSE # 1617.6 PSF (1833); ##################################				01	76/1 p	4T1	NG	WE	15 47	+	5	5,	85	2	16		<u></u>		<u></u>							
SSB52 lbs 2 Throcks 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 5 a mack 27,926 B 3 5 a mack 27,926 B 3 a mack 27,926	†		<u> </u>	•	!	1				1	1	ļ	1	İ		ļ										
SSB52 lbs 2 Throcks 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 5 a mack 27,926 B 3 5 a mack 27,926 B 3 a mack 27,926		-			16	ار ر	4	.6	770	20			_		Ja	-	a	1-	-//	- 9	7.4	47	A			
SSB52 lbs 2 Throcks 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 9 a mack 27,926 B 3 5 a mack 27,926 B 3 5 a mack 27,926 B 3 a mack 27,926	ļ	-	 		-	3	<u>2 </u>		/	7-7	7	_	2	0 b		<u></u>	22	1	16	-		1	o C	. \		7
27,926 B 3en mack 27,926 B 3en mack 200000000000000000000000000000000000	╂		-	-	<u> </u>	<u> </u>	14	110	אז	0		7	nx	CK	 	<u> </u>	-	100	K - 1	<u> </u>	(7,0	2/4			\dashv
27,926 B 3en mack 27,926 B 3en mack 200000000000000000000000000000000000	-	ļ	-	-	 -	<u> </u>	-	<u> </u>	-		 	 	h-		<u> </u>	-	 }	 	 	<u> </u>		 	ļ			-
### STACES = 16176 psf (1/23) ### DOZ WHA STACES IT #### STACES = 16176 psf (1/23) #### DOZ WHA STACES IT ###################################				<u> </u>	<u> </u>	ļ		<u> </u>	ļ	ļ	ļ		₩.	<u> </u>	9:	ו אם	20			-			-			
### STACES = 16176 psf (1/23) ### DOZ WHA STACES IT #### STACES IT ###################################					<u> </u>	ļ			<u> </u>	ļ	<u> </u>	-//	121			<u> </u>	ļ	2	- 7h	ACI	45	ļ	ļ			_
### STACES = 16176 psf (1/23) ### DOZ WHA STACES IT #### STACES IT ###################################										<u> </u>								27,	92	6/	7	de:	noc	K		
A=(Zenck of Track) buds to track STACS = 1/A = 27926/6 (944)(833) SE PASSONE = 1617.6 pst (1/23) ALTERNATIVE EQUIPMENT CAT DOR WHA SENCES TO OPERATING USENFT = 82880/6 LENGTH OF TRACK ON SAOND = 10-6" (105/k) LINDTH OF TRACK ON SAOND = 22 mm (1.833/k) 8280/6 2 TRACKS 41440/6 / TRACK 100000000000000000000000000000000000														10	7			ļ	ì		1	1				
# 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2				1					7	20	00	000	(2)	7		4		\$11	1/1	45	10	150	١,			
STREST = Th = 27926 B (944)(833) SE PRESSURE = 16176 DSF (123) ALTERNATIVE EQUIPMENT CAT DOR WHA SENES II OPENSTOR WEYNT = 82,580 16 CATTOR OF TRACK ON STROND = 10-6" (10.5 ft) LIDTY OF TRACK = 22 m (1.883 ft) 8280 16 2 macks 41440 15 for Track 41440 15	†			†		1	<u> </u>		1	<u> </u>						N=	12	4,,	Á	F	7	1	·),	Sud?	2/15	D
PRESSURE = 1617.6 psf (1/23) ALTERNATIVE EQUIPMENT CAT DER WHA SENES II 100 50 CAT DER WHA SENES II 100 CAT DER WHA SENES II 100 50 CAT DER WHA SENES II 100	+	_		-	-	\dagger	+	_	 	1	<u> </u>	 	<u> </u>	- -		1		15								
PRESSURE = 1617.6 psf (1/23) PRESSURE = 1617.6 psf (1/23) PRESSURE = 1617.6 psf (1/23) PRESSURE = 1617.6 psf (1/23) CAT DER WHA SEMES II 90 50 CPERATOR WEIGHT = 82,880 16 CPERATOR WEIGHT = 82,880 16 LENTH OF TRACK OF GROUND = 10-6" = 10.5 ft) REPORTS OF TRACK = 22 m (1.833 ft) 82,802/16 2 macks 41,440 15				-	-	-	+-	-		-		 	+	 	-			- =	7/	, <u>-</u>	20	262	1/6			
PRESSURE = 1617.6 pst (1.23) ALTERNATIVE EQUIPMENT CAT DOR WHA SENES II OPENSONG WEIGHT = 82,530 16 LENTH OF TRACK ON SHOWN = 22 m (1.833 f) BROWN OF MARK 2 macks 41440 15 for Track 14440 15	-			-	-	-		_	-	_	-	-		-	-	1-	764	-	-	'		¥16	73			
ALTERNATIVE EXCLAMENT CAT DER WHA SEMES II SPENSTOR WEIGHT = 82580 16 LENTH OF TRACK ON SHOWN = 10-6" (105/4) LUDTH OF MARK = 22 in (1.8334) 828016 2 macks 41440 15 Per Track 100000000000000000000000000000000000	-		-		-	╬			-			-	-	-	+			-		16	7/1/	0,0	<u>\$)</u>	SŁ		
ALTERNATIVE EXCLAMENT CAT DER WHA SEMES II SPENSTOR WEIGHT = 82580 16 LENTH OF TRACK ON SHOWN = 10-6" (105/4) LUDTH OF MARK = 22 in (1.8334) 828016 2 macks 41440 15 Per Track 100000000000000000000000000000000000					<u>.</u>	-				_	-					D				\bot	1	1	 	/		
247 DBR WHA SINES IT OPERATORS WEIGHT = 82580 16 LENTH OF TRACK ON SOUND = 10-6" (1054) LIDTH OF MARK = 22 m (1.8334) 8080 16 2 macks 41440 16 Per Track 1000 100 100 100 100 100 100 100 100 1									4_	<u> </u> -		ļ		_	_	To ?	45	301	18	<u> </u>	16	1/	6	DSF	(//	23/
247 DBR WHA SINES IT OPERATORS WEIGHT = 82580 16 LENTH OF TRACK ON SOUND = 10-6" (1054) LIDTH OF MARK = 22 m (1.8334) 8080 16 2 macks 41440 16 Per Track 1000 100 100 100 100 100 100 100 100 1					1																	_		ļ	·-	
24+ DBR WHA SINES IT SON 50 SPENDING WEIGHT = 82580 16 ABOTH OF TRACK ON SOUND = 10-6" (1054) BUDTH OF MARK 2 TRACKS 41440 16 Per TRACK BOROGO DO GOOD - 41440 15				/	OLT	EN	NA	TIV	Έ	EC	al.	pm	1/0	-												
Spendows Weight = 82580 16 Length of Track on Snown = 10-6" (1054) Lindry of Track = 22 in (1.8334) 80800 16 2 Tracks 41440 15 Per Track BORDER DOD	1											7											1	Λ		
Spendows Weight = 82580 16 Length of Track on Snown = 10-6" (1054) Lindry of Track = 22 in (1.8334) 80800 16 2 Tracks 41440 15 Per Track BORDER DOD	1				1	+	+	-	1	11	1+	70	2 1	A)H.	Δ	SEA	1515	+				120	1.	ال ا		
Langth of Track on Snown = 10-6" (1054) Ludry of mack = 22 in (1.8334) 80 800/16 2 macks 41440 15 Par Track BORDER DOD	-		-	+	+	+-		\dashv	+		į	•	1		1	١,	ì			190	2h	16	7			
80 BOV 16 TO PROCKS = 22 IN (1.833 F) 80 BOV 16 2 TO POCKS 41440 16 Pro TO POCK BOOGGE 9000 - 41440 15	-	\dashv		+	-	╫	-	+	-	9	280	17	ας	- 6	J 2 /	<u> </u>	+-			7		-		 		
80 BOV 16 TO PROCKS = 22 IN (1.833 F) 80 BOV 16 2 TO POCKS 41440 16 Pro TO POCK BOOGGE 9000 - 41440 15											-	/_			+,			\times		_		1		/.	-/	7
80 BOV 16 TO PROCKS = 22 IN (1.833 F) 80 BOV 16 2 TO POCKS 41440 16 Pro TO POCK BOOGGE 9000 - 41440 15						_	_			14	~57	10	<i>F</i> .	Tri	oc K	9	04	5no	بررو	0 =	=	10-	6	4/0	5 ft	-)
2 mocks 41440 16 for mack	<u>. </u>									4	107	<u> </u>	0 F	7	nag	X			=	2	2	/~/	(1.	833	F)	
2 mocks 41440 16 for mack												ç	20	a)	16											
1 41440 15 Pan Track 6000 600 000												,				2	7	and o	والمرد	5						
(COCC 900) - 41440 13	+				1	1	+					IIV						- 1	- 1		1	Pan	The	of		
5m455 = FA = (10.5 1.8133) SF						\dashv				2.2			7	5		_		'-	45	- //		1		1 .		
777455 7 (10.5) 17.8355) 18					-	-			<i>a</i> 2	000	2000	المستر				ر این		_ F			7	-/ 5	VV	/2 /22 c	CE	
opperation and the state of the		<u> </u>		-		_	_				-				: د	14	>>	-				0.5	1 /•	2255	יוני	

D7R Series II

Other Models:

D7R Series II

Ш

Printer Friendly

Engineered for demanding work. The D7R Series II is designed to be productive in a variety of applications. It keeps material moving with the reliability and low operating costs you expect from Cat machines.

Features & Benefits

Standard Equipment

Optional Equipment

Specification Graphics (PDF: 167K)

Related Industries: Agriculture,

Construction, Forestry, Heavy Construction, Industrial,

Quarry/Aggregate,

Waste

Detailed Specifications

Engine

Engine Model

Cat 3176C

Flywheel Power

179 kW / 240 hp

Maximum Flywheel Power	192 kW / 258 hp
Net Power - Caterpillar	179 kW / 240 hp
Net Power - ISO 9249	179 kW / 240 hp
Net Power - SAE J1349	177 kW / 238 hp
Net Power - EU 80/1269	179 kW / 240 hp
Net Power - DIN 70020	248 PS
Bore	125 mm / 4.9 in
Stroke	140 mm:/ 5.5 in.
Displacement	10.3 L / 629 in3
Weights	
Operating Weight - Std.	24758 kg//54582 lb
Shipping Weight - Std.	20084 kg / 44278 lb
Operating Weight - XR	25334 kg // 55852 lb
Shipping Weight - XR	20660 kg / 45548 lb
Operating Weight - LGP	26897 kg// 59299 lb
Shipping Weight - LGP	22176 kg / 48890 lb
Transmission	
1 Forward	3.52 kph / 2.19 mph
2 Forward	6.1 kph / 3.79 mph
3 Forward is	10.54 kph / 6:55 mph
1 Reverse	4.54 kph / 2.82 mph
2 Reverse	7.85 kph / 4.88 mph
3 Reverse	13.58 kph / 8.44 mph
Undercarriage - Std.	
Shoe Type:	Extreme Service
Pitch	216 mm / 8.5 in
Number Shoes/Side	40
Grouser Height	71.5 mm// 3-in
Track Rollers/side	7 . The state of \sim
Width of Shoe	600 mm / 22 in -
Track on Ground	2870 mm / 9.4 ft
Track Gauge	1981 mm / 78 in
Ground Contact Area	3.21 m2 / 4972 in2
Ground Pressure (Std.)	7.58 kPa //11 psi

Ground Clearance	414 mm / 16.3 in
Service Refill Capacities	
Fuel Tank	479 L / 126:5 gal
Cooling System:	77.4 L / 20.4 gal
Engine Crankcase	31 L / 8.2 gal
Power Train	178 L / 47 gal
Final Drives (each)	13 L / 3.4 gal
Roller Frames (each)	24.6 L / 6.5 gal
Attachment Hydraulic System Tank Only	54/L / 14.3 gal
Pivot Shaft Compartment	1.9 L / 0.5 gal
Hydraulic Controls - Maximum Operating Press	sure
Bulldozer	22800 kPa / 3307 psi
Tilt Cylinder	17225 kPa / 2498 psi
Ripper (Lift)	22750 kPa / 3300 psi
Ripper (Pitch)	22750 kPa / 3300 psi
Steering	38000 kPa / 5511 psi
Hydraulic Controls - Pump	
Pump Capacity at	7000 kPa / 1015 psi
RPM at Rated Engine Speed	2231 RPM / 2231 RPM
Pump Output (Clutch Brake)	222 L/min / 58.6 gal/min
Pump Output (Differential Steering)	295 L/min / 77.9 gal/min
Lift Cylinder Flow	180 L/min / 47.6 gal/min
Tilt Cylinder Flow	80 L/min / 21.1 gal/min
Ripper Cylinder Flow	180 L/min / 47.6 gal/min
Hydraulic Controls - Main Relief Valve Setting	s
Clutch Brake Models	27000 kPa / 3916 psi
Differential Steering Models	42000 kPa / 6092 psi
Winch Specifications	•
Winch Model	PA110VS Variable Speed
Weight	1894 kg / 4176 lb (14 cm)
Winch and Bracket Length	1461 mm / 57.5 in
Winch Case Width	1171 mm / 46.1 in
Increased Tractor Length - STD	742 mm / 29.2 in
Increased Tractor Length - XR	. 587 mm / 23.1 in

Increased Tractor Length - LGP	742 mm / 29.2 in
Flange Diameter	610 mm / 24 in
Drum Width	337 mm / 13.3 in
Drum Diameter	318 mm / 12:5 in
Drum Capacity - 24 mm (1 in)	885 m / 418 ft
Drum Capacity - 29 mm (1.13 in) +	584 m / 276 ft
Drum Capacity - 32 mm (1.25 in)	409 m / 193 ft
Ferrule Size (O.D. X-Length)	2.38 in x 2.56 in / 60 mm·x 65 mm
Oil Capacity	15.1 L//4 gal
Blades	g - Teach Milliann, Sharrach (1997) and All All All All All All All All All Al
U Blade Capacity	8.34 m3 / 10.91 yd3
U Blade Width	3988 mm / 13.08 ft
SU Blade Capacity	6.86 m3 / 8.98 yd3
SU Blade Width	3693 mm / 12.12 ft
S Blade Capacity	5.16 m3 // 6.75 yd3
S Blade Width	3904 mm / 12.81 ft
LGP,S Blade Capacity	5.89 m3 / 7.7 yd3
LGP S Blade Width	4545 mm / 14.91 ft
A Blade Capacity	3:89 m3 //5:08 yd3
A Blade Width	4503 mm/+14.77/ft
Multi-Shank Ripper	
Type:	Adjustable Parallelogram
Beam width	2210 mm / 87 in
Beam cross section	343 x 279 mm 13.5 x 11 in
Maximum penetration	748 mm / 29.4 in
Maximum clearance raised (shank tip)	757 mm / 29.8 in
Number of pockets	
Maximum penetration force	8664 kg / 19100 lb
Maximum pryout force	17138 kg / 38513 lb
Weight - with one shank	3307 kg/7431 lb
Weight - each additional shank	150 kg / 330 lb

Cover Soil Stability Worksheet for Example #2

Uniform Cover Soil Thickness with the Incorporation of Equipment Loads (Moving Up or Down Slope)

Calculation of FS Active Wedge:

Wa= 363.9 kN Na= 345.3 kN

Passive Wedge:

Wp= 10.7 kN

$$FS = -b + \frac{1}{2}b^2 - 4ac$$

a= 163.0

b= -275

c= 45.8

FS≈ 1.50

thickness of cover soil = h = 0.61 m soil slope angle beneath the geomembrane = β = 18.4 # 0.32 (rad.) finished cover soil slope angle = ω = 18.4 ° = 0.32 (rad.) length of slope measured along the geomembrane = L = 36.6 m 17.3 kN/m^3 unit weight of the cover soil = γ = friction angle of the cover soil = ϕ = 30.0 ° # 0.52 (rad.) cohesion of the cover soil = c = 0.0 kN/m^2 C= 0 kΝ 26.9° interface friction angle between cover soil and geomembrane = δ = = 0.47 (rad.) adhesion between cover soil and geomembrane = ca = 0.0 kN/m^2 Oan 0 kN

thickness of cover soil = h = 0.61 m b/h= 0.9 equipment ground pressure (= wt. of equipment/(2wb)) = q = $\frac{77.5}{150.6}$ kN/m^2 We=q w != 150.6 Ne=Wecos β = 147.7 width of each equipment track = b = 0.6 m Fe=We (a/g) = 7.8 influence factor* at geomembrane interface = I = 0.70

influence factor* at geomembrane interface = $I = \begin{bmatrix} 0.70 \\ acceleration/deceleration of the bulldozer = a = \begin{bmatrix} 0.05 \\ g \end{bmatrix}$

*Influence Factor Default Values

Cover Sail	Equipment TrackWidth				
Thickness	Very Wide	Wide	Standard		
² 300 mm	1.00	0.97	0.94		
300-1000 mm	0.97	0.92	0.70		
³ 1000 mm	0.95	0.75	0.30		

Note: numbers in boxes are input values

numbers in Italics are calculated values

INITIAL FILLING GEOMEMBRANE INTERFACE SLOPE STABILITY ANALYSIS

Figure 1 — Slope Stability Section Locations, Hardee County Landfill Expansion

Expansion - East/West Phase II Section IHardee County Landfill F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EXOPEX1.PL2 Run By: JHO 2/22/2004 3:47PM

SCS ENGINEERS

Safety Factors Are Calculated By The Modified Janbu Method

Expansion - East/West Phase II Section IHardee County Landfill F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EXOPEX1.PL2 Run By: JHO 2/22/2004 4:05PM

Soil Total Saturated Cohesion Friction Piez. Type Unit Wt. Unit Wt. Intercept Angle Surface #FS Soil **a 3.2** b 3.2 Desc. No. W1 (psf) (deg) (pcf) (pcf) No. 105.0 120.0 28.0 0.0 c 3.4 Subgrade W1 0.0 26.5 d 3.4 Bot-Geo 2 3 4 62.4 62.4 110.0 60.0 30.0 W1 120.0 0.0 Sand e 3.4 250.0 27.0 60.0 Waste f 3.4 g 3.4 h.3.4 200 i 3.4 j 3.4 WITHOUT EOVIPMENTS W1 1200 1000 800 600 400 200 PCSTABL5M/si FSmin=3.2 Safety Factors Are Calculated By The Modified Janbu Method SCS ENGINEERS

** PCSTABL5M **

by

Purdue University --Slope Stability Analysis--

Run Date: Time of Run: 2/22/2004 4:08PM

Run By:

JHO F:EXOPEX1.

Input Data Filename: Output Filename:

F:EXOPEX1.OUT

Unit:

ENGLISH

Plotted Output Filename: F:EXOPEX1.PLT

Expansion - East/West Phase II Section I PROBLEM DESCRIPTION Hardee County Landfill

BOUNDARY COORDINATES

20 Top Boundaries 38 Total Boundaries

Boundary	X-Left		X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1	.00	85.00			
2	276.92	85.00	289.9		
3	289.92	84.00			
4	298.92	87.00			
5	321.92	87.00			
6	322.34	87.00			
. 7	323.92	87.00			0 2
8	339.52	81.80			
9	561.57	81.12			
10	567.52	83.11			
11	606.20	96.00			
12	648.20	96.00			
13	788.20	96.00			
14	890.58	96.00			
15	1010.58	96.00			
16	1030.58	96.00			
17	1072.58	96.00			
18	1096.88	87.90			0 3
19	1101.88	87.90			
20	1107.58	86.00			
21	567.52	83.11			3
22	733.72	82.60			00 3
23	1056.53	81.00			3
24	1076.53	81.00			3
25	561.51	81.12			
26	733.72	80.60			00 2
27	1056.52	79.00			00 2
28	1076.52				
29	1097.52				
30	321.92				
31	322.03				the state of the s
32	323.76				
33	339.51				
34	733.71				
35	1056.51				
36	1076.51				
37	1097.52				
38	1099.52	85.50	1099.8	35 86.	00 1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

	_				_		.
			Cohesion				
Type	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	105.0	120.0	.0	28.0	.00	. 0	1
2	62.4	62.4	. 0	26.5	.00	. 0	1
3	110.0	120.0	. 0	30.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points
Point X-Water Y-Water
No. (ft) (ft)
1 .00 77.50
2 1200.00 77.50

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	611.00	620.50	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 5.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	339.51	81.55	583.83	80.81	.05
2	583.93	80.81	836.07	79.84	.05

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 8 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	468.36	81.41
2 .	468.47	81.31
3	473.47	81.13
4	611.25	80.72
5	612.94	85.43
6	616.02	89.37
7	617.62	94.10
8	618.81	96.00

FACTOR OF SAFETY = 1.5 (With Equipment Loads - Critical failure plane along geosynthetic interface)

FACTOR OF SAFETY = 3.2 (Without Equipment Loads - Critical failure plane along geosynthetic interface)

Expansion - East/West Phase II Section IHardee County Landfill F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EXOPEX1.PL2 Run By: JHO 2/22/2004 4:28PM

Value¹ Total Saturated Cohesion Friction Piez. Load # FS Soil 1618 psf Type Unit Wt. Unit Wt. Intercept Angle **a 1.8** b 1.8 Surface Desc. (psf) (deg) 28.0 No. (pcf) 105.0 (pcf) No. W1 120.0 0.0 Subgrade 26.5 W1 62.4 0.0 62.4 Bot-Geo W1 30.0 0.0 Sand 110.0 120.0 27.0 W1 60.0 60.0 250.0 Waste f 1.8 g 1.8 h 1.8 200 i 1.8 WITH EQUIPMENT GOADS j. 1.8 W1 1200 1000 800 600 400 200 PCSTABL5M/si FSmin=1.8 Safety Factors Are Calculated By The Modified Janbu Method SCS ENGINEERS

Expansion - East/West Phase II Section IHardee County Landfill F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EXOPEX1.PL2 Run By: JHO 2/22/2004 4:30PM

** PCSTABL5M **

by

Purdue University
--Slope Stability Analysis--

Run Date: Time of Run: Run By: 2/22/2004 4:31PM JHO

Input Data Filename:
Output Filename:

F:EXOPEX1. F:EXOPEX1.OUT

Output Filename: Unit:

ENGLISH

Plotted Output Filename: F:EXOPEX1.PLT

PROBLEM DESCRIPTION Expansion - East/West Phase II Section I Hardee County Landfill

BOUNDARY COORDINATES

19 Top Boundaries
37 Total Boundaries

Boundary	X-Left Y	-Left X-	Right Y-I	Right Soil	Туре
No.	(ft)	(ft)	(ft)		elow Bnd
NO.	.00	85.00		85.00	1
2	276.92	85.00		84.00	1
3	289.92	84.00		87.00	1
4	298.92	87.00		87.00	1
5	321.92	87.00		87.00	2
ر 6	322.34	87.00		87.00	2
7	323.92	87.00		81.80	2
. 8	339.52	81.80		81.12	2
9	561.57	81.12		83.11	3
10	567.52	83.11		110.00	4
10	648.20	110.00		110.00	4
12	668.20	110.00		110.00	4
13	788.20	110.00		110.00	4
14	890.58	110.00		110.00	4
15	1010.58	110.00		110.00	4
16	1030.58	110.00		87.90	4
17	1096.88	87.90		87.90	3
18	1101.88	87.90		86.00	. 3
19	1107.58	86.00		86.00	1
20	567.52	83.11		82.60	3.
21		82.60		81.00	3
22	· ·	81.00		81.00	3
23		81.00		87.90	3
24		81.12		80.60	2
25					2
26					2
. 27					2
28					2
29					1
30					1
31					1
32					. 1
33					1
34					1
35					1
36					1
37					1
5 '	1000.02	55.5		55.00	_

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	105.0	120.0	.0	28.0	.00	.0	1
2	62.4	62.4	.0	26.5	.00	. 0	1
3	110.0	120.0	.0	30.0	.00	.0	1
. 4	60.0	60.0	250.0	27.0	.00	.0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	2 Coordinate Points
Point	X-Water	Y-Water	
No.	(ft)	(ft)	·
1	.00	77.50	
2	1200.00	77.50	

BOUNDARY LOAD (S)

1	Load(s) Specified			•
Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	· (deg)
1	648.20	657.70	1618.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 5.0

Box No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Height (ft)
1	339.51	81.55	583.83	80.81	.05
2.	583.93	80.81	836.07	79.84	.05

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 10 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	390.80	81.64
2	391.09	81.41
3	643.93	80.60
4	645.83	85.22
. 5	649.35	88.78
6	652.46	92.69
7	654.97	97.02
8	656.74	101.69
9	657.91	106.55
10	660.70	110.00

FACTOR OF SAFETY = 1.8 (With Equipment Loads - Critical failure plane along geosynthetic interface)

FACTOR OF SAFETY = 2.7 (Without Equipment Loads - Critical failure plane along geosynthetic interface)

Expansion - East/West Phase II Section IHardee County Landfill F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EXOPEX1.PL2 Run By: JHO 2/22/2004 4:38PM

Load Value Soil Total Saturated Cohesion Friction Piez. Type Unit Wt. Unit Wt. Intercept Angle Surface #FS Soil 1618 psf a 2.2 Desc. (pcf) 105.0 No. (psf) (deg) (pcf) b 2.2 No. 120.0 0.0 28.0 W1 Subgrade Bot-Geo c 2.2 W1 26.5 0.0 2 62.4 62.4 d 2.2 W1 110.0 60.0 30.0 120.0 0.0 Sand 250.0 27.0 W1 LONDS LONDS 60.0 f 2.3 Waste g 2.3 h 2.3 i 2.3 200 W1 W1 1200 1000 800 600 400 200

SCS ENGINEERS

PCSTABL5M/si FSmin=2.2
Safety Factors Are Calculated By The Modified Janbu Method

Expansion - East/West Phase II Section IHardee County Landfill F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\EXOPEX1.PL2 Run By: JHO 2/22/2004 4:38PM

Soil Total Saturated Cohesion Friction Piez. Type Unit Wt. Unit Wt. Intercept Angle Surface # FS a 2.5 b 2.5 Soil Desc. No. (pcf) 120.0 (pcf) 105.0 (psf) (deg) No. 0.0 28.0 W1 c 2.5 Subgrade Bot-Geo 26.5 W1 0.0 62.4 62.4 d 2.5 W1 30.0 e 2.6 f 2.6 110.0 120.0 0.0 Sand .. 250.0 27.0 W1 60.0 Waste g 2.6 CONDS TOURNET h 2.6 200 i 2.6 2.6 W1 W1 1200 0 1000 800 600 400 200 PCSTABL5M/si FSmin=2.5 Safety Factors Are Calculated By The Modified Janbu Method SCS ENGINEERS

** PCSTABL5M **

by Purdue University --Slope Stability Analysis--

 Run Date:
 2/22/2004

 Time of Run:
 4:38PM

 Run By:
 JHO

Input Data Filename: F:EXOPEX1.
Output Filename: F:EXOPEX1.OUT
Unit: ENGLISH
Plotted Output Filename: F:EXOPEX1.PLT

PROBLEM DESCRIPTION Expansion - East/West Phase II Section I Hardee County Landfill

BOUNDARY COORDINATES

19 Top Boundaries 37 Total Boundaries

Boundary					il Type
No.	(ft)	(ft)	(ft)	• •	elow Bnd
1	.00	85.00		85.00	1
2	276.92	85.00	289.92	84.00	1
3	289.92	84.00	298.92	87.00	1
4	298.92	87.00	321.92	87.00	1
5	321.92	87.00	322.34	87.00	2
6	322.34	87.00	323.92	87.00	2
7	323.92	87.00	339.52	81.80	2
8	339.52	81.80	561.57	81.12	2
9	561.57	81.12	567.52	83.11	3
10	567.52	83.11	648.20	110.00	. 4
11	648.20	110.00	668.20	110.00	4
12	668.20	110.00	788.20	150.00	4
13	788.20	150.00	890.58	150.00	4
14	890.58	150.00	1010.58	110.00	4
15	1010.58	110.00	1030.58	110.00	4
16	1030.58	110.00	1096.88	87.90	4
17	1096.88	87.90	1101.88	87.90	3
18	1101.88	87.90	1107.58	86.00	3
19	1107.58	86.00	1200.00	86.00	1
20	567.52	83.11	733.72	82.60	3
21	733.72	82.60	1056.53	81.00	3
22	1056.53	81.00	1076.53	81.00	3
23	1076.53	81.00	1096.88	87.90	3
24	561.51	81.12	733.72	80.60	2
25	733.72	80.60	1056.52	79.00	2
26	1056.52	79.00	1076.52	79.00	2
27	1076.52	79:00	1097.52	86.00	2
28	1097.52	86.00	1099.85	86.00	2
29	321.92	87.00	322.03	86.53	1
30	322.03	86.53	323.76	86.53	1
31	323.76	86.53	339.51	81.30	1.
32	339.51	81.30	733.71	80.10	1
33	733.71	80.10	1056.51	78.50	1
34	1056.51	78.50	1076.51	78.50	1
35	1076.51	78.50	1097.52	85.50	1
36	1097.52	85.50	1099.52	85.50	1
37	1099.52	85.50	1099.85	86.00	1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type	Unit Wt	. Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
· 1	105.0	120.0	. 0	28.0	.00	. 0	1
2	62.4	62.4	. 0	26.5	.00	. 0	1
3	110.0	120.0	. 0	30.0	.00	. 0	1
4	60.0	60.0	250.0	27.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	2	Coordinate	Points
Point	X-Water	Y-Water			
No.	(ft)	(ft)			
1	.00	77.50			
2	1200.00	77.50			

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	788.00	797.50	1618.0	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

SURCHARGE BOUNDARY LOAD DATA HAS BEEN SUPPRESSED

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 5.0

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	339.51	81.55	583.83	80.81	.05
2	583.93	80.81	836.07	79.84	.05

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Janbu Method

Failure Surface Specified By 21 Coordinate Points

Point	x-Suri	Y-Suri
No.	(ft)	(ft)
1	527.17	81.23
2	527.69	80.96
3	742.55	80.21
4	745.85	83.96
5	748.71	88.06
6	751.62	92.13
. 7	753.81	96.62
8	757.21	100.29
9	760.34	104.18
10	763.37	.108.17
11	765.78	112.55
12	768.01	117.02
13	771.54	120.56
14	774.92	124.25
15	778.31	127.92
16	781.60	131.69
17	784.88	135.46
18	787.00	139.99
19	790.35	143.71
20	790.83	148.68
21	791.16	150.00

interface)

FACTOR OF SAFETY = 2.2 (With Equipment Loads - Critical failure plane along geosynthetic interface)

SLOPE STABILITY WITH CONSTRUCTION AND OPERATING EQUIPMENT

Expansion Excavation - N/S Hardee County, Florida
F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\NS-SUMP.PL2 Run By: JHO 2/22/2004 7:08PM Load L1 L2 Soil Total Saturated Cohesion Friction Piez.
Type Unit Wt. Unit Wt. Intercept Angle Surface
No. (pcf) (pcf) (psf) (deg) No. Value # FS Soil 950 psf 1618 psf Surface a 1.6 Desc. (deg) 28.0 (pcf) 105.0 (pcf) 120.0 b 1.6 W1 `0.0 c 1.7 Subgrade 10.0 W1 Existgeo 62.4 62.4 0.0 d 1.7 30.0 W1 105.0 0.0 110.0 e 1.7 Cover 250.0 250.0 27.0 W1 60.0 60.0 f 1.71 waste 27.0 W1 60.0 g 1.7 60.0 Mod Bale Wi 60.0 127.0 60.0 0.0 21.5 H. Bale ĥ 1.7 13.0 9.0 0.0 300.0 W1 SC 107.0 i 1.7 W1 W1 75.0 110.0 j 1.7 0.0 35.0 SPw/Phos 124.0 137.5 28.0 28.0 W1 0.0 105.0 120.0 subbase 10 W1 0.0 105.0 120.0 sidesub 200 EXCAUATION OF W1 1200 1000 800 600 400 200

PCSTABL5M/si FSmin=1.6 Safety Factors Are Calculated By The Modified Bishop Method

** PCSTABL5M **

by

Purdue University
--Slope Stability Analysis--

Run Date: Time of Run: Run By: 2/22/2004 7:08PM JHO

Input Data Filename:
Output Filename:

F:NS-SUMP. F:NS-SUMP.OUT

Unit:

ENGLISH

Plotted Output Filename:

F:NS-SUMP.PLT

PROBLEM DESCRIPTION

Expansion Excavation - N/S Hardee County, Florida

BOUNDARY COORDINATES

17 Top Boundaries 65 Total Boundaries

No. (ft) (ft) (ft) (ft) Below Bnd 1 .00 84.00 281.90 85.00 1 2 281.90 85.00 284.90 84.00 1 3 284.90 84.00 294.90 84.00 1 4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 328.90 87.00 1 7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1			_		1 1 .	~ ' 1	
1 .00 84.00 281.90 85.00 1 2 281.90 85.00 284.90 84.00 1 3 284.90 84.00 294.90 84.00 1 4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50	Boundary	X-Left	Y-Left	X-Right	Y-Right		
2 281.90 85.00 284.90 84.00 1 3 284.90 84.00 294.90 84.00 1 4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 985.00 150.00 11 17 985.00 150.00<							
3 284.90 84.00 294.90 84.00 1 4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 3 18 326.90 87.0							
4 294.90 84.00 303.90 87.00 1 5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
5 303.90 87.00 326.90 87.00 1 6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
6 326.90 87.00 327.32 87.00 1 7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 <							
7 327.32 87.00 328.90 87.00 10 8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
8 328.90 87.00 349.90 80.00 10 9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
9 349.90 80.00 622.00 79.00 10 10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
10 622.00 79.00 650.00 86.00 10 11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
11 650.00 86.00 676.42 86.00 11 12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
12 676.42 86.00 749.92 110.50 11 13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
13 749.92 110.50 769.92 110.50 11 14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
14 769.92 110.50 874.91 145.50 11 15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1							
15 874.91 145.50 974.98 150.50 11 16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1	13						
16 974.98 150.50 985.00 150.00 11 17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1	14						
17 985.00 150.00 1200.00 150.00 3 18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1	15						
18 326.90 87.00 327.01 86.53 1 19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1	16	974.98	150				
19 327.01 86.53 328.74 86.53 1 20 328.74 86.53 349.93 79.50 1	17	985.00	150			0.00	
20 328.74 86.53 349.93 79.50 1	18	326.90				6.53	
	19	327.01					
21 343.93 79.50 622.00 78.50 1	20	328.74					
	21	343.93					
22 622.00 78.50 650.00 85.50 1	22	622.00	78	.50 650			
23 650.00 85.50 676.50 85.50 1	23	650.00	85	.50 676			
24 658.00 85.00 658.56 85.00 2	24	658.00	85				
25 658.56 85.00 675.00 85.00 1	25	658.56	85	.00 675			
26 675.00 85.00 750.00 110.00 3	26	675.00	85	.00 750			
27 750.00 110.00 770.00 110.00 3	27	750.00	110	.00 770			
28 770.00 110.00 875.00 145.00 3	28	770.00	110	.00 875	5.00 14	15.00	3
29 875.00 145.00 975.00 150.00 3	29	875.00	145	.00 975			
30 975.00 150.00 985.00 150.00 3	30	975.00	150	.00 985			
31 .00 76.00 640.00 76.00 1	31	.00	76	.00 640	0.00	16.00	
32 640.00 76.00 658.00 85.00 2		640.00	76	.00 658	3.00	35.00	
33 640.00 76.00 640.46 76.00 2	33	640.00	76	.00 - 640).46	76.00	
34 640.46 76.00 658.56 85.00 1	34	640.46	76	.00 658	3.56	35.00	
35 675.00 85.00 679.74 85.00 1		675.00	85	.00 679	9.74	35.00	
36 679.74 85.00 750.24 108.50 4		679.74	85	.00 750).24 10	08.50	4
37 750.24 108.50 770.24 108.50 4).24 10	08.50	4
38 770.24 108.50 875.28 143.51 4					5.28 1	13.51	4
39 875.28 143.51 975.00 148.50 4						18.50	4
40 975.00 148.50 1200.00 148.50 4				.50 1200	0.00 1	18.50	4
41 675.00 85.00 720.00 85.00 1				.00 720	0.00	35.00	. 1

42	720.00	85.00	738.00	76.00	1
43	640.56	76.00	738.00	76.00	1
44	738.00	76.00	742.00	74.00	1
45	742.00	74.00	777.00	74.00	1
46	777.00	74.00	799.00	85.00	1
47	799.00	85.00	809.00	85.00	1
48	809.00	85.00	835.00	72.00	1
49	835.00	72.00	1200.00	72.00	1
50	.00	60.31	15.00	60.31	8
51	15.00	60.31	195.00	63.66	7
52	195.00	63.66	418.00	67.96	7
53	418.00	67.96	628.00	70.00	7
54	628.00	70.00	640.00	76.00	2
55	628.00	70.00	628.56	70.00	7
56	628.56	70.00	640.56	76.00	1
57	628.56	70.00	1200.00	67.00	7
58	15.00	60.31	195.12	57.66	8
59	195.12	57.66	418.12	61.96	8
60	418.12	61.96	627.00	61.40	8
61	627.00	61.40	1200.00	61.40	8
62 .	.00	50.31	195.12	50.31	9
63	195.12	50.31	418.12	57.96	9
64	418.12	57.96	627.00	46.40	9
65	627.00	46.40	1200.00	53.50	9

ISOTROPIC SOIL PARAMETERS

11 Type(s) of Soil

Soi.	l Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Туре	Unit Wt	. Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	105.0	120.0	. 0	28.0	.00	. 0	1
2	62.4	62.4	. 0	10.0	.00	. 0	1
3	105.0	110.0	. 0	30.0	.00	. 0	1
4	60.0	60.0	250.0	27.0	.00	. 0	1
5	60.0	60.0	250.0	27.0	.00	. 0	1
6	60.0	60.0	. 0	21.5	.00	. 0	1
7	107.0	127.0	. 0	13.0	.00	. 0	1
8	75.0	110.0	300.0	9.0	.00	. 0	1
9	124.0	137.5	. 0	35.0	.00	. 0	1
10	105.0	120.0	.0	28.0	.00	. 0	1
11	105.0	120.0	.0	28.0	.00	. 0	1

PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric	Surface No.	1 Specified by	7	Coordinate	Points
Point	X-Water	Y-Water			
No.	(ft)	(ft)			-
1	.00	83.50			
2	313.05	83.50			
3	337.75	77.00			
4	638.17	77.50			
5	652.00	77.50		•	
6	660.00	82.00			
7	1200.00	82.00			

BOUNDARY LOAD(S)

2 Load(s) Specified

Load No.	X-Left (ft)	X-Right (ft)	Intensity (psf)	Deflection (deg)
1	665.00	674.20	950.0	.0
2	875.00	884.50	1618.0	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

10000 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of200 Points Equally Spaced Along The Ground Surface Between X = 375.00 ft.

and X = 622.00 ft.

Each Surface Terminates Between X = 650.00 ft.and X = 1000.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

The Following is the Most Critical Of The Trial Failure Surfaces Examined.

Safety Factors Are Calculated By The Modified Bishop Method

Failure Surface Specified By 9 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
· 1	610.83	79.04
2	618.44	72.55
3	627.42	68.16
4	637.22	66.16
5	647.21	66.66
6	656.75	69.64
7	665.25	74.91
8	672.16	82.14
9	674.33	86.00

Circle Center At X = 640.2; Y = 105.8 and Radius, 39.7

FACTOR OF SAFETY = 1.6 (With Constructon and County Equipment Loads - During excavation of the sump)

Expansion Excavation - N/S Hardee County, Florida
F:\PROJECT\HARDEE\09199033.09\GEO\SLOPE\EXPAN\NS-SUMP.PL2 Run By: JHO 2/23/2004 7:53PM Saturated Cohesion Friction Piez. # FS Soil Soil Total Unit Wt. Intercept Angle Surface a 1.8 Desc. Type Unit Wt. (deg) 28.0 (psf) 0.0 No. (pcf) (pcf) 120.0 b 1.8 Ño. 200 W1 105.0 c 1.8 Subgrade 62.4 0.0 10.0 W1 Existgeo 62.4 d 1.8 30.0 27.0 0.0 110.0 Cover 105.0 e 1.8 250.0 60.0 f 1.8 waste 250.0 0.0 60.0 g 1.8 h 1.9 Mod Bale 60.0 H. Bale 60.0 60.0 127.0 0.0 13.0 SC 107.0 i 1.9 300.0 W1 110.0 9.0 CL 75.0 1.9 35.0 W1 SPw/Phos 0.0 137.5 124.0 0.0 120.0 W1 28.0 105.0 subbase 10 28.0 W1 120.0 105.0 sidesub EXCAUATION OF CEN W1 W.W.L W1 1200 1000 800 600 400 200 PCSTABL5M/si FSmin=1.8 Safety Factors Are Calculated By The Modified Janbu Method SCS ENGINEERS

ATTACHMENT I GROUNDWATER CONTROL SYSTEM CALCULATIONS

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

DRAINAGE MANUAL VOLUME 2B—Procedures

DRAINAGE DESIGN OFFICE Tallahassee, Florida

1987

value of k may be very significant for porous pavements, but since no criteria are available, k values established by carefully controlled field or laboratory tests must be adjusted to reflect long-term effects of clogging.

A value for I of 2.4 ft³/day/ft of crack is recommended for most design applications. The value may be increased if local observations of infiltration and pavement performance indicate that an extra margin of safety is warranted.

For normal cracking or joints on new pavements, the value of N should be expressed as:

$$N_{C} = (N + 1)$$
 (15-14)

where:

 N_{C} = Number of contributing longitudinal cracks

N = Number of traffic lanes

Where pavement drainage is designed for other than normal cracking, N should represent the equivalent number of continuous longitudinal cracks.

Values for C should equal the regular transverse joint spacing (for new portland cement concrete pavements), or the anticipated average transverse crack spacing (for continuously reinforced portland cement concrete and bituminous concrete pavements). A C value of 40 feet has been suggested for new bituminous concrete pavements.

Transverse cracking caused by thermal and moisture changes can be extremely variable. Design values of C should be based on local observations of regular transverse cracking for the type of pavement under consideration.

15.4.2 GROUNDWATER INFLOW

The two possible sources of groundwater inflow that should be considered are gravity drainage and artesian flow.

Gravity Drainage

The following method (USDOT, FHWA, FHWA-TS-80-224, 1980) provides an estimate of gravity drainage by first determining the "radius of influence", or drawdown influence distance. This can be estimated, for practical purposes, by means of the expression:

$$L_{i} = 3.8 (H - H_{o})$$
 (15-15)

where:

L = Influence distance, in ft

(H - H) = Amount of drawdown, in ft (see Figure 15-1)

With L, Figure 15-1 can be used to determine the total quantity of upward flow into the drainage blanket. The average inflow rate can then be computed from the equation:

$$q_{q} = \frac{q_{2}}{0.5 \text{ W}} \tag{15-16}$$

where:

q = Groundwater inflow rate from gravity
 drainage, ft³/day/ft² of drainage layer

W = Width of the drainage layer, in ft

Figure 15-1 is based on a symmetrical configuration of gravity flow, but there is minimal error if flow conditions are slightly asymmetrical. Under these conditions, average values of H, H, and L can be used satisfactorily in Figure 15-1.

Some gravity seepage in addition to $\mathbf{q}_{\mathbf{g}}$ should be considered. This flow is designated as \mathbf{q}_{1} in Figure 15-1, and is expressed as:

$$q_1 = \frac{k(H - H_0)^2}{2L_i}$$
 (15-17)

where:

q₁ = Flow from gravity seepage, in ft³/day/linear
 foot of roadway

k = Hydraulic conductivity, in ft/day

 $(H - H_0) = Amount of drawdown, in ft (see Figure 15-1)$

L = Influence distance, in ft

Artesian Flow

Flow nets or Darcy's Law can be used to estimate the effect of artesian flow on groundwater inflow. The modification of Darcy's Law is expressed as:

$$q_a = k \frac{\Delta H}{H_O}$$
 (15-18)

where:

q = Artesian groundwater inflow, in ft³/day/ft²
 of drainage layer

k = Hydraulic conductivity, in ft/day

 $\Delta H = Excess artesian head, in ft$

15.4.3 NET INFLOW

The net inflow (q_n) is the sum of inflow from all possible sources, with an allowance for vertical outflow if significant. Procedures for determining vertical outflow may be found in the report FHWA-TS-80-224 (USDOT, FHWA, 1980).

ENTITLE PROJECT HANGE COUNTY CAMPAIL BROTHER OF THE COUNTY CHECKET FROTEGING FOR DIP'S SCARCINS CHECKED JA C	ENT	HA	n da	; ;	Co				TP	ROJ	ECT /	4/20	Na	<u>ځ</u> (800	12.70	7{	100	D/n	//	Γον				JOB 22/	NO.	133.	.05	
PROCESSING ON DIPLES SPACES WHITE A MICHIEL WAY WITH THE PROCESSION OF THE PROCESSIO	IJĒ	CT					be	700											,		ВТ	H	7			DAI			_
Tracespone 8 - Estimate + woth of influence (a) - use FD 0.7 Individual Manual Pipe grows Pstrante New nate 100 Dearrage Actual A users 9 + 5 were Note Into pipes Actual A users 9 + 5 were Note Into pipes Lompital A users 9 + 5 were Note Into pipes Lompital A users 9 + 5 were Note Into pipes Lompital A users 9 + 5 were Note Into pipes Spooms Pipe Spacing and (1973) to stimate Spooms Pipe Spacing Tyral and (1973) to stimate Spooms Pipe Spacing Tyral and cost Then Compital Spacing Tyral and cost Then Compital Spacing Tyral and cost Then Compital Spacing Tyral and cost Then Compital Spacing Annual Volume 2B Chapter 15 Substrate Dannage 2) USDA Drawage Manual Volume 2B Lando Chapter Spacing Assembles Drawage Property Spacing A Spacing A Spacing And I for I fo												-						125			CHE	CKED	M	2		DAT	E4/	1/04	Ī
Moral - Use F. D. e. T. Diamage Marcial Moral - Vise Fisher St. Chapter 15 To Diamage I Note to Longital Diamage Active to 15 to Diamage Active to 15 to Diamage Active to 15 to Diamage of Diamage of Longital Diamage of Spacing and Active to Diamage - (F. Nitral Siper Spacing and Active to Diamage of Diamage of Spacing and Active to Diamage of Diamage of Diamage of Diamage Diamage Perferences: (F. D. e. T. Diamage Marcial Diamage Diamage Diamage Spacing Diamage Diamage Chapter 4, Sizemface Diamage Chapter 5, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chapter 4, Sizemface Diamage Chap	_	<u> </u>			-	Ţ	T/-	T	16 50	107	<u> </u>	7.0					7,5	1			<u> </u>		0			•			
Perferences: F. D. O.T. Indicates Marinal Property 15 to property 15 to property		-, 			_		-										+	ļ,			1/			7	i				
Property of Supering	•	74	ro	٤٤	0	يمرا	5	A	_	. 5	57	Tim	WT	<u></u>	A	6	١١	72/	4/	IN	$H\nu$	4N	14	14	4				<u> </u>
Property of Supering						Τ	1/	1	-	Ü	3	F	10	0.	7	Ž	مرسيل	١	RCE	,	MX	NV	10/	<u> </u>	<u> </u>		<u></u>	<u>.</u>	Ļ
Pipe - paring Estructs New hors with Digitals Note 15 ms 15-1 m Digitals			~.i)							i.		i .		•/		•	•	: :	•	:					
Acyclic to some 15-1 for Determination of the second of th		•			•		۲				ا	:	:	:						į.	i	•	•	i	احرر		ļ	1	
- VSE FISMS 15-1 Pan DEFINATION OF THE PRESS OF STRUCTURES OF THE PROPERTY OF							4					1.	:	:	+	10	<u> </u>	400	43-	 	(<u> </u>	<u> </u>	<u> </u>	İ	+	+
Acrial at using 9+5 ruse USINA Dramage of complies of vising 9+5 ruse USINA Dramage of complies of vising from the conditional													A		 				+					 	 	 -			+-
Acroal - Using 9+5 USE USINA Dramage of Longing Dramage of Longing Dramage of Spacing And Acroal Propersional Rand (1973) to estimate Spacing And Acroal Propersional Rand (1973) to estimate Spacing And Acroal Propersional Rand Reveal Properties Equal an exact Them Properties I To Dramage Topics Invital Repersional References: To Dramage Invital Repersional Properties Dramage Bearing Dramage Dramage Properties Dramage Bandary Computer & Sustainance Dramage Properties & Representational Properties & Representa				<u></u>					+	-	V	٤	£	75	W/Pi	다	1/2	-/	7	Dr	D	214	11	1,~/	25	-		- \	+
Acron of Using 9, + 5, US USDA Dramaje of Compired — 15 page 15 page 1973 to Fernance Spacing and Acron of Page 15 page 1973 to Fernance Page 15 page 1973 and Acron of Page 1973 and Acron of Page 1973 and Acron of Page 1973 and Page 1974 an		į									_	7	4	ح	7	1	10	Fili	ina	701	<u>v</u>	20	72	10	70	PY	259	<u>[]</u>	1
PENDESCHING OF SAND FROM PSET 2003 CAS 1540AT PENDESCHING SPACING AND ACTIVAL PROFESSIONAL SPACE PARTY PROFESSIONAL SPACE PARTY PROFESSIONAL SPACE PARTY 2) USDA DESCRIPTION CHAPTER & SUBSULFIELD DESCRIPTION CHAPTER & SUBSULFIELD PROPERTY OF SAND FROM PSET 2003 CAS 1540AT SOMPLE TAKEN FROM 4-5 BLE (CONTINUED) LAND LAND LAND LAND LAND LAND LAND LAND					-				Ī		·	,	7	7	2											,			
PENDESCHING OF SAND FROM PSET 2003 CAS 1540AT PENDESCHING SPACING AND ACTIVAL PROFESSIONAL SPACE PARTY PROFESSIONAL SPACE PARTY PROFESSIONAL SPACE PARTY 2) USDA DESCRIPTION CHAPTER & SUBSULFIELD DESCRIPTION CHAPTER & SUBSULFIELD PROPERTY OF SAND FROM PSET 2003 CAS 1540AT SOMPLE TAKEN FROM 4-5 BLE (CONTINUED) LAND LAND LAND LAND LAND LAND LAND LAND				. /				+			, ,	ا		10	>	. 4		·	12.50	5	1)5	DA	1	Da	DIN	1015	11	r	-
PENDESCHING OF SAND FROM PSET 2003 CAS 1540AT PENDESCHING SPACING AND ACTIVAL PROFESSIONAL SPACE PARTY PROFESSIONAL SPACE PARTY PROFESSIONAL SPACE PARTY 2) USDA DESCRIPTION CHAPTER & SUBSULFIELD DESCRIPTION CHAPTER & SUBSULFIELD PROPERTY OF SAND FROM PSET 2003 CAS 1540AT SOMPLE TAKEN FROM 4-5 BLE (CONTINUED) LAND LAND LAND LAND LAND LAND LAND LAND			:	:					1-		<i>V</i> -	// ~	D	7	7 -7	7	۷.	7		1/1	47:	21	-	7 -			<u>. -</u> .		-
- IF NITTING PIPE Spacing and ACTUAL PROF Spicerns, Egral on close Then OD - IF NOT AF GUESS INTIAL PIPE SPACING PEFENENCES: IS F.D. O.T. DIDINAGE MANUAL Volume 2BY Chapter 15 Sugarhar Diamose 2) USDA DIAMOSE OF ASSICULTURAL Land Chapter 4, Sugarhar Diamose F Assicultural Land Chapter 4, Sugarhar Somple Taken From 4 - 5 Bes (60) Yearing 201 (70) (14) (15) (15) (17) (18) (17) (18)		۷0	du	VTS	ip			4			ļ'	1/1	5-	100	17	vn	0	* *	INU	400	77-	<u>}</u>	10	6	4//	1/10	12		
- IF NITTING PIPE Spacing and ACTUAL PROF Spicerns, Egral on close Then OD - IF NOT AF GUESS INTIAL PIPE SPACING PEFENENCES: IS F.D. O.T. DIDINAGE MANUAL Volume 2BY Chapter 15 Sugarhar Diamose 2) USDA DIAMOSE OF ASSICULTURAL Land Chapter 4, Sugarhar Diamose F Assicultural Land Chapter 4, Sugarhar Somple Taken From 4 - 5 Bes (60) Yearing 201 (70) (14) (15) (15) (17) (18) (17) (18)		يرك	DAG	IN	Ġ							Þ.,	98		50	De	12/	<u> </u>		. .			<u>.</u>						
PEFENENCES: 15 F.D. O.T. BADINASE MONION Volume 2B Chapter 15 Sugarnifores Diamoses 2) USDA Dromose of Agricultural Land Chapter 4, Sussimfaces Dromose Chapter 4, Sussimfaces Dromose Chapter 4, Sussimfaces Asmalle Taken From 4-5 Bet (Land 1											•	'				į		i	1	<u> </u>				<u> </u>					
PEFENENCES: IF NOT NE- 9, ESS INTO PE SPANNED PEFENENCES: IF DO, T. BADINAGE MANNO! Volume 2B Chapter 15 Sugsenface Diamose Diamose of Danish 4, Sussenface Diamose Chapter 4, Susse				1					_		15		/n//	7)	1/	2	יים	۶ ،	5000	din	14,	AN	0.	Aci	TVA	À			,
PEFENENCES: 15 F.D. O.T. BADINASE MONION Volume 2B Chapter 15 Sugarnifores Diamoses 2) USDA Dromose of Agricultural Land Chapter 4, Sussimfaces Dromose Chapter 4, Sussimfaces Dromose Chapter 4, Sussimfaces Asmalle Taken From 4-5 Bet (Land 1			 	ļ						 i	4		ر الديد		V	7	- A	5		۸/	4		0/0		7	1/50			
PEFENENCES: 15 F.D. O.T. BADINASE MONION Volume 2B Chapter 15 Sugarnifores Diamoses 2) USDA Dromose of Agricultural Land Chapter 4, Sussimfaces Dromose Chapter 4, Sussimfaces Dromose Chapter 4, Sussimfaces Asmalle Taken From 4-5 Bet (Land 1		ļ		 						[יק	10	4	All.	NU	10	5	<i>E</i> ;	7.00	<u>γ</u> μ	9/	<u>د</u>	40.	3 6	+	νς	-		
PEFENENCES: 1) F.D. O.T. BIDINGSE MINIS VOLUME 2B Chapten 15 SUBSUNFACE DIAMOSE 2) USDA DEDINACE OF AGRICULTURAL LAND "Chapten 4, SUBSUNFACE DIAMOSE CHAPTEN 4, SUBSUNFACE DIAMOSE TAKEN FROM 7-5 BLS (GO. YEO-11-VI) 1- 7.4x10-V CM/1 (MINISTER) 2 154cm 12 110			-	 						 	ļ	0	K	<u>-</u>						- 					+				
PEFENENCES: 1) F.D. O.T. BIDINGSE MINIS VOLUME 2B Chapten 15 SUBSUNFACE DIAMOSE 2) USDA DEDINACE OF AGRICULTURAL LAND "Chapten 4, SUBSUNFACE DIAMOSE CHAPTEN 4, SUBSUNFACE DIAMOSE TAKEN FROM 7-5 BLS (GO. YEO-11-VI) 1- 7.4x10-V CM/1 (MINISTER) 2 154cm 12 110			1	1						Γ	11	7	100	7		11 8	- 6	249	SiC	14	117	101	٥	عرور	2.5	PA	011	797	
Proposed Ford From PST 2003 CAS 2500T Somple Tokson From 4-5 BL5 - 18 F.D. O.T. Bringst Monicol Wolfme 218 - 2) USDA Deprops of Agricultural Land Chapter 4, Sustanface Deprops of Sond From PST 2003 CAS 2500T Somple Tokson From 4-5 BL5 - 7.4x10-V cm/s (con 160 m) 1 Ar (1d) 2.54cm 12 m)													-				′								<u>.</u>				;
Proposed Ford From PST 2003 CAS 2500T Somple Tokson From 4-5 BL5 - 18 F.D. O.T. Bringst Monicol Wolfme 218 - 2) USDA Deprops of Agricultural Land Chapter 4, Sustanface Deprops of Sond From PST 2003 CAS 2500T Somple Tokson From 4-5 BL5 - 7.4x10-V cm/s (con 160 m) 1 Ar (1d) 2.54cm 12 m)			1	1	1																								
Proposed From PST 2003 CAS 2500T Somple Taken From PST 2003 CAS 2500T Somple Taken From PST 2003 CAS 2500T CAMPLE TOKEN FOR THE TAKEN FROM PST 2003 CAS 2500T CAMPLE TOKEN FROM PST 2003 CAMPLE TOKEN FROM PST 2003 CAMPLE TOKEN FROM PST		1	」	/				•	4 !		1																		•••
Chapter 15 Sugsuntaire Diamost 2) USDA Deprine of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Chapter 4, Sussuntaire Diamost of Agricultural Chapter 4, Sussuntaire Diamost of Agricultural Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Land" Chapter 4, Sussuntaire Diamost of Agricultural Diamost of Agricult		_/<	21	7	77/	VG 1	<u> </u>	-+		7	- ~	-		/	/ 			 مے آد ۔		نا مالم		/	-	1/	7	-	253	7	
2) USDA DEDINOSE DE AGRICULTURAL LANDIE CHAPTER 4, SUBSUMFRICE DIDINOGE PERMEDBILATO OF SOND FROM PST 2003 CAS REPORT SAMPLE TOKEN FROM 4-5 BLS (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI)		ļ							<u> </u>	-	رن	. 0	11		مزر	CKI	~	15/1	-1"	110	~! ~	91		Vo	lun	14			
2) USDA DEDINOSE DE AGRICULTURAL LANDIE CHAPTER 4, SUBSUMFRICE DIDINOGE PERMEDBILATO OF SOND FROM PST 2003 CAS REPORT SAMPLE TOKEN FROM 4-5 BLS (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI) L=7,4×10-V cm/s (LOS YGOMIN/2VI)									<u></u>	ļ	CI	10/	07	مم		15	ار	50	1950	INF	202	<u>با ا</u>	NA	مهر	059	Ξ			
PFAMSOSINIA OF SOND FROM 75\$ 2003 CAR 1540NT SOMPLE TOKEN FROM 4-5 BLS X=7,4×10-7 cm/s (605 X60710)(2V) (1m) 1AC (1d) 2540m) 12 m)									İ	•	1	i	•			•		İ		i	į	•	•		•	•			
PFAMSOSINIA OF SOND FROM 75\$ 2003 CAR 1540NT SOMPLE TOKEN FROM 4-5 BLS X=7,4×10-7 cm/s (605 X60710)(2V) (1m) 1AC (1d) 2540m) 12 m)		1		1					b)	1	15	ZDA	7	11	Z	72	2	200	- 1	df	2	1	54	1CV	110	رمم	/		
PFAMSOSINIA OF SOND FROM 75\$ 2003 CAR 1540NT SOMPLE TOKEN FROM 4-5 BLS X=7,4×10-7 cm/s (605 X60710)(2V) (1m) 1AC (1d) 2540m) 12 m)		+							7	}						10	n)	11	/	60	145	1	11	4,	26	. 1	200	-	
PFAMSOSINIA OF SOND FROM 75\$ 2003 CAR 1540NT SOMPLE TOKEN FROM 4-5 BLS X=7,4×10-7 cm/s (605 X60710)(2V) (1m) 1AC (1d) 2540m) 12 m)		-								+								-		ZIEY	QJ. <u>.</u>		7	24.	يويرو	· • • • • • • • • • • • • • • • • • • •	751		
PFAMSOSINIA OF SOND FROM 75\$ 2003 CAR 1540NT SOMPLE TOKEN FROM 4-5 BLS X=7,4×10-7 cm/s (605 X60710)(2V) (1m) 1AC (1d) 2540m) 12 m)									 					ملاک	1/3	M	772												
Somple Token Frim 7+3 825 = 7.4×10-1 cm/s (605 160 m) 21/1 1 m (14) 2540m 12 m)									ļ	<u> </u>																			
Somple Token Frim 7+3 825 = 7.4×10-1 cm/s (605 160 m) 21/1 1 m (14) 2540m 12 m)										1																			
Somple Token Frim 7+3 825 = 7.4×10-1 cm/s (605 160 m) 21/1 1 m (14) 2540m 12 m)		1	RS		n	90	2//	/ 72	4	0/			500	~ /)	X	10	7	7	5	2	00	3	Ž.	A 3	1	& A.C	207	
Z=7,4×10-1 cm/s (605 (601 in)/24) (21) (2) (2) (2) (2) (2) (2) (4-1-4-		4	ت. ۲ <i>.۲</i>	21.47	17	\$		1	 		يون.				4	<u>ب</u> م	/5	سلح بر		•						
(1m) 14 2,540m) 12,m)					دا	(A)	MA	12		1.7	ΩK.	٢,^	<u>. </u>	1	wi	<u> </u>		-	7	، پ					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		 -	7.	,
(1m) 14 2,540m) 12,m)									 						, 		-,,		-7	<u>ا</u>		, f	-6	20	76	07	إيدا	14	4
(1m) 14 2,54cm) 12,m)	İ													X	7	Z	4	110	1	0	7/	<u>/ </u>	<u>,</u>	1	<u>. y</u>	1 60	<u> </u>	$\sum \int f$	9
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																													
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1					1	1													2	540	1	12	w)	,	
									+	+								1	1	0	/		<u>~</u>		.r				

FIGURE 15-1 Chart for Determining Flow in Horizontal Drainage Blanket

 61	oun	Dwa	1750	Ó	EL	83.	5 I	EC	200	1_																		7	!		ETT	i				SUBJECT
7										ļ						/	ļ									stern 🐔	oci	17	. 4	o //q	CT	ON	ne	Ndz		
	/					7(-									TAR	ich)														EL	81.5	9			
[1	111	EL	222	13.6	7	BI	170/	n	01-	00	32.	21	ļ											1.2								=0.	,36/ Ib		_
ا		1//	141.	2/1/2	100		101	<i>ב</i> יקיל	1	177		1/1	14	1/	1/1			1//	///	///	144	(///	(/,/			6			222	- 	7711	اب ابریس اس	<u> </u>		6.	2/
	- 8	2,4	76																				A 10 1	13.1	(1)		10				///	5. - EL	UBBA		12/2	772
						ļ			ļ	ļ	ļ	ļ	ļ	6,4	7	יףו																-EL			7516	26/2
						ļ			<u> </u>				ļ	ļ	 																	-2		· P.)E 1	1789
		ļ	ļ	ļ	 			ļ	ļ		ļ	ļ																				ΕL	72	5	1	H
		144	_	_	71.		ļ								†				EL	69	.77		-	ار ب	Z.		رتبرر	دير	7	X	(4 6//	10	24)		81	777
		4 92	4.0	MAG	7	1.5	25,60	موتهوت		ادي-ر		* * *	/ XX	~~			***	6	1/41	1									50,	18,	rins		4-5 5[2)	65	(80)
50	10	anin	17	1-1	7						ļ	ļ			ļ	/،ن مح	Box	W)														V 4	2 24	אכם	11/1	
	ļ	ļ`	17	\mathcal{I}	20	v3)	ļ			ļ		ļ		·	-			(P	SI.	200	3)														240%
				ļ		. 					12.6		-	. مراز	سا.			27	06.	225	·····	ر ار کست	671	/ ኅ	Da	PEN),~ <u>,</u>	- a	<u>ب</u>	, מק	2,1	5.				
سنت	ļ	10	178		4 n	300	5	AT	7. A	4/1	4	61	000	Du	101		77	na	she	UT	6	W55	510	٤	(t	EC	2002	. \/	lue	(د						
	į .	_	1	1	1.	1 1	.	i	į	1/2	1 ~	Ι.	بدرخ	أمرا)	ATC.	٠	195	1/2	د را	503	30	58 1				<u>.</u>								SHS	Off Vie
	- (ינקב שבי	94.3	174	-6	, Jon E.	<u>ه</u> ک کم	7. 9	mo.	57	CON	يع ي	1,00	17) (٤	70	p	5 F	OLA	7		<u></u>	12772	018	T	Ag	vit	n	721 ic	t:~<	5	m os				1
	83					2 2 .					ļ	ļ	ļ	. 						<u> </u> 	6	104	n)	מה	782		~1 <i>9</i>	109	018)				,	N/N/X	
1						+		ļ	ļ	. .	 		ļ						/ / -	FI	9	2 <		60	7:) -	- /	4, 7	3	<i>[4</i>					1 '	
t_{i}	ļ		D		<u></u>		1	7	•	88		ļ	ļ		-	 		<i>H</i>	/ = () =	EL	6	8,7	7	- ,	79,	98	=	//.//	/ A	·					₽ E	200,2
				ļ	 	 		Ho	;	4	10							#/	Ha	=	3,	62	ſŦ						,							67
¥	<u></u>	双	/ <u>/</u> //		7 8	⋘	$\langle x \rangle$	V		1/00			·	†····	1		-]			•											ļ	204	22 WB

SHEET

LIENT //	· ·	1			Т	PRO.	ECT	//	,	/	/	7		/	0/	//			SHE		JOB N	10.	OF_	ے۔	1
IENT // THANA JBJECT	22	Lou	17	7/									,	LAN	H.		BY	1.1/			09/	791 DATE	37.0	7	+
				10								C 860				\dashv	CHEC	/7/8	<u> </u>		_	DATE			┨
	· · · · ·			· · · · · ·	200	.7 کر	side	E ;	OF.	4	onc) / (7		····	4		-	hts.				4 0	7	4
													j												
USE		75	vn	-5-	13		′	F	Dd	7	m	DNU	no l												
		7											ı												
			~	- 2	-i			><		0.	54		-4	-				J.	<u> </u>	,	4,	23	6		
	7	4		-	7						<u> </u>				1										
+			1		7,			~		^	*	a	7				Z]	1/0	_		. 1	<i>A</i>	١		
				o	/))))	972						<i>™</i> ∂		4	94	-/4			
	<u> </u>	_	4	//	//	11		-	رستيس	يريما															
	 					<u></u>				ļ	-					<u></u>									
	ļ		1				7		11	<u></u>	 					رير									
			Li	=	2	18	[]	1-1	to	ļ	ļ	 	ļ		٤	9.	N	0~				Ť	ļ ,		
	ļ			2	ز	48	(14	17:	3 -	- //	•///	ļ	ļ	ļ						וסכו		IAN	vo!		
	<u> </u>			=	3	8	3,	62	<u> </u>	<u> </u>				ļ								ļ			
	<u> </u>	<u></u>		=	/.	3. 7	76	ļ	ļ	<u> </u>	<u>.</u>			ļ								<u> </u>	<u> </u>		
	<u> </u>		İ	<u> </u>	<u> </u>								ļ	<u> </u>	ļ	ļ						ļ			-
1/11	10/	9	VES.)	OF	2	<u> </u> _=	4	15	F															
								,	7																
	Z	1+	- 0	سحا	(W)	Ī			_=	\Rightarrow		/	3,7	6	+ 1	015	-14	(5)			Ī				
	+		40	<u> </u>		†				-	-		-	//.							1	Ī			
	†	† <u>-</u>	.ب	<u> </u>	· 		-	-	ļ		1			1.7.5	<i></i>	İ		ļ	 	1	†	1			
		†	 	·	- 	†	†	·		=	⇒		22	<u> </u>	†	†	†				†				
		,,,				+	 	·	·	+	-f			Ĭ		 	·			 	 	·	-		
		1		ZZ.	+	 		_		+		15	//	<i>i</i> /	<u> </u>	 				 	†		-		
				10						+				1//						<u> </u>					
		 														-		ļ	- 		-				
												7	0.	2	<u>.</u>	<u> </u>				ļ					
		ļ			 	-			-							. .				 	-				
From		200	3)		17	un	7		7	501	nc	15	-/			ļ.,		- ,		-					
REPOR		4	7			<u> </u>									# =	0.	. 94	4		<u> </u>	<u>.</u>	,			
K= 1	XIO	7 61	*/J						#	<u> </u>	K	//	-11	(<u> </u>	>	2			1	H-	46))		
											Z	2		1			1	Z	-		20	#)		
= 0	99	w	//									7													
		1	,										72	7	-	=	11	781	131	62)				
=//	98	9/	dou	+	- 		1		-		1	1	72	-	1				0,8		<i>-</i> :				
	1		V			-				+					=	- -	•	i	i			7	wid	ار د ا احدا	†
9;	///	7,	1//	2				210	7	+		>	9		=		9	74	3	4. 3 Fa 3	15	J Y	7/4	احلا	
7,	<u> K(</u>	<u> </u>	<i>1</i> 72.	L. -	7	17 T	2 () ()	7/66	1			2	17.		E		<u>ئىدۇر.</u> مەرىخى	مران		1/2	/	V	4,~	'F/N.	
	2	+1				7(151	76								٠ .	101/	10	<u> </u>	7/	Ąć	Ay	10	10 14	ļ

LIE	NT/	pn	di	િલ	6) _			P	ROJE	СТ	H	An	129		01	17	g ((pr	-if	11/				JOB 1 09/	990		09	
SUB	JECT	•						6	a a.	ئر م) ₄	107	~	- Z	NT	4 ~.	05.0	,		/	1	VII	€ 0			DATE	= .		
_						_									CAN						CHE	CKED	145	<u> </u>		DATE	1/1/	24	•
	;	Ţ	-;-	- ;	7		:	;	1	7.3.	1	76				7	/-										,,,,		
	ļ	ļ					ļ	ļ									·												
		1		ON	20	1.	٤.	<u>.</u>	\Rightarrow	ولجسره	91	~~	55		109	[/.	219	~7											- -
					1												•	:											
	·	1	1					6	7	-		4			7~	-	-												
								7	_		·k	-QA	1-77h	y Cy Cr	7/~		M	4	1		·								
		- 												ļ			·	 	ļ										
						7	ļ. -	-					/+-	 			 			 	7_		/ /	ļ <u>.</u>	//				
				ستم	٤ ۽	71	11	201																ow!			ļ		
							<u> </u>	<u>.</u>		_	7	ر بسر	anv	s (c		υç	4	9.15	سرره	15	77	<u>k</u> ,	20	7 Z	0	E	ļ	ļ	ļ
										:				•	25,	i	4	1.	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u>.</u>
							1												, no	7	,		D 5		اررم		n	EV	
						ļ	1			7			3n		7.7.	. 	-		-YXW-			7					-]]
							-		-			,			Ton	ļ		··	٠	†	†		1	†	†	†	†	 	†
											'-	:			·				1	+	+				 			 	
						ļ						11		•	15	•	:		: -		:	;	:	 	<u> </u>	<u> </u>			
												ļ	4	۲	h	rd	77/	x /	Jr.		vi	417	4	ul 77	VOF	P	PE		. <u> </u>
																				<u>.</u>	<u>.</u>				<u>. </u>	<u> </u>			<u> </u>
	1/	V	77	0/	5	15	5	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	= 4	75-	1	ET	-															
					Z	· i · · · ·			1					1	†	1	-	2 2	10	Fy 3	11	Ø4					1		T
					ļ				:		,		/		-							V: '		+	†	†			+
					ļ						ور	79			+			7 2	1	11.	-1-/	7			-				
ļ					ļ							.ļ									<u>.</u>	7							
											ļ				\Rightarrow		9	///	78		1/	NA	4	(1	ν π	1	210	25)	<u>l</u> .
ł															<u> </u>								/						
								U	58		6	15Z	00	p	PE	:	50	RC	IN	5	\$9	LUK	77.6	رنه	7	Ö			
				 	†	-																		D			~D)	W.5	Ī
-	~	_	/7	707	=	1.	2 6				·			! 3 <u>Y Z</u>		f	1/2		7	, Y L. /	7	Z	XX.1			72.		7	1
			~	1						ļ	ļ					-		-را		_		-	-	_	4	7			
								باد		C	سسن					٠ ب	1	/	<u>۷ /</u>			4	1	2 A.	n				∤-
.			7	*			X	6			1 .	/					Y		7										
1					<u> </u>						<u> </u>	/, //	17							1.									
Ī				7		\$/	\times	\searrow		Ŋ	11							_										_	
-				-						<u> </u>	-				1	ک	=	12	4	13	9	42	100	1	2	2 4	2	11.1	K1
-				ļ						 								/		<u> </u>	-	171		(-	 /-	(11.1	1 .7
-			 							 								·	7	1/1)	O	' ' ' (c	INY						
			<u> </u>	<u> </u>	-	سليم			<u></u>	ļ	war.							 -	<u> </u>		<u></u>								
				A	X								- de			5	-	. 4	3,	8	/2	_		Pr	12	11	_/		
ľ		6	16	/ /		61	, =	4	3	/-					1	1						/	-			<u> </u>	_		
ŀ			r.L.	-		ع ح.		.¥	<i>-f</i>											1	\					$\overline{}$		7	`
1			1/2			 بار				<	-	2/	2	سندم	U	24	-		10	ہے	1				7	2			7
1	•		1	(0)	Ψ/	ر د	, [-	ء :		1	/؛ ت	/ :		- ! \			··Ų	∵ : .	//:		N		(;			i.	/

SUBJECT COUNTY PROJECT HANDER COUNTY LE EXPANSION 19/99/37.09

BY HO DATE

DATE CHECKED AS SOUTHERDE USE FIGURE 15-1 H = 15,6 /r H = 9,6 /r H - H = 6,0 /r 0,5W-10 $L_{1} = 3.8 (4 - 1/6)$ = 3.8 (6.0) = 22,8 F INITIAL GLESS 40 AT 4 + 0.5 (a) => 22,8 + 0,5 (40) = 4,46 40/96 = 417 From Figure 15-1 #= 1.4 72 = 4,24 FT3/day / WIOTH 9 = 1,56 A3/HAY/W.DT = 5,76 HO LAND / WOTH OF POR 5 = 40 M = 1,43 /7 A MATERIALS () 77.5 1a = 9,60 Try 30/+ 72/2/3/7/2///

			<u> </u>			_									_												
IEM		JAN	dee	e C	0		\perp	PRO	ECT	Ha	nd	e E E	Co	MT	7	LAN	-D/	//	Ex,	AN	JIGA	<u> </u>	JOB N	IO. 6502 DATE	27.0	5	_
BJE	Cl			<u>. </u>			ino	in	26	197	31	7	NT	inc	4 p 1	·-·		i	BY ,)		1				
									م تدر										CHE	KED	f	15]	DATE	9/ 1/i	2	
																					1				77		٦
						, ,	_	7											1		†	-	†				-1
			م کو	7		رب	>	ا ر	1/7								 										
		-			- -											<u> </u>	ļ										
	<u></u>			<u>نر</u>				54)	، ک	93	8		ļ	ļ										_
						4	2							ļ	ļ		ļ	ļ									
												<u> </u>		<u> </u>	<u> </u>		<u> </u>										
						4	/ 4	Ή		\Rightarrow	>	3,	123	+													- 1
						t	/																				
						9	7 =		1.4	5	1	, 3	/1		/	7	7/ 1	¥ 0								1	
						7	*		1.1.¥	/	i	21	1/4	7-4	}	2	N U.	¢	pe								
						7	ļ			-			97	7	ير س	7 / 10	01	<u>در.</u>	yn								
						<u>'</u>			(1	1	<i>L</i> 3	7		7	<u></u>			-	 								
				ļ		77	DZ PO	!	1	1	<u> </u>	Xd	47 /	wi	ע ד ע	0/	P	102									
			<u></u>	<u> </u>	ļ		ļ	ļ	ļ	ļ	ļ	ļ	-	ļ				-		ļ							
			ļ	ļ	US	٤	ļ	US	DX	} }	PY	ع ۾	5	PA	E.I.	V 5.	. 	£9	VA	770	ر	ļ					
		ļ	Ì			ļ		Ì	ļ				<u></u>	<u>.</u>				↓′		<u> </u>		ļ	ļ			ļļ	
	Ę	=19	10	F	50	811	JE.	2	3,5			<u>.</u>		=	ب	30		<u> </u>	<u>.</u>		_/		1				
						i	1	•					a	_	-	10	8	\oplus	<u> </u>		(0	K				
		EI	EV	οF	P,	PC		77,	42								'				-	-					
=					 		 	+		-	-	****															, -
		1	1		<u> </u>	1		1	-	1	1	1		<u> </u>					1								
		 	†	†	·			Ť	†		1	1	<u> </u>			15/	4_	-5	7	1,25			1	†			
		 	 			 	+	†				-		 		7.7.		1		1	†	†	†	 			
,	77	117	ر رنگر				6							 					47	177	1//	1//	1//	1//	177	77	
//					¥7)		<u>_</u>	17-	-					 	<i>†-</i>	<u>6</u>	///	44	EV. J. AJZ	4//	4/7	X/_/	$\frac{A}{X}\frac{f}{f}$	1/1	4//		
-	141	161	100	11	44			\rightarrow	ļ	-						[i]//	[]\] []\]	<u>/</u> -	/ // /	47	616		100	1 1 2	11	4	<u></u>
		. 			·	\sim	4			`		,	-, -,-		44												
	ļ	 	. 	. .			ļ	$\stackrel{\sim}{\sim}$	W			///		///									<u>.</u>	 			
	<u> </u>		<u> </u>				<u> </u>			\leq	8/1	///	18/	//	, .								7			<u> </u>	ļ
													<u> </u>	128	3,5	0		_		-	1=	/	1,08	<u> </u>		<u> </u>	
			Ţ															\perp		-	<u> </u>		<u> </u>	_	\biguplus		
		1									(Y			-		Ž	<u> </u>	0,2	17	-	-	-	1		
	ļ		†					+				1	FI	1	72 <	7)		· · ·						7	17.	44	†
			-					+				1_		/_		_			30/	<u></u>					<u> </u>	1	
												Į							/٥ر	<i>T</i>						1	
	ļ																										<u>.</u>
	<u>-</u>		<u>.</u>													·											-
	ļ		<u> </u>																								ļ
	•	į	•	•	į	•	•	1	1	1			1	•	- 1	1	1	- 1		:	1	1			1	1	

NT IEC	11/1	n	149	C (1			PP	OJE	CT	4n	nc	150	· (0	<u> ۲</u> ۸	ry	L	F	Ex	PI IB	ons	HU ED	SHE		10B N	0. <i>998</i> Date	OF_ 73,		
	•			·				9	10,	n.d	~ R	TEN	7	ZA	179	FN	حرع	_	-		-	HEC	(ED)	(d)			DATE			
	-	-	•	- !					-	<u> </u>	00	7¥.	الميايا	<u> </u>	;		- 1				+	-	-	1	4	+	DATE L	#	04	\dashv
	11							<u> </u>						 	-					 										
(W	2		2√	n	[15	1/					<u> </u>		-					-										
							/	<u> </u>						<u> </u>																
		+	-		-		Z,				+-	0	,5	W					 			// -		15	-/		\mathcal{L}			
-							-	+	\dashv				ļ								Z	7 	=	9	10	- /	4			
							7	~	-}	\searrow	\downarrow									1/		9	=		7	/ /	4			
				L			7	+	\dot{T}				-	-	+					Z /		7.0			/ -					
			7.	<i>!</i>			-		1	4	7	£	1	1	1	972			+											
							·		-1"	; D	}		╢-	††		72	•		1		1									
						ļ							1	-					1											
			/	Ζ.	/ />	1/2	\$	∑ ×	1/1	X	1/2	42	22	A.X	ζ,	29	,													
-							1	1]
									\angle_{i}	,	=	3	Ø (/	1	15	<i>5)</i>													ļ
											_	3	9	6	_	75)									<u> </u>				
			1.							٦		_	24	4	3	T		ļ												<u> </u>
				ļ	ļ.,			_				<u> </u>				<i>'</i>		<u> </u>							ļ	ļ	ļ	ļ	ļ	<u>.</u>
		11	11	20	/	ر م	25	1		35	1	ĵ. [ļ	<u> </u>	ļ		ļ	ļ
				į	1	' i		ì	- 1		ί′.	1													ļ	 	ļ			
			Li	7	0	2,5	(ب	/				<u> </u>	~	7,5	-			<u>.</u>							ļ				-	
					ļ		4	H)		<u></u>						ļ								<u> </u>	-				
_			ļ	7		1	,- 				_		<u> </u>	70	,		ļ								ļ		ļ		-	
			ļ	-	/	#	υ			-	·‡	4		75											 					
			 						<i>/-</i>	25	1 ~	<u> </u>	73	-/ 53	 2										+					
															•	<u> </u>	0				×	4/		22/	/	17	1 11	17	,	
																	72		7			1.0	-42	1.1.1	YAC	7	WIC	-1/5		
								-		ļ							7		۔ راختے		7.	75	7	7	/	1/		101		
		. 1	ļ	15		م ار	7/	,	5	<u> </u>	-)/	ل				7.1				<u></u>	<u> </u>	f4	1/1	24	7	~ıd	<u>/ N</u>		
		د//	· / /	7										- A V		ا					ر، ر	1	-				-30 <i>,</i>		7	<u>-</u>
			+		ے د	/ v	7	-4	or L		<i>V</i> ~	# L	4	71	<u>''</u>	7							-	+	+	<u> </u>	1801	457	- / ₂ /	25
							4										_	-	<	EMTS-	3	35	ſ.) 		Ì	يمرده			
						1	1				-					1										/-	יסיים	ð	77	2
			+6-)			ا رم		 =>	9			4					4			<u>.</u>		25	:	-			5/	<u> </u>)
						1			*******	†		Ŧ	-/-/			·				<u></u>	÷				-	-	4	1	7	,î

NT /	ton	Nac	L	1000	LTILY		PROJ	ECT 7	40	nd	46 -T	Cou.	274	<u></u>	an-c	Phi	(E.	<i>YP K</i> BY	Me	' <u>6</u> ~	,	JOB N	O. I/G// DATE	QZ.	09	7
					' <u>ë</u>	on)VH	da	<u> 187</u>	21	10	VE	1.69	<i>P</i> 7				CHEC	//// KED	$\frac{1}{a}$	m		DATE,	ſ i		4
	······································	- ;			<u>-</u>	 ;	- ;	<u> </u>	bu	12/5	108		····	- 1	Ţ		_	<u>-</u>		4	25		DATE 4	11/0	4	4
																										_
	X	152		P	5,	12		15-	1																	
			١	<i>^</i>		4	,		:		- ノ		ח, כ	, ,												
	†		1															,	4:	=	17.	9	F			
									_		†											4				
			}	Н			·	2)	7	\supset				. 1000 .			1-	4/	=	//	50	1.			
				FI				Ğ	/	χo	1	1		~~	·		-	7	<i>'U</i>		6.		//-			
										X)	·····/	ر)	9.											
	-				πŢ	<i>?</i> ∕~	1	(/)	s /s	تر يہ اور		X.ca	100	× ~	XX/2	्रि										
				12	~	~~	M-1	<u>ጽ</u> ረን	×ι	S.Cr.	ure	X X &	100	2%. ^												
						ļ	····-			ļ.,,	ļ	/_	ļ,	-		ļ						ļļ				
						ļ	L	}=i		4	47	-	-4	•							ļ					
						<u> </u>				3,	\$ (6	,50)								ļļ				
									-	2	4	7	-[14												
	-					<u>†</u>	<u> </u>	ļ			1	<u> </u>				1										
	1771	1/	4	120	· · · · · ·	<	<u></u>	4		<u> </u>	<u> </u>	Ť	†		<u></u>	†	†				 					
-/	77/1	¥	1		·		<i>U</i>	4		-	†		†	†		 	 				†	-				
	1	ļ	1	7		1	-	5	ļ	1	91	-	 			· -	 		-			 				
			10							10	// 4	<u> </u>			ļ		ļ				·					•
		7.	10				ļ	 	ļ						·	 	·	ļ			 -					••••
			1	7	ļ	 -	-	5		3,	-					 	 	 				 				
			1	10		 	-	+2		7	7						-		ļ	ļ		-	ļ			
	<u> </u>	ļ	ļ		ļ	ļ	<u> </u>	ļ			-	<u> </u>				ļ	<u> </u>	ļ	ļ		<u> </u>	-	ļ	ļ		
		<u>.</u>	ļ		ļ	ļ	ļ	ļ	ļ	175	· / /	15				<u>.</u>	.		ļ	<u>.</u>			ļ	ļ		
		<u> </u>	<u> </u>		ļ			ļ	ļ			<u>.</u>			#	3	‡	1,9	<u>/</u>	<u>.</u>		<u>.</u>				
																1	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>
		1	Ī											9	, .	+	4	38	1	73	POR	34				
		-													_,			79				7				
		. بر ج	- A	-	51	<u>'</u> 29	5 0		1		1			7		-	41	7	1	3,	1	7 /	1	ĺ'n.	100	1
		_	77	J		- 4.6	31						7	1907	₹		21.5			-		++/	1-4:	17-	4.4.3	j
///	1/8/2	7//]		-		- 		-	·					- 				-		+				·	
	1	1. 22	1		<u>;</u>		16	2	, ک	h	4 1		-	اربر د ــــــ	سار								1	7		
18.	3			17	\geq	\leftarrow	-						4-								qu	177	92	4	-	
£		(<u> </u>	-	<u> </u>		10)	<u>.</u>			_	, 			5 =		70	17			4	-	17	Ţ	<u> </u>
	77,1	-	ļ				<u>.</u>	<u>.</u>					1/		0	14	= 1 /	13	2	1		/	16	//<	-//	ļ
	i			•		•	ł	į	1	1	!	•	1	1	•	1	1		- (1		1				į

Groundwater Interception Pipes Hardee County Landfill Expansion

Westside of	Expansion	Southside of E	Expansion	Southside of I	Expansion	Southside of I	Expansion
High GWT	83.5	High GWT	83.5	High GWT	83.5	High GWT	83.5
Pipe Invert	79.88	Pipe Invert	77.5	Pipe Invert	77.15	Pipe Invert	77
Top of Clay	68.77	Top of Clay	67.9	Top of Clay	67.9	Top of Clay	65.6
Top o. olay	00.17	100 01 010)		' '			
H =	14.73	H =	15.6	H =	15.6	H =	17.9
Ho =	11.11	Ho =	9.6	Ho =	9.25	Ho =	11.4
H-Ho =	3.62	H-Ho =	6	H-Ho =	6.35	H-Ho =	6.5
Li =	13.756 ft	Li =	22.8 ft	Li =	24.13 ft	Li =	24.7 ft
							10
Guess w =	43	Guess w =	30	Guess w =	35	Guess w =	40
Li+0.5(w)/Ho	3.173357	Li+0.5(w)/Ho	3.9375	Li+0.5(w)/Ho	4.500541	Li+0.5(w)/Ho	3.921053
w/ho	3.870387	w/ho	3.125	w/ho	3.783784	w/ho	3.508772
# fig 15-1	0.86	# fig 15-1	1.4	# fig 15-1	1.53	# fig 15-1	1.4
							•
k =	2.1 ft/day	k =	2.1 ft/day	k =	2.1 ft/day	k =	2.1 ft/day
q2 =	4.419767 ft^3/day/width	q2 =	4.5 ft^3/day/width	q2 =	4.357843 ft^3/day/width	q2 =	4.875 ft^3/day/width
q2 - q1 =	1.000263 ft^3/day/width	q1 =	1.657895 ft^3/day/width	q1 =	1,754605 ft^3/day/width	q1 =	1.796053 ft^3/day/width
q total	5.420031 ft^3/day/width	q total	6,157895 ft^3/day/width	g total	6.112448 ft^3/day/width	q total	6.671053 ft^3/day/width
q total	5.420051 It 5/day/width	q total	o, roroso n oracy, mam	4		•	
q =	0.126047 ft/day	q =	0,205263 ft/day	q =	0.174641 ft/day	q = .	0.166776 ft/day
٦	5.1255.7 15uu,	7	•	•			
k =	2.1 ft/day	k =	2.1 ft/day	k =	2.1 ft/day	k =	2.1 ft/day
q =	0.126047 ft/day	q =	0.205263 ft/day	q =	0.174641 ft/day	q =	0.166776 ft/day
m =	1.185 ft	m =	1.0845 ft	m =	1.29 ft	m =	1,32 ft
 a =	11.11 ft	a =	9.6 ft	a =	9.25 ft	a =	11.4 ft
s =	42.99189 ft	s =	30.00413 ft	s =	35.04159 ft	s =	40.04498 ft

Groundwater Interception Pipes

Hardee County Landfill Expa	nsion			·	Pipes 1-3	
Pipes 10-12	Pipes 7-9		Pipes 4-6		Southside of E	ynansion
Westside of Expansion	Southside of		Southside of E		High GWT	83.5
High GWT 83.5	High GWT	83.5	High GWT	83.5	Pipe Invert	77
Pipe Invert 79.88	Pipe Invert	77.5	Pipe Invert	77.15	Top of Clay	65.6
Top of Clay 68.77	Top of Clay	67.9	Top of Clay	67.9	rop or ciay	-
				15.6	H =	17.9
H = 14.73	H =	15.6	H =		Ho =	11.4
Ho = 11.11	Ho =	9.6	Ho =	9.25	H-Ho =	6.5
H-Ho = 3.62	H-Ho =	6 ·	H-Ho =	6.35	n-no -	0.5
Li = 13.756 ft	Li=	22.8 ft	Li =	24.13 ft	Li =	24.7 ft
L1 = 13.756 R	Li -	22.0 11				
0	Guess w =	30	Guess w =	35	Guess w =	40
Guess w = 43	Li+0.5(w)/Ho	3.9375	Li+0.5(w)/Ho	4.500541	Li+0.5(w)/Ho	3.921053
Li+0.5(w)/Ho 3.173357	w/ho	3.125	w/ho	3.783784	w/ho	3.508772
w/ho 3.870387	# fig 15-1	1.4	# fig 15-1	1.5	# fig 15-1	1.4
# fig 15-1 0.9	# lig 15-1	C. 4	.			
				•		
k = 2.1 ft/o	iav k =	2.1 ft/day	k =	2.1 ft/day	k =	2.1 ft/day
q2 = 4.419767 ft^		4.666667 ft^3/day/width	q2 =	4,551195 ft^3/day/width	q2 =	4.875 ft^3/day/width
7-		1.657895 ft^3/day/width	q1 =	1.754605 ft^3/day/width	q1 =	1.796053 ft^3/day/width
7		6.324561 ft^3/day/width	q total	6.3058 ft^3/day/width	q total	6.671053 ft^3/day/width
q total 5.420031 ft^	5/day/width q total	5.52 155 N 5.45 N 1.45	•	·		
q = 0.126047 ft/c	dav q =	0,210819 ft/day	q =	0.180166 ft/day	q =	0.166776 ft/day
q = 0.120047 is	,	•				
k = 2.1 ft/	dav k =	2.1 ft/day	k =	2.1 ft/day	k =	2.1 ft/day
q = 0.126047 ft/	,	0.210819 ft/day	q =	0.180166 ft/day	q = .	0.166776 ft/day
m = 1.185 ft	. m=	1.0845 ft	m =	1.29 ft	m =	1.32 ft
a = 11.11 ft	· a=	9.6 ft	a =	9.25 ft	a≖	11.4 ft
u = 11.11 ft	-					
Computed	Computed		Computed		Computed	40.4
s = 43 ft	s =	30 ft	s =	35 ft	s =	40 ft
3 = 40 ji	_					

GROUNDWATER CONTROL SYSTEM PIPE CRUSHING CONSTRUCTION

	SCS ENG	INEERS				
	333 2 110		SHEET	3	of _	8
CLIENT	PROJECT		JOB NO.			
Hardee County	Landfill Expansion				9033.09	
SUBJECT	Couching Calculations	BY	LEV	DATE	2/17/2004	
	: Crushing Calculations .0 ft for Construction w/ CAT D6R IIXV	<u> </u>	LEK ED.	DATE	2/17/2004	
	er Groundwater Intercept Pipe	Joneson,	-7 % -			
Verify that perforations in the	LCRS are adequate for the peak leachate flow.					
Use discharge equation:						
$Q = (Cd)(Ao)(2gh)^0$.5					
$C_d = coefficient of$		e discharge wit	th fluid/wall sep	aration; conse	ervative value.	
A _o = Area of orifice						
g = gravitational acc h = static head (ft)	eleration (32.3 ft*/s)					
Assumptions and Givens:						
1. No. of acres =	10 acres					
 Length of pipe p Perforation diam 	######################################					
No. perforations	. A. seminaranacasan	/ft of pipe leng	th			
5. Maximum head	over pipe = ft	0				
Maximum leacha						
	1.5597 cfs 0.1560 cfs/acre					
	9.3583 cfm/acre					
Solution:						
$A_0 = 0.25(\Pi)(d)^2 =$	0.00077 ft ²					
1. Flow per orifice,	$Q = (Cd)(Ao)(2gh)^{0.5} = 0.6$	037 ft ³ /s				
2. Flow per ft of pi		0.02 ft ³ /s per ft 1.33 cfm/ft of p		.		
3. Peak flow = (ma	x flow per acre)(no. acres) = 1	.560 cfs				
		3.58 cfm		=		
4. Perforated flow	capacity per acre = (flow/ft of pipe) x (length of					
	= 3	19.1 cfm/acre	=			
Conclusion:						
	ceeds estimated generation					
319.1 cfm/acre	>>> 9.3583 cfm/acre					
Perforations are ade	quate to handle the maximum leachate flow.					
	<u> </u>		-			

	, <u></u>	SCS ENGIN	EERS	SHEET	4	of	8
					4	_ 01 _	
LIENT Hardee County	PROJECT L	andfill Expansion		JOB NO.	091	99033.09	
UBJECT			BY	EK	DATE	2/17/2004	
Depth above pipe is 1.		w/CAT D6R IIXW	CHECKE		DATE	2/1//2004	
8" Diamete	er Groundwater Inter	rcept Pipe	1996	<u>Ø</u>	<u> </u>		
ffective pressure on pipe due $P_{EEE} = P_{T} \times 12$	to perforations: (per EPA SW-870, p	. 382)					
(12-L _P)		perforations in one foot of p	sipe.				
2,	Since each perforation $L_P = 0.375" \times 4 = 0.375"$	on is 0.375" diameter and sp	paced at 6" on	center,			
P _T = 2.60	psi	() • • •	•				
P _{EFF} = ***	psi						
	ressive pressure (SA) per	Driscopipe manual:					
$S_{\Lambda} = 0.5 \times (SDR -$		24 psi					
	, , ,	·		•			
The recommended,	long-term compressive	strength (Y _s) design value f	or Driscoplex	polyethylene	pipe is 800	lb/in².	
	S _A (psi): 24	Y _s (psi): < 800					
Pipe p	asses wall compressive s	tress perforation calculatio	ns TRUE				
		•					

	_		S	CS ENGIN	IEERS	-			
						SHEE	ET 5	of	8
								_	
CLIENT		PROJECT				JOB NO			
Hardee County			andfill E	xpansion			091	99033.09	
SUBJECT					BY		DATE		
	Pipe C	rushing Calculation	ons			LEK		2/17/2004	
Depth above pipe	is 1.0 f	t for Construction	w/ CAT	D6R IIXW	CHECKI		DATE		
		Groundwater Inter			1	NO			
Constrained Pipe Wall E			controlled p						
$P_{WC} = 5.65 * 1$	RB'E' El	[*[12(DR-1) ³] ⁻¹ } ^{0.5} N		Eq'n 7-30 See	Source No.	l			
P _{WC} = allowab	ole constr	rained buckling press n factor = 1 - 0.33 *	ure (lb/in²)						
		it above pipe (ft)	(11/11)		1 ft				
H = cover abo	ve pipe (ft)			<u>I</u> I ft				
B' = elastic su	pport fac	tor = $(1+4*e^{-0.065H})^{-1}$	ı		· 2 -				
E' = soil reacti		_					npaction/crushe 00°F, Table 5-1	d rock, Table 7-7	Source No. 1
E = elastic mo I = moment of				23,00		u years at 10	ou r, lable 5-1/	Source No. 1	
I = inoment of $D_o = \text{pipe oute}$						a 8 inch diar	neter SDR 17 n	ipe (Driscopipe)	
t = pipe wall t								ipe (Driscopipe)	
DR = pipe din	nension r	atio = D _o /t			7 SDR 171 j	•			
$D_1 = pipe inne$		$er = D_o - 2t (in)$			5 inches for 2 recommen			ipe (Driscopipe)	
N = safety fac	tor				zi recommen	ded by CFC	nem manuai		
		Н	H'			Pwc			
		(ft)	(ft)	В'	R	(!b/in)			
3	ft Cover	1	1	0.21	0.67	4.14			
Pipe pas	ses contra	ained wall buckling o	calculations	. TRUE					
}									
ļ									

			S	CS ENGIN	EERS				
						SHEET	6	of -	8
LIENT		PROJECT	Landfill E	ivnansion		JOB NO.	0919	9033.09	
Hardee Co UBJECT	ounty		Landini E	xpansion	BY	<u> </u>	DATE	7055.07	
JDJECI	Pipe	Crushing Calcula	itions			LEK		2/17/200	4
	pipe is 1.0	0 ft for Constructi	ion w/ CA7		CHECK		DATE		
8"	Diamete	r Groundwater In	tercept Pip	e	ال ا	100		-	· · · · · · · · · · · · · · · · · · ·
onstrained Pipe W S = <u>P_TD</u> 228t	a	essive Stress (for Dri	scopiex OD c	Eq'n 7-23 See	Source No.	1			
		essive stress (lb/in²)							
D _o = pipe	e outside dia		, (lb/ft²)	8.62		r a 8 inch diame r a 8 inch diame			
	wall thickne $\frac{P_T D_o}{P_T} = \frac{1}{2}$		i.2 lb/in²	0.50	a menes 10	·			-,
	228t	-						•	
The reco	mmended,	long-term compression	ve strength (for Driscople	ex polyethylene	pipe is 800 lb	o/in ² .	
		S (psi): 25	<	Y, (psi): 800					
		Pipe passes wall	compressive	stress calculatio	ns TRUE				
				•					
		•							
					•				
							•		
						•	•		
									•

		SCS ENGIN	EERS				
		2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		SHEET	7	_ of _	8
CLIENT	PROJECT			JOB NO.			
Hardee County	L	andfill Expansion	la			9033.09	
SUBJECT	Carratia a Catandasi		BY	ובע	DATE	2/17/2004	
Depth above pipe is 1.6	Crushing Calculation		CHECK	LEK	DATE	2/17/2004	
	Groundwater Inter			Jto	DAIL		
Iowa Formula		<u> </u>		-			
$\Delta X = \frac{D_1 K W_r r^3}{EI + 0.06 er^4}$ $\Delta X = \text{horizontal deflet}$		Eq'n 3.4 See Source No. 3					
$D_L = deflection lag fa$							
K = bedding constant			l typical val	це			
•	per unit length of pipe	(lb/in)					
r = mean radius of the E = modulus of elasti							
1	of the pipe wall per u	nit length (in ³)					
	ve resistance fo the sid						
'		, ,					
Modified Iowa Formula		F-1- 2 6 F F N- 2					
$\Delta X = \underline{D_1 K W_r r_m}^3$ $EI + 0.06 E' r_m^3$		Eq'n 3.5 See Source No. 3					
$\Delta X = \text{horizontal deflet}$							•
D _L = deflection lag fa			1.	Marston Load	i		
	ue for Marston Load	1.5					
Typical Vali K = bedding constant	ue for Prism Load	1.0	0	I typical value			
P _T = Vertical load on			77 Tr. 1000 Tr. 1000 Tr. 1000 Tr. 1000	7 lb/in²		427 1	b/ft²
· ·	per unit length of pipe	$= P_T * D_o (lb/in)$	25.5	4			
D _o = pipe outer diam	eter (in)		8.62	***			
t = pipe wall thicknes	, ,					er SDR 17 pipe	
D_1 = pipe inner diame D_m = pipe mean diame						er SDR 17 pipe er SDR 17 pipe	
r _m = mean radius of t						er SDR 17 pipe	
E = modulus of elast						F, Table 5-1/Sou	
	of the pipe wall per u	nit length	0.01	in ⁴			
E' = modulus of soil	reaction (See Source N	o. 1)	300	lb/in² for mo	derate compa	action and fine g	rained soils
$\Delta X = \frac{D_1 K W_c r_m^3}{E1 + 0.06 E' r}$		inch					
% Ring Deflection =	$(\Delta X/D_m) \times 100 =$	0.258 %	Eq'n 7-38	See Source No	. 1		
Dina Dandina Santin							
Ring Bending Strain $\varepsilon = f_D \Delta X 2C$							
D_{M}^{2}							
ε = wall strain (%)							
f _D = deformation sha			Sec. 25.11	6 non-elliptical	shape		
D_M = mean diameter	(in) centroid = 0.5 (1.06t)		0.26	9 Eq'n 7-41 So	e Source No	. 1	
$\Delta X = \text{ring deflection}$	• •		0.00	-	e Source ivo		
$\varepsilon = f_D \Delta X 2C =$	0.103	%	Eq'n 7-37	See Source No	. 1		
D_{M}							
The maxim	um ring bending strain	for high performance poly	ethylene non-	pressure pipe is	4.2%		
	Pipe passes rir	g bending strain calculatio	ns TRUE				
1							

		SCS ENGIN	EERS	SHEET	8	of	8
						-	<u> </u>
CLIENT	PROJECT	711 F		JOB NO.	00100	9033.09	Ì
Hardee County SUBJECT	Landi	ill Expansion	BY		DATE	7033.07	
Pi	pe Crushing Calculations			EK	DATE	2/17/2004	
Depth above pipe is	1.0 ft for Construction w/ eter Groundwater Intercept	CAT.D6R IIXW	CHECKE		DATE		
Sources:	eter Groundwater intercept		<u> </u>	<u> </u>			
1 : CPCHEM, Th Book 2, Chap 2002	te Performance Pipe Engineering ter 7 : Buried Pipe Design	g Manual					
2 : Foundation D	esign Principles and Practices						
Second Edition Donald P. Coo							
Chapter 7, Sec	tion 7.3 : Induced Stresses Bene	ath Shallow Foundation	ons				
3: Buried Pipe D	esign						
A.P. Moser Chapter 3		•					
1							
		•					
1							
·							
·	-						
	-						
		•					
Ĭ							

					SHEE	Γ1	of _	8
CLIENT	PROJECT				JOB NO.		Total Control	7,-
Hardee County		Landfill E	xpansion			7	9033.09	-
SUBJECT				BY		DATE		
Pipe C	rushing Cald	culations		L	EK	-	2/17/2004	
Depth above pipe is 1.0	t for Constr	uction w/ CAT	D6R IIXW	CHECKE	D	DATE	The state	
		r Intercept Pip		74	6			
oad on Pipe (Overburde		320-335	7	-				
Prism Loads, P _E = wH	11)	Eq'n 7.1 See So	ource No. 1					
w = unit weight		Eq. () . Cocoo						
H = depth								
	Depth	Unit Weight	PE]				
	(ft)	(lb/ft³)	(lb/ft^2)					
Cover So	oil 0	123.9	0.0	1				
Intermediate Cov	er 0	123.9	0.0					
Was	te 0	60.0	0.0					
Drainage Sar	nd 0	123.9	0.0	A 1 %				
Ro	ck I	140,0	140.0	TC	TAL SOIL	PRISM LOAD:	140.0 lt	o/ft²
							1 7	
Total Depth =	1 ft						4 1 6 1	
Soil Arching, $P_m = C_D wB$							nts the combine	d unit
Pm = vertical soil p B = trench width a		5 f		weight of w	aste, daily c	over, and moist	ure.	
C _D = load coefficien	$1 = 1 - e^{-}$ $2Ku'$		Eq'n 7.3 See S	ource No. I				
e = natural log base								
		-i + ² (45 (1 5*4)					
K = Rankine earth $\phi = internal soil fric$				rto				
φ = internal soil friction coefficients				ste				
u = metion coeme	ent between b	ackini and trench	i sides – tan ψ					
Soil Type	Ku'	1						
Saturated Clay	0.110	1						
Ordinary Clay	0.130	1						
Saturated Top Soi	0.150							
Sand and Gravel	0.165							
Clean Granular So	il 0.192							
				-				
			P _m					
	Ku'	C _D	(lb/ft²)					
Cover S		0.00	0	1				
Intermediate Cov		0.00	0	4				
Was	ste 0.191	0.00	0	-				?
Drainage Sa		0.00	0	TOTA	L SOIL AR	CHING LOAD	0.0	b/ft ⁻
Ro	ck 0.190	0.00	0					
characteristics of the second	Lac America			LARGE	ST OVERBU	JRDEN LOAD	140.0 1	b/ft²
Load on Pipe (Equipmen	t D6R IIXW	7)						
Equipment Weight =	44,000			Length	of Track = L	= 110	in	
Number of Tracks =		2 tracks			k Width = b) in	
Track Load = 42,300 lb * 0.5		lbs per track		Trac	k Gauge = G	= 80	in	
Ground Contact Area/track =	23.0	o ft²						
Live Load = $q*I_c$								
q = track load		7 lb/ft²						
$I_c = Influence coeff$	cient							
Alternative 1: Trac	k adjacent and	parallel to pipe				Eq'n 7.4	Eq'n 7.5	
\leftarrow G							See Source	
1						No. 2	No. 2	
	b (ft)	L(ft)	z (ft)	m = b/z	n = L/z	I*	I**	I
	I 2.50	9.2	1	2.50	9.20	-0.006	0.244	0.244
1 L 1	A 9.17 B 6.67	9.2	1	9.17	9.20	0.000	0.250	0.250 0.250
H L I		9.2	1	6.67	9.20	0.000	0.230	0.230
II L I	B 0.07							
	В					lb/ft²		
V			** /**	(*) ····				
		Live Load ₁ = I +	$II = q_I(I_I) + q_A$	$(I_A) - q_B(I_B) =$	= 233.85	10/10		
V		ive Load ₁ = I +				10/10		
V		Live Load ₁ = I +	$q_I(I_I)$	= 233.60	6	10/10		
V		Live Load ₁ = I +	$q_I(I_I)$ $q_A(I_A)$	= 233.66 = 238.96	6	10/11		
A		ive Load ₁ = I +	$q_I(I_I)$	= 233.66 = 238.96	6	10/10		
V			$q_I(I_I)$ $q_A(I_A)$	= 233.60 = 238.90 = 238.7	6	10/11		

	90	S ENGIN	FFRS		<u>_</u> _		
	30	S ENGIN	EERS	SHEET	3	of	8
CLIENT PROJECT		- 	1	OB NO.	0011		
Hardee County	Landfill Exp	pansion	BY I		0919 DATE	99033.09	
UBJECT Pipe Crushing Calc	ulations		LE	K.	DATE	2/17/2004	
Depth above pipe is 1.0 ft for Constru		D6R IIXW	CHECKED		DATE		
12" Diameter Groundwater			1849				
anife that nonforctions in the LCDS are adequate	a for the needs lead	hate flow					
erify that perforations in the LCRS are adequat	e for the peak leac	mate flow.					
se discharge equation:							
$Q = (Cd)(Ao)(2gh)^{0.5}$ $C_d = \text{coefficient of discharge} =$	0.6	for short tube d	ischarge with fl	wid/wall sen	aration: cone	ervative value	
A_0 = Area of orifice	Section 1	ior short tube t	raction Re with H	ши нап эср		ci rative value.	
g = gravitational acceleration (32.3 ft2/s)	s)						
h = static head (ft)							
ssumptions and Givens:							
1. No. of acres =	.10						
 Length of pipe per acre = Perforation diameter = 	0.375						
4. No. perforations/ft pipe =	1007 1000000000000000000000000000000000	perforations/ft	of pipe length				
5. Maximum head over pipe =	1	ft					
6. Maximum leachate flow/acre =	700	-					
	1.5597 (0.1560 (
		cfm/acre					
$A_0 = 0.25(\Pi)(d)^2 = 0.00$ 1. Flow per orifice, $Q = (Cd)(Ao)(2gh)$	0077 ft ²	0.003	7 ft ³ /s				
2. Flow per ft of pipe = (Q)(# perfs/	ît) = = =		2 ft ³ /s per ft of 3 cfm/ft of pipe		=		
3. Peak flow = (max flow per acre)(no	, acres) ==	1.56	0 cfs				
3. Feak now – (max now per acre) in	=		8 cfm				
	=				=		
4. Perforated flow capacity per acre =	(flow/ft of pipe) x						
	_ =	319.	1 cfm/acre				
and lucion:							
onclusion: Design capacity exceeds estimated go	eneration						
319.1 cfm/acre >>>		cfm/acre					
Perforations are adequate to handle the		ta flow					
retrorations are adequate to nandle the	. шахинит теаспа	ic now.					

•		SCS ENGIN	EERS	SHEE	т 4	of	8
				_		_	
CLIENT Hardee County	PROJECT L	andfill Expansion		JOB NO.		99033.09	
SUBJECT			BY		DATE	2/17/2004	1
Depth above pipe is 1.0	Crushing Calculation ft for Construction	ons ı w/ CAT D6R IIXW	CHECK	LEK ED	DATE	2/17/2004	<u> </u>
	Groundwater Inte			8		· · · · · · · · · · · · · · · · · · ·	
(12-L _P)	(per EPA SW-870, p ecumulated length of p Since each perforation	perforations in one foot of jun is 0.375" diameter and s	pipe. paced at 6" o	n center,			
P _T = 2.60	L _P = 0.375" x 4 = psi	1.5 inch)				
$P_{EFF} = \begin{bmatrix} 3 & 3 & 0 \\ 42.7 & 3 & 0 \end{bmatrix}$	psi psf						
Check actual compres	sive pressure (S _A) per	Driscopipe manual:					
$S_A = 0.5 \times (SDR - 1)$	x P(eff) =	24 psi					
The recommended, lo	ong-term compressive	strength (Y,) design value	for Driscople	x polyethyler	ne pipe is 800 l	b/in².	
	S _A (psi): 24	Y, (psi):				×	
Pipe pass	ses wall compressive s	tress perforation calculation	ons *TRUE	36			
						•	
•							
				•			

			6	CS ENGIN	EERS	·			
			3	CS ENGIN	EERS	SHEET	5	of	8
						SHEET		- 01	0
CLIENT	ı	PROJECT				JOB NO.			
Hardee Co			_andfill E:	vnancion		100110.	0010	99033.09	
SUBJECT	ounty [L	Januarii E.	xpansion	BY	<u> </u>	DATE	79033.07	
SUBJECT	Diag C	la alaina Calaulati			1	Eν	DAIL	2/17/2004	
<i>-</i>		rushing Calculati		DAD HANN		LEK	DATE	2/17/2004	
		ft for Construction			CHECKE	±D ▲	DATE		
		Groundwater Inte			4	<u> </u>			
		(for Driscoplex OD	controlled p						
$P_{WC} = \underline{5.6}$	55 * {RBE E	I*[12(DR-1) ³] ⁻¹) ^{0.5}		Eq'n 7-30 See	Source No. 1				
~ 11		N	zn c 2s						
		rained buckling press							
		on factor = 1 - 0.33 * the above pipe (ft)	(H/H)		īΙe				
	r above pipe (i n				
B' = elast	ic support fac	ctor =(1+ 4*e ^{-0.06511})	-1-		_				
F' = soil :	reaction modu	ilus (lh/in²)		3000	lb/in² for m	oderate compa	ction/crushed	l rock, Table 7-7/S	Source No. 1
	ic modulus (lb	_				0 years at 100°			
	ent of inertia =			0.03	***	o yours at 100.	., 14010 3-170	553100 110. 1	
n e e e e e e e e e e e e e e e e e e e	e outer diamet					a 12 inch diame	eter SDR 17 r	pipe (Driscopipe)	
	wall thickness	, ,						pipe (Driscopipe)	
	e dimension r	* '		1	SDR 17 pi	pe to be used	•		
$D_l = pipe$	inner diamete	$er = D_o-2t$ (in)		1.7.5	inches for a	a 12 inch diame	eter SDR 17 p	oipe (Driscopipe)	
N = safet	y factor				2 recommend	ded by CPCher	n manual		
		T		ī			1		
		H	H'	B'	R	P _{WC}			
	200	(ft)	(ft)	0.21	0.67	(lb/in)	1		
1	3 ft Cover	11	1 1	0.21	0.67	7.45	J		
		P _{wc} =	7.45	b/in ²					
		P _{EFF} =		/ lb/in ²					
		* EFF	2.71	10/111					
Pipe	e passes contr	rained wall buckling	calculations	TRUE					
					_				
İ									
ļ.									
Į									
	•								
i									
1									
!									
1									
1									
1									
1									

		SCS ENGINI	EERS				
				SHEET	6	of	8
CLIENT	PROJECT	fill Expansion		JOB NO.	. 0919	9033.09	
Hardee County SUBJECT		IIII Expansion	BY		DATE		
Pipe (Depth above pipe is 1.0	Crushing Calculations	CAT DER HYW	CHECKE	EK	DATE	2/17/2004	
12" Diameter	r Groundwater Intercep	ot Pipe					
Constrained Pipe Wall Compres $S = P_T D_o$	sive Stress (for Driscoplex	OD controlled pipe) Eq'n 7-23 See 5	Source No. 1				:
228t S = pipe wall compres	ssive stress (lb/in²)		_				
D _o = pipe outside diar		12.75				oipe (Driscopipe) oipe (Driscopipe)	
t = pipe wall thickness	25.2 lb/in		Jinches for a	12 men diam	eler SDK 17 I	mpe (Driscopipe)	
$S = P_T D_0 = 228t$	25.2	1	·				
The recommended, lo	ong-term compressive stren	gth (Y _s) design value fo	or Driscoplex	polyethylene p	oipe is 800 lb	/in ² .	
	S (psi): 25	Y _s (psi): < 800		•		•	
	Pipe passes wall compre	essive stress calculation	s TRUE]			
		•					
					-		
				•			
						•	
ĺ							
		. **					
					•		
·		•					
				•			
						2 ⁴ •	

	SCS ENG	INEERS			-	
	333 21.131		SHEET_	7	of _	8
CLIENT	PROJECT		JOB NO.			
Hardee County	Landfill Expansion	1	1		9033.09	
SUBJECT Pine	Crushing Calculations	BY	LEK I	DATE	2/17/2004	
1 -	of the for Construction w/ CAT D6R IIXV			DATE		
12" Diamete	r Groundwater Intercept Pipe	1	HO			
Iowa Formula	,	_				
$\Delta X = D_L K W_c r^3$	Eq'n 3.4 See Source No	o, 3				
EI + $0.06er^4$ $\Delta X = horizontal defletion$	ection (in)					
D _L = deflection lag fa	actor					
K = bedding constant		0.1 typical val	ue			
$W_c = Marston's load r$ r = mean radius of the	per unit length of pipe (lb/in)					
E = modulus of elasti						
(of the pipe wall per unit length (in ³)					
e = modulus of passi	ve resistance fo the side fill (lb/in²(in))					
Modified Iowa Formula						
$\Delta X = D_1 K W_c \tau_m^{3}$	Eq'n 3.5 See Source No	o. 3				
$EI + 0.06E'r_{m}^{3}$						
ΔX = horizontal deflection lag fa		1:00	Marston Load			
	ue for Marston Load 1.5	, , , , , , , , , , , , , , , , , , ,	Silviai sion Load			
	ue for Prism Load 1.0	Francisco - n	·			
K = bedding constant		V001/14000000000000000000000000000000000	l typical value 7 lb/in ²			b/ft²
P _T = Vertical load on W _s = Marston's load	per unit length of pipe = $P_T * D_o$ (lb/in)	37.8	334		427	D/11
$D_0 = pipe outer diam$		12.75	100			
t = pipe wall thicknes		Control of the Contro	0 inches for a 12			
D _I = pipe inner diame		VI. 00000000 10001 10000	5 inches for a 12			
$D_m = pipe mean dian$ $r_m = mean radius of t$			6 inches for a 12 8 inches for a 12			
E = modulus of elast		***************************************	0 lb/in² for 50 ye			
	a of the pipe wall per unit length	0.03				
E' = modulus of soil	reaction (See Source No. 1)	300	0 lb/in2 for mode	erate compa	ction and fine g	rained soils
$\Delta X = D_1 K W_c r_m^3$	= 0.030876 inch					
EI + 0.06E'r	m					
% Ring Deflection =	$(\Delta X/D_m) \times 100 = 0.258 \%$	Eq'n 7-38	See Source No.	1		
Ring Bending Strain						
$\varepsilon = \underline{f_D \Delta X 2C}$						
D _M ²						
ε = wall strain (%) f_D = deformation sha	pe factor		6 non-elliptical s	hape		
D _M = mean diameter	-			•		
	centroid = 0.5 (1.06t)		8 Eq'n 7-41 See	Source No.	. 1	
$\Delta X = ring deflection$	$=\Delta X/D_{\rm m}$	0.00	15]			
$\varepsilon = \underline{f_D \Delta X2C} =$	0.103 %	Eq'n 7-37	See Source No.	1		
D _M						
The maxim	um ring bending strain for high performance po	olyethylene non-	pressure pipe is	1.2%		
	Pipe passes ring bending strain calcula	tions TRUE				

		SCS ENGIN			
			SHEE	T8	of <u>8</u>
CLIENT	PROJECT		JOB NO.		
Hardee County		andfill Expansion		09199033	.09
SUBJECT	<u> </u>		BY	DATE	
Pipe	Crushing Calculatio	ns	LEK		17/2004
Depth above pipe is 1.0) ft for Construction	w/ CAT D6R IIXW	CHECKED	DATE	
	er Groundwater Inter	cept Pipe	Own		
ources:					
1 : CPCHEM, The P Book 2, Chapter 2002	erformance Pipe Engine 7 : Buried Pipe Design	ering Manual			
Second Edition Donald P. Coduto		es Beneath Shallow Foundation	ons		
3: Buried Pipe Desig	, 7 n				
A.P. Moser Chapter 3	·-	٠.			
		•			
				•	
÷					
			٠.		
•					
			* * * * * * * * * * * * * * * * * * * *		
				. •	

GROUNDWATER CONTROL SYSTEM

PIPE CRUSHING DURING FINAL BUILDOUT

			SCS ENGIN	EERS	SHEET	1	of	8
	PROJECT				JOB NO.	16		
Hardee County		Landfill I	Expansion			1	9033.09	
SUBJECT				BY		DATE		
Pipe Cru	ushing Calc	ulations			EK		2/17/2004	
Depth above pipe is 76 ft t 8" Diameter Gr				CHECKE	D	DATE		
Load on Pipe (Overburden)		140		V.	100			9/5/01/
Prism Loads, P _E = wH	I	Eq'n 7.1 See So	ource No. 1					
w = unit weight H = depth								
ri – deptii	Depth	Unit Weight	PE					
	(ft)	(lb/ft ³)	(lb/ft²)					
Cover Soil	2	123.9	247.7					
Intermediate Cover	1.5	123.9	185.8					
Waste	69.5	60.0	4170.0					
Drainage Sand	2	123.9	247.7					
Rock	-	140.0	140.0	TO	TAL SOIL	PRISM LOAD:	4991.3	b/ft²
							- 19	
otal Depth = 76	ft			NOTE. Th		ioht sansasas	to the combine	d unit
oil Arching, P _m = C _D wB	sure					weight represer over, and moist		ou unit
Pm = vertical soil press B = trench width at pi		5 f		weight of W	aste, ually Co	, rei, and moist		
$C_D = \text{load coefficient}$				ce No. 1				
C _D = load coefficient	= <u>1 - e</u> 2Ku'	- 1	Eq'n 7.3 See Sour	CE INO. I				
e = natural log base nu								
		:	0.5*1					
K = Rankine earth pre								
φ = internal soil frictio			degrees for waste					
u' = friction coefficient	t between bac	ektill and trener	n sides = tan φ					
Sail Tune	Ku'							
Soil Type Saturated Clay	0.110							
Ordinary Clay	0.110							
Saturated Top Soil	0.150							
	0.165							
Sand and Gravel Clean Granular Soil	0.163							
Clean Granular Soll	0.192							
			P _m					
	Ku'	C _D	(lb/ft²)	0				
Cover Soil		0.32	196					
Intermediate Cover		0.32	149					
Waste		2.58	775					
		0.32	196	тота	I SOIL AD	CHING LOAD	1,534.4	lb/ft ²
Drainage Sand		0.32	219	1017	IL SOIL AN	CHING LOAD	1,554.4	
Rock	0.190	0.31	219	LADGE	T OVEDBI	IRDEN LOAD	4,991.3	lb/ft²
Load on Pipe (Equipment)	DCD HVW			LAKGE	SI OVERBU	RDEN LOAD	. 4,221.2	10/10
				Langth	of Track = L	- 113	in	
Equipment Weight =	54,582	tracks			k Width = b		in	
Number of Tracks =					k Gauge = G		in	
Frack Load = 42,300 lb * 0.5 =	17.2	lbs per track		1140	. Junge O		-	
Ground Contact Area =	17.2	It						
Live Load = q*I _c								
q = track load	1620	lb/ft ²						
I _c = Influence coeffici								
achee coeffici								
Alternative 1: Track	adiacent and	parallel to pine				Eq'n 7.4	Eq'n 7.5	
G	,						See Source	
A						No. 2	No. 2	
	b (ft)	L(ft)	z (ft)	m = b/z	n = L/z	I*	I**	I
	1 1.83	9.4	76	0.02	0.12	0.001	0.250	0.001
" L A	0.00	9.4	76	0.11	0.12	0.006	0.252	0.006
B B		9.4	76	0.09	0.12	0.005	0.252	0.005
**								1 11 11 11 11
b								
A	1	Live Load ₁ = I	$+ II = q_I(I_I) + q_A(I_I)$	$_{A}$) - $q_{B}(I_{B}) =$	= 4.50	lb/ft ²		
			Inter This	,5, 6,				
			$q_{l}(I_{l}) =$	2.23	3			
			$q_{\Lambda}(I_{\Lambda}) =$					
			JV/-V					
			$q_p(I_p) =$	8.03	3			
и в			$q_B(I_B) =$	8.03	3			
II В			$q_B(I_B) =$ ipe (Equipment) =		3 0 lb/ft ²			

	SCS E	NGINE	ERS				
				SHEET	3	_ of	8
CLIENT	PROJECT		J	OB NO.			
Hardee County	Landfill Expans					99033.09	
SUBJECT	Crushina Calculations	ļ ^E	SY LEI	v	DATE	2/17/2004	
	Crushing Calculations ft for Operations w/ CAT D7R Se	eries II	HECKED		DATE	2/1//2004	
	Groundwater Intercept Pipe		4-7				
Verify that perforations in the I	.CRS are adequate for the peak leachate	flow.					
	,						
Use discharge equation: $Q = (Cd)(Ao)(2gh)^{0.5}$							
$C_d = \text{coefficient of } C_d$	- 40000A 10000A 000 A	nort tube disc	harge with flo	uid/wall sep	aration; cons	ervative value.	
$A_o = Area of orifice$	"						
g = gravitational acce h = static head (ft)	leration (32.3 ft²/s)						
Assumptions and Givens:							
1. No. of acres =	240 ft/acres						
Length of pipe pe Perforation diame	Constitution of the Consti	c					
4. No. perforations/f	t pipe = \$\frac{1}{2} \frac{1}	orations/ft of	pipe length				
5. Maximum head o							
6. Maximum leachat	e flow/acre =	nn					
	0.1560 cfs/ac	cre					
	9.3583 cfm/s	асге					
$A_o = 0.25(\Pi)(d)^2 =$ 1. Flow per orifice,	0.00077 ft^2 $Q = (Cd)(Ao)(2gh)^{0.5} =$	0.0037 f	t³/s				
2. Flow per ft of pip	e = (Q)(# perfs/ft) = = ================================		t³/s per ft of pipe		=		
3 Peak flow = (max	flow per acre)(no. acres) =	1,560 d	fs				
5. 1 Juli 115 11 (IIIII)	=	93.58 0			=		
4. Perforated flow c	apacity per acre = (flow/ft of pipe) x (len		er acre) fm/acre				
Conclusion:							
1	ceeds estimated generation						
319.1 cfm/acre	>>> 9.3583 cfm/	acre					
Perforations are adec	quate to handle the maximum leachate flo	ow.					
[
}							
l							
1							

	SCS ENGIN	EERS			
			SHEET.	4	of8
CLIENT Hardee County	PROJECT Landfill Expansion		JOB NO.	091	99033.09
SUBJECT		BY	ì	DATE	
Pipe Penth above nine is 76	Crushing Calculations ft for Operations w/ CAT D7R Series II	CHECK	EK .	DATE	2/17/2004
8" Diamete	Groundwater Intercept Pipe	U	40		
	to perforations: _ (per EPA SW-870, p. 382) accumulated length of perforations in one foot of p Since each perforation is 0.375 " diameter and sp $L_p = 0.375$ " $x = 1.5$ inch		n center,		
$P_{\rm T} = 36.88$	psi				
$P_{EFF} = \frac{42.2}{1.06070}$	gsi psf				
Check actual compre	essive pressure (S _A) per Driscopipe manual:				
$S_A = 0.5 x (SDR - 1)$) x P(eff) = 211 psi				
The recommended,	ong-term compressive strength (Y,) design value f	or Driscoplex	polyethylene p	ipe is 800 l	b/in ² .
	\$ _A (psi): Y _s (psi): 211 < 800				
Pipe pa	sses wall compressive stress perforation calculation	ns TRUE			

		CO ENCI	JEEDS				
		SCS ENGIN	NEEKS	SHEET	5	of	8
				OITELI,	<u>, , , , , , , , , , , , , , , , , , , </u>	_ 01	
CLIENT	PROJECT			JOB NO.			
Hardee County	La La	andfill Expansion	lny	<u> </u>		99033.09	
SUBJECT Pine C	Crushing Calculation	ne .	BY	.EK	DATE	2/17/2004	
Depth above pipe is 76 f			CHECKE	D	DATE	4/11/2004	
8" Diameter	Groundwater Interc	cept Pipe	74	-8			
Constrained Pipe Wall Buckling							
$P_{WC} = 5.65 * \{RB'E' E'\}$	EI*[12(DR-1) ³] ⁻¹ } ^{0.3} N	Eq'n 7-30 See	Source No. 1				
	trained buckling pressur						
R = buoyancy reduction H' = groundwater heigh	on factor = 1 - 0.33 * (F	-l'/H)	n e				
H = cover above pipe	(ft)		6 ft				
	ctor = $(1 + 4 * e^{-0.065H})^{-1}$	Mariday Commission	<u>د.</u>				
E' = soil reaction modules (II				oderate compa) years at 100°F		d rock, Table 7-7.	Source No. 1
E = elastic modulus (ill I = moment of inertia =		23,00		years at 100°1	r, rable 5-1/	Source NO. I	
D _o = pipe outer diame	ter (in)	8.62	5 inches for a			ipe (Driscopipe)	
t = pipe wall thickness DR = pipe dimension			4 inches for a 1 SDR 11 pip		er SDR 11 p	ipe (Driscopipe)	
D _I = pipe inner diamet		7.05	7 inches for a	8 inch diamete		ipe (Driscopipe)	
N = safety factor			2 recommend	led by CPChen	n manual		
	Н	H' B'	D	P _{wc}]		
300	(ft)	(ft)	R 1.00	(lb/in)			
3 ft Cover	76	1 0.97	1.00	42.23	J		
	_						
	P _{wc} =	42.23 lb/in ² 42.15 lb/in ²					
			_				
Pipe passes conti	rained wall buckling ca	lculations TRUE					
1							
1							
1							

			S	CS ENGIN	EERS				
						SHEET	6	of _	8
CLIENT		PROJECT	1 4611 1			JOB NO.	0010	0022.00	
Hardee Cor UBJECT	unty	<u> </u>	Landilli	Expansion	BY		DATE	9033.09	
		Crushing Calculat				LEK		2/17/2004	
		ft for Operations r Groundwater Int			CHECK	ED ED	DATE		
onstrained Pipe W	all Compre	essive Stress (for Dris		controlled pipe)			 		
$S = \frac{P_T D_o}{228t}$				Eq'π 7-23 See	Source No.	1			
	-	essive stress (lb/in ²)	,		¬¬				
		plied to pipe w/ perfs ameter (in)	(lb/ft²)		0 lb/ft ² 5 inches for	r a 8 inch diamet	er SDR 11 pi	pe (Driscopipe)	
	all thickne					r a 8 inch diamet			
S = '	$\underline{P_TD_{\alpha}} =$	231.	9 lb/in²						
	228t								
The recon	nmended,	long-term compressiv	e strength (Y,) design value	for Driscople	ex polyethylene p	pipe is 800 lb	/in ² .	
		S (psi):		Y, (psi):					
		232	<	. 800					
		Pipe passes wall	compressive	stress calculatio	ns STRUE				
				•					
							•		
• •									
				•					
									•

		o process	TERO				
	SC	S ENGINI	LERS	CLIEFT	-	- .	
}				SHEET	7	_ of	8
CLIENT	PROJECT			JOB NO.			
Hardee County	Landfill Exp	ancion		JOD NO.	0010	9033.09	
SUBJECT	Landin Exp	alisioli	ВҮ		DATE	79033.09	
	Crushing Calculations		i	EK	DATE	2/17/2004	
· ·	ft for Operations w/ CAT D7I	R Series II	CHECKE		DATE	2/1//2004	-
	Groundwater Intercept Pipe	C Geries II	JW				
Iowa Formula	Ordand water intercept 1 ipe				!		
$\Delta X = D_1 K W_c r^3$	Eq'n 3.4 See	Source No. 3					
EI + 0.06er ⁴	•						
ΔX = horizontal deflec	ction (in)						
D _L = deflection lag fac			1				
K = bedding constant		0.1	typical value	e			
$w_c = Marston's load p$ r = mean radius of the	er unit length of pipe (lb/in)						
E = modulus of elastic	· · · · ·						
h	of the pipe wall per unit length (in ³	`					
	e resistance fo the side fill (lb/in ² (ir						
c modulus of passivi	e resistance to the side fill (local fil	•///					
Modified Iowa Formula							
$\Delta X = D_1 K W_c r_m^3$	Eq'n 3.5 See	Source No. 3					
$EI + 0.06E'r_{m}^{3}$							
ΔX = horizontal deflect	` '		4.0000000000000000000000000000000000000	1			
D ₁ = deflection lag fac	etor e for Marston Load 1.5		1.5	Marston Load	d		
	e for Prism Load 1.0						
K = bedding constant			0.1	typical value			
P _T = Vertical load on	pipe w/ perfs		42.15	lb/in ²		6070 lb/ft ²	
W _c = Marston's load p	er unit length of pipe = P _T * D _o (lb.	/in)	363:58	lb/in			
D _o = pipe outer diame	, ,			ł		er SDR 11 pipe (Driso	
t = pipe wall thickness			THE CONTRACT OF THE CONTRACT O	1		er SDR 11 pipe (Drisc	
D ₁ = pipe inner diame			The season of th	1		er SDR 11 pipe (Drisc	
D _m = pipe mean diame				1		er SDR 11 pipe (Drisc	
r _m = mean radius of th	2		properties some dear of	1		er SDR 11 pipe (Drisc	
E = modulus of elastic				1 '	years at 100°	F, Table 5-1/Source N	o. I
	of the pipe wall per unit length		0.040	4			
E' = modulus of soil re	eaction (See Source No. 1)		3000	Jlb/in for mo	derate compa	action and fine grained	SOILS
$\Delta X = D_1 K W_r r_m^3 =$	0.278809 inch						
EI + 0.06E'r,							
E1 - 0.00E1m	ı						
% Ring Deflection = ($(\Delta X/D_m) \times 100 = 3.577$	%	Eq'n 7-38 S	See Source No	. 1		
D. D. I. C							
Ring Bending Strain $\varepsilon = f_D \Delta X 2C$							
D_{M}^{2}							
$\varepsilon = \text{wall strain (%)}$							
f _D = deformation shap	e factor		. 6	non-elliptica	l shape		
D _M = mean diameter (Marie Marie Marie 47	J	.		
C = outer fiber wall co			0.416	Eq'n 7-41 Se	ee Source No	. 1	
$\Delta X = ring deflection =$	$= \Delta X/D_m$		0.036				
. fayac	2 290 0/		F=!= 7.77.0	C C NI-	,		
$\varepsilon = \frac{f_D \Delta X 2C}{D} = \frac{D}{D}$	2.289 %		Eqn /-3/ 3	See Source No), I		
D_{M}							
The maximu	m ring bending strain for high perfo	ormance polyet	hylene non-p	ressure pipe is	s 4.2%		
	Pipe passes ring bending str	ain calculations	TPHE	1			
	i ipe passes inig bending su	ani caroulanolis	· Emmasion	2			

	SCS ENGIN	EERS				
			SHEET_	. 8	of	8
CLIENT Hardee County	PROJECT Landfill Expansion		JOB NO.		9033.09	
SUBJECT		BY		DATE	2/17/2004	
	e Crushing Calculations 6 ft for Operations w/ CAT D7R Series II	CHECK	LEK ED	DATE	2/17/2004	
8" Diamete	er Groundwater Intercept Pipe	O.I.D.O.I.	Ho			
Sources:						ł
Book 2, Chapter 2002 2 : Foundation Desi	Performance Pipe Engineering Manual 7 : Buried Pipe Design gn Principles and Practices					
Second Edition Donald P. Codute Chapter 7 Section	o n 7,3 : Induced Stresses Beneath Shallow Foundatio	ons				
3: Buried Pipe Desi A.P. Moser Chapter 3		ons				

<u>-</u>		SCS ENGIN	EERS	SHEE	Т 3	of	8
						- 01	
LIENT Hardee County	PROJECT	ill Expansion		JOB NO.	0919	9033.09	
UBJECT	Laidt	III Expunsion	BY	L	DATE		
	Crushing Calculations			EK		2/17/2004	
	6 ft for Operations w/ CA		CHECKE		DATE		
12" Diame	ter Groundwater Intercept	t Pipe	$\overline{}$	#0	<u> </u>		
erify that perforations in the	LCRS are adequate for the pe	ak leachate flow					
Jse discharge equation:							
$Q = (Cd)(Ao)(2gh)^{t}$	J.5	<u> </u>			•		
$C_d = coefficeient of$		0:6 for short tube	discharge with	h fluid/wall s	eparation; cons	ervative value.	
• A _o = Area of orifice							
	celeration (32.3 ft ² /s)						
h = static head (ft)							
Assumptions and Givens:		**					
 No. of acres = Length of pipe p 		10 acres 240 ft/acre					
Perforation dian		0.375 inch					•
4. No. perforation	Total Section	6 perforations/f	t of pipe lengt	th			
5. Maximum head	**************************************	î î î		100			
6. Maximum leach		700 gal/min 1.5597 cfs					
		0.1560 cfs/acre					
		9.3583 cfm/acre					
	0.00077 ft^2 e, Q = (Cd)(Ao)(2gh) ^{0.5} = sipe = (Q)(# perfs/ft) =		37 ft ³ /s 02 ft ³ /s per ft	of pipe			
	=		33 cfm/ft of				
3. Peak flow = (m	ax flow per acre)(no. acres) =		60 cfs 58 cfm				
							
4. Perforated flow	v capacity per acre = (flow/ft o		ipe per acre) 9.1 cfm/acre				
Conclusion:		•					
,	exceeds estimated generation	0.2582 -5-/					
319.1 cfm/acre	<i>???</i>	9.3583 cfm/acre					
Perforations are a	dequate to handle the maximur	n leachate flow.					
=							
· ·							
1							
1							

	SCS ENGIN	EERS	011252		
			SHEET	4	of <u>8</u>
CLIENT	PROJECT Landfill Function		JOB NO.	0010	9033.09
Hardee County SUBJECT	Landfill Expansion	BY	L	DATE	7033.09
Pipe	Crushing Calculations		EK		2/17/2004
	of ft for Operations w/ CAT D7R Series II er Groundwater Intercept Pipe	CHECKE	ED T U	DATÉ	
$L_{P} = Total$ $P_{T} = 36.88$ $P_{EFF} = 42.23$ $P_{EFF} = 6.070$ Check actual compression of the second of the	c(per EPA SW-870, p. 382) accumulated length of perforations in one foot of produce each perforation is 0.375" diameter and sp. Lp = 0.375" x 4 = 1.5 inch psi psi psi psi psf essive pressure (SA) per Driscopipe manual:	or Driscoplex	polyethylene ş	oipe is 800 lb	/in².

				CS ENGIN						
						SHEET	55	of	8	8
						I CO NO				
ENT		PROJECT				JOB NO.	00	100022.00		
Hardee Co	ounty		Landfill Ex	cpansion	ВУ	L	DATE	199033.09		
BJECT	Dina C	rushing Calculat	ione		l .	EK	DATE	2/17/	2004	
Senth above		for Operations		7R Series II	CHECKE		DATE	2/1//	2001	
		Groundwater Int			CILCIG					
		(for Driscoplex OD			<u> </u>					
		I*[12(DR-1) ³]-1} ^{0.5} N	·	Eq'n 7-30 See	Source No. 1			•		
$P_{WC} = al^{2}$	lowable consti	ained buckling pres	sure (lb/in²)	•						
		n factor = 1 - 0.33 4	(H'/H)		Πα·					
•	indwater heigi ir above pipe (nt above pipe (ft)		7	6 ft					
		tor = $(1+4*e^{-0.065H})$) ⁻¹							
	reaction modu		•	300	0 lb/in² for m	oderate com	oaction/crus	ned rock, Tat	ole 7-7/Sourc	e N
	ic modulus (lt	_		23,00	0 lb/in ² for 50					
I = mom	ent of inertia =	= t ³ /12		0.13						
$D_o = pip$	e outer diamet	er (in)			0 inches for a					
	wall thickness pe dimension i			1.15	9 inches for a			i pipe (Drisc	copipe)	
		$er = D_0 - 2t \text{ (in)}$			2 inches for			1 pipe (Drise	copipe)	
	ty factor	()			2 recommend			• • •	,	
Í		· · · · · · · · · · · · · · · · · · ·	т		η	T - D	¬			
		. Н	H'	В'	R	P _{WC}				
	3 ft Cover	(ft) 76	(ft)	0.97	1.00	75.90	┪			
١	3 it cover		- 	9.2		1 1917-				
		Pwc) lb/in²						
		PEFF	= 42.13	5 lb/in ²						
D.		rained wall buckling	1 1	. TO THE						
· PIţ	e passes conu	rained wan bucking	carculations	MAN TRUE	823					
	,									
						•				
		•								
						•		. •		

	<u> </u>	SCS ENGIN	EERS				
				SHEET_	6	of	8
CLIENT	PROJECT			JOB NO.			
Hardee County	/ La	ndfill Expansion	T= 1.0			033.09	
SUBJECT	Pipe Crushing Calculation	15	BY L	.EK	DATE	2/17/2004	
Depth above pipe	is 76 ft for Operations w/	CAT D7R Series II	CHECKE	D I	DATE		
12" Dia	ameter Groundwater Inter- ompressive Stress (for Driscop	cept Pipe	14	70		-	
S = P_TD_0 228t	ompressive stress (for Driscop	Eq'n 7-23 See	Source No. 1				
	compressive stress (lb/in²)		_				
	oad applied to pipe w/ perfs (lb/ ide diameter (in)	12.7		12 inch diamete 12 inch diamete			
$S = P_T D$	a = 231.9 N						
223	8t						
The recommen	nded, long-term compressive st	rength (Y _s) design value f	for Driscoplex	polyethylene pip	e is 800 lb/ii	n ² .	
	S (psi): 232	Y _s (psi): < \$00					
			PO100224-1-2-200	5			
	Pipe passes wall com	pressive stress calculation	ns TRUE	İ			
1							
,							
ļ							
ļ							
						•	
		,					

SCS ENGINEERS								
		·		SHEET	7	of	8	
CLIENT	PROJECT	Landfill Expansion	J	OB NO.	09199033	.09		
Hardee County SUBJECT		Landfill Expansion	BY	DA		.07		
	ipe Crushing Calcul	etions	LE:			17/2004		
		s w/ CAT D7R Series II	CHECKED		TE	1712007		
			J.K					
	meter Groundwater	intercept ripe						
owa Formula		Eq'n 3.4 See Source No. 3						
$\Delta X = D_L K W_c r^3$		Eqn 3.4 See Source No. 3						
EI + 0.06								
$\Delta X = horizontal$ $D_1 = deflection$								
K = bedding cor	•	A	1 typical value					
	load per unit length of p	oipe (lb/in)	_					
r = mean radius								
	elasticity (lb/in²)							
	nertia of the pipe wall p							
e = modulus of	passive resistance fo the	side fill (lb/in²(in))						
Modified Iowa Formula								
$\Delta X = \underline{D_L K W_c r}$	•	Eq'n 3.5 See Source No. 3						
EI + 0.06								
$\Delta X = horizontal$			1.51	Marston Load				
D _L = deflection	iag factor l Value for Marston Lo:	ad 1.5	1.01	Viai Stoli Load				
	I Value for Prism Load	1.0						
K = bedding co				ypical value			_	
P _T = Vertical lo	ad on pipe w/ perfs		42.15	b/in ²		6070 It	/ft²	
	load per unit length of	$pipe = P_T * D_o (lb/in)$	537.47	lb/in				
D _o = pipe outer	diameter (in)		12:750	FALSE				
t = pipe wall the				inches for a 12 in				
D _l = pipe inner	diameter = D _o -2t (in)			inches for a 12 in inches for a 12 in				
	diameter = $D_0 - 1.06t$			inches for a 12 in				
***	is of the pipe (in)		1000000	lb/in ² for 50 year				
	elasticity (lb/in²)	. A Law and	0:130		3 41 100 1, 14	01C 3-1700G	100 110. 1	
	inertia of the pipe wall p		- 4000 CONT TOTAL TOTAL CONT.	m lb∕in² for modera	te compaction	and fine or	nined soils	
E' = modulus o	f soil reaction (See Sour	ce No. 1)	3000	io/iii ioi inodeia	ne compaction	and mic gi	anica sons	
$\Delta X = D_1 KW$	$r^3 = 0.413$	2149 inch						
	.06E'r _m ³							
21+0	.00E1m	•						
% Ring Deflec	$tion = (\Delta X/D_m) \times 100 =$	3.577 %	Eq'n 7-38 S	ee Source No. 1				
Ring Bending Strain								
$\varepsilon = f_D \Delta X_2 C$								
D_{M}^{2}								
ε = wall strain			6	non-elliptical sh	nna			
	on shape factor		. 0	non-empucar șii	ape			
D_{M} = mean dia	meter (in) wall centroid = 0.5 (1.0)6t)	0.614	Eq'n 7-41 See S	ource No. 1			
	ection = $\Delta X/D_m$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.036	24				
Ar ting uci.	ettion Billom		200700000000000000000000000000000000000	•				
$\varepsilon = f_D \Delta X_2 C$	= 2	2.289 %	Eq'n 7-37 S	ice Source No. 1				
D _M								
]								
The n	naximum ring bending s	train for high performance pol	yethylene non-p	ressure pipe is 4	2%			
·				· .		• .		
	Pipe pass	es ring bending strain calculati	ons TRUE		,			
1								
I .		•						

	SCS ENGIN	NEERS			
· · · · · · · · · · · · · · · · · · ·			SHEET	8 of	8
CLIENT	PROJECT		JOB NO.		
Hardee County SUBJECT	Landfill Expansion	BY	<u> </u>	09199033.09 DATE	
	Crushing Calculations		EK	2/17/2004	
Depth above pipe is 76	6 ft for Operations w/ CAT D7R Series II ter Groundwater Intercept Pipe	CHECKE	ED I	DATE	
Sources:					
	Performance Pipe Engineering Manual 7 : Buried Pipe Design				
Second Edition Donald P. Coduto					
Chapter 7, Section 3: Buried Pipe Desi	n 7.3 : Induced Stresses Beneath Shallow Foundation	ons			
A.P. Moser Chapter 3	gn				
			,		
*					
••					
	•				
	•				
				•	

GROUNDWATER CONTROL SYSTEM PIPE FLOW RATES

Groundwater Intercept Pipe (12-IN) Worksheet for Circular Channel

Project Description	on
Project File	c:\haestad\fmw\hardee.fm2
Worksheet	Subsurface drain pipe
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data				
Mannings Coefficient	0.011		Addinonal	
Channel Slope	0.0020	00 ft/ft		
Depth	0.63	ft	NO LOAD ON PIPE NO SETTLEM	ent
Diameter	12.00	in	•	
			— Hearen and	

Results			
Discharge	607	gal/min	- Flow in HEA
Flow Area	0.52	ft²	THE THE PARTY
Wetted Perimeter	1.83	ft	
Top Width	0.97	ft	
Critical Depth	0.49	ft	
Percent Full	62.70		
Critical Slope	0.0043	66 ft/ft	
Velocity	3	ft/s	
Velocity Head	0.11	ft	
Specific Energy	0.73	ft	
Froude Number	0.63		
Maximum Discharge	2.03	cfs	
Full Flow Capacity	1.88	cfs	
Full Flow Slope	0.0010	31 ft/ft	
Flow is subcritical.			

Groundwater Intercept Pipe (8-IN) Worksheet for Circular Channel

Project Description	1
Project File	c:\haestad\fmw\hardee.fm2
Worksheet	Subsurface drain pipe
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data				
Mannings Coefficient	0.011			1 1 2 2
Channel Slope	0.0024	00 ft/ft	-	slope after scotlement
Depth	0.37	ft		, 1-
Diameter	8.00	in		8-IN LATERALS

Results			-		÷		0
Discharge	190	gal/min	- ◆	Flow	NATE	1~70	Pipe
Flow Area	0.20	ft²					
Wetted Perimeter	1.12	ft					
Top Width	0.66	ft .					
Critical Depth	0.30	ft					
Percent Full	55.50						
Critical Slope	0.0048	51 ft/ft					•
Velocity	2	ft/s					
Velocity Head	0.07	ft					
Specific Energy	0.44	ft				•	•
Froude Number	0.67					4	i
Maximum Discharge	0.75	cfs					
Full Flow Capacity	0.70	cfs				•	
Full Flow Slope	0.0008	48 ft/ft					
Flow is subcritical.							

HARDEE COUNTY LANDFILL EXPANSION GROUNDWATER CONTROL SYSTEM

<u>Estimated Flowrates into Groundwater Interception System</u> Hardee County Landfill Expansion

		Flow	Rate		Total		
Pipeline No	Pipe Length (ft)	Rightside (ft^3/day/length)	Leftside (ft^3/day/length)	Flowrate (ft^3/day/length)	Flowrate (ft^3/day)	Flowrate (gpm)	Flowrate (cfs)
1	852	6.67	0.00	6.67	5,682.8	29.5	0.0
2.	853	6.67	6.67	13.34	11,379.0	59.1	0.13
3	845	6.67	6.67	13.34	11,272.3	58.6	0.13
4	834	6.31	6.31	12.62	10,525.1	54.7	0,1
5	820	6.31	6.31	12.62	10,348.4	53.8	0.1
6	807	6.31	6.31	12.62	10,184.3	52.9	0.1
7	794	6.32	6.32	12.65	10,042.5	52.2	0.1
8	782	6.32	6.32	12.64	9,883.2	51.3	0.1
9	769	6.32	6.32	12.64	9,717.6	50.5	
10	1,032	5.40	5.40	10.80	11,145.6	57.9	
11	1,027	5.40	5.40	10.80	11,091.6	57.6	
12	999	5.40	0.00	5.40	5,394.6	28.0	0.0
Tota	10,414	ft		Total	116,667.1	606.1	1.3

Pipe Network Combined Pipe Flow

Pipes		Flow Rate	Flow Rate
From	To	(gpm)	(cfs)
10		57.9	0.13
11		57.6	0.13
12		28.0	0.06
	Total	143.5	0.32

10,11,12	143.5	0.32
9	50.5	0.11
Total	194.0	0.43

10,11,12,9	Header	194.0	0.43
8	Header	51.3	0.11
7 .	Header	52.2	0.13
6	Header	52.9	0.12
5	Header	53.8	0.12
4	Header	54.7	0.12
3	Header	58.6	0.13
2	Header	59.1	0.13
1	Header	29.5	0.07
Header	Pump Sta	606.1	1.36

Pipe Network Elevations

Header		Slope	Distance	
Start ID	Elevation	(%)	(ft)	Elevation
9	77.6	0.20	32.1	77.5
8	77.5	0.20	32.1	77.5
7	77.5	0.20	37.6	77.4
6	77.4	0.20	37.6	77.3
5	77.3	0.20	37.6	77.2
4	77.2	0.20	32.1	77.2
3	77.2	0.20	42.9	77.1
2	77.1	0.20	26.1	77.0
1	77.0	0.20	80.0	76.9
Lift Station	76.9	0.20		
		Total	358.1	
	Start	Distance	Slope	End
Pipeline	Elevation	(ft)	(%)	Elevation
7	77.5	794.0	0.50	81.4
6	77.4	807.0	0.50	81.4
5	77.3	820.0	0.50	81.4
4	77.2	834.0	0.50	81.4
3	77.2	845.0	0.50	81.4
2	77.1	853.0	0.50	81.4
1	77.0	852.0	0.50	81.3
	1			
	Start	Distance	Slope	Intersection
Pipeline	Elevation	(ft)	(%)	Elevation
8	77.5	354.7	0.50	79.3
	79.3	427.2	0.25	80.4
9	77.6		0.50	79.3
	79.3	302.0	0.25	80.1
	80.1	45.0	0.25	
	80.2		0.25	
	80.3	33.5	0.25	80.4
10	80.1	1032.0		
11	80.2	1027.0	0.25	82.8
12	80.3	999.0	0.25	82.8

HARDEE COUNTY LANDFILL EXPANSION GROUNDWATER CONTROL SYSTEM

PIPE SCHEDULE

	Start El	Finish EL	Length	Fittings
	(NGVD)	(NGVD)	(ft)	
1	77.0	81.3	852.0	8x12 Reducer
2	77.1	81.4	853.0	12x12x8 Tee
3	77.2	81.4	845.0	12x12x8 Tee
4	77.2	81.4	834.0	12x12x8 Tee
5	77.3	81.4	820.0	12x12x8 Tee
6	77.4	81.4	807.0	12x12x8 Tee
7	77.5	81.4	794.0	12x12x8 Tee
8	77.5	79.3	354.7	12x12x8 Tee
	79.3	80.4	427.2	
9	77.6	79.3	343.3	12 Fab 90 degree Elbow, 8x12 reducer
	79.3	80.1	302.0	8x8 Wye
	80.1	80.2	45.0	8x8 Wye
	80.2	80.3	45.0	8x8 Wye
	80.3	80.4	33.5	
10	80.1	82.7	1032.0	8 Fab 90 degree Elbow
11	80.2	82.8	1027.0	8 Fab 90 degree Elbow
12	80.3	82.8	999.0	8 Fab 90 degree Elbow
13	77.0	76.9	80.0	12x12 Wye; 12 Fab 90 degre Elbow

SECTION K

VERTICAL EXPANSION OF LANDFILLS

K.1 LEACHATE LEAKAGE

The existing leachate collection system and forcemain are within the footprint of the landfill expansion. Calculations were conducted to ensure that the existing leachate collection pipes can withstand the waste and equipment loads that will accompany the expansion.

The landfill expansion will not impede the current leachate collection system. An additional leachate collection and removal system will be installed for the proposed cell. This collection system will be operated in tandem with the existing leachate collection system. The expansion shall not contribute to leachate leakage from the existing landfill.

K.2 VERTICAL EXPANSION OVER UNLINED LANDFILLS

The northern portion of the existing landfill cell is unlined. In accordance with Rule62-701.430(1)(c), FAC, the western and southern sideslopes will be lined with a single HDPE geomembrane liner that is 60 mil thick and textured.

The vertical expansion will also include a leachate removal and collection system comprised of a 24-inch drainage sand layer, a double-sided bi-planar geocomposite, a 60 mil textured geomembrane liner, and a 24 inch protective bedding sand layer. The drainage sand not only promotes leachate percolation, but it also acts as a protective buffer for the geomembrane liner. The vertical expansion is graded to slope to the new cell.

Per 62-701.430(1)(c)(2), FAC, the 60 mil textured liner will have a maximum water vapor transmission rate of 0.24 grams per square meters per day (g/m² x day).

K.3 FOUNDATION AND SETTLEMENT ANALYSIS

See Attachment J-2 for settlement calculations

K.4 TOTAL SETTLEMENT CALCULATIONS

See Attachment J-2 for settlement calculations

K.5 LANDFILL STABILITY

See Section J for landfill stability discussion.

K.6 SURFACE WATER MANAGEMENT SYSTEM

The stormwater management plan will divert stormwater from the expansion area to the existing stormwater detention pond. Temporary stormwater devices will be in place during construction to prevent stormwater infiltration into the existing landfill and to minimize erosion of cover materials. See Section H, Attachment H-9 for the stormwater management system calculations.

K.7 LANDFILL GAS CONTROL SYSTEM

See Section O for a discussion of landfill gas accumulation under the liner for the vertical expansion.

SECTION L

LANDFILL OPERATION REQUIREMENTS

The information required for Section L of the permit application will be included with the modified fill sequence plans and Landfill Operations plan upon approval of the construction permit application.

See Separate Binder

SECTION M

WATER QUALITY AND LEACHATE MONITORING REQUIREMENTS

This Groundwater Monitoring Plan is being submitted concurrently with the Hardee County Construction Application for Expansion Plan to fulfill the requirement of Chapter 62-701.510 of the Florida Administrative Code.

Please see Groundwater Monitoring Plan submitted separately.

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

NOV 19 2004

SOUTHWEST DISTRICT TAMPA

REVISED GROUNDWATER MONITORING PLAN

ATTACHMENT M-1 TO THE

CONSTRUCTION PERMIT APPLICATION FOR HARDEE COUNTY LANDFILL EXPANSION

Prepared for:

Hardee County
Board of County Commissioners
412 West Orange Street
Wauchula, Florida
863-773-5089

Prepared by:

SCS Engineers 3012 U.S. Highway 301 North, Suite 700 Tampa, Florida 33619 (813) 621-0080

> File No. 09199033.09 November 15, 2004

TABLE OF CONTENTS

Sect	<u>ion</u>	<u>Page</u>
M	Groundwater Monitoring Plan	M-1
	Background	M-1
	Groundwater Monitoring Plan	M-1
	Groundwater Monitoring Wells	M-1
	Field Parameters	M-6
	Laboratory Parameters (Unfiltered)	
	Groundwater Monitoring Well Construction/Abandonment	M-6
	Surface Water Monitoring	M-9
	Field Parameters	M-9
	Laboratory Parameters (Unfiltered)	M-10
	Leachate Monitoring	M-10
	Field Parameters	
	Laboratory Parameters (Unfiltered)	M-10
	Groundwater Level Monitoring	M-10
	Piezometers	
	Water Quality Sampling and Analysis	M-16
	Water Quality Monitoring Reporting Requirements	M-17
	Biennial Review of the Water Quality Report	M-17
	Preventative Measures and Corrective Action	M-17
	Supply Wells	M-19

FIGURES

Figure	Page
M-1	Hardee County Solid Waste, Ground, Surface Water, and Leachate Monitoring
112 2	Location Points, Hardee County, Florida
M-2	Hardee County Solid Waste, Groundwater Monitoring Plan Sampling
	Locations Map, Hardee County, Florida
M-3	Typical Monitoring Well Construction Detail
M-4	Hardee County Solid Waste, Piezometer Location Map
M-5	Typical Piezometer Construction Detail
M-6	Supply Well Location Map, Hardee County Landfill, Hardee County, Florida M-20
	TABLES
<u>Table</u>	No.
M-1	Groundwater Monitoring Wells at the Hardee County Landfill
M-2	Well Construction Details
M-3	Groundwater and Surface Water Level Monitoring Points
M-4	Piezometer Construction Details

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

NOV 1 9 2004

SOUTHWEST DISTRICT TAMPA

SECTION M

GROUNDWATER MONITORING PLAN

This Groundwater Monitoring Plan is being submitted concurrently with the Hardee County Construction Application for Expansion Plan to fulfill the requirement of Chapter 62-701.510 of the Florida Administrative Code.

BACKGROUND

Currently the water quality monitoring for the Phase I disposal area at the Hardee County Landfill is conducted under the Department of Environmental Protection (FDEP) Permit Number 38414-002-SO, Modification 38414-006. Groundwater sampling is required semi-annually at six surficial aquifer monitoring wells (MW-1, MW-2, MW-4, MW-5, MW-8, and MW-9), one leachate site (Manhole 1), and one surface water site (SW-1). Additionally, water level measurements are collected at the six monitoring wells and eleven piezometers semi-annually. All current and proposed monitoring points are listed in Table M-1 and shown on Figure M-1.

GROUNDWATER MONITORING PLAN

The Hardee County landfill expansion will include an additional 10 acres; 5 acres, designated as Phase II, Section I, to the south of the Phase I area; and 5 acres, designated as Phase II Section II, to the west Phase I area. The expansion will require additional wells and piezometers to be constructed and the abandonment of monitoring points located in the expansion area. The placement of the monitoring points was based on Chapter 62-701.510, F.A.C. and the findings of the Hardee County Hydrogeological Investigation submitted concurrently with the Hardee County Construction Application for Expansion Plan.

GROUNDWATER MONITORING WELLS

The proposed Hardee County groundwater-monitoring program will consist of the monitoring wells listed in Table M-1. During the filling of Phase II Section I the monitoring plan will include two background (MW-1 and MW-4) and six-detection groundwater monitoring wells (MW-2, MW-5, MW-8, MW-10, MW-11, and MW-12)-. The background wells are screened in the surficial aquifer and will allow for the monitoring of ambient groundwater conditions at the site. The detection monitoring well MW-2 is located 62.05 feet from the edge of waste. MW-5 is located 64.96 from the edge of waste and MW-8 is 44.55 feet from the edge of waste. Site conditions made it impractical to place MW-2 and MW-5 within 50 feet of the edge of waste. The proposed detection monitoring wells, MW-10, MW-11, and MW-12 will be located within 50 feet of the edge of waste.

Prior to construction of Phase II Section II monitoring wells MW-5 and MW-8 will be abandoned. Additional detection wells, designated as MW-13, MW-14, and MW-15) will be installed. These detection wells will be located no more than 50 feet from the edge of Phase II Section II waste. Upon construction of the Phase II Section II cell, the overall site groundwater

monitoring plan will include two background (MW-1 and MW-4) and seven detection groundwater monitoring wells (MW-2, MW-10, MW-11, MW-12, MW-13, MW-14, and MW-15). However, construction of MW-13, 14, and 15 is not anticipated until a subsequent permitting period.

The detection wells are located were placed no greater than 500 feet apart across the downgradient direction of groundwater flow and no greater than 1500 feet apart across the upgradient direction of groundwater flow.

All groundwater monitoring wells included in the monitoring plan are shown in Figure M-2.

TABLE M-1. GROUNDWATER MONITORING WELLS AT THE HARDEE COUNTY LANDFILL

Well Number	Aquifer Monitored	Permit Designation
MW-1	Surficial	Background
MW-2	Surficial	Detection
MW-4	Surficial	Background
MW-5 ¹	Surficial	Detection
MW-8 ¹	Surficial	Detection
$MW-10^2$	Surficial	Detection
MW-11 ²	Surficial	Detection
MW-12 ²	Surficial	Detection
MW-13 ³	Surficial	Detection
MW-14 ³	Surficial	Detection
MW-15 ³	Surficial	Detection

¹ = Wells to be abandoned prior to the construction of Phase II Section II

² = Proposed Monitoring Wells for Phase II Section I, to be installed for this permitting period.

³ = Proposed Monitoring Wells for Phase II Section II, to be installed during a subsequent permitting period.

Figure M-1. Hardee County Solid Waste, Groundwater, Surface Water, and Leachate Monitoring Location Points, Hardee County, Florida.

Figure M—2. Hardee County Solid Waste, Groundwater Monitoring Plan Sampling Locations Map, Hardee County, Florida.

The Groundwater monitoring wells will be sampled semi-annually for the parameters listed below.

FIELD PARAMETERS

- Static water level before purging
- Specific Conductivity
- pH
- Dissolved Oxygen
- Turbidity
- Temperature
- Color and Sheen by observation

LABORATORY PARAMETERS (UNFILTERED)

- Total Ammonia -N
- Biological Oxygen Demand (BOD)
- Chemical Oxygen Demand (COD)
- Chlorides
- Iron
- Magnesium
- Mercury
- Nitrate
- Sodium
- Sulfate
- Total Organic Carbon (TOC)
- Total Dissolved Solids (TDS)
- Parameters listed in 40 CFR part 258, Appendix I

GROUNDWATER MONITORING WELL CONSTRUCTION/ABANDONMENT

The monitoring wells listed above include six proposed wells. The construction specifications for these wells are shown in Table M-2. A typical monitoring well construction diagram is shown in Figure M-3. The construction specifications are based on the water level measurements observed at nearby monitoring wells and piezometers. The construction specifications may vary slightly based on field conditions.

The following documentation will be submitted for each well installed:

- Well Identification
- Aquifer Monitored
- Screen type and slot size
- Screen length
- Screen Diameter
- Elevation at top of casing
- **Boring Logs**
- Total depth of wells
- Casing Diameter
- Casing type and length
 Casing type and length
 SWFWMD well construction permit Number ARTMEN
 SWFWMD well construction permit Number ARTMEN
 SWFWMD well construction permit Number ARTMEN
 SWFWMD well construction permit Number ARTMEN
 SWFWMD well construction permit Number ARTMEN
 SWFWMD well construction permit Number ARTMEN
- Elevation at ground survey
 Latitude and longitude of well locations
 NOV 1 9 2004

TABLE M-2. REVISED WELL CONSTRUCTION DETAILS

						· · · · · · · · · · · · · · · · · · ·							1
Well ID	Well Diameter	Current Permit Designation	Permit Designation Phase II Section I	Permit Designation Phase II Section II	Total Depth (bls)	Casing Length (ft bls)	Screen Length	TOC Elevation (NGVD)	Ground Surface Elevation (Ft-NGVD)	Screen top/bottom (ft. bls)	screen top/bottom (NGVD)	Maximum Water Level (NGVD)) Minimum Water Level (NGVD)
MW-1	4"	Detection	Background	Background	11.00'	7.80'	5'	87.92	86.24	6.0/11.0	80.24/75.24	85.44 (Feb 95)	78.27 (June 00)
MW-2	4"	Detection	Detection	Detection	10.50'	7.80'	5'	85.75	83.75	5.5/10.5	78.25/73.25		
MW-3	2"	Piezometer	Piezometer	Abandoned	unknown	unknown	unknown	87.74	unknown			82.46 (Dec 02)	75.56 (June 00)
MW-4	2"	Background	Background	Background	18.90	12.20	10'	87.17	84.09	unknown	unknown	unknown	unknown
MW-5	2"	Detection	Detection	Abandoned	18.10	11.00	10'	88.67	85.83	8.9/18.9 8.1/18.1	75.19/65.19	83.06 (Dec 02)	76.56 (June 00)
MW-6	2"	Piezometer	Piezometer	Piezometer	13.50'	3.50'	10'	88.00	84.59	3.5/13.5	77.73/67.73	82.91 (Dec 97)	76.46 (June 00)
MW-7	2"	Piezometer	Piezometer	Piezometer	13.50'	3.50'	10'	87.56	85.90	3.5/13.5	82.40/72.40	83.11 (Dec 02)	75.31 (June 01)
MW-8	2"	Detection	Detection	Abandoned	13.50	3.50	10'	89.07	85.80	3.5/13.5	82.40/72.40	83,11 (Dec 02)	75.31 (June Q1)
MW-9	2"	Detection	Ahandoned	Abandoned	13.50'	3.50'	10'	88.71	85.90	3.5/13.5	82.30/72.30	83.18 (Dec 02)	75.58 (June 01)
MW-10*	2"	Proposed	Detetion	Detection	12.00'	2.00	10,	88.0**	85.0**	3.8/12.0	82.40/72.40 81.2/71.2**	83.11 (Dec 02)	75.31 (June 01)
MW-11*	2"	Proposed	Detection	Detection	12.00'	2.00'	10,	86.1**	83.1**	2.0/12.0	81.1/71.1**	82.5***	74.5 (MW-6 Jun ()0)***
MW-12*	2"	Proposed	Detection	Detection	17.00'	2.00'	15'	88.3**	85,3**	2.0/17.0	83.3/68.3**	82***	74.5 (MW-6 Jun 00)***
MW-13**	2"	Proposed	Phase II Section II	Detection	17.00'	2.00'	15'	87.4**	84.4**	2.0/17.0	82.4/67.4**	83***	74.4 (MW-7 Jun 00)***
MW-14**	2"	Proposed	Phase II Section II	Detection	12.00'	2.00	10'	88.5**	85.5**	2.0/12.0	83.5/73.5**		74.4 (MW-7 Jun 00)***
MW-15**	2"	Proposed	Phase II Section II	Detection	12.00'	2.00'	10'	87.0**	84**	2.0/12.00	83.5/73.5**	82***	76.6 (MW-5 Jun 00)***
Maintenance Supply Well	4"	Supply Well	To Be Abandoned	To Be Abandoned	197'	63'	NA.	unknown	unknown	2.0/12.00 NA		83.5***	76.6 (MW-5 Jun 00)***
Material Recover Facilty Supply Well	4"	Supply Well	Supply Well	Supply Well	200'	67'	NA.	unknown	unknown	NA NA	NA NA	NM	NM
Proposed Supply Well*	4"	Proposed	Supply Well	Supply Well	197'	63'	NΛ	TBD	TBD	NA NA	NA NA	NM NM	NM NM

NOTES:

* = Proposed Locations: Construction specifications based on top of clay and maximum water levels observed on the site

** = Approximate Elevation based upon March 2003 Aerial Topography Survey of the Site by I.F. Rooks and Associates

*** = Approximate based on potentiometric flow maps (Refer to Geotechnical Report attached to this Permit application)

TBD =To Be Determined

NA =Not Applicable

NM = Not Measured

Figure M-3 — Typical Monitoring Well Construction Detail

Within one week following well completion and development, each new well will be sampled for parameters listed in F.A.C. Rules 62-701.510 (8)(a) and (d).

Groundwater monitoring well MW-9 and piezometers P-12 are is located within the Phase II Section I Expansion Area and will be abandoned during construction of the Phase II Section I cell_and_M_monitoring wells MW-3, MW-5 and MW-8 will be abandoned prior to the construction of Phase II Section II. These wells/piezometers and all wells not included in the approved Groundwater Monitoring Plan will be plugged and abandoned by filling the casing from bottom to top with cement grout in accordance with Rule 62-532.500(4), F.A.C., and the applicable rules of Southwest Florida Water Management District before construction of the expansion area. Documentation of abandonment will be provided to the Department.

SURFACE WATER MONITORING

Surface water samples will be collected semi-annually at SW-2. The location is shown on Figure M-2. A staff gage will be installed and the elevation will be surveyed and the position located by a registered Florida land surveyor. Additional staff gauges, SG-1 and SG-2 will be installed for water level monitoring only

The surface water at SW-2 will be <u>sampled and</u> analyzed semi-annually for the parameters listed below <u>unless no surface water is present for the entire semi-annual period</u>. If during the <u>semi-annual sampling event the site is dry a sample will be taken at a later date, during the semi-annual period if possible, when surface water is present. Hardee County personnel will-prepare a daily log (excluding Sundays) in order to document the the occurrence or absence of <u>water at SW-2</u>. If during the semi-annual sampling event the site is dry a sample will be taken at a later date, during the semi-annual period if possible, when surface water is present.</u>

FIELD PARAMETERS

- Specific Conductivity
- pH
- Dissolved Oxygen
- Turbidity
- Temperature
- Color and Sheen by observation

LABORATORY PARAMETERS (UNFILTERED)

- Zinc
- Unionized Ammonia
- Total Hardness
- Biochemical Oxygen Demand (BOD)
- Copper
- Iron
- Mercury
- Nitrate
- Total Nitrogen

- Total Dissolved Solids (TDS)
- Total Organic Carbon (TOC)
- Fecal Coliform
- Total Phosphatesorous
- Chlorophyll A
- Chemical Oxygen Demand (COD)
- Total Suspended Solids (TSS)
- Those Parameters listed in 40 CFR part 258, Appendix I

LEACHATE MONITORING

Leachate samples will be collected annually at Manhole 9 (MH-9) for Phase I. Leachate samples for Phase II will be collected at the labcock valve on the sideslope riser for the leachate collection system from the leachate sump of the expansion area as shown on Figure M-2. The required parameters are listed below.

FIELD PARAMETERS

- Specific Conductivity
- pH
- Dissolved Oxygen
- Color and Sheen by observation

LABORATORY PARAMETERS (UNFILTERED)

- Total Ammonia –N
- Biochemical Oxygen Demand (BOD)
- Chemical Oxygen Demand (COD)
- Bicarbonate
- Chlorides
- Hardness
- Iron

- Magnesium
- Mercurv
- Nitrate
- Sulfate
- Sodium
- Total Dissolved Solids (TDS)
- •

In addition to the above-mentioned parameters, leachate will be sampled annually for parameters listed in 40 CFR part 258, Appendix II.

GROUNDWATER LEVEL MONITORING

The groundwater and surface water elevations will be recorded monthly at all points listed in Table M-3 and shown on Figure M-1 for the first year of implementation of the monitoring plan and quarterly thereafter to include all semi-annual sampling sites. Water levels will be recorded prior to purging or sample collection. The information recorded will include monator of the monitoring plan and quarterly thereafter to include all semi-annual sampling sites. Water levels will be recorded prior to purging or sample collection. The information recorded will include many of the monitoring plan and quarterly thereafter to include all semi-annual sampling sites. Water levels will be recorded prior to purging or sample collection. The information recorded will include all semi-annual sampling sites.

NOV 1 9 2006

TAMPA TAMPA

well casing elevation, land surface elevation, and groundwater elevation at each well site at an accuracy of plus or minus 0.01 foot (NGVD).

PIEZOMETERS

Additional piezometers will be installed to further define the groundwater flow on site. The locations of the proposed piezometers are shown on Figure M-4. The construction details are outlined in Table M-4 and typical construction diagram is shown on Figure M-5. The construction specifications may vary slightly based on field conditions. The proposed piezometers will be constructed to monitoring well specifications because they may be converted to monitoring wells in the future if additional sampling locations are required.

TABLE M-3. REVISED GROUNDWATER AND SURFACE WATER LEVEL MONITORING POINTS

Monitoring Location	Current Permit Designation	Permit Designation Phase 11 Section 1	Permit Designation Phase II Section II
MW-I	Background	Background	Background
MW-2	Detection	Detection	Detection
MW-3_	Piezometer	Piezometer	Abandoned
MW-4	Background	Background	Background
MW-5	Detection	Detection	Abandoned
MW-6	Piezometer	Piezometer	Piezometer
MW-7	Piezometer	Piezometer	Piezometer
MW-8	Detection	Detection	Abandoned
MW-9	Detection	Abandoned	Abandoned
MW-10	Proposed Detection Phase II Section I	Detection	Detection
MW-11	Proposed Detection Phase II Section I	Detection	Detection
MW-12	Proposed Detection Phase II Section I	Detection	Detection
MW-13	Proposed Detection Phase II Section II	Proposed Detection Phase II Section II	Detection
MW-14	Proposed Detection Phase II Section II	Proposed Detection Phase II Section II	Detection
MW-15	Proposed Detection Phase II Section II	Proposed Detection Phase II Section II	Detection
P-I	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring
P-2	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring
P-3	Piezometer	Abandoned	Abandoned
P-4	Piezometer	Abandoned	Abandoned
P-5	Piezometer	Abandoned	Abandoned
P-6	Abandoned	Abandoned	Abandoned
P-7	Piezometer	Piezometer	Piezometer
P-8	Piezometer	Piezometer	Piezometer
P-9	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring
P-10	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring
P-11	Piezometer	Piezometer	Piezometer
P-12	Piezometer	Abandoned	Abandoned
P-13	Piezometer	Piezometer	Piezometer
P-14	Piezometer	Piezometer	Piezometer
P-15	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring
P-16	Leachate Level Monitoring	Abandoned	Abandoned
P-16A	Proposed Leachate Monitoring	Leachate Level Monitoring	Leachate Level Monitoring
P-10A	Proposed Piezometer	Piezometer	Piezometer
P-18 _	Proposed Piezometer	Piezometer	Piezometer
P-19	Proposed Piezometer	Piezometer	Piezometer
P-19 P-20	Proposed Piezometer	Piezometer	Piezometer
	Proposed Piezometer	Piezometer	Piezometer
P-21		Piezometer	Piezometer
P-22	Proposed Piezometer	Piezometer	Piezometer
P-23	Proposed Piezometer	Surface Water	Surface Water
SW-2	Proposed		Staff Gauge
SG-1	Proposed	Staff Gauge	Sun Gauge

TABLE M-4. REVISED PIEZOMETER CONSTRUCTION DETAILS

			-					TOO	Ground			Maximum		Average
			Permit Designation Phase II	Permit Designation Phase II		Casing Length	Screen	TOC Elevation	Surface Elevation	Screen top/bottom	screen top/bottom	Water Level	Minimum Water	Water Level
Piezometer	Diameter	Current Permit Designation	Section I	Section II	(bls)	(ft bis)	Length	(NGVD)	(Ft-NGVD)	(ft. bls)	(NGVD)	(NGVD)	Level (NGVD)	(NGVD)
P-1	2"	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring	unknown	unknown	unknown	90.14	89.89	unknown	unknown	unknown	unknown	unknown
P-2	2"	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring	unknown	unknown	unknown	90.64	unknown	unknown	unknown	unknown	unknown	unknown
P-3 .	2"	Piezometer	_Abandoned	Abandoned	13.50'	3.50'	10'	89.40	85.90	3.5/13.5	unknown	unknown	unknown	unknown
P-4	2"	Piezometer	Abandoned	Abandoned	14.00'	3.50'	10'	88.36	85.90	4.0/13.5	unknown	unknown	unknown	unknown
P-5	2"	Piezometer	Abandoned	Abandoned	13.50'	3.50'	10'	89.30	85.90	3.5/13.5	unknown	unknown	unknown	unknown
P-6	2"	Abandoned	Abandoned	Abandoned	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown
P-7	2"	Piezometer	Piezometer	Piezometer	unknown	unknown	unknown	84.16	unknown	unknown	unknown	unknown	unknown	unknown
P-8	2"	Piezometer	Piezometer	Piezometer	unknown	unknown	unknown	84.98	unknown	unknown	unknown	unknown	unknown	unknown
P-9	2"	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring	unknown	unknown	unknown	87.17	85.12	unknown	unknown	unknown	unknown	unknown
P-10	2"	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring	unknown	unknown	unknown	88.66	87.01	unknown	unknown	unknown	unknown	unknown
P-11	2"	Pięzometer	Piezometer	Piezometer	unknown	unknown	unknown	88.25	85.03	unknown	unknown	unknown	unknown	unknown
P-12	2"	Piezometer	Abandoned	Abandoned	15.00'	3.50'	10'	88.75	NA	3.50/13.5	unknown	unknown	unknown	unknown
P-13	2"	Piezometer	Piezometer	Piezometer	unknown	unknown	unknown	87.65	unknown	unknown	unknown	unknown	unknown	unknown
P-14	2"	Piezometer	Piezometer	Piezometer	unknown	unknown	unknown	86.99	unknown	unknown	unknown	unknown	unknown	unknown
P-15	2"	Leachate Level Monitoring	Leachate Level Monitoring	Leachate Level Monitoring	13.50'	3.50'	NA	89.23	85.90	3.5/13.5	unknown	unknown	unknown	unknown
P-16	2"	Leachate Level Monitoring	Abandoned	Abandoned	13.50'	3.50'	NA	88.92	85.90	3.5/13.5	unknown	unknown	unknown	unknown
P-16A	2"	Proposed	Leachate Level Monitoring	Leachate Level Monitoring	20.00	2.00'	18'	95	92.00		90.0/72.0**	unknown	unknown	unknown
P-17*	2"	NA	Piezometer	Piezometer	12.00'	2.00'	10'	88.2**	85.2**		83.2/73.2**	83.5***	78.3 (MW-1 Jun00)	
P-18*	2"	NA	Piezometer	Piezometer	12.00'	2.00'	10'	87.1**	84.1**		82.1/72.1**	-	78.3 (MW-1 Jun00)	
P-19*	2"	NA	Piezometer	Piezometer	12.00'	2.00'	10'	87.7**	84.7**	·	82.7/72.7**		76.6 (MW-4 Jun00)	
P-20*	2"	NA	Piezometer	Piezometer	12.00'	2.00'	10'	86.6**	83.6**		81.6/71.6**		76.6 (MW-4 Jun00)	
P-21*	2"	NA .	Piezometer	Piezometer	12.00'	2.00'	10'	84.3**	81.3**		79.3/69.3**		75.6 (MW-2 Jun00)	
P-22*	2"	NA	Piezometer	Piezometer	12.00'	2.00'	10'	87.2**	84.2**		82.2/72.2**		74.4 (MW-7 Jun00)	
P-23*	2"												74.4 (MW-7 Jun00)	
Γ-23"	<u> </u>	NA	Piezometer	Piezometer	12.00'	2.00'	10'	86.7**	83.7**	2.0/12.0	81.7/71.7**	83***	[/4.4 (MW-/ Jun00)	11.5***

NOTES:

- * = Proposed Monitoring Locations- Construction specifications based on average water levels observed on the site.
- ** = Approximate Elevation based upon March 2003 Aerial Topography Survey of the Site by I.F. Rooks and Associates
- *** = Approximate based on potentiometric flow maps (Refer to Geotechnical Report attached to this Permit application)

TBD=To Be Determined

NA=Not Applicable

NM=Not Measured

bls = below land surface

NGVD = National Geodetic Vertical Datum

ENVIRONMENTAL PROTECTION

MOV 1 9 2004

SOUTHWEST DISTRICT

Figure M-4. Hardee County Solid Waste, Piezometer Location Map.

Revised Figure M-5 - Typical Piezometer Construction Detail

The following documentation will be submitted for each <u>piezometer well</u> constructed:

- Well Identification
- Aquifer Monitored
- Screen type and slot size
- Screen length
- Screen Diameter
- Elevation at top of casing
- Boring Logs
- Total depth of wells
- Casing Diameter
- Casing type and length
- SWFWMD well construction permit Number
- Elevation at ground surface
- Latitude and longitude

Piezometers P-3, P-4, and P-5 are located within the Phase II Section I Expansion Area. Piezometer P16 will be abandoned and replaced with Piezometer 16A when the access on the southside of Phase I is constructed. These piezometers are to be plugged and abandoned in accordance with Rule 62-532.440, F.A.C. and applicable rules of the Southwest Florida Water Management District before construction of the expansion area.

WATER QUALITY SAMPLING AND ANALYSIS

Groundwater monitoring wells included in this plan will be sampled semi-annually for the first year of the permitting period and the groundwater level in each well will be recorded. During the first year, slug testing will be performed on MW-10, 11, and 12 for purposes of evaluating the sampling frequency for the remainder of the permit period. Results of the evaluation will be submitted to the FDEP. The field testing, sample collection, and preservation willshall be conducted in accordance with methods approved by the FDEP Standard Operating Procedures (SOP) FS 22000 (Ground Water Sampling) in accordance with Rule 62-4.246 and Chapter 62-160, F.A.C. All sample analyses field and laboratory work will be conducted by a firm that possessing a is certified by the Departement of Health's Environmental Laboratory Certification Program. Quality Assurance Project Plan or a Comprehensive Quality Assurance plan approved by the FDEP to meet the requirements of Chapter 62-160, F.A.C.

Measures will be taken to lower turbidity by eliminating the use of bailers for sampling or purging monitoring wells. Additionally a low flow pump will be used for purging and sample collection. Due to three well volumes will be purged from each well before a sample will be collected. The volume of water removed from each well will be recorded in the field notes.

In addition, immediately following all sampling events, the following measures will be taken:

- All wells will be locked and the keys retained by the Hardee County Solid Waste Director.
- The Solid Waste Director or appointee will immediately review all Chains of Custody, and field notes to assure all required data has been recorded DADEPARTMENT OF ENVIRONMENTAL DROTECTION

NOV 1 9 2004

M-16

WATER QUALITY MONITORING REPORTING REQUIREMENTS

The Water Quality Monitoring Report will summarize and interpret the water quality and leachate monitoring results and will be signed and sealed by a professional geologist or professional engineer and submitted to FDEP semi-annually and will include the following:

- A cover letter summarizing water quality standards and water quality exceedances.
- Leachate, surface water, and groundwater quality monitoring results reported on the Department Form 62-522.900(2). Groundwater Monitoring Report. The report will include all items listed in Rule 62-701.510 (9) (a), F.A.C. The analytical report provided by the contract laboratory will include the above referenced form along with field parameters, water level reading, and field observations in addition to applicable groundwater standards.
- A potentiometric surface map indicating groundwater flow and elevation.

Biennial Review of the Water Quality Report

A Biennial Report will be prepared every two years and upon permit renewal. The Biennial report will be prepared by and signed and seal by a professional geologist or professional engineer with experience in hydrgeologic investigations. The report shall summarize and interpret the water quality data and water level measuremnets collected during the past two years (minimum). The report shall contain, at a minium, the following:

- 1. Tabular and Graphical displays of the dat, including hydrographs for all monitor wells;
- 2. Trend Analyses
- 3. Comparisions among shallow, middle and deep zone wells, if applicable
- 4. Comparison between upgradient and downgradiennt wells:
- 5. Correlations between related parameters such as total dissolved solids and specific conductance
- 6. Duscussion of erratic and/or poorly correlated data, and
- 7. A summary groundwater table contour map and an interpretation of the quaterly groundwater contour maps

All field and laboratory records specified in Chapter 62-701.510., shall be made availbae to the Deapartment and shall be reatained for the design period of the landfill.

Preventative Measures and Corrective Action

If indicator parameters are detected in detection wells in concentrations which are significantly above background water quality, or which are at levels above the FDEP's water quality standards or criteria specified in Chapter 62-520, F.A.C., the permittee shall resample the wells within 30 days after the sampling data is received, to confirm the data. If the data is confirmed, the permittee shall notify the FDEP in writing within 14 days of this finding. Upon notification by the FDEP, the permittee shall initiate assessment monitoring as follows:

- 1. Routine monitoring of all monitoring wells, surface water monitoring locations and leachate sampling locations shall continue according to the requirements of section 3.0 of this plan.
- 2. Within go days of initiating assessment monitoring and annually thereafter, the permittee shall sample and analyze a representative sample of the background wells and all affected detection wells for the parameters listed in 40 CFR Part 258, Appendix II. Any new parameters detected and confirmed in the affected downgradient wells shall be added to the routine ground water monitoring parameter lists required in section 3.0 of this plan.
- 3. Within 90 days of initiating assessment monitoring, the permittee shall install and sample compliance monitoring wells at the compliance line of the zone of discharge and downgradient from the affected detection monitoring wells. These wells shall be installed according to the requirements of Chapter 62- 701.510 (3)(d), and samples shall be analyzed for the parameters listed in section 3.0 of this plan and also 40 CFR Part 258, Appendix II.
- 4. Within 180 days of initiating assessment monitoring, the permittee shall submit a contamination assessment plan to the FDEP. This plan shall be designed to delineate the extent and cause of the contamination, to predict the likelihood that FDEP water quality standards will be violated outside the zone of discharge, and to evaluate methods to prevent any such violations. Upon approval by the FDEP, the permittee shall implement this plan and submit a contamination assessment report in accordance with the plan. All reasonable efforts shall be made by the permittee to prevent further degradation of water quality from the landfill activities.
- 5. If for two (2) consecutive sampling events the concentrations of all indicator parameters and the parameters listed in 40 CFR Part 258, Appendix II are at or below background values, the permittee, upon approval by the FDEP, may discontinue assessment monitoring and return to the routine monitoring requirements in Section 3.0 of this plan.

B. Corrective Actions

If the contamination assessment report indicates that water quality standards are likely to be violated outside the zone of discharge, the permittee shall, within 90 days, submit a remedial action plan to the FDEP. Upon approval, the permittee shall initiate corrective actions to prevent such violations.

2. If any contaminants are detected and confirmed in compliance wells in concentrations which exceed both background levels and FDEP water quality standards or criteria, are detected and confirmed in detection wells in concentrations which are above FDEP water quality minimum criteria, the permittee shall notify

the Department within 14 days of this finding and shall initiate corrective actions.

Assessment monitoring shall continue according to the requirements of this section.

SUPPLY WELLS

As referenced in the Hardee County Hydrgeological Investigation, two supply wells are located within 500 feet of the Hardee County Landfill Disposal Unit. The locations of the wells are shown on Figure M-6. The SWFWMD well completion reports are provided as Appendix A. These wells are constructed into the intermediate aquifer at approximately 200 feet below land surface.

The maintenance supply well will be plugged and abandoned in accordance with Rule 62-532.500(4), F.A.C. by filling the well with grout from the bottom to the top within 120 days of permit issuance, and the applicable rules of the Southwest Florida Water Management District. Before abandonment of this well, a replacement supply well will be constructed. The location of the proposed supply well is shown on Figure M-6 and the construction characteristics are outlined in Table M-2.

Figure M-6. Supply Well Location Map, Hardee County Landfill, Hardee County, Florida

NOV 19 2004 SOUTHWEST DISTRICT

SECTION N

SPECIAL WASTE HANDLING REQUIREMENTS (62-701.520 FAC)

N.1 PROCEDURES FOR MANAGING MOTOR VEHICLE DISPOSAL

The Hardee County Landfill does not accept motor vehicles, therefore this section does not apply and the application has been marked "Not Applicable".

N.2 PROCEDURES FOR LANDFILLING SHREDDED WASTE

The Hardee County Landfill does not landfill shredded waste, therefore, this section does not apply and the application has been marked "Not Applicable".

N.3 PROCEDURES FOR ASBESTOS WASTE DISPOSAL

Asbestos Containing Materials (ACM) are accepted at the Hardee County Landfill under certain provision outlined by 40 CFR Part 61 (as referenced in 62-701.520(4)(a), FAC) and the Hardee County Solid Waste Department. The County has notified all known potential asbestos disposers of the required procedures, which must be followed by any person desiring to dispose of ACM. Accepted asbestos material is disposed of using the following procedures (these procedures are also outlined in Appendix B of Attachment L-1):

- Excavate a hole three feet in depth and adequate diameter to meet the estimated quantity to be received.
- Cover immediately with one foot of soil and compact with dozer, adding more cover material with each pass.
- Attach a site map with location and depth of each disposal site and attached in a file with the Waste Shipment Record and record weight ticket.

N.4 PROCEDURES FOR CONTAMINATED SOIL DISPOSAL

The County accepts contaminated soils on the condition that they are not hazardous. It is a requirement that all incoming contaminated soils be TCLP tested first before being accepted at this facility for disposal. Depending on the known or suspected contaminant, additional analyses may be required. Records of tests and analyses are kept on file at the landfill facility. Accepted contaminated soils are disposed of in the currently active disposal cell. Disposal of contaminated soil is accomplished by adding the contaminated soil to the daily cover used for the solid waste only within the lined and bermed working face. The location of contaminated soil can be determined based on the contaminated soil's date of arrival and the filling sequence at the landfill.

If the TCLP testing shows the soil cannot be accepted at the landfill the hauler will be notified. A front-end loader will place the soil in a barrel at the Household Hazardous Waste Collection Center. Hardee County will contact the person/entity who dumped the load and request removal within 48 hours. If the 48 hours expire the County will contact an independent waste hauler for proper disposal of the contaminated soil at a permitted hazardous waste management facility.

N.5 BIOLOGICAL WASTES

Biological waste includes sludges and medical waste. Sludges are not accepted at the landfill for disposal. Medical waste is not accepted at the landfill for disposal.

SECTION O

GAS MANAGEMENT SYSTEM REQUIREMENTS

0.1 DESIGN OF THE GAS MANAGEMENT SYSTEM

Landfill gas (LFG) that is generated by the anaerobic decomposition of the waste buried within the landfill is allowed to vent to the atmosphere. The LFG management system in place at the Hardee County Landfill consists of 11 LFG monitoring probes located around the perimeter of the existing landfill footprint and at the property boundary. The existing LFG monitoring plan includes quarterly monitoring of these probes, as well as on-site structures in order to demonstrate compliance with Rule 62-701.530(1), FAC.

When the final closure cover and sideslope cover systems are installed over the Phase I disposal area, a passive vent system will be installed as shown on the permit drawings attached to this applications. The passive gas vent system is designed to reduce gas pressures within the Phase I existing disposal area, from under the cover system on the south and west sideslopes, and control possible subsurface migration of LFG. Once constructed, LFG will be permitted to vent freely to the atmosphere through a number of deep vertical vents and horizontal vent trenches. Because the proposed design capacity of the landfill is below 2.5 million megagrams or 2.5 million cubic meters, the Hardee County Landfill is not subject to the LFG collection and control requirements of the federal New Source Performance Standards (NSPS), nor Title V air permitting. Therefore an active LFG collection system is not proposed for the Phase I and II areas, at this time. The LFG gas venting system for the Phase II expansion area will be designed and permitted upon submittal of the closure application for the Phase II area.

Because the proposed landfill expansion will be to the west and south of the existing landfill, it will be necessary to relocate several of the existing LFG monitoring probes outside of the expansion area. Hardee County proposes to abandon and replace existing LFG monitoring probes GP-4, GP-5, GP-6, GP-7, and GP-8, and install replacement LFG monitoring wells designated as GP-4R, GP-5R, GP-6R, GP-7R, and GP-8R, as shown on the attached permit drawings. The replacement LFG monitoring wells are located along the west side of the property. The existing LFG monitoring well, GP-1,GP-2, and GP-3, will be used to detect possible subsurface migration of LFG toward the northside of the property. In addition, Hardee County is proposing to install two more LFG monitoring probes, GP-12 and GP-13, located immediately north of the proposed stormwater management area shown on the attached permit drawings. A typical detail for construction of the probes is included in these drawings.

O.1.a Combustible Gas Control

Rule 62-701.530(1), FAC, requires that the gas management system be designed to control gas migration in order to meet the following criteria:

- The combustible gas concentration may not exceed 25 percent of the lower explosive limit (LEL) in on- or off-site structures, excluding gas control or recovery equipment. Because the LEL for methane is five percent by volume, this corresponds to a maximum concentration of 1.25 percent by volume.
- The combustible gas concentration may not exceed the LEL (i.e., five percent by volume) at the property boundary.

The proposed passive vent system that will be installed in conjunction with the landfill expansion will relieve internal landfill gas pressures, thereby reducing the potential for lateral migration of LFG through the surrounding subsurface. Monitoring will continue to be conducted on a quarterly basis, consistent with the existing LFG monitoring plan.

O.1.b <u>Site Specific Conditions Considerations</u>

The design of the proposed venting system and the replacement LFG monitoring probes are consistent with industry standards and include considerations for site-specific conditions. The vertical passive vents are spaced at a rate of greater than one vent per acre of landfill, and are designed to terminate a sufficient distance above the bottom of refuse. The replacement LFG monitoring probes were designed based on the landfill configuration, base grades, and groundwater conditions at the site.

O.1.c Reduction of Gas Pressure Within the Landfill

The LFG venting system will consist of 11 vertical vents and five horizontal vent trenches. These vents will provide greater than the industry-standard coverage of one vent per acre typically installed for closed landfills. The 11 vents will be constructed of boreholes that will extend to at least 75 percent of the waste depth in order to maximize the effectiveness of the vents to allow for escape of LFG generated by the waste located near the bottom of the landfill. The gas venting trenches will tie in to the leachate collection system manholes on the west side of the landfill in order to vent LFG that may collect in the LCRS on the west side.

O.1.d Interaction with Liner, Leachate Collection System, and Final Cover

The LFG management system was designed to not impact the bottom of the landfill nor the LCRS. The vent boreholes were designed to terminate above the bottom of the landfill. Any future vents/wells will be installed with a buffer between the bottom of the boreholes and the liner and LCRS components. The LFG vent system is designed to maintain the integrity of the final cover system by minimizing the gas pressure internal to the landfill.

0.2 GAS MONITORING PROGRAM

The proposed LFG monitoring network includes 13 LFG monitoring probes located along the perimeter of the landfill. The County monitors these 13 probes, as well as on-site structures for

the presence of methane on a quarterly basis, and the results of the monitoring are reported to FDEP. The on-site structures that are monitored are as follows:

- Maintenance Building
- Materials Recovery Facility
- Scalehouse/Administrative Offices
- Kennel

As a result of the landfill expansion, five of the existing probes (i.e., GP-4 through GP-8) will be relocated outside the limits of the new landfill footprint. The locations of the proposed replacement probes, as well as proposed construction details, are shown on the attached permit drawings. The new probes will be constructed similar to the existing probes, taking into consideration site-specific conditions such as:

- Soil characteristics
- Hydrogeologic conditions surrounding the facility
- Hydraulic conditions surrounding the facility
- Location of facility structures and property boundaries

O.3 GAS REMEDIATION PLAN

Per Rule 62-701.530(3)(a), FAC, a gas remediation plan will be instituted if either of the following occurs:

- Monitoring of the LFG monitoring probes demonstrates that combustible gas concentrations exceed the LEL of five percent methane at the property boundary.
- The on-site structures contain gas concentrations that exceed 25 percent of the LEL, which is equivalent to 1.25 percent methane.

Should the LEL be exceeded, the County will immediately take all necessary steps to ensure protection of human health and notify FDEP. Within seven days of detection, a gas remediation plan shall be submitted to FDEP for approval. The plan will describe the nature and extent of the problem and the proposed remedy, which will be taken within 60 days of the detection.

In accordance with Rule 62-701.530(3)(b), FAC, should objectionable odors be detected beyond the landfill property, an odor monitoring and/or remediation plan will be implemented. The County will implement a routine odor-monitoring program to determine the timing and extent of any off-site odors. If this monitoring program confirms the existence of objectionable odors that are attributable to the landfill, an odor remediation plan shall be submitted to FDEP for approval. The plan will describe the nature and extent of the problem and the proposed remedy, which will be initiated within 30 days of approval of the plan.

0.4 LANDFILL GAS RECOVERY FACILITIES

A LFG recovery facility for purposes of energy recovery or similar end uses is not proposed at this time. Therefore, Rule 62-701.530(5), FAC, is not applicable to this permit application.

Figure 0-1. Gas Probe Locations, Hardee County Landfill Expansion, Hardee County, Florida

ATTACHMENT O-1 LANDFILL GAS MANAGEMENT SYSTEM CALCULATIONS

LANDFILL GAS VENT SYSTEM DESIGN CALCULATIONS

SCS ENGINEERS

SHEET _____ OF ______ client tardee County JOB NO. 09199033.09 Landfill Expansion DATE 12/19/03 LFG Vert System Derign BY D. Peroyur CHECKED Objective: Design of parsive landfill gas (LPG) vent system
for existing thrace county Landfill Approach: 1. I dentify closure areas to receive gas yests 2. Standard vent spacing as Ivent lacre 3. Deep vert design 4. Supplemental vent trenches 5. wind - assisted passive venting Solution: 1. Existing Hardes Co. IF ~ 11 acres 2. Industry Standard for very spring = I very fac. TO be consitent withis generally accepted practice, choose 11 very 201 passive verts Design vertical verts at 120-180' spacing Design dep verts, similar to extractor wells used in active LFG extraction System. Vertical vents to be concentrated on top plateau and on north and east side slopes. 3. Augment LFG venting using horizontal passive vent trenches beneath the geomenisme ap an the west & north Side slopes - Horizontal trenches to be installed at 150' sparing 7 horizontal trenches total - Vent pipes for horizontal tracker to be constructed with wind-drive rotary turbine vertlators. · Typical ventilation capasivity of wind torbiner = 100+ of ai At 2 mph wind, 4"0 wind this can exhaunt 123cm · TOtal LPG generation rate in LP = 140 soften for existing LP · use 6 wind - assitted textines

SHEET 2 OF 2

IENT	H	evo	لعو	C	yur	4		PRO	JECT	L	az	1/2	11	Ēχ	pan	No	<u> </u>						JOB O	NO. 919	203	3.09	Ì
BJE	CT	l	_F	G 1	/en2	+	[y]	fe.~		Des	igr	7			pan				BY	٦,	Per	עלכ	`	DAT	<u>ا</u>	103	,
							'				7								CHE	CKE)	r		DAT	E		•
	,	4.	L	FG	a	2/0/	a+	10	وا	ナ	~a	te	_	8	عو	A	Herc	h۸	ابره	_	2						
					J																						
										Е	Y029	Je-	1 1	F4	G۵	~0@	tio	`									
					••••	Ye	√				' -	_	: :		د		:										
						2ల:							14		<u>~</u> 7	⊅ 7											
						200							14														
			··			20								19			 										
						20,							14														
						-6	<i>7</i> 1						, -	נו													
		_	-				+ ~	<u></u>		٠				٠. ١١	1		1				1	Λ	Α				
		.د	l	ا لا اص	ァ い	, ,	17	714	~	12	ĸΥ	ayl	- '	<u>-0</u> \\	ect	ĺΛ	7.	M	\sim	/ ∽	221	MA	0	`			
						id									1-					`	1 ~	n					
					>	1º \6	m	ر (م) ر	1	ŋ	4.6	1+	1	<i>g</i>	40	ベレ	o~T	۴۱	ve	ナ	Ή	crc	الع				
		<u></u>		١				ļ					<u> </u>	ļ			ļ	0-				ļ	<u> </u>				-
		φ,	<u> </u>	ω	w	Ja	1 (:0//	ect	V.	p.p.g	1.	7	ےد	4	$-\varphi$	HI	<i>re</i>	מנ	K	11.	ļ	ļ				
													ļ					ļ	ļ		ļ	ļ	ļ				
+				100		ļ				D			<u></u>		ļ		<u> </u>	<u> </u>	<u> </u>				<u> </u>				
		114	re	Pr	bρc	اجع	0	251	M	φ	Υ	/ ₽	Q	UH	۷ ج	ye∧	<u>} </u>	λľ	امر ا	C	<u> </u>	1	2				-
			:	:	1	:	:	:	:	:	:	•	:	:	<u>ه</u> ر	:	•	•	!	•		•	,		ļ		ļ
			7:5		5	Or &		<u>>0</u>	<u>/a</u>	~	پر <i>و</i>	C	9V&	ag	0	1	167	2	<u>۰</u> ۰۷	ve~	N	1_	as.	[المر	<u> </u>		-
															rje~			0^.	ω ^Q	مهم	1	co	: se	74	we		-
		W	1/1	. 0	n	acc	Qγ	126	۵	72	ch	Y	0	7	r fe	+	<u> </u>					 	<u> </u>	<u> </u>			ŀ
				<u> </u>			 		<u> </u>							ļ		ļ	ļ				<u> </u>				-
4				<u> </u>	<u></u>	<u> </u>	<u> </u>							-			-					_		_			+
			ļ			ļ	<u> </u>	ļ	ļ				ļ	ļ			ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ		
				ļ		ļ	ļ	 			ļ		 	ļ	ļ			 	 			ļ	ļ	 		ļ	-
			<u> </u>	ļ	ļ		 	 				 	 				 	 	ļ	 	ļ		 	ļ		<u> </u>	+
							<u> </u>	<u> </u>			ļ			ļ	ļ		ļ	 	-	<u> </u>	-	 	 		ļ	ļ	+
		••••	ļ				ļ	 			ļ	ļ	<u> </u>	ļ	ļ		 	ļ	ļ	ļ	ļ	ļ	 	ļ	ļ	<u> </u>	1
			ļ		ļ						ļ	ļ	 	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	 	1
			ļ	ļ	ļ		ļ	ļ			ļ	ļ	ļ	ļ	ļ	ļ		ļ	ļ	ļ		ļ	ļ	ļ		ļ	-
			<u> </u>	 	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ	ļ	ļ	ļ		ļ			ļ	ļ		ļ	-
			<u> </u>		ļ	ļ	<u> </u>	<u> </u>	ļ	<u> </u>	ļ	<u> </u>	<u> </u>	ļ		ļ	ļ							<u> </u>		ļ	-
			<u> </u>	ļ	ļ	ļ	ļ	ļ	ļ			<u> </u>		ļ		ļ	<u> </u>	ļ	ļ				<u> </u>	ļ	<u> </u>		
			ļ	ļ			<u>.</u>	ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	ļ		<u> </u>	<u> </u>	ļ									
			ļ	ļ		<u> </u>								1													
																Ī		Ī	1	T	1]	T	T	T	1	Î

ATTACHMENT

Wind-assisted Turbine Information

Attachment 1 Page 1 of 2

OUTDOOR	WIND VELOCI	Y KNAMA	3.2		Sez.	Ĺ4		8.0	7, :-		3	5 -50	12.8			160	5.77	SPHED	1979
A STATE OF THE STATE OF	lemp Dift. C	St. St. C. S. S. St. St. St. St. St.	5 10	15	54		5 5	49.00 10.00	15	5	rydy Distance	0 6 5	10	15	· 5	-10	15	WEG	1200 232
Model No.	Throat Size (mm)	HL above lecate (ca)			APPI	MIXO	ATE EX	HAUS	r capy	CULA.	N LIT	ŒS P	ER SEC	COND				YENTS	M
WR-150	l 5 Ω		9966	61 68 74 78	野田御田	109 113			医衣表层	位	53 12 53 63 62 64 64 77	20 20	5 211 215	208 215 221 226	25.0	型角液		3	ï.
WR-200	200	3 6 9	X 83 91 00 00 00 00 00 00 00 00 00 00 00 00 00	90 100 110	NO ST	144 153 161	51 17 61 17 71 19 79 19	179 189 197	186 197 206 215	20) 20) 213	10 21 20 22 28 23 34 24	77 77 77 78	2回 200 207	240 250 306 315	5656	150 160	139 140 177	4	i
VR-250	254	3 6 9		129 142 155	7. W 27. H	J81 2 201 2 218 7	05 21 18 24	出近	地區		5 18 18 18 18 18 18 18 18 18 18 18 18 18	14 15 15	350 372 387	374 397 490 412			ななるな	6	2
W9-365	305	3 6 9		158 184 206	加加維拉	114 1 137 1 175 2	49 27 75 26 97 90 15 31	200 100 138	10 13 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	16 10 10	15 14 56 17 14 19 89 41	4	9 419 6 459 9 477	451 477 500 518	125.68	3388	2882	7	3
WR-350	338) () 12	137 10 177 10 1	199 234	沒有是	287 3 316 3 340 3	05 La 40 M 70 M	100 100 100 100 100 100 100 100 100 100	168 403 433 459	16 40 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	00 42 00 45 96 46 96 51	883) 525) 553 9 578	54) 578 68 63	SEAS.	#55 P.77	667 701 712		4
WR.380	381] 6 9 12	17 M 18 TT 16 M 70 M	= 219 260	郑 柳 / / / / / / / / / / / / / / / / / /	314 3 341 3 374 4	13 35	440	399 440 473 584	(1) (1) (1)	38	53 44	9 568 3 600 1 627	\$86 627 662 691	3817	700 772 759 701	718 759 774 800	10	. 5
WR-400	406	3 8 9	100 A A A A A A A A A A A A A A A A A A	70 70	105 136 139 778	342 3 378 4 409 4	63 17 09 40 49 43 11 44	417 449 1 480	490 920 933	机物	74 49 10 55 41 58 68 61	28.0	9 612 7 649 6 680	634 680 720	海線が対	四两	775 821 861	12	5
WR450	457	6	75 H 27 11 28 12 11 H	352	西海 四年	444 4 484 5	26 43 84 47 34 50 76 52	477 224 24 24	505 544 614 655	58 540 540	47° 57. Al 61. Al 64. Bl 7.	44 59 72	0 701 1 746 17 788	729 768 838 809	55 48 57 54 58 57	861 907 947	889 947 997 1039	15	6
WR-SOO	508) 6 9	239 310 300 366 334 415 336 457	415 476	(10 (42 (4) (3)	518 S 567 6	96 50 67 54 28 57 80 60	608 657	585 657 718 769	575 611 663	17 6 80 71 71 79 74 84	74 2 39 82	7 800 1 857 6 906	834 906 967 1018	9.7 969 1005	979 1035	1013 1084 1145	20	8
WR-600	610	3 6 9 12	100 411 100 67 40 54 40 62	453	519 580	594 6 675 7 746 B	4) (1) 46 (8)	加加	750 852 941 1016	排放	92 84 94 103 94 103	72 93 (C	6 000 6 082 8 1.52	1050 1152		212 293 364	1261 1364	27	•
WR-780	70	-6 9	100 CO 100 CO	729 891 1031 1146	知知		01 97 65 107 84 13	1092	1168 1331 1470	1122 1218 1277	139 3 346 47 176 6	1 14 6 15 6 16	17 563 13 691 14 1801 14 1896	1639 1801 1941		1974	1969 2132 2271	\$	i
WA-900	1914	6 9 12) 1270) 1469) 1637		1334, 14 1517 16 1676 18 1813 26	45 TA 76 E	9 576 5 759 2 918 9 2085	1687 1918 2118	1412 1748 1846 1862	719 189 81 211 121 211	0 22	2 2249 8 2457 14 2591 12 2271	2359 2591 2791	7494 781	777 7910 200 300 300	3069 3269	45	2
WR-1050	1067	3 6 9	(004 FS 22 [5] 34 77 54 [9]	1414 1730 2 2001		1907 15 2564 22 2783 2 2467 2		11300 11000 11000	729) 3607) 288)	2191 2 2382 2	(? 257 672 189 892 316	5 24 2 30 3 31	0 305) 1 U 2 313 1 371	3215 3531 3802		178 163 113 113	3858 4175 446	a.	
WR-1200	1219) 6 9	(B) (B) (B) (B) (B) (B) (B) (B) (B) (B)	85 - 2157 26	嬲	2379, 25 2702, 25 2986, 10 3328, 14	80 280 65 27 37 28	4 2800 4 3125 4 3408 5 3451	3001 3408 3762		(6-1)6 (8-1 77			4198 4604 4958			5945 5450	100	,

convert from L/s → cfm (L/s)(cos / (fx3) 2 2.1186 fts 5 a convertion factor At 2 miles/hr wind Speed, Exhaust capacity = 58 L/s

http://www.australmonsoon.com/western/rotary/table2.jpg

(58 4) (2.1186) = 123 cfm

Roof-Mount Ventilators, Bases & Duct Fans

For information about roof-mount ventilators, see page 552.

Wind-Driven Rotary-Turbine Ventilators

These turbines spin freely with the slight-est breeze, creating a vacuum to suck our stale air and turnes from buildings and ven-tilating systems. Extra-long fins catch the air more efficiently than other ventilators and

more efficiently than other ventilators and are not obstructed by external supports. Mount ventilators on your roof away from wind obstructions.

Steel ventilators have a zinc and aluminum coating for added corrosion resistance, unless noted. Maximum temperature is 150° Effectent where noted.

Application of the state of the				- Type:	304
ALF N	O'all	: ≥= S b	ol	Stainles	s Steel
Dia. :	fm ♦: Ht. 🛷		::: Each a	主要的 的主	Each
~4 *****	160 111/2"	1992K11●	♣ \$57.59∴	1992K42#	\$98.31
	170 🕮 11%"		43.15	71992K43	92:12×
	303 13		41.4U 	1992K45	95.50 104.53
	472 141/2" 680 151/2"		52.63	1992K48	121.55
	927 - 171/21		58.95	1992K49	147.40
	212 20		75.05	1992K52	. 177:43
1871	533 221/2"			1992K53	217:48
	888 24%*		93.95	1992K54 1992K55	234.85 309.02
- C - C	719 29	The Constitution of the Co	123.60	这个时间 多数44年的	746.17
	252 39" = 1 123 37" = 1		298.47° 406.68	-1992K56	
36"6	on 8 mph wi	nd velocity	Galvanize	steel, pain	ted gray.
A DOSCU	OIL O MIDIT		WARREST SECTION TO THE TOTAL THE THE THE THE THE THE THE THE THE THE	AND RESERVED AND ASSESSMENT	Section from the second

vidensan steps, a NEMA 3H für edankontacci juse win islics iquide

♦ Maximum temperature is 165°F

Adjustable Ventilator Bases

Use on flat and single-slope roofs up to pitch. To install place the ventilator flange fluwith the roof. Then rotate the top section until is norizontal with the ground. Integral locking decreases maintains the slope adjustment. Made of gar Section County

	(A) : (B)		Ht.		Eec
	6" -14"	Dia	10" 2	231K55	\$140
HL	8" 16"	Dia	10" 2	231K56	- 149
	10"18"	Dia. Octagonal	10	231K58 231K58	
	14" 22"	Dia.	1012	231K59	21,

Combination Power/Siphon Ventilators

Bullt-lin fan provides powerful ventilate When fan is off and air rushes past, the sight effect continues to draw air up and out. con effect continues to draw air up and out you cal cap sheds rain and snow. Install on a sag or base: All air direct-drive, galvantzed swith an access door for servicing. Motors totally enclosed fan-cooled and rom is 172. Units run on % up (unless noted). 115, VMs single phase, 60 Hz. Max. temp; is 165° in

Max	epube :	OF C	Ventil	lators	Bird	Screens
Dia cfm ((A) (B) S	ones Amp	8	Each	14. T	A 2000
10% 10E0 %	24" 22" 3	050-47	1981K31	::\$538.63	16:1981K	(41 359.
177 1540	28" 26" 5	0 4.7	1981K37	537.75	1961	(47 - 33)
24" 5300 30" 6500	48" 40" 5. co* : '45" 5	0 52	1981K35	★ 1253.75	1981	(45 V
30 6500	on 14 hn	AND SECTION	BIDSVER	RG Zavub	DOM:	i-ui y

Belt-Drive Axial

These dependable fans are an-cooled and run on 60 Hz Steel/Aluminum Fans pellers are spark-resistant ca Liso Availables Fans with Please ask for 2097 K85 and s v 230/460 VAC, 3 phase. Re Stainless Steel Fans—With Vironments better than the s Witt em @ Static Pressure (SP)

teel//	Numir	ıum'	Fans		2
1,564	V-42 (4)	14	28 €) y	4
3,113	4:32	25	26 C	1.27	2
3,626	DANG	28	86 (9 5	8
4,837	THAT W	37	35.0	9 5	8
7,581	3/2°	<i>€</i> 21.14	94 (9-17	7
					S
ype 3	104 St	ainle	ss S	tr-	
	327.5				
POOP	100.00		1 E		

7.955 Direc'

Ventilator Bases

Constructed of galvanized steel, these bases have a square bottom and round top. Slope and flat bases

square bottom and round top Slope and that bases have a 4% wide flashing flange to simplify installation.

Laterial For slope bases, please specify pitch. To determine pitch, calculate rise over run. To do so, measure the run in any increment of 12°. Then measure the rise (see illustration above). For example, if rise = 70° and run = 120°; the pitch of your roof is 79° as o 77° 22.

naitatogo de

Slope Bases ____(B) Ht 8" 10" 10" 2003K31 10" 12" 10" 2003K32 12" 14" 10" 2063K33 2003K32 2003K33 16"-10"-: 2003K34 16" 98.0 2003K36 INO A 30%

2003F \$41.18 45 10 92.16 2003K41

About Duct Fan Sound Levels
Sound levels of duct fans serve as a startieg point in determining how loud a tan will actuspenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can re
spenence will be significantly impacted by your ventilation system. For example, you can respenence will be significantly impacted by your ventilation system. For example, you can respenence will be spenence will

Direct-Drive Axial Duct Fans and house the small propellers and heavy duty steep the small propellers and heavy du Inese direct-drive lans have spark-resistant cast-auminum propeiers and heavy duty six have eight evenly spaced 7/s* mounting holes for easy installation (hardware not included). Moto stan-cooled, and operate on 60 Hz: Maximum temperature is 104° F; [A. 10] F; [A.

≥230/460 VAC; 3°pl 		1,400 1,000	i de la comp	15/230 VAC,	230/46	
cfm @ Static T Pressure (SP) 1/6 Max. SP		nge dB	mm Amps	ingle Phase Eac	h Amps	
						52
28502390_ @ _%″.	15"20"17"	/2"81	1750 CP 2/4 1	1927K14 558.4	6 3.0/1.5 1927K	(56 352
4135 ::: 3730 @ 1/4" 5980 ::: 3600 @ 5/4"	-18 20 20 - 24 - 21 27				4 3.0/1.5 1927	
	全些一种 。在1966年	UNITED STATES	Appendict Control Control Control		AND INFORTED 69	

Compact Direct-Drive DC Axial Duct Fans

These compact fans slip directly into a duct run. Reinforced plastic construction resists corrosion: Fans measure to the compact fans slip directly into a duct run. Reinforced plastic construction resists corrosion: Fans measure to the compact fant surface each foot has compact fant and have a maximum temperature of 130°. F. Mount them to any flat surface each foot has the compact for mounting (hardware not included). Motors are 60 wath and operate on 12 VDC, 5 amps.

SW.	12.00	100	Track Same		670		2000 - 12 2000 19			1.00	AD	130.0 ASSERTATION 2016	F-7-18	。		
	-			Diag.	/C	DN 9	1.00	FOR DUC	- DIA		up:	the contract of the state	200	the second second second		
7.	om		- BUBUU	i Presi	sure to		200	10.00							444	
								a and the second has	The state of the state of	* 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	CO	200		KR5K11*	14 AV 14	
-	4.4	12 -	2156 2 W		A 100 CO	140		. 3 74 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	an are the contraction	Code a real of the second	.00	******			Access to the Contract of the	
× 10	384	distanting		ere feetreste	4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		************	. •	the state of the s	TATTOWN SILEN		Section of the Contraction		MARK 91		
×.		1000	25 27 4	132703	0.80	1.00	A	A			bo			TOUR !		
10	356				5-296					•••••	1987 1987	. La Nichard Land St. Mar.	A	والمقاديات والمراجية	1.0	а

8 .

Attachment 2 Landfil Gas Generation Estimate

Attachment 2 Pg 1 of 8

		SCS ENGINE	EERS			•	
·				SHEET	1	of	2
CLIENT	PROJECT	Vertical Landfill Expan	sion	JOB NO.			
Hardee County					0919903	33.09 Task 3	
SUBJECT		<u> </u>	BY		DATE	•	
			D. F	Penoyer	i	12/12/2003	•
LFG Generation Estimate for the Existing Landfill			CHECKED AM)	DATE	2/20/04	
APPROACH: 1. Compile dispo		ity Landfill from date of site o		•	tion rate.		
1. Waste density	(in-place) =	43 lb/cu ft	(based on p	oast aerial surve	evs. volume	consumption	• •
2. Waste filling began in 1983			calculations, and waste receipts)				
3. Existing topog	raphy dated April 2003				•		•
4. Assume that d	aily and intermediate cov	er soils consume approximate	ely 10% of gros	s volume.			
SOLUTION:	•						
a. See attac b. Based on c. Knowing this dept d. Existing	that the top of the subsunt (ie, bottom of landfill is ground surface is approximonAD to calculate the variation of the subsets of the subset	t the original landfill configurations of the clay layer is at El. 72', as at El. 72')	ssume that the	bottom of the l	andfill was	excavated to	

2. Estimated Current Tonnage of Waste in Place

In-Place Volume of waste =

a. Assume that cover soils consume approximately 10% of volume. Remaining is refuse.

Tonnage = (775,000 cu yd)(1 - 0.10)(27 cu ft/cu yd)(43 lb/cu ft)(1 ton/2000 lb) =

404,899 tons in place

(See Attachment 1)

3. Known Waste Disposal Rates (1996-2002)

a. Based on site life calculations by L. Kennelly dated 9/5/03, the known waste disposal rates for 1996 thru 2002 are: (See Attachment 2)

Page 7 of 8

Year	Tons	Mg		
1996	14,281	12,956		
1997	13,896	12,606		
1998	14,699	13,335		
1999	16,061	14,570		
2000	16,165	14,665		
2001	18,844	17,095		
2002	20,051	18,190		
Total	113,997	103,417		

775,000 cu yd

22,377 tons/year

	·	SCS ENGINEERS			
			SHEET 2	of	2 .
CLIENT	PROJECT	· · · · · · · · · · · · · · · · · · ·	JOB NO.		
Hardee County	Landfill Gas Vent S	System Design	0	9199033.09 Task 3	
SUBJECT		BY	DATE		
		D. Pe	noyer	12/12/2003	
LFG Generation Estin	nate for the Existing Landfill	CHECKED AM	B	2/20/04	
	cal Filling Rate (1983-1995)			:	
- Assume an	equal filling rate over the 13-year perio	d from 1983-1995			
Total estimate	ed tons in place =	404,899			
Waste Dispos	sed 1996 through present =	113,997_			
Total estimat	ed tons disposed 1983-2002 =	290,902			

290,902 tons / 13 yrs =

4. Future Waste Projections

Assumed annual waste disposal rate (1983-1995) =

- Assume an annual increase in waste receipts based on the projected population growth and per capita waste generation rate. (See Attachment)
- Based on preliminary schedule for cell construction and closure, Hardee County anticipates continuing waste disposal in the existing landfill until the end of 2005.

Year	Tons	Mg
2002	20,051	18,190
2003	20,387	18,495
2004	20,809	18,878
2005	21,236	19,265
Total	82,483	74,828

- Because waste filling will end in 2005 in the existing landfill, and because we are only interested in LFG venting for the existing landfill at this time, do not model LFG generation for waste that will be buried in the expansion area.

CONCLUSION

Based on the EPA LandGEM, the estimated LFG generation rates from the existing landfill are as follows.

<u>Year</u>	LFG Generation (scfm)		
2004	140	1	101
2005	145	< (See Page €	3 040 1
2006	149		
2007	143		
2008	138		•

Therefore, the passive vent system needs to be designed to handle a maximum LFG generation rate of 149 scfm, which is expected to occur in 2006.

SCS ENGINEERS

SHEET 3 OF 8

CLIE	-	1 An	144	: (0			PRO	UECT	E,	XPX	MSI	'0N	۾	10	FCT							09	199	033	.09	
SUB	JECT'						7	irle	é I	Z	u	1A5	TE	1/4	P	IAL	r		BY	JA	<i>h</i> o			UAII	=		
																			CHE/	KEP.	eros	w		DATI (C	124	10	<u>. </u>
		Est	7.4	naī	£ ()	101	- 1	ر دا د	164		2 1 1	95 T	<u> </u>								1					
1		ردر		: :																				•			
	<u></u>	1	19						10				nL			TŁ	/	99.	•			7	74	- 0	00	Cu	
		<i>-</i>												•	77	·ke:							./.	,	00	- /	
					/	1		K.I	, ,		7	3) U	1:	/ 5	w	560	ánn	C									••••
						7 <<	7,00	2)	ν 7	رار سا	7	1		A (2	-C	E	γι (.	- 21	,								
																		/ 4	-								
		<u> </u>			0	X/	(7)	25	<u> </u>	Z.D.	10)	7	U)	14	1	200	2 / J										
		<u> </u>				<u>U</u>	111	m			NYE	0	(PA	<u> </u>	200	ر ا										
							ļ	 		ļ		ļ	ļ				ļ	ļ									
		<u></u>						ļ				 	 			.	ļ										
	<i>t</i>	Ex	24	<i>~</i>) /	0~		 	 					 				ļ	<u> </u>		,							·
	- -	۱				<u> </u>	 	- -	ļ		<u> </u>	<u>.</u>	1		7	~6		<u> </u>				أجعن	1 0				
-		7	ļ	_															ļ			۔ د)O) (7	
ļ	ļ		<u> </u>	 	70	<u> </u>	Ex	<u>n C</u>	M	<i>U</i> ^	، ڊ	BOT	TON	ţ (~/	-	8/)									
		 	 	(3:	ک /	104	5/	V.		10	NC	-)			 	 	ļ								
			 	ļ		ļ		 					<u> </u>	<u> </u>				ļ	ļ								
ļ		 	<u> </u>				ļ	<u> </u>	ļ			<u></u>	ļ	ļ	7.		<u> </u>	ļ	ļ					ļ			
						ļ					<u> </u>	ļ	ļ ₇	ļ	(5	1 8	(طا	 	ļ					ļ		ļ	
ļ		3)	ļ		1	no	m	-	120	200	ل	ں ک	* /	MC	į	76		 	ļ			4	0	5 U	40	0 0	7
			ļ			7	DA	2	P		W	81	n	r d	10	18	60	18	1		ļ						
		-	 		ļ	f	~	<u> </u>	B	الف	ġ Q.	4	٦	ايا	5	2	3!	2 ۱	lops	<u> </u>	ļ		ļ	 		ļ	
			ļ	ļ		ļ	<u> </u>	ļ	ļ	- 		∔	-	ļ	ļ		 	. 	ļ	ļ				 		ļ	ļ
			PΛ	عروود	EY	pany	-	ļ		ļ			4	200	دمع	5		ļ	ļ	ļ	ļ			-	-	<u> </u>	
		لاسر	<u> </u>	-	<u> </u>			/	ļ				4	-				-		ļ	ļ	<i>A</i> 60	20	<u></u>			ļ
1		4,	3			ļ,		<u>_</u>					1					<u>.</u>	ļ			7 2	10	7	700	Cu	<u>.</u>
	/_		3)		ļ ₇	تسيا	<u> </u>	ļ		<u>.</u>			<u> </u>		ļ			ļ	ļ	ļ	<u> </u>		ļ.,	1			
<u>با</u>		<u> </u>	<u> </u>		/	ļ		<u> </u>	U	<u>, </u>			<u> </u>		<u>.</u>	٤	2 با	82'				כן על	1/2	CC	a	105	E
	<u> </u>	2	<u>)</u>	1				ļ	ļ				ļ		<u></u>			ļ.,.	ļ	ļ	+	10	18	L :	+ //	170	n
l'					ļ		ļ	<u> </u>						4	ح	ba de	44. f	n ok	*		-	OV	51	کدایہ	auls	1	
			1		<u> </u>	<u> </u>			-	-				EL	6	72'		<u> </u>			1	<u> </u>				Y	<u> </u>
			È	ycar.	cto	ا کینے	3							متاح	سلم	top	of	day	4								
		Ī	4	201	ρ 1 ^									as,	سو	ەدا لە	401	è Ç	wasi	4)			Ī				
-						T		1					1					Ī					Ī	-			
l					-	1		1			[1				1		1	1	1	1	1			1

thermal 2

Attenment 2
Past 5 of 8

Attachment 2
last 6 of 8

			SO	CS ENGIN	EERS	-		
						SHEET	1 of	1
					1			
ENT		PROJECT				JOB NO.		
	e County	1	Landfill Ex	pansion			09199033.09	
BJECT					BY		DATE	
	Si	ite Life Estimates				EK	9/5/2003	3
					CHECKED		DATE	-
					D. Per		10/2410	7}
	_	WASTE T		1	- D	148 101241	75	
	1	DISPOSED OF IN	ANNUAL				0,	
YEAR	POPULATION ¹		WASTE TONNAGE					
	1	LANDFILL	PER CAPITA		~ -	h	istorical	
1006	24.059	(tons/yr)	·		- Re	CONT		
1996 1997	24,958 25,408	14,281.20	0.572		- t:11	ing rake	J.	
1998	26,134	14,699.13	0.547			5		
1999		16,061.17	0.608]				
2000	26,938	16,165.36	0.600]				•
2001	26,921	18,843.71	0.700		.1145			
2002	27,152	20,051.17	0.738	J Mandatory	collection start	ed	•	
	TC	ONS PER CAPITA ² :	0.738	ndfill Footprint	Landfili Evna	nsion Footprint		
	Gross A	Airspace Available ³ =	173,894	СҮ	1,060,387	CY		
		Area of Footprint =	570,636	SF	435,600	SF	•	
		diate Cover Depth =	18	inches	18	inches	Projected Outside Waste	
	Volume of I	Intermediate Cover =	31,702	CY	24,200	CY	301.5 tons/day	
N		Intermediate Cover =	142,192	CY	1,036,187	CY	94,068 tons/year	
		cent of Daily Cover = Airspace Available =	5% 135,082	CY	5% 984,378	CY	163,652 CY/year	
	11002	Waste Density ⁵ =	43	lb/CF	52.5	lb/CF		
				•				
		WASTE	-	AIRSPACE	AVAILABLE	AVAILABLE	1	
	'	DISPOSED OF IN	AIRSPACE	CONSUMED	AIRSPACE	AIRSPACE		
YEAR	POPULATION1		CONSUMED	OUTSIDE	W/OUT	W/		
1	10102	LANDFILL	MSW	WASTE	EXPANSION	EXPANSION		
		(tons/yr) ⁵	(CY)	(CY)	(CY)	(CY)		•
2002		20,051	34,541	-	135,082			
2003		20,387	35,120	-	99,962			
2004		20,809 21,236	35,846		64,116 27,534	1,011,912	Į	
2005		21,230	37,236	163,652	-9,701	811,024	1	
2007		21,942	37,798	163,652	-47,499	609,574	1	
2008		22,236	38,305	163,652	-85,805	407,617]	
2009		22,512	38,780	163,652	-124,585	205,185]	
2010	30,866	22,794	39,266	163,652	-163,851	2,267		
	LUSION dfill will use the av	vailable airspace by 20	011.			- Projec	cted futive extance rate	MW
1 Source	e · Florida I egisla	tive Office of Econon	nic and Democ	manhic Research		acc	eptance late	Ð.
	_	esents the tonnage rec	_					
		ata point is the only re					•	
		ng March 2003 topogr				501		
_		waste is based upon a	-			3 8' x 5.1')		
11 usto								

⁵ Waste quantity disposed in landfill (baled and loose, respectively) provided by Hardee County.

PROJECTED LFG GENERATION RATE, EXISTING LANDFILL ONLY 12/03 Hardee County Landfill, Hardee County, Florida

	Disposal <u>Rate</u>	Refuse <u>In-Place</u>	Disposal Rate	Refuse In-Place	Methane Generation Rates	LFG Generation <u>Rates</u>
Year	(tons/yr)	(tons)	(Mg/yr)	(Mg)	$\frac{\overline{m^3/yr}}{m^3/yr}$	(cfm)
1983	22,377	0	20,300	0	0.000E+00	0
. 1984	22,377	22,377	20,300	20,300	8.120E+04	11
1985	22,377	44,754	20,300	40,600	1.592E+05	21
1986	22,377	67,131	20,300	60,900	2.342E+05	31.
1987	22,377	89,508	20,300	81,200	3.062E+05	41
1988	22,377	111,885	20,300	101,500	3.754E+05	50
1989	22,377	134,262	20,300	121,800	4.419E+05	59
1990	22,377	156,639	20,300	142,101	5.057E+05	68
1991	22,377	179,016	20,300	162,401	5.671E+05	76
1992	22,377	201,393	20,300	182,701	6.261E+05	84
1993	22,377	223,770	20,300	203,001	6.827E+05	92
1994	22,377	246,147	20,300	223,301	7.372E+05	99
1995	22,377	268,524	20,300	243,601	7.895E+05	106
1996	14,281	290,901	12,956	263,901	8.397E+05	113
1997	13,896	305,182	12,606	276,856	8.586E+05	115
1998	14,699	319,078	13,335	289,463	8.754E+05	118
1999	16,061	333,777	14,570	302,797	8.944E+05	120
2000	16,165	349,838	14,665	317,368	9.176E+05	123
2001	18,844	366,003	17,095	. 332,032	9.403E+05	126
2002	20,051	384,847	18,190	349,127	9.718E+05	131
2003	20,387	404,898	18,495	367,317	1.006E+06	135
2004	20,809	425,285	18,878	385,812	1.041E+06	140
2005	21,236	446,094	19,265	404,690	1.076E+06	145
2006	0	467,330	0	423,955	1.111E+06	149
2007	0	467,330	. 0	423,955	1.067E+06	. 143
2008	0	467,330	0	423,955	1.025E+06	138
2009	0	467,330	0	423,955	9.849E+05	132
2010	0	467,330	0	423,955	9.463E+05	127
2011	0	467,330	0	423,955	9.092E+05	122
2012	0	467,330	0	423,955	8.736E+05	117
2013	0	467,330	0	423,955	8.393E+05	113
2014	0	467,330	0	423,955	8.064E+05	
2015	0	467,330	0	423,955	7.748E+05	·
2016	0	467,330	0	423,955	7.444E+05	100

ESTIMATED NMOC CONCENTRATION IN LFG: ASSUMED METHANE CONTENT OF LFG: SELECTED DECAY RATE CONSTANT: SELECTED ULTIMATE METHANE RECOVERY RATE:

METRIC EQUIVALENT:

50% 0.04

3,203.7 ft3/ton

4000 ppmv

100 cu m/Mg

Conversions:

35.314667 cu ft per cu m 1.1023113 ton per Mg

32.037 cu ft/ton per cu m/Mg

NOTE:

This model assumes that waste disposal in the existing landfill will end in late 2005, at which time waste filling will move to the expansion area.

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

SECTION P

NOV 19 2004

LANDFILL FINAL CLOSURE REQUIREMENTS SOUTHWEST DISTRICT TAMPA

It is Hardee County's intention to perform the closure of the currently permitted Class I landfill unit once it meets its designed and permitted capacity. Sheet 5 of the permit drawing shows the proposed final elevations of the Class I landfill after closure construction, the landfill gas system layout, and the closure cap design. According to Rule 62-701.600(2) FAC, Hardee County will perform the closure of the Class I landfill according to the following schedule.

P.1 CLOSURE SCHEDULE REQUIREMENTS

P.1(a) Notice of Closure to FDEP

At least one year prior to the projected date when waste will no longer be accepted, and/or when any portions of the landfill reaches design dimensions, Hardee County will notify the FDEP. The written notification to the FDEP will include a formal closure schedule.

P.1(b) Notice to Users

At least 120 days prior to the date when wastes will no longer be accepted, the following steps will be taken:

- 1. All users will be notified of the intent to close, date of closing, alternative disposal sites, and the person responsible for the closing.
- 2. Signs will be posted at the landfill containing the above information.

P.1(c) Notice to Public

Ten (10) days prior to the date when wastes will no longer be accepted, a notice of the closing will be published in the legal advertising section of a newspaper of general circulation in Hardee County. Proof of that publication will be provided to the FDEP within 7 days of publication.

P.2 CLOSURE PERMIT GENERAL REQUIREMENTS

P.2(a) Closure Application

At least 90 days before the date when wastes will no longer be accepted, Hardee County will submit an application for final closure to the FDEP.

P.2(b) Closure Plan

The conceptual temporary final grading plan is shown on the drawings.

When applicable, the closure permit application will contain:

- 1. A closure report
- 2. A closure design plan
- 3. A closure operation plan
- 4. Closure procedures
- 5. A plan for long-term care
- 6. Demonstration of proof of financial responsibility for long term care

P.3 CLOSURE REPORT REQUIREMENTS

At least 90 days before the date when wastes will no longer be accepted, Hardee County will submit a report for final closure to the FDEP.

P.3(a) General Information

The report of final closure will address the following:

- 1. Identification of the landfill
- 2. Location, description, and vicinity map
- 3. Total acreage of waste disposal areas and total acreage of landfill property
- 4. Legal description of property on which the landfill is located
- 5. History of the landfill to include dates of construction and a description of the location and sequence of fill operations
- 6. Identification of the types of wastes disposed of in the completed landfill based on records, composition studies, operator memory, major waste depositors, special handling records, and other services.

P.3(b) Geotechnical Report and Water Quality Monitoring Plan

A water quality monitoring plan and a geotechnical report will be prepared for submittal with the closure permit application.

FLORIDADEPARTMENT OF ENVIRONMENTAL PROTECTION

NOV 19 2004

SOUTAWEST JISTRICT TAMPA

P.3(c) Land Use

An updated land use information report will be prepared for submittal with the closure permit application.

P.3(d) Gas Migration

A report on actual or potential gas migration including detailed descriptions of test and investigational methods used will be submitted to the FDEP at least 90 days before the date when wastes will no longer be accepted.

Investigational methods utilized will include, but not be limited to, the following:

- 1. Gas migration test points will be located along property boundaries, as needed, within 100 feet of the property boundary.
- 2. Each test well will extend at least three (3) feet below ground surface.
- 3. If sand, gravel, or more gas permeable soil strata interconnects the waste deposit with the property boundary, multiple depth sampling will be performed.
- 4. Methane concentrations will be determined as a percent of the lower explosive limit.

P.3(e) Effectiveness of Landfill Design

A report assessing the effectiveness of the landfill design and operations will be submitted at least 90 days before the date when wastes will no longer be accepted. It will include:

- 1. Results of geotechnical investigation.
- 2. Effects of surface water runoff, drainage patterns, and stormwater controls.
- 3. Extent and effects of methane gas migration, lower explosive limit percentage readings in migration paths, and description of the gas venting system.
- 4. Condition of existing cover, thickness and types of soils or materials used for cover, and effectiveness of cover material as a leachate control mechanism.
- 5. The nature and characteristics of the waste disposed of at the landfill.

P.4 CLOSURE DESIGN REQUIREMENTS

A closure design plan consisting of engineering plans and a report on closing procedures that apply to the final closing of the waste disposal units will be submitted at least 90 days before the date when wastes will no longer be accepted. The design will include LORIDADEPARTMENT OF ENVIRONMENTAL PROTECTION

NOV 1 9 2004

- 1. Plan drawing showing phases of site closing.
- 2. Drawings showing existing topography as proposed final grades.
- 3. Provisions to close units when they reach approved final dimensions.
- 4. Final elevations before settlement.
- 5. Final Side Slope Design.
- 6. Final cover installation plan to including:
 - (a) CQA plan for installing and testing final cover.
 - (b) Schedule for installing final cover after final receipt of waste.
 - (c) Description of drought-resistant species to be used in the vegetative cover.
 - (d) Top gradient design to maximize runoff and minimize erosion.
 - (e) Provisions for cover material to be used for final cover maintenance.
- 7. Final Cover Design the final cover design will comply with Chapter 62-701.600(5)(g). The design will address:
 - (a) Protective soil layer design.
 - (b) Barrier soil layer design.
 - (c) Erosion control vegetation.
 - (d) Geomembrane/soil barrier layer design.
 - (e) Geosynthetic clay liner design if used.
 - (f) Stability analysis of the cover system and the disposed waste.
- 8. Proposed method of storm water control according to Chapter 62-25 F.A.C.
- 9. Proposed method of access control.
- 10. Description of proposed final use of the closed landfill if applicable.
- 11. Description of the proposed gas management system, which complies with the current Rule.

 FLORIDADEPARTMENT OF ENVIRONMENTAL PROTECTION

NOV 1 9 2004

P.5 CLOSURE OPERATION PLAN

A Closure Plan will be submitted at least 90 days before the date when wastes will no longer be accepted. The plan will include:

- 1. Detailed description of actions that will be taken to close the landfill.
- 2. Time schedule for completion of closing and long term care.
- 3. Description of method for demonstrating financial responsibility.
- 4. Listing of any additional equipment and/or personnel needed to complete closure.
- 5. Development and implementation of the water quality monitoring plan required by the Rule.
- 6. Development and implementation of a routine gas monitoring program as required in the Rule.

SECTION Q

CLOSURE PROCEDURES

This application is for landfill expansion at the Hardee County Landfill. This section is not applicable.

SECTION R

LONG TERM CARE REQUIREMENTS

R.1 GAS COLLECTION AND MONITORING

A passive gas collection and venting system will be constructed before closure. The gas venting system and the existing gas monitoring system will be maintained for the duration of the long-term care period as required by Rule 62-701.620(5), FAC.

R.2 RIGHT OF PROPERTY ACCESS

In accordance with Rule 62-701.620 (6), FAC, Hardee County will retain the right of entry to the landfill property for the long-term care period, after termination of solid waste operations, for inspection, monitoring and maintenance of the site.

R.3 SUCCESSORS IN INTEREST

If any person or entity, other than the County, acquires the ownership or operation of the landfill, they shall be subject to all requirements of the landfill permit and applicable regulations, including maintenance, and provide proof of financial responsibility as required by Rule 62-701.620(7), FAC.

R.4 REPLACEMENT OF MONITORING DEVICES

If a monitoring well or monitoring point cited by the permit is destroyed or becomes inoperable, Hardee County will notify the FDEP in writing. Inoperative monitoring devices shall be replaced with functioning devices within 60 days of the discovery or as required by Rule 62-701.620(9), FAC.

R.5 COMPLETION OF LONG-TERM CARE

Following completion of the long-term care period, the County will notify the FDEP that the long term care has been completed in accordance with the closure permit and that a certification to that effect, signed and sealed by a professional engineer, has been placed in the operating record.

SECTION S

FINANCIAL RESPONSIBILITY REQUIREMENTS

S.1 COST ESTIMATES

Each year, closure and long-term care cost estimates are prepared for the facility in accordance with Rule 62-701.630(3) and (4), FAC. In preparing the closure cost estimates, the following assumptions are made:

- The closure cost estimates include the permitted areas of the landfill.
- Construction of the closure will be performed under contract by a private contractor.
- The cost estimates are prepared for the time period during the landfill operation when the extent and manner of the landfill's operation make closing the most expensive.
- The closure cost estimate assumes a geomembrane cover system over the entire Class I disposal area.
- Long-term care costs include land surface care, landfill gas control, leachate control, groundwater and surface water monitoring, and administration.
- The current estimate of closure and post-closure costs is included in Attachment S-1.

S.2 ANNUAL COST ESTIMATES

Annual cost adjustment statements are provided to FDEP in accordance with Rule 62-701.630(4), FAC. The statement addresses closure and long-term care costs.

S.3 FUNDING MECHANISMS

The County will continue to use an escrow account for funding closure and post-closure of the landfill.

ATTACHMENT S-1 FINANCIAL ASSURANCE

DEP Form #	62-701.900	X28)		
Form Title	Financial A	Assurance Co	st Estimate Form	
Effective Date		_05-27-01		
DEP Application	No.			
	•		(Filled by DEP)	

Florida Department of Environmental Protection

Twin Towers Office Bldg. • 2600 Blair Stone Road • Tallahassee, FL 32399-2400

FINANCIAL ASSURANCE COST ESTIMATE FORM

Date: April 8, 2	2004		Date of FDEP	Approval:		
I. GENERAL INFO	RMATION:					: •
Facility Name:	Hardee County Land	dfill	WACS or	GMSID #.:		<u> </u>
Permit / Application	No.: 384	14-002-SO_	Expira	ation Date: 11	/19/2003	<u>. </u>
Facility Address:	685 Airport I	Road, Waud	hula, FL 33873			
Permittee: Hardee	County					
Mailing Address:	685 Airport I	Road, Waud	chula, FL 33873		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Latitude: <u>27⁰34'10</u>)"·	Longitude:	81 ⁰ 47'01"	or	UTM:	 .
Solid Waste Dispos	sal Units Included i	n Estimate	•			
			Date Unit			
			Began		sign Life of Unit	
			Accepting		om Date of Initial	
Phase / Cell	Acres		Waste	<u> </u>	eceipt of Waste	
Phase I	12.5		1983		23	
Phase II Section I	5		2006	-	5	
	· · · — — ·			_		•
					.	
			<u></u>	– . -	·	
		 -			· · · · · · · · · · · · · · · · · · ·	
Total Landfill Acrea	ge included in this e	stimate.		Closure		Long-Term Care
Type of Landfill:	>	Class I		_Class III		C&D Debris
II. TYPE OF FINAN	ICIAL ASSURANCE	DOCUME	NT (Check Type)		•	
Letter o	f Credit *	٠.	Insurance Ce	ertificate		dicates nisms that
Perform	nance Bond *		X Escrow Acco	unt	require	e use of a Trust Fund
Guaran	ty Bond *		Trust Fund A	greement	•	eement

III. ESTIMATE ADJUSTMENT

40 CFR Part 264 Subpart H as adopted by reference in Rule 62-701 cost estimate adjustment. Cost estimates may be adjusted by using in current dollars. Select on of the methods of cost estimate adjustment.	an inflation factor or by recalculating the maximum costs of closure
(a) Inflation Factor Adjustment	
Inflation adjustment using an inflation factor may only be made wher changes have occurred in the facility operation which would necessi from the most recent Implicit Price Deflator for Gross National Producurrent Business. The inflation factor is the result of dividing the lat The inflation factor may also be obtained from the Solid Waste Final	itate modification to the closure plan. The inflation factor is derived act published by the U.S. Department of Commerce in its survey of est published annual Deflator by the Deflator for the previous year.
This adjustment is based on the Department approved	closure cost estimate dated:
Latest Department Approved Closure Cost Estimate: X Current Year Inflation Factor	Inflation Adjusted Closure Cost Estimate: = \$0.00
This adjustment is based on the Department approved long-ter	rm care cost estimate dated:
Latest Department Approved Annual Long-Term Care Cost Estimate: Current Year Inflation Factor x	Inflation Adjusted Annual Long-Term Care Cost Estimate = \$0.00
Number of Years of Long Term Care Remaining:	×
Inflation Adjusted Long-Term Care Cost Estim	nate: = \$0.00
facility have been examined by me and found to conform to engined judgement, the cost Estimates are a ture, correct and complete repethe facility and complete requirements of Florida Administration	resentation of the financial liabilities for closing and long-term care of the Code (F.A.C.), Rule 62-701.630 and all other Department of It is understood that the Financial Assurance Cost Estimates shall
Signature of Engineer	Signature of Dwner/Operator
Name & Title (please type)	Janice Williamson, Solid Waste Director Name & Title (please type) (863)773-5089
Florida Registrațiori Number (affix seal)	Telephone Number
SCS Engineers 3012 U.S. Highway 301 North, Suite 700 Tampa, Florida 33619 Mailing Address	
813-621-0080 Telephone Number	

V. RECALCULATE ESTIMATED CLOSING COST

For the time period in the landfill operation when the extent and manner of its operation makes closing most expensive.

^{**} Third Party Estimate / Quote must be provided for each item
** Costs must be for a third party providing all material and labor

DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL
1. Proposed Monitoring Wells		(Do not include wells a	already in existence.)	
	EA	0.00	0.00	\$0.00
			Subtotal Monitoring Wells:	\$0.00
2. Slope and Fill (bedding layer betw	een was	ste and barrier layer):		
Excavation	CY	0.00	0.00	\$0.00
Placement and Spreading	CY	29,400	0.85	\$24,990.00
Compaction	CY	29,400	1.00	\$29,400.00
Off Site Material	CY	29,400	4.59	\$134,946.00
Delivery	CY	0.00	0.00	\$0.00
			Subtotal Slope and Fill:	\$189,336.00
3. Cover Material (Barrier Layer):				
Off-Site Clay	CY	0.00	0.00	\$0.00
Synthetics - 40 mil	SY	65,100	4.13	\$268,863.00
Synthetics - GCL	SY	0.00	0.00	\$0.00
Synthetics - Geonet	SY	89,800	4.17	\$374,466.00
Biplanar Geocomposite Synthetics - Other	SY	24,700	4.82	\$119,054.00
60-mil			Subtotal Barrier Layer Cover:	\$762,383.00
4. Top Soil Cover:				
Off-Site Material	CY	58,800	4.59	\$269,892.00
Delivery	CY	0.00	0.00	\$0.00
Spread	CY	58800.00	1.57	\$92,316.00
			Subtotal Top Soil Cover	\$362,208.00

DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL
5. Vegetative Layer				
Sodding	SY	88,033	1.67	\$147,015.11
Hydroseeding	AC	0.00	0.00	\$0.00
Fertilizer	AC	0.00	0.00	\$0.00
Mulch	AC	0.00	0.00	\$0.00
Other	SY	0.00	0.00	\$0.00
		'.	Subtotal Vegetative Layer:	\$147,015.11
6. Stormwater Control System:				
Earthwork	CY	3,100	6.34	\$19,654.00
Erosion Control	SF	0	0.00	\$0.00
Piping	LS	1.00	32,700.00	\$32,700.00
Ditches	LS	0.00	0.00	\$0.00
FDOT Structures	LS	1.00	21,900.00	\$21,900.00
Other	LS	1.00	3,500.00	\$3,500.00
			Subtotal Stormwater Controls:	\$77,754.00
7. Gas Controls: Passive				
Wells	VF	368	231.00	\$84,892.50
Pipe and Fittings	LF	0.00	0.00	\$0.00
Monitoring Probes	EA	0.00	0.00	\$0.00
NSPS/Title V requirement	LS	0.00	0.00	\$0.00
			Subtotal Passive Gas Control:	\$84,892.50

DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL
8. Gas Control: Active Extraction				
Traps	EA	0.00	0.00	\$0.00
Sump	EA	0.00	0.00	\$0.00
Flare Assembly	EA	0.00	0.00	\$0.00
Flame Arrestor	EA	0.00	0.00	\$0.00
Mist Eliminator	EA	0.00	0.00	\$0.00
Flow Meter	EA	0.00	0.00	\$0.00
Blowers	EA	0.00	0.00	\$0.00
Collection System	LF	0.00	0.00	\$0.00
Other (describe)		0.00	0.00	\$0.00
		Subtotal	Active Gas Extraction:	\$0.00
9. Security System				
Fencing	LF	0.00	0.00	\$0.00
Gate(s)	EA	0.00	0.00	\$0.00
Sign(s)	EA	0.00	0.00	\$0.00
		Sul	btotal Security System:	\$0.00
10. Engineering:				
Closure Plan report	LS	1.00	47,200.00	\$47,200.00
Certified Engineer	LS	0.00	0.00	\$0.00
NSPS/Title V Air Permit	LS	0.00	0.00	\$0.00
Final Survey	LS	1.00	11,000.00	\$11,000.00
Certification of Closure	LS	1.00	13,500.00	\$13,500.00
Other (detail)	_LS_	1.00	12,300.00	\$12,300.00
(Bidding Services)		•	Subtotal Engineering:	\$84,000.00

11. Professional Services

	Contract M	lanagement	Quality A	ssurance	* * * * * * * * * * * * * * * * * * * *
	Hours	LS	Hours	LS	TOTAL
P.E. Supervisor	160	15,680.00	0	0.00	\$15,680.00
On-Site Engineer	1950	87,750.00	0	0.00	\$87,750.00
Office Engineer	0	0.00	0	0.00	\$0.00
On-Site Technician	0	0.00	655	29,475.00	\$29,475.00
Administrative	80	3,200.00	0	0.00	\$3,200.00
Reimbursables	1	30,200.00	1	20,900.00	\$51,100.00
ESCRIPTION	<u> </u>	UNIT	QUANTITY	UNIT COST	TOTAL
Quality Assurance	Testing/Labor	LS	1	43,750.00	\$43,750.00
		÷,	Subtotal P	rofessional Services	: <u>\$230,955.00</u>
			Subtotal o	f 1-11 Above:	\$1,938,543.61
2. Contingency		% of Total			15%
		•	Closing C	ost Subtotal:	\$2,229,325.15
3. Site Specific Costs	(explain)				
Waste Tire F	Cooliby			_	£1 200 00
	ecovery Facility				\$1,200.00 \$16,300.00
	lazardous Wast	es			\$12,100.00
					\$0.00
Other					\$0.00
	•	· .			\$0.00
		· .	Subtota	al Site Specific Costs	s: <u>\$30,000.00</u>
			TOTAL CLO	SING COSTS:	\$2,259,325.15

VI. ANNUAL COST FOR LONG-TERM CARE

(Check Term Length)

5 years	20 years	<u>X</u>	30 years		Other
---------	----------	----------	----------	--	-------

See 62-701.600(1)a.1., 62-701.620(1), 62-701.630(3)a. and 62-701.730(11)b. F.A.C. for required term length. For landfills certified closed and Department accepted, enter the remaining long-term care length as "Other" and provide years remaining.

- ** Third Party Estimate / Quote must be provided for each item
- ** Costs must be for a third party providing all material and labor

All items must be addressed. Attach a detailed explanation for all items marked not applicable (N/A).

DESCRIPTION	Sampling Frequency (events/yr.)	Number of Wells	\$/Well/Event	\$ / Year
Groundwater Monitoring	(62-701.510(6), and (8)(a))		
Monthly	12	0	0.00	\$0.00
Quarterly	4	0	0.00	\$0.00
Semi-Annual	2	8	425.00	\$6,800.00
Annual	1	0	0.00	\$0.00
		Subtotal Ground	water Monitoring:	\$6,800.00
2. Surface Water Monitorin	g (62-701.510(4), and (8)	(b))	· ·	
Monthly	12	0	0.00	\$0.00
Quarterly	4	0	0.00	\$0.00
Semi-Annual	2	1	605.00	\$1,210.00
Annual	1	0	0.00	\$0.00
		Subtotal Surface	Water Monitoring:	\$1,210.00
3. Gas Monitoring				
Monthly	12	0	0.00	\$0.00
Quarterly	4	1	750.00	\$3,000.00
Semi-Annual	2	0	0.00	\$0.00
Annual	1 .	0	0.00	\$0.00
		Subtot	al Gas Monitoring:	\$3,000.00

DESCRIPTION	Sampling Frequency (events/yr.)	Number of Wells	\$/Well/Event	\$ / Year
4. Leachate Monitoring (62-701	1.510(5), (6)(b) and 62	2-701.510(8)(c))	· .	
Monthly	12	0	0.00	\$0.00
Quarterly	4	0	0.00	\$0.00
Semi-Annual	2	<u> </u>	445.00	\$890.00
Annual	1	1	1,275.00	\$1,275.00
Other		0	0.00	\$0.00
		Subtotal Lea	chate Monitoring:	\$2,165.00
DESCRIPTION	UNIT	QUANTITY	UNIT COST	ANNUAL COST
Maintenance			·.	. 1
	•			
Collection Pipes	LF	<u> </u>	0.00	\$0.00
Sumps, Traps	EA	9	72.00	\$648.00
Lift Stations	EA	0	0.00	\$0.00
Cleaning	LS	0.2	23,000.00	\$4,600.00
Tanks	EA	2	1,650.00	\$3,300.00
Impoundments		`.		
Liner Repair	SY	0	0.00	\$0.00
Sludge Removal	CY	0	0.00	\$0.00
Aeration Systems	CY	0	0.00	\$0.00
Floating Aerators	EA	0	0.00	\$0.00
Spray Aerators	EA	0	0.00	\$0.00
Disposal				• .
Off-site (Include Transportation and Dis	LS sposal)	1	134,200.00	\$134,200.00

6. Leachate Collection/Treatment Systems Operation

Operation		Hours	\$/Hour	Total
P.E. Supervisor	HR	<u> </u>	0.00	\$0.00
On-Site Engineer	HR	<u> </u>	0.00	\$0.00
Office Engineer	HR	0	0.00	\$0.00
On-site Technician	LS	0	0.00	\$0.00
Materials	LS	0	0.00	\$0.00
Subtotal Leacha	ate Collection/Trea	tment System Maintena	nce & Operation:	\$142,748.00
7. Maintenance of Groundwater	Monitoring Wells			
Monitoring Wells	LS .	1	180.00	\$180.00
Replacement	EA	0.2	2,000.00	\$400.00
Abandonment	EA	0	0.00	\$0.00
	Subtotal Gro	oundwater Monitoring W	ell Maintenance:	\$580.00
DESCRIPTION	UNIT	QUANTITY	UNIT COST	ANNUAL COST
8. Gas System Maintenance				
Piping, Vents	LF	0	0.00	\$0.00
Blowers	EA	0	0.00	\$0.00
Flaring Units	EA	0	0.00	\$0.00
Meters, Valves	EA	0	0.00	\$0.00
Compressors	EA	0	0.00	\$0.00
Flame Arrestors	EA	0	0.00	\$0.00
Operation	LS	1	460.00	\$460.00
		Subt	otal Gas System:	\$460.00
9. Landscape				
Mowing	AC	105.0	121.50	\$12,757.50
Mowing Fertilizer	AC	<u>105.0</u> <u>0</u>	121.50 0.00	\$12,757.50 \$0.00

DESCRI	PTION	UNIT	QUANTITY	UNIT COST	ANNUAL COST
10. Ero:	sion Control & Cover Mainten	ance	\$		
	Sodding	SY	1210.00	1.67	\$2,020.70
	Regrading	AC	0	0.00	\$0.00
٠	Liner Repair	SY	56	8.30	\$464.80
	Clay	CY	0	0.00	\$0.00
		Subtotal E	Erosion Control and Cove	er Maintenance:	\$2,485.50
11. Stor	rm Water Management Syste	m Maintenance			
٠.	Conveyance Maintenance	e LS	0	0.00	\$0.00
		Sub	total Storm Water Syster	n Maintenance:	\$0.00
12. Sec	curity System Maintenance				
٠.	Fences	LF	50	21.32	\$1,066.00
	Gate(s)	EA	1.0	301.00	\$301.00
	Sign(s)	EA	0	0.00	\$0.00
٠.			Subtotal S	ecurity System:	\$1,367.00
13. Utili	ties	LS	1	500.00	\$500.00
14. Adr	ninistrative			٠.	•
•	P.E. Supervisor	LS	1	1568.00	\$1,568.00
٠.	On-Site Engineer	HR	0	0.00	\$0.00
	Office Engineer	HR	0	0.00	\$0.00
	On-site Technician	LS	1	8640.00	\$8,640.00
	Other (explain)	· .	<u> </u>	0.00	\$0.00
			Subtota	Administrative:	\$10,208.00
15. Cor	ntingency	% of Total	\$184,281.00	10%	\$18,428.10
		· .	Subto	tal Contingency:	\$18,428.10

16. Si	te Specific Costs (e	explain)		UNIT COST	
		: :		LS	\$0.00
_	·	:		LS	\$0.00
<u> </u>				LS	\$0.00
	•		ANNUAL LONG-TERM	CARE COST (\$/Year):	\$202,709.10
			NUMBER OF YEARS O	OF LONG-TERM CARE	30
	•		TOTAL LONG-T	ERM CARE COST (\$):	\$6.081.273.00

SCS ENGINEERS

																					Sł	IEET	T		_ OF		_
CLIEN	π	TAN	dar		001.	<u></u>	J	PROJ					_										JOB 09	NO. 1990	73. U	<u>—</u> ਮ	
SUBJE	ECT		<u> </u>		<u></u>	7		Har	-d4	34 (500	74	10	2/	I, H				BY	_th	 -		7	DAT	Ē	****	
							_					,							CHÈ	ECKED	_	_	_	DATI	Ē		_
	0	10	Sun	- 2		Cos	7																				
/:	75	n	(1)			me	on!	10	11	15	W	115										ا!					
-		1	4	5,	أبر ما	277	۷ ۲			7		Z. M. T	. 1				-	Da	10,1	~5	1	;					
					-		<u>ئى ئى</u> ا											بست	<u> </u>	-							
		ہــــــا ا			· 		-			i							į i		[ļ <u>j</u>				(<i></i>		
			 -				-			(ļ ļ	····			·		įi	ļ -	İi	1	5~e	<u>.</u>		·i			
	n	5			(- -			 		·		 	r i	[-	_[j	:	ģi	İi	† ²	100	(~)	. برخ		·	ļ i		
	11	10ni	riion	UM	5	4	C/15		(7	72	65	<u></u> i	 -	·i	·	·	 	 			 	 	 	 			,·
	; <u>;</u>	 '			j	 	لــــا	 	: :	: :	: :	10/12	: :	ļl	ļļ	·	 '	 	ļ				ļl	ļ!			
	ļ []]	ļ			į ^j	ļļ	ļ []]	ļļ	D	VN	ING	ļ	ļ ^j	ļ	لببا	<u> </u>	 .	 !			ļ		ļ	ļ	ļ		
	(ļ []]	 	ļ)	ļj	ļ []]	Co	المكم	wo	77.0	Ν.	1-1-1			ļ!					ļ!	ļ	ļ!	ļļ	<u></u>
	. ;	<u>.</u>	<u> </u>	,	ļļ	<u> </u>	ļ	/	Vo	N	En	, 4	rci	<i>((s</i>		<u> </u>	 '	ļ'	ļ					ļ!			(
	<u>. </u>				ļ ^j		<u> </u>		ļ	<u> </u> ;	<u> </u>	ļ [;]	ļ!	ļ ⁱ			ĺ	<u> </u>		,			ļ!	<u> </u>			i
					i		i		ا ا		1	<u> </u>	1!	<u> </u>			Ĺ'	<u> </u>						<u> </u>			Ĺ
																	Ĺ'										
																	Ĺ	,									
					,					[()		[<u></u>						İ				
				, 1	[T	[·	[[["	į	 					†				
·	:		+	, 			 	-	[İ	ļ;			1						 				
;	<u> </u>	 	-	·			 	 	·			ļ	-	 	 		-	†	 	-	 		 	 		-	<u></u>
			-	, i	į <i>!</i>	ļ	ļ		ļ/			ļ	ļ	 			ģ	ļ			-			ļ		 	<u> </u>
i			+	₍ i	ļ		ļ	ļi	ļ ¹				1	ļ!	<u> </u>	<u></u>	(ļ	-		 	 				<u> </u>
	ļ			اا			 	 	ļ ⁷				<u> </u>	 		ļ		 			-	 	-	 			
		 		اــــا			 		 					ļ'	 	ļļ	 	 			-						
	ļ			ļ ^j		!	<u> </u>	<u> </u>					ļ	ļ!		!		-				ļ		ļ	-	.]	-
,;	ļ	ļ	<u> </u>	ļ ^j	-	ļ'	ļ	ļ'					ļ	ļ			[-				-	ļ	-	ļ	<u> </u>	ļ
				ļ []]		ļ;		ļ;	ļ					ļ	ļ	<u> </u>		<u>.</u>	ļ				ļ	ļ	ļ		ļ
ļ		<u> </u>		<u>;</u>		ļ'		ļ.,,				<u> </u>	ļ	<u> </u>		<u> </u>	ļ	<u> </u>				1		<u> </u>		ļ'	1
				<u> </u>				<u> </u>						<u> </u>		'								<u> </u>		1	
,																1		Ì									
ļ				,												1								1			
	ļ	1						1				1	1			1		1	1	-			1		1		-
			†	[}	ļ			ļ	†	ļ		11		†			1	†	†		1	ļ;	
		 	+	[-	 		 		-	†	†					†			-	†	+		-		-
ļ			-				+	-	 				ļ	 		/		+		-	-	-					
	ļ		-	<u> </u>		-	-		 	-	-		 	 			 				-	-	-	-			
ļ				ļ		-	-			-	-		-	 		'						-					
ļ				 		-	 	-					- 	 		ļ'	-	-				-			-		-
4	1	:	- 1 - 7	•	•		:	1	:	1	}	1	1	1		1 1	Æ	ì	i	i	•	ì	i	ì	1	•	1

SCS ENGINEERS

CLIENT	\mathcal{H}	XAC	155	6	ال.مد		T	PRO	ÆCT														JOB 1	NO.	:033 E	 ?-05	,
SUBJE	CT	<u> </u>			2010	T	7.	Fair	166	6	1.707	74	<u></u>	$\overline{\Omega}$					BY	J//	<u>し</u>		-,-	DAT	Ē		
								74.44	120	<u>. u</u>	<u>'U' - I</u>	7	-040	7	_4				CHE	CKE	5			DATI	E		
/	1/2	77	15		7ن																						
4		200	vi				†													ļ <u>†</u>							
				5)		1			·	1		//															
	2	M	٧			<i>S</i> /c	263		WN	U	71	/											-				
				ii		<u> </u>		ll		ļ				ļl					ļ		7			[<u>]</u>		ļ [}]	
-	-		ب لا	N	<i>∨71</i> :	778	-5				 i	-	-				 	+	-		m	1C1	vg			 	
	_			ļ		 	·			M		4	ļ	11						0	ļ	ļ			 	ļi	
7	£8	·	75	un	E		No	TE									<u> </u>				168					un	
		ļ	ļ		ļ!		لـــا	لـــا					TEX				ļ	ļ	ļ	H	land	455	Ci	<u> </u>			
			ļ	ļ	ļ!		<u>[]</u>	ļ		9	200	ON	po.	11	<u> </u>	ļ	ļ	ļ	ļ	1	بررط	ch	45,	ns			
			ļ		ļ!		<u> </u>	ļi		IN	5791	1180	2	ės ,	PAI	NT			ļ								
			<u> </u>				<u> </u>						na					اید	ļ	1	2079	MI	9/5		4,	50	14
					<u> </u>		!	<u> </u> '		ļ	<u></u>		<u> </u>		′		ļ				: 20	5/10	ing	i)		1	1
			<u> </u>				1	<u> </u>	711	٤	Clo	101	15	Cos	7	WI	/]	 		m	Hai	₹0~	ļ	1,	02	
								: :	:	• • •	<u>خ</u>	:	is .		:	ì	i					<u></u>	<u> </u>	<u></u>	4.5	52,	ley
								; ;	:	:		ì	724	•	į.	į.	•									/	/
								1 1	1	•	i	1	VA	1	1	•											Ī
													1							7	PAS	00			0,8	35/6	Cu
	17)	ما	N	150	0)	95	130	j	T	×	//	0	=	4	75	300	c/-	Me	FAN	ţ .	-		1			7
15	7 0	M	<u>; </u>	1	12	4	210	76	<u>- </u>	F	×	1.1	α¥	=	2	18	780	SF	01	1315	121	2 30	no	1		1	
	C	#D	†)		13) 2	20	77	m S	F	X	1,1	27	_	2	139	995	E/F	<u> </u>	1			-		1	-	
		-	J	†	(4)	/	200	4.60	(4	<u></u>	X	1.	Ö	_	1	10	260	e/-	 	1,1	Mark		<u> </u>	-	-	-	
) 9								=		*;.*,			-6		5		†	3	6.9	ug;	1,
-					يت		7	700	0,			<u> ' ' ' '</u>	-	-			-	. •					 	-	ULL	1.4	+7
			<u> </u>	,		-		 -	1,,		ا ر - ا	,	<u> </u>	1			150		U	K3[.).	310	צטב	<u>්</u>	3	018	169/	/
	′07	70/	p	10M	N	150	1 =	1	167	1,1	د کا/	7	(17		•	•	+		1 1		/_	+	 	-	VII	4	7
-			<u> </u>		-			 		1 /6	<u></u>	1,			140			-			6.			 	-		
-			Dio	PZ	170/	2701	ا	-	-	2,16	+	<u>/</u> /		رک -	16	٤/,	س		 	4	1741	1					-
			 						2) 4		-		-	i i				-			-		#	 	4	_
		<u> </u>	-				ļ	ļ	2			<u> </u>	4	367	- کراخ	1//	9		 			 	1	A E	6.42	2/1	19
		ļ	<u>.</u>				ļ	<u> </u>		3.5		ļ	<u> </u>						.								
	A=	\$ 5 U	ME	12	4"	ACN	זנסגו	A	150	ı		ļ					y		ļ	C	np	pas	[7	\ \rac{\alpha}{2}	FQ.	1	
		1	į	: I.	į	-	\checkmark		7	52,	9/5	-54	بر	12	m(1/5	/x	1 cy		F	3	+	-		2		
	_	111	KI	1/2	1				<u> </u>		<u> </u>		1	12	10		2	1 H3		2	5198	3/ci	, <	<i>' 6</i>	,47	2/0	4
				1																				_			
								=	= 2	29,	36	.7.	2	64				1				(W	())		
					1	_	-	+						1					I				\top				
		1	†	<u> </u>			5	101	1	2	7	100	1 6	4)				1								

Figure __ - Buildout of Phase II Section I to Elevation 110.0

HARDEE COUNTY PURCHASING DEPT

205 HANCHEY ROAD WAUCHULA, FL 33873 863/773-5014 Fax 863/773-0322

PURCHASE ORDER: 44681

Page: 1 of 1

**** VENDOR *** T & C FILL DIRT 456 CYPRESS STREET WAUCHULA FL 33873

**** DELIVER TO **** HARDEE COUNTY SOLID WASTE & RECYCLE **685 AIRPORT ROAD** WAUCHULA, FL. 33873

No Quantity U/M Description Unit Price Extended	
50320 10186-1 863/773-9446 863/773-3599 No Quantity U/M Description Unit Price Extended 1 1.000.00 YD FILL DIRT 4.5000 4,500.00 1 1.000 yd 3 0 4.500.00	
No Quantity U/M Description 1 1.000.00 YD FILL DIRT 1.000.00 4.500.00 1.000 yd 3 0 4.50 per yd 3 ** TOTAL ** 4,500.00	
1 1,000.00 YD FILL DIRT 4.500.00 1,000 yd3 & 4,500.00 ** TOTAL ** 4,500.00	
1,000 yd3 @ 450 per yd3 "* TOTAL "" 4,500.00	G/L Account
	104-534-034-0
INFLATION 1.02	
A	
4 × 1.02 => 4.59/cy	

VENDOR INSTRUCTIONS:

Mail Invoices to: Hardee County Clerk to BOCC

Accounting Dept

412 W Orange St Rm A-205

Wauchula, Fl 33873

2. Invoices and Packages must bear the P.O. No. Above.

3. Purchases may not exceed the total amount of this

order without prior approval by the Purchasing Dept. teptance of this order includes acceptance of all terms,

ices, delivery instructions, specifications and conditions.

5. State Tax Exempt#: 35-02889-53C EIN: 59-6000632

6. If you have questions, please call 863/773-5014

SPECIAL INSTRUCTIONS: CONFIRMING ORDER W/TIM, DO NOT DUPLICATE.

Des Newgent

RSMeans

Heaven Construction

Cost Date

18th Annual Internet

2004

		Earthwork		1	_	_	-						
02	2305	Equipment			LAB0		. <u></u>		2004 BAR		TOTAL	TOTAL INCL 0&P	
1			_	OUTPU	$\overline{}$		NIT	MAT.	LABOR 25 50	EQUIP.	TOTAL 35.75	50.50	25/
1100		all equipment, placed in rear of, or towed by pickup truck	A-3A	8		'	Ea.	i	25.50	10.25			ľ
1150		Equip up to 70 HP, on flatbed trailer behind pickup truck 1-100	A3D	4	2	_	$\perp \perp$		51.50	42.50	94	126	
00) Cra	ne, truck-mounted, up to 75 ton (costs incl both mob & demob)	1 EQH	1	2.22				77.50		77.50	116	
1 2100) Cra	ne, truck-mounted, over 75 ton	A-3E	2.50		0	$\perp \downarrow$		196	33	229	335	
2200	, 	Crawler-mounted, up to 75 ton	A-3F	2	8	ı			245	278	523	675	
2300	ol l	Over 75 ton	A3G	1.50	10.6	57	↓		325	390	715	925	•
2500		each additional 5 miles haul distance, add			1	T			10%	10%			
3000		large pieces of equipment, allow for assembly/knockdown	i I	1		ł	1				·		ľ
3001		mob/demob of vibrofloatation equip, see section 02250-900	H-	†	~ 	1							1
3100	1	r mob/demob of micro-tunneling equip, see section 02441-400	ll	İ	-	ļ	- 1						١.
3200		r mob/demob of pile driving equip, see section 02455-650	╫─	+	+	╅			 				1
		r mob/demob of caisson drilling equip, see section 02465-950	Ц		·	1	•		1				ı
3300			4	╁	+	╌┼╴							t
		Grading				\perp							
	1	GRADING					ς,		1.10	1.00	ידה ה	. 201	10
001		ish grading area to be paved with grader, small area	B-111				S.Y.		1.19	1.08	2.27	3.01	1
010		Large area		2,00					.24	.22	.46	.60	
020	0 Gr	ade subgrade for base course, roadways		3,50			┷		.14	.12	.26	.35	-
102	0	For large parking lots	B-32	1 .		- 1			.29	.30	.59	.77	
105		For small irregular areas	1'	2,00					.72	.74	1.46	1.92	_
110		ne grade for slab on grade, machine	B-11	1,04	0 .01	5			.46	.42	.88	1.16	
115		Hand grading	B-18	700	.03	4		<i>i</i>	.91	.06	.97	1.49	
120		ne grade granular base for sidewalks and bikeways	862	1,20	0 .02	<u>0</u>	•		.56	.12	.68	.99	1
255		and grade select gravel	2 Cla	ь 60	.20	7	C.S.F.		6.95		-6.95	10.80	
300		and grade select gravel, including compaction, 4" deep	B-18				S.Y.		1.15	.07	1.22	1.88	1
310		6" deep	Ιï	400			i		1.60	.10	1.70	2.60	
312		8" deep	┪	300			\top		2.13	.14	2.27	3.47	7
330		nishing grading slopes, gentle	B-11						.05	.05	.10		
331				7,10		_	\downarrow		.07	.06	.13		_
1	."]	Steep slopes	1	.,-							_		
0	2315	Excavation and Fill											
110 001								į.		1			1
		FILL, GENERAL R0231			. _	. 1				1		1	1
001	15 B	y hand, no compaction, light soil	5 1 C			71	C.Y.		14.85		14.85		
	15 B	y hand, no compaction, light soil Heavy soil		11	.7	27	C.Y.		18.90	<u> </u>	18.90	29.50	0
001	15 B	y hand, no compaction, light soil	1 Ci	20.	7 60 .3	27 88	C.Y.		18.90 10.10		18.90 10.10	29.50 15.75	0
001 010	15 B 00 00	y hand, no compaction, light soil Heavy soil	1 Ct	20.0 A 10	0 .7 0 .1	27 88 20	C.Y.		18.90 10.10 3.73	1.31	18.90 10.10 5.04	29.50 15.75 7.15	5
001 010 030	15 B 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above	1 Ci	20.0 A 10	1 .7 60 .3 0 .1 0 .2	27 88 20 11	C.Y.		18.90 10.10 3.73 5.55	1.31	18.90 10.10 5.04 6.52	29.50 15.75 7.15 9.70	0 5 5
001 010 030 040	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roiler compaction operator walking, add	1 Ct	20.0 DA 10 D 19	1 .7 60 .3 0 .1 0 .2	27 88 20	C.Y.		18.90 10.10 3.73 5.55	1.31 .97	18.90 10.10 5.04 6.52 3.95	29.50 15.75 7.15 9.70 5 5.90	0 5 0
001 010 030 040 050	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add	B-10 B-9	20.0 DA 10 D 19 D 60	0 .1 0 .2 0 .1	27 88 20 11	C.Y.		18.90 10.10 3.73 5.55	1.31 .97 .48	18.90 10.10 5.04 6.52 3.95 6.10	29.50 15.75 7.15 9.70 5 5.90 9.51	0 5 5 0 0
001 010 030 040 050 060	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add	B-10 B-10 B-9	20.0 DA 10 D 19 D 60 ab 3	0 .1 0 .2 0 .1 4 .2	27 88 20 11	C.Y.		18.90 10.10 3.73 5.55	1.31 .97 .48	18.90 10.10 5.04 6.52 3.95	29.50 15.75 7.15 9.70 5 5.90 9.51	0 5 5 0 0
001 010 030 040 050 060 080	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add	B-10 B-9 A-1	20.0 DA 10 D 19 D 60 ab 3-	1 .7 60 .3 0 .1 0 .2 0 .1 4 .2	27 88 20 11 33 35	C.Y.		18.90 10.10 3.73 5.55 3.47 6.10	1.31 .97 .48	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27	29.50 15.75 7.15 9.70 5 5.90 9.50 9.50 7 6.31	0 5 5 0 0 5
007 010 033 044 056 08 09	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add	B-10 B-10 B-10 B-10	20.0 A 10 D 19 D 60 ab 3- DA 15 D 28	1 .7 60 .3 0 .1 0 .2 0 .1 4 .2 10 .0 35 .1	27 88 20 11 33 35	C.Y.		18.90 10.10 3.73 5.55 3.47 6.10 2.49	1.31 .97 .48	18.90 10.10 5.04 6.52 3.95 6.10	29.50 15.75 7.15 9.70 5 5.90 9.50 9.50 7 6.31	0 5 5 0 0 5
002 010 030 040 050 060 080 090 100	15 B 000 000 000 000 000 000 000	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add	B-10 B-10 B-10 B-10 B-10	20.0 A 10 D 19 D 60 ab 3- DA 15 D 28	1 .7 60 .3 0 .1 0 .2 0 .1 4 .2 10 .0 35 .1	27 88 20 11 33 35 80 40	C.Y.		18.90 10.10 3.73 5.55 3.44 6.10 2.44 3.71	1.31 .97 .48	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27	29.50 15.75 7.15 9.70 5 5.90 9.50 9.50 7 6.31	0 5 5 0 0 5
003 010 030 040 050 060 080 099 10	15 B 000 000 000 000 000 000 000 000 000 F	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see div. 03310-220	B-10 B-10 B-10 B-10 B-10	20.0 A 10 D 19 D 60 ab 3- DA 15 D 28	1 .7 60 .3 0 .1 0 .2 0 .1 4 .2 10 .0 35 .1	27 88 20 11 33 35 80 40	C.Y.		18.90 10.10 3.73 5.55 3.44 6.10 2.44 3.71	1.31 .97 .48	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27	29.50 15.75 7.15 9.70 5 5.90 9.50 9.50 7 6.31	0 5 5 0 5 4 5
003 010 030 040 055 066 088 099 10 11 30	15 B 000 000 000 000 000 000 000 000 F 000 F 010 BACI	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader	B-10 B-10 B-10 B-10 B-10	20.0 A 10 D 19 D 60 ab 3- DA 15 D 28	1 .7 60 .3 0 .1 0 .2 0 .1 4 .2 10 .0 35 .1	27 88 20 11 33 35 80 40	C.Y.		18.90 10.10 3.73 5.55 3.44 6.10 2.44 3.71	1.31 .97 .48	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27	29.50 15.75 7.15 9.70 5 5.90 9.50 9.50 7 6.31	0 5 5 0 0 5 4
003 010 030 040 050 060 08 09 10 11 30	15 B 000 000 000 000 000 000 000 000 000 0	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction	B-10 B-10 B-11 C B-11 B-11	20.0A 100 D 199 D 66 abb 34 DA 155 DA 28 E 9	.760 .3 0 .1 0 .2 0 .1 4 .2 0 .0 35 .1	27 88 20 111 33 35 80 40			18.90 10.10 3.73 5.55 3.44 6.10 2.44 3.71 2.33	1.31 .97 .48 .87 .56	18.90 10.10 5.04 6.52 3.95 6.10 3.33 4.27	29.50 15.75 7.19 9.70 5 5.90 9.50 9.51 7 6.31 7 4.1	0 5 5 0 0 5 4
003 010 030 044 056 08 09 10 11 30 120 00 20	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel	B-10 B-10 B-10 B-10 B-10	20.0 20.0 100 100 100 100 100 100 100	.7 60 .3 0 .1 0 .2 0 .1 4 .2 60 .0 .35 .1	27 88 20 111 33 35 80 40 89	C.Y.		18.90 10.10 3.73 5.55 3.47 6.10 2.44 3.77 2.33	1.31 .97 .48 .87 .56 .46	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27	29.50 15.75 7.19 9.70 5.5.90 9.50 9.51 7.7.6.31	0 5 5 0 0 5 4 5 1
003 010 030 044 056 08 09 10 11 30 00 00 20	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth	B-10 B-10 B-11 C B-11 B-11	11 20.0 0A 10 0 19 0 60 ab 3.0 0A 15 28 E 9	1 .7 60 .3 0 .1 0 .2 0 .1 4 .2 60 .0 35 .1 0 .0	27 88 20 11 33 35 80 40 89			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.77 2.33	1.31 .97 .48 .87 .56 .46	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77	29.56 15.75 7.19 9.70 5.590 9.51 6.4.74 7.4.1	0 5 5 0 0 5 4 5 1
003 010 030 040 050 060 088 099 100 111 300 000 200 200 200 200 200 200 200 200	15 B 000 000 000 000 000 000 000 000 F 0100 BACI 7 020 F	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roiler compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roiler compaction operator walking, add Air tamp, add Vibrating plate, add Vibrating plate, add or flowable fill, see div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay	B-10 B-10 B-11 C B-11 B-11	11 20.0 D 19 D 60 ab 3.0 DA 15 D 28 E 9	1 .7,660 .3 3 .3 .660 .3 0 .1 0 .2 2 .2 0 .1 1 .4 4 .2 2 .2 0 .5 0 .5 0 .1 0 .2 0 .2 0 .3 0 .	27 88 20 111 33 35 80 40 89 011 012			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.71 2.33	1.31 .97 .48 .87 .56 .46 .46	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77	29.56 15.75 7.18 9.70 5 9.59 9.55 4.77 6.33 7 4.1	0 5 5 0 0 5 4 5 1 32 32 06
003 010 03 040 050 060 080 099 10 11 30 000 20 20 20 21 22 22 22 22 22 22 22 22 22 22 22 22	15 B 000 000 000 000 000 000 000 000 000 F 0100 BACI 020 F	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Vibrating plate, add or flowable fill, see div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel	B-10 B-10 B-11 C B-11 B-11	111 20.0 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		27 88 20 111 33 35 80 40 89 011 012 014			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.71 2.33	1.31 .97 .48 .87 .56 .46 .46 .41 .27 .83 .31 .44 .35 .86	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77	29.56 15.75 7.18 9.76 5 5.90 9.55 6 4.77 6.33 7 4.1	0 5 5 0 0 5 4 85 1 32 32 06 53
003 010 030 044 055 066 08 09 10 11 30 00 00 20 20 21 22 22 22 22	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see, div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth	B-10 B-10 B-11 C B-11 B-11	111 20.0 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		27 888 20 111 33 35 80 40 89 011 012 014 022			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.71 2.33	1.31 .97 .48 .56 .46 .46 .41 .27 .31 .41 .35 .81 .55 .61	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77 6.6 6.7 1.2	29.56 15.75 9.77 5 5.90 9.55 6 4.77 7 6.33 7 4.1 1 .8 9 .9 9 1.0 3 1.6	0 5 5 0 0 5 4 5 1 32 32 32 06 53 83
001 010 030 044 055 066 088 099 10 111 30 00 20 20 22 22 22 22 22 22 22 22 22 22	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see, div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth Clay	B-10 B-10 B-11 C B-11 B-11	111 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	.75	27 888 20 111 33 35 80 40 89 011 012 014 022 024			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.71 2.33	1.31 .97 .48 .87 .56 .46 .44 .27 .8 .31 .4 .35 .8 .55 .6 .61 .8 .71	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77 6.6 6.6 7.7 1.2 1.3 1.5	29.56 15.75 9.77 5 5.90 9.55 6 4.77 7 6.33 7 4.1 1 .8 9 .9 9 1.0 3 1.6 7 1.8 9 2.1	0 5 5 0 0 5 4 5 1 32 92 06 53 83 112
003 010 030 040 050 060 080 099 10 11 30 000 20 20 22 22 22 22 22 22	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see, div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth	B-10 B-10 B-11 C B-11 B-11	111 20.0 A 10 D 19 B 10 A 15 B 10 A		27 888 20 111 333 335 80 40 889 011 012 014 022 028 032			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.71 2.33 3.3 4.66 7.7 8.8	1.31 .97 .48 .87 .56 .46 .44 .27 .35 .8 .55 .6 .61 .8 .71	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77 6.6 6.6 7 1.2 1.3 1.5	29.56 15.75 7.19 9.70 5.59 9.51 7.6.33 7.4.1 1.8.8 9.9.9 9.1.0 3.1.6 7.1.8 9.9.9 9.1.0 2.2.4	0 5 5 0 0 5 4 5 1 32 32 32 36 53 33 12 42
003 010 030 044 055 06 08 09 10 11 30 20 20 20 22 22 22 22 22 22	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roller compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see, div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth Clay	B-10 B-10 B-11 C B-11 B-11	111 20.4 10 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11		27 888 20 111 333 35 80 40 89 011 012 014 022 024 028 032 036			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.71 2.33 3.3 4.66 7.7 8.8 1.0	1.31 .97 .48 .87 .56 .46 .44 .35 .8 .55 .6 .61 .8 .71 .81 .3 .91	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77 6.6 6.7 1.2 1.3 1.5 1.8	29.56 15.75 7.18 9.70 5.59 9.55 6.4.77 7.6.33 7.4.1 1 .8 9 .9 9 .9 9 .1.0 3 .1.6 7 .1.8 9 .2.1 2 .2.4 4 .2.7	0 5 5 0 0 5 4 32 32 32 06 53 33 12 42 72
003 010 030 040 050 080 099 100 111 300 200 200 200 220 221 222 223 224 224	15 B 00 00 00 00 00 00 00 00 00 00 00 00 00	y hand, no compaction, light soil Heavy soil Compaction in 6" layers, hand tamp, add to above Roiler compaction operator walking, add Air tamp, add Vibrating plate, add Compaction in 12" layers, hand tamp, add to above Roiler compaction operator walking, add Air tamp, add Vibrating plate, add or flowable fill, see div. 03310-220 KFILL, STRUCTURAL Dozer or F.E. loader from existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth Clay 300' haul, sand & gravel	B-10 B-10 B-11 C B-11 B-11	111 20.4 10 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11		27 888 20 111 333 335 80 40 889 011 012 014 022 028 032			18.90 10.10 3.73 5.55 3.47 6.10 2.49 3.71 2.33 3.4 6.6 7.7 8.8 1.0 1.1	1.31 .97 .48 .87 .56 .46 .44 .35 .8 .55 .6 .61 .8 .71 .81 .3 .91	18.90 10.10 5.04 6.52 3.95 6.10 3.36 4.27 2.77 6.6 6.7 1.2 1.3 1.5 1.8 2.0 2.3	29.56 15.75 7.18 9.76 5 5.90 9.55 6 4.77 7 6.33 7 4.1 1 .8 9 .9 9 .9 9 .1.0 3 1.6 7 1.8 9 .2.1 2 2.4 4 2.7 3 3 3.3	0 5 5 0 0 5 4 32 32 32 32 32 32 32 32 42 72

UZO.	00 Earthwork		الكبا		الليا						#
02315	5 Excavation and Fill		1	LABOR-	•	<u></u>	2004 BARE			TOTAL	
	•	_	V OUTPUT			MAT.	LABOR	EQUIP.	TOTAL	INCL 0&P .85	12
3020	Common earth	B-10W			C.Y.	 	.30	.35	.65 .73	.85	
3040	Clay	+	1,100	.011	-	1	.34			1.56	_
3200	150' haul, sand & gravel		670	.018			.56	.65	1.21		
3220	Common earth	\Box	610	.020	4		.61	.71	1.32	1.71	_
3240	Clay		550	.022	1		.68	.79	1.47	1.90	
3300	300' haul, sand & gravel	\Box	465	.026	Щ		.80	.93	1.73	2.25	
3320	Common earth		415	.029			.90	1.05	1.95	2.52	- 1
3340	Clay	_ ★	370	.032			1.01	1.17	2.18	2.82	
4000	200 H.P., 50' haul, sand & gravel	B-10E	i '	1 1	$\left[\ \ \right]$	Ţ	.15	.35	.50	.61	
4020	Common earth		2,200				.17	.39	.56	.69	
4040	Clay		1,950			Ţ. J	.19	.44	.63	.78	
4200	150' haul, sand & gravel	\Box	1,225				.30	.71	1.01	1.24	
4220	Common earth		1,100			T = T	.34	.79	1.13	1.38	
4240	Clay		975	.012			.38	.89	1.27	1.55	•
4400	300' haul, sand & gravel		805	.015			46	1.07	1.53	1.89	
4420	Common earth		735	.016	1 1		.51	1.17	1.68	2.06	
4440	Clay		660	.018		1	.57	1.31	1.88	2.30	
5000	300 H.P., 50' haul, sand & gravel	B-10				11	.12	.35	.47	.56	•
5020	Common earth	\Box	2,900	.004	\sqcap	1	.13	.38	.51	.62	
5040	Clay		2,700		1	1	.14	.41	.55		
5200	150' haul, sand & gravel	H	2,200		1	+	.17	.50	.67	.81	
5220	Common earth	1	1,950		1	1	.19	.56	.75		. 1
5240	Clay	H	1,700		+	+	.22	.65	.87		
5400	300' haul, sand & gravel	1	1,500			'	.25	.73	.98	1	- 1
5420	Common earth	\mathbf{H}	1,350	- 1	1	+	.28	.81	1.09		
5440	Clay	1 1	1,225		↓	- '	.30	.90	1.20		
1 1	For compaction, see div. 02315-310	+	+	+	+-	+	 		<u> </u>		-
	For trench backfill, see div. 02315-610 & 02315-620			1		1	()	()	1	1	ì
	DRROW, LOADING AND/OR SPREADING	\vdash	+	†	\vdash	+ -				<u> </u>	_
	Common earth, shovel, 1 C.Y. bucket	B-12	2N 840	.019	C.Y.	7.15	.61	1.01	8.77	9.90	0
4010	1-1/2 C.Y. bucket	B-12			1	7.15	A	1	8.46		
4020	3 C.Y. bucket	B-12			1 ↓	7.15		1	1		
4030	Front end loader, wheel mounted	+	+	1.	 `	+			 	†	-
4050	3/4 C.Y. bucket	B-10	OR 550	.022	C.Y.	7.15	.68	.35	8.18	9.25	. 5
4060	1-1/2 C.Y. bucket	B-10				7.15		1	*		
4070	3 C.Y. bucket	B-10			1 1	7.15					
4080	5 C.Y. bucket	B-10				7.15				1	
5000	Select granular fill, shovel, 1 C.Y. bucket	B-12		1		7.50	1.	1	1 .		
5010	1-1/2 C.Y. bucket	B-12		1		7.50		4	•		
5020	3 C.Y. bucket	B-12	1			7.50		1		1	
5030	Front end loader, wheel mounted	+	+	+	+-		+				-
5050	3/4 C.Y. bucket	B-10	OR 800	.015	C.Y.	7.50	.47	.24	8.21	9.20	<i>2</i> 0
5060	1-1/2 C.Y. bucket	B-10				7.50			4		
5070	3 C.Y. bucket	B10	1 '			7.50	1	1	i i		
5080	5 C.Y. bucket	B-10				7.50					_
						5.30	1	1	1		
6000	Clay, till, or blasted rock, shovel, 1 C.Y. bucket	B-12		1					1		
6010	1-1/2 C.Y. bucket	B-12				5.30		1 .	1 .		
6020	3 C.Y. bucket	B-12	2T 1,530	.010	1 ★	5.30	.33	85 .85	6.48	7.2	_
6030	Front end loader, wheel mounted	١.,	_		1			,		.	٠,
6035	3/4 C.Y. bucket	B-10	L								
	1-1/2 C.Y. bucket	B-10				5.30					
6040		B-10	OT 1,340			5.30					
6040 6045	3 C.Y. bucket				. 1	5.30	.17	731	5.78	8 6.4	4
6040	3 C.Y. bucket 5 C.Y. bucket	B-10	OU 2,200	.005	, ★	, 1 3.30	. 1	1	1	1	
6040 6045 6050 6060	5 C.Y. bucket Front end loader, track mounted	B-10								l	
6040 6045 6050	5 C.Y. bucket		ON 715	5 .017	C.Y.		.52	2 .42		1	.05

Octob Oct	02	315	Excavation and Fill		CDLA	DAILY	LABOR-	LIMIT	MAT.	2004 BAR	T	TOTAL	TOTAL INCL 0&P
1000 1.7/2 CY bucket	3 17		·		_	_	_						1NUL 08P
1700 1-1/2 C.Y. bucket 8-127 1,800 1,009 20 28 73 21,01 22 22 23 34 4 24 24 25 25 27 21,01 22 23 23 24 24 24 25 25 25 25 25		Ton				1 '	i	i.					
1/20 3 C.Y. bucket 81/01 1/20 20 28 73 21.01 23 23 23 23 23 23 23 2		iop		 -			1		1				23.
1935 Frozt eat lander, wheel mounted 9,108 550 022 C.Y. 20 .68 .35 21,03 22 27, 706 1,1/2 C.Y. bucket 9,108 970 012 20 .38 .24 20,62 27, 707 3 C.Y. bucket 9,101 1,575 008 20 .24 .19 20,43 2, 20, 20 .25						1 '						· ·	23.
1950 34 °C.Y bucket	"				5121	1,000	.003		20	.20	./3	21.01	
1960			•		D 100	EE0	1 022	ا پي	20	68	35	21.02	22
17070 3 C.Y. Lucket 8-101 1,575 .008 20 .24 .19 .20.43 .27 .20 .24 .20 .24 .20 .24 .20 .24 .20 .20 .24 .20 .2			·				1	1	i				23.
Section Sect	-1		·			1	1			1			22.
Section For larger haufing units, deduct from above				 			1	╀	l				22.
Second Haufing only, encounted or horrow materials, see disc 02315490 Second		For			0.100	2,000	.003	🔻]	.20	1	22.
2000 For throadble R1, see section 03310-220				15.490	 	+	 	╁				30%	
	3		•	13430	l		1				÷		İ
South Sout	_					+	 	┼	· · · · · · · · · · · · · · · · · · ·				
1,000 3 passes			*	R02315	R-10V	3 000	lma	rv		12	11	23	
5040	28	Nig		_=	10101			 ~;;.	 				
5060 12° lifts, 2 passes 5,200 .002 .007 .066 .13 .3508 .35	_	<u> </u>						1	 				
Sobo 3 passes	_		The second state of the second		1			. -	 				
Since Sinc				.							1 .		
5600 Sheepsfoot or wobbly wheel roller, 6' lifts, 2 passes 8-10G 2,400 .005 .16 .32 .48 5600 3 passes 1,735 .007 .22 .44 .66 5600 4 passes 1,300 .099 .29 .59 .88 5600 12' lifts, 2 passes 5,200 .002 .07 .15 .22 5700 3 passes 1,500 .003 .11 .29 .43 6000 Towed sheepsfoot or wobbly wheel roller, 6' lifts, 2 passes 1,500 .006 .19 .47 .66 6000 3 passes 1,500 .006 .19 .47 .66 6030 4 passes 1,500 .006 .25 .63 .88 6000 3 passes 1,500 .006 .25 .63 .88 6000 3 passes 1,500 .000 .02 .06 .16 .22 6000 3 passes 1,500 .000 .20 .05 <td>·</td> <td></td> <td></td> <td></td> <td>╂╁</td> <td></td> <td></td> <td>H</td> <td>1 .</td> <td></td> <td></td> <td></td> <td></td>	·				╂╁			H	1 .				
5620	- 1		the contract of the contract o		B-100				2	1			1
1,300								 	 				
5,200	3		•		1		1			1		1	
5700 3 passes 3,500 0.03 1.11 22 .33 5720 4 passes 2,600 .005 .14 29 .43 6000 Towed sheepsfoot or wobbly wheel roller, 6" lifts, 2 passes 8,100 10,000 .000 .001 .04 .09 .13 6020 3 passes 2,000 .006 .19 .47 .66 6030 4 passes 6,000 .002 .006 .16 .22 6060 3 passes 6,000 .002 .006 .16 .22 6060 3 passes 4,000 .003 .09 .24 .33 6070 4 passes 4,000 .003 .09 .24 .33 6070 4 passes 8,100 2,600 .005 .14 .57 .71 6210 3 passes 1,300 .009 .29 .1,31 .1,42 6250 12" lifts, 2 passes 5,500 .002 .007 .28 .35 6260 3 passes 3,465 .003 .11 .42 .53 6270 4 passes 4,260 .005 .14 .57 .71 7000 Walk behind, what with gir					!		1 -		 	1			1
\$\frac{5720}{6000} Towed sheepsfoot or worbbly wheel roller, 6' lifts, 2 passes \$\frac{9}{8} \text{DO} 0.005 0.01 0.04 0.99 1.13	4				1					1			
5000 Towed sheepsfoot or wobbly wheel roller, 6" lifts, 2 passes B-100 10,000 .001 .004 .09 .13 5020 3 passes 2,000 .006 .19 .47 .66 6030 4 passes 1,500 .008 .25 .63 .88 5050 12" lifts, 2 passes 4,000 .003 .09 .24 .33 5070 4 passes 4,000 .003 .09 .24 .33 5070 4 passes 4,000 .005 .14 .57 .71 5210 3 passes 1,735 .007 .22 .85 1.07 6220 4 passes 1,735 .007 .22 .85 1.07 6220 4 passes 1,300 .009 .29 1.13 .142 6250 12" lifts, 2 passes 3,465 .003 .11 .42 .53 6270 4 passes 3,465 .003 .11 .42 .53 6270 Walk behind, uhrating plate 18" wide, 6" lifts, 2 passes 4.10 .00 .040 .104 .14 .118 7020 3 passes 4.10 .007 .104 .14 .118 7020 3 passes 4.10 .057 .19 .19 .10 7020 3 passes 4.10 .057 .19 .19 .10 7020 3 passes 4.10 .057 .19 .19 .10 7020 3 passes 4.10 .057 .19 .19 .10 7020 3 passes 4.10 .057 .19 .20 .169 7020 12" lifts, 2 passes 4.10 .057 .19 .20 .169 7020 3 passes 4.10 .057 .19 .20 .169 7020 12" lifts, 2 passes 4.10 .057 .17 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 .10 7020 3 passes 4.10 .057 .17 .10 .10 .10 .10 7020 3 passes 4.10 .057 .17 .10				-	1 🛨		-1	t †	<u> </u>				
6020 3 passes	6000	Tov		es	B-100				ļ	.04	.09	.13	
6,000 12" lifts, 2 passes 6,000 .002 .006 .16 .22 .33 .30	6020			-	HT					.19	.47	.66	
6000 3 passes	6030		4 passes		!	1,500	.008	i		.25	.63	.88	1
6070	6050		12" lifts, 2 passes			6,000	.002			.06	.16	.22	<u> </u>
Second Vibrating roller, 6' lifts, 2 passes Second 1,735 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.007 0.007 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.007 0.	6060		3 passes		1:	4,000	.003			.09	.24	33	i
6210 3 passes	6070		4 passes		T 🔻	3,000	.004			.12	.31	.43	
6220	6200	ļ	Vibrating roller, 6" lifts, 2 passes	_	B-100	2,600	.005						İ
6250 12" lifts, 2 passes	0	1	3 passes		П					1	1 .	1	
6260 3 passes											1		
6270	15 (1)				1	•	1				1	1	
7000 Walk behind, vibrating plate 18" wide, 6" lifts, 2 passes A.I.D. 200 .040 1.04 .14 1.18 7020 3 passes 185 .043 1.12 .15 1.27 7040 4 passes 140 .057 1.49 .20 1.69 7200 12" lifts, 2 passes A1E 560 .014 .37 .07 .44 7220 3 passes A1E 560 .014 .37 .07 .44 7220 3 passes A20 .029 .74 .15 .89 7500 Vibrating roller 24" wide, 6" lifts, 2 passes B-10A 420 .029 .89 .31 1.20 7520 3 passes 20 .029 .89 .31 1.20 7520 3 passes 80 .043 1.33 .47 1.80 7540 4 passes 840 .014 .44 .16 .60 .240 7600 12" lifts, 2 passes 840 .014	5	1			$oldsymbol{\sqcup}$								
7020 3 passes 7040 4 passes 7200 12" lifts, 2 passes 7200 3 passes 7200 4 passes 7200 3 passes 7200 4 passes 7200 3 passes 7240 4 passes 7250 3 passes 7250 3 passes 7250 3 passes 7260 4 passes 7270 3 passes 7270 7280 4 passes 7280 729 729 729 729 729 729 729 729 729 729			•		♦	1		1 1			1	ľ	
7040 4 passes ↓ 140 .057 1.49 .20 .1.69 7200 12" lifts, 2 passes A1E .560 .014 .37 .07 .44 7220 3 passes 375 .021 .55 .11 .66 7240 4 passes 280 .029 .74 .15 .89 7500 Vibrating roller 24" wide, 6" lifts, 2 passes 810A .420 .029 .89 .31 .1.20 7520 3 passes 280 .043 .1.33 .47 .1.80 7540 4 passes 210 .057 .1.78 .62 .2.40 7600 12" lifts, 2 passes .560 .021 .67 .23 .90 7640 4 passes .560 .021 .67 .23 .90 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes .41 .130 .062 .1.60 .27 .1.87 8050 3 passes .560 .021 .60 .27 .1.87 8050 .3 passes .560 .021 .60 .27 .1.87 8050 .3 passes .560 .021 .60 .27 .1.87 8050 .3 passes .560 .021 .60 .27 .1.87 8050 .3 passes .560 .021 .60 .27 .1.87 8050 .3 passes .565 .123 .3.20 .55 .3.75 8200 .8" lifts, 2 passes .565 .123 .3.20 .55 .3.75 8200 .8" lifts, 2 passes .560 .031 .80 .14 .94 8250 .3 passes .560 .031 .80 .14 .94 8250 .3 passes .560 .031 .80 .14 .94	:				AlD			1	<u> </u>				
7200 12" lifts, 2 passes ALE 560 .014 .37 .07 .44 7220 3 passes 375 .021 .55 .11 .66 7240 4 passes 280 .029 .74 .15 .89 7500 Vibrating roller 24" wide, 6" lifts, 2 passes 280 .029 .89 .31 1.20 7520 3 passes 280 .043 1.33 .47 1.80 7540 4 passes 210 .057 1.78 .62 2.40 7600 12" lifts, 2 passes 840 .014 .44 .16 .60 7620 3 passes 560 .021 .67 .23 .90 7640 4 passes 4 220 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 80 .14	74	1	· · · · · · · · · · · · · · · · · · ·							1		1	
7220 3 passes 375 .021 .55 .11 .66 7240 4 passes 280 .029 .74 .15 .89 7500 Vibrating roller 24" wide, 6" lifts, 2 passes 280 .043 1.33 .47 1.80 7520 3 passes 280 .043 1.33 .47 1.80 7540 4 passes 210 .057 1.78 .62 2.40 7600 12" lifts, 2 passes 840 .014 .44 .16 .60 7620 3 passes 560 .021 .67 .23 .90 7640 4 passes 4 passes 420 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A.1F 130 .062 1.60 .27 1.87 8050 3 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 .80 .14 .94 8250 3 passes 195 .041 1.07 .18				·	♦	1		₩	ļ				
7240 4 passes 7500 Vibrating roller 24" wide, 6" lifts, 2 passes 7520 3 passes 7540 4 passes 280 .043 1.33 .47 1.80 7540 4 passes 210 .057 1.78 .62 2.40 7600 12" lifts, 2 passes 840 .014 .44 .16 .60 .23 .90 .67 .23 .90 7640 4 passes 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes 8050 3 passes 97 .082 8100 4 passes 8200 8" lifts, 2 passes 8200 8" lifts, 2 passes 8250 3 passes 195 .041 100 .27 187	4.		•		A-1E		1				1	1	
7500 Vibrating roller 24" wide, 6" lifts, 2 passes B-10A 420 .029 .89 .31 1.20 7520 3 passes 280 .043 1.33 .47 1.80 7540 4 passes 210 .057 1.78 .62 2.40 7600 12" lifts, 2 passes 840 .014 .44 .16 .60 7620 3 passes 560 .021 .67 .23 .90 7640 4 passes 420 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 65 .123 3.20 .55 3.75 8100 4 passes 560 .031 .80 .14 .94 8200 8" lifts, 2 passes 260 .031 .80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 <t< td=""><td>5 2 2</td><td>1.</td><td></td><td></td><td>+</td><td></td><td>1</td><td>4</td><td>+</td><td>f</td><td></td><td></td><td></td></t<>	5 2 2	1.			+		1	4	+	f			
7520 3 passes 280 .043 1.33 .47 1.80 7540 4 passes 210 .057 1.78 .62 2.40 7600 12" lifts, 2 passes 840 .014 .44 .16 .60 7620 3 passes 560 .021 .67 .23 .90 7640 4 passes 420 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 97 .082 2.14 .37 2.51 8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 .80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 1.87	2		•		V	- 1							4
7540 4 passes 210 .057 1.78 .62 2.40 7600 12" lifts, 2 passes 840 .014 .44 .16 .60 7620 3 passes 560 .021 .67 .23 .90 7640 4 passes 420 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 97 .082 2.14 .37 2.51 8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 1.87	2.0		/		P-10			╂	1				
7600 12" lifts, 2 passes 840 .014 .44 .16 .60 7620 3 passes 560 .021 .67 .23 .90 7640 4 passes 420 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 97 .082 2.14 .37 2.51 8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 .80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 1.87	100						4	1		1	1		
7620 3 passes 560 .021 .67 .23 .90 7640 4 passes 420 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 97 .082 2.14 .37 2.51 8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 .80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 1.87				*				╊	<u> </u>				
7640 4 passes 420 .029 .89 .31 1.20 8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 97 .082 2.14 .37 2.51 8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 1.87				•			- 1			1	I .		
8000 Rammer tamper, 6" to 11", 4" lifts, 2 passes A1F 130 .062 1.60 .27 1.87 8050 3 passes 97 .082 2.14 .37 2.51 8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 1.87					╂╌╁			+	 				
8050 3 passes 97 .082 2.14 .37 2.51 8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 .80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes 130 .062 1.60 .27 1.87			· · · · · · · · · · · · · · · · · · ·			1			_			1	
8100 4 passes 65 .123 3.20 .55 3.75 8200 8" lifts, 2 passes 260 .031 .80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes ▼ 130 .062 1.60 .27 1.87					1 1				 		3		
8200 8" lifts, 2 passes 260 .031 80 .14 .94 8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes ▼ 130 .062 1.60 .27 1.87		1	· ·	:		1	1					Ī	
8250 3 passes 195 .041 1.07 .18 1.25 8300 4 passes ▼ 130 .062 1.60 .27 1.87	100				H				-			1	
8300 4 passes		1									1	1	
			·		╂╁	_4			 			·t	
100 100 100 100 100 100 100 100 100 100		1	·						1.	l l	1		
	7 70	1	page		7	1 350		<u> </u>	1	1	1		1

Florida Department of Transportation Item Average Unit Cost From 2002/01/01 to 2003/11/30

Contract Type: CC STATEWIDE

Displaying: VALID ITEMS WITH HITS

From: 0000 To: 1999999999

Item	No. of Conts	Weighted Average	Total Amount	Total Quantity	Unit Meas	Obs?	Description
0120 72	4	\$61.80	\$80,770.00	1,307.000	CY	N	FILL GRAVEL
0121 70	14	\$105.93	\$183,591.28	1,733.100	CY	N	FLOWABLE FILL
0125 1	3	\$18.67	\$2,793.00	149.600	CY	N	EXCAVATION FOR STRUCTURES
0125 3	2	\$7.30	\$51,539.15	7,063.000	CY	N	BEDDING MATL (SELECT)
0141 70	2	\$638.64	\$7,025.00	11.000	AS	N	SETTLEMENT PLATE ASSEMBLY
0142 70	4 ·	\$5.98	\$325,664.70	54,423.000	CY	N	FILL SAND
0144 1 1	1	\$19.00	\$3,610.00	190.000	LF	N	DIGITAL INCLINOMETER CASING (VERTICAL)
0144 71	1 '	\$1,160.00	\$5,800.00	5.000	EA	N	PORE-PRESSURE TRANSDUCER (PIEZOMETER)
0144 72	1	\$15.00	\$5,625.00	375.000	LF	N	TUBING FOR PIEZOMETER
0145 1	4	\$4.13	\$637,898.50	154,382.000	SF	N	GEOSYNTHETIC REINFORCED SOIL SLOPES
0145 2	2	\$2.23	\$52,889.76	23,706.000	SY	N .	GEOSYNTHETIC REINF FND OVER SOFT SOILS
0160 3	1	\$30.30	\$80,628.30	2,661.000	CY	N	STABILIZING MATERIAL COMMERCIAL
0160 4	74	\$2.00	\$10,204,293.15	5,108,489.380	SY	N	STABILIZATION TYPE B
0162 3101	55	\$.60	\$1,886,683.18	3,155,588.500	SY	N	FINISH SOIL LAYER (GRASSING OPR) (6")
0162 4	3	\$2.00	\$65,941.45	32,977.000	SY	N	ORGANIC SOIL LAYER
0173 71	2 .	\$664.54	\$1,442,719.44	2,171.000	EA	N	DRILLING HOLES FOR PRESSURE GROUTING
0173 74	. 1 .	\$198.40	\$51,980.80	262.000	CY	. N	PRESSURE GROUTING (CEMENT)
0173 76	1	\$43.75	\$277,593.75	6,345.000	LF	N	PIPE FOR GROUT INSTALLATION
0174 1	1	\$7.50	\$225,000.00	30,000.000	LB	N	SOIL STABILIZATION (HIGH-DENSITY POLY)
0175 1	1	\$2.00	\$60,958.00	30,479.000	SY	N	RESEAT CONC PAVT
0176002	1	\$26.00	\$47,554.00	1,829.000	CY	N	FILLER AGGREGATE
0200 70	2	\$4.64	\$13,841.00	2,983.000	CY	N	LIMEROCK MATL
0210 1 5	1.	\$8.51	\$25,464.47	2,992.300	SY	N	BASE REWORK LIMEROCK (5")
0220 70 1	2 .	\$2.46	\$13,661.00	5,556.000	SY	N	BASE SHAPE & COMPACT EXIST (6")
0230 2	1	\$15.00	\$5,370.00	358.000	CY	N	LIMEROCK MATL
0285701	39	\$6.93	\$3,042,256.26	439,257.400	SY	N	BASE OPTIONAL (BASE GROUP 01)
0285702	3	\$4.98	\$616,862.68	123,776.000	SY	N	BASE OPTIONAL (BASE GROUP 02)
0285703	8	\$5.73	\$510,828.25	89,130.000	SY	N	BASE OPTIONAL (BASE GROUP 03)
0285704	31	\$6.78	\$5,069,010.09	747,183.480	SY	N	BASE OPTIONAL (BASE GROUP 04)
0285705	4	\$6.98	\$78,811.88	11,283.400	SY	N	BASE OPTIONAL (BASE GROUP 05)
0285706	24	\$6.27	\$3,073,540.03	490,019.070	SY	N	BASE OPTIONAL (BASE GROUP 06)
0285707	4	\$10.12	\$504,452.71	49,850.000	SY	N.	BASE OPTIONAL (BASE GROUP 07)
0285708	1	\$55.00	\$11,990.00	218.000	SY	N	BASE OPTIONAL (BASE GROUP 08)
0285709	. 35	\$8.66	\$10,651,646.92	1,229,683.300	SY	N .	BASE OPTIONAL (BASE GROUP 09)
0285710	12	\$9.78	\$3,827,980.57	391,478.490	SY	N	BASE OPTIONAL (BASE GROUP 10)

CHENT	PROJECT	SHEET OF
CLIENTY, trandar County SUBJECT	PROJECT	07/99037.09
SUBJECT /	Horacker (= 10. Dall	JOB NO. 07/94037.09 BY AU DATE
	Honder County Landpl	CHECKED DATE
Closine Cost		
- 50700 003		† <u> </u>
178m (3) Sy.	VTHETICS	
 		
GUANTIT	75	Prierry
(40 mg)		
ANEN () 95,0	300 SF X 1,0 = 95300	QUOTE 65T
	السنان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان المان ا	
$\begin{array}{c c} & (3) & 203,7 \\ \end{array}$	100 SF ~ 1.05 = 2/3 895	60m1 78x5
(EAD) (3) 203,7 (EAD) (4) 168,3 (5) 92,0	350 SF x 1,0 = 168,350	d
15, 92 0	100 SF X 105 = 56,600	80,536/54
	1	
		# 4.82 (47)
Another mench	(80//04)	
z' = 4/3	<u> </u>	PUOTE (6SE)
$\begin{vmatrix} 2' \\ 2' \end{vmatrix} = 4/5$		
		40-mil TEXT
		<i>t</i>
Length of the	4nc4 = 2860c	0,459/51-
		(#4,13/sy)
	2010 11 - 12116 6	
	Ans = 2860 x 4 => 11440 sf	
	70701 585.575 SF	BIPROMAN (Hillsonning
14.		640 composite
	(65,064 57)	
60 m.D	65/00 89 40 n.i	40.45/5F 2002
		40.45/3F 2002
DAES (2) 210,365	5 SF x 1.04 = 218780SF	
		PEN FORP
	- <u>-</u>	
PACHON TARAL	-4	2002 2003
		0.45 x 1.01 = 0.455/5x
71 /6	nth = 940 Ct	
	711 1704	2003 4 2004
2/	xxx=540x4= 3760st	
	222540SF	D455 x 1.02 = 0.464/5F
		\$ 1100 12
	24,726.6 54	# 417 /sy
	(24,70054)	+
620ComposiTE	60 mil	
Soms ones or	60 + 40m1	
I →		
65/00 + 24	4700 🖘 89 800 sy	
 	.	

FAX TRANSMITTAL SHEET

FAX: 262-524-7961 TEL: 262-524-7979 CHICAGO MADISON

MINNEAPOLIS

MUNISING

WAUKESHA

TO:	Joe O'Neil	·			
COMPANY:	scs				
LOCATION:			FAX:	813-623-6757	
FROM:	Joe Irwin				<u> </u>
DATE:	4-7-04		·		
RE:	Budget Pricing fo	or Hardy Road			
The following intended recip	4 pages ient immediately. I	(including trans f all pages are r	smittal sheet) a	are priority. Please	e notify the
COMMENTS:					Cimeaton.
Attached is G	SI's budget pricing	for Hardy Road	l. If you have ar	ny questions please	call.
Joe Irwin					

BUDGETARY PROPOSAL

GSI proposes to sell to the Purchaser the materials and services herein in accordance with the terms, conditions, specifications and prices set forth or referred to on the face hereof and the pages attached hereto. Acceptance of this proposal is limited to the terms and conditions contained in this proposal.

CHICAGO **MADISON**

PROJECT NAME: Hardy Road PROJECT LOCATION: Hardy County, FL MINNEAPOLIS.

MUNISING

ESTIMATE #:

DATE: 4-7-04

PHOENIX

GSI will furnish and install the following material(s):

<u>ITEN</u>	Material Supply	1-7-	EST. QTY.	UNITS	UNIT PRICE	WAUKESHA <u>AMQUNT</u>
1 2 3 4	300 mil DS 8 oz geocomposite Tenax 770-2 60 mil textured 20 mil rain cover Installation	70701 \$6F	217,800 217,800 479,160 130,680	SF SF SF	\$0.552 \$0.706 \$0.324 \$0.129	\$120,225.60 \$153,766.80 \$155,247.84 \$16,857.72
5 6 7 8	300 mil DS 8 oz geocomposite Tenax 770-2 60 mil textured 20 mil rain cover	0.552+,195=0,747 0.706+.253=0,959 0.324+,212=0,536 0,129+;200=0.329	217,800 479,160	SF SF SF	\$0.195 \$0.253 \$0.212 \$0.200	\$42,471.00 \$55,103.40 \$101,581.92 \$26,136.00

Total Budgetary Price =

\$671,390.28

VERY IMPORTANT - PLEASE NOTE:

- Refer to the attached Scope of Work by GSI, Scope of Work by Others, General Conditions and Special Conditions which are included as part of this Proposal.
- Taxes are not included.
- Bonds are not included but can be provided at \$20.00 per \$1,000.00 of total bid amount
- Budget prices will be valid for 30 days. After 30 days, pricing may be subject to increases in resin and installation costs. These prices are for budget purposes only.
- Prices are F.O.B. job site.
- Prices based on establishing an acceptable line of credit.
- The above budget numbers do not include mobilization.

Regional Sales Manager:

Joe Irwin

Estimator:

Dan Garlow

APPROVED BY:

Dan Garlow, Estimator

SCOPE OF WORK TO BE PERFORMED BY GSI

GSI proposes to supply and install the liner as follows:

- GSI will promptly prepare and submit shop drawings to be approved by Project Engineer and returned in advance of installation.
- 2. Panels will be deployed (from high end to low end), overlapped and welded to form a continuous cover over the area to be lined using double wedge fusion welding as the primary method of welding field seams between adjacent panels. Extrusion welding will be used as a secondary method for seaming between adjacent panels and as a primary method of welding for detail and repair work.
- 3. Heavy equipment for use in deploying the liner materials.
- 4. All on-site testing of field seams.
- 5. Manufactures standard material and certifications per their standard test methods and frequencies.
- At the conclusion of each day's work GSI will execute a subgrade acceptance form by which it accepts the surface of the subgrade lined that day. GSI will not accept the subgrade in advance of it being lined.

SCOPE OF WORK TO BE PERFORMED BY OTHERS

The following is to be performed or provided by the Purchaser:

- 1. Preparation and maintenance of the subgrade in a condition suitable for the installation of the liner using standard installation methods. Continuous removal of rainwater, groundwater, snow and ice from the underlying liner material, subgrade and anchor trenches sufficient to permit installation to continue without interruption. The subgrade must be free of rocks, sharp stones, sticks, roots, vegetation and sharp objects and debris of any type which may damage the liner. The subgrade must be prepared so as to be sufficiently stable to permit use of motorized or mechanized rubber tired equipment to deploy the sheet. All sediment buildup on the liner surface shall be removed.
- 2. Subterranean inspections or tests of the subgrade. (GSI will not be responsible for conditions existing below the surface of the subgrade.)
- 3. Adequate access to and sufficient operating room about the work area to be lined to permit operation of equipment used to deploy liner. Adequate access can be partially defined as follows: 1) Ability to turn a Case 821B rubber tired loader 360 degrees while suspending a 23' wide roll of liner from the bucket. 2) Ability to access all 4 sides of the cell or all sides and top of the closure area with 2 wheel drive pickups and heavy equipment. 3) Building and maintaining temporary roads accessible by a Case 821B loader requiring a minimum width clearance of 45 feet.
- 4. Excavation, backfill and compaction of all anchor trenches in accordance with the project specifications.
- 5. Concrete and pipe work.
- 6. Access to sanitation facilities for GSI forces.
- Access to dumpsters for the disposal of GSI construction waste materials.
- 8. Adequate control of dust to permit welding without excessive or unusual cleaning of the liner.
- All independent laboratory destructive testing seam testing, conformance testing, friction angle testing and onsite third-party QA consultant.
- 10. As-built drawings and/or surveys.
- 11. Procure site specific soils to the independent laboratory for friction angle testing.
- 12. Exposing, cleaning and maintaining all existing liner tie in locations in a condition suitable for welding including controlling all leachate and run off at the tie-in location.
- 13. Plywood liner protection/marker sheets.
- 14. Unloading and storing materials prior to mobilization.
- 15. Sand for sandbags.
- Water leakage testing and/or electrical leak location survey.

hardy road BUDGET.doc

GENERAL CONDITIONS

- 1. GSI's proposal assumes working in favorable seasonal conditions. GSI reserves the right to renegotiate pricing or apply stand by charges if the project is either accelerated or delayed into a non-favorable season.
- Once the project is commenced, installation must proceed in a continuous and uninterrupted fashion. GSI forces will work 6 days per week, 10 hours per day in order to meet project deadlines.
- 3. GSI will be responsible for the safety of its employees and protection of the liner until acceptance or demobilization. GSI will not be responsible for the overall safety of the job site, and the safety of individuals not employed by GSI. The Owner and General Contractor should caution its employees that liner is slippery, particularly when wet. Care must be exercised when walking on the liner.
- 4. GSI will not be responsible for any damages to the liner resulting from work performed by others.
- 5. GSI is not responsible for ground water or gas that accumulates beneath the liner.
- 6. General contractor shall provide 2 full sets of plans and specifications.
- 7. Upon request, GSI will provide purchaser with Certificates of Insurance. The insurance shall include General Liability Coverage for personal injury and property damage in the amount of \$2,000,000 and Worker's Compensation coverage in the amount required by law.
- 8. Items which may constitute a claim for contract extras include:
 - Any changes in scope of work
 - Upon arrival, site is not prepared or ready as was verbally stated by the owner/contractor's representative prior to GSI's mobilization to the site.
 - Delays caused by owner, contractor, or other subcontractors which have a direct effect on GSI's ability to complete its work in a timely fashion.
- 9. Changes to the work must be authorized in writing by the owner/contractor before additional work will commence.
- 10. Payment terms are as follows:

Material - Net 30 days from date of shipment.

Installation - Net 30 days from date of invoice or completion.

SPECIAL CONDITIONS

- 1. GSI used verbal information.
- 2. GSI reserves the right to modify this proposal upon review of complete plans and specifications for this work.
- 3. GSI to be a non-union subcontractor and pay non-prevailing wages.
- 4. Proposal based on the work being performed under OSHA Level D conditions. GSI will provide hard-hats and safety glasses for its employees. Soft soled shoes (as required for work upon the geomembrane liner) will be worn by all employees working on the liner. If an upgrade to modified Level D or Level C is encountered, then any additional or site specific personal protective equipment shall be supplied by others.
- 5. A 5 year pro-rated material warranty and a 1 year installation and workmanship warranty shall be provided.
- 6. GSI has made no provisions for penetrations since none were indicated on the drawings. Standard pipe penetration boots can be provided at \$150.00/each.
- 7. Any stainless steel battening required will be furnished and installed at an additional price of \$30.00/l.f. Quantities are to be determined by field measuring.
- 8. Geomembrane, geocomposite are quoted supplied and installed as a package.
- 9. Quantities for payment shall be on actual measured in place quantities which include quantities in anchor trenches.
- 10. As an authorized fabricator and installer of the liner manufacturer, GSI will provide a full time approved technical representative of the manufacturer on site throughout the installation of the liner in lieu of an actual employee of the manufacturer.

CLARIFICATIONS

1. Clarification: GSI intends to deploy subsequent liner materials via an ATV. (i.e. driving on liner materials to deploy the next layer).

hardy road BUDGET.doc

FAX TRANSMITTAL SHEET

FAX: 262-524-7961 TEL: 262-524-7979

CHICAGO **MADISON**

MINNEAPOLIS

MUNISING

SHA

	Joe O'N								W
COMPANY									
LOCATION					FAV				
FROM	Joe Irwi	in			FAX:	813-62	3-6757		
DATE	4-8-04								
RE:	Budget	Pricing for	Hardy Rose	10-					
				Сар					
The followin	· ·								
ntended reci	nient imme	_ pages (in ediately. If a	cluding trar	smittal s	heet) a	re priorit	v ' Dia-		
		olately. If a	ıı pages are	not receiv	ved, ple	ase call s	ender for		iry th
COMMENTS									uu
SIMIMICIAL 2									
Attached is c	2011								
wached is c	101's buda.	et pricing for	Hardy D.						
	or a pudge	1	nardy Road	lCap. If v	vou hav	9 any au			
oe Irwin	or a budge	, , , , , , , , , , , , , , , , , , ,	nardy Road	Cap. If y	you hav	e any que	estions ple	ease ca	all.
oe Irwin	or a budge	·	nardy Road	Cap. If y	you hav	e any que	estions pla	ease ca	all.
oe Irwin	or a buage		nardy Road	ICap. If y	you hav	e any que	estions ple	ease ca	all.
oe Irwin	or a buage	,	nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
Attached is G	or a buage	,	nardy Road	I Cap. If y	you hav	e any que	estions ple	ease c	all.
loe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
loe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
loe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
loe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
loe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
loe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
loe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.
oe Irwin	or a buage		nardy Road	I Cap. If y	you hav	e any que	estions ple	ease ca	all.

ESTIMATE #:

40 mil textured LLDPE

40 mil textured LLDPE

DESCRIPTION

Material Supply

Installation

ITEM

1

2

DATE: 4-8-04

GSI will furnish and install the following material(s):

BUDGETARY PROPOSAL

EST. QTY.

217,800

217,800

GSI proposes to sell to the Purchaser the materials and services herein in accordance with the terms, conditions, specifications and prices set forth or referred to on the face hereof and the pages attached hereto. Acceptance of this proposal is limited to the terms and conditions contained in this proposal. PROJECT NAME: Hardy Road Cap PROJECT LOCATION:

CHICAGO

MADISON

MINNEAPOLIS

PHOENIX

MUNISING

WAUKESHA

AMOUNT

UNIT PRICE

\$56,410.20

\$0.259

\$43,560.00

\$0.20

Total Budgetary Price =

\$99,970.20

MATERIA /NSTALL

0.259 + 0.20 = 0,459/SF = 4,13/54

Hardy County, FL

UNITS

SF

SF

VERY IMPORTANT - PLEASE NOTE:

- Refer to the attached Scope of Work by GSI, Scope of Work by Others, General Conditions and Special Conditions which
- Bonds are not included but can be provided at \$20.00 per \$1,000.00 of total bid amount
- Budget prices will be valid for 30 days. After 30 days, pricing may be subject to increases in resin and installation costs.
- Prices based on establishing an acceptable line of credit.
- The above budget numbers do not include mobilization.

Regional Sales Manager:

Joe Irwin

Estimator:

Dan Garlow

APPROVED BY:

SCOPE OF WORK TO BE PERFORMED BY GSI

GSI proposes to supply and install the liner as follows:

160

- 1. GSI will promptly prepare and submit shop drawings to be approved by Project Engineer and returned in
- 2. Panels will be deployed (from high end to low end), overlapped and welded to form a continuous cover over the area to be lined using double wedge fusion welding as the primary method of welding field seams between adjacent panels. Extrusion welding will be used as a secondary method for seaming between adjacent panels and as a primary method of welding for detail and repair work. 3. Heavy equipment for use in deploying the liner materials.
- 4. All on-site testing of field seams.
- 5. Manufactures standard material and certifications per their standard test methods and frequencies.
- 6. At the conclusion of each day's work GSI will execute a subgrade acceptance form by which it accepts the surface of the subgrade lined that day. GSI will not accept the subgrade in advance of it being lined.

SCOPE OF WORK TO BE PERFORMED BY OTHERS

The following is to be performed or provided by the Purchaser:

- 1. Preparation and maintenance of the subgrade in a condition suitable for the installation of the liner using standard installation methods. Continuous removal of rainwater, groundwater, snow and ice from the underlying liner material, subgrade and anchor trenches sufficient to permit installation to continue without interruption. The subgrade must be free of rocks, sharp stones, sticks, roots, vegetation and sharp objects and debris of any type which may damage the liner. The subgrade must be prepared so as to be sufficiently stable to permit use of motorized or mechanized rubber tired equipment to deploy the sheet. All sediment buildup on
- 2. Subterranean inspections or tests of the subgrade. (GSI will not be responsible for conditions existing below
- 3. Adequate access to and sufficient operating room about the work area to be lined to permit operation of equipment used to deploy liner. Adequate access can be partially defined as follows: 1) Ability to turn a Case 821B rubber tired loader 360 degrees while suspending a 23' wide roll of liner from the bucket. 2) Ability to access all 4 sides of the cell or all sides and top of the closure area with 2 wheel drive pickups and heavy equipment. 3) Building and maintaining temporary roads accessible by a Case 821B loader requiring a
- 4. Excavation, backfill and compaction of all anchor trenches in accordance with the project specifications.
- 6. Access to sanitation facilities for GSI forces.
- 7. Access to dumpsters for the disposal of GSI construction waste materials.
- 8. Adequate control of dust to permit welding without excessive or unusual cleaning of the liner.
- 9. All independent laboratory destructive testing seam testing, conformance testing, friction angle testing and on-10. As-built drawings and/or surveys.
- 11. Procure site specific soils to the independent laboratory for friction angle testing.
- 12. Exposing, cleaning and maintaining all existing liner tie in locations in a condition suitable for welding including Plywood liner protection/marker sheets.
- 14. Unloading and storing materials prior to mobilization.
- 15. Sand for sandbags.
- 16. Water leakage testing and/or electrical leak location survey.

hardy road cap BUDGET, doc

GENERAL CONDITIONS

- 1. GSI's proposal assumes working in favorable seasonal conditions. GSI reserves the right to renegotiate pricing or apply stand by charges if the project is either accelerated or delayed into a non-favorable season.
- 2. Once the project is commenced, installation must proceed in a continuous and uninterrupted fashion. GSI forces will work 6 days per week, 10 hours per day in order to meet project deadlines.
- 3. GSI will be responsible for the safety of its employees and protection of the liner until acceptance or demobilization. GSI will not be responsible for the overall safety of the job site, and the safety of individuals not employed by GSI. The Owner and General Contractor should caution its employees that liner is slippery, particularly when wet. Care must be exercised when walking on the liner.
- 4. GSI will not be responsible for any damages to the liner resulting from work performed by others.
- GSI is not responsible for ground water or gas that accumulates beneath the liner.
- General contractor shall provide 2 full sets of plans and specifications.
- 7. Upon request, GSI will provide purchaser with Certificates of Insurance. The insurance shall include General Liability Coverage for personal injury and property damage in the amount of \$2,000,000 and Worker's
- 8. Items which may constitute a claim for contract extras include:
 - Any changes in scope of work
 - Upon arrival, site is not prepared or ready as was verbally stated by the owner/contractor's
 - Delays caused by owner, contractor, or other subcontractors which have a direct effect on GSI's ability
- 9. Changes to the work must be authorized in writing by the owner/contractor before additional work will 10. Payment terms are as follows:

Material - Net 30 days from date of shipment.

Installation - Net 30 days from date of invoice or completion.

SPECIAL CONDITIONS

- 1. GSI used verbal information.
- 2. GSI reserves the right to modify this proposal upon review of complete plans and specifications for this work.
- 3. GSI to be a non-union subcontractor and pay non-prevailing wages.
- 4. Proposal based on the work being performed under OSHA Level D conditions. GSI will provide hard-hats and safety glasses for its employees. Soft soled shoes (as required for work upon the geomembrane liner) will be worn by all employees working on the liner. If an upgrade to modified Level D or Level C is encountered, then any additional or site specific personal protective equipment shall be supplied by others.
- 5. A 5 year pro-rated material warranty and a 1 year installation and workmanship warranty shall be provided.
- 6. GSI has made no provisions for penetrations since none were indicated on the drawings. Standard pipe
- 7. Any stainless steel battening required will be furnished and installed at an additional price of \$30.00/l.f.
- 8. Geomembrane, geocomposite are quoted supplied and installed as a package.
- 9. Quantities for payment shall be on actual measured in place quantities which include quantities in anchor
- 10. As an authorized fabricator and installer of the liner manufacturer, GSI will provide a full time approved technical representative of the manufacturer on site throughout the installation of the liner in lieu of an actual

CLARIFICATIONS

1. Clarification: GSI intends to deploy subsequent liner materials via an ATV. (i.e. driving on liner materials to hardy road cap BUDGET.doc

Waste Home

Redevelopment Cleansweep-

Batteries Brownfields Department of Environmental Protection "More Protection, Less Process"

Home | Contact DEP | Search DEP | DEP Site Map

olid Waste Financial Responsibility

Annual Adjustment of Cost Estimates

Owners or operators of facilities regulated by the Solid Waste Financial Assurance office shall annually adjust their facility closure cost estimates for inflation and submit updated information to the Department. Outlined below are Rule 62-701.630 (4), Florida Administrative Code (F.A.C.), requirements for submission of closure cost estimates.

- o Form 62-701.900(28) is used to prepare and submit closure cost estimates. Contact your permitting office for assistance with the form.
- o Annual cost estimate adjustments may be made either by recalculating the maximum cost of closure or by using the current year inflation factor.
- o For owners or operators using an escrow account to demonstrate financial assurance, cost estimates must be submitted between July 1 and September 1 of each year.
- o For owners or operators using an alternate financial mechanism to demonstrate financial assurance, cost estimates must be submitted between January 1 and March 1 of each year.
- Please submit Form 62-701.900(28) to the appropriate permitting office with a copy

Solid Waste Financial Coordinator Department of Environmental Protection 2600 Blair Stone Road MS 4565 Tallahassee, Florida 32399-2400 (850) 245-8732 FAX (850) 245-8811

Calculation of the Inflation Factor

- o The annual inflation factor is derived from the most recent Implicit Price Deflator for Gross National Product published by the U.S. Department of Commerce in its Survey of Current Business, pursuant to Rule 62-701.630(4)(b)(2), F.A.C.
- o To calculate the current inflation factor, divide the latest published annual Deflator by the Deflator for the previous year.
- o Implicit Price Deflator data is published by the U.S. Department of Commerce, Bureau of Economic Analysis on their website, http://www.bea.doc.gov...

Current Year Inflation Factor*: 1.010

Inflation Factors 2000 - 2003

1999 Cost Estimate x 1.015 = 2000 Cost Estimate 2000 Cost Estimate x 1.020 = 2001 Cost Estimate 2001 Cost Estimate x 1.020 = 2002 Cost Estimate 2002 Cost Estimate x 1.010 = 2003 Cost Estimate

Pesticides Compliance Certification Program (CCP) Contaminated Soils Forum Drycleaning Electronics Full Cost Accounting Hazardous Waste Hazardous Waste Financial Responsibility Institutional Controls Registry (ICR) ICR Procedures

Guidance [pdf]

Mercury

Petroleum Cleanup **Programs**

Pollution

Prevention

Recycling

Site Investigation

Solid Waste

Solid Waste Financial Responsibility

Solid Waste Grants

Storage Tank Regulation

Tires

Used Oil

Voluntary Cleanup

Tax Credit

Database Reports Forms News & Events Publications * - The data necessary to calculate the inflation factor is released by the U.S. Department of Commerce in April. Therefore, it is necessary and appropriate to use the previous year's factor when inflation adjusting cost estimates between January 1 and April 1. Once the new factor becomes available, it will be posted for immediate use.

|Rules | Forms | Solid Waste Financial Responsibility Main Page | Cost Estimates | Workshop | Solid Waste Section Main Page |

Rules

Petroleum Storage Systems Solid & Hazardous Waste Waste Cleanup

Copyright & Disclaimer © 1999 State of Florida Privacy Statement

Last Updated: 02/02/04

HILLSBOROUGH COUNTY SOUTH EAST LANDFILL SECTION I LANDFILL EXPANSION

		CONTRACTOR			ΔΓ	DVANCE	CUEE	RRY HILL				·					
Ite	m				Bid	Bid	Bid	Bid		DLPHIN		IENTAL SPEC.	НА	NDEX	HUBBARD	K	MMINS
No		Item Description	Units	Bid Quantity	Unit Price	Unit Total	Unit Price	Unit Total	Bid	Bid	Bid	Bid	Bid	Bid	Bid Bid	Bid	Bid
		Mobilization (complete)	LS	1	\$ 200,000.00	\$ 200,000,00	\$ 244,136,00		Unit Price	Unit Total	Unit Price	Unit Total	Unit Price	Unit Total	Unit Price Unit Tota	Unit Price	Unit Total
2	2	Site Clearing	AC	14	\$ 1,850.00	\$ 25,900.00	\$ 2,000.00	\$ 244,136.00	\$ 332,430.00	\$ 332,430.00	\$ 357,911.00	\$ 357,911.00	\$ 15,718.24	\$ 15,718.24	\$ 500,000.00 \$ 500,000	00 \$ 116,225.00	
3		Survey	LS		\$ 85,000.00		\$ 12,000.00	\$ 28,000.00 \$ 12,000.00	\$ 3,000.00	\$ 42,000.00	\$ 1,700.00	\$ 23,800.00	\$ 1,060.41	\$ 14,845.74	\$ 15,000.00 \$ 210,000	00 \$ 500.00	
4		Temporary Erosion Control	LS	1	\$ 10,000.00	00,000.00	\$ 5,000.00	\$ 5,000.00	\$ 65,000.00	\$ 65,000.00	\$ 37,250.00	\$ 37,250.00	\$ 65,732.46		\$ 75,000.00 \$ 75,000	00 \$ 50,000.00	
5		Excavation	CY	216,000.00	\$ 1.80	1	\$ 3.30	\$ 712,800.00	\$ 10,000.00		\$ 4,900.00	\$ 4,900.00	\$ 17,689.56		\$ 20,000.00 \$ 20,000	00 \$ 5,000.00	
6		Backfill and Fill	CY	436,000.00	\$ 5.40			\$ 2,097,160.00	\$ 1.75	\$ 378,000.00		\$ 285,120.00	\$ 1.63	\$ 352,080.00		00 \$ 4.00	\$ 864,000.
7		Subase	SF	583,500.00	\$ 0.20		\$ 0.14	\$ 81.690.00	\$ 4.75	\$ 2,071,000.00		\$ 2,188,720.00	.\$ 4.81	\$ 2,097,160.00	\$ 7.50 \$ 3,270,000.	00 \$ 6.00	\$ 2,616,000.
8	3	60 Mil Liner	SF	1,167,000.00	\$ 0.40		\$ 0.34			7		\$ 217,412.10		\$ 64,185.00	\$ 0.40 \$ 233,400		\$ 210,060.
9		Geocomposite	SF	1,167,000.00	\$ 0.40				The second second	ALCOHOL: SELECTION OF THE SELECTION OF T		\$ 423,504.30	\$ 0.37	\$ 431,790.00	\$ 0.30 \$ 350,100	00 \$ 0.34	\$ 396,780.
10	0]	12 - inch Drainage Sand	SF	583,500.00	\$ 0.30		\$ 0.40	\$ 466,800.00	-			\$ 410,900.70	\$ 0.44	\$ 513,480.00	\$ 0.30 \$ 350,100	00 \$ 0.39	\$ 455,130.
		12 - inch Processed Tire Drainage			0.50	3 175,050.00	\$ 0.70	\$ 408,450.00	\$ 0.72	\$ 420,120.00	\$ 0.47	\$ 272,202.75	\$ 0.20	\$ 116,700.00	\$ 0.80 \$ 466,800		\$ 186,720.0
11		Layer	SF	447,000.00	\$ 1.00	\$ 447,000.00	\$ 0.10	£ 44.700.00									3 135,725
12	2	Pipe	LF	3,740.00	\$ 26.00		\$ 0.10	\$ 44,700.00	† 		\$ 0.06	\$ 26,820.00	\$ 0.09	\$ 40,230.00	S 0.20 \$ 89,400.	00 \$ 0.13	\$ 58,110.0
13	3	8 - inch dia. HDPE Header Piping	LF	660.00	\$ 27.00		\$ 38.00	\$ 142,120.00	+		\$ 29.75	\$ 111,265.00	\$ 21.37	\$ 79,923.80	\$ 48.00 \$ 179,520	00- \$ 30.00	
14	4	Pump, Controls, Piping, etc.	LS	1.00	\$ 48,000.00	,	\$ 68.00 \$ 56,847.00		\$ 40.00	\$ 26,400.00			\$ 26.28	\$ 17,344.80	\$ 61.00 \$ 40,260		
15	5	3 - inch dia., HDPE Piping	LF	465.00	\$ 28.00	10,000,00	\$ 53.00			\$ 55,000.00		\$ 36,009.00	\$ 35,956.52	\$ 35,956.52	\$ 60,000.00 \$ 60,000		
16		Access Ramp and Road	SY	1,000.00	\$ 19.00					\$ 11,625.00		\$ 11,773.80	\$ 7.14	\$ 3,320.10	\$ 34.00 \$ 15,810		
17		Stormwater Pipe and Mitered Ends	LF	386.00	\$ 80.00								\$ 20.40	\$ 20,400.00	\$ 20.00 \$ 20,000		
18		Seeding and Mulching	SY	59,000.00	\$ 0.40	301000100		1010000					\$ 39.73	\$ 15,335.78	\$ 100.00 \$ 38,600.	00 \$ 100.00	
19	9	Sodding	SY	27,000.00	\$ 2.00				- 0.00				\$ 0.32		\$ 0.10 \$ 5,900	00 \$ 0.35	\$ 20,650.
ļ						\$ -	1.52	\$ 33,040.00	3 1.33	\$ 41,850.00	\$ 2.14	\$ 57,780.00	\$ 1.94	\$ 52,380.00	\$ 1.20 \$ 32,400.	00 \$ 1.25	\$ 33,750.
١	-	Subtotal				\$ 5,040,010,00		\$ 4,901,386.58	, s.	\$ 5,200,000.00		0 1 20 100 10			\$ -		\$ -
		Bid Allowance				\$ 200,000.00		\$ 200,000.00	<u>E</u>	\$ 200,000.00		\$ 4,550,623.15		\$ 3,973,152.00	\$ - \$ 6,821,290.		\$ 5,270,650.0
<u> </u>	_	Total Bid Price				\$ 5,240,010.00		\$ 5,101,386,58	1	\$ 5,400,000.00		\$ 200,000.00		\$ 200,000.00	\$ 200,000		\$ 200,000.
		Alternate I				\$ 500,000.00		\$ 625,000.00		\$ 709,750.00		\$ 4,750,623.15		\$ 4,173,152.00			\$ 5,470,650.0
		Alternate 1Bid Total				\$ 4,740,010.00		\$ 4,476,386.58	·	\$ 4,690,250.00		\$ 1,244,027.00		\$ 800,000.00	\$ - \$ 1,400,000.		\$ 362,969.
			•					,		4 740704230.00		\$ 3,506,596.15		\$ 3,373,152.00	\$ 5,621,290.	00	\$ 5,107,681.0

B.-planon Geocomposist

Highest \$0.45/sf (405/sy)

B.d

(BID AWAND) 1/2002

SUBJECT CLIENT HANDER	GUNTY	PROJECT				JOB NO. 05/45073.05
SUBJECT		Horder	Gunn	. LANDALL	BY //HO	DATE
		THE TANK	/		CHECKED	DATE
Absunc 6	2047	 				
						<u> </u>
15 Em (4)	70/	0 PN07	FETTUE	5011		
		8				
		<u> </u>	1		Para	
GUANT	779		++++	_	briaing	
	: : :	: : :				
549 FISURE ITEM (2	- /úx	<u> </u>			Pales quot Andre Cox punchasing	E from
ITEM (2) []				Andre Co	nry
					a cochains	1
1 cn =	797	6, - F			1	†****
8n50 = 707n/	114	/د د//				K1 1
7071		 		, 	MATELIAG	4.50/ay
		<u> </u>			(Delivered)	
					12 FlATION	
coversoil	118-	11				1.02
						1.02 \$4,59/cy
+200 6	. , ,,	200	1,1			7,77,69
174,7	15 57	× 24, m	(1/1)	144		1
		12 IN	1 4	27/45	3press)	\$ 5,85/cy
					mans	
					02315 120 3020	
<u> </u>	50 73	4. 4 cy				
	-0 / -/	7117	4	[Campaix	+
						61
507	58	800 ag			MEONS	0,36/cg
		111	+111		02315 310 5100	/ /
					D	N. I.
			1-1-1		0.36/cy	\$ 0.36 Jeg
		+		 		177
					12 m 495	
					×2465	
					= 24 mc4cs	11
						A6.16 / cg
		+		h		01101-7
I	 	+		 	#	
	·			ļļ!	Compose To	FOOT
					# 5198/cy K	6.16/cy
						/
						72
		1		ļ	# + + + + + + + + + + + + + + + + + + +	++++
					#	+
		1 1 1	1 1			

HARDEE COUNTY PURCHASING DEPT

205 HANCHEY ROAD WAUCHULA, FL 33873 863/773-5014 Fax 863/773-0322

PURCHASE ORDER: 44681

Page: 1 of 1

TEC FILL DIRT 456 CYPRESS STREET WAUCHULA FL 33873

***** DELIVER TO *****
HARDEE COUNTY
SOLID WASTE & RECYCLE
685 AIRPORT ROAD
WAUCHULA, FL. 33873

- 0			Duc	Ship Via	FOB	Ter	TD.5		Customer#	
	1/02/03	<u> </u>	1/02/03			Upon	Receipt			
	Requisition No			Vendor No.	Vendor Phone		Vendor Fa	x		
5	0320		_	10186-1	863/773-9446	863/7	73-3599			· · · · · · · · · · · · · · · · · · ·
No	Quantity	⊍/јм	Descript	ion		Unit Pric	e	Extended	G/L Account	
1	1,000.00	YD	FILL DIRT			4.50	000	4,500.00	104-534-034-0	
		 	1,000	oh Qeph C	so ber 143	** TOTAL	**	4,500.00		
					100					
				INFLATION	1.02					
				450 x 1.	1.02 02 => 4.59/cy			:	. :	
				$\frac{\Omega_{\rm t}}{2}$						
										•
								·		
					:					

VENDOR INSTRUCTIONS:

1. Mail Invoices to: Hardee County Clerk to BOCC Accounting Dept

412 W Orange St Rm A-205

Wauchula, F1 33873

- 2. Invoices and Packages must bear the P.O. No. Above.
- 3. Purchases may not exceed the total amount of this der without prior approval by the Purchasing Dept. :eptance of this order includes acceptance of all terms.
- cices, delivery instructions, specifications and conditions,
 5. State Tax Exempt#: 35-02689-53C EIN: 59-6000632
- 6. If you have questions, please call 861/773-5014

SPECIAL INSTRUCTIONS:

CONFIRMING ORDER W/TIM, DO NOT DUPLICATE.

Dec Newgent

RSMeans

2004

	00 Earthwork		DAILY	LABO	10.			2004 BARE	COSTS		TOTAL
0231	15 Excavation and Fill	CREW	OUTPU	1		JNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P
020			1,225		_	C.Y.		.30	.35	.65	.85
040	Clay		1,100			+		.34	.39	.73	.95
200	150' haul, sand & gravel	+	670	.01	1_	++		.56	.65	1.21	1.56
220	Common earth	.	610	.02	•	11		.61	.71	1.32	1.71
		-	550	.02		++		.68	.79	1.47	1.90
240	Clay	. [465	.02	1	11		.80	.93	1.73	2.2
300	300' haul, sand & gravel	Н-		_1		++		.90	1.05	1.75	2.5
320	Common earth		415	- 1	1	11					
340	Clay	*	370		1	4	· · · · · ·	1.01	1.17	2.18	2.8
1000	200 H.P., 50' haul, sand & gravel	B-10B	1 '					.15	.35	.50	.6
1020	Common earth	\sqcup	2,200					.17	.39	.56	.6
4040	Clay	1 1	1,95					.19	.44	.63	.7
4200	150' haul, sand & gravel	Ш	1,22	_				.30	.71	1.01	1.2
4220	Common earth	П	1,10	0. 0	11			.34	.79	1.13	1.3
4240	Clay	11	975	0.	12	- [.38	.89	1.27	1.5
4400	300' haut, sand & gravel	\Box	805	.0	15	\top		.46	1.07	1.53	1.8
4420	Common earth		735	0. ا ز	16			.51	1.17	1.68	2.0
4440	Clay		660	. 0	18	\top		.57	1.31	1.88	2.
5000	300 H.P., 50' haul, sand & gravel	B-10N	- 1	- 1	04	-		.12	.35	.47	
5020	Common earth		2,90		04	+		.13	.38		
5040	Clay		2,70		004			.14	.41	1	
5200	150' haul, sand & gravel	╂┼	2,20		005	+		.17	.50		1
5220	Common earth		1,95		006			.19	.56	1	
5240		╂┼	1,70		007	-	 	.22	.65		·
	Clay		1 '		008	1		.25	.73		1
5400	300' haul, sand & gravel	₩	1,50		009	+	 	.28	1		
5420	Common earth		1,35					ı	1	1 '	
5440	Clay	↓ ▼	1,22	25	010			.30	.90	1.20	1
6000	For compaction, see div. 02315-310	ì	1	-	ı	ı					
6010	For trench backfill, see div. 02315-610 & 02315-620	—		+				<u> </u>			<u> </u>
l í	BORROW, LOADING AND/OR SPREADING	I			1		ļ ·				
4000	Common earth, shovel, 1 C.Y. bucket	B-12			019	C.Y.	7.15				
4010	1-1/2 C.Y. bucket	B-12			014		7.15	1	l l		· [
4020	3 C.Y. bucket	B-12	2T 1,8	00 .	009	_ ▼	7.15	.28	73	3 8.10	6 9
4030	Front end loader, wheel mounted		1		. [l		1			1
4050	3/4 C.Y. bucket	B-10			.022	C.Y.	7.19	1			
4060	1-1/2 C.Y. bucket	B-10			.012		7.1	1	•		1
4070	3 C.Y. bucket	B-10	OT 1,5	75 .	.008		7.1	5 .24		- F	
4080	5 C.Y. bucket	B-10	OU 2,6	.00	.005	П	7.1	5 .14	4 .2	6 7.5	5
5000	Select granular fill, shovel, 1 C.Y. bucket	B-12	2N 92	25 .	.017		7.5	0 .5!	5 .9	12 8.9	
5010	1-1/2 C.Y. bucket	B-12	20 1,2	250	.013	\sqcap	7.5	0 .4	1 .7	/8 8.6	9
5020	3 C.Y. bucket	B-12	2T 1,9	980	.008	↓	7.5	0 .2	6 .6	6 8.4	2
5030	Front end loader, wheel mounted	1	+	十		—			1		1
5050	3/4 C.Y. bucket	B-10	OR 8	00 l	.015	C.Y.	7.5	0 4	7 2	24 8.2	21
5060	1-1/2 C.Y. bucket	B-10			.011	-	7.5			22 8.0	
	3 C.Y. bucket	B-10			.007		7.5			7.8	
5070	5 C.Y. bucket	B-10			.004	╂┼┼	7.5		1	24 7.8	
5080		B-1			.022		5.3	1	2 1.1		
6000	Clay, till, or blasted rock, shovel, 1 C.Y. bucket					╂┼	5.3		i3 1.0		
6010	1-1/2 C.Y. bucket	B-1		65	.017	Li	1			1	
6020	3 C.Y. bucket	B-1	2τ 1,	530	.010		5.3	30	33	85 6.	48
6030	Front end loader, wheel mounted			1	•	l			Ì	ŀ	1
6035	3/4 C.Y. bucket	B-1	.OR 4	165	.026	C.Y					51
6040	1-1/2 C.Y. bucket	B-1	05 8	325	.015		5.	30 .4	45 .	29 6.	04
6045	3 C.Y. bucket	B-1	ют 1,	,340	.009	Li	5.	30 .:	28 .	.22 5.	80
6050				,200	.005	1 ↓	5.	30 .	17 .	.31 5.	.78
6060						1 '		ì	}		4
	I folk eld loader, d'ack mounted					+-			52		.24
6065	1-1/2 C.Y. bucket	B-1	וואחי	715	.017	C.Y	/ !	30 .	52 I	.42 6.	74

CONSTRUCTION

CLIE	π A	Gri	dea	4	BUN	74		PRO	JECT	H	50	de	۲	6,	75	, 4	F	EK	nni	V510) ~		JOB	NO.			ļ
SUBJ	EĆT					-/	<u>_</u>	40-	rde	٠ (<u> </u>			-00	7 7				BY	Jt	%			DAT	E .		
								1/0	رس د	<u>. </u>	Co	$\frac{\cdot \cdot \cdot \cdot}{\cdot \tau}$							CHE	CKE)			DAT	Ē	•	ヿ
/	,	00		_		أبير																		•			
ب.	7	<i>0</i> 5 e	/		~	٠د																					
	177			5))		1/2		E 7	40	7//	_	1														
	1/2	77	(<u>5/</u>	:		· Z	7	2/	7/	70	2 1	-0"	9													
			<u> </u>																	0							
			עע	RΛ	\mathcal{D}	7						<u> </u>							_/	91	<u> </u>	<u>/Ş</u>					
		<u>, </u>					P												D			M					
	5	٤Ľ		65	vn	L	fo	1										/	1	168	 ?	Pr.	0T G				
		11.	7~	(2		•											Z	42	nd	55	ے	אמט	177			
			•																								
	ناسر	m	50	=		7.	72	,9	15	5	L								T/S		/,	67		sy			
											·/···											<u> </u>					
				ļ		8	8,	10	2	57)											/					
			ļ	ļ																		20					
			ļ 	ļ	ļ													(1~	מדו	//0	700					
																				ļ	ļ	ļ	ļ				
			ļ	ļ															Co	مرسا	01	C	70				
			ļ	ļ														£	FD.	扩	ļ	ļ	<u> </u>				
			ļ	ļ	ļ									,				9	<u>, </u>	ļ	ļ	ļ		/			
			ļ	ļ	ļ													4	1, 3	8/.	57	<	7	16	7/.	59	
			ļ	ļ				ļ 												ļ	ļ	ļ	ļ			•	
			ļ		ļ	ļ														ļ		0	12				
			ļ	ļ	ļ	ļ	ļ											<u></u>		ļ	ļ		-	ļ			
		<u> </u>	ļ	ļ	ļ	ļ	<u> </u>	ļ											ļ		ļ	<u> </u>		ļ			
; }		ļ	ļ	ļ	ļ	ļ	ļ	ļ											ļ	ļ	ļ	ļ	ļ	ļ			
,			ļ	ļ	ļ	ļ												<u>.</u>				ļ	ļ	ļ			
,			<u> </u>	<u></u>			<u> </u>	<u> </u>										<u></u>		<u>.</u>				<u></u>			
								ļ	<u> </u>										<u> </u>			<u> </u>	ļ	<u></u>	<u></u>		
		<u> </u>	ļ	ļ			<u> </u>	ļ	ļ				<u> </u>						ļ			<u> </u>	ļ	ļ	ļ		
		<u> </u>		ļ		ļ	<u> </u>	ļ	ļ				<u></u>						ļ	ļ			ļ				
									ļ																		
<u> </u>		<u> </u>	<u> </u>					<u> </u>															Ī				
ļ			 										<u> </u>							-	-	-	1		1		
·····	ļ		Ť	1	1]	Ì		ļ	<u> </u>		Ì				1	ļ	1	1	1	·	Ť	1	1	1	

ROAD MATERIALS - LAID IN PLACE BID TABULATION - BEGINNING OCT 3, 2003 ENDING SEPT 30, 2004

	AJAX PAVING	APAC - MACASPHALT	BETTER ROADS**	CENTRAL FL HOT MIX	7
ASPHALTIC					1
CONCRETE	PRICE/TON	PRICE/TON	PRICE/TON	PRICE/TON	<u>.</u>
TYPE III LEVELING		17.			1
COURSE	\$60.10	\$43.35	\$49.50	\$65.00	· ·
TYPE S1 SURFACE COURSE	Ø50.70	\$40.6E	\$49.50	\$65.00	
TYPE SIII SURFACE	\$58.70	\$40.65	Ψ49.50	\$03.00	1
COURSE	\$58.90	\$42.85	\$49.50	\$65.00	*
	PRICE/GL	PRICE/GL	PRICE/GL	PRICE/GL	1
PRIME COAT	\$4.00	\$0.90	\$0.35	\$2.00	
	· · · · · · · · · · · · · · · · · · ·	<u></u>	(SY)		1
	PRICE/SY	PRICE/SY	PRICE/SY	PRICE/SY	
TYPE III ASPHALTIC					·
BASE COURSE	\$22.00	\$38.75	\$24.00	\$25.00]
RE-WORK					1
SHOULDERS	\$0.58	\$1.06	\$0.60	\$2.00	l v
SEED & MULCH	\$0.45	\$0.95	\$0.35	\$0.75	#
SOD	\$1.38	\$1.95	\$1.60	\$1.75	Avg 1,67/54
BASE COURSE 4"			21.00	04.50	<i>t</i>
SHELL BASE COURSE 4"	\$3.90	\$1.22	\$4.00	\$1.50	High \$ 1.95/59
SHELL	\$2.90	\$0.81	\$4.00	\$1.50	Avg 1.67/sy High \$ 1.95/sy Low # 1.38/sy
BASE COURSE 6"	\$2.00	\$0.01	V 1.55		2000 1,50/59
SHELL	\$4.70	\$1.19	\$5.00	\$1.50	
BASE COURSE 6"					**
SHELL	\$3.70	\$0.81	\$5.00	\$1.50	4
FINISH & WATER	\$2.50	\$1.62	\$1.65	\$1.00	1
FINISH & WATER	\$1.50	\$1.08	\$1.35	\$1.00	1
PRIME & SAND	\$0.60	\$0.28	\$0.35	\$0.65	
PRIME & SAND	\$0.50	\$0.28	\$0.35	\$0.45	
			_		ł
<u>STRIPING</u>	PRICE/LF	PRICE/LF	PRICE/LF	PRICE/LF	
CENTER LINES -					1
YELLOW skip	\$0.40	\$0.22	\$0.60	\$0.30	
CENTER LINES -				40.00	
YELLOW SOLID	\$0.37	\$0.22	\$0.90	\$0.30	4
EDGE LINES -			• *		1
WHITE solid	\$0.37	\$0.22	\$0.90	\$0.30	
RR CROSSINGS	\$60.00	\$110.00	\$300.00	\$150.00	
STOP BARS	\$60.00	\$22.04	\$250.00	\$35.00	
OVERALL TOTAL	\$347.55	\$310.45	\$749.50	\$421.50	

^{**}Priced Prime coat per SY rather than GL

CESPO05 12/03/2003-09.48.35

Plorida Department of Transportation Item Avarage Unit Cost From 2002/01/01 to 2003/11/30

Contract Type: CC STATEWIDE
Displaying: VALID ITEMS WITE HITS

From: 0000 To: 1999999999

	[tem	No. of Conts	Weighted Average	Total Amount	Total Quantity	Unit Meas	Obs?	Description
(0120 72	4	\$61.80	\$80,770.00	1,307.000	CY	N	FILL GRAVEL
	0121 70	14	\$105.93	\$183,591.28	1,733.100	CY	N	FLOWABLE FILL
	0125 1	3	\$18.67	\$2,793.00	149,600	CY	N	EXCAVATION FOR STRUCTURES
	0125 3	2	\$7.30	\$51,539.15	7,063.000	CY	N	BEDDING MATL (SELECT)
	0141 70	2	\$638.64	\$7,025.00	11.000	AS	N	SETTLEMENT PLATE ASSEMBLY
4	142 70	4	\$5.98	\$325,664.70	54,423.000	CY	N	FILL SAND
	0144 1 1	1	\$19.00	\$3,610.00	190.000	LF	N .	DIGITAL INCLINOMETER CASING (VERTICAL)
	0144 71	1	\$1,160.00	\$5,800.00	5.000	EA	N	PORE-PRESSURE TRANSDUCER (PIEZOMETER)
	0144 72	1	\$15.00	\$5,625.00	375.000	LF	N	TUBING FOR PIEZOMETER
(0145 1	. 4	\$4.13	\$637,898.50	154,382.000	SF	N	GEOSYNTHETIC REINFORCED SOIL SLOPES
	0145 2	2	\$2.23	\$52,889.76	23,706.000	SY	N .	GEOSYNTHETIC REINF FND OVER SOFT SOILS
(0160 3	1	\$30.30	\$80,628.30	2,661.000	CA	N	STABILIZING MATERIAL COMMERCIAL
	0160 4	74	\$2.00	\$10,204,293.15	5,108,489.380	SY	N	STABILIZATION TYPE B
	0162 3101	55	\$.60	\$1,886,683.18	3,155,588.500	SY	N	FINISH SOIL LAYER (GRASSING OPR) (6")
	0162 4	3	\$2.00	\$65,941.45	32,977.000	SY	N	ORGANIC SOIL LAYER
	0173 71	2	\$664.54	\$1,442,719.44	2,171.000	EA	N	DRILLING HOLES FOR PRESSURE GROUTING
	0173 74	1	\$198.40	\$51,980.80	262.000	CY	N	PRESSURE GROUTING (CEMENT)
	0173 76	1	\$43.75	\$277,593.75	6,345.000	LF	N	PIPE FOR GROUT INSTALLATION
	0174 1	1	\$7.50	\$225,000.00	30,000.000	LB	N	SOIL STABILIZATION (HIGH-DENSITY POLY)
	0175 1	1	\$2.00	\$60,958.00	30,479.000	SY	N	RESEAT CONC PAVT
	0176002	1	\$26.00	\$47,554.00	1,829.000	CA	N	FILLER AGGREGATE
	0176002	2	\$4.64	\$13,841.00	2,983.000	CY	N	LIMEROCK MATL
	0200 70	1	\$8.51	\$25,464.47	2,992.300	SY	N	BASE REWORK LIMEROCK (5")
	0210 1 3	2	\$2.46	\$13,661.00	5,556.000	SY .	N	BASE SHAPE & COMPACT EXIST (6")
	0230 2	1	\$15.00	\$5,370.00	358.000	CY	N	LIMEROCK MATL
	0285701	. 39	\$6.93	\$3,042,256.26	439,257.400	SY	N	BASE OPTIONAL (BASE GROUP 01)
	0285701	3	\$4.98	\$616,862.68	123,776.000	SY	N	BASE OPTIONAL (BASE GROUP 02)
	0285702	8	\$5.73	\$510,828.25	89,130.000	SY	N	BASE OPTIONAL (BASE GROUP 03)
	0285704	31	\$6.78	\$5,069,010.09	747,183.480	SY	N	BASE OPTIONAL (BASE GROUP 04)
	0285705	4	\$6.98	\$78,811.88	11,283.400	SY	N	BASE OPTIONAL (BASE GROUP 05)
	0285705	24	\$6.27	\$3,073,540.03	490,019.070	SY	N	BASE OPTIONAL (BASE GROUP 06)
	0285700	4	\$10.12	\$504,452.71	49,850.000	SY	N	BASE OPTIONAL (BASE GROUP 07)
	0285707	1	\$55.00	\$11,990.00	218.000	SY	N	BASE OPTIONAL (BASE GROUP 08)
	0285708	35	\$8.66	\$10,651,646.92	1,229,683.300	SY	N	BASE OPTIONAL (BASE GROUP 09)
,	0203/03	,,,	\$9.78	\$3,827,980.57	391,478.490	SY	N	BASE OPTIONAL (BASE GROUP 10)

Florida Department of Transportation Item Average Unit Cost From 2001/01/01 to 2003/05/30

Contract Type: CC STATEWIDE From: 0001 To: 1999999999

		No. of	Weighted	Total	Total	Unit		
Item ———		Conts	Average	Amount	Quantity	Meas	Obs?	Description
0573 2						LB	N	SEED GRASS (FOR HYDRO-SEEDING)
0573 2						LB	N	PERMITITED (FOR HYDRO-CEPTING)
0573 4			•			LB	N	MULCH FIBER (FOR HYDRO-SEEDING) SODDING SODDING (BAHIA) SODDING (CENTIPEDE)
0575 1		80	\$1.33	\$3,347,957.32	2,517,036.100	SY	N	SODDING
0575 1	1	44	\$1.17	\$2,853,300.55	2,440,085.200	SY	N	SODDING (BAHIA)
		4	\$2.60	\$32,445.17	12,501.000	SY	N	SODDING (CENTIPEDE)
0575 1		13	\$1.23	\$652,540.11	532,009.000	SY	N	SODDING (CENTIPEDE) SODDING (ARGENTINE BAHIA) #1,23/54
0575 1		25	\$2.42	\$337,606.95	139,519.340	SY	N	SODDING (SAINT AUGUSTINE)
0575 1		3	\$1.65	\$4,091.50	2,487.000	SY	N ·	SODDING (SAINT AUGUSTINE) SODDING (OVERLAPPED)
0575 1		24	\$1.53	\$1,375,974.22	899,459.000	SY	N	SODDING (BERMUDA)
0577 70	-	26	\$.97	\$977,148.80	1,012,517.000	SY	Ŋ	SODDING (BERMUDA) SHOULDER REWORK
0579 70		•		4 = 1 : 4		SY	N	SOIL STERILIZATION TREAT
0580173		10	\$3.61.	\$570,498.85	157,904.500	SY -	N	SOIL STERILIZATION TREAT BED PREPARATION & MULCHING COQUINA ROCK BOULDERS ROCK BOULDERS
0580192			• • • • • • • • • • • • • • • • • • • •	• • •	·	TN	N	COQUINA ROCK BOULDERS
0580258				•		TN	N	ROCK BOULDERS
0580278	1					TN	N	CHATTAHOOCHEE RIVER GRAVEL
	2	. •			7	TN	N	BROWN GRAVEL
	3	•	•			TN	N	WHITE WATER WASHED STONE
0580281	_	1	\$95.00	\$1,520.00	16.000	LF	N	MOWING STRIP CONC
0580301	1	19	\$11.75	\$69,627.76	5,926.000	EA	N	STAKING & GUYING (TREES)
0580301		14	\$28.51	\$74,131.79	2,600.000	EA	N	STAKING & GUYING (PALMS)
0580326		6	\$2.69	\$22,353.02	8,315.500	SY	N	MULCH PINE BARK
0580326		2	\$1.45	\$16,692.70	11,530.000	SY	N	MULCH PINE NEEDLE
0580326		_	•			SY	Y	MULCH SHREDDED CYPRUS BARK
	4	4	\$2.36	\$74,217.76	31,507.000	SY	N	MULCH WOOD CHIP
0580327	1	15	\$280.92	\$115,457.71	411.000	EA	N	TREE RELOCATION (PALM)
0580327		8	\$852.55	\$57,973.66	68.000	EA	N	SMALL TREE, SHRUBS, GRD COVER RELOCATION
	4	1	\$15.45	\$2,039.40	132.000	EA	N	PLANT ONLY PLANT MATL PROVIDED BY OTHS
0580332	1					EA	N .	TREE REMOVAL (TREE SPADE)
0580332		10	\$343.12	\$47,693.40	139.000	EA	N	TREE REMOVAL (CUT AND REMOVE)
0580333			•			LF	N	CURB LANDSCAPE STEEL
0580334		1	\$50.00	\$250.00	5.000	EA	· N	TREE PLANTING PIT COVER
0580336		10	\$142.21	\$32,281.20	227.000	EA	N	PRUNING AND TRIMMING (EXISTING TREES)
0580340	1	12	\$2.66	\$39,324.86	14,801.000	LF	N	TREE PROTECTION (BATTERBOARD)
0580340		1	\$4.00	\$3,400.00	850.000	LF	N	TREE PROTECTION (TRENCHING)
0580342	-	_	*****	, . ,		EA	N	MONITORING REPORT

	<u> </u>	SHEET	
CLIENT HANDER GUNTY	PROJECT HANDER CONTY LA	ondfl	JOB NO. 04/49/73.09
SUBJECT Ex	PANION	BY JHO	DATE
Clo	IVAE COST	CHECKED	DATE
	+		
Closune Cost	4		
			,
178m (6) Si	DAM WATER		

	+	$\mathcal{D}_{\mathcal{A}}$	
Pranty		Pricing	
	<u> </u>		
Egnow Work		Pricing Honder 6	
SEC FISINE		Honder G	Puncharma
Beaut		more	
Brans		MATERIALS	4,5% cg
	125 1/2 75 (25)} + 2(2)		4,5x cg
(70p) 3 24 3	2 7 /2 //5 (2.5)	DSILVENSI	
3 24 3	H 2(2)		X1.02
		<i>J</i>	X1.02 4.59/4
7,5 7.5	= 22.75/2		
		Mila	
 		Ment	\$ 15 E
	LENSTH - 1420 LF	02315 120 3026	\$ 0,85/cg
			/
	+V=1420 x 22,75	MERNS	
	32305 A3		
	(196.5 cy)	02315 310 5100	
	7 7 7 7 7 7	7, 7,0 2,00	\$ 0,36 /cg
		the notes	0136/64
TENNACS		#0,36/29	7
	Drs =	12 W 61FT	\$ 0,36/cg
3 2/4 3	22/26/2134	x 2,5 Lifts	
2/4 1 3	2(2)	30 inches	10,18/cg
13/ 6/			
5 6	= 16/4 ²		86,34/cg
	+		0154/69
	LENGTH = 3100 LF		
	7=(3100)(16)		
	= 49600 H3		
			
112	(1837 49)		
	65 + 1837		ļ
(787X/ = 3	033.5 44		

OLUTATE.						200	50								$\overline{}$. 11			Si	1EE I			_ OF		
CLIENI HA	deg	É	Cou	MT	/	РНО	JECI	P	m	di	L 6	<u>w</u>	74	Lan	N	M					1991	194	933	.09	
SUBJECT				7		7							7		V		BY	H	3		-	DATI	E		
CLIENT HAY SUBJECT					-	Vos	ハ	٢	(-	,							CHE	ČKE)			DATI	E		
//					_			6 ,														'	T		
Clos	n		CQ	7.د																					
												7													
178 m	6			5 70	1	n	~ <	10	r (Co	~7	J									ļļ				
			:	:					<u> </u>			Ĺ									l				
-	4	UD.	VD.	TY										1	no	IN	5								
		i	•	•											1										
Dno	b	7	le	7.					<u></u>	<u> </u>				7)	1 1	, -	_	100	τ.						
	<u> </u>	,	V . L	7.3										;		: :		:	:	: :	: :		: :		
	<u></u>	~ .				<u> </u>	11	11		ļ	<u> </u>		2	= ^							6		ا		
			//		71	7E //8	C		ļ	ļ	ļ			U	/ر	رم	110	٤	174,	M	9	142	25		
	-			Z	10	1/9	15			ļ	ļ					<i>4</i>						521	/		
				ļ		<u></u>				ļ	ļ						7	Y	78	18	۸ .	/			
	<u> </u>	ļ				<u> </u>			<u> </u>		<u> </u>		_	167	- /ه	-(7)/	75	4.7	$\theta =$	n ,	22	83.	60	
En	ins	7	DI	551,0	Nπ	ns							_	FD	UT	_	91	128	П	Em	d	43	0		
						}											//			,	6	10	29		
	1	FI	07	-							<u> </u>				(-	4)	15	400	=	19	366	(2)			
	- †	} -		1	رئے	برسيد				IPA	77).4					<i>y</i>			27	1-1	\	9	10		
	+			Z	270	7770	7		1/3 /	4-~	,0,0			7.6.7	.701	-		7	(0)	200	5 ≠ 53.	/			
		<u> </u>			<u> </u>	 				<u> </u>	 								2/	0	ω_i	احا د	D		
7		<u> </u> 	ļ		<u> </u>	<u> </u>		-5/	005	-	80 60					<u> </u>			ļ	ļ	<u> </u>		4.		
T'1	085	ļ	ļ	ļ		ļ	Γ	- J	7	""		-		وسر	2.0	۲.	9	100	Tε	P	w	n.	41	کر	
	•	•	:	:	•	•	٠,	•	•	•	•			:	:	:	: •	:	1	:	:	: /	: :	: :	
	8	Ż	17	70 (F	X	110	5		/	79					P_{1}	16	٤	2	49	4	10	7,5	0/6	F
	0	y	12	v C	F	Ø	1	5		10	26				:	1	:	;	;	•	:	:			:
		d i	•	•	i _	\mathcal{X}		•	•	1	2/				/	~/	10	70	N	1.0	2	45	10.7	1/,	F
		•	: -	2	•	×	:	•	!	:	00					ms	77		/-		1			-/	<u>*</u>
						×					42	: 1				† <u>/ </u>	7.72	120			†	ļ			
	7					~ كر				,	;		ļ			. //		·		ļ	 	 	 		ļ
		·	.;	i	····	÷	÷		• • • • • • • • • • • • • • • • • • • •		00		į.	i	;	וומ	:	i	i	 -	 				
	46		130	10		حد	//1		-	13	7		m	SAN			i		3/9	a.		•	36	•	
	1	ļ <u>.</u>	J.,,	<u>.</u>	ļ	ļ	ļ	ļ	ļ	90	56	F	ļ		ļ	4			<u>.</u>		_	0,	64	11	<u></u>
	(-	γ'			ļ	ļ		ļ	1	ļ	ļ	ļ	ļ	ļ	ε	01	m	147	ļ	<u>.</u>	ļ	ļ	 	ļ
		[)		1		pag	4 =	20	1+7	4	1					1					#	14	7/	1	X
3	<u> </u>	6					CA	٥					تر	BAC	KA	//									
	12"	۱٬۹۶	12"	1	†	†****	İ	-	<u> </u>	<u> </u>	†	·			-	223		// ^	<u> </u>	1	22	,9	/	,	†
Holum	_	 	1	 	 	 	 				 					T	1		1	+;-	ے سے	4'./(12.6	7	
100m	ر سے	_	-	1 .	12	 		0		1.	<u> </u>	ļ	F			+0				1,,,			<u> </u>	!	
90	ے د		× ·	40	17	-		01	W	17	 	ļ	[ربع	011	15	70	/ of		14,	7/	¥ 74	as .	<u> </u>	<u> </u>
ļ	-	ļ	ļ	ļ		(6	70	C	7)		ļ	ļ	į		ļ	ļ	ļ		28	رج,	(b	70)	1	4	
												'	Ę				=	3	2,6	75	1,5	st (ف	27	00

CLIENT HANDER COUNTY JOB NO. 07/95073, 01 HANDER County Lt DATE Closune Cost Cosune FOST 178M (6) STORMUNTER (CONT) Pricing QUANTIM Concrete BADS from Holder Commy 64/cy x 52 cy 3328 anexx 0 = 8/19/14-69/27 = 644/cg (2 = 16) 5 6 + 10 + 63 14 - 61= 5,91 /cg TOTAL = 12,54/ay

501 / 13/ay / pad of Energy Dissipations 7000/ \$ x 13/cy = 52 cy

Figure __ - Buildout of Phase II Section I to Elevation 110.0

Florida Department of Transportation Ttem Average Unit Cost From 2001/01/01 to 2003/05/30

Contract Type: CC STATEWIDE From: 0001 To: 1999999999

No. of Weighted Total Total Unit Item Conts Average Amount Quantity Meas Obs? Description	ription
Item Conts Average Amount Quantity Meas Obs? Desc.	
0430190401 LF N PI R	ELAY EXIST (METAL ARCH) (17" X 13")
	ELAY EXIST (METAL ARCH) (28" X 20")
0.302,000	ED END SECTION (CONCRETE) (12")
	ED END SECTION (CONCRETE) (15")
V.130200 23	ED END SECTION (CONCRETE) (18")
111111111111111111111111111111111111111	ED END SECTION (CONCRETE) (24")
	ED END SECTION (CONCRETE) (30")
	ED END SECTION (CONCRETE) (36")
	ED END SECTION (CONCRETE) (42")
***************************************	ED END SECTION (CONCRETE) (48")
	ED END SECTION (CONCRETE) (54")
	ED END SECTION (CONCRETE) (60")
	ED END SECTION (CONCRETE) (66")
*********	ED END SECTION (CONCRETE) (72")
	DWALL WITH GRATE (15")
• • • • • • • • • • • • • • • • • • • •	DWALL WITH GRATE (18")
	DWALL WITH GRATE (24")
0430610 33 1 \$3,000.00 \$3,000.00 1.000 EA N U-EN	DWALL WITH GRATE (30") DWALL WITH GRATE (30") DWALL /BAFFLES (STD 261)1:4 SLP (18")
0430611125 EA N U-EN	DWALL /BAFFLES(STD 261)1:4 SLP(18")
0430620 02 EA N CMP 1	FLASHBOARD RISER (21" X 15")
0430620 29 EA N CMP 1	FLASHBOARD RISER (24")
	FLASHBOARD RISER (30")
0430620 38 EA N CMP!	FLASHBOARD RISER (36")
	FLASHBOARD RISER (42")
	FLASHBOARD RISER (48")
	FLASHBOARD RISER (54")
0430620 45 EA N CMP!	FLASHBOARD RISER (72")
	STEEL CULV (12")
	STEEL CULV (18")
0430710 29 LF N PIPE	STEEL CULV (24")
	STEEL CULV (30")
	STEEL (36")
0430710 43 1 \$1,800.00 \$16,200.00 9.000 LF N PIPE	STEEL (60")
	LOT OR PERF CULV (CONC) (15" SS)
V430721123	LOT OR PERF CULV (CONC) (18" SS) LOT OR PERF CULV (CONC) (24" SS)

Page:

CESPO05 06/03/2003-10.18.30.

Plorids Department of Transportation Trem Average Unit Cost From 2001/01/01 - to 2003/05/30

Contract Type: GC ... STATEWIDE From: 0001 To: 1999999999

Item		No. of Conts	Weighted Average	Total Amount	Total Quantity	Unit Meas	Obs?	Description -
						EA	N	INLET (DT BOT) (TYP A) (J BOT, >10', SPE)
0425	1508				63.000	EA	N	INLETS (DT BOT) (TYPE B) (<10')
0425	1511	9	\$2,567.95	\$161,780.97	2.000	EA	N	INLETS (DT BOT) (TYPE B) (>10')
0425	1512	1	\$3,586.41	\$7,172.82	4.000	EA	N	INLETS (DT BOT) (TYPE B) (J BOT, <10')
0425	1513	4	\$4,302.73	\$17,210.92	4.000	EA	N	INLETS (DT BOT) (TYPE B) (J BOT, >10')
0425	1514			401 705 00	48.000	EA	N	INLETS (DT BOT) (TYPE B) (PARTIAL)
	1515	3	\$1,912.40	\$91,795.00	40.000	EA	N	INLET (DT BOT) (TYP B) (J BOT>10', SPE)
	1518		•			EA	N	INLETS (DT BOT) (TYPE B) (MODIFY)
	1519			\$470,279.79	268.000	EA	N	INLETS (DT BOT) (TYPE C) (<10') — DIOP IN ETS
	1521	49	\$1,754.78	\$3,525.00	2.000	EA	N	INLETS (DT BOT) (TYPE C) (>10')
	1522	2	\$1,762.50	\$54,470.00	16.000	EA	N.	INLETS (DT BOT) (TYPE C) (J BOT, <10')
0425	1523	7	\$3,404.38	\$3,150.77	1.000	EA	N	INLETS (DT BOT) (TYPE C) (J BOT, >10')
0425	1524	1	\$3,150.77 \$1,732.69	\$45,050.00	26.000	EA	N	INLETS (DT BOT) (TYPE C) (PARTIAL)
0425	1525	3	\$1,732.09	\$20,750.00	2.000	EA	N	INLET (DT BOT) (TYP C) (J BOT, <10', SPE)
	1527	2 .	\$2,383.33	\$14,300.00	6.000	EA	N	INLETS (DT BOT) (TYPE C) (MODIFY)
	1529	4	\$1,477.78	\$113,788.90	77.000	EA	N	INLETS (DT BOT) (TYPE C MODIFIED) (<10')
0425		13	31,477.70	4227		EA	N	INLETS (DT BOT) (TYPE C MODIFIED) (>10')
0425	1532	•	\$3,200.00	\$73,600.00	23.000	EA	N	INLET (DT BOT) (TYP C MOD) (J BOT, <10')
0425	1533	1	\$4,000.00	\$12,000.00	3.000	EA	N	INLET (DT BOT) (TYP C MOD) (J BOT, >10')
0425	1534	1 1	\$840.00	\$840.00	1.000	EA	N	INLETS (DT BOT) (TYP C MOD) (PARTIAL)
0425	1535	1	Q010.00		•	EA	N	INLET (DT BOT) (TYP C MOD) (J BOT, <10 'SPEC)
	1537		•			EA	N	INLET (DT BOT) (TYP C MOD) (J BOT, >10'SPEC)
	1538 1541	34	\$1,995.48	\$365,172.64	183.000	EA	N	INLETS (DT BOT) (TYPE D) (<10') INLETS (DT BOT) (TYPE D) (>10')
		1	\$2,771.25	\$2,771.25	1.000	EA	N	
0425	1543	5	\$3,827.06	\$38,270.56	10.000	EA	N	
	1544	2	\$4,813.33	\$14,440.00	3.000	EA	N	
0425		2	\$1,584.00	\$7,920.00	5.000	EA	N	INLETS (DT BOT) (TYPE D) (PARTIAL) INLET (DT BOT) (TYP D) (J BOT, <10', SPE)
0425		_				EA	N	INLET (DT BOT) (TYPE D) (MODIFY)
		4	\$3,026.43	\$21,185.00	7.000	EA	N	INLETS (DI BOT) (TYPE E) (<10')
	1551	17	\$1,941.81	\$205,831.61	106.000	EA	N	
	1552		, .			EA	N	(T. DOM. (101)
	1553	1	\$2,050.00	\$2,050.00	1.000	EA	N	INLETS (DT BOT) (TYPE E) (J BOT, <10') INLETS (DT BOT) (TYPE E) (J BOT, >10')
	1554	_	• •			EA	N	INLETS (DT BOT) (TYPE E) (PARTIAL)
	1555	1	\$1,200.00	\$1,200.00	1.000	EA	N	INLET (DT BOT) (TYP E) (J BOT, <10', SPE)
	1557	_	• - •		•	EA	N	INLET (DT BOT) (TYPE E) (MODIFY)
	1559	1	\$3,640.00	\$3,640.00	1.000	EA	N	INDETS (DI BOI) (IIII N) (

QUOTATION

IO ' **E ORDERS:**

개: 800-733-9987 FAX: 800-733-1974 Page 1 of 1

115 W. Crown Point Rd.

Winter Garden, FL 34787

Ph: 800-733-0535

Fax: 407-654-6662

JOB NAME:

LOCATION:

COUNTY:

QUOTE DATE: CONTRACTOR (S): September 25, 2003

ENGINEER: SALESMAN: **SCS Engineers**

Emil Campillo

11425

BID DATE: CUSTOMER: CONTACT:

PHONE:

SCS Engineers

Lindsey Kennelly

[1] 813-621-0080

FAX: [1] 813-623-6757

SUBJECT TO THE FOLLOWING CONDITIONS:

Budget Pricng

(Note: The quantities shown are estimated. Please verify product quantities for accuracy before ordering.) ITEM# QTY. UNIT DESCRIPTION PRODUCT # **UNIT PRICE** TOTAL 600 I.f 24" N-12 Pipe, Solid, ST, Integral Bell, 20' Stick 2485-0020IB 10.50 6,300,00 2 3 5 8 9 10 11 12 13 14 15 16 17 18 19 TOTAL PAGE 1 \$ 6,300.00

P.O. #:

REQUESTED SHIP DATE:

BILL TO:

SHIP TO:

FIELD CONTACT:

FIEI D PHONE #:

CumaENTS:

	500 Utility Services									
02	530 Sanitary Sewerage			LABOR-			2004 BAF	RE COSTS		TOTAL
	, ,	CREW	OUTPUT	HOURS		MAT.	LABOR	EQUIP.	TOTAL	INCL 0&P
2800	Add for rubber joints, R02510				L.F.	12%				
1040	Vitrified plate lined, add to above, 30" to 36" diameter			<u></u>	SFCA	3.50			3.50	3.85
00	42" to 54" diameter, add	!				3.75	•		3.75	4.13
3060	60" to 72" diameter, add					4.39			4.39	4.83
3070	Over 72" diameter, add	l			₩	4.68			4.68	5.15
3080	Radius pipe, add to pipe prices, 12" to 60" diameter				L.F.	50%				
3090	Over 60" diameter, add	l			,,	20%				
3500	Reinforced elliptical, 8' lengths, C507 class 3	L								
3520	14" x 23" inside, round equivalent 18" diameter	B-21	82	.341	L.F.	22	10.25	1.94	34.19	42.50
3530	24" x 38" inside, round equivalent 30" diameter	B-13	58	.966		39	27	10.75	76.75	96.50
3540	29" x 45" inside, round equivalent 36" diameter		52	1.077		50.50	30	12	92.50	115
3550	38" x 60" inside, round equivalent 48" diameter		-38	1.474		77.50	41.50	16.45	135.45	167
3560	48" x 76" inside, round equivalent 60" diameter	1	26	2.154		118	60.50	24	202.50	250
3570	58" x 91" inside, round equivalent 72" diameter	₩.	22	2.545	\downarrow	168	71.50	28.50	268	325
3780	Concrete slotted pipe, class 4 mortar joint									•
3800	12" diameter	B-21	168	.167	L.F.	12.90	5	.95	18.85	23
3840	18" diameter	"	152	.184	"	19.95	5.55	1.05	26.55	31.50
3900	Class 4 O-ring		<u> </u>			<u> </u>				
3940	12" diameter	B-21	168	.167	L.F.	13.50	5	.95	19.45	23.50
3960	18" diameter		152	.184	. "	18.10	5.55	1.05	24.70	29.50
6200	Gasket, conc. pipe joint, 12"				Ea.	3.10			3.10	3.41
6220	24*					5.65			5.65	6.25
6240	36"					8.25			8.25	9.05
6260	48"	<u> </u>	<u> </u>			13			13	14.30
6270	60″					18.55			18.55	20.50
6280	72"	,			\downarrow	20.50			20.50	22.50
	SEWAGE COLLECTION, PLASTIC PIPE									
J.50	Not including excavation & backfill	<u> </u>							4	
70	Piping, DWV Sch 40 ABS, 4" diameter	B-20	375	.064	L.F.	1.27	1.87		3.14	4.31
1110	6" diameter		350	.069	•	6.95	2		8.95	10.75
1120	Fitting, 1/4 bend, 4"	1 1	19	1.263	Ea.	10.25	37		47.25	69
1130	6"		15	1.600		6.95	47		53.95	80.50
1140	Tee, 4"		12	2	₩	10.25	58.50		68.75	102
3000	Piping, HDPE Corrugated Type S with watertight gaskets, 4" diameter		425	.056	L.F.	.82	1.65		2.47	3.47
3020	6" diameter		400	.060		1.89	1.75		3.64	4.80
3040	8" diameter		380	.063	\perp	3.62	1.85		5.47	6.85
3060	10' diameter		370	.065		5	1.90		6.90	8.45
3080	12" diameter		340	.071	Щ.	5.60	2.06		7.66	9.35
3100	15" diameter	🔻	300	.080		7.60	2.34		9.94	12
3120	18" diameter	B-21	275	.102		10.80	3.06	.58	14.44	17.25
3140	24" diameter	 	250	.112		16.75	3.36	.64		24.50
3160	30" diameter		200	.140		26.50	4.20	.80	31.50	36.50
3180	36" diameter		180	.156		33.50	4.67	.88	39.05	45
3200	42" diameter	$\sqcup \sqcup$	175	.160	\perp	47	4.80	.91	52.71	60
3220	48" diameter		170	.165		61	4.94	.94	66.88	75.50
3240	54" diameter		160	.175		94	5.25	.99	100.24	113
3260	60" diameter	♦	150	.187	₩	110	5.60	1.06	116.66	131
3300	Watertight elbows 12" diam	B-20	11	2.182	Ea.	61.50	64		125.50	167
3320	15" diam	"	9	2.667	Ī	95	78		173	226
3340	18" diam	B-21	9	3.111		157	93.50	17.65	268.15	335
3360	24" diam		9	3.111		335	93.50	17.65	446.15	530
3380	30" diam		8	3.500	\perp	535	105	19.90	659.90	770
3400	36" diam		8	3.500	T	685	105	19.90	809.90	940
.50	42" diam		6	4.667		865	140	26.50	1,031.50	1,200
101	48" diam		6	4.667		1,325	140	26.50	1,491.50	1,700
.40 3460	Watertight tee 12" diam	B-20		3.429	ı	1 -,020		20.50	1,451.50	1,700

L.	300 Earthwork		· ·						4.3		
<u> </u>	305 Equipment		DAILY				2004 BAR	E COSTS		TOTAL	
1100			OUTPU	HOURS		MAT.	LABOR	EQUIP.	TOTAL	INCL 0&P	
1100	Small equipment, placed in rear of, or towed by pickup truck R01590	A-3A	8	1	Ea.		25.50	10.25	35.75	50.50	250
-0]	Equip up to 70 HP, on flatbed trailer behind pickup truck -100	A-3D	4	2	i [51.50	42.50	94	126	1
-0	Crane, truck-mounted, up to 75 ton (costs incl both mob & demob)	1 EQH	V 3.60	2.222			77.50		77.50	116	
2100	Crane, truck-mounted, over 75 ton	A-3E	2.50	6.400	1		196	33	229	335	
2200	Crawler-mounted, up to 75 ton	A-3F	2	8		 	245	278	523	675	
2300	Over 75 ton	A-3G	1.50	10.667			325	390	715	925	,
2500	For each additional 5 miles haul distance, add		 	-		<u> </u>	10%	10%		723	1
3000	For large pieces of equipment, allow for assembly/knockdown			1			10%	10%		٠.	l
3001	For mob/demob of vibrofloatation equip, see section 02250-900	+-	┼─-	 							
3100	For mob/demob of micro-tunneling equip, see section 02441-400			ŀ			1 i				
3200	For mob/demob of pile driving equip, see section 02455-650	 	 	 	<u> </u>			·			ļ
3300	For mob/demob of caisson drilling equip, see section 02465-950				ł						
023	310 Grading	1			-						
0010 1	FINISH GRADING	┼	-		<u> </u>						100
0012	Finish grading area to be paved with grader, small area	D,,,,	400	040				_ '			100
0100	Large area	B-11L	400	.040	S.Y.	ļ	1.19	1.08	2.27	3.01	•
0200	•		2,000	.008			.24	.22	.46	.60	•
1020	Grade subgrade for base course, roadways	♥	3,500	.005	<u> </u>		.14	.12	.26	.35	
i i	For large parking lots	B-32C	5,000	.010			.29	.30	.59	.77]
1050	For small irregular areas		2,000	.024			.72	.74	1.46	1.92	
1100	Fine grade for slab on grade, machine	B-11L	1,040	.015			.46	.42	.88	1.16	1
1150	Hand grading	B-18	700	.034			.91	.06	.97	1.49	
1200	Fine grade granular base for sidewalks and bikeways	B-62	1,200	.020	\		.56	.12	.68	.99	1
2550	Hand grade select gravel	2 Clab	60	.267	C.S.F.	-	6.95		6.95	10.80	1
3000	Hand grade select gravel, including compaction, 4" deep	B-18	555	.043	S.Y.		1.15	.07	1.22	1.88	
3100	6" deep		400	.060			1.60	.10	1.70	2.60	1
3120	8" deep	1	300	.080			2.13	.14	2.27	3.47	
ו	Finishing grading slopes, gentle	B-11L	8,900	.002			.05	.05	.10	.13	
-~10	Steep slopes	1 -	7,100	.002	\		.07	.06	.13	.17	l
023	NAME II ASSURAN										\vdash
0010	BACKFILL, GENERAL By hand, no compaction, light soil R02315 300	.								\sim	110
0100		1 Clab		.571	C.Y.		14.85		14.85	(23)-	
	Heavy soil	H	11	.727			18.90		18.90	29.50	. 4
0300 0400	Compaction in 6" layers, hand tamp, add to above	.♥	20.60	.388			10.10		10.10	15.75	
	Roller compaction operator walking, add	B-10A	100	.120			3.73	1.31	5.04	7.15	
0500	Air tamp, add	B-9D	190	.211			5.55	.97	6.52	9.70	
0600	Vibrating plate, add	A-1D	60	.133			3.47	.48	3.95	5.90	
اممم	Compaction in 12" layers, hand tamp, add to above	1 Clab	34	.235			6.10		6.10	9.55	. [
									3.36	4.74	I # .
0900	Roller compaction operator walking, add	B-10A	150	.080	$\neg \uparrow \neg$		2.49	.87	3.30		• 4
0900 1000	Roller compaction operator walking, add Air tamp, add	B-9	150 285	.140			2.49 3.71	.87 .56	3.36 4.27		
0900 1000 1100	Roller compaction operator walking, add Air tamp, add Vibrating plate, add	1								6.35	# 1
0900 1000 1100 3000	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220	B-9	285	.140	-		3.71	.56	4.27		
0900 1000 1100 3000 0010 B	Roller compaction operator walking, add Air tamp, add Vibrating plate, add	B-9	285	.140	+		3.71	.56	4.27	6.35	
0900 1000 1100 3000 0010 B	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220	B-9	285	.140	+		3.71	.56	4.27	6.35	120
0900 1000 1100 3000 0010 B	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader	B-9	90	.140 .089	C.Y.		3.71 2.31	.56	4.27 2.77	6.35 4.11	
0900 1000 1100 3000 0010 B 0020	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction	B-9 A-1E	285 90 1,100	.089	C.Y.		3.71 2.31	.56	4.27 2.77	6.35	
0900 1000 1100 3000 3000 50	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel	B-9 A-1E	285 90 1,100 975	.140 .089 .011 .012	C.Y.		3.71 2.31 .34 .38	.56 .46	4.27 2.77 .61 .69	6.35 4.11	
0900 11000 1100 3000 0010 B 0020 2000 2020	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay	B-9 A-1E	285 90 1,100 975 850	.140 .089 .011 .012 .014	C.Y.		3.71 2.31 34 .38	.56 .46 .27 .31	4.27 2.77 .61 .69	6.35 4.11 .82 .92 1.06	
0900 1000 1100 3000 0010 B 0020 2000 2020	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel	B-9 A-1E	285 90 1,100 975 850 550	.089 .089 .011 .012 .014 .022	C.Y.		3.71 2.31 34 .38 .44 .68	.56 .46 .27 .31 .35 .55	.61 .69 .79 1.23	.82 .92 1.06 1.63	
0900 1000 1100 3000 0010 B 0020 2000 2020 2040 2220	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth	B-9 A-1E	285 90 1,100 975 850 550 490	.089 .089 .011 .012 .014 .022	C.Y.		3.71 2.31 34 .38 .44 .68	.56 .46 .27 .31 .35 .55	.61 .69 .79 1.23	.82 .92 1.06 1.63 1.83	
0900 1000 1100 3000 2000 2000 2020 22	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth Clay Common earth Clay	B-9 A-1E	285 90 1,100 975 850 550 490 425	.011 .012 .014 .022 .024 .028	C.Y.		3.71 2.31 34 .38 .44 .68 .76	.56 .46 .27 .31 .35 .55 .61	.61 .69 .79 1.23 1.37 1.59	.82 .92 1.06 1.63 1.83 2.12	
0900 1000 1100 3000 2000 2000 2020 22	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth Clay 300' haul, sand & gravel	B-9 A-1E	285 90 1,100 975 850 550 490 425 370	.011 .012 .014 .022 .024 .028	C.Y.		3.71 2.31 34 .38 .44 .68 .76 .88	.56 .46 .27 .31 .35 .55 .61 .71	.61 .69 .79 1.23 1.37 1.59 1.82	.82 .92 1.06 1.63 1.83 2.12 2.42	
0800 0900 1000 1100 3000 0010 B 0020 2000 2220 2220 2240	Roller compaction operator walking, add Air tamp, add Vibrating plate, add For flowable fill, see div. 03310-220 BACKFILL, STRUCTURAL Dozer or F.E. loader From existing stockpile, no compaction 75 H.P., 50' haul, sand & gravel Common earth Clay 150' haul, sand & gravel Common earth Clay Common earth Clay	B-9 A-1E	285 90 1,100 975 850 550 490 425	.011 .012 .014 .022 .024 .028	C.Y.		3.71 2.31 34 .38 .44 .68 .76	.56 .46 .27 .31 .35 .55 .61	.61 .69 .79 1.23 1.37 1.59	.82 .92 1.06 1.63 1.83 2.12	

READY MIX CONCRETE BID TABULATION - BEGINNING OCT 3 2003 ENDING SEPT 30, 2004

PRICED PER CUBIC YD	JAHNA	SINGELTARY	
4000 PSI	\$64.40	\$64.00	US
3500 PSI (CLASS AA)	\$62.30	\$62.00	
3000 PSI (CLASS A	\$60.25	\$60.00	
2500 PSI	\$58.15	\$58.00	
2000 PSI	\$56.15	\$54.00	
FIBER	\$4.50	\$4.00	
ACCELERATOR	\$1.00	\$1.00	
DELIVERY	12 hrs	11 hrs	

RECOMMENDATION: SINGELTARY

CLIENT HANDER Co	PROJECT Hundre Carry Expansion	SION JOB NO. 09/81037 29
SUBJECT /4-,	ander Commy UF	BY DATE
<u></u>		CHECKED DATE
Marine Cort	7	
E 600 V 10 2 COS1		
179M (7) 1	PASSIVE GAS SYSTEM	
(JUANTITY		Pricing
		Fricing USE GUOTE From
PHOSE I	= 12,5AC	GUOTT From
PHOSE IT SECTION	m I = 50 Ae	annage County
	1 7.5 00	
		Hich Bid 110/4
PACSINE SOF	vents I vent/oc	High 912 110/LF
10 4 10 /	7 15 15 1 10	, a.
1113 1101	1 VENT) (17.5 (18)	INFLATION
	1807/10	12 2 2 2 2 2
		2002 -> 2003 \$ 110/LE × 1.01 = 111.10
77		* 110/LE X 1.01 = 111.10
752 59557 X	25 of Renmo DIANIASS	
		2007 -> 2004
// PASSI	IVE SOU VENTS INSTALLED	
ar cons	STANCTION	111.10 × 1.02 = 1/3.3/4
	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	/ 7
	Remonsine 18	
	RSMANING 18 - 11	PA10E =
	NUTAL Closurs 7 VENTS	113.32 × 367.5 VLF
	NJIAN CIOSING PUTPU	
		= 441,693.84
194X 4151142	T PHOSE I SECTION I	
EG 1	50 Equal to PHASE I	Morelization
		42,000 X 1.01 X 1.02
DEPTH ~ 3/	ly Landfill Depth	* * * * * * * * * * * * * * * * * * * *
USAT TOA	EL 150	= 43,268.Y
B077	70m EL 80/	70701=884,914,24
	70 A x 1/4	
	70m EL 60/ 70m EL 60/ 70fx 3/4 = 52,5 AT/USM	Parce/14 = 231./ULF
10701 132	= 7 vents x 52,5 fr/1557	/
	产生 ワルツ だけんちょうしゃ	

THIS IS THE BID EVALUATION FROM THE CLASS III LFG SYSTEM THAT IS BEING CONSTRUCTED BY ERC IN LATE 2001.

Engineer's Cost Estimate Class III Landfill Gas Collection and Control System Orange County Landfill, IFB No. Y1-777-PH

یکا --- کا کا

		···																
	New Description		Estimated	Engineer's		ER		SEI Envir	,	OV		/ CJ Lange	enfelder	WET		Average		
Item No.	Item Description	Units	Quantity	Unit Price	Total Cost	Unit Price	Total Cost	Unit Price	Total Cost	Unit Price	Total Cost	Unit Price	Total Cost	Unit Price	Total Cost	Unit Price		
001	Mobilization/Demobilization	LS		\$40,000.00	\$40,000	\$31,000.00	\$31,000.00	\$6,000.00	\$6,000.00	\$35,000.00	\$35,000.00	\$42,500.00	\$42,500.00	\$25,000.00	\$25,000.00	\$27,900.00		
002	Project Survey	LS	<u>l</u>	\$12,000.00	\$12,000	\$10,000.00	\$10,000.00	\$15,000.00	\$15,000.00	\$32,250.00	\$32,250.00	\$15,000.00	\$15,000.00	\$47,500.00	\$47,500.00	\$23,950.00		
003	LFG Extraction Well Installation:																	
	a 24!!sBore:w/6isP.V.G.Casing:(Class:III:tsandfill)	ed in		\$70.00	\$27,650	\$110.00	\$43,450.00	\$81.00	\$31,995.00	\$57.25	\$22,613.75	\$110.00	\$43,450.00	\$85.00	\$33,575.00	4888		
	b 24" Bore w/6" PVC Casing (Pre-1985 Landfill)	LF	252	\$60.00	\$15,120	\$110.00	\$27,720.00	\$81.00	\$20,412.00	\$57.25	\$14,427.00	\$110.00	\$27,720.00	\$85.00	\$21,420.00	\$88.6		
	c Boring Refusal	LF	100	\$50.00	\$5,000	\$110.00	\$11,000.00	\$60.00	\$6,000.00	\$31.00	\$3,100.00	\$60.00	\$6,000.00	\$70.00	\$7,000.00	\$66.2		
004	Passive Vent Abandonment/Retrofit																	
004	a Abandon Passive Vents	_ EA	14	\$100.00	\$1,400	\$650.00	\$9,100.00	\$75.00	\$1,050.00	\$100.00	\$1,400.00	\$120.00	\$1,680.00	\$500.00	\$7,000.00	\$289.0		
004	Downslope Passive Vent Retrofit to Extr. Well	EA	10	\$500.00	\$5,000	\$700.00	\$7,000.00	\$100.00	\$1,000.00	\$165.00	\$1,650.00	\$450.00	\$4,500.00	\$800.00	\$8,000.00	\$443.00		
0,05	Horizontal Collector Installation	LF	2,480	\$25.00	\$62,000	\$40.00	\$99,200.00	\$14.00	\$34,720.00	\$23.50	\$58,280.00	\$26.00	\$64,480.00	\$54.00	\$133,920.00	\$31.50		
006	LFG Extraction Wellheads						,		\$5,1,120.00	-	000,200.00	\$20.00	\$04,400.00	\$54.00	\$133,720.00			
006	a Class III Landfill Gas Wells	EA	26	\$425.00	\$11,050	\$1,400.00	\$36,400.00	\$145.00	\$3,770.00	\$475.00	\$12,350.00	\$700.00	\$18,200.00	\$400.00	\$10,400.00	\$624.00		
006	b Horizontal Collectors	EA	3	\$425.00	\$1,275	\$1,400.00	\$4,200.00	\$150.00	\$450.00	\$1,150.00	\$3,450.00	\$1,000.00	\$3,000.00	\$600.00	\$1,800.00	\$860.00		
006	c Pre-1985 Landfill Gas Wells	EA	10	\$425.00	\$4,250	\$1,400.00	\$14,000.00	\$150.00	\$1,500.00	\$475.00	\$4,750.00	\$725.00	\$7,250.00	\$600.00	\$6,000.00	\$670.0		
007	HDPE Pipe Installation, Class III Landfill					51,100.00	\$14,000.00	3130:00	\$1,500.00	\$475.00	34,730.00	\$723,00	\$7,230.00	\$600.00	\$6,000.00	\$670.0		
007	a 4" HDPE SDR 17	LF	3,900	\$12.10	\$47,190	\$4.00	\$15,600.00	\$15.00	\$58,500.00	\$12.25	\$47,775.00	\$9.00	\$35,100.00	\$24.00	\$93,600.00			
	b 6" HDPE SDR 17	LF	2,650	\$15.00	\$39,750	\$7.00	\$18,550.00	\$19.00	\$50,350.00	\$14.25	\$37,762.50					\$12.8		
	c 8" HDPE SDR 17	LF	3,240	\$19.75	\$63,990	\$13.00	\$42,120.00	\$21.00	\$68,040.00	\$16.50	\$53,460.00	\$9.60	\$25,440.00		\$74,200.00	\$15.5		
	d 10" HDPE SDR 17	LF	740	\$24.00	\$17,760	\$20.00	\$14,800.00	\$26.00	\$19,240.00	\$25.00		\$14.00	\$45,360.00	\$32.00	\$103,680.00	\$19.30		
	e 2" HDPE SDR 11 Air Supply Line (common trench)	LF	3,800	\$2.00	\$7,600	\$2.00	\$7,600.00	\$12.00	\$45,600.00	\$23.00	\$18,500.00	\$24.00	\$17,760.00		\$31,080.00	\$27.40		
	f 2" HDPE SDR 11 Forcemain (Dual-contained)	LF	500	\$5.00	\$2,500	\$17.00	\$8,500.00	\$16.00	\$8,000.00	\$2.00 \$7.65	\$7,600.00	\$3.50	\$13,300.00	\$2.00	\$7,600.00	\$4.30		
008	HDPE Pipe Installation, Pre-1985 Landfill	- Di	300	\$3.00	\$2,300	\$17.00	\$8,300.00	\$10.00	\$8,000.00	\$7.63	\$3,825.00	\$19.00	\$9,500.00	\$24.00	\$12,000.00	\$16.7		
	a 4" HDPE SDR 17	LF	7,055	\$12.10	\$85,366	\$5.00	\$35,275.00	E15.00	6105 025 00	#15.00		210.00						
	b 2" HDPE SDR 11 Forcemain (Dual-contained)	LF	1,070	\$5.00	\$5,350	\$17.00	\$18,190.00	\$15.00	\$105,825.00	\$15.00	\$105,825.00	\$10.00	\$70,550.00	\$28.00	\$197,540.00	\$14.60		
009	LFG System Appurtenances:		1,070	\$5.00	33,330	\$17.00	\$18,190.00	\$16.00	\$17,120.00	\$12.00	\$12,840.00	\$13.00	\$13,910.00	\$30.00	\$32,100.00	\$17.60		
	a Header Road Crossing	LF	170	\$40.00	\$6,800	\$25.00	\$4,250.00	055.00										
009a		EA	2		\$0,800	\$1,900.00		\$55.00	\$9,350.00	\$47.00	\$7,990.00	\$90.00	\$15,300.00	\$150.00	\$25,500.00	\$73.40		
	b 8" Header Isolation Valve	EA	3	\$2,500.00			\$3,800.00	\$4,000.00	\$8,000.00	\$3,000.00	\$6,000.00	\$1,400.00	\$2,800.00	\$4,800.00	\$9,600.00	\$3,020.00		
	c 4" Header Isolation Valve	EA	2	\$1,800.00	\$7,500	\$1,800.00	\$5,400.00	\$3,500.00	\$10,500.00	\$2,500.00	\$7,500.00	\$3,500.00	\$10,500.00	\$3,200.00	\$9,600.00	\$2,900.00		
	d Self-Draining Condensate Trap				\$3,600	\$1,500.00	\$3,000.00	\$2,700.00	\$5,400.00	\$2,250.00	\$4,500.00	\$2,500.00	\$5,000.00	\$800.00	\$1,600.00	\$1,950.00		
	e Condensate Sump w/Pump	EA	2	\$6,600.00	\$13,200	\$4,000.00	\$8,000.00	\$4,500.00	\$9,000.00	\$8,500.00	\$17,000.00	\$6,000.00	\$12,000.00	\$5,000.00	\$10,000.00	\$5,600.00		
	f Condensate Forcemain Discharge Tie-in	EA	3	\$8,000.00	\$24,000	\$7,500.00	\$22,500.00	\$9,600.00	\$28,800.00	\$17,500.00	\$52,500.00	\$43,000.00	\$129,000.00	\$8,000.00	\$24,000.00	\$17,120.00		
	<u> </u>	EA	2	\$1,000.00	\$2,000	\$1,500.00	\$3,000.00	\$1,000.00	\$2,000.00	\$1,250.00	\$2,500.00	\$470.00	\$940.00	\$1,000.00	\$2,000.00	\$1,044.00		
	g Tie-in to Existing 18" LFG Transmission Main	LS	l		\$0	\$2,000.00	\$2,000.00	\$7,000.00	\$7,000.00	\$500.00	\$500.00	\$9,000.00	\$9,000.00	\$5,000.00	\$5,000.00	\$4,700.00		
010	Blower/Flare Station	LS	1	\$125,000.00	\$125,000	\$120,000.00	\$120,000.00	\$138,495.00	\$138,495.00	\$161,335.00	\$161,335.00	\$215,000.00	\$215,000.00	\$185,000.00	\$185,000.00	\$163,966.00		
011	Record Documentation	LS	1	\$7,500.00	\$7,500	\$2,000.00	\$2,000.00	\$1,000.00	\$1,000.00	\$12,500.00	\$12,500.00	\$500.00	\$500.00	\$7,500.00	\$7,500.00	\$4,700.00		
012	Indemnification	LS	1	\$100.00	\$100	\$100.00	\$100.00	\$100.00	\$100.00	\$100.00	\$100.00	\$100.00	\$100.00	\$100.00	\$100.00	\$100.00		
				Subtotal	\$643,950.50	Subtotal	\$627,755.00	Subtotal	\$714,217.00	Subtotal	\$749,283.25	Subtotal	\$864,840.00		\$1,133,315.00			

n.j.

MANPOWER AND FEE ESTIMATE - ITEMS 10 AND 11, FINANCIAL ASSURANCE HARDEE COUNTY REGIONAL LANDFILL CLOSURE

Task Key

10 a - Closure Plan Report 10 b - FDEP Coordination

10 d - Final Survey

11 a - Contract Management

10 e - Construction Certification

11 b - CQA

10 c - Bidding

			Engineeri	ng .		Professional	Services	Total	Rate	Total
Personnel	10 a	10 b	10 c	10 d	10 e	11 a	11 b	(hours)	(\$)	(\$)
Project Director	10	16	8	0	4	40	0	78	140	
Senior Project Professional	40	80	40	0	16	160	0	336	98	
Project Professional	60	0	0	0	0	0	0	60		1
Staff Professional	120	120	40	24	120	0	0	424		
Designer/Drafter	60	40	24	0	16	0	0	140		
Contract Management Technician	0	0	0	0	0	1,950				
Quality Assurance Technician	0	0	0	0	0	0	655			
Administrative Assistant	40	0	24	0	10	80	0	154	40	6,160
		•							·	<u> </u>
Subtotal Labor (hours)	330	256	136	24	166	2,230	655	3,797		
Subtotal Labor (\$)	23,420	20,680	10,120	1,680	-11,808	_112,230	29,475			209,413
Reimbursables (See Table 2)	1,704	979	1,836	8,000	1,434	26,227	51,390			91,570
G&A, 15 percent reimbursables	256	147	275	1,200	215	3,934	7,709			13,736
Total reimbursables	1,960	1,126	2,111	9,200	1,649	30,161	59,099			105,306
Subtotal, Fee Estimate	25,380	21,806	12,231	10,880	13,457	142,391	88,574			314,719
	Closure Applic	ation			Construction	on Costs				
4.1	Total =	47,186			Total =	267,533		Say	 >	\$314,700
				Total 10a,b,c,d	83,754	Total 11a&11b	230,965	1		

MANPOWER AND FEE ESTIMATE - ITEMS 10 AND 11, FINANCIAL ASSURANCE HARDEE COUNTY REGIONAL LANDFILL CLOSURE

REIMBURSABLES ESTIMATE (Task Amounts)

Task Key

10 a - Closure Plan Report

10 d - Final Survey

11 a - Contract Management

Reimbursable

10 b - FDEP Coordination 10 c - Bidding 10 e - Construction Certification

11 b - CQA

Total =

91,570

	Unit Cost										Total	Total
Reimbursable	(\$)	Unit	10 a	10 b	10 c	10 d	10 e	11 a	11 b	I	Units	(\$)
Subconsultants, Topographic survey	i	LS			* -	8,000					8,000	8,000
Subcontractors/Drillers	ī	LS									0	(
Outside Lbr/Temp Svcs	1	LS									0	
Laboratory Services	1	EĄ									0	(
Vehicle Mileage (Auto)	0.36	MI									0	(
Vehicle Mileage (Truck)	0.50	MI									0	(
Company Vehicle	50	DA									0	
Rental Truck, Engineer	1050	MO						6.5			7	6,825
Rental Truck, Technician	0	МО						4.		1	0	
Parking & Tolls	1	LS						· .		1	0	
Air Fare	1	EA						, ./			0	L
Meals	26	DA						210	80		290	
Lodging, Hotel	50	DA						210	80	1	290	
Cell Phone for Engineer	5	DA						390			390	
Faxes	3	PG	32	16			48				480	
Postage & Freight	1	LS			240		50				290	290
Reproduction (Xerox)	0.1	EA	640		2,400		2,000				6,680	
Reproduction (Graphics) CADD	3	EA	48	41	180		90				359	
Equipment/Supplies	1	LS					400		1,560	ļļ	1,960	1,960
Draeger Tubes	5	EA			-					 	0	
Gas Meters	50	DA				•				L	0	
Equipment Rental	1	LS									.0	
Computer (Word Process)	5	HR	40	0	24	0	10		0	L	154	
Computer (CADD)	20	HR	60	40	24	0	16	0	0		140	
Quality Assurance Testing	1	LS							43,750	L		43,750
Licenses/Permits	1	LS	0						L		0	<u></u>

Sheet	of	

Client	Project			Job No.	
Hardee County	Landfill Expansion			09:	199033.09
Subject	-, -, -, -, -, -, -, -, -, -, -, -, -, -		Ву		Date
Closing Costs			LE	EK	4/8/2004
,			Checked		Date
		_		·	

TASK

Calculate and provide reasoning for Items 10 and 11 of Estimated Closing Costs

ATTACHMENTS

Manpower and Fee Estimate

Includes: Manpower and Fee Estimate by Task Dollars and Reimbursables Estimate.

NOTE

For a 17.5-acre (surface area) closure, manpower and fee estimate is attached.

Use 6.5 work months for entire closure process.

(6.5 work months)(4 wk/1 mo)(6 days/wk)(10 hr/day)= 1,560 hours (On-Site Engineer)

(65.5 works days) (10 hrs/day) = 655 hours (CQA Tech)

Item 10 - Engineering

10 a - Closure Plan Report

<u>Manpower</u>	<u>Hours</u>	Reasoning
Staff Engineer	120	Design closure and write specs
Drafting	60	Complete and reproduce closure design drawings
Sr. Proj Engineer	40	Oversee Closure Design, Review Specs & Project Management
Admin	40	Word process support
Project Director	10	Check, sign, & seal
•	•	

Quantity Estimate
(2 pgs/fax)(1 fax/wk)(4 wk/mo)(2 work months)(2 file copies)= 32 pages
(5 pgs/letter)(4 ltrs/wk)(4 wk/mo)(2 work months)(4 copies) = 640 pages
(4 pages)(9 copies) + 12 draft copies= 48 sheets
Manpower = 60 hours
Manpower = 40 hours

Licenses/Permit \$0
Aerial Topographic Survey \$8,000

10 b - FDEP Coordination

<u>Manpower</u>	<u>Hours</u>	Reasoning
Staff Engineer	120	Response to FDEP comments
Drafting	40	For changes to drawings
Sr. Proj Engineer	80	Response to FDEP comments, checking & project management
Project Director	16	Response to FDEP comments

<u>Reimbursables</u>	Quantity Estimate	

Faxes	(2 pgs/fax)(1 fax/week)(4 wk/mo)(1 work months)(2 file copies) = 16 pgs
Xerox Reproduction	(5pgs/letter)(1 ltr/wk)(4 wk/mo)(1 work months)(4 copies) = 80 pages
CADD Reproductions	Estimate at: (3 pages)(7 copies) + 20 draft copies= 41 sheets
Computer Time- CADD	Mannower = 40 hours

	Hours 40 40 8 24	Respor Respor Check,	Sheet By LEI Checked	ons	091990 Date Date	33.09 4/8/2004	
wer ngineer j Engineer Director	Hours 40 40 8 24	Respor Respor Check,	By LEI Checked iing ase to bidder's questing to	Cons	Date		
wer ngineer j Engineer Director	Hours 40 40 8 24	Respor Respor Check,	Checked ing use to bidder's questing use to bidder's questing	ons	Date		
ngineer j Engineer Director g	40 40 8 24	Respor Respor Check,	Checked ing use to bidder's questing use to bidder's questing	ons		4/8/2004	
ngineer j Engineer Director g	40 40 8 24	Respor Respor Check,	ing use to bidder's questions to bidder's questions	ons	Date	4/8/2004	
ngineer j Engineer Director g	40 40 8 24	Respor Respor Check,	ing use to bidder's questi use to bidder's questi		Date		•
ngineer j Engineer Director g	40 40 8 24	Respor Respor Check,	ise to bidder's questi ise to bidder's questi				,
ngineer j Engineer Director g	40 40 8 24	Respor Respor Check,	ise to bidder's questi ise to bidder's questi				•
ngineer j Engineer Director g	40 40 8 24	Respor Respor Check,	ise to bidder's questi ise to bidder's questi				
ngineer j Engineer Director g	40 40 8 24	Respor Respor Check,	ise to bidder's questi ise to bidder's questi		*		
j Engineer Director ng	40 8 24	Respor Check,	ise to bidder's questi				
Director	8 24	Check,	•	ons and Pr	roiect Mana	gement	
g	24		SIPH, SEAL DACKAPES		. 0,000		
•			luce bid package dra				
	27	_	luce and assemble b	_	1		
<u>ursables</u>		Roproc	ace and assemble b	ia package	•		. •
	Quantity	Estimate					
			s)(3 file copies) = 7	2 nos			
Reproduction	` •	, ,	ogs)(12 bidders) = 2				
cs Reproduction	-		gs)(12 bidders) = 18				
Processing	Did pack	•	time from Admin n		= 24	hours	
ng	(12 B; a)	-	\$20/Bid Package) =	_	- 24	nours	
.ıg	(12 bld)	packages)(520/Did i ackage) –	Φ270			
y					·		
<u>wer</u>	Hours	Reasor	ning				
Ingineer	24	_	nation with surveyo	r			
J	•						•
n Certification							
		_					
ower	<u>Hours</u>						
	120	-					
ng	·	-	_				
		-	_	ecking			
ı. Asst.			= =				
t Director	4	Check	, sign, and seal				
urcahlec	Quantity	Fetimate					
<u>uisables</u>			/fow)(0 wik)(2 file oc	mics) – 49			
_					pages		
				30			
•			-, -	00.1			
		-	• • • • • • • • • • • • • • • • • • • •	90 sheets			
	Binders,	inserts, etc	c., estimate at \$400				
I Drogossin -				10	hours		
	. (CADD time	from manpower =	16	hours		
Processing D				•			
) i t	j Engineer . Asst. Director ursables e Reproduction cs Reproduction ment/Supplies uter Time:	g 16 j Engineer 16 . Asst. 10 Director 4 ursables Quantity (1 faxes) e Certifica Reproduction (250 pag cs Reproduction As built ment/Supplies Binders, uter Time:	g 16 Any re j Engineer 16 Project Asst. 10 Product Director 4 Check ursables Quantity Estimate (1 faxes/wk)(2 pgs/ e Certification distrib Reproduction (250 pages)(8 copings Reproduction CS Reproduction As builts: (15 sheet ment/Supplies Binders, inserts, etc.) I Processing Administ	16 Any redesigns/as builts j Engineer 16 Project management & Ch Asst. 10 Production support 4 Check, sign, and seal ursables Quantity Estimate (1 faxes/wk)(2 pgs/fax)(8 wk)(3 file co e Certification distribution; estimate at \$ Reproduction (250 pages)(8 copies) = 2000 pages cs Reproduction As builts: (15 sheets)(6 copies/sheet) = ment/Supplies Binders, inserts, etc., estimate at \$400 ter Time: Administrative manpower =	16 Any redesigns/as builts j Engineer 16 Project management & Checking 10 Production support 4 Check, sign, and seal 10 Any redesigns/as builts 10 Production support 4 Check, sign, and seal 10 Production support 4 Check, sign, and seal 10 Production support 4 Check, sign, and seal 10 Production distribution; estimate at \$50 10 Production (250 pages)(8 copies) = 2000 pages 11 Processing As builts: (15 sheets)(6 copies/sheet) = 90 sheets 11 Processing Administrative manpower = 10	16 Any redesigns/as builts j Engineer 16 Project management & Checking 10 Production support 4 Check, sign, and seal 10 Any redesigns/as builts 10 Production support 4 Check, sign, and seal 10 Production support 4 Check, sign, and seal 10 Production support 4 Check, sign, and seal 10 Production support (1 faxes/wk)(2 pgs/fax)(8 wk)(3 file copies) = 48 pages 10 Production settimate at \$50 11 Production settimate at \$50 12 Production As builts: (15 sheets)(6 copies/sheet) = 90 sheets 12 Processing Administrative manpower = 10 hours	16 Any redesigns/as builts j Engineer 16 Project management & Checking Asst. 10 Production support Director 4 Check, sign, and seal Usuarsables Quantity Estimate (1 faxes/wk)(2 pgs/fax)(8 wk)(3 file copies) = 48 pages Certification distribution; estimate at \$50 Reproduction (250 pages)(8 copies) = 2000 pages cs Reproduction As builts: (15 sheets)(6 copies/sheet) = 90 sheets ment/Supplies Binders, inserts, etc., estimate at \$400 Administrative manpower = 10 hours

		SC	S ENGINE					
	· · · · · · · · · · · · · · · · · · ·			Sheet		of of		
Client Hardee C	Proj ounty Lan	ect dfill Expansio	n .		Job No.	-0919	9033.09	·
Subject		· · ·	•	Ву		Date	<u>-</u>	
Closing Costs	r.			l	EK		4/8/2004	
	· · · · · · · · · · · · · · · · · · ·			Checked		Date		
								
tem 11 - Professio	nal Services							
l 1 a - Contract M	anagament		Full-time d	uring const	ruction	:		
i i a - Conti act Wi	anagement		run-ume u	ning consu	i uction			
							*	
Manpo	wer	Hours	Reasoning					
	Engineer	160	Project man	agement				
	Equals PE Supervisor	= 160	Use Sr. Proj	-	r rate			
:			,					
Resider	nt Technician	1,950	On site full-	time				
		-						
Admin	stration	80	Office assis	ance			•	
	Equals on-site tech	= 80	Use Secrete	rial/Clerical	Rate			
			•					
<u>Reimbi</u>	ırsables	Quantity E	<u>Estimate</u>					
Rental	Truck for Eng	(6.5 work	months)(\$105	0/month) =	\$ 6,825)	•	•	
Cell Ph	one for Eng	(195 work	days*2 phone	s)(\$5/day) =	= \$1,950			
Meals		210 days (6.5 months)					
Lodgin	g	210 days (6.5 month)					
Faxes		(2 pgs/fax)(2 faxes/wk)(26 wks)(3 f	ile copies)	= 312 pgs		
Xerox	Reproduction	Meeting N	linutes', letters	: (10 pgs/wl	k)(26 wks)	(6 copies) =	1,560 pages	
					•			
								•
11 b - Quality Ass	irance	,	During place	ement of fi	ill & top so	oil		
	••		605001					
To cov	er liner, manpower a	_						
	\$2500/acre	x 17.5 acres =	= \$43,750) .				
•			•					
	•							
A racid	ent technician will no	and to be onci	e for 655 hou	ro durina th	a linar nroc			
	versite will be 65.5 v							
Linei	veisite will be 05.5 v	Hours	J total days as	Summing wo	ikilig o day	3/WK)		
Reside	nt Technician	655	Liner Quali	w Assurance				
Keside	I commotan	055	Pinci Quali	., 1133ulailU				
Reimb	<u>ırsables</u>	Quantity I	Estimate					
	one for Eng		n Contract Ma	nagement (Costs			
	Truck for Eng		n Contract Ma	_				
Meals	IOI DIIG		.5 months)				•	
Lodgin	Q		.5 months)					
_	nent & Supplies	Estimate a						
2quipi	or puppings							
		•						

LIENT	(tha	vq.	ኒረ	رم	niy			WECT										Ιρν				JOB ⊘7	<u> 1980</u>	ノ フ フ,	٥٩	
D)EC	′¹					1	tm	dz	د (-u.	274	4	<i>F</i>					BY	th				DAT	E .		
	-						4	س دن	n	C	۲۰							CHE	CKEL)			DAT	E		
{																				- 1						
+	//		1			<u> </u>	 					ļ														
			<u>Co</u>	کرس	<u> </u>	K7.	20~	/	/ /n	7 2	٤	מנק	n Ai	2												
ļ		ļ				<u> </u>	<u> </u>	ļ			ļ	ļ									•••					
				/	7	5	DC	129	5	_	707	100/														
1						6	ς _Σ	ma	TZ)			ļ														
-						7	2//	m N		i	į	i				In e	_					; ;	ļ			
-		 					 		6	: 4	Œ.		411	:	-				: :	5	כ כ	77	<u></u>			
		 	ļ		ļ	 	ļ	ļ	ļ				yns	T				_								
ļ		ļ	ļ		ļ	ļ	ļ	ļ	ļ	ļ	n	ar2	ļ				d	7				ļ	ļ			
		<u> </u>											<u> </u>					/								
									6	100	m	ده م	176		1	2.5	n!	رىد	_	. /	2 г	da	65			
T		ļ				Ť	Ť	<u> </u>		•			•	•	:		12	•				0.4				
						<u> </u>	 			9		104	ngv							=		<u>-</u>	ļ			
+-		 				 	 	ļ		 			ļ			W.	07					<u> </u>	ļ			
		 	ļ		ļ	 -	ļ	ļ		ļ	ļ	ļ	ļ				ļ			57	-5	do	21			
.		ļ	ļ		ļ	<u> </u>	ļ	ļ		ļ	ļ	ļ	ļ				ļ		(0	von	E		7			
																		+	•		_	•	1/12	רדמ	·~	
							Ī					1					-		•		,	i	:	1.20	:	,
-		<u> </u>	<u> </u>			 	 	 -			<u> </u>	†	 				i	i	_	. /	:		,00,	I' FN	1 107	
+		 	ļ			ļ	 	ļ			 	 	 				1	1		5 07	:	T				
		ļ	ļ		ļ	ļ	 	ļ	ļ		ļ	 	ļ	ļ			+			611		<u> </u>	ļ	ļ	ļ	
		ļ	ļ		ļ	ļ	ļ		ļ		ļ	ļ	ļ		ļ	ļ		6	513	7 2	ہملا	کا		60	روح	N
1		<u> </u>		ļ	ļ	<u> </u>	<u> </u>	ļ		<u> </u>	<u> </u>			ļ						41	ink	\$)		
		-								65	5	40	nk	٦	م د	,	1/2/	~	/	453	-6	,,	0	30		
		 	 					 	ļ	 	 	† <u>-</u>	nk	1	73		<u> </u>	<u> </u>	i		1.11	<u> </u>	•	•		
		 				ļ	ļ	ļ		ļ	 	 					74	ļ	ļ	 	 	 		rch	VICI	M
		 	 	_	ļ		ļ	ļ	ļ	ļ	 		ļ	ļ	ļ			ļ	ļ	ļ		ļ	ļ	ļ	ļ	
-		 	ļ	;			·	nd		ļ	<u> </u>	ļ	ļ			ļ	ļ	ļ	ļ			<u> </u>	ļ	<u></u>		
	Br	بلم لي	ing	/	7.	51	en	25		×	/	2,	~	-4	•	~	ラ	00	00	ey						
	Co					•	•	cs		ريد		24	IN	zh	•	>	-	90	97)	Co		1				
-	BE	:	:							<u>v</u> .		'						7		J-		;	 		 	
	400		43	ļ	1	.j ⊅	17	ļ			ļ	 				ļ	L	60	0 0	7		 	 	 -	 -	
		 	 	ļ	<i>[</i>	NO.	au	¢ 77	ON	ļ	ŋ	ENV	لام	<u> </u>	ļ		ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ	ļ	7	<u>.</u>
		 	ļ	ļ	ļ	ļ	ļ	ļ	ļ		6	223	3/5	12	W	30	W	0	UT	J	,	4/	200	cy	d	lay
		<u> </u>	<u> </u>	<u> </u>																				V		/
				6	Edde	4,~	4		3	<u>ئ</u> ر	00	24	/	1/2	on.	~	2	5	doc		Ī	Ī	1			
1		1	1		• • • • • • • •		*****	1	3	5 1	7 /	120	/	,,,	D D	~	~	0	1/	<u></u>	 	†	†			
		 	 		لت		i	 	9	17,	٠,٠	1	1	L	<u></u>	~	<u> </u>	 	, , ,	<u> </u>		ļ	ļ			
		 -	 	/3	m	ws	·	 	ļ -	16	W	y		16	<u>.</u>		نـــــــــــــــــــــــــــــــــــــ	-	apu	15/		da	ļ	ļ		
		•				-	1 .	:	1	:	ł	+	;	:	1 .	1	i	1		1	11	da	45	i	•	•

CLIE	NT							PRC	JECT	i													JOB	NO.			
SUBJ	JECT	_			_			<u> </u>											BY					DAT	Æ		
	—				—			—	—						—				CHE	CKEL		—		DAT	Œ		
										=				:					Д.,	·				ــــــــــــــــــــــــــــــــــــــ			
	ļ	ļ	ļ					ļ!				ļ!	ļ	ļ!		ļ	-			ļ!		-	ļ!			<u>. </u>	
	[[]	<u> </u>	(-01	25	m	ומא	<u>ل</u>	(Cor	1)	'				'			ļ!			1				
	/	,																									
				1		1	E	+.0.			02	k															
			ļ	 				17:	<u> </u>	7	52	7	ļ					ļ				ļ					ļ
ļi	ļ		 	-	-			ļ	 	<u> </u>		1	76	JAU	}		ļ		ļl	ļ []]			ļ	ļ		ļi	ļ
ļi	ļ		 					ļ	ļ					day						ļ ¹	ļ		ļ	ļ!	ļl		<u> </u>
		<u> </u>						ļ	<u> </u>	<u></u>	7	•		Vaj	.,;		,	7					ļ	<u> </u>			<u> </u>
	<u></u>	<u></u>	<u> </u>							<u></u>	+	J	+ 0	yay	<u> </u>	DE	lay	U									
											•	•	•	lay		•											
														day				1				ļ	1			,	
						-	+		ļ				Vc	/EIX	دو		5	 				 	 			ļ	
};			 	-		-	-							-			-					ļ	 	 			
ļ		-	 				-	7				 	 						ļ!	ļ		 		ļ'	ļ!		-
	ļ		ļ					1	PE	40	ماسرو	<u> </u>	 	ļ	ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	ļ		<u></u>			ļ	<u> </u>
	ļ	ļ	ļ	<u>.</u>				<u> </u>	<u>.</u>				ļ		<u> </u>	<u> </u>		<u> </u>	<u> </u>	İ	<u> </u>	<u> </u>	<u></u>			<u> </u>	
									1	14	" 4	1	AD.	ا د	pe		+,	nic	K	170	2101	1/2					
											7		D.	ps	= "	70	- (-					İ				
		<u> </u>	İ	†		1	+	-	-	1			•	191×1	: :		1	7				 					
		-		1	-	-	-	 		-		<u> </u>	+	•	•••		-	 				<u></u>	-				
		 	-				-	<u> </u>	 	-	51	27	 	_ ک	dn	75	po	<u>n</u> ,	م. م	E	ت	190	m	tur.	1		<u> </u>
	ļ		. 					ļ	ļ			 	ļ		-	<u>-</u>		ļ	ļ	ļ,	ļ	ļ	ļ	ļ	ļ	ļ	ļ
		<u> </u>	ļ			_	<u> </u>						6	2	PI	255	\$		6	da	75						ļ
	<u> </u>	1					1	<u> </u>						مح	Egn	neni	打	+	6	d	An		A.d.	47_	mar	NHO	1/2
,				Ī			T								7			/	12	70	1	1	Ī	7			
1		<u> </u>	<u> </u>	1	1		1	<u> </u>	<u> </u>				†	 	İ			-	-	£2	7.	+	†	 			-
		 	ļ			-	+		 	-		 	 	 	ļ		†	 				 	 	 	-	<u> </u>	
	 	 	}					+_		-	 		 	 		 	 	 					ļ	ļ	-	-	
ļ	ļ	-	ļ					6	<u>z p</u>	V	ندکا	73	. 	- 	ļ		- 	ļ	ļ		ļ	 	. 				ļ
	<u>.</u>	-	<u> </u>					<u></u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>				<u> </u>				<u> </u>	1			<u> </u>	<u> </u>
<u> </u>										1	יצעו	10/	1	-	7	18,	175	Ce	? Z	12%	s LF	4					
													Ī				1		5 4			Ī					
ļ		 	†					†	 	1	1	†	 	1										,,,	y	ļ	
	ļ		}					 	-	-	-	 	 	-	14		Za	7	<i>-</i> /	1/2/	15	17-	1_/	7 4	day	Ÿ	+
	ļ		÷			-		<u> </u>	}			-	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u></u>	-		-	-	+	+	+-		1
]	ļ	-	 				-				,,,		Ţ	<u>.</u>			<u> </u>			<u> </u>	<u> </u>	+				<u></u>	<u> </u>
<u> </u>				7	07.	x/	-	6	515	٠ ځ	+9	0	+	12	+1	4		, _	8/1	5	da	15					
		(Ī					Ī				X		7,5	5	W	SOT	N/C	/DE	lav	1 /	m	1/1	sen	104		\
1			1	1				†	†	-		1.1.	†	4		10	سندال. سهالي	7	4	/	4.	بعديد. الم	4	1,0	. '\		1
				\checkmark	1				 	1/4	ــــــــــــــــــــــــــــــــــــــ	 	 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 📑	1-1	ع د ر	TAY	7		Dis	احاصر	Porr	, H.	y	-	7
ļ	 		-		-	+	-	+		19.	51	Dy	×		3 h	14	49 44	-	17	50	h/	\$)~ ·	\$10	<u> </u>	1
	1	•		•	1	:	1	1	1		-	+		<u> </u>		1-0	77 _	<u> </u>	<u> </u>				-	715	البدراة	850	نا

HANDER COUNTY	PROJECT	JOB	NO. 199 U37109
SJECT	PROJECT ENDER GUNTY UF Closure	BY A	DATE
	Closung	CHECKED	DATE
Crowns Cot			
THE CEST			
	 		
175m (D) 577	of specific cost		
Plante		Pricing	
WASTE Time A	001/17	Harcks Con	1724
	/	PAIRE CAND	75
Marinin	GUARTITY STONED THE PENT	, 7	
		119,50 m	
1 9	a -	// //- ///	
	PEM17		
	+ -	70ml + 10 ms ,	#
		+ 10 ms	195/12
		= 1,195	(1200)
MRF			
MAXMUM	GLANTY STURED	Hauling COST	
	(Unpresent	overland sen	
TOTAL 180	morenol,	70 Sonoson	
	plannin cons	A 10 00 1	7
	i i i i i i i i i i i i i i i i i i i	# 10,50/m	
	CANS PLASTIC	7/ 6	
	(and sound)	HUS DISPOSAL	C) SANAJOTI
	All OTHER LASTE	\$ 63,77/2	
	Joned Newson	#	ļ
	Tomollers	7010/ = 79	1,27/m
		Dis	posol
Quantity to C	and onto Trailers		
180 TWS	1 = 600 Cy	Hay Fro	250
1 20	x # 770	God	Ţ
TYP PACKER A	1 = 600 Cy 0 15 ITN Cy 2000 16		1 1 1
TAVELE		Hande C GLOTE	or with
	M 02315 210 6035	1 1 1 1 1 1 1	
		4710/da	9 + 250
I PUBLICAL VI	by 70701 600 = 14 (507 2 days		mos

CLIENT	PROJECT	SHEET	
SUBJECT		BY	DATE
<u></u>		CHECKED	DATE
Closure Gust			
18m (13) 5.	TE Sprante cost		
Dunanna		Prier	
- Dupatity	 	1-1100	
MRF	†		
4" *			
139		Rann	
Power WASI	h Hoons a	791 01590 4006	310
00	ļ	235/wx	
MPNOX 2 W	maks to claw		
		operationa	
5 day / WE	cet x 2 week = 10 days	70,20/day	
		Toral MRF Clas	as Color
		#13,368	1.41 172
		7 7 3 3 6 9	2.0 1/1
		LOAD Z days	10 7 /dag
	+	LAUTE 4 142	2
	<u> </u>	<i>t</i>	450 *
		\$ 250	
			@ 235/WK
		\$ 470	>
		OPENATUR 10 days &	2 70,4/day
		# 702	
		TOTAL = \$16,0	7111 60
	†	763	70,00
		76.5	
			
	-		
			

																				21	155			_ OF		
CLIENT	4		le r	6		, [PRO	JECT	,	,												JOB	NO.	-	3.09	$\overline{}$
SUBJECT		The first of	, , , , ,		010	7 1	11.		L.				/	. 7	1 11		_	BY	4-4				DAT	E .	7	\dashv
		•••					MN	<u> </u>	18 <u>4</u>	<u>~</u>		<u>m</u>	U	NU	<u>hVI</u>			CHE	CKED	ער						
			_												•								Щ,			_
0	100	m	T	6	7 17	-																				
-																										
-			·j	7				_			-					•••••										
	12	M		_		ر رد ا	2	د.	PU	47		رد	257												-	
	ļi]				ļ	jj		<u></u>	ļ													
		_		an	77	7												$\mathcal{J}_{\mathcal{Q}}$	116	-//	15					
						-/-															7					_
-//,	1,//-	. /	1.)	40	2 / 1	\mathcal{L}	h. A	1,	0.7 <i>G</i>					/		-/	1	/21	. /	14	20	۸ ۲			
7/6	V 3 Z	7	10	6	y y 3	LYY	<u> </u>	503	~,	W/@				4	Y	101	۲	<u></u>	עד	- 1	71.5	120	\sim			
	<u> </u>											<u> </u>	51	50	(D	W	m.		න	5011	0~1		?	47	- Du	UMS
	V	20	C	<u>,/</u>		70	Ø	50	llor	J		ļ	ļ	12	,7	D 1	vM	5 2	2	00°	10n	un	-/	25	45	
	Ps	,,,	73			100)	50	Hon	rs			55	(0	/ 7	رمه	m	/	00	20	llon	ج د	∌	20	WN	۱,
	1							<i>}</i>				†														
	<u> </u>	 												: :			:			:	!	!	•	25		
/.	307	721	23		<i>,</i>	140	2	B	ΔΠ	3 00	C	 	53	50	10	دس بدم	ท	10	3,	1770	4	101	2	= /	40	ım
	<u> </u>	ļ						ļ								4	مدو	MS	Y	50	0/	jav	n =	#7	0 00	
1	154	7	B	JR C		40	20							//		m	. 100		α	ζ,	<	1	77	inc		
	() ·			7.				ļ								<u> </u>	00.	····/	20 1	- C	20			"NC	٠,	
		 	<u> </u>					ļ	ļ	ļ	 		ļ					·			تعر	9	<u>a</u>		<u> </u>	
	,	ļ,	<u>.</u>					ļ	ļ.,	ļ	ļ	<u> </u>	ļ							\$	/z	٥	ļ	20		
1	19	VIC)			50	9	70/	Yon	کر					0~1	m		B		20	ۈ		Ą	20	b	
	7																									
	†	†	}					 	ļ		 		ļ								1	†	†	1	1	
Pa			7-	<u></u>		217	1	<u> </u>	 		 	 						رم	t	/	<u> </u>	 	1	-		
11-9	511	CIC	12			-) [('9		ļ		ļ		/	0	111	M	(· · ·	21	42	<u> </u>	ļ	20	?	
	بر.ا.							ļ	ļ		<u>.</u>		ļ	ļ	<u> </u>		<u> </u>			<u> </u>	<u> </u> -	<u> </u>	<u>.</u>	<u> </u>		
		1	///	11		-	0	250	נמו	ZON									ŀ							
7	1	.عد. د	/	//	A /	Ŀ		250		70N	,	/		70	770 1	,	16						1	-	-	
	<u>-</u>	 	P	· / /	-	₽	F	70	por	1/		÷	 	ļ <u></u>	·		Ţ	·				· • • • • • • • • • • • • • • • • • • •	 ,	<u> </u>	1 7	
	-	-	-				ļ		-	-	 		ļ	ļ	:	•	•					7			+2	W
		ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	<u>.</u>	<u> </u>		ļ	ļ		1	27	-5	=	1	10	7	40	<u></u>		
	<u> </u>			<u> </u>			İ	<u>.</u>													'	'				
														/ :	DA	4		10:	0 4	<u> </u>	4	2	6	+		
	·	·	†	ļ			†	†	-		†	·		<u>'</u>	7	- /	ļ	<u> </u>	1	-	<u>. </u>	-	1	7	-	
		 	 	ļ	ļ			 		· 	 	-		2	11	00		1	ļ		 	0	· 	<u>-</u>		
]	- ‡	ļ	-			ļ	ļ	ļ			<u> </u>		ļ	1	//,	01	11/	4	1	×	<u> </u>	0	7	\$		ļ
		<u> </u>		İ		<u>.</u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>	d	<u> </u>	1				<u> </u>
																			=	÷ 9	16	75	+			
	1	1	1			<u> </u>	<u> </u>	1	1	1	1	1		:	:	:	:	5	1	:	:	:		1	1	1
 		 -		ļ		 	 -			 		-	 	72		7		4	12	,0	35	-				
ļ		-	 	ļ	ļ	ļ	ļ	 	- 			· 	ļ		-/^	ļ'	ļ	ļ	-	1	-	- 				
	1	1	1	:		:		1	1	1	1	1	'}		}		1	}	1		}		•			

PROJECT: Hardee County Solid Waste Department

PROJECT: Hardee County Small Waste Tire Facility

ERMIT NO.: 129318-002-WT

SPECIFIC CONDITIONS:

7. Processing and Storage Requirements. All waste tires shall be processed and stored in accordance with F.A.C. 62-711.530 and 62-711.540.

- Storage at the facility as shown on Figure No. 1 (attached) is limited to 10 tons of waste tires (with no more than 1000 whole tires).
- If the facility has reached its permitted storage capacity, the permittee shall not accept additional waste tires until sufficient capacity has been restored.
- At least 75 percent of the whole tires, used tires, and processed tires that are delivered to or are contained on the site of the waste tire processing facility at the beginning of each calendar year shall be processed or removed for disposal or recycling from the facility during the year, or disposed of at a permitted solid waste management facility.
- 8. Operation Plan and Operation Record. A copy of the Department approved permit, operational plan, record drawings, and supporting information shall be kept at the facility at all times for reference and inspections.
- 9. Operating Personnel. A trained supervisor or foreman shall be responsible for maintaining the facility in an orderly, safe, and sanitary manner. Sufficient personnel shall be employed to adequately operate the facility.
- 10. Reporting Requirements. Waste Tire Processing Facility Quarterly Report, Form #62-711.900(4) attached, summarizing facility operations shall be submitted quarterly to the Department by January 20th, April 20th, July 20th, and October 20th each year, pursuant to FAC Rule 62-711.530(5).
- 11. Fire Safety. A fire safety survey shall be conducted at least annually which includes a statement from the local fire protection authorities that the site meets the requirements of the local fire protection authorities. This report shall be submitted upon request. This report shall indicate that all noted deficiencies have been corrected and approved by the local fire protection authorities.
- 12. Stormwater System Management. Stormwater shall be managed as required by F.A.C. 62-711.540(3)(a). The site shall be managed to divert stormwater around and away from the storage piles.
- 13. Emergency Preparedness Manual. A copy of the facility's emergency preparedness manual shall be kept at the site and a copy shall be kept at an off-site location.

9675 RANGELINE RD PORT ST. LUCIE, FL 34987 PHONE (772) 465-0477 FAX (772) 489-2124

1590	Equipment Rental		UNIT	HOURLY OPER. COST	RENT PER Day		RENT PER MONTH	CREW EQUIPMENT COST/DAY	
740	Accessories for above Ro15		Ea.	.11	18	54	162	11.70	400
	ander, noor	⇉╟		.70	. 16.35	49 60	147	15.40 16.80	
50	Edger Rozz	50		.60	20	i	180	A CONTRACTOR OF THE STATE OF TH	
00 Sa	aw, chain, gas engine, 18" long	41		1.15	16	48	144	18.80	ŀ
00	36" long Roze		ı	.55	48.50	145	435	33.40	
50	60" long	11	1_	.55	50	150	450	34.40	
00	Masonry, table mounted, 14" diameter, 5 H.P.	Ш	₩	1.30	56	168	505	44	ľ
50	Portable cut-off, 8 H.P.	Ш		1.20	25.50	76	228	24.80	
.00	Circular, hand held, electric, 7-1/4" diameter		Ea.	.20	10	. 30	90	7.60	; }
200	12" diameter	Ш		.27	14	42	126	10.55	
250	Wall saw, w/hydraulic power, 10 H.P			2.08	97.50	292.40	875	75.10	
275 S	hot blaster, walk behind, 20" wide	Ш	\perp	1.04	445	1,330	4,000	274.30	
300 S	team cleaner, 100 gallons per hour	Ш		2.20	63.50	190	570	55.60	L.
310	200 gallons per hour	Ш		2.90	78.50	235	705	70.20	
340 Ta	ar Kettle/Pot, 400 gallon	П		2.69	51.50	155	465	52.50	Γ
350 T	orch, cutting, acetylene-oxygen, 150' hose			1.50	13.35	40	120	20	ľ
360	Hourly operating cost includes tips and gas	I	T	8.10				64.80	1
410 T	oilet, portable chemical	Ш		.10	17.35	52	156	11.20	
420	Recycle flush type	\Box	\Box	.13	21.50	64	192	13.85	Į.
130 T	oilet, fresh water flush, garden hose,	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$.14	24	72	216	15.50	1
140	Hoisted, non-flush, for high rise	\Box	\Box	.13	- 21	63	189	13.65	
450 T	oilet, trailers, minimum	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$.22	36	108	325	23.35	
460	Maximum			.65	108	. 324	970	i	
	ractor, farm with attachment	Ш	₩	9.30	225	675	2,025	209.40	1
470 T	railer, office, see division 01520-500							,	ľ
500 1	Trailers, platform, flush deck, 2 axle, 25 ton capacity	Ш	Ea.	4.20	91.50	275	825	<u> </u>	_
600	40 ton capacity			5.45	128	385	1,150	1	
700	3 axle, 50 ton capacity		\perp	5.90		425	1,275		_
800	75 ton capacity	- 11		7.40	185	. 555	1,675	1 .	
810 1	Trailer mounted cable reel for H.V. line work	Ш		4.38	<u></u>	626	1,875	+	
820	Trailer mounted cable tensioning rig	- 11		8.61	410	1,230	3,700	1) [
830	Cable pulling rig	_11		54.46	2,325	6,980	20,900	1,832	4
	Trailer, storage, see division 01520-500	- il		İ .		l			ŀ
900	Water tank, engine driven discharge, 5000 gallons		Ea.	5.50		370	1,100		
925	10,000 gallons	- []	ıl	7.65	l.	525	1,575		
	Water truck, off highway, 6000 gallons			49.05		2,150	6,450		_
4	Tram car for H.V. line work, powered, 2 conductor	- []		5.68		340	1,025		
	Transit (builder's level) with tripod		$\vdash \downarrow$.09		1	132		_
	Trench box, 3000 lbs. 6'x8'			.42		210	630		
7040	7200 lbs. 6'x20'		igspace	.82		409	1,225		_
7050	8000 lbs., 8' x 16'	- 11		.87		436	1,300	•	1
7060	9500 lbs., 8'x20'		ot	1.17		584	1,750		
7065	11,000 lbs., 8'x24'			1.31		654	1,950		
7070	12,000 lbs., 10' x 20'		$\vdash \vdash$	1.63		817	2,450		_
	Truck, pickup, 3/4 ton, 2 wheel drive	- []		5.35	1	165	49		
7200	4 wheel drive		\vdash	5.50			570		_
7250	Crew carrier, 9 passenger			5.53		324.40	1	1	
7290	Tool van, 24,000 G.V.W.		\sqcup	9.09					_
7300	Tractor, 4 x 2, 30 ton capacity, 195 H.P.			13.90		520	1,55		1.
7410	250 H.P.		\sqcup	18.90		815	2,45		.U
7500	6 x 2, 40 ton capacity, 240 H.P.	-		17.50	1 '	815	2,45	1	<u>,</u>
7600	6 x 4, 45 ton capacity, 240 H.P.		igspace	21.4		800	2,40		
	Vacuum truck, hazardous material, 2500 gallon			6.72	1	943	2,82		
7625	5,000 gallon		\sqcup	9.09		1,256.80			
7640	Tractor, with A frame, boom and winch, 225 H.P.			14.30		700	2,10	1	
	Vacuum, H.E.P.A., 16 gal., wet/dry		\sqcup	.2		72	21		_
7655	55 gal, wet/dry	T		.6	4	108	32	1	
7660	Water tank, portable	T	1 T	1 1	9.3	5 28	1 8	4 13.6	0

02	315 Excavation and Fill	l	DAILY	/ LABOR-	-			2004 BAI	RE COSTS		TOTAL
	515 Excuration and Fill	CREV	N OUTPL	JT HOURS	UNI	П	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P
3020	Common earth	B-10			C.Y	Υ.		.30	.35	.65	.85
3040	Clay		1,100	.011				.34	.39	.73	.95
3200	150' haul, sand & gravel		670	.018	1	_		.56	.65	1.21	1.56
3220	Common earth		610	.020				.61	.71	1.32	1.71
3240	Clay	\vdash	550		1 +			.68	.79	1.47	1.90
3300	300' haul, sand & gravel		465	.026				.80	.93	1.73	2.25
3320	Common earth	\vdash	415	.029	1		·	.90	1.05	1.75	2.52
3340	Clay	ΙŢ	370					1.01	1.17	2.18	2.32
4000		B-10				-		.15	.35	.50	.61
4020	l •		2,200				i	.17	.39	1	
4040	Clay	╟┼	1,950		-	-				.56	.69
4200	150' haul, sand & gravel		1,225					.19 .30	.44	.63	.78
4220	Common earth	\vdash	1,100		₩	\dashv		.30	.71 .79	1.01	1.24
4240	Clay		975	.012						1.13	1.38
4400	300' haul, sand & gravel	$\vdash +$	805	.012	1-+	\dashv		.38	.89	1.27	1.55
4420	Common earth		735	1		-		.46	1.07	1.53	1.89
4440	Clay	\vdash		1	┞╌┼	_		.51	1.17	1.68	2.06
5000	300 H.P., 50' haul, sand & gravel	▼	660	.018]	.57	1.31	1.88	2.30
5020	Common earth	B-10			Ш	_	·	.12	.35	.47	.56
5040	Clay		2,900			ļ		.13	.38	.51	.62
5200	150' haul, sand & gravel	<u> </u>	2,700	_1	Ц			.14	.41	.55	.66
5220	-	H	2,200	1		ı	-	.17	.50	.67	.81
5240	Common earth	Щ	1,950		\sqcup			.19	.56	.75	.91
5400	Clay		1,700					.22	.65	.87	1.04
5420	300' haul, sand & gravel	Ш	1,500	. 1		_		.25	.73	.98	1.19
	Common earth		1,350					.28	.81	1.09	1.32
5440	Clay	₩	1,225	.010	₩			.30	.90	1.20	1.45
6000	For compaction, see div. 02315-310										
6010	For trench backfill, see div. 02315-610 & 02315-620		 _ _ 								
	BORROW, LOADING AND/OR SPREADING					Ī					
4000	Common earth, shovel, 1 C.Y. bucket	B-12N		.019	C.Y.	<u>' </u>	7.15	.61	1.01	8.77	9.90
4010	1-1/2 C.Y. bucket	B-120	1 '	4			7.15	.45	.86	8.46	9.50
4020	3 C.Y. bucket	B-121	1,800	.009	L ₹		7.15	.28	.73	8.16	9.10
4030	Front end loader, wheel mounted			. 7		ı					
4050	3/4 C.Y. bucket	B-10F		.022	C.Y.	'.	7.15	.68	.35	8.18	9.25
4060	1-1/2 C.Y. bucket	B-109	1	.012			7.15	.38	.24	7.77	8.70
4070	3 C.Y. bucket	B-10T					· 7.15	.24	.19	7.58	8.40
4080	5 C.Y. bucket	B-10U	ſ	.005			7.15	.14	.26	7.55	8.35
5000	Select granular fill, shovel, 1 C.Y. bucket	B-12N	925	.017	11		7.50	.55	.92	8.97	10.10
5010	1-1/2 C.Y. bucket	B-120	1,250	.013	\Box		7.50	.41	.78	8.69	9.75
5020	3 C.Y. bucket	B-12T	1,980	.008	l ↓		7.50	.26	.66	8.42	9.35
5030	Front end loader, wheel mounted				Ť	┪	· ·				
5050	3/4 C.Y. bucket	B-10R	800	.015	C.Y.	:	7.50	.47	.24	8.21	9.20
5060	1-1/2 C.Y. bucket	B-10S	1,065	.011		+	7.50	.35	.22	8.07	9
5070	3 C.Y. bucket	B-10T	1,735	.007			7.50	.22	.17	7.89	8.75
5080	5 C.Y. bucket	B-10U		.004	-	十	7.50	.13	.24	7.87	8.70
6000	Clay, till, or blasted rock, shovel, 1 C.Y. bucket	B-12N	1 '	.022			5.30	.72	1.19	7.07 7.21	8.20
5010		B-120		.017		\dashv	5.30	.53	1.02	6.85	7.70
6020	3 C.Y. bucket		1,530				5.30	.33	.85	6.48	7.70
5030	Front end loader, wheel mounted		 	+	├ ~	+			.03	0.40	1,23
5035		B-10R	465	.026	C.Y.	†	5.30	.80	.41	6.51	7.45
5040		B-10S		.015	-	-	5.30	.45	.29	6.04	6.80
5045		B-10T		.009		-	5.30				
050		B-10U		.005	\vdash	+	5.30	.28	.22	5.80	6.45
5060	Front end loader, track mounted	7.100	2,200	.000	♦		0.30	.17	.31	5.78	6.40
065		B-10N	715	.017	C.Y.	+	5.30	.52	.42	6.24	7.05
TOO:			. //7	1 1/11/	1. T	- 1	2 411	52 I	121	£ 2/ €	705

EQUIPMENT RENTALS BID TABULATION - BEGINNING OCT 3, 2003 ENDING SEPT 30 2004

PER DAY	APAC	- MACASPI	IALT	<u> </u>	G S EQUIPM	MENT	HE	RTZ EQUIPN	IENT*
	W/OPER	W/O OPER		W/OPER		MOBIL/EA WAY	W/OPER	W/O OPER	MOBIL/EA WAY
ASPHALT PAVER	\$950.00	N/B	\$250.00	N/B	N/B	N/B	N/B	N/B	N/B
D/L 1 CY	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B
GRADER	\$480.00	N/B	\$250.00	N/B	N/B	N/B	N/B	4000.00 MO 1550.00 WK 600.00 DAY	\$50.00
LOADER	\$710.00) N/B	\$250.00	N/B	3200.00 MO 1066.66 WK 355.55 DAY	\$150.00	N/B	3200.00 MO 1300.00 WK 550.00 DAY	\$50.00
DUMP TRUCK	N/B	N/B	N/B	N/B	N/B	N/B	N/B	4800.00 MO 1800.00 WK 655.00 DAY	\$50.00
MIXER	\$1,300.00	N/B	\$250.00	N/B	12500.00 MO 4166.66 WK 1388.88 DAY	\$150.00	N/B	N/B	N/B
BACKHOE	N/B	N/B	N/B	N/B	3500.00 MO 1166.66 WK 388.88 DAY	\$150.00	N/B	1200.00 MO 525.00 WK 210.00 DAY	\$50.00
DOZIER - WIDE TRACK	N/B	N/B	N/B	N/B	N/B	N/B	N/B	6200.00 MO 2200.00 WK 810.00 DAY	\$50.00

RECOMMENDATIONS: W/OPER - PAVER, GRADER, LOADER, MIXER - APAC

W/O OPER - MIXER - GS EQUIP.

W/O OPER - GRADER, LOADER, DUMP TRUCK, BACKHOE, DOZIER - HERTZ

Page 5

SERVICE WORK ORDER (final copy)

County: HARDEE

SWO: 508-94517

Sales: (009433) TIM LESTER

Date: 01/23/03

ckup: 02/08/03

Client PO: JANICE

Disposal PO:

Transportation PO:

Manifest(s): N/A Transporter: N/A

IC Project:

Revenue Proj #: 490

BILLING ADDRESS

PICKUP ADDRESS

931779 (PSCUSTNO: 8021059

HARDEE COUNTY BOARD OF COUNTY

COMM.

ROOM A-204 COURTROUBE ANNEX

412 WEST ORANGE STREET

WAUCHULA FL 33873-

BTHHW

CLEAN HARBORS ENVIRONMENTAL SV

C/O HARDEE COUNTY SOLID WASTE

HARDEE COUNTY SANITARY LANDFIL

ON AIRPORT ROAD

WAUCKULA FL 33873 J.R. PRESTRIDGE

(941) 773-5089

GD								
GR	PROFILE/LABPAK		OTY	UM	PRICE	TOTAL PRICE		
	BTHHW-001	DIS-LP/FLANMABLE LIQUIDS/LOW CL/55	1.00	55	200.000	200.00	4	
	BTHHW-002	DIS-BULK/AEROSOL CANS/55	1.00	55	160.000	160.00		
•	BTHHW-010A	DIS-BULK/FLUORESCENT LAMPS/FT	1255.00	LH		75.30		
	BTHHW-012	DIS-BULK/FLAMMABLE LIQUID/LOW CL/55	1.00	55	105.000	105.00		
	PTHHW-023	Dis-Bulk/flammable Liquid/Low CL/55	1.00	55	105.000	105.00		
	BTHHW-024	DIS-BULK/LATEX PAINT/56	2.00	55	125.000	250.00		-
	BTHHW-025	DIS-BULK/NI-CAD BATTERY WET CELL/55	3.00	55	500.000	1500.00	=	
	BTHHW-026	DIS-BULK/ALKALINE BATTERY/DRY/30	1.00	30	130.000	130.00		
_	ethhw-lp	DIS-LP/OXIDIZER SOLIDS/30	1.00	30	205.000	205 00		
	BTHHW-LP	DIS-LP/CORROSIVE LIQUIDS/ACIDIC/5	1.00	5	60.000	60.00		,
	BTHHW-LP	DIS-LP/CORROSIVE SOLIDS/ACIDIC/5	1.00	5	60.000	60.00		· ·
	BTHHM-LP	DIS-LP/CORROSIVE SOLIDS/ALKALINE/30	1.00	30	150.000	150.00		
		DIS-LP/CORROSIVE LIQUID/ALKALINE/30	1.00	30	150.000	150.00		
		DIS-LP/FLAMMABLE SOLID8/55	3.00	55	200.000	600.00		•
		DIS-LP/PESTICIDE LIQUIDS/55	2.00	55	225.000	450.00		
		DIS-LP/PESTICIDE SOLIDS/55	3.00	55	225.000	675.00		
		DIE-LP/PCB LIQUIDS/5	1.00	5	120,000	120.00		
	BTHHW-LP	DIE-LP/CORROSIVE LIQUID/ALKALINE/5	1.00	5	60.000	60.00		
	BTHHW-LP	DIS-LP/CORROSIVES/MERCURY DEBRIS/5	1.00	5	80.000	80.00		
					Disposal sub:	5135.30		
		LABOR FOR 4 HR COLLECTION	1.00	HR	847.500	847.50		211.275/2
					Labor sub:	847.50		
		8' FLUORESCENT LAMP CONTAINERS	1.00	EA	30.000	30.00		
				N	Materials sub:	30.00		
	3 PO	K COUNTY HAZ WASTE FEE						
		Total Container Count: C)		TOTAL:	0.00		
	•				TOTAL	6012.80		

L.1.g Scrap Metal and White Goods Storage Site

When scrap metals and white goods arrive at the landfill, a spotter escort the loads to the area designated for scrap metals and white goods storage as shown on the Operations Drawings. Incoming loads of scrap metal, appliances, and white goods (with and without Freon) are segregated and temporarily stored in this area. The storage area has a stable base comprised of compacted shell to minimize rutting due to traffic. Clean, unused, recyclable metal cans are also transported to the scrap metal site for temporary storage. Propane tanks are accepted only if they are empty and the valves has been removed.

Lawnmowers are also stored at the scrap metal site. However, lawn mowers are not accepted at the facility unless any oil or gasoline has been removed prior to their delivery. If the scalehouse attendant spots a lawnmower, the attendant will question the driver concerning the gasoline and oil content of the lawnmower; if the lawnmower contains gas or oil, the scalehouse attendant will not accept it. If a lawnmower is found in a load delivered to the MRF for processing, the operating personnel inspect the lawnmower to ensure that it is free of gasoline and oil prior to taking it to the scrap metal site. Gasoline and oil, removed from lawnmowers and other yard tools, will be taken to the Household Hazardous Waste Collection Center for storage.

White goods and appliances with Freon are stored separately from the rest of the scrap pile. These items are stored in an upright position to prevent the Freon from discharging to the atmosphere. An independent contractor is hired to remove the scrap metal and white goods from the site. The contractor is required to provide certification of qualification for removal of any chloro-fluoro-hydrocarbons (i.e., Freon or CFCs) from the white goods. Up to 400 tons of scrap metal and white goods (a maximum of 200 individual pieces of white goods) can be stored in this area. The minimum frequency for scrap metal and white good removal is 12 months.

L.1.h Household Hazardous Waste Collection Center

A Household Hazardous Waste Collection Center (HHWCC) is located southeast of the MRF. The HHWCC is comprised of a roofed building with a curb in order to promote spill containment. The HHWCC is used for the temporary storage of special wastes such as used oil, paint, lead acid batteries, florescent lightbulbs, and household hazardous wastes. Used oil is consolidated into two double-walled oil storage tanks. Lead acid batteries are stacked three high on pallets, with cardboard placed between each layer, and then shrink wrapped when pallets are full. Private contractors are hired for the removal of the special wastes such as the used oil, paint, lead acid batteries, and fluorescent light bulbs. The maximum onsite storage and frequency for removing these recyclable from the site is as follows:

- Used oil (up to 700 gallons) is removed monthly,
- Paints (up to 100 gallons) removed quarterly,
- Batteries (up two 140 batteries) removed quarterly,
- Light bulbs (Up to 400) are to be removed at least every 6 months, and

320-

 Household Hazardous Waste (up to 50 gallons and 250 pound bags of chemicals) to be removed quarterly.

0.4- USE

Household hazardous waste is defined as discarded, small quantity residential waste (less than 220 lbs.) which is either listed by the U.S. Environmental Protection Agency (EPA) in its hazardous waste regulations or exhibits one of the four (4) following hazardous characteristics:

- Ignitability It may catch fire.
- Corrosivity It can damage other materials (including human tissue) on contact.
- Reactivity It reacts violently with water and may catch fire or explode.
- Toxicity It may cause illness or health problems if handled incorrectly.

Amnesty days are held four times per year in which residents can deliver their household hazardous wastes (including cans of paint) at no charge. The contractor removes these wastes from the site that same day. Only empty dried out paint cans are accepted throughout the year. If a can of paint or a propane tank with a valve is found by landfill personnel it is taken to the Household Hazardous Waste Collection Center for temporary storage in hazardous waste storage sheds until removed from the site by the qualified contractor. The HHWCC is also used to temporarily hold any unacceptable wastes found at any of the other on-site disposal or storage areas. Currently, Clean Harbors is contracted to remove and properly dispose of the household hazardous wastes. The Household Hazardous Waste Haulers Agreement is contained in Appendix B.

L.1.i Maintenance Building

The onsite maintenance building is within the southeast corner of the lined area of the Class I landfill. Routine maintenance and inspection of landfill equipment is performed in this building. Fuel for the landfill equipment is pumped from a fuel tank, with a containment wall, located immediately adjacent to the maintenance building. Fuel and fluids (engine oil, transmission oil, hydraulic oil, or radiator fluid) are added to the equipment in the maintenance building as needed. If repairs on the equipment are necessary, the equipment is sent to the County's central maintenance shop, located off-site, or to the dealer's authorized maintenance facility.

L.1.j Borrow Area

A borrow area is located northwest of the MRF. The County utilizes this on-site borrow area as well as contracting with off-site borrow pits for cover material. County personnel conduct portions of the excavation with the dozer and loader. If offsite borrow material is needed for additional cover soils or for other operational uses, then contracted independent contractor will haul in soils.

Hardee County Landfill Operations Plan

SHEET 9A OF

CLIENT PRO Hardee County PRO SUBJECT	andfill Expansion	JOB I	NO. 199033.09
SUBJECT LOUNTY I L	aratin Expansion	Y TOT	DATE
Lona-Term Care.	C	CHECKED	DATE
1. Grandwater Mor	ntorios		
i. Granduna en 1901	11101110		
Mas tacad Spring	On farth Callouing	Doraustace	
PICHTOLEG COMITON	hually for the following	Hudverer 5	
Field Paroneters			
	evels (prior to purging)		
· Specific cond	fiction of waying.		
• BH	**************************************		
· Dissolved Ox	laen		
·Turbidity			
· Temperature	Monitario	0 100115	
· Sheens R Co		N	(ن م
	Mw-a		
Lab Paraveters		130ck 510	1 1 1
· Total Amuon			1 1 1
. 800	n w-8		
• (00	MW-10		
·Chibrides	mw-1/		
• Iron	Mw-12	DEVELO	70N
Magnesium	upone	ompletion of	: : : :
·Nitrate] PA	POSE I SECTI	on I
• Sodium			
· Sufarte			
• toc			
·tos			
· 40 CFR par	+ 258 Appendix I		
· Mercury			
			ļļļ
Atotal of 8 we	ells are to be test	as well as	a
somples for QA	/QC (ie feld equipme	nt ringe bl	ank and
field duplicate u	which the lab does not	charge for),
		0	
			<u> </u>
- GWS	Sampling Quantity = 81	vells	ļļļ
			ļļ

SHEET 9B OF

ENT	jd	ee	2.0	OU	nt	-		PRO	UECT 2	<u>-</u>	Fil	ΙE	хþ	an	sì0	σ			Ιον				JOB	NO.	903	33.0	29
SJEC	, I					<u> </u>					٠								BY	$\mathcal{J}\mathcal{J}$	6			DAI	L		
	γ	<u> </u>	Te	> V (ч() Or	<u>۔۔</u>				•								CHE	CKEC)			DAT	E		
	_	$\overline{}$		1	7		,	,	1			1		\									-	-			-
C	łY.C	יוג	വർ	UΧ	ute	Y	Mc	וטני.	TOI	C7C	9	<u>, U</u>	[יחכ	1)													
C	عرا	25	+																								··
	S	h	rt	E	ואט	r.Or	JM	en	ta	l.	لــد	بط	OY.C	xtc	ri	೭ಽ	C	qr.Q	M	dα	ta	ex.	\mathcal{C}	α	ts.		!
	-		_			Λ.				1	<u>C</u>		~ l.`		·	s,	4 🔿			۱.							1
				K.	<u> </u>	Ę,λΩ	i UN	Z X		NV.	<u> </u>	M	ЫΠ	വദ			40	<u>۷/ ۱</u>	NC	7.7							
			C	þa	Mρ	le	C	ااد	ec	tic	20.	=	\$ 6	J5	ſh	α	<u></u>										
<u>.</u>					A	55	M	e	1.1	\sim	ur	17	ie.	1.1													
								 !	ļ																		
			<u> </u>	þei	41	- C	רטנ	u	ul.	C	bs	† =	7	br	×	\$	a ^c	<u> </u>	+ ₫	40	Ο	=	\$	42	15_		
			<u> </u>					<u> </u>	<u> </u>		ļ	ļ	W	<u> </u>			h			We	11			W	211		
			ļ	ļ		١ ٨ ١	So		11.		\bigcirc		<u> </u>	\$1	25	1	ell										
	1		ļ			HVV		Wł	7777	X.		20	1 -		ro.	W.K	113										
			<u> </u>				<u> </u>		ļ			ļ	<u> </u>				<u> </u>					ļ	<u></u>				
			ļ		 			ļ					ļ						ļ				ļ				
							-											ļ					ļ				
														ļ			<u> </u>	<u> </u>		ļ							-
			İ							<u></u>				ļ	ļ		<u></u>						<u> </u>				1
			ļ	·····				ļ	+				÷	ļ						ļ			<u> </u>	ļ			
			<u> </u>					<u> </u>	-				ļ			<u></u>	ļ						 				-
			<u> </u>			ļ	<u> </u>	<u> </u>			ļ	ļ	ļ									ļ	ļ. 				-
			<u> </u>				1	<u> </u>	ļ	- 		<u> </u>				ļ		<u> </u>	ļ		<u> </u>		1	ļ			1
																											-
			ļ										ļ					ļ	ļ			 	ļ				+
																	 		 				 				-
			ļ				<u></u>	ļ		ļ		ļ	ļ	ļ				ļ	ļ								
			ļ				ļ	 			ļ				ļ			ļ				ļ	ļ				-
				:	1												1		•	1		1					1

SHEET LOA OF_

ÇLIE	NT				_1			PPO	JECT		· · · ·	,											JOB	NO.			\Box
SUB	LCT ECT	ee		CUX	Te				صه	dt	111	Ex	bon	121	<u> </u>				BY	1.	Н_		100	DATE		3,00	1
					•														CHE	CKED	ilO _			DATI	<u> </u>	—	\dashv
1	<u> </u>	<u>a</u>	_ \	er	<u> </u>	م	re				· · · ·	·····					· · · · · ·						;	L.,		 -	_
a	S	<u>_</u>	Fac	e	W	at	دح	M	or	11	Or.	iΩ	a.														
													J														
·,	Λ ι		- بار		1 6						3 1	0		مك								- +	٠				
	IΜ	Ω	a.TC	re	Z . Z		W/	$-\alpha$	נתנ	UΩ	1.17	ΙΤ.(D.Y	<u> </u>	L7	O1	lou	אניאל	4-6	ari	λM	<u>ا ا</u>	_r .	2			
		\	<u> </u>						ļ		ļ																
		F	•	i	i	α	i	í	i							ļ											
			•	Sc	ec	ifi	<u>ر ب</u>	Co	nd	uc	Fivi	tt	<u> </u>														
			i	ρŀ	•							1															
				• 1		راه	سرحا) }	عم	_																
		<u> </u>		7	مريد ا				2233	5		1	†														
ļ		 	•	•		erc	•	•		ļ		<u> </u>	<u> </u>	ļ	ļ												
ļ		 	•	\supset	re	<u>n</u>	Ă		pla	145		 	 	ļ									ļ				
		ļ	ļ. 	ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	ļ	ļ	 	<u> </u>	ļ	ļ	ļ	 						<u> </u>				
		1	ak	F	Pax	α	ue:	tex	15			ļ	ļ	<u>.</u>	ļ	ĺ	<u> </u>						ļ				
ļ			•	2.1	n c	<u> </u>																			·		
			;	;	;	Λlz	ار م	Δ		ا (ا	<u></u>																
		†			:	Q	1	:		:	:	·	†		ļ		-	·					†				
		 	:	: _	:	:	10	r a	176	2			 			 	 						 				
	 -	 	7	1	ÞD	i		 	 			 	 	ļ		ļ			<u> </u>				 				
	ļ	ļ	•	ث	pp	ex	ļ	ļ	ļ		<u>.</u>	 	ļ			ļ	ļ	ļ					ļ				
	ļ	<u>.</u>	•	lro	$\stackrel{\downarrow}{\circ}$	ļ	ļ	ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ		ļ		ļ				
			•	Цe	ra	LY.	į																				
			i	i	4	ati	: \																				
		·†	1	ľ	DS	ſ	<u> </u>	†	†	1	1	1	†	1	1		1	†		ļ			†		ļ		
		 		1	Ε.		 	 	 				 -	†				 					†	ļ			
			1	•) C								 	 				 		ļ	ļ		 		ļ		
	ļ	<u> </u>				U.						ļ	ļ	ļ	ļ	ļ		 	ļ	ļ		ļ		ļ	ļ	ļ	
	ļ	<u>.</u>	•	To	ita	D. F	3/4	Sp	ho	<u> u</u>	\$	ļ	ļ	ļ	<u>.</u>		<u>.ļ</u>	<u> </u>	ļ	ļ		ļ	ļ	ļ	ļ		
			•	C)	1	'																<u> </u>			
				75	7																						
	İ	<u> </u>			•	F	2 ~		+ '	1=	۵	Δ		لم		Ť		1	Ť	İ	Ī	<u> </u>	Ť	1			
ļ			†	1	<u> </u>	41[- -}-	٢٠٠			ر ب	+-7	رجيد	ı.U	1 C.	+	+	+	 	<u> </u>	<u> </u>	 	†	-			
ļ		-	-			ļ	 		-			+	 	 				+		 	 	 	-		ļ		
	ļ	O	ne	15	ψx	fac	e	$ \omega $	to	ex	1	401	11+	or	ווטכ	}{	ווסלן	$\phi +$	_ <	ξw.	+2	ا را	\$_0	100	ito	rec	<u> </u>
	ļ			ļ	<u> </u>		<u> </u>	<u> </u>	ļ				ļ	ļ	-	1	<u>'</u>	<u> </u>	ļ	ļ	ļ	ļ			ļ	ļ	ļ
		<u> </u>	1	1		<u> </u>		1	<u> </u>		<u> </u>	<u> </u>	 	 -		-	1	<u> </u>	İ	-]				
					C	7	£	. (اسل ۸	سرط	<		11.		Ω	Inv	rt c	HJ.	-	SON	اراد	4					
ر د		-	<u> </u>	† -		YAX.	-100	٠.٠		- L.		الالتار	٤١١٠	<u> </u>	<u> بېر</u> ر	<i></i>		17-				*	J	1	·		†
-	 		- 	- 		· -		 				+		- 			+	-	ļ			<u> </u>	-	·			1
-	ļ			- 					·			- 	· }					. 	·		- 	 	- 				
ļ	ļ	ļ				ļ	ļ	ļ			ļ		ļ					ļ		ļ	ļ	<u>.</u>	.ļ	. 		. 	ļ
																										}	

SHEET 10B OF

CLIEN	TT .							PPC	FCT				-										Lion	NO.			
CLIEN	عي	ee	<u>.</u> C	ാധ	Φ	_			ÃΥ	Af	111	Ξxί	XX	Kic	Ω				DV.				Õ	2199	303	3.6	9
SUBJ	FCI				1	,						,							BY		11	D		DAT	E		
	<u> </u>	· -	To	Ch 1	C_{ℓ}	7:16	,												CHE	CKE)			DAT	E		
		ر (19		111			,	,		<u></u>		1 \												-	
a,	Syl	ut	'nΩ	W	iot	ec	M	001	HO	רוט	a	C	$\mathcal{D}U$	1.7										ļļ		· -	
											_	,															
1	\wedge ,	25	+																								
			:) 	_1						 L	0	١	. 1 -		٠				. (A	. 1		G		_	
		\supset	nc		-	ŊΨ	iro	DM	ex	λΤς	X.	سا	ap	D(.)	O	rie	5	\supset	LC.T	α C	2\	Ŋα	ter		ळा	5	
			ļ		ļ		ļ		ļ				ļ									ļ		ļ			
			S	er	ii –	ar)U(لما	L	SU	rfo	ص	<u>. V</u>	at	er.	MO	0	tor	ŢΟ	a =	\$	58	0/	sai	1DI	و ا	
								ľ												7			,		`		
			۵.			- /	2	رما	-	<u></u>	=	\$	0=	/1.	_												
			$\perp x$												Y	ļ		 				 -	<u> </u>				
ļ			ļ	ļ	Y)S	54	ME	. ا	hc	ill	15	W	ple	<u></u>	ļ		ļ	 				ļ	ļ: 				
			ļ	ļ			ļ	!	ļ			ļ	ļ		ļ	ļ	ļ	ļ		ļ			ļ				
			9	è٨	li-	A	501	10	1	n-	;+ =	1	hr	<u>;</u> ;	* 4	i a	<u> </u>	+ \$	5	BO		=	\$	60	<u>ر</u>		
		<u> </u>	Ī									50	MP	le		hr	-	[So	MP	ie	<u> </u>		an			
			†	 	1		 	 	†				1-1-				 	 		<u>``</u> T.		 	†	Ť			
		ļ	 	ļ <u>.</u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		ļ <u>.</u>		<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u></u>	<u> </u>	 	-			
		ļ	ļ	<u> </u>		ļ	<u> </u>	ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ	ļ	ļ	ļ	ļ	ļ			ļ	11	ļ			
					S	irf	α	ارفح	Na	He	<u> </u>	ba	عىل	ilin	a	ل لك	{ + =	\$	ю <u>-</u>	1/50	m	ile.					
]	Ţ										7		D.											,	
		 	†	†	1	 	 	†	†	<u> </u>	†	 	†	 	İ	İ	†	†	 	ļ	ļ	†	†	1			
			 			 		 	 		 		 			ļ		 					 				
		ļ	ļ	ļ			ļ	ļ	ļ	ļ	.ļ	ļ	ļ	ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	ļ	ļ	<u> </u>	ļ		ļ		
	*****	<u>.</u>		ļ			<u> </u>	<u> </u>			<u>]</u>	<u>. </u>	<u> </u>			<u> </u>	<u>]</u>	<u></u>			<u> </u>	<u>.</u>	<u> </u>				
			Ť	-}	1			†		1	-		<u> </u>	ļ			1	Ť	ļ				†	·			
		 	÷	†	†	 	†	 	 	 	·	 	 	 	 	ļ	 	†	 	ļ	 	 	†				
						ļ		 	 			ļ	 		 		 	<u> </u>	ļ				 		ļ		
		<u> </u>	ļ	ļ		ļ	ļ	<u> </u>	ļ	ļ	<u>.</u>	<u> </u>	<u> </u>	ļ	ļ	ļ	<u> </u>	ļ	ļ	ļ	ļ	ļ	ļ		<u> </u>	ļ	ļ
			1	1				1		-		1	1					1	1	1		1	1	1			1
		†	†	†		 -	 -	†		·	 	 	 	 				+	 	 			 	- 	ļ	ļ	
		 	- 	-		 -	 	 				 	 	 			 	-	 -	- 	·	 	 			 	
ļ		<u> </u>	<u> </u>	ļ		<u> </u>	<u> </u>			ļ	.	ļ	ļ	ļ	. 	<u>.</u>	ļ	<u>.</u>	ļ	ļ	ļ		ļ	<u> </u>		ļ	ļ
		i						/				1											1				
								/										1					Ī	Ī			
			†	<u> </u>		1	7	· · · · · ·	†	1	1		·	·	-	-			ļ		·		·		- 	ļ	-
		ļ							·	·			 	 	- 				 				+				ļ
		ļ	.ļ			. 	<u>.</u>	ļ	.			ļ	ļ	ļ	ļ	-	ļ	<u></u>	ļ		. 	-	.		- 		Ļ
																	1						1			1	
		<u> </u>	†			 	†	†	·	İ	-	<u> </u>	 	·	 		 	†	- 			†	-		-	-	ļ
		ļ	-			 	 -	· 			- -	 	 -	 	- 			- 	-			+	- 			·	ļ
		ļ	. 					. 		-ļ		ļ	. 	ļ	ļ			-	ļ	ļ	-ļ	<u>.</u>			ļ	ļ	ļ
1										1			-		-				1								

SHEET \\ OF_ PROJECT Lamfill Expansion Hardee County CHECKED DATE ona-Term (are 3 Gas Monitoring Gas probes GP-1 through GP-13 shall be mobiliored event quarterly Gos Monitoring Quantity = 13 probes Cost SCS Field Sorvices Quote 8 hr of a technician's time a \$45/hr 8hr x \$ 45 = \$ 300 \$ 360 GEM rental @ \$60/day 2 hour Staff engineer's time as \$ 70/hr (report writing) anx \$ 10 = \$ 140 \$ 140 Vehicle rental for I day a \$50/day 1day × \$ 50 0 = \$ 50 \$ 50 + I hour project manager's time a \$ 140 (hr (report review)) 1 hour + \$140 = \$140 \$140 Total = \$ 750 Gas Monitoring Cost = \$750 + for 13 probes on a quarterly basis

SHEET JAA OF_

CLIENT Hardee County SUBJECT	PROJECT Landfill Expansion	SHEET JOB	INO. 9199033.09 IDATE
SUBJECT /	`	BA (14p)	DATE
Lora-Term Care		CHECKED	DATE
			1
4. Léachate Moni	TOKING		
	<u> </u>		
Monitored seni-	nnually at Manhole 9 for	the following	na
parameters:			[3]
	 		<u> </u>
			
Field Parame			
·Specific co	odictivity		
• pH			
· Dissolved	Oxynon		
• Sheen & Co		1	
Then Au	WOY		
Lab Paramete	¢5		ļļ
· Total Am	Jonia - N		
1 BOD			
			
·Bicarbona	Te		
·Chlorides	+		<u> </u>
·Havdness	 		
· Iron			
·Magnesius			
· Mercury			
			+
·Nitratie	+		
· Sulfate	 		-
· Sodium			
. 705			
·Ancer	out 258. Appendix I		
Leo	chate Monitoring Quantity	= I man hol	<u>eli i</u>
	 		+4
Manmieau	vill be wonitored annual	10, for 40	CFR
Poxt 258, Ap			
	unl 420 + 25 = 445		
SEMI DWA	NA 420 + 25 = 445		<u> </u>
	Sompling =	A	
purust	4/250 + 25 compline =	1275	

SHEET 12B OF_

CLIEN	er .		-					l noc	NE OT															W)			
HA	IT Y de ECT	ے م	(r	DUY	4	.)		PRC	NEC!	4	11	F	xΥ	ıns	i io	\cap							JOB		103	3.0	9
JUBU	ECT			حيبا						<u> 1 </u>		-	. 1.	- L		· •			BY		dll			DAT			
																			CHE	CKED				DAT	E		 -
_	α	_	lex	M	$\mathcal{C}_{\mathcal{L}}$	XX	-																	J			
4	_ <u> </u> _e		h	7+	–	الم	jn,	1-7r	ic		-	-	- \														
		بمد	بالمسان المسان	1.	-		¥1!1	1001.		5		23	-1)														
					ļ 		<u> </u>	<u> </u>																			
<u></u>	<u>C</u>	25	+		<u> </u>		1	1																			
ľ				-+	匚	2		Ur	101	1	0	1	01		·~ -	77		4	· ^ d	h	<u>ا</u> ہے+ ا	,	6	st	ز :		
				J		1-7/77	LL	4115		770			u.	ورساي	سد	LL-2.1.	7		دمدر	-:! b	۷.۷	<u></u>	بب	٠.I.			
					 -		·	 	<u>.</u>	ļ	ļ															 	
				Se	NI	A_{i}	$\dot{Q}U^{\dagger}$	لما	اللا	Lec	ich	ato	<u> </u>	lor	itc	CIC	<u>1</u>		\$1	ac) / N	<i>yay</i>	hhe	ole			
i																	7				'						
				V			ήı	1				Λ λ			,				\$	~ ~	/			,			
				<u>'-\</u> (JU	VO.		le	icr			<u> IV</u>	חמ		C.11	19	 			35)./.E	vax	JU	ne.			
					<u> </u>		<u>.j</u>	<u></u>		Ì	<u> </u>	<u>.</u>				_	ļ						ļ				
į				3,	M	ble	s (o) Me	(e)	计	00	. 4	3	5/r	1												
						1		مدا		L .			.0.5														
				ļ	 -	775	ÞU	JMC.	<u> </u>	T.Y.		 					 						 	ļ			
				ļ	ļ		 	<u> </u>	ļ				ļ				ļ						ļ	 			
				<u></u> .					<u> </u>	<u> </u>			<u></u>				<u> </u>	<u> </u>									
		į	\subseteq		_ Δ	l v	100	ıl.	<u> </u>	<u>k</u> +	= \	h		×	\$	7		\$	<i>1</i> .~			*	ЛД	<u> </u>	n	ha	ار
				M		77.11	. Y/V/		L	1.	N.	4VP	ole.		<u>ب</u> ا	<u> </u>	LOT.	. T	M n	\sim		.), P	11	<i> </i>	ZCJ.	\J. X	110
					ļ		ļ	. .	ļ	ļ	ļ		7.0					<u> </u>		01	_		ļ	ļ	ļ		
				<u></u>			<u> </u>	ļ	ļ	ļ		<u> </u>	ļ	<u></u>				<u> </u>					<u> </u>				
			Δ_{r}	inu	Ja () (100	+:	+	ĺλh	-	,	\$	a		+	\$1	25	\circ	=	\$1	a7	5/	NO	hh	ماح	
						۷	.يىن	3.1			ble			hr	-		Na	hh	ماه]	!-		-	1000	911	7.55	*
				<u> </u>	<u> </u>		<u> </u>		<u> </u>			<u> </u>	1	<u> </u>										 -			
				ļļ		.ļ	<u>.</u>	ļ	ļ	ļ	ļ		ļ	ļ		ļ	ļ	ļ	ļ	ļ		ļ	ļļ	ļ	ļ		ļ
					2	50	Nai -	-Ac	inu	$\lambda 0$	1	en.	h	H0.	6	<u>k</u> +	= '	\$4	15/	Ma	nh	ble					
				<u></u>	-		1	-				-		-		<u> </u>		-	10-7	15342	1.23.3.	-		1			
				-	<u> </u>	<u> </u>					i		 	 			<u> </u>	 			<u></u>	 	 	 			
					ļ	ļ		-	ļ	ļ		ļ		ļ				 				ļ	1-	ļ	ļ	ļ	<u> </u>
					1	χ_{U_i}	ก่นเ	يلا		ĖΔ	$^{\perp}$	ite	(ès	+=	\$	ia-	15	$/_{u}$	an	\sim	le_					
				-	+	+	+	+	-	-	-	-	-			-	-		-			-	- -				Ī
				ļ				†	 	·	 	 	 	ļ	ļ	<u> </u>	<u>†</u>	†	ļ	ļ -	 	 	†	·	·	 -	
					·			- }	 		ļ	 	 	ļ	ļ	ļ	 	 	}		ļ	ļ	 	 	ļ	ļ	}
				ļ	ļ		ļ	<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ	ļ	ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ	ļ		<u> </u>
				†		·	†		1	†	· -	†	†	 		İ	†	†		İ		†	†	†	 -	 	-
				 			+					 	 	ļ	ļ	ļ	 	 	<u> </u>		 	 	 	 -		 	+-
	ļļ		ļ	ļ	ļ		ļ	ļ		ļ	ļ	ļ	ļ	ļ	ļ		ļ	ļ	ļ	ļ	ļ	<u> </u>	ļ		ļ	ļ	ļ
						į																					
			[T	1	1	1	1	1	1	1	1	†	Ī		-	1	Ť	1	1	1	1	†	Ť	†	1	
				 			+	- 				 	:			 	 	 	 -		 	†	+	 			+-
				ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	ļ		ļ	ļ			ļ	ļ	ļ	ļ		ļ	<u> </u>	ļ	ļ	ļ		ļ.,
				-		į							•											-			
			Ī	1	1	1	1	1	1		1	1	†	1			1	1	1	1	1	1	1	Ī	-	1	
			ļ	ļ		-		-	ļ	·	ļ	ļ	 	ļ	ļ	- 	· 	<u> </u>	ļ		 	ļ	.			·	+-
	ļļ			ļ	ļ	-ļ	-ļ		ļ			ļ	ļ	ļ	ļ	ļ		ļ	ļ	ļ		ļ	ļ		ļ		1
i																			-								

SHORT ENVIRONMENTAL LABORATORIES, INC. 10405 US 27 South

1-800-833-4022 HRS# 85344 & FRS458 FDED 000

843 -(941)-655-4022

HRS# 85344 & E85458, FDEP QAP# 880516

07-21-99

For:

Attn: J.R. Prestridge Hardee County Solid Waste Department 685 Airport Road Wauchula, FL 33873

Dear Mr. Prestridge:

Please find below a revised fee schedule for the Hardee County Landfill:

Semi-annual groundwater monitoring; \$ 400.00/sample Semi-annual leachate monitoring; \$ 420.00/sample Semi-annual surface water monitoring; \$ 580.00/sample Annual leachate monitoring; \$ 1250.00/sample Semi-annual water levels; \$ 5.00/each Quarterly methane readings; \$ 25.00/hr

We have been able to reduce some of our costs related to sampling and analysis at the landfill, therefore, we are able to extend a better discount for this project.

We appreciate the opportunity to continue providing the County with our services. Should you have any questions, please feel free to call me. Thank you.

All duplicates are paid for by Short. (per Bruce Cummings, 4/4/03, 3:30 pm)

Bruce Cummings

Laboratory Director

DESCRIPTION	Sampling Frequency (events/yr.)	Number of Wells	\$/Well/Event	\$ / Year
4. Leachate Monitoring (62-701.51	0(5), (6)(b) and 62	2-701.510(8)(c))		
Monthly	12	0	0.00	\$0.00
Quarterly	4	0	0.00	\$0.00
Semi-Annual	2	1	445.00	\$890.00
Annual	. 1	1	1,275.00	\$1,275.00
Other		0	0.00	\$0.00
		Subtotal Lead	chate Monitoring:	\$2,165.00
DESCRIPTION	UNIT	QUANTITY	UNIT COST	ANNUAL COST
Maintenance				
Maintenance		· · · · · · · · · · · · · · · · · · ·		the second second
Collection Pipes	LF	0	0.00	\$0.00
Sumps, Traps	EA	9	72.00	\$648.00
Lift Stations	EA		0.00	\$0.00
Cleaning	LS	0.2	23,000.00	\$4,600.00
Tanks	EA	0	0.00	\$0.00
mpoundments				•
Liner Repair	SY	0	0.00	\$0.00
Sludge Removal	CY	0	0.00	\$0.00
Aeration Systems	CY	0	0.00	\$0.00
Floating Aerators	EA	0	0.00	\$0.00
Spray Aerators	EA	0	0.00	\$0.00
Disposal				
Off-site (Include Transportation and Dispos	LS sal)	1	134,200.00	\$134,200.00

6. Leachate Collection/Treatment Systems Operation

Operati	on		Hours	\$/Hour_	Total
	P.E. Supervisor	HR	O	0.00	\$0.00
	On-Site Engineer	HR	0	0.00	\$0.00
	Office Engineer	HR	0	0.00	\$0.00
	On-site Technician	LS	0	0.00	\$0.00
	Materials	LS	0	0.00	\$0.00
	Subtotal Leachate	Collection/Treatme	nt System Maintena	nce & Operation:	\$139,448.00
7. Main	tenance of Groundwater M	onitoring Wells		•	
	Monitoring Wells	LS	1	180.00	\$180.00
	Replacement	EA	0.2	2,000.00	\$400.00
÷	Abandonment	EA	0	0.00	\$0.00
		Subtotal Ground	dwater Monitoring W	ell Maintenance:	\$580.00
DESCR	RIPTION	UNIT	QUANTITY	UNIT COST	ANNUAL COST
8. Gas	System Maintenance				
	Piping, Vents	LF	0	0.00	\$0.00
	Blowers	EA ,	0	0.00	\$0.00
	Flaring Units	EA	0	0.00	\$0.00
	Meters, Valves	EA	0	0.00	\$0.00
	Compressors	EA	0	0.00	\$0.00
	Flame Arrestors	EA	0	0.00	\$0.00
	Operation	LS	1	460.00	\$460.00
			Subt	otal Gas System:	\$460.00
9. Land	Iscape				
	Mowing	AC	105.0	121.50	\$12,757.50
	Fertilizer	AC	0	0.00	\$0.00
			Subtotal Landsca	ine Maintenance:	\$12,757.50

DESCRIPTION	UNIT	QUANTITY	UNIT COST	ANNUAL COST
10. Erosion Control & Cover Mainte	enance			
Sodding	SY	1210.00	1.67	\$2,020.70
Regrading	AC	0	0.00	\$0.00
Liner Repair	SY	56	8.22	\$460.32
Clay	CY	0	0.00	\$0.00
•	Subtota	al Erosion Control and Co	ver Maintenance:	\$2,481.02
11. Storm Water Management Sys	tem Maintenance	e		
Conveyance Maintenan	ce LS	<u> </u>	0.00	\$0.00
	S	ubtotal Storm Water Syst	em Maintenance:	\$0.00
12. Security System Maintenance				
Fences	LF	50	21.32	\$1,066.00
Gate(s)	EA	1.0	301.00	\$301.00
Sign(s)	EA	0	0.00	\$0.00
		Subtotal	Security System:	\$1,367.00
13. Utilities	LS	1	500.00	\$500.00
14. Administrative				·
P.E. Supervisor	LS	1	1568.00	\$1,568.00
On-Site Engineer	HR	0	0.00	\$0.00
Office Engineer	HR	0	0.00	\$0.00
On-site Technician	LS	1	8640.00	\$8,640.00
Other (explain)		0	0.00	\$0.00
		Subto	tal Administrative:	\$10,208.00
15. Contingency	% of Total	\$180,976.52	10%	\$18,097.65
		Subt	otal Contingency:	\$18,097.65

16. Site Specific Costs (ex	plain)	UNIT COST	
	·	LS	\$0.00
·	·	LS	\$0.00
·		LS	\$0.00
	ANNUAL LONG-TERM C	ARE COST (\$/Year):	\$199,074.17
	NUMBER OF YEARS O	F LONG-TERM CARE	30
	TOTAL LONG-TE	RM CARE COST (\$).	\$5 Q72 225 16

ENT HANDER GO SHECT A	PROJECT		JOB NO. 19199973,19 DATE
JECT A	tandre Guary Lt	HECKED .	
	LONG TEAM CARE	HECKED	DATE
Long TERM CA			
158 no (E) / 51	1 / 1 / / / / Paramar a	- <	
1/2m 3/ 2-20	och ote Collection / The somens	393147	
	+		
Clean MANH		icing	
CLEAN MANH	H/E\$ / /		100
ESTIMOTE 3	norholes pm Que	ore know	1 452
C	day 8 ht day 7	o uneur	M
	<u> </u>	man Holes	•
		Ø /	
70001		135/hr >	< \$ × 3
9 MANHOLES	- 7/3 - 5/4/4	: //: : :	
	@ 8 hrs /day ==	= 3240	/ Ewy 5ye
CLEAN MAN	140/ES Even 5 years	= 648	240
1000	140/ES Every 5 years (= 9 cn 1/5 = 0.20) =	= 449/	1-1-11
		19 / yr 1	19 manth 165 = 72/40
0/- 0-0-		ate En	72/47
Class PIPE	GALS PO	OTE FOUN	
		conjun V	et com
DERSTINS	PHAVE I 3100 LF 6	-/,	
Thinky Phos	······································	ILF	
	I SCOTION I 035 4		15835CF
Envada 17ch	10 400 LF 11/14		
	15,835 U =	22,960,	75
	H	and the same	
ClEON 1	PIPES EVERY SYEARS (# \$	4592.15	147
/ ps	pp 5 Every Syens (# 5 n y an 15 = 0.20)		
	<u>'</u>		
			+
			-

IENT HA	20	55	0	Ó			PRO	JECT																OF	2.09	
BJECT		<i>y</i> L		-		7	An	de		Con	~ T	. (IF		-			BY (14	—— رو		1	DAT	E		
						1	025		73m	<u>-00</u>	· · /	SA.	<u>-, </u>					CHE	CKEL	5			DAT	Ē		
	T	_			1		نكسن		-			V				- 1							<u> </u>			
Lon	9		21	M	·CI	1/L9	_																			
	4,										,			<i>f</i>												
1790	1	9		2	84	ch	N T	ζ	4	0//	Eci	701	1/	Z	ns	1	7 5-	UT	ج	75	75.	11				
				,									ı							/						
	(4)	N	771												Ŧ	رر	_//	ہد						
																ı			er. A. Y.	7				-		
4	5 X	1, 6		7	/	75	~ 50	a 7	200	, ,	Co	7								1	ک	2				
												ļ								•	•	• -	•	KE	,	
EX PH 2			^_		ا برا	7		/	4		6	ļ		//	/			į	4							
- 1	20	,,,	7		·		7			10	-6	ļ	71	1	18			. I	<u></u>	2	(7)	1	<u>;</u>	5		
PA	1	.22	11	د	elt	1		/ /	-	<i>K /</i>	,		5011	اسماه	145				8	٠, ٢	30	/ 0	OA	J		
2	1	<u>C</u>	op	مرع		ļ	6	10		10	6	5	ره//م	~/	70						ļ				/	<u>~</u>
							ļ		ļ	ļ	<u> </u>	<u> </u>	ļ	ļ						20	100	51	2//0	~/	LOA	ل
					ļ	ļ	ļ	ļ	ļ	ļ		ļ	ļ					4		ļ	ļ	ļ		ļ		<i>/</i>
			,		ļ.,,,		ļ	ļ	ļ		ļ	ļ	ļ						3.	ررد	_=	- 6	2.6	16	78	
A	ه المراج	di	AT	1	H	إرا	NE	İ					<u> </u>					3	500	250	/			<u> </u>	di	Non
+	+						0							,				7		7					7	
						Æ	1,0	צ	10	6	90	1101	~/	سر وي										1		
	1			ļ	1		1					†		/	1		A	DV	1.2	r	İ	<u> </u>	1	1		
				ļ	·					·	†	†	†	ļ	-		1			1		ļ	†	- 		
						†	†		ļ			 		ļ			=	-6	0 1	10		.//	<u> </u>	0.0	167	#
			·			 	 	 		·	 															
			-			 		ļ				 	 				ļ			/	1	;	;	:	50	#OV
				<u> </u>		 	 	ļ	 	ļ	<u> </u>	 	 -			ļ	 	<u> </u>	A		, 2	ļ	<u> </u>			
					<u> </u>		ļ	ļ	ļ			ļ	ļ	·		ļ	 			00	12	100	10	<u>'</u>		
	<u>-</u> +				ļ <u>.</u>		·	ļ	ļ	<u>-</u>		ļ,		ļ.,	ļ	ļ		ļ		ļ	ļ	ļ	ļ		ļ	
7/	25	197	M	٤,	7	ļ	6.	0	X1	0	5		ر ساد	/y.		<u> </u>		P	111	٤	4	0	15		<u></u>	
				<u> </u>				<u> </u>	<u> </u>						<u>.</u>			t	to	nó	25	Co	(سامه	ح سر	
																	۱.	21	7,	76	A	125	+	60	00 0	0/
	Ī											1	-				11	:	:	:	: .	:	:	50		
	1		·			1	†	1	1	1	1	<u> </u>	†	-	1		11/	-	Ì					!	1	e Un
					1		Ť	†	ļ	·	†	ļ	·	-	+	ļ		21	7,=	14	- //	3×1	6-	6,00	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	299) 200
			 -		-	 	†	 		 -	†	 				 	1									7
							 									 	1 /	21	7.7	· ·//	1/	7.90	7.U.	6)	249	3/1
			ļ			ļ		ļ			-	 			-	 	41		†		- 	·÷		1/1	200	/
			ļ	ļ		ļ	-	ļ			-	ļ									/3					
						ļ		ļ	ļ			ļ		ļ			- ال	_	•	i				زگ	5 9/	3.53
													1				1	/	39	7,1	13.	53	3		_	

CLIENT	PROJECT	SHEET OF
CLIENT HANDER CO SUBJECT HA	· ·	JOB NO. 09/99/73.05 DATE
HW.	ndre Conny LANDAM	CHECKED DATE
Long TEAM CA	87.5.	
ITEM (5) -8	enchore Collection / Jams	m 201 39512m
		7
Glan 1717	1	218105
	· · · · · · · · · · · · · · · · · · ·	
Tanks => 2	TMN/KS C/	Faring
	\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	nchist Onder 44895
		MAINS CADE 44895 Honder Courty
	#	/
	7	3,130/mm/c
	I,	Spection
		Rochser ander 46361
	₩ ₩	1,500 / mik
		Mointenance / MADDIN
		Penetrice anda
	*************************************	3500/mnk
		770/= 3130 + 1500 + 3500
		1 3500
		- 18/30 / Touk
		701Ks X2 16,260
		<i>† 16,260</i>
		11/2/2
	1	my 5 years /5 (16,260)
	 	122
/		3252 2 miks
		1626 I mak
	، چکر کے ا	1650 /max/45

HARDEE COUNTY S.W.

CBI TAMPA

Sheet 14B-

07/16/2003 16:16

04/15/2003 08:22

Cliff Berry, Incorporated Environmental Services

Cliff Berry, Inc. 5218 St. Paul St. Tampa, FL 33619 (813) 626-6533

Hardee County
Department of Solid Waste
Material Recovery Facility
Animal Services
685 Airport Road
Wauchula, FL 33873-8663

Attn: Janice Williamson

VIA FACSIMILE

14 April 2003

Re: Vacuum services.

Dear Ms. Williamson,

Cliff Berry, Inc. is please to quote you with a rate of \$135/hour for a 27" vacuum truck, operator and technician to clean out three manholes to facilitate the jetting of the leachate lines. The following should be noted;

- 1) Your facility will provide any lockout/tagout of electrical, mechanical, pumps, valves or any other device, which may impede the safety of the job evolution.
- 2) The attached rates are based on a Monday thru Friday 0800 1700 workweek. If weekend work and/or second/third shift work is required and authorized, overtime rates will be charge at one and a half straight time rates and double on observed government holidays.
- 3) CBI will be permitted to leave all waste on site.

Thank you for the opportunity to submit this quote and we look forward to conducting business with you. If you have any questions, please do not hesitate to contact me.

Regards,

Dan Stone

Tampa Facility Manager

. It-

Cliff Borry, Inc.

FLORIDA JETCLEAN INC.

HIGH PRESSURE WATER JETTING-PIPELINE TV INSPECTION-PIPE LOCATING

37 Windward Island Clearwater Fl 33767

TEL: 727-462-5516

800-226-8013

FAX: 727-442-2222

FAX/MEMORANDUM

DATE

: 4/8/2003

TO

: Janice Williamson, Hardee County

FROM

: Graeme Towns

SUBJECT

: leachate Collection System Maintenance

Thank you for your inquiry.

We understand that there is approx. 3100° of 8" leachate piping and on this basis, we quote as follows:

To jetclean and video inspect the above pipes:

\$4450.00

4450 \$ 3,00 LF = 1,45 \$/4

subject to:

An adequate no charge on site water supply

- Water/debris/silt generated by any cleaning will be flushed through to pump station No debris pumping/removal included in this bid..
- 2 wheel drive vehicle access within 10'-15' of each cleanout
- Continuity of access allowing work to be carried out on a single mobilization
- Exposed and opened cleanouts at ground level
- Standby time chargeable at \$100.00 per hour should delays not of our making delay progress e.g. bad weather, access problems, high leachate flow levels etc.
- Current technology limitations may preclude the use of tractor video systems (range 1000') in 8" lines restricted to cleanout access. If a push video system has to be used, we will be limited to a maximum 500° from each point of entry.
- Our equipment and procedures fully meet OSHA and DEP requirements. In particular our video inspection equipment is certified Class 1, Division 1, Groups C & D (i.e. explosion proof). This is required in methane piping per OSHA.
- All pricing subject to both jetting and video work being carried out by this company.
- Pricing is unrelated to actual or achieved footages but on the number of setups required and the time we anticipate being on site.
- Payment: net 30 days -

Regards.

	-			SCS ENGINEE	RS				•
		•			K	SHEET	1	of _	<u>i</u> .
LIENT		· []	PROJECT			JOB NO.	<u> </u>		
	Hardee Co	untv	Ope	erations Permit Rene	wal	1	09199	9033.08	
UBJECT	1000000	unty 1			BY	,_l	DATE		
Date						LEK	D1112	1/7/2004	
	_	· c r:	*-1 A		CHEC	·	DATE	1777200-4	<u>·</u>
	Ke:	sponse for Final		ince	CHEC	KED	DAIL	•	
		Leachate Q	uantities			·	<u> </u>		
oal: Det		Leachate Quantity	Annual	e quantities for finan	·		 .	7	
1	Year	Treated	Rainfall		Comme	nts			1 :
1		gallons	inches	1				. 1	
	1997	4.955,000	65.94	Operations included	the open s	torage ditch.		٦	1:-
	1998	5.793,532 .	66.05	Operations included	the open s	torage ditch.			
	1999	ad 910,230 to	38.27	Operations included					
1		2,002,320		TOTAL leachate ger				_]	
	2000	1,158,750	30.46	Gallons treated from		storage ditch.			
		843,570	<u> </u>	Gallons treated from		· · · · · · · · · · · · · · · · · · ·			
. !		5,969,149%		TOTAL leachate ger				⊣	
l	2001*		50.12						
								4	
				Open storage ditch	was filled if	n on April 20,	2002.	-	
	2003**	4,836,780	51.04	<u></u>					
Disaster o	2001 2002 2003*** declared in ,002,000 ga	3,733,782 1,549,387 7,394,876 4,836,780 September 2001	50.12 62.21 51.04 due to Hurrio to Manatee \	Gallons treated from Gallons treated from Open storage ditch	the open on the tanks. was filled in the tanks.	storage ditch. n on April 20,	a Pioneer v	vas contracted	1
				of rainfall in two days	s) .				
	Represen	its the annual qua	antities of lead	chate treated.					
receive up	oon dosure	. The leachate q	uantities prior	ear represents the mo- r to 2003 are not repr ng of the open storage	esentative	leachate qua of current qua	ntity that th intities due	e site could e to the open s	xpect to torage d

Data provided by Hardee County, Janice Williamson (803-773-5089)

	SCS EN	GINEERS				
•			SHEET	` 1	· of	1
CLIENT	PROJECT		JOB NO.			
Hardee County	Landfill Exp	oansion		09199	9033.09	
SUBJECT		BY		DATE		
TIELDM	adal Cummanı		LEK		2/11/2004	<u> </u>
HELP M	odel Summary	CHECK	ED	DATE		•
Annual A	verage Values		•			

Case 1, Waste Depth = 0 feet

		_	Case I, Wa	ste Deptiir	- U ICCL					
	Collection System, k = 17.7 cm/s					Detection System, k = 26.2 cm/s				
	Maximum Head on Liner (inch)	Leachate Collected (ft³/yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)	Maximum Head on Liner (inch)	Leachate Collected (ft ³ /yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)		
Length = 45.6 ft Slope = 2.19%	0.001	77,435	1.10	0.002	0.000	1,264	0.02	0.000		
Length = 67.0 ft Slope = 3.13%	0.001	77,149	1.10	0.002	0.000	1,278	0.02	0.000		
Length = 63.7 ft Slope =2.81%	0.001	76,754	1.09	0.002	0.000	1,310	0.02	0.000		

Case 2 - Waste Depth = 10 feet

			Case 2 - Wa							
**	Collection System, k = 6.8 cm/s					Detection System, k = 13.4 cm/s				
	Maximum Head on Liner (inch)	Leachate Collected (ft ³ /yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)	Maximum Head on Liner (inch)	Leachate Collected (ft ³ /yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)		
Length = 47.2 ft Slope = 2.02%	0.003	67,002	0.95	0.002	0.000	2,054	0.03	0.000		
Length = 77.3 ft Slope = 2.14%	0.005	65,761	0.94	0.002	0.000	2,524	0.04	0.000		

Case 3 - Waste Depth = 40 feet

	Co	llection Syst	em, k = 6.8 c	m/s	Detection System, k = 13.4 cm/s				
	Maximum Head on Liner (inch)	Leachate Collected (ft ³ /yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)	Maximum Head on Liner (inch)	Leachate Collected (ft ³ /yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)	
Length = 77.3 ft Slope = 2.14%	0.005	66,825	0.95	0.002	0.001	4,994	0.07	0.000	

Case 4 - Waste Depth = 69.5 feet

	Collection System, k = 6.8 cm/s				Detection System, k = 13.4 cm/s			
	Maximum Head on Liner (inch)	Leachate Collected (ft ³ /yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)	Maximum Head on Liner (inch)	Leachate Collected (ft ³ /yr)	Leachate Collected (gal/min)	Leachate Collected (cf/s)
Length = 77.3 ft Slope = 2.14%	0.005	65,690	0.93	0.002	0.000	2,604	0.04	0.000

Note: All flowrates are based on a per acre basis.

Leachate Generation = /1/2 gal × 2 De × 1440min × 365 day = 1,18 10 gal

P.O. Box 13869 Fort Pierce, FL 34979 (772) 467-1200 Fax: (772) 465-4678

OVERLAND SERVICES, INC.

5020 Santa Fe Road Tampa, FL 33619 (813) 248-6524 Fax: (813) 248-6539

PROPOSAL

SUBMITTED TO:	SCS Engineers/Hardy County LF	DATE:	January 5, 2004
	3012 US Hwy 301 N.		
	Suite 700	PHONE:	813-621-0080
	Tampa, FL 33619		
ATTENTION:	Joe O'Neal	FAX:	813-623-6757

WE HEREBY SUBMIT OUR QUOTE FOR THE FOLLOWING:

Transportation from Hardy County Landfill to the City of Wauchula Waste Water Treatment Plant at a rate of \$83.50 per load, based on a 6 load per day minimum, includes Tractor and Class A Driver, plus a rate of \$50.00 per hour for any hours over ten (10) hours per day.

If fuel prices exceed \$1.50 per gallon, a fuel surcharge will be implemented in accordance with the Department of Energy's (D.O.E.) national fuel average.

Increases shall not exceed the percentage increase in the Southern region, Consumer Price Index (CPI – Transportation) over the preceding twelve months.

TERMS & CONDITIONS

- 1. Equipment ordered not used will be priced on a case by case basis.
- 2. Customer is responsible for all applicable taxes.

***** PLEASE SIGN AND RETURN IF AGREED *****

WE PROPOSE hereby to furnish trans - listed above	sportation only - complete in accordance with above spanning dollars (\$	ecincanons for the sum of.
Payment to be made as follows: from	date of invoice: net 21 days	lu a ma
workman like manner according to spany alteration or deviation from abovexecuted only upon written orders, and the estimate. All agreements conting	cified. All work to be completed in a substantial becifications submitted, per standard practices. e specifications involving extra costs will be d will become an extra charge over and above ent upon strikes, accidents, or delays beyond our withdrawn by us if not accepted within 30 days.	Salvatore R. Merola, Vice President
ACCEPTANCE OF PROPOSAL:		
Date of Acceptance:	Signature:	
The above prices, specifications and authorized to do the work as specific reasonable counsel fees incurred by a signature above. I certify that I am as	conditions are satisfactory to generator and are hereby and above. Payment will be made as specified above. Go or on behalf of transporter as a result of generators failure authorized corporate officer or duty authorized representance of this proposal and to bind the above company	enerator will be responsible for all costs, expenses a tre to remit payment as specified above. By my entative of the above referenced company, and that

DEC.16'2003 11:07 863 773 077

#7131 F.001/006

ORDINANCE NO. 2001-05

AN ORDINANCE OF THE CITY COUNCIL OF THE CITY OF WAUCHULA, FLORIDA, AMENDING ORDINANCE NUMBER 734 TO INCREASE RESIDENTIAL AND COMMERCIAL MINIMUM AND EXCESS SEWER RATES BY REVISING THE RATES ESTABLISHED IN ORDINANCE NUMBER 734, SECTION 1, SUBSECTION RESIDENTIAL SEWER RATES, PARAGRAPHS 1 AND 2, AND SECTION 1, SUBSECTION COMMERCIAL SEWER RATES. PARAGRAPHS 1 AND 2; AMENDING ORDINANCE NUMBER 702 SETTING RATES AND CHARGES FOR WATER; PROVIDING FOR SEMI-ANNUAL REVIEW OF SEWER AND WATER RATES; AND PROVIDING FOR AN EFFECTIVE DATE.

BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF WAUCHULA.
FLORIDA. AS FOLLOWS:

Section 1. Section 1, subsection entitled Residential Sewer Rates, paragraphs :. and 2., is amended as follows:

- 1. Each residential sewer customer connected to the City Sewer System located within or beyond the corporate limits of the City of Wauchula, Florida, shall be billed based on the customer's water meter size and water consumption. The rates of charges are as follows:
 - (a) Minimum Charge. The minimum charge for each customer's sewer service shall be as listed below based on the size of the customer's water meter. This is a minimum charge and will be separate and above the gallonage charge levied for sewer service based on the water consumption as registered through the water meter each month.

Size of Service Meter (Inches)		Minimum Charge
3/4		\$26.94
74		3:.06
11/2	•	53.89
2		56.32
• 3		56.32
4		56.32
-		

() 15 **9** () 15 ()

- (b) Gallonage Charge. The rates for all sewer usage based on the customer's water consumption as registered through the customer's water meter shall be due and payable on a monthly basis at the rate of Four Dollars and 49/100 (\$4.49) per unit of each one thousand (1,000) gallons, or portion thereof, in excess of six thousand (6,000) gallons. The gallonage charge will be in addition to the customer's minimum charge.
- 2. When a customer is not connected to the City's water system, but connected to the sewer system, there shall be a charge of \$26.94 per month for sewer service.
- 3. In addition to the charges outlined in paragraphs 1(a) and 1(b) customers outside the city limits of the City of Wauchula, Florida, shall be charged a twenty-five percent (25%) surcharge.
- Section 2. Section 1, subsection entitled Commercial Sewer Rates, paragraphs 1, and 2., is amended as follows:
 - 1. Each commercial sewer customer connected to the City Sewer System located within or beyond the corporate limits of the City of Wauchula. Florida, shall be billed based on the customer's water meter size and water consumption. The rates of charges are as follows:
 - (a) Minimum Charge. The minimum charge for each customer's sewer service shall be as listed below based on the size of the customer's water meter. This is a minimum charge and will be separate and above the gallonage charge levied for sewer service based on the water consumption as registered through the water meter each month.

Size of Service Meter (Inches)		Minimum Charge
3/4		\$ 26.94
l		31.06
11/2		53.89
2	•	77.00
3		139.18
4	•	217.76

(b) Gallonage Charge. The rates for all sewer usage based on the customer's water consumption as registered through the customer's water

CITY OF WAUCHULA

meter shall be due and payable on a monthly basis here of the or Dollars and 49/100 (\$4.49) per unit of each one thousand (1,000) rallons or portion thereof, in excess of six thousand (6,000) gallons. The validates charge will be in addition to the customer's minimum charge.

- 2. When a customer is not connected to the City's water system beconnected to the sewer system, there shall be a charge of \$26.94 per month for sower service.
- 3. In addition to the charges outlined in paragraphs 1(a) and 1(b). customers outside the city limits of the City of Wauchula, Florida, shall be charged a twenty-five percent (25%) surcharge.
- Section 3. That portion of Section 1 of Ordinance Number 702 entitled Water Rates is hereby amended as follows:

City Water Rates:

I. The rates for all water used through a customer's water service shall be due and payable on a monthly basis and will consist of a flat-rate service charge based on the size of the customer's water meter, plus a flat-rate for each unit of one thousand (1,000) gallons, or portion thereof, of water consumed.

The rates are as follows:

a. Monthly Service Charge: The monthly service charge for each customer's water meter shall be at the rates tabulated below. This is a service charge and will include the first six thousand (6,000) gallons of water used through the customer's water meter.

Size of Service Meter (Inches)		Minimum Charge
3/4		10.30
1		14.12
1 1/2	₹.,	24.50
2		35.03
3		63.27
4		98.98
6	• .	190.79

- b. Each separate residents business unit, or professional office wat shall be serv water service which shall be metered individually, and shall pay the above listed monthly service charge as a single customer plus the gallonage charge.
- c. Gallonage Charge: The rates for all water used through a customer's water meter shall be due and payable on a monthly basis at the rate of \$2.04 per unit of each one thousand (1,000) gallons, or portion. thereof, in excess of six thousand (6,000) gallons. The gallonage charge will be in addition to the customer's monthly service charge.
- d. For existing buildings served by one water meter and occupied by more than one residential living unit and/or commercial unit, a monthly service charge at the applicable rate for each unit, plus the gallonage charge. shall be billed to the owner, or at the discretion of the City Clerk, may be billed to the tenter, leaseholder or occupant for each unit.

Rural Water Rates:

All water customers located beyond the corporate limits of the City of Wauchula, Florida, and connected to and served by the City Water System shall pay a monthly charge for all water used through the customer's water meter equal to one hundred twenty-five percent (123%) of the above-listed City Water Rates. Bills for rural water service shall be due and payable on a monthly basis.

Other Water Charges:

1. There shall be an installation and tapping charge for water services as follows:

Size of Meter to be installed Which tap I inch tap I inch tap 2 inch tap	Installation and Tapping Charg				
% inch tap	\$550.00				
l inch tap	700.00				
	City's cost				
	City's cost				
3 inch sap	City's cost				

When over three (3) inch services are required, estimates will be furnished upon application for service.

الهابية وكالمانات المان

In addition to the above charges, a charge for a lawn or infigation service which is in addition to the service for the structure shall include actual cost of materials for the tap and meter installation and shall not be considered a separate service for the purpose of impact fees.

Such instaliation and tapping charges shall be paid before water service will be furnished by the City of Wauchula.

The above rates shall apply except where casing is required under state highways, railroad, etc. Then the actual cost of labor, equipment and materials shall be charged for the installation which shall be installed in accordance with state highway, railroad or other governing bodies' specifications.

- 2. There shall be a charge for a temporary water connection of Fifty Dollars (\$50.00).
- Section 4. Cost of Living Adjustments. On or before December 1 and May 1 of each calendar year, beginning December 1 of 2001, the City Clerk, City Administrator, and department heads shall meet for the purpose of determining the need for a sewer/water rate increase and shall make recommendations to the City Council at its next regularly scheduled meeting with respect to whether or not there exists a need for an increase at that time.
- Section 5. If any provision of this ordinance is for any reason held to be invalid or unconstitutional by any court of competent jurisdiction, such provision and such holding shall not affect the validity of any other provision, and to that end the provisions of this ordinance are hereby declared to be severable.
- Section 6. All ordinances or parts of ordinances in conflict herewith are hereby repealed to the extent of such conflict.
- Section 7. This ordinance shall take effect upon adoption by the Council as provided by law and signed by the Mayor and City Clerk as provided by ordinance, or upon adoption without said Mayor's approval.

This ordinance was read and approved at the regular session of the City Council on the 26th day of February, 2001. The final reading was held on the 12th day of March.

2001, and upon motion by Spieth	this ordinance was adopted.
5 members of the Council	
0 members of the Council	U voted against adoption
members of the Courc	il were absent
(SEAL)	
ATTEST:	CITY OF WAUCHULA, FLORIDA
By: Ames of Braddock	By: DJBP.
ames Braddock, City Cierk	David B. Royal, Chairman of City Council
APPROVED AS TO FORM	THIS ORDINANCE APPROVED BY ME,
By Kenth & Even	this 12° day of March, 2001
Kenneth B. Evers,	
City Attorney	Kenneth A. Lambert, Mayor

WAUCHULA'05-o.1

HARDEE COUNTY PURCHASING DEPT

205 HANCHEY ROAD WAUCHULA, FL 33873 863/773-5014 Fax 863/773-0322

PURCHASE ORDER: 44845

Page: 1 of 1

***** VENDOR *****
CLIFF BERRY, INC.
5218 ST. PAUL STREET
TAMPA FL 33619

***** DELIVER TO *****
HARDEE COUNTY
SOLID WASTE & RECYCLE
685 AIRPORT ROAD
WAUCHULA, FL. 33873

ļ	Ordered	Due	Ship Via	FOB	Torms		Customer#
	02/06/03	02/06/03			Upon Receipt		Commission.
						-	
	Requisition No.		Vendor No.	Vendor Phone	Vendor Fax	1 1.5	

48520	2161-1	813/626-6533	813/626-9012	
No Quantity U/N	Description		Unit Price Extend	ed G/L Account
1 2.00 EA	IARUR, MATERIAL AND EQUIPMENTO CLEAN (2) TWO 79,000 GAI LEACHATE TANKS AND THEIR CONTAINMENT: ALL WASTE WILL LEFT ON SITE PER VERBAL DISCUSSION.	L.	3,130.0000 6,26	
	HARDEE COUNTY SOLID WASTE P PROVIDE ANY LOCKOU/TAGOUT OF ELECTRIC, MECHANICAL, PUMPS VALVES OR ANY OTHER DEVICE WHICH MAY IMPEDE THE SAFETY OF PERSONNEL AND EQUIPMENT, CLIFF BERRY, INC. WILL NOT RESPONSIBLE FOR TANK CLOSUR UPON ACCEPTANCE OF THE TANK AND THE COMPLETION OF GAS E EVOLUTION. ACCEPTANCE REQUIRES APPROVA FROM JANICE WILLIAMSON OR	DF S BE RE KS		
	HER DESIGNEE. CLIFF HERRY, INC. WILL OPEN THE MANWAYS. CLIFF BERRY, INC. REQUIRES LEAST (2) TWO DAYS ADVANCED NOTICE TO COORDINATE SCHEDU CLEANING OF A TANK AT A TIM	AT D ULED Œ	TOTAL ** 6,260	Clean

VENIXOR INSTRUCTIONS:

1. Mail Invoices to: Hardee County Clerk to BOCC Accounting Dept

412 W Orange St Rm A-205 Wanchula, Fl. 33873

- 2. Invoices and Packages must bear the P.O. No. Above.
- 3. Purchases may not exceed the total amount of this order without prior approval by the Purchasing Dept. deeptance of this order includes acceptance of all terms, dices, delivery instructions, specifications and conditions.
- 5: State Tax Exempt#: 35-02889-53C EIN: 59-6000632
- 6: 10 you have questions, please call 863/773-5014

SPECIAL INSTRUCTIONS:

CONFIRMING QUOTE BY DAN STONE, DO NOT DUPLICATE.

Dee Newgent

Originator

HARDEE COUNTY PURCHASING DEP 205 HANCHEY ROAD

WAUCHULA, FL 33873 863/773-5014 Fax 863/773-0322

PURCHASE ORDER: 46361

Page: 1 of 1

***** VENDOR ***** TANK ENGINEERING & MGMT. CORP. 1419 W. WATER AVENUE **SUITE 114 TAMPA FL 33604**

**** DELIVER TO **** HARDEE COUNTY SOLID WASTE & RECYCLE 685 AIRPORT ROAD WAUCHULA, FL. 33873

	Ordered		Due	Ship Via	FOB	Terms		No. 1 Control of the same of t
	07/18/03	(07/18/03			Upon Rec		Customer#
	Requisition No 53386	·		Vendor No. 10006-1	Vendor Phone 813/935-6697		r Fax	
No	Quantity	U/M	Descript	ion		Unit Price		
2	2.00	F.A	ASSESSMENT TWO (2) LEAC TANKS, PER	INSPECTION OF CHATE STORAGE QUOTE.		1,500.0000	Extended:	G/L Account
7		ea ·	PROVIDE REPA	IT REQUIREMENT. IN & MAINTENANCE COATING TANK #2 Or, macerials	ΙΝΕρεστιον	3,500.0000) 3,500.00	204-534-031-0
10	.00					.0000	.00	104-534-031-0
				Ra	OAIR	** TOTAL **	6,500.00	
				•	•			
				Shange	e Order			
				SEP ()	3 2003			
				. •				

VENIXOR INSTRUCTIONS:

1. Mail Invoices to: Hardee County Clerk to BOCC Accounting Dept

PO Drawer 1749 Wauchula, Fl 33873

- 2. Invoices and Packages must bear the P.O. No. Above.
- 3. Purchases may not exceed the Lotal amount of this order without prior approval by the Purchasing Dept. deptance of this order includes acceptance of all terms,
- lices, delivery instructions, specifications and conditions.

 5. State Tax Exempt#: 35-02889-53C EIN: 59-6000632
- 6. If you have questions, please call 863/773-5014

SPECIAL INSTRUCTIONS: CONFIRMING ORDER W/JEFF, DO NOT DUPLICATE.

Dee Newgent

Originator

CLIENT 4/		OF
CLIENT Handes SUBJECT	PROJECT JOB N	NO. 95137.05 DATE
SUBJECT	Anndre Corner CANDAM BY HO	
400	Anndre Conny CANDAM BY HO CHECKED CHECKED	DATE
7, 4		
Long Tanns	and a second	
115m (7)	MOINTENDACE OF GROUNDLINER WE	Us
Sugar Trans		
90001119	Paicing	
	<u> </u>	
ASSUME / WE protective	Ell DonngED PSI Grote	
DAVIS CTUG		
	chnicion regin / concrete pad * For \$1 = \$180	int 175
ASSUME TS	6 - 10 - 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100
	chnicion agoin 1 concrete pad 2 55 \$ = \$180	750
4 40	& FT 7/20	233
·		
	70701 = 180 t = 415	235
	= 24/5	
	DS7 0 1015	
060	PST QUOTE	
DSSuma 1	45/ 70 BE	
naplace Ev	Try 5 years MOB 350 = 200 = 150 = 30 + well 30 x 35	2 350
	DECON 150	- 150
	30 H well 30 x 35	= 2050
	CASING 175	= 175
		= 60
		= 60
		·
		- 75
		- 75
		1995
	Card Agenta	
		ng - yen
 -	50 42000 Ex # 4014	
		
		1 1 1 1

ATTACHMENT A SCHEDULE OF SERVICES AND ESTIMATED FEES SCS ENGINEERS-HARDEE COUNTY SITE PSI PROJECT/DOCUMENT NO. 778-42015

PSI PROJECTIDOCOMEN					
<u>ITEM</u>	EST. QTY.	UNIT RATE	TOTAL FEES		
Mobilization Truck/Trailer Mounted Equipment, ea. CME 75/D-120/CME-45 Truck/Trailer Mounted Drill Rig and Crew	1 .	\$350.00	\$350.00		
Support Vehicle/Steam Cleaner	1	\$150.00	\$150.00	ACTUAL	•
Monitoring Weile/Peizometers				•	4.4.4
2" Diameter Monitoring Well/Pelzometer Installation (0-50 feet), If (Installed using 4-1/4 or 6-1/4" HSA or 7-7/8" mud rotary bit)	188	\$35.00	\$6,580.00	/5 1	188
(Per foot includes up to 15' of 2" PVC Schedule 40 Casing up to 45' of PVC Schedule 40 Screen (0.010" slot), PVC Point, 20/30 Sand Pack, 60/140 fine sand seal, Portland Grout, up to 0.50 hr. for well development per each well) Additional Items Not Covered in Above Well/Peizometer Installation Prices					1295
Protective Steel Casing	11	\$175.00	\$1,925.00	·	
Concrete Pad, ea.	3	\$80.00	\$180.00		
2" Steel Bollards, Painted and Filled w/Concrete	.12	\$60.00	\$720.00		
Monitoring well and Peizometer Abandonment (i.f.)	60	\$17.00	\$1,020.00		
(Decontamination or Decon Station Satup, If. (Includes decontamination of equipment and tools, does not include material costs for decon station, add \$250.00 per decon station)	0	\$150.00	\$0.00		+ . +
Ortil Crew Standby, hr.	٥	\$150.00	\$ 0. 00	•	
(Includes standby for site meetings, boring layout and staking, difficult access, hauling of water, site cleanup and repairs, safety orientation, and other standby at site for reasons other than for equipment failure or Inclement weather)					
Well Development, hr. (Estimate based on over 0.50 hr. per well)	0	\$150.00	\$0.00		
Regulatory Permit - SFWMD, ea.	. 3	\$75.00			
55 Gallon Drums with Lids - (Unit price does not include handling or transportation of drums on or off-site)		\$45.00			
Hotel and Per Dicm (3-man Crew), Per Day	4	\$180.0	\$720.00		
TOTAL PROJECT	COST		\$11,870.00		

11,870-1295

DRILLING SERVICES PROPOSAL

For the

SCS ENGINEERS PROJECT NO. 09199033.09 HARDEE COUNTY, FLORIDA

Prepared for

SCS Engineers 3012 U.S. Highway 301 N. Suite 700 Tampa, Florida 33619

Prepared by

Professional Service Industries, Inc. 5801 Benjamin Center Drive Suite 112 Tampa, Florida 33634 Telephone (813) 886-1075 Fax (813) 888-6514 Engineering Business No. 3684

PSI Proposal No. 778-42015

April 2, 2004

April 2, 2004

SCS Engineers 3012 U.S. Highway 301 N. Suite 700 Tampa, Florida 33619

Attention: Mr.

Mr. Joseph O'neill

RE:

Drilling Services Proposal

SCS Project No. 09199033.09

Hardee County, Florida

PSI Project / Document No. 778- 42015

Dear Mr. O'neill:

Professional Service Industries, Inc. (PSI) is pleased to submit this proposal for Drilling Services for the above referenced project. We understand the property is readily accessible to truck-mounted equipment.

SCOPE OF SERVICES

It is our understanding that the requested services will consist of constructing three (3) shallow monitoring wells installed to approximate depths of 17 feet. Seven (7) peizometers will be installed to depths of approximately 12 feet. One (1) peizometer will be installed within a landfill area to a depth of approximately 20 feet. The shallow monitoring wells will be installed with 4½ hollow stem augers and constructed with 15 feet of 2-inch diameter 0.010" slot screen flush threaded to 5 feet of riser. Each monitoring well will be finished with a galvanized protective steel covering, locking caps, locks and a 2'x2'x4" concrete pad. Each monitoring well location will also included the placement of 2" steel bollards filled with concrete and painted with FDOT Yellow colored paint. Seven (7) of the proposed peizometers will be installed with 4½ hollow stem augers and constructed with 10 feet of 2-inch diameter 0.010" slot screen flush threaded to 5 feet of riser. The proposed peizometer to be located within the landfill area will be constructed with 18 feet of 2-inch diameter 0.010" slot screen flush threaded to 5 feet of riser. Each peizometer will be finished 4" protective steel casing, locking caps and locks.

In addition to the installation of the monitoring wells and the peizometers, one (1) 15 feet deep monitoring well and three (3) 15 feet deep peizometers will be abandoned per Southwest Florida Water Management District guidelines.

It is our understanding that SCS Engineers will locate the well and peizometer locations and will provide a field geologist to log the soils encountered and to direct the field crew. PSI will provide materials necessary for the installation of the proposed wells and

peizometers including all well and backfill materials. This proposal is based on the site being free of harmful contaminants that may be encountered during the installation of the wells and peizometers. If contaminants are known to exist at this site or are encountered during the installation procedures, then additional environmental services will be required to complete the proposed scope of work. These additional services would include, but not be limited to, wearing of personal protective equipment by the field crew during the field work, air, soil and water screening for excessive amounts of contaminants during the drilling and oversight by environmental personnel. If contaminated conditions are known or are encountered during the field work, PSI would prepare a separate fee proposal for the additional environmental services required to complete the scope of work addressed in this proposal prior to proceeding. We understand that drumming of cuttings will not be required. We also understand that no environmental site assessment or geotechnical engineering recommendations or guidance on boring depths are required. PSI can provide these services if desired at an additional fee.

PROVISIONS

- 1. This proposal is based on PSI installing a total of three (3) wells with concrete pads, protective casing, and bollards and locking caps.
- 2. Soils excavated for the wells will be left at the site. Drumming of soils or waste is not included in this proposal.
- 3. PSI will invoice on a unit rate basis in accordance with Attachment A for actual work completed.

SERVICE FEES

Enclosed in Attachment A, you will find a preliminary breakdown of our proposal unit fee schedule for the above referenced scope of work. This proposal is prepared based on general site conditions normally associated with this type of project. However, due to unknown conditions that can be encountered during any field exploration, any items or services performed in the field as requested and/or required that are not shown on Attachment A, will be billed in accordance with the unit rates as shown in our 2003 Master Subcontract Agreement between SCS Engineers and PSI or as otherwise agreed to by PSI and SCS Engineers.

It is proposed that the fee for the performance of the above-outlined services be determined on a unit price basis, in accordance with our attached Schedule of Services and Fees, and that the work be performed pursuant to our General Conditions. On the basis of the estimated quantities and the Schedule of Services and Fees, it is estimated that the total fee will be \$11,870.00.

We appreciate the opportunity to offer our services and look forward to working with you. Should you have any questions in regard to this proposal, please do not hesitate to contact this office.

Sincerely,

PROFESSIONAL SERVICE INDUSTRIES, INC

Kevin H. Scott, E.I.

Department Manager, Tampa, FL

Geotechnical/Environmental Drilling Services

KHS/mb:778-42015

Attachments: Attachment A - Summary of Services and Fees

Attachment B - Authorization Form

General Conditions

GENERAL CONDITIONS

- 1. PARTIES AND SCOPE OF WORK: Professional Service Industries Inc. (hereinafter referred to as "PSI") shall include said company or its particular division, subsidiary or affiliate performing the work. "Work" means the specific geotechnical, analytical, testing or other service to be performed by PSI as set forth in PSI's proposal, Client's acceptance thereof and these General Conditions. Additional work ordered by Client shall also be subject to these General Conditions. "Client" refers to the person or business entity ordering the work to be done by PSI. If Client is ordering the work on behalf of another, Client represents and warrants that it is the duly authorized agent of said party for the purpose of ordering and directing said work. Unless otherwise stated in writing, Client assumes sole responsibility for determining whether the quantity and the nature of the work ordered by the client is adequate and sufficient for Client's intended purpose. Client shall communicate the eneral Conditions to each and every third party to whom Client transmits any part of PSI's work. PSI shall have no duty or obligation to any third party greater than that set forth in PSI's proposal and these General Conditions, regardless of the terms of any subsequently issued document.
- 2. TESTS AND INSPECTIONS: Client shall cause all tests and inspections of the site, materials and work performed by PSI or others to be timely and properly performed in accordance with the plans, specifications and contract documents and PSI's recommendations. No claims for loss, damage or injury shall be brought against PSI by Client or any third party unless all tests and inspections have been so performed and unless PSI's recommendations have been followed. Client agrees to indemnify, defend and hold PSI, its officers, employees and agents harmless from any and all claims, suits, losses, costs and expenses, including, but not limited to, court costs and reasonable attorney's fees in the event that all such tests and inspections are not so performed or PSI's recommendations are not so followed except to the extent that such failure is the result of the negligence, willful or wanton act or omission of PSI, its officers, agents or employees, subject to the limitation contained in paragraph 9.
- 3. SCHEDULING OF WORK: The services set forth in PSI's proposal and Client's acceptance will be accomplished in a timely, workmanlike and professional manner by PSI personnel at the prices quoted. If PSI is required to delay commencement of the work or if, upon embarking upon its work, PSI is required to stop or interrupt the progress of its work as a result of changes in the scope of the work requested by Client, to fulfill the requirements of third parties, interruptions in the progress of construction, or other causes beyond the direct reasonable control of PSI, additional charges will be applicable and payable by Client.
- 4. ACCESS TO SITE: Client will arrange and provide such access to the site as is necessary for PSI to perform the work. PSI shall take reasonable measures and precautions to minimize damage to the site and any improvements located thereon as the result of its work or the use of its equipment; however, PSI has not included in its fee the cost of restoration of damage which may occur. If Client desires or requires PSI to restore the site to its former condition, upon written request PSI will perform such additional work as is necessary to do so and Client agrees to pay to PSI for the cost.
- 5. CLIENT'S DUTY TO NOTIFY ENGINEER: Client represents and warrants that it has advised PSI of any known or suspected hazardous materials, utility lines and pollutants at any site at which PSI is to do work hereunder, and unless PSI has assumed in writing the responsibility of locating subsurface objects, structures, lines or conduits, Client agrees to defend, indemnify and save PSI harmless from all claims, suits, losses, costs and expenses, including reasonable attorney's fees as a result of personal injury, death or property damage occurring with respect to PSI's performance of its work and resulting to or caused by contact with subsurface or latent objects, structures, lines or conduits where the actual or potential presence and location thereof were not revealed to PSI by Client.
- 6. RESPONSIBILITY: PSI's work shall not include determining, supervising or implementing the means, methods, techniques, sequences or procedures of construction. PSI shall not be responsible for evaluating, reporting or affecting job conditions concerning health, safety or welfare. PSI's work or failure to perform same shall not in any way excuse any contractor, subcontractor or supplier from performance of its work in accordance with the contract documents. PSI has no right or duty to stop the contractor's work.
- 7. SAMPLE DISPOSAL: Unless otherwise agreed in writing, test specimens or samples will be disposed immediately upon completion of the test. All drilling samples or specimens will be disposed sixty (60) days after submission of PSI's report.
- 8. PAYMENT: Client shall be invoiced once each month for work performed during the preceding period. Client agrees to pay each invoice within thirty (30) days of its receipt. Client further agrees to pay interest on all amounts invoiced and not paid or objected to for valid cause in writing within said thirty (30) day period at the rate of eighteen (18) percent per annum (or the maximum interest rate permitted under applicable law), until paid. Client agrees to pay PSI's cost of collection of all amounts due and unpaid after sixty (60) days, including court costs and reasonable attorney's fees. PSI shall not be bound by any provision or agreement requiring or providing for arbitration of disputes or controversies arising out of this agreement, any provision wherein PSI waives any, rights to a mechanics' lien, or any provision conditioning PSI's right to receive payment for its work upon payment to Client by any third party. These General Conditions are notice, where required, the PSI shall file a lien whenever necessary to collect past due amounts. Failure to make payment within 30 days of invoice shall constitute a release of PSI from any and all claims which Client may whether in tort, contract or otherwise, and whether known or unknown at the time.
- 9. WARRANTY: PSI'S SERVICES WILL BE PERFORMED, ITS FINDINGS OBTAINED AND ITS REPORTS PREPARED IN ACCORDANCE WITH ITS PROPOSAL, CLIENT'S ACCEPTANCE THEREOF, THESE GENERAL CONDITIONS, AND WITH GENERALLY ACCEPTED PRINCIPLES AND PRACTICES. IN PERFORMING ITS PROFESSIONAL SERVICES, PSI WILL USE THAT DEGREE OF CARE AND SKILL ORDINARILY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY MEMBERS OF ITS PROFESSION. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES OR REPRESENTATIONS, EITHER EXPRESS OR IMPLIED. STATEMENTS MADE IN PSI REPORTS ARE OPINIONS BASED UPON ENGINEERING JUDGMENT AND ARE NOT TO BE CONSTRUED AS REPRESENTATIONS OF FACT.

SHOULD PSI OR ANY OF ITS PROFESSIONAL EMPLOYEES BE FOUND TO HAVE BEEN NEGLIGENT IN THE PERFORMANCE OF ITS WORK, OR TO HAVE MADE AND BREACHED ANY EXPRESS OR IMPLIED WARRANTY, REPRESENTATION OR CONTRACT, CLIENT, ALL PARTIES CLAIMING THROUGH CLIENT AND ALL PARTIES CLAIMING TO HAVE IN ANY WAY RELIED UPON PSI'S WORK AGREE THAT THE MAXIMUM AGGREGATE AMOUNT OF THE LIABILITY OF PSI, ITS OFFICERS, EMPLOYEES AND AGENTS SHALL BE LIMITED TO \$25,000.00 OR THE TOTAL AMOUNT OF THE FEE PAID TO PSI FOR ITS WORK PERFORMED WITH RESPECT TO THE PROJECT. WHICHEVER AMOUNT IS GREATER.

IN THE EVENT CLIENT IS UNWILLING OR UNABLE TO LIMIT PSI'S LIABILITY IN ACCORDANCE WITH THE PROVISIONS SET FORTH IN THIS PARAGRAPH, CLIENT MAY, UPON WRITTEN REQUEST OF CLIENT RECEIVED WITHIN FIVE DAYS OF CLIENT'S ACCEPTANCE HEREOF, INCREASE THE LIMIT OF PSI'S LIABILITY TO \$250,000.00 OR THE AMOUNT OF PSI'S FEE, WHICHEVER IS THE GREATER, BY AGREEING TO PAY PSI A SUM EQUIVALENT TO AN ADDITIONAL AMOUNT OF 5% OF THE TOTAL FEE TO BE CHARGED FOR PSI'S SERVICES. THIS CHARGE IS NOT TO BE CONSTRUED AS BEING A CHARGE FOR INSURANCE OF ANY TYPE, BUT IS INCREASED CONSIDERATION FOR THE GREATER LIABILITY INVOLVED. IN ANY EVENT, ATTORNEY'S FEES EXPENDED BY PSI IN CONNECTION WITH ANY CLAIM SHALL REDUCE THE AMOUNT AVAILABLE, AND ONLY ONE SUCH AMOUNT WILL APPLY TO ANY PROJECT.

NO ACTION OR CLAIM, WHETHER IN TORT, CONTRACT, OR OTHERWISE, MAY BE BROUGHT AGAINST PSI, ARISING FROM OR RELATED TO PSI'S WORK, MORE THAN TWO YEARS AFTER THE CESSATION OF PSI'S WORK HEREUNDER.

- 10. INDEMNITY: Subject to the foregoing limitations, PSI agrees to indemnify and hold Client harmless from and against any and all claims, suits, costs and expenses including reasonable attorney's fees and court costs arising out of PSI's negligence to the extent of PSI's negligence. Client shall provide the same protection to the extent of its negligence. In the event that Client or Client's principal shall bring any suit, cause of action, claim or counterclaim against PSI, the party initiating such action shall pay to PSI the costs and expenses incurred by PSI to investigate, answer and defend it, including reasonable attorney's and witness fees and court costs to the extent that PSI shall prevail in such suit.
- 11. TERMINATION: This Agreement may be terminated by either party upon seven days' prior written notice. In the event of termination, PSI shall be compensated by Client for all services performed up to and including the termination date, including reimbursable expenses, and for the completion of such services and records as are necessary to place PSI's files in order and/or protect its professional reputation.
- 12. EMPLOYEES/WITNESS FEES: PSI's employees shall not be retained as expert witnesses except by separate, written agreement. Client agrees to pay PSI's legal expenses, administrative costs and fees pursuant to PSI's then current fee schedule for PSI to respond to any subpoena. Client agrees not to hire PSI's employees except through PSI. In the event Client hires a PSI employee, Client shall pay PSI an amount equal to one-half of the employee's annualized salary, without PSI waiving other remedies it may have.
- 13. HAZARDOUS MATERIALS: Nothing contained within this agreement shall be construed or interpreted as requiring PSI to assume the status of an owner, operator, generator, storer, transporter, treater or disposal facility as those terms appear within RCRA or within any Federal or State statute or regulation governing the generation, transportation, treatment, storage and disposal of pollutants. Client assumes full responsibility for compliance with the provisions of RCRA and any other Federal or State statute or regulation governing the handling, treatment, storage and disposal of pollutants.

ROVISIONS SEVERABLE: The parties have entered into this agreement in good faith, and it is the specific intent of the parties that the terms of these General Conditions be enforced as writIn the event any of the provisions of these General Conditions should be found to be unenforceable, it shall be stricken and the remaining provisions shall be enforceable.

15. ENTIRE AGREEMENT: This agreement constitutes the entire understanding of the parties, and there are no representations, warranties or undertakings made other than as set forth herein. This agreement may be amended, modified or terminated only in writing, signed by each of the parties hereto.

SCS Engineers Hardee County, Florida PSI Project No. 778-42015

ATTACHMENT B SCS ENGINEERS HARDEE COUNTY SITE AUTHORIZATION/NOTICE TO PROCEED SCHEDULE OF DRILLING SERVICES PSI PROJECT / DOCUMENT: 778-42015

Project	Name:				
Project	Location				 -
Purcha	se Order/Work	Order No. (Verba	al/Letter/PO):		
Project	Contact:				
Phone	Number:			. · · · · · · · · · · · · · · · · · · ·	<u> </u>
Fax Nu	mber:	· · · · · · · · · · · · · · · · · · ·			·
Site Ph	one:			·	·
		INVOICING INF	ORMATION	• .	
Compa	ny Name:		· · · · · · · · · · · · · · · · · · ·		· ·
		·			· <u>-</u>
Attentic	n:				
		AUTHORIZ	ATION	•	
Please execu (MUST BE CO	te and return a	copy of this ag	reement RIOR TO MOBI	LIZATION TO S	SITE)
AGREED TO	THIS	DAY OF	· .	· · · · · · · · · · · · · · · · · · ·	
BY:					
				•	
FIRM:	·	·			

SHEET 6 OF PROJECT Landfill Expansion CLIENT Havdee County SUBJECT JOB NO. 09199033,09 | DATE CHECKED DATE Long-Term Care

8 Gas System Maintenance Estimate one passive vent will need to be repaired event year SCS Field Services Quote Requires 8 hrs of a technician's time at \$45/hr 8 hrs x \$45 = \$360 Mat'l to repair passive vent is \$100 Repair Cost = \$400

CLIENT Hardee County SUBJECT CHECKED Long-Term Care
9 Landscape Assume the landfill is mowed uptimes a year Maying Area 17.5 sc × 6 105 De 11 Mowing Area = 105 Ac Cost Per Janice Williamson & Hardee County Public Works Cost = \$12,150 = \$1/21.50 /pc Mowing Cost = \$121.5/acre-yr × 105 ac 12,757.50

HILLSBOROUGH COUNTY SOUTH EAST LANDFILL SECTION I LANDFILL EXPANSION

	CONTRACTOR			T				TION I LAND	FILL EXPANSIO	N .		•						
Ite					OVANCE	CHE	RRY HILL	DC	LPHIN	T					•			
No				Bid	Bid .	Bid	Bid	Bid	Bid		MENTAL SPEC.		NDEX	HUI	BBARD	KIM	MINS	\neg
1	Mobilization (complete)		Bid Quantity		Unit Total	Unit Price	Unit Total	Unit Price	Unit Total	Bid	Bid	Bid	Bid	Bid	Bid	Bid	Bid	\neg
 	Site Clearing	LS	<u> </u>	\$ 200,000.00		\$ 244,136.00		\$ 332,430.00	\$ 332,430.00	Unit Price	Unit Total	Unit Price	Unit Total	Unit Price	Unit Total	Unit Price	Unit Total	
1 3	Survey	AC	14	\$ 1,850.00		\$ 2,000.00	\$ 28,000.00	\$ 3,000.00	\$ 42,000.00	\$ 357,911.00	\$ 357,911.00	\$ 15,718.24	\$ 15,718.24	\$ 500,000.00	\$ 500,000.00	\$ 116,225.00	\$ 116,225.0	_
	Temporary Erosion Control	LS	1	\$ 85,000.00		\$ 12,000.00		\$ 65,000.00		\$ 1,700.00	\$ 23,800.00	\$ 1,060.41	\$ 14,845.74	\$ 15,000.00	\$ 210,000.00	\$ 500.00	\$ 7,000.	_
1 7	Excavation	LS	1	\$ 10,000.00	\$ 10,000.00	\$ 5,000.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 10,000.00	\$ 65,000.00	\$ 37,250.00		\$ 65,732.46	\$ 65,732.46	\$ 75,000.00	\$ 75,000.00	\$ 50,000.00	\$ 50,000.	
- 5	Backfill and Fill	CY	216,000.00		\$ 388,800.00	\$ 3.30	\$ 712,800.00			\$ 4,900.00	142.001.00	\$ 17,689.56	\$ 17,689.56	\$ 20,000.00		\$ 5,000.00	\$ 5,000.	
1 7	Subase Subase	CY	436,000.00		\$ 2,354,400.00		\$ 2,097,160.00					\$ 1.63		\$ 4.00			\$ 864,000.	_
'	60 Mil Liner	SF	583,500.00	\$ 0.20					\$ 2,071,000.00		\$ 2,188,720.00		\$ 2,097,160.00	\$ 7.50			\$ 2,616,000.0	
		SF	1,167,000.00	\$ 0.40	\$ 466,800.00		01,070.00	1 0.07	\$ 519,315.00			\$ 0.11				7 - 0.00		
9	Geocomposite	SF	1,167,000.00	\$ 0.40		0,51					\$ 423,504.30	\$ 0.37	\$ 431,790.00				\$ 396,780.0	
10	12 - inch Drainage Sand	SF	583,500.00	\$ 0.30	700000.00		00,000.00	0.15			\$ 410,900.70	\$ 0.44	\$ 513,480.00		\$ 350,100.00	1		
١	12 - inch Processed Tire Drainage				175,050.00	J 0.70	\$ 408,450.00	\$ 0.72	\$ 420,120.00	\$ 0.47	\$ 272,202.75		\$ 116,700.00				\$ 455,130.0	
!	Layer	SF	447,000.00	\$ 1.00	\$ 447,000.00	\$ 0.10		_					110,100.00	9 0.80	3 400,000.00	\$ 0.32	\$ 186,720.0	<u> </u>
12		LF	3,740.00			0.10	11,700.00	\$ 0.20	\$ 89,400.00	\$ 0.06	\$ 26,820.00	\$ 0.09	\$ 40,230,00	\$ 0.20	\$ 89,400.00	ا د. م		_
13	8 - inch dia.HDPE Header Piping	LF	660.00	\$ 27.00	7742.0.00	20,00	\$ 142,120.00	\$ 28.00	\$ 104,720.00	\$ 29.75	\$ 111,265.00	\$ 21.37	\$ 79,923.80			1	\$ 58,110.0	_
14		LS	1.00	\$ 48,000.00		00.00	\$ 44,880.00	\$ 40.00	\$ 26,400.00	\$ 37.05	\$ 24,453.00	\$ 26.28	\$ 17,344.80	\$ 48.00	\$ 179,520.00	\$ 30.00	\$ 112,200.0	00
15	the contract of the contr	LF	465.00	\$ 28.00		\$ 56,847.00		\$ 55,000.00	\$ 55,000.00	\$ 36,009.00	\$ 36,009.00	\$ 35,956.52		\$ 60,000.00	\$ 40,260.00	\$ 45.00	\$ 29,700.0	00
16	Access Ramp and Road	SY	1,000.00	\$ 19.00	1010000		\$ 24,645.00	\$ 25.00	\$ 11,625.00	\$ 25.32	\$ 11,773.80	\$ 7.14	\$ 3,320,10			\$ 44,775.00	\$ 44,775.0	
17	Stormwater Pipe and Mitered Ends	LF	386.00	\$ 80.00			\$ 50,000.00		\$ 12,000.00	\$ 14.00	\$ 14,000.00	\$ 20.40	\$ 20,400.00	\$ 34.00	\$ 15,810.00	\$ 30.00	\$ 13,950.0	
18	Seeding and Mulching	SY	59,000.00			\$ 84.53	\$ 32,628.58	- 40,00	\$ 23,160.00	\$ 67.75	\$ 26,151.50	\$ 39.73	\$ 15,335.78	20.00	\$ 20,000.00		\$ 12,000.0	
19	Sodding	SY	27,000.00			\$ 0.29	\$ 17,110.00	\$ 0.30	\$ 17,700.00	\$ 0.35	\$ 20,650.00	\$ 0.32					\$ 38,600.0	_
<u> </u>		7		2.00	\$ 34,000.00	\$ 1.32	\$ 35,640.00	\$ 1.55	\$ 41,850.00	\$ 2.14			\$ 52,380.00			\$ 0.35		
L	Subtotal				\$ 5,040,010,00		5 -	- E					3 32,380.00	\$ 1.20	\$ 32,400.00	\$ 1.25	\$ 33,750.0)0
	Bid Allowance				\$ 200,000,00		\$ 4,901,386.58		\$ 5,200,000.00		\$ 4,550,623.15		\$ 3,973,152.00	•	£ 6 931 300 00	<u> </u>	<u>\$</u> -	—
<u> </u>	Total Bid Price				\$ 5,240,010.00		\$ 200,000.00		\$ 200,000.00		\$ 200,000.00		\$ 200,000.00		\$ 6,821,290.00 \$ 200,000.00		\$ 5,270,650.0	
}	Alternate I				\$ 500,000.00		\$ 5,101,386.58		\$ 5,400,000.00		\$ 4,750,623.15		\$ 4,173,152.00	•	\$ 7,021,290.00		\$ 200,000.0	_
<u> </u>	Alternate 1Bid Total				\$ 4,740,010.00		\$ 625,000.00		\$ 709,750.00		\$ 1,244,027.00		\$ 800,000.00		\$ 1,400,000.00		\$ 5,470,650.0	
					***************************************		\$ 4,476,386.58		\$ 4,690,250.00		\$ 3,506,596.15		\$ 3,373,152.00		\$ 5,621,290.00	<u> </u>	\$ 362,969.0	
										· · · · · · · · · · · · · · · · · · ·			2 22 .21.22.00		3 3,021,290.00		\$ 5,107,681.0	<i>1</i> 0

B. -planon Geocomposisty
Highest 40.45/sf (4.05/sy)
B.d

(Bid AWAND 1/2002)

2002 2003 4:05/59 - 3 4.09/54

FOEP
INFLAPTON
FACTOR

FOCTOR

Bi-Planan Cascompa!

SHEET 18 OF CLIENT Hoydee County **JOB NO.** 09199033.00 CHECKED Long-Term Care 10 Erosion Control & Cover Mointenance Estimate 0.25 ares of erosion washout up, 500 sf (56 sy) geosynthetic liner damage · Spd Cost Foot Cost History 2003 Baha Sod (Item 575-11) Sod Quantity = 0.25 acre ×43,560sf x sy = 1210 sy Sod Quantity = 1210 sy Sod OS = \$ 1.67/84 · Geosynthetic Repair Cost Assure repair costs - - Georgem Geograposite

40-uil Installed Cost = 4.13/39 + 4/7/59 Liper Repair Cost = \$ 8.30/59 iner Repair Quantity = 5654 iner Repair Cost = 8.30/50 Note: Regrading will be done by an on-site technician (see AdMith Cost, Sheet 22)

GEO-SYBTHETICS, INC.

FAX TRANSMITTAL SHEET

FAX: 262-524-7961 TEL: 262-524-7979

MADISON MINNEAPOLIS

MUNISING

CHICAGO

WAUKESHA

TO:	Joe O'Neil		÷	WAU
COMPANY:	SCS	<u> </u>		
LOCATION:		= 452		
FROM:	Joe Irwin	FAX:	813-623-6757	
DATE:	4-8-04	:		
RE:	Budget Pricing for Hardy Road Cap		<u> </u>	
The following	4 pages (including transmittal ient immediately. If all pages are not rece	sheet) a	are priority. Plea	ise notify the
COMMENTS.		·		o inication.

Attached is GSI's budget pricing for Hardy Road Cap. If you have any questions please call.

Joe Irwin

BUDGETARY PROPOSAL

GSI proposes to sell to the Purchaser the materials and services herein in accordance with the terms, conditions, specifications and prices set forth or referred to on the face hereof and the pages attached hereto. Acceptance of this proposal is limited to the terms and conditions contained in this proposal. PROJECT NAME: Hardy Road Cap

CHICAGO

MADISON

MINNEAPOLIS

\$43,560.00

MUNISING

PHOENIX

PROJECT LOCATION: Hardy County, FL **ESTIMATE #**:

DATE:

4-8-04 GSI will furnish and install the following material(s): ITEM DESCRIPTION

	Material Supply	EST. QTY.	<u>UNITS</u>	UNIT PRICE	WAUKESHA AMOUNT
1	40 mil textured LLDPE Installation	217,800	SF	\$0,259	\$ 56,410.20
2	40 mil textured LLDPE	217,800	SF	\$0.2n	842 500

Total Budgetary Price = \$99,970.20

\$0.20

MATERIAL INSTALL

0.259 + 0.20 = 0,459/SF = 4,13/54

VERY IMPORTANT - PLEASE NOTE:

- Refer to the attached Scope of Work by GSI, Scope of Work by Others, General Conditions and Special Conditions which Taxes are not included.
- Bonds are not included but can be provided at \$20.00 per \$1,000.00 of total bid amount
- Budget prices will be valid for 30 days. After 30 days, pricing may be subject to increases in resin and installation costs. Prices are F.O.B. job site.
- Prices based on establishing an acceptable line of credit.
- The above budget numbers do not include mobilization.

Regional Sales Manager.

Joe Irwin

Estimator:

Dan Garlow

APPROVED BY:

SCOPE OF WORK TO BE PERFORMED BY GSI

GSI proposes to supply and install the liner as follows:

GSI

- 1. GSI will promptly prepare and submit shop drawings to be approved by Project Engineer and returned in
- 2. Panels will be deployed (from high end to low end), overlapped and welded to form a continuous cover over the area to be lined using double wedge fusion welding as the primary method of welding field seams between adjacent panels. Extrusion welding will be used as a secondary method for seaming between adjacent panels and as a primary method of welding for detail and repair work.
- 3. Heavy equipment for use in deploying the liner materials.
- 4. All on-site testing of field seams.
- 5. Manufactures standard material and certifications per their standard test methods and frequencies.
- 6. At the conclusion of each day's work GSI will execute a subgrade acceptance form by which it accepts the surface of the subgrade lined that day. GSI will not accept the subgrade in advance of it being lined.

SCOPE OF WORK TO BE PERFORMED BY OTHERS

The following is to be performed or provided by the Purchaser:

- 1. Preparation and maintenance of the subgrade in a condition suitable for the installation of the liner using standard installation methods. Continuous removal of rainwater, groundwater, snow and ice from the underlying liner material, subgrade and anchor trenches sufficient to permit installation to continue without interruption. The subgrade must be free of rocks, sharp stones, sticks, roots, vegetation and sharp objects and debris of any type which may damage the liner. The subgrade must be prepared so as to be sufficiently stable to permit use of motorized or mechanized rubber tired equipment to deploy the sheet. All sediment buildup on
- 2. Subterranean inspections or tests of the subgrade. (GSI will not be responsible for conditions existing below
- 3. Adequate access to and sufficient operating room about the work area to be lined to permit operation of equipment used to deploy liner. Adequate access can be partially defined as follows: 1) Ability to turn a Case 821B rubber tired loader 360 degrees while suspending a 23' wide roll of liner from the bucket. 2) Ability to access all 4 sides of the cell or all sides and top of the closure area with 2 wheel drive pickups and heavy equipment. 3) Building and maintaining temporary roads accessible by a Case 821B loader requiring a
- 4. Excavation, backfill and compaction of all anchor trenches in accordance with the project specifications.
- 6. Access to sanitation facilities for GSI forces.
- 7. Access to dumpsters for the disposal of GSI construction waste materials.
- 8. Adequate control of dust to permit welding without excessive or unusual cleaning of the liner.
- 9. All independent laboratory destructive testing seam testing, conformance testing, friction angle testing and on-10. As-built drawings and/or surveys.
- 11. Procure site specific soils to the independent laboratory for friction angle testing.
- 12. Exposing, cleaning and maintaining all existing liner tie in locations in a condition suitable for welding including controlling all leachate and run off at the tie-in location.
- 13. Plywood liner protection/marker sheets.
- 14. Unloading and storing materials prior to mobilization.
- 15. Sand for sandbags.
- 16. Water leakage testing and/or electrical leak location survey.

hardy road cap BUDGET, doc

GENERAL CONDITIONS

- 1. GSI's proposal assumes working in favorable seasonal conditions. GSI reserves the right to renegotiate pricing or apply stand by charges if the project is either accelerated or delayed into a non-favorable season.
- 2. Once the project is commenced, installation must proceed in a continuous and uninterrupted fashion. GSI forces will work 6 days per week, 10 hours per day in order to meet project deadlines.
- 3. GSI will be responsible for the safety of its employees and protection of the liner until acceptance or demobilization. GSI will not be responsible for the overall safety of the job site, and the safety of individuals not employed by GSI. The Owner and General Contractor should caution its employees that liner is slippery, particularly when wet. Care must be exercised when walking on the liner.
- 4. GSI will not be responsible for any damages to the liner resulting from work performed by others.
- 5. GSI is not responsible for ground water or gas that accumulates beneath the liner.
- 6. General contractor shall provide 2 full sets of plans and specifications.
- 7. Upon request, GSI will provide purchaser with Certificates of Insurance. The insurance shall include General Liability Coverage for personal injury and property damage in the amount of \$2,000,000 and Worker's
- 8. Items which may constitute a claim for contract extras include:

160

- Any changes in scope of work
- Upon arrival, site is not prepared or ready as was verbally stated by the owner/contractor's
- Delays caused by owner, contractor, or other subcontractors which have a direct effect on GSI's ability
- 9. Changes to the work must be authorized in writing by the owner/contractor before additional work will 10. Payment terms are as follows:

Material - Net 30 days from date of shipment.

Installation - Net 30 days from date of invoice or completion.

SPECIAL CONDITIONS

- 1. GSI used verbal information.
- 2. GSI reserves the right to modify this proposal upon review of complete plans and specifications for this work. 3. GSI to be a non-union subcontractor and pay non-prevailing wages.
- 4. Proposal based on the work being performed under OSHA Level D conditions. GSI will provide hard-hats and safety glasses for its employees. Soft soled shoes (as required for work upon the geomembrane liner) will be worn by all employees working on the liner. If an upgrade to modified Level D or Level C is encountered, then any additional or site specific personal protective equipment shall be supplied by others.
- 5. A 5 year pro-rated material warranty and a 1 year installation and workmanship warranty shall be provided.
- 6. GSI has made no provisions for penetrations since none were indicated on the drawings. Standard pipe
- 7. Any stainless steel battening required will be furnished and installed at an additional price of \$30.00/l.f.
- 8. Geomembrane, geocomposite are quoted supplied and installed as a package.
- 9. Quantities for payment shall be on actual measured in place quantities which include quantities in anchor
- 10. As an authorized fabricator and installer of the liner manufacturer, GSI will provide a full time approved technical representative of the manufacturer on site throughout the installation of the liner in lieu of an actual

CLARIFICATIONS

1. Clarification: GSI intends to deploy subsequent liner materials via an ATV. (i.e. driving on liner materials to hardy road cap BUDGET.doc

SHEET 19 PROJECT Expansion CLIENT Haydee Caurty SUBJECT DATE CHECKED Long-Term Care 11. Stormwater Management System Maintenance The maintenance of the stormwater management system has been covered under Hems 92 10 of the lang-term Care plan. These two items address nowing and earthwork required to maintain the stormwater control features

Hardee County Landfill Expan	Sion	•	JOB NO.							
SOBJECT		Terri	109199033.09 IDATE							
		BY	DATE							
Long - Term Care										
12 Security System Maintenance	ļļ		ļļ							
- Estante Enft of force room	ros rento	erient en	ر من برمو							
- Estimate 50ft of fence requ	in chick	LMC 11 EL	ery year							
	 									
Cost										
FDOT Contract History (200)									
8 Type B Fence (Item 550-2-	1 - 500	50/01								
o the please (them on a	1/ - dO.	10/17	 -							
	ļļ <u>ļ</u>	ļļļ	<u> </u>							
$2004 \cos t = \frac{520.70}{64} \times 1.03 =$	\$21.32/\$1									
TFH T										
	<u> </u>									
		ļ ļ ļ	+							
Fence Repair Quant	$++_1 = 50 f$	†								
	- L	 								
East D. Cock	801 20 1	1								
Fence Repair Cost	1 4 Pr 39/1	!t 	<u> </u>							
- Estimate that I gate needs t	he recla	ed even.	5 years							
		 	· · · · · · · · · · · · · · · · · · ·							
C		ļļ								
2002 RS Means Site Work	HLandsca	be Dota								
Ante 8'Hah 20' Ovenigo 1	72820 528	= (000	\$1475/2010							
2002 RS Means Site Work Gate 8'High, 20' Opening (Jacob Col		1113/900							
		.4	<u>. 1 1 1 1 1 1</u>							
2004 Cost = \$1475 × 11.02	± \$1,505 /c	late-5yea	rs = \$301/yr-ac							
gate			713							
		 								
	 	╫╤╫╂╫┈┼┈								
Gate Repair Quant	ty = 1 gate	2/44								
<u> </u>	1 2 -	+++								
Gate Repair Cost =	201/20+									
JUTE POPUL LUST	anygare-	HY -	+							
		 -	<u> </u>							
		<u> </u>								
										
		+								
	1-1-1-1-	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								
	1 1 1	1 1 1 1								
 			··· - 							

0282	20 Fences & Gates	\bigcap	DAILY	LABOR-	$I^{}$	T		2002 BARE	£ COSTS		TOTA
		CREW		HOURS		止	MAT.	LABOR	EQUIP.	TOTAL	INCL
0200	Galv. steel, 12 ga., 2" x 4" mesh, posts 5' O.C., 3' high	B-80	1	.107	L.F.	\cdot	. 1.62	2.75	1.87	6.24	
0300	5' high	\Box	300	.107			2.16	2.75	1.87	6.78	i
0400	14 ga., 1" x 2" mesh, 3' high		300	.107		T	1.73	2.75	1.87	6.35	ı ———
0500	5' high	1 ★	300	.107	↓	,	2.38	2.75	1.87	7	1
1000	Kennel fencing, 1-1/2" mesh, 6' long, 3'-6" wide, 6'-2" high	2 Clab	ab 4	4	Ea.		270	94	,——	364	-
1050	12' long	1	4	4			325	94	, l	419	
1200	Top covers, 1-1/2" mesh, 6' long		15	1.067	十	+	55	25		80	
1250	12' long	1 \	12	1.333	1 1	.	88	31.50	(119.50	
1300	For kennel doors, see division 08344-350	 '	+	+	+	+			$\overline{}$		<u> </u>
4500	Security fence, prison grade, set in concrete, 12' high	B-80	25	1.280	L.F.	۱ ء	22	33	22.50	77.50	1
4600	16' high	+	20	1.600		+	26.50	41	28	95.50	
5300	Tubular picket, steel, 6' sections, 1-9/16" posts, 4' high	1	300				16.80	2.75	1.87	95.50 21.42	
5400	2" posts, 5' high	+	240		+	+	23.50	3.43	2.33	29.26	<u> </u>
5600	2" posts, 6' high	1	200			.	26.50	4.12	1		
5700	Staggered picket 1-9/16" posts, 4' high	++	300		+	+	15.15	2.75		33.42 19.77	
5800	2" posts, 5' high	1	240	1 1		,	25	3.43	1		1 :
5900	2" posts, 6' high	++	200	1		+	25		2.33	30.76	
6200	Gates, 4' high, 3' wide	♦ B-1		2.400		-	26 146	4.12 58	2.80	32.92 204	1
6300	5' high, 3' wide	10.1	10	2.400		+		58		204	4
6400	6' high, 3' wide	1	10			. [189	58	1	247	1 -
6500	6 nigh, 3 wide 4' wide	1-1		2.400		+	195	58		253	<u> </u>
0.00	4' wide	*	10	2.400	▼	4 -	. 227	58	1 1	285	1
0010 F	FENCE, CHAIN LINK INDUSTRIAL, schedule 40	 	+	+'	₩	+			+	ليسسم	_
0020	3 strands barb wire, 2" post @ 10' 0.C., set in concrete, 6' H	1		,					1	į į	1
0200	9 ga. wire, galv. steel	B-80	0 240	.133	+	+	7.90	2 42	1 222	12.56	4
0300	Aluminized steel	~~	1				7.80	3.43	I I	13.56	
0500	6 ga. wire, galv. steel	+	240			+	10.05	3.43		15.81	
0600	6 ga. wire, gaiv. steel Aluminized steel	1	240	1			12.65	3.43		18.41	
0800	6 ga. wire, 6' high but omit barbed wire, galv. steel	4+	240		_	+	14.50	3.43		20.26	
0900	6 ga. wire, 6' high but omit barbed wire, galv. steel Aluminized steel	1	250			1	12.25	3.30		17.79	
0900		4+	250		_	+	17.15	3.30		22.69	
0940	8' H, 6 ga. wire, 2-1/2" line post, galv. steel	1	180				19.95	4.58	1	27.64	
1	Aluminized steel	1+	180			<u>/</u>	24.50	4.58	<u> </u>	32.19	
1400	Gate for 6' high fence, 1-5/8" frame, 3' wide, galv. steel	1.	. 10			ā.	98.50	82.50		237	
1500	Aluminized steel	1 *	10	3.200	上	\dashv	120	82.50	56	258.50	
2000	5'-0" high fence, 9 ga., no barbed wire, 2" line post,			1				, —	1	1 '	Γ
2010	10' O.C., 1-5/8" top rail				\perp	4		í	<u> </u>	1	_
2100	Galvanized steel	B-80				.F.	6.50	2.75		11.12	
2200	Aluminized steel	\perp	300			1	7.85	2.75		12.47	
2400	Gate, 4' wide, 5' high, 2" frame, galv. steel	T	10			.a.	108	82.50	1 1	246.50	
2500	Aluminized steel	\sqcup	10		_	'	119	82.50		257.50	
3100	Overhead slide gate, chain link, 6' high, to 18' wide		38			.F.	97	21.50			
3105	8' high		30				97	27.50			
3108	10' high		24	1.333	,	П	81	34.50			†
3110	Cantilever type	1	48	.667	1	11	41	17.15		1	j .
3120	8' high	11	24			\Box	59.50	34.50		1	
3130	10' high	↓	, 18	- I		1	70.50	1	31	147.50	
5000	Double swing gates, incl. posts & hardware	+	+-	+	+	+	,		+		+
5010	5' high, 12' opening	B-80	30 3.40	0 9.412	, Or	png.	290	242	165	697	
5020	20' opening	+	2.80			+	395	294	200	889	+
5060	6' high, 12' opening	1	3.20				490	258	175	923	Ì
5070	20' opening	++	2.60			+	675	315			+
5080	8' high, 12' opening	++		3 15.002	_	+++			216	1,206	+
5090	8 nigh, 12 opening 20' opening	+				4-4	760	385	263	1,408	1_
5100	•	1	1.45				1,000	570	385	1,955	
	10' high, 12' opening	11	1.31			\coprod	865	630	430	1,925	\perp
5110	20' opening 12' high, 12' opening	11	1.03			1 +	1,300	800	545	2,645	1
5120	100 Link 100		_ 110*	5 30.476	٠ ا۵،	1 1	1,275	785	535	2,595	1

SHEET 21 A OF_

CLIENT											JOB NO.																
Hardee County Landfill Expansion											BY				09	199 IDATI	<u>6</u> 23	0,6	9								
				_																214ED				<u> </u>			_
	2n(<u>a -</u>	Te	χN	46	عم	P.,											CHECKED					DATI				
í	U	_ ;	;		; ;																					_	
											1										Ī	Ì					
		-	, 1		1.			1.1	,,					ے ہے				0	1.6				7	1			
		<u>_</u>	اللذ	ча	10	u	١.	TU	עדי	-0	CZC	O	1	37	∞	44		70V		7C	_le	α c	m	te			
		Pu	کسر	25.	te &	0	hei	re	باوا	211	Cici	للم	<u>, </u>	29	الما	re	Me	nt	5.								
		<u> </u>	<u>.</u>	ļ				ļ							,												
. <u></u>			<u> </u>																								
-																											
				†																							
i			<u> </u>					-																			
			ļ	 				ļ	ļi		 		ļ	·		.											
	ļl	ļ	ļ	ļ			ļ!	ļ	 		ļ	ļ		ļ													
			<u> </u>	ļ				ļ							ļ		<u> </u>										
	. !									,																	
			[,															
				-												<u></u>										-	
			<u> </u>	†				ļ						ļi				ļ									
				 -		ļ		ļ			ļ	 	ļi	ļ	ļ	ļ	 										
			 			 			<u> </u>					ļ			 -	!									
		ļ	ļ	ļ		ļ			ļ					ļ	ļ			ļ									
			<u> </u>			<u> </u>			<u> </u>						<u> </u>												
				-										!	!							;; 					
							ļ		 							 		 									
			 	-			 		 		 		<u> </u>				!	 	 							·	
			ļ	<u> </u>				ļ	ļ	ļ		<u> </u>				<u> </u>	<u> </u>	ļ	ļ								
			ļ			ļ		ļ	ļ	ļ	<u> </u>	<u> </u>	<u> </u>		İ	<u> </u>	<u> </u>	<u> </u>	ļ								
<u></u>																											
								-	1							<u></u>	1	†	1				<u> </u>				
			†	-	-		<u> </u>				 		†			<u> </u>	<u> </u>	†	 				 	ļ			
ļ			 		-	+	+	 											 				!	ļ			
ļ			 							-				 			 	!	 			<u> </u>	 	ļ		ļ	
ļ	ļ	 	<u> </u>			-	ļ	<u> </u>	ļ		ļ	<u> </u>	<u> </u>	ļ	ļ		<u> </u>	<u> </u>	ļ	<u></u>			<u> </u>	ļ			
 .	ļ	<u> </u>	ļ	<u>.</u>			<u> </u>	<u> </u>		ļ		<u></u>	<u> </u>		<u></u>	<u></u>	<u>.</u>	<u> </u>		<u> </u>			<u> </u>				
<u> </u>																											
			-					1					†	<u> </u>		-	1	†	1				İ	†			
		 	 	-	+	1	†	 	†		 	 	†	 	†	·	†		 								<u> </u>
ļ		 		+		-	+	 				 		 			ļ							ļ			
ļ		 					- 	ļ						ļ			<u> </u>	ļ	ļ	ļ	ļ	<u> </u>	 	ļ			
ļ	ļ	ļ	ļ				<u> </u>	ļ				<u>.</u>	ļ	ļ	ļ		<u> </u>	ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ			
.	<u> </u>		<u> </u>	<u> </u>				<u> </u>																			
																							Ī				

Lindsey Eldridge

From:

Williamson, Janice [janice.williamson@hardeecounty.net]

Sent:

Friday, April 11, 2003 10:01 AM

To:

lkennelly@scsengineers.com

Subject: Requested Information

Good Morning Lindsey:

The Accounting Department has estimated an average of \$500 per year for utilities, for the leachate pumps and loading station.

Thanks and have a great weekend. Janice

SHEET <u>22</u> OF PROJECT LAND FILL Expansion CLIENT Hardee County SUBJECT CHECKED DATE Long-Terry Care Account for a quarterly site visit from a PE supervisor for 4 hours a \$98/hr PE Supervisor Cost = 4hr x \$98 x 4 visits = \$1568 - Account for an on-site technician for 2 days a Technician Cost = 2 day x 8 hr x 2 north x \$ 45 = \$ 8,40 PE. Supervisor = \$ 15681 Technician = \$8,640