

engineers | scientists | innovators

31ST SEMI-ANNUAL WATER QUALITY MONITORING REPORT

J.E.D. Solid Waste Management Facility

Prepared for

Waste Connections of Osceola County, LLC 1501 Omni Way St. Cloud, Florida 34773

Prepared by

Geosyntec Consultants, Inc. 50 S. Belcher Rd., Suite 116 Clearwater, FL 33765

Project FR3347B

February 11, 2020

31st SEMI-ANNUAL WATER QUALITY MONITORING REPORT

J.E.D. Solid Waste Management Facility

Prepared for

Waste Connections of Osceola County, LLC 1501 Omni Way St. Cloud, Florida 34773

Prepared by

Geosyntec Consultants, Inc. 50 S. Belcher Rd., Suite 116 Clearwater, FL 33765

Craig Joseph, PG Project Geologist Matt Wissler, PG

MarkWel

Principal

Project Number: FR3347B

Cruig Joseph

February 11, 2020

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Overview	1
		1.1.1 Site Description	1
2.	MO	NITORING WELL DETAILS	4
	2.1	Well Layout and Construction	5
	2.2	Turbidity Issues	6
3.	MO	NITORING WELL SAMPLING	
	3.1	Sampling Locations and Procedures	7
	3.2	Sample Analyses	7
4.	GRO	OUNDWATER SAMPLING RESULTS	
	4.1	Field Parameters	9
	4.2	Laboratory Analytical Results	9
		4.2.1 Total Metals (Methods 6020B and 6010B)	9
		4.2.2 Ammonia-N (Method 350.1)	10
		4.2.3 Chloride (Method 300.0)	11
		4.2.4 TDS (Method SM 2540C)	11
		4.2.5 40 CFR Part 258, Appendix I Volatile Compounds (Method 8260)	11
	4.3	Data Validation	12
	4.4	Impact of Turbidity on Metals Concentrations	12
5.	GRO	OUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION	14
	5.1	Field Measurements	14
	5.2	Water Level Contours	14
6.	SUR	FACE WATER SAMPLING	
	6.1	Sampling Locations and Procedures	15
7.		NCLUSIONS AND RECOMMENDATIONS	
	7.1	Sampling Locations	
	7.2	Sample Analyses	16
8.	REF	ERENCES	17

LIST OF TABLES

Table 1: Summary of Monitoring Well Construction Details

Table 2: Summary of Water Quality Field Parameters

Table 3: Summary of Groundwater Analytical Data

Table 4: Groundwater Level Measurements

Table 5: Summary of Surface Water Field Measurements and Analytical Results

LIST OF FIGURES

Figure 1: Site Map

Figure 2: Groundwater Elevation Contour Map, A Zone (Shallow) Wells – 18 November

2019

Figure 3: Groundwater Elevation Contour Map, B Zone (Intermediate) Wells – 18

November 2019

Figure 4: Groundwater Elevation Contour Map, C Zone (Deep) Wells – 18 November 2019

LIST OF APPENDICES

Appendix A: Water Quality Certification Form

Appendix B: Field Water Quality Sampling Forms

Appendix C: Field Instrument Calibration Forms

Appendix D: Groundwater and Surface Water Analytical Laboratory Reports

ACRONYMS AND ABBREVIATIONS

AEL Advanced Environmental Laboratories

CCA Chromated Copper Arsenate

CFR Code of Federal Regulations

COC Chain of Custody

FAC Florida Administrative Code

FDEP Florida Department of Environmental Protection

FDOH Florida Department of Health

ft BLS Feet Below Land Surface

ft Feet

GCTL Groundwater Cleanup Target Level

in Inches

JED J.E.D. Solid Waste Management Facility

μg/L Micrograms per Liter

mg/L Milligrams per Liter

MPIS Monitoring Plan Implementation Schedule

N Nitrogen

NELAC National Environmental Laboratory Accreditation Conference

NGVD National Geodetic Vertical Datum of 1929

NTU Nephelometric Turbidity Units

WCOC Waste Connections of Osceola County, LLC

ORP Oxidation Reduction Potential

PDWS Primary Drinking Water Standards

PQL Practical Quantitation Limit

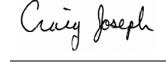
PVC Polyvinyl Chloride

RPD Relative Percent Difference

SDWS Secondary Drinking Water Standards

SU pH Standard Units

TDS Total Dissolved Solids


TRQW Technical Reports on Water Quality

WC Waste Connections

REGISTERED PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the field work and preparation of this document, in accordance with State Rules and Regulations. As a registered professional geologist, I certify that I am a qualified groundwater professional, as defined by the Florida State Board of Professional Geologists. All of the information and laboratory data in this document and in all of the attachments are true, accurate, complete, and in accordance with applicable state rules and regulations.

Craig Joseph, P.G. Florida Professional Geologist No. 2956

February 11, 2020

Date

1. INTRODUCTION

Geosyntec Consultants (Geosyntec), on behalf of Waste Connections (WC), is pleased to provide this report to the Florida Department of Environmental Protection (FDEP) for the J.E.D. Solid Waste Management ("JED") facility. This report summarizes and provides interpretation of the water quality monitoring performed in accordance with the Monitoring Plan Implementation Schedule (MPIS) prepared as part of the JED facility permit application. The MPIS requirements are presented in Appendix 3 of the June 13, 2017 FDEP-issued JED facility Operating Permit (Permit No. 0199726-033-SO-01 ["the Permit"]).

Geosyntec has prepared this report for WC, parent company of Waste Connections of Osceola County, LLC ("WCOC"), owner and operator of the JED facility. A completed water quality certification form (FDEP Form 62-701.900[31]) is included in **Appendix A**.

1.1 Overview

The MPIS establishes a water quality monitoring program that measures and reports groundwater and surface water conditions and groundwater flow direction across the JED facility. The 31st semi-annual water quality monitoring event was completed between November 18 and November 21, 2019. This report presents the sample locations, sampling procedures, laboratory analyses and results, field data measurements, groundwater level measurements, groundwater flow direction, and surface water quality monitoring. In addition, the current analytical results are compared to applicable Groundwater Cleanup Target Levels (GCTLs) as promulgated in Chapter 62-777 F.A.C.

1.1.1 Site Description

The JED facility is located in eastern Osceola County, Florida, west of highway U.S. 441, approximately 6.5 miles south of Holopaw. The facility is a Class I landfill which is linked to highway U.S. 441 by a 2.9-mile access road. The JED facility comprises a total of approximately 2,179 acres. The landfill footprint at build-out will be approximately 360 acres and consist of 23 landfill cells that will provide available waste capacity for a period of approximately 30 years.

In October 2003, the FDEP issued a permit to construct and operate Phase 1 of the JED facility. Phase 1 includes four landfill cells (Cells 1 through 4) located in the northern part of the landfill and encompassing approximately 54 acres. All components of the Phase 1 development have been constructed. As part of Phase 1, 45 groundwater monitoring wells were installed in 15 clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. The baseline water quality report for the Phase 1 monitoring well network was submitted to the FDEP in May 2004 (Geosyntec Consultants, 2004).

In March 2007, the FDEP issued a permit to construct and operate Phases 2 (Cells 5 through 7) and 3 (Cells 8 through 10), which encompass a total footprint of approximately 72 acres. As part of Phases 2 and 3, and as approved by the FDEP, six existing Phase 1 monitoring wells (MW-14A, B, and C, and MW-15A, B, and C) were decommissioned to allow for the construction of future

1

cells and the construction of a storm water retention basin located within Phases 2 and 3. The decommissioning of the monitoring wells was discussed in the *Phases 2 and 3 Groundwater Monitoring Report* (Geosyntec, 2008). In September 2007, for the development of Phases 2 and 3, 24 additional monitoring wells were installed in eight well clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas.

In April 2008, the FDEP issued a permit to construct and operate Phases 1 through 3 with vertical expansion. In April 2009, the MPIS for the semi-annual water quality monitoring well network was modified for Phases 1 through 3. The modification included a reduction in the number of Phase 3 monitoring wells requiring semi-annual sampling until such time that waste placement commences in one of the Phase 3 cells (i.e., Cells 8, 9, or 10), and the sampling schedule was modified for B-zone (intermediate depth) and C-zone (deep) monitoring wells. The new schedule included:

- 1. November sampling of C-zone monitoring wells (MW-1C through MW-13C, MW-16C, and MW-19C through MW-23C) and one B-zone monitoring well (MW-16B) with January reporting.
- 2. May sampling of B-zone monitoring wells (MW-1B through MW-13B, MW-16B, and MW-19B through MW-23B) and one C-zone monitoring well (MW-16C), with July reporting.

Cell 1 was completed in January 2004, Cell 4 was completed in May 2005, Cell 2 was completed in April 2006, Cell 3 was completed in October 2006, Cell 5 was completed in October 2007, Cell 6 was completed in July 2008, and Cell 7 was completed in August 2010. In August 2011, the FDEP issued a permit to construct a lateral expansion of the facility, which authorized construction of Phases 3 through 8 (Cells 8 through 23). Cell 8 was completed in April 2012. During construction startup of Cell 8 in November 2011, monitoring well cluster MW-22 (A, B and C) was decommissioned to accommodate the perimeter road access to Cell 8. Replacement well cluster MW-22R (AR, BR and CR) was installed in March 2012 on the perimeter access road approximately 800 feet (ft) south of well cluster MW-23. The MW-22 cluster abandonment and MW-22R cluster installation activities were presented in the *Water Quality Monitoring Installation Report (Cluster MW-22R)* and submitted to the FDEP in April 2012 (Geo-Services and Consulting, LLC [GS&C], 2012). The initial groundwater monitoring of cluster MW-22R was conducted on March 19, 2012 and the results presented in the *Initial Water Quality Report Monitoring Well Cluster MW-22R* (GS&C, 2012) and submitted to the FDEP in July 2012.

The Cell 9 disposal area construction was completed in October 2013. As with previous construction and expansion efforts (e.g., Cell 8 disposal area) well cluster MW-20 was installed in a temporary location on the Phase 3 storm water berm. Cell 9 construction activities included substantial modifications to the berm and as such, the MW-20 well cluster was abandoned on June 24, 2013. At the same time, the MW-16 well cluster was abandoned at its temporary location. In October 2013, replacement wells MW-16AR, MW-16BR, and MW-16CR were installed in a permanent location on the backside of the perimeter berm near the Cell 9 sump. The monitoring well abandonment and installation report was submitted to the FDEP in November 2013 (Weibu, LLC 2013).

On December 24, 2013, a permit minor modification application was submitted to the FDEP to request a modification to the MPIS prior to the initiation of construction of Cell 10 of Phase 3 and Cells 11-13 of Phase 4. The minor modification was approved by the FDEP in January 2014. The major changes include:

- the installation and sampling schedule of monitoring wells for the Phase 3, Cell 10 and Phase 4 construction (includes Cells 11, 12, and 13);
- the removal of the "C" zone wells from the semi-annual sampling schedule; and
- the installation of only "A" and "B" zone wells at the new monitoring well cluster locations.

The January 2014 MPIS modifications were implemented during the 20th semi-annual groundwater sampling event in May 2014, and in an email dated May 14, 2014, the FDEP, based on review of past semi-annual water quality monitoring reports, removed total phenols analysis from the laboratory parameters list in Requirement 9 of the MPIS.

Construction of the Cell 10 disposal area began in March 2014 which necessitated the abandonment of temporary groundwater monitoring well clusters MW-17, 18, 19, and 21. The wells were located on the Phase 3 interim storm water berm and were abandoned during Cell 10 construction on March 5, 2014. The monitoring well abandonment report was submitted to the FDEP on March 13, 2014. The installation of monitoring well clusters MW-17R, MW-24, MW-25, and MW-26, which are associated with the completion of Cell 10 and initiation of Phase 4 construction activities, was summarized in a report submitted to the FDEP on July 30, 2014 (Weibu, LLC 2014).

Construction of the Cell 11 disposal area began in March 2015. As part of the construction, detection monitoring well clusters MW-27, MW-28, and MW-29 were installed along the outside perimeter of the cell in accordance with the MPIS (revised January 30, 2015, FDEP File No. 0199726-027-SO-MM). Per the FDEP Permit requirements, the well clusters included shallow surficial aquifer monitoring wells (MW-27A, MW-28A, and MW-29A) and intermediate surficial aquifer monitoring wells (MW-27B, MW-28B, and MW-29B). The monitoring well installation and initial sampling report was submitted to the FDEP in September 2015 (Geosyntec, 2015).

Construction of Cell 13 began in December 2015. Detection monitoring wells MW-26A and MW-26B, located on the interim Phase 4 storm water berm, required abandonment to accommodate cell construction. The MW-26 cluster was abandoned on June 15, 2016. Monitoring wells MW-31A and MW-31B were installed on June 16, 2016 as replacements for cluster MW-26 and are located along the west perimeter of Cell 13. A report summarizing the monitoring well abandonment and installation activity and the initial sampling activities was submitted to the FDEP in October 2016 (Weibu, LLC, 2016).

Construction of Cell 12 was completed on May 20, 2019. Detection monitoring wells MW-30A and MW-30B were installed in March 2019 and are located along the southwest corner of Cell 12. A report summarizing the monitoring well installation activity and the initial sampling activities was submitted to the FDEP in May 2019 (Weibu, LLC, 2019).

2. MONITORING WELL DETAILS

2.1 Well Layout and Construction

For the Phase 1 development, 45 groundwater monitoring wells were installed in fifteen clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. In accordance with the FDEP permit requirements, monitoring well clusters were located such that the spacing between clusters was no greater than 500 ft. For development of Phases 2 and 3, 24 groundwater monitoring wells were installed in eight clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas. In accordance with the FDEP permit requirements, the monitoring well clusters were located such that the spacing between detection well clusters (MW-16 through MW-21) was approximately 500 ft, and the spacing between background well clusters (MW-22R and MW-23) was approximately 800 ft. Each of these well clusters consist of three groundwater monitoring wells installed (i) across the water table to monitor the upper limit of the surficial aquifer (identified as A-zone [shallow] wells), (ii) within the lower limit of the upper surficial aquifer above the intermediate clay layer (identified as C-zone [deep] wells), and (iii) at an intermediate depth between the shallow and deep wells (identified as B-zone [intermediate] wells). During the Phase 4, Cell 10 construction, four well clusters (MW-17, MW-18, MW-19, and MW-21) were abandoned and three well clusters (MW-24, MW-25, and MW-26) were installed along the Phase 4 interim storm water berm. Monitoring well clusters MW-24 through MW-26 were approximately 1,400 ft apart. In addition, replacement monitoring well cluster MW-17R was installed adjacent to Cell 10. In accordance with the January 2014 MPIS the three new and one replacement well cluster consist of two monitoring wells each, one installed in the A-zone and one in the B-zone.

A Site Map showing the location of all Site monitoring wells is included as **Figure 1**. The location of the shallow (A-zone), intermediate (B-zone), and deep (C-zone) groundwater monitoring wells installed for Phases 1 through 4 are shown on **Figure 2**, **Figure 3**, and **Figure 4**, respectively. Groundwater monitoring well clusters MW-1 through MW-13, MW-16R, MW-17R, MW-22R, MW-23, MW-27 through MW-29, and MW-31 were installed along the top of the outer edge of the landfill perimeter berm. The ground surface at the location of the wells in the perimeter berm has an elevation of approximately 92 ft with respect to National Geodetic Vertical Datum of 1929 (NGVD, 1929). Groundwater monitoring well clusters MW-24 and MW-25 were installed along the Phase 4 interim storm water berm. The ground surface at these two well locations has an elevation of approximately 84 ft NGVD, 1929. The location of each well, in Florida state plane coordinates and latitude/longitude, and elevation were surveyed by a Florida-registered professional land surveyor.

Monitoring wells were constructed with 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and 10 ft of #6-slot (0.006-in.) PVC screen. A 30/45 graded silica sand was placed around the screen to a height of 2 to 3 ft above the top of the screen. A seal of 30/65 graded fine silica sand was placed above the sand filter around the screen. The remaining annular space from the top of the fine sand filter seal to the existing ground surface was grouted using a tremie pipe with a cement/bentonite mixture containing no more than 5 percent bentonite by dry weight. The PVC

well casings were extended approximately 2.5 to 3 ft above the existing ground surface. Surface completion consisted of a protective aluminum casing with a lockable cover set in a concrete pad. Each well was provided with a well cap, padlock, and an identification label. A summary of the monitoring well construction details is presented in **Table 1**.

2.2 Turbidity Issues

As discussed in the baseline water quality reports for the Phases 1 through 3 monitoring networks (Geosyntec 2004 and 2008) the formation around the screened intervals consists primarily of a fine, brown to dark brown, silty sand. Due to the subsurface formation properties, fine-grained and colloidal material can pass through the sand filter pack in many wells, primarily in the B-zone and C-zone wells. This is the case even though the wells are constructed using the smallest screen slot size (0.006 in.) commonly available. Most of the intermediate and deep wells have had turbidity values greater than the 20 nephelometric turbidity units (NTUs) criterion even after extended well development and the removal of multiple well volumes.

The difficulty in attaining the desired turbidity criterion was originally discussed at a meeting between Geosyntec Consultants (Geosyntec) and the FDEP on January 12, 2004 during the well development activities associated with the wells installed as part of the Phase 1 development. Geosyntec notified the FDEP again on September 14, 2007 of the elevated turbidity levels observed after extended well development during the development of Phase 2 and 3 monitoring wells. In accordance with these discussions, it was agreed that field-filtered (1-micron) and unfiltered samples would be collected for metals analyses for any sample with a turbidity value greater than 20 NTUs. The data generated by the dual sampling is expected to help demonstrate (i) what effect turbidity may have on metal analyses (i.e., by comparing total and dissolved metals concentrations) and (ii) whether groundwater samples with turbidities greater than 20 NTUs show higher concentrations of metals than those samples with turbidities less than 20 NTUs. During the November 2019 sampling event, groundwater from well MW-31A was observed with turbidity values above 20 NTU. Therefore, both filtered and unfiltered samples were collected at MW-31A.

3. MONITORING WELL SAMPLING

3.1 Sampling Locations and Procedures

In accordance with the MPIS, 27 monitoring wells installed as part of the Phase 1 development, eight of the monitoring wells installed as part of the Phase 2 and 3 developments, 12 of the monitoring wells installed as part of the Phase 4 development, and three compliance wells were sampled during the 31st semi-annual monitoring event. Monitoring wells sampled this event included A and B-zone wells MW-1 through MW-13, MW-16R, MW-17R, MW-22R, MW-23, MW-24, MW-25, MW-27 through MW-29, MW-30, MW-31 and A-zone compliance wells CW-1A, CW-2A, and CW-3A. Low-flow sampling techniques were used for groundwater sample collection. All groundwater sampling was performed in accordance with the current applicable FDEP Standard Operating Procedures (DEP-SOP-001-01, March 2014) for groundwater sampling. Additionally, for quality control purposes, two duplicate samples (MW-9A, CW-3A) and one equipment blank were collected and analyzed for the same constituents as the monitoring wells. Peristaltic pumps were used to purge and sample all wells. Each monitoring well was purged and sampled using new tubing (silicone and/or high-density polyethylene).

During the purging process, a YSI 556 water quality meter equipped with a flow-through cell was used to monitor the following field parameters: pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen. Turbidity levels were measured using a HACH 2100Q turbidimeter. Field parameters were recorded on sample collection forms, which are included in **Appendix B**. When the field parameters stabilized within the acceptable tolerances required by the FDEP SOP, well purging was considered complete and groundwater samples were collected.

The calibration of the water quality monitoring instruments was checked daily, and the instruments were re-calibrated when necessary. Water quality instrument calibration forms are presented in **Appendix C**. Samples were placed in coolers and packed with bagged ice for transport to the analytical laboratory. Chain-of-custody (COC) forms were completed and accompanied the samples to the analytical laboratory. All COC forms are included with the associated analytical laboratory reports included as **Appendix D**. A trip blank was included with each cooler, and security seals were affixed to every cooler prior to shipment.

3.2 Sample Analyses

Samples were analyzed by Advanced Environmental Laboratories (AEL) in Jacksonville, Florida in accordance with the National Environmental Laboratory Accreditation Conference (NELAC) standards. AEL holds certification from the Florida Department of Health (FDOH) for the analytical test methods used for this project and is certified in the State of Florida for analysis of environmental samples.

Groundwater samples were analyzed by AEL for total ammonia as nitrogen (N), chlorides, nitrate, total dissolved solids (TDS), iron, mercury, sodium, and the 40 Code of Federal Regulations (CFR) Part 258 Appendix I parameters. Other required parameters (i.e., pH, temperature, conductivity,

turbidity, ORP, and dissolved oxygen) were measured in the field during collection of the groundwater samples.

4. GROUNDWATER SAMPLING RESULTS

4.1 Field Parameters

Table 2 provides a summary of the field measurements of selected water quality parameters utilized determining sample stability for this semi-annual monitoring event. The secondary drinking water standard (SDWS) range for pH is 6.5 to 8.5 standard units (SU). The groundwater pH was below the SDWS in all site wells sampled during this event with pH values ranging from 4.39 to 5.57 SU. The groundwater pH values measured at the site have historically been below the SDWS lower limit of 6.5 SU.

4.2 Laboratory Analytical Results

The analytical laboratory results for this groundwater sampling event are included in **Appendix D**. Analytical results have been summarized in **Table 3** to show the parameters where a constituent concentration was reported above the laboratory practical quantitation limit (PQL) in at least one monitoring well. Any parameter exceeding the applicable FDEP GCTL, Primary Drinking Water Standard (PDWS), or SDWS has been highlighted orange. The following discussion regarding groundwater quality is organized by analytical method and is limited to those parameters where the GCTL, PDWS, or SDWS was exceeded in at least one groundwater monitoring well.

4.2.1 Total Metals (Methods 6020B and 6010B)

4.2.1.1 Arsenic

Arsenic was detected above the GCTL of 10 micrograms per liter ($\mu g/L$) in compliance wells CW-1A (150 $\mu g/L$) and CW-3A (13 $\mu g/L$). Arsenic has historically exceeded the GCTL at CW-1A, including during the initial sampling event in December 2013. CW-1A was installed to delineate the area west of MW-3A, which typically has an arsenic concentration less than 10 $\mu g/L$. Therefore, this localized arsenic detection appears to be naturally occurring. Another potential source may be a utility pole located approximately 20 ft from CW-1A, which may have been treated with an arsenic compound such as chromated copper arsenate (CCA).

The exceedance of arsenic above the GCTL at CW-3A represents the first arsenic exceedance at this well since monitoring began in 2013. Well CW-3A is installed on the downgradient side of the stormwater basin to the east of and adjacent to Cell 2 and Cell 3. As discussed in the 7th Technical Report on Water Quality (Geosyntec, 2019), concentrations of leachate indicator parameters have been increasing in wells located in the central- and north-eastern portions of the facility. Installation of an exposed geomembrane cover over approximately 6.5 acres of the lower-third of the east-facing slope was proposed as a remedial strategy to contain leachate seepage. This project was completed on January 30, 2020 and attenuation of leachate indicator parameters is expected following implementation.

4.2.1.2 Beryllium

Beryllium was reported above the PDWS of 4 μ g/L for the unfiltered sample obtained from shallow groundwater monitoring well MW-31A (4.8 μ g/L). Due elevated turbidity issues during sampling, a filtered sample was also collected and submitted for analysis in accordance with the agreed upon procedure as described in Section 2.2 of this report. The filtered sample concentration of 3.7 μ g/L is below the PDWS.

4.2.1.3 Iron

Iron was reported above the SDWS of 300 µg/L in all monitoring wells sampled during this event except for intermediate monitoring wells MW-4B and MW-5B. Reported concentrations ranged from 120 µg/L to 80,000 µg/L and are similar to previous monitoring events. The highest A-zone and B-zone iron concentrations were detected in MW-31A and MW-31B, respectively. Iron has historically exceeded the SDWS in most wells during each monitoring event conducted at the Site, including the baseline events. The iron concentrations reported for the 31st semi-annual event are generally consistent with period of record data.

4.2.1.4 Sodium

Sodium was detected above the PDWS of 160 milligrams per liter (mg/L) in monitoring well MW-1A (240 mg/L), MW-12A (270 mg/L), MW-13A (500 mg/L), MW-23A (500 mg/L), MW-23B (170 mg/L) and in compliance wells CW-2A (230 mg/L) and CW-3A (400 mg/L). As discussed in the 7th Technical Report on Water Quality (Geosyntec, 2019), concentrations of leachate indicator parameters have been increasing in wells located in the central- and north-eastern portions of the facility. Installation of an exposed geomembrane cover over approximately 6.5 acres of the lower-third of the east-facing slope was proposed as a remedial strategy to contain leachate seepage. This project was completed on January 30, 2020 and attenuation of leachate indicator parameters is expected following implementation.

4.2.2 Ammonia-N (Method 350.1)

Per the FDEP memo dated December 3, 2012, the default GCTL for ammonia of 2.8 mg/L is no longer regulated as a specific groundwater quality standard. Ammonia was detected above the default GCTL in twenty of the A-zone monitoring wells, with concentrations ranging from 3.3 mg/L to 42 mg/L and the highest concentration being from MW-23A. Ammonia was detected above the default GCTL in eight of the intermediate monitoring wells, with concentrations ranging from 4.4 mg/L to 20 mg/L and the highest concentration being from well MW-9B ("J" flagged due to a laboratory detection limit greater than the GCTL). Ammonia was detected above the default GCTL in CW-2A and CW-3A, with concentrations ranging from 21 to 23 mg/L.

Under reducing geochemical conditions, nitrogen containing compounds can be converted to ammonia. Reducing conditions are favorable in the shallow aquifer at the site and may develop in several ways such as the shadow effect of the lined disposal areas preventing the infiltration of oxygen-rich precipitation, displacement of oxygen by landfill gas immediately above the water table, or high organic matter content found in site soils that promotes the growth of oxygen

consuming microorganisms (HDR Engineering, Inc., 2012). The elevated levels of ammonia are likely naturally occurring and have been discussed extensively ([Geosyntec, August 2016], [Geosyntec, July 2014], and [HDR Engineering, Inc., 2012]).

4.2.3 Chloride (Method 300.0)

Chloride was detected above the SDWS of 250 mg/L in shallow monitoring wells MW-1A (410 mg/L), MW-12A (500 mg/L), MW-13A (990 mg/L), MW-23A (870 mg/L), and MW-28A (430 mg/L) in intermediate monitoring wells MW-2B (260 mg/L), MW-4B (490 mg/L), MW-5B (540 mg/L), and MW-9B (490 mg/L) and in compliance wells CW-2A (330 mg/L) and CW-3A (550 mg/L). As discussed in the 7th Technical Report on Water Quality (Geosyntec, 2019), concentrations of leachate indicator parameters have been increasing in wells located in the central- and north-eastern portions of the facility. Installation of an exposed geomembrane cover over approximately 6.5 acres of the lower-third of the east-facing slope was proposed as a remedial strategy to contain leachate seepage. This project was completed on January 30, 2020 and attenuation of leachate indicator parameters is expected following implementation.

4.2.4 TDS (Method SM 2540C)

TDS concentrations were detected above the SDWS of 500 mg/L in sixteen shallow monitoring wells, with concentrations ranging from 560 mg/L to 1,900 mg/L and the highest concentration being from monitoring well MW-13A. TDS concentrations were detected above the SDWS of in nine intermediate monitoring wells, with concentrations ranging from 740 mg/L to 1,700 mg/L and the highest concentration being from MW-4B. TDS concentrations were detected above the SDWS in compliance wells CW-2A and CW-3A, with concentrations ranging from 1,200 to 1,600 mg/L. TDS is an indicator parameter whose value can be attributed to the presence of major cations and anions, such as calcium, magnesium, sodium, chloride, and sulfate. As discussed in the 7th Technical Report on Water Quality (Geosyntec, 2019), concentrations of leachate indicator parameters have been increasing in wells located in the central- and north-eastern portions of the facility. Installation of an exposed geomembrane cover over approximately 6.5 acres of the lower-third of the east-facing slope was proposed as a remedial strategy to contain leachate seepage. This project was completed on January 30, 2020 and attenuation of leachate indicator parameters is expected following implementation.

4.2.5 40 CFR Part 258, Appendix I Volatile Compounds (Method 8260)

4.2.5.1 Benzene

Benzene was detected above the PDWS of 1.0 μ g/L in eight A-zone monitoring wells, with concentrations ranging from 1.3 to 11 μ g/L and the highest concentration being from MW-9A. Benzene was also detected in intermediate well MW-10B at a concentration of 13 μ g/L. Benzene has been reported above the GCTL in most of these wells during previous monitoring events at similar concentrations.

The source of benzene in groundwater is likely attributed to landfill gas ([HDR Engineering, Inc., 2012] and [Geosyntec, 2013]). As discussed in the reports mentioned above, neither the constituents nor the concentrations of VOCs detected in groundwater appear to correlate well with leachate results. If benzene detections in the groundwater were attributable to a leachate release, it would be reasonable to expect to observe elevated concentrations of other indicator parameters such as sodium or chloride; however, this does not appear to be the case.

4.2.5.2 1,2,3- Trichloropropane

1,2,3-Trichloropropane was reported above the GCTL of $0.02~\mu g/L$ in all sampled monitoring and compliance wells due to a laboratory method detection limit (MDL) greater than the GCTL ("O-qualified"). The results were also "U-qualified" indicating the sample was not detected above the MDL of 0.91~mg/L. The presence of 1,2,3-Trichloropropane will be monitored during future semi-annual monitoring events.

4.2.5.3 Acrylonitrile

Acrylonitrile was reported above the GCTL of $0.06~\mu g/L$ in all sampled monitoring and compliance wells due to a laboratory method detection limit (MDL) greater than the GCTL ("Oqualified"). The results were also "U-qualified" indicating the sample was not detected above the MDL of 1.1~mg/L. The presence of acrylonitrile will be monitored during future semi-annual monitoring events.

4.3 Data Validation

All laboratory analyses were performed within the method-specified hold times. Two duplicate samples were collected during the 31st semi-annual monitoring event. A duplicate sample was collected concurrently with the sample from monitoring well MW-9A (sample name: 19324-Dup-1) and CW-3A (sample name: 19325-Dup-2). Results of the duplicate samples are included in Table 3. A relative percent difference (RPD) calculation was performed between the original samples and the duplicate samples. The average RPD for both duplicate samples is below twenty percent, which indicates a good correlation.

An equipment blank was collected using a new length of HDPE tubing to pump lab supplied deionized water through the peristaltic pump and into sample containers. The equipment blank sample was analyzed for the same constituents as the groundwater samples. Methylene chloride $(2.6~\mu g/L)$ and nitrate (0.056~mg/L) were detected at a concentration between the PQL and MDL and flagged with an "I" qualifier. Additional analytes were not detected at concentrations greater than the laboratory reporting limit.

4.4 Impact of Turbidity on Metals Concentrations

A turbidity of less than 20 NTUs was not achieved in the sample collected from monitoring well MW-31A during the November 2019 sampling event; therefore, a filtered sample was collected and submitted for laboratory analysis to compare the total (unfiltered) and dissolved (filtered)

metals concentrations. Concentrations of arsenic, beryllium, and chromium were all lower in the filtered sample relative to the unfiltered sample.

5. GROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION

5.1 Field Measurements

Groundwater level measurements were obtained on November 18, 2019 from all Phase 1 through 4 monitoring wells and the remaining piezometers installed as part of the original site hydrogeological investigation. The groundwater level measurements were made within an approximate 4-hr period. **Table 4** contains the groundwater level measurements and calculated groundwater elevations from the monitoring wells and piezometers.

5.2 Water Level Contours

The water level contour maps prepared from groundwater level measurements are presented in **Figure 2** for the surficial aquifer in the A-zone (shallow) wells, in **Figure 3** for the B-zone (intermediate) wells, and **Figure 4** for the C-zone (deep) wells. Overall, the groundwater elevation data collected on November 18, 2019 from the A-zone and B-zone indicate radial flow from the northern side of the landfill. On the southern side of the Site, a groundwater flow divide exists where groundwater west of MW-25A flows towards the southwest likely as a result of dewatering activities associated with borrow area operations, and groundwater east of MW-25A flows towards a surface pond. Groundwater elevation data from the C-zone indicates a similar groundwater flow direction in the A-zone and B-zone.

6. SURFACE WATER SAMPLING

6.1 Sampling Locations and Procedures

Two surface water sampling locations, SW-3 and SW-4 (**Figure 1**), established during the initial hydrogeological investigation were selected by the FDEP for routine water quality monitoring. As stated in the Permit, surface water samples are only to be collected when there is flow in Bull Creek. During the 31st semi-annual water quality monitoring event, flow was not observed in Bull Creek at either the upstream (SW-4) or downstream (SW-3) monitoring locations. Therefore, surface water samples were not collected during this monitoring event.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Sampling Locations

The existing monitoring well network is adequate for monitoring purposes, and no changes are recommended. However, concentrations of chloride, sodium and TDS have been generally increasing since approximately 2016 in monitoring wells screened in both the shallow aquifer (MW-1A, MW-12A, MW-13A, and MW-23A) and intermediate aquifers (MW-2B, MW-4B, MW-5B, MW-23B) and could be attributed to slope face seeps. As part of the Cell 12 minor permit modification in 2018, "toe interceptors" which consist of the installation of an exposed geomembrane cover (EGC) on the lower 20-25 ft of slope that will contain and seeps at the toe of waste and direct seep flow to the base leachate collection system. This project was completed on January 30, 2020 and attenuation of leachate indicator parameters is expected following implementation.

7.2 Sample Analyses

The detections of iron, sodium, chloride, benzene, and TDS above the regulatory standards in specific groundwater monitoring wells have been discussed in detail in the previous Technical Reports on Water Quality (TRWQ). Section 4.2 identifies the potential sources of each of these analytes in detail. Our recommendation is to continue monitoring these constituents as part of the current MPIS.

The detections of benzene have been consistent in select monitoring wells and, as discussed in Section 4.2 as well as prior submittals to the FDEP. These detections may be attributable to landfill gas migration. The current MPIS requires sampling of compliance wells CW-1A, CW-2A, and CW-3A to monitor the edge of the zone of discharge. The compliance wells were non-detect for benzene during this event. Our recommendation is to continue semi-annual monitoring of these constituents as part of the current MPIS.

8. REFERENCES

- Geo-Services & Consulting, LLC, 2012, Initial Water Quality Report Monitoring Well Cluster MW-22R.
- Geo-Services & Consulting, LLC, 2012, Water Quality Monitoring Installation Report (Cluster MW-22R).
- Geosyntec Consultants, 2004, Baseline Groundwater Monitoring Report.
- Geosyntec Consultants, 2008, Phases 2 and 3 Groundwater Monitoring Report.
- Geosyntec Consultants, 2013, Groundwater Contamination and Landfill Gas Migration Investigation and Assessment.
- Geosyntec Consultants, 2014, 5th Technical Report on Water Quality.
- Geosyntec Consultants, 2015, Cell 11 Groundwater Monitoring Well Installation and Baseline Sampling Report.
- Geosyntec Consultants, 2016, 24th Semi-Annual Water Quality Monitoring Report.
- Geosyntec Consultants, 2019, 7th Technical Report on Water Quality.
- HDR Engineering, Inc., 2012, Class I Permit Renewal Request for Additional Information.
- Kuball-Furr and Associates, 2002, Hydrogeologic Investigation Report and Water Quality Monitoring Plan.
- Maddox, G.L. et. al, 1992, Florida's Ground Water Quality Monitoring Program: Background Hydrogeochemistry, Florida Geological Survey Special Publication No. 34, Tallahassee, Florida.
- Weibu, LLC, 2013, Abandonment and Replacement Water Quality Monitoring Wells MW-20 and MW-16.
- Weibu, LLC, 2014, Abandonment and Installation Water Quality Monitoring Wells MW-17R, 24, 25 and 26.
- Weibu, LLC, 2016, Well Abandonment and Installation Baseline Water Quality Sampling.

TABLES

Table 1 (1 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

				Screen Setting					Screen Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet I	втос)	(feet Ele	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	((11.12 1000)			(feet)	(10012100)	Тор	Bottom	Тор	Bottom	(10012100)	(feet BTOC)
MW-1A	28 03 48.55	81 05 59.88	19900	9-Dec-03	95.12	23.0	13.0	23.0	82.1	72.1	10.6	8.2
MW-2A	28 03 51.99	81 05 59.90	19903	10-Dec-03	95.21	22.6	12.6	22.6	82.6	72.6	10.3	8.9
MW-3A	28 03 55.34	81 05 59.91	19906	11-Dec-03	94.64	22.8	12.8	22.8	81.9	71.9	10.4	9.0
MW-4A	28 03 58.97	81 05 59.92	19909	12-Dec-03	95.48	23.1	13.1	23.1	82.4	72.4	10.8	9.4
MW-5A	28 04 02.92	81 05 59.95	19912	24-Nov-03	95.32	22.5	12.5	22.5	82.8	72.8	10.1	9.1
MW-6A	28 04 06.50	81 05 59.15	19915	25-Nov-03	94.72	22.6	12.6	22.6	82.2	72.2	10.6	8.6
MW-7A	28 04 07.13	81 05 54.78	19918	26-Nov-03	95.48	23.3	13.3	23.3	82.2	72.2	10.3	9.3
MW-8A	28 04 06.20	81 05 50.64	19921	5-Dec-03	94.67	22.5	12.5	22.5	82.2	72.2	10.2	8.6
MW-9A	28 04 04.34	81 05 46.60	19924	4-Dec-03	94.66	22.4	12.4	22.4	82.3	72.3	10.0	8.6
MW-10A	28 04 00.07	81 05 44.77	19927	3-Dec-03	96.25	22.1	12.1	22.1	84.1	74.1	9.8	7.6
MW-11A	28 03 55.43	81 05 43.27	19930	3-Dec-03	93.56	22.8	12.8	22.8	80.7	70.7	10.5	9.1
MW-12A	28 03 52.08	81 05 43.26	19933	2-Dec-03	95.10	23.0	13.0	23.0	82.1	72.1	10.7	9.3
MW-13A	28 03 48.67	81 05 43.25	19936	8-Dec-03	95.19	22.5	12.5	22.5	82.7	72.7	10.2	7.7
MW-14A				•	N	Nonitoring Well Abar	ndoned July 10, 200	7		-		
MW-15A					N	Nonitoring Well Abar	ndoned July 10, 200	7				
MW-16A					M	onitoring Well Aban	doned June 24, 201	13				
MW-16AR	28 03 44.56	81 05 40.18	22342	15-Oct-13	95.01	23.9	13.5	23.5	81.5	71.5	9.0	8.0
MW-17A				•	M	onitoring Well Aban	doned March 5, 201	14		-		
MW-17AR	28 03 42.3	81 05 35.2	22345	19-Jun-14	94.84	24.1	12.0	24.0	82.8	70.8	11.0	10.0
MW-18A				•	M	onitoring Well Aban	doned March 5, 201	14		-		
MW-19A					M	onitoring Well Aban	doned March 5, 201	14				
MW-20A					M	onitoring Well Aban	doned June 24, 201	13				
MW-21A					М	onitoring Well Aban	doned March 5, 201	14				
MW-22A					Mon	itoring Well Abando	ned November 11, 2	2011				
MW-22AR	28 03 34.703	81 06 0.622	28685	14-Mar-12	95.00	23.7	13.0	23.0	82.0	72.0	10.5	9.5
MW-23A	28 03 42.41	81 05 59.79	22363	25-Sep-07	97.90	27.8	17.3	27.3	80.7	70.7	15.3	14.3
MW-24A	28 03 26.9	82 05 25.9	29170	18-Jun-14	87.06	23.5	13	23	74.1	64.1	12.0	11.0
MW-25A	28 03 26.6	82 05 42.6	29173	19-Jun-14	86.99	23.4	13	23	74.0	64.0	12	11
MW-26A				•	M	onitoring Well Aban	doned June 15, 201	16		-		
MW-27A	28 03 32.956	81 05 26.032	29179	30-Jul-15	94.68	23.6	13	23	81.68	71.7	11	9
MW-28A	28 03 36.209	81 05 26.696	29186	30-Jul-15	94.77	24.0	14	24	80.77	70.77	11	9
MW-29A	28 03 39.981	81 05 30.307	29189	30-Jul-15	94.88	23.7	13	23	81.88	71.88	11	9
MW-30A	28 03 27.9	81 05 59.8	29192	30-Mar-19	95.11	20.5	10	20	85.11	75.11	10	8
MW-31A	28 03 28.260	81 05 25.013	29195	15-Jun-16	94.15	25.0	15	25	79.15	69.15	11.4	10.4
CW-1A	28 03 55.76	81 06 00.93	29157	14-Nov-13	84.53	18.5	8	18	76.53	66.53	6	4
CW-2A	28 04 00.51	81 05 43.63	29158	14-Nov-13	82.81	18.5	8	18	74.81	64.81	6	4
CW-3A	28 03 56.07	81 05 41.93	29159	14-Nov-13	81.89	18.4	8	18	73.89	63.89	6	4

Table 1 (2 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

							Screen Setting					
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet E	зтос)	(feet Ele	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	,	,			(feet)	,	Тор	Bottom	Тор	Bottom		(feet BTOC)
MW-1B	28 03 48.59	81 05 59.89	19901	9-Dec-03	95.00	47.9	37.9	47.9	57.1	47.1	35.6	33.1
MW-2B	28 03 51.94	81 05 59.90	19904	10-Dec-03	95.17	48.3	38.3	48.3	56.9	46.9	36.0	34.6
MW-3B	28 03 55.31	81 05 59.91	19907	11-Dec-03	94.68	47.6	37.6	47.6	57.1	47.1	35.3	33.9
MW-4B	28 03 59.01	81 05 59.92	19910	12-Dec-03	95.18	47.4	37.4	47.4	57.8	47.8	35.1	33.5
MW-5B	28 04 02.88	81 05 59.95	19913	24-Nov-03	95.30	47.1	37.1	47.1	58.2	48.2	34.4	32.7
MW-6B	28 04 06.48	81 05 59.18	19916	25-Nov-03	94.60	47.4	37.4	47.4	57.2	47.2	34.9	33.5
MW-7B	28 04 07.13	81 05 54.81	19919	26-Nov-03	95.27	47.5	37.5	47.5	57.8	47.8	34.5	33.5
MW-8B	28 04 06.19	81 05 50.60	19922	5-Dec-03	94.58	49.6	39.6	49.6	55.0	45.0	37.1	35.6
MW-9B	28 04 04.31	81 05 46.56	19925	4-Dec-03	94.63	49.1	39.1	49.1	55.5	45.5	36.8	35.3
MW-10B	28 04 00.04	81 05 44.75	19928	3-Dec-03	96.23	48.3	38.3	48.3	58.0	48.0	35.9	33.9
MW-11B	28 03 55.40	81 05 43.27	19931	2-Dec-03	93.59	47.9	37.9	47.9	55.7	45.7	35.5	34.0
MW-12B	28 03 52.05	81 05 43.27	19934	1-Dec-03	95.01	49.0	39.0	49.0	56.1	46.1	36.6	35.1
MW-13B	28 03 48.64	81 05 43.24	19937	8-Dec-03	95.12	47.2	37.2	47.2	58.0	48.0	34.8	33.4
MW-14B					N	Monitoring Well Abar	ndoned July 10, 200	7				
MW-15B					N	Monitoring Well Abar	ndoned July 10, 200	7				
MW-16B					M	Ionitoring Well Aban	doned June 24, 201	3				
MW-16BR	28 03 44.54	81 05 40.14	22343	15-Oct-13	94.97	46.6	36.5	46.5	58.5	48.5	33.0	31.0
MW-17B					M	Ionitoring Well Aban	doned March 5, 201	14				
MW-17BR	28 03 42.2	82 05 35.2	22346	19-Jun-14	94.78	48.5	38.0	48.0	56.8	46.8	37.0	36.0
MW-18B					M	Ionitoring Well Aban	doned March 5, 201	14				
MW-19B					M	Ionitoring Well Aban	doned March 5, 201	14				
MW-20B					M	Ionitoring Well Aban	doned June 24, 201	13				
MW-21B					M	Ionitoring Well Aban	doned March 5, 201	14				
MW-22B					Mon	itoring Well Abando	ned November 11, 2	2011				
MW-22BR	28 03 34.665	81 05 59.850	28686	15-Mar-12	94.86	46.1	35.5	45.5	59.4	49.4	33.0	28.0
MW-23B	28 03 42.46	81 05 59.79	22364	25-Sep-07	97.91	42.8	32.3	42.3	65.7	55.7	30.3	29.3
MW-24B	28 03 26.5	82 05 58.5	29171	18-Jun-14	87.05	43.1	33	43	54.1	44.1	32.0	31.0
MW-25B	28 03 26.6	82 05 42.7	29174	19-Jun-14	86.67	41.5	31	41	55.7	45.7	30.0	29.0
MW-26B					M	Ionitoring Well Aban	doned June 15, 201	16				
MW-27B	28 03 33.0	81 05 26.032	29180	30-Jul-15	94.66	46.8	36	46	58.66	48.66	34	32
MW-28B	28 03 36.252	81 05 26.696	29187	30-Jul-15	94.68	48.7	38	48	56.68	46.68	36	34
MW-29B	28 03 39.998	81 05 30.307	29190	30-Jul-15	94.67	48.8	38	48	56.67	46.67	36	34
MW-30B	28 03 27.8	81 05 59.8	29193	30-Mar-19	95.01	44.5	34	44	61.01	51.01	33	31
MW-31B	28 03 28.304	81 05 25.029	29196	15-Jun-16	93.88	46.3	36	46	57.88	47.88	35	34

Table 1 (3 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

							Screen Setting					
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet I	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	, ,	, ,			(feet)	,	Тор	Bottom	Тор	Bottom	, ,	(feet BTOC)
MW-1C	28 03 48.63	81 05 59.88	19902	9-Dec-03	95.18	75.2	65.2	75.2	30.0	20.0	62.9	61.4
MW-2C	28 03 51.90	81 05 59.89	19905	10-Dec-03	95.32	68.4	58.4	68.4	36.9	26.9	56.1	53.7
MW-3C	28 03 55.28	81 05 59.91	19908	11-Dec-03	94.66	68.7	58.7	68.7	36.0	26.0	56.3	54.8
MW-4C	28 03 59.04	81 05 59.92	19911	12-Dec-03	95.39	72.5	62.5	72.5	32.9	22.9	61.2	59.6
MW-5C	28 04 02.83	81 05 59.95	19914	24-Nov-03	95.39	73.0	63.0	73.0	32.4	22.4	60.7	58.7
MW-6C	28 04 06.46	81 05 59.22	19917	25-Nov-03	94.58	73.2	63.2	73.2	31.4	21.4	60.2	57.7
MW-7C	28 04 07.13	81 05 54.86	19920	25-Nov-03	94.93	73.3	63.3	73.3	31.6	21.6	60.3	59.3
MW-8C	28 04 06.17	81 05 50.55	19923	5-Dec-03	94.50	73.9	63.9	73.9	30.6	20.6	61.6	59.8
MW-9C	28 04 04.29	81 05 46.53	19926	4-Dec-03	94.54	73.8	63.8	73.8	30.8	20.8	61.4	59.4
MW-10C	28 04 00.01	81 05 44.74	19929	3-Dec-03	96.36	73.7	63.7	73.7	32.7	22.7	61.4	60.0
MW-11C	28 03 55.36	81 05 43.26	19932	2-Dec-03	93.65	73.4	63.4	73.4	30.3	20.3	61.0	59.6
MW-12C	28 03 52.01	81 05 43.26	19935	1-Dec-03	95.10	73.6	63.6	73.6	31.5	21.5	60.2	58.7
MW-13C	28 03 48.60	81 05 43.25	19938	8-Dec-03	95.04	73.0	63.0	73.0	32.1	22.1	60.7	58.2
MW-14C					N	Nonitoring Well Abar	ndoned July 10, 200	7				
MW-15C					N	Nonitoring Well Abar	ndoned July 10, 200	7				
MW-16C					M	lonitoring Well Abar	doned June 24, 201	3				
MW-16CR	28 03 44.52	81 05 40.11	22344	16-Oct-13	95.03	75.3	65.0	75.0	30.0	20.0	60.0	59.0
MW-17C					M	onitoring Well Abar	doned March 5, 201	14				
MW-18C					M	onitoring Well Abar	doned March 5, 201	4				
MW-19C	Monitoring Well Abandoned March 5, 2014											
MW-20C	Monitoring Well Abandoned June 24, 2013											
MW-21C	Monitoring Well Abandoned March 5, 2014											
MW-22C					Mon	itoring Well Abando	ned November 11,	2011				
MW-22CR	28 03 34.629	81 05 59.854	28687	15-Mar-12	95.13	66.6	56.0	66.0	39.1	29.1	50.0	49.0
MW-23C	28 03 42.51	81 05 59.80	22365	24-Sep-07	97.93	67.1	56.6	66.6	41.4	31.4	54.6	53.6

Notes:

NAD 1983 = North American Datum 1983 BTOC = Below Top of Casing

Table 2

SUMMARY OF WATER QUALITY FIELD PARAMETERS
31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT
J.E.D. SOLID WASTE MANAGEMENT FACILITY

Monitoring Well	Temperature (°C)	pH (Standard Units)	Specific Conductance (uS/cm)	Turbidity (NTUs)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Purging Method
MW-1A	24.32	4.70	1,689	0.87	-133.5	0.04	Peristaltic Pump
MW-1B	23.71	4.30	757	0.17	-72.0	0.10	Peristaltic Pump
MW-2A	24.68	4.48	973	0.28	-68.7	0.00	Peristaltic Pump
MW-2B	23.89	4.04	1,381	1.74	-109.6	0.07	Peristaltic Pump
MW-3A	25.82	5.35	1,547	1.30	-147.4	0.00	Peristaltic Pump
MW-3B	25.29	4.15	1,903	0.29	-38.9	0.05	Peristaltic Pump
MW-4A	25.64	4.78	1,281	1.61	-136.7	0.01	Peristaltic Pump
MW-4B	25.30	5.46	2,481	0.71	-143.6	0.00	Peristaltic Pump
MW-5A	25.51	5.11	960	1.15	-109.2	0.05	Peristaltic Pump
MW-5B	24.82	4.15	1,683	0.67	6.6	0.03	Peristaltic Pump
MW-6A	25.94	5.00	377	0.52	-81.4	0.00	Peristaltic Pump
MW-6B	25.51	4.36	212	0.18	-57.2	0.05	Peristaltic Pump
MW-7A	25.67	5.00	336	0.39	-39.1	2.00	Peristaltic Pump
MW-7B	25,35	4.03	578	1.54	-2.3	1.58	Peristaltic Pump
MW-8A	25.34	4.17	1,246	1.31	-4.0	1.20	Peristaltic Pump
MW-8B	24.60	4.03	1,142	0.71	41.7	0.58	Peristaltic Pump
MW-9A	27.12	5.26	220	9.01	-47.3	1.73	Peristaltic Pump
MW-9B	26.04	4.40	478	1.14	77.6	0.91	Peristaltic Pump
MW-10A	26.78	4.76	847	1.83	-56.2	1.64	Peristaltic Pump
MW-10B	26.38	4.10	980	0.89	5.3	2.10	Peristaltic Pump
MW-11A	28.58	5.10	726	6.86	69.1	1.71	Peristaltic Pump
MW-11B	28.53	4.88	115	0.91	2.1	0.53	Peristaltic Pump
MW-12A	27.52	3.94	1.784	1.18	47.7	1.72	Peristaltic Pump
MW-12B	26.92	4.77	74	1.15	63.0	0.97	Peristaltic Pump
MW-13A	27.69	4.70	3,540	6.77	20.2	1.17	Peristaltic Pump
MW-13B	27.17	4.69	101	0.22	31.5	0.99	Peristaltic Pump
MW-16AR	27.69	5.40	1,155	9.64	-114.7	2.02	Peristaltic Pump
MW-16BR	26.37	4.60	114	0.59	-49.7	1.10	Peristaltic Pump
MW-17AR	28.56	4.44	907	2.07	163.4	2.38	Peristaltic Pump
MW-17BR	26.92	4.87	103	2.14	-66.4	0.75	Peristaltic Pump
MW-22AR	28.12	5.39	990	1.25	-116.2	0.01	Peristaltic Pump
MW-22BR	28.14	6.08	147	2.84	-40.2	0.02	Peristaltic Pump
MW-23A	26.35	5.58	3.175	4.07	-223.2	0.50	Peristaltic Pump
MW-23B	25.85	4.15	2,585	0.31	-17.1	0.01	Peristaltic Pump
MW-24A	25.16	4.45	220	0.34	-45.5	0.20	Peristaltic Pump
MW-24A MW-24B	24.33	4.57	121	1.16	-49.6	0.13	Peristaltic Pump
MW-25A	25.61	4.85	1,003	0.71	-89.6	0.13	Peristaltic Pump
MW-25B	25.04	5.00	233	3.50	-128.1	0.05	Peristaltic Pump
MW-27A	26.59	4.80	192	2.01	80.2	2.81	Peristaltic Pump
MW-27A MW-27B	25.94	5.17	149	1.10	-20.8	0.54	Peristaltic Pump
MW-28A	27.11	4.67	1,538	1.18	-43.0	1.56	Peristaltic Pump
MW-28B	26.36	4.78	1,538	1.18	-50.6	0.94	Peristaltic Pump
MW-29A	27.22	4.78	309	2.81	117.2	0.52	Peristaltic Pump
MW-29A MW-29B	26.22	4.59	237	1.08	-28.1	0.91	Peristaltic Pump
MW-30A	24.80	4.40	391	0.32	21.5	0.10	Peristaltic Pump
MW-30B	24.24	4.45	165	0.34	-30.9	0.10	Peristaltic Pump
MW-31A	25.30	4.73	1,054	45	-36.8	1.14	Peristaltic Pump
MW-31B	25.87	4.73	1,342		-50.8 -5.3	1.14	
				0.89		0.03	Peristaltic Pump
CW-1A	23.43	5.02	598	2.62	-91.7		Peristaltic Pump
CW-2A	23.95 23.32	5.08 5.57	1,981 2,490	3.10 6.11	-102.5 -126.1	0.00	Peristaltic Pump Peristaltic Pump

Notes:

°C = degrees Celsius

uS/cm = micro Siemens per centimeter

NA = data not available

NTU = Nephelometric Turbidity Units

mV = millivolts

mg/L = milligram per liter

Table 3

SUMMARY OF GROUNDWATER ANALYTICAL DATA 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Well ID	1,2,3-Trichloropropane		Acetone	Acrylonitrile	_	Benzene	Carbon Disulfide	cis-1,2- Dichloroethene	Methyl Ethyl Ketone (2-Butanone)		Methyl Isobutyl Ketone	Toluene	Xylenes (total)	Antimony	Arsenic	Barium
Well ID	GCTL (ug/L)	'	GCTL (ug/L)	GCTL (ug/L)		PDWS (ug/L)	GCTL (ug/L)	PDWS (ug/L)	GCTL (ug/L)		GCTL (ug/L)	GCTL (ug/L)	GCTL (ug/L)	PDWS (ug/L)	GCTL (ug/L)	PDWS (ug/L)
	0.02		6,300	0.06		1	700	70	4,200		560	40	20	6	10	2,000
			.,						,							
MW-1A	0.91	U, O	2.1	U 1.1	U, O	2.3	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	0.15	1 1.7	39
MW-1B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 U	J 0.11 I	U 1.2	40
MW-2A	0.91	U, O		U 1.1	U, O	0.16 U				U		U 0.23 U			U 0.83	72
MW-2B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.99 I	0.53 U	J 0.12	1 1.2	43
MW-3A	0.91	U, O	2.1	U 1.1	U, O	0.16 U			0.43	U		U 0.23 U			U 0.48	54
MW-3B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.79	40
MW-4A	0.91	U, O	2.1	U 1.1	U, O	0.86 I	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 1.6	55
MW-4B	0.91	U, O	5.4	1.1	U. O	0.16 U		0.24 U		U		U 0.23 U			3.4	53
WWW -4D	0.81	0,0	3.4	1.1	0, 0	0.10	1.0	0.24	0.43	-	0.47	0.25 0	0.35	1.0	3.4	33
MW-5A	0.91	U, O	6.9	1.1	U, O	0.16 U	0.95 I	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	0.11	U 0.88	12
MW-5B	0.91	U, O	2.1	U 1.1	U, O	0.16 U				Ü		U 0.23 U			U 0.74	46
MW-6A	0.91	U, O	2.1	U 1.1	U, O	4.1	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.49	4.6
MW-6B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.36	49
MW-7A	0.91	U, O	2.1	U 1.1	U, O	0.45 I	0.67 U			U		U 0.23 U		J 0.11 I	U 0.80	20
MW-7B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.81	33
				1						_						
MW-8A	0.91	U, O	2.1	U 1.1	U, O		0.67 U		0.43	U	0.47	U 0.23 U		0.12	0.68	31
MW-8B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	0.11	U 0.70	38
MW-9A	0.04	11.0	0.0	1.1	11.0	44	0.67	0.24	0.42	1.0	0.47	U 0.23 U	0.53	0.44	U 14	7.4
	0.91	U, O U. O	6.6 5.5	1.1	U, O U. O	11 86	0.67 U			U		U 0.23 U U 0.23 U			U 1.4 U 1.5	7.1 7.0
MW-9A Duplicate (Dup-1) MW-9B	0.91	U, O		U 1.1	U, O		0.70 I 0.67 U		0.43	U		U 0.23 U			U 1.5 U 0.49	7.0
/Y-0D	0.91	0, 0	4.1	1.1	J, U	U. 10 U	0.07 U	0.24	0.43	U	0.47	U.23 U	U.33 (0.11	0.49	40
MW-10A	0.91	U. O	2.1	U 1.1	U. O	6.3	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	0.11	U 1.5	90
MW-10B	0.91	U. O		U 1.1	U. O	13	0.67 U			Ü		U 0.23 U			U 0.94	44
					-,-						****					
MW-11A	0.91	U, O	4.6	1 1.1	U, O	2.5	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 2.1	31
MW-11B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	0.11	U 0.69	17
MW-12A	0.91	U, O	4.6	1.1	U, O	5.7	0.67 U	0.24 L		U	1.5	0.23 U			1 1.7	240
MW-12B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.22 I	20
MW-13A	0.91	U, O	2.1	U 1.1	U, O	4.8	0.67 U		0.43	U		U 0.23 U			U 7.7	370
MW-13B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.20	13
MW-16AR	0.91	U, O	2.1	U 1.1	U, O		0.67 U		0.43	U	0.47	U 0.23 U		0.21	1 1.9	34
MW-16BR	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.40	38
MW-17AR	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 L	0.34	1 1.2	59
MW-17BR	0.91	U, O		U 1.1	U. O	0.16 U			0.43	U		U 0.23 U			U 0.63	18
IMWV-17 DIC	0.81	0,0	2.1	1.1	0, 0	0.10	0.07	0.47	0.43	-	0.47	0 023 0	0.35	0.11	0.03	10
MW-22AR	0.91	U. O	2.1	U 11	U, O	0.16 U	0.67	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	0.11	U 2.3	68
MW-22BR	0.91	U. O	2.1	U 1.1	U. O	0.16 U			0.43	Ü		U 0.23 U		0.11	U 0.27	14
MW-23A	0.91	U, O	290	1.1	U, O	0.16 U	2.3	0.24 L	63		5.8	2.2	0.53 L	3.5	6.2	32
MW-23B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 U	J 0.11 I	U 0.98	65
MW-24A	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U		0.43	U	0.47	U 0.23 U		J 0.11 I	U 0.23	21
MW-24B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 U	J 0.11 I	U 0.08	6.3
				1						_						
MW-25A	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U		0.43	U		U 0.23 U		0.11	U 1.0	74
MW-25B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	J 0.11 I	U 0.75	38
ABA/ 07A	0.04	11.0	2.1	11	11.0	0.16 U	0.67	0.24	0.42	- 11	0.47	0.22	0.62	0.43	1 10	22
MW-27A MW-27B	0.91	U, O		U 1.1	U, O	0.16 U			0.40	U		U 0.23 U U 0.23 U		0.40	I 1.2	23 17
INIVV-Z/B	0.91	υ, Ο	2.1	U 1.1	0,0	U.16 U	U.6/ U	U.24 U	U.43	U	U.47	U U.23 U	U.53 L	0.11	U.6/	1/
MW-28A	0.91	U. O	2.1	U 1.1	U. O	0.16 U	0.67 U	0.24 U	0.43	U	0.47	U 0.23 U	0.53 U	0.11	U 1.4	120
MW-28B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U		0.43	U	0.47	U 0.23 U	0.53 t		U 0.80	41
	0.01	5,0	2	1	5, 5	0.10	0.07	0.24	0.40	-	V.41	- 020 0	0.00	0.11	0.00	7.
MW-29A	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 L	0.27	1 0.82	52
MW-29B	0.91	U, O		U 1.1	U, O					U		U 0.23 U			U 0.65	98
MW-30A	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 U	0.15	I 0.55	82
MW-30B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 U	J 0.11 I	U 0.73	14
MW-31A	0.91	U, O		U 1.1	U, O					U		U 0.23 U		J 0.13	1 3.6	66
MW-31A (Filtered)	NM		NM	NM		NM	NM	NM	NM		NM	NM	NM	0.17	1.1	66
MW-31B	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U	0.24 L	0.43	U	0.47	U 0.23 U	0.53 U	J 0.11 I	U 1.3	86
CW-1A	0.91	U, O	2.1	U 1.1	U, O	0.16 U	0.67 U		0.43	U	0.47	U 0.23 U		0.11	U 150	54
CW-2A	0.91	U, O	8.2	1.1	U, O	0.16 U				U		U 0.23 U			3.3	76
CW-3A CW-3A Duplicate (Dup. 2)	0.91	U, O	12	1.1	U, O	0.16 U 0.16 U			0.43 0.43	U		U 0.23 U U 0.23 U		J 0.35 J 0.34	1 13	50 50
CW-3A Duplicate (Dup-2)	0.91	U, O	11	1.1	U, O	0.16 U	U.67 U	U.24 U	0.43	U	U.47	U 0.23 U	0.53 U	U.34	13	50

NOTES:

Undicates the sample was analyzed but not detected above the applicable GCTL, POWS, or SDWS

Undicates the sample was analyzed but not detected above the laboratory method detection limit, DOLL, inclinates reproder value in between the laboratory MDL and the laboratory practical quantitation limit.

O inclinate is allocatory MDL greater than the GCTL.
O inclinate is missed hold time.

J indicates an estimated result
NIM inclinate parameter not measured
GCTL inclinates Groundwater Cleanup Target Lowel
PDWS inclinates Primary Dicknick yaffers Standard
SDWS indicates Socondary Direking Water Standard

Table 3

SUMMARY OF GROUNDWATER ANALYTICAL DATA 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Profession Pro	Well ID	Beryllium	Chromium	Cobalt	Iron	Mercury	Nickel	Sodium	Thallium	Vanadium	Chloride	Nitrate (N)	Ammonia	TDS
March Marc	Well ID				SDWS (ug/L)	PDWS (ug/L)								
Move 19			100	140	300	2	100	160		49	250			
Move 19														
March Marc								64	0.06 U			0.25 U		
Month 10 1 20 U 46 Month 10 1 20 U 100 U		0.00		2.0	0,000	0.01	0.0		0.00	7.7	50 0	0.00	7.0	440
March Color Colo	MW-2A													
March 1969 1972	MW-2B	1.0 I	2.0 L	6.6 I	24,000	0.01 U	6.0 U	150	0.06 U	15	260	0.10 U	4.4	840
March 1969 1972	MW-3A	0.50 U	20 1	20 1	3 600	0.01 U	60 U	25	0.06	27	38	0.10 U	8.0	1 200
March 190 19														
March 1,000 1,00														
MACH 100 1 22 1 1 23 1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
March	MIT 40	0.00	0.1	2.0	100 0	0.01	0.0	140	0.00	1	400	0.00	- 12	1,700
March														
MAY-RE	MW-5B	0.50 U	2.0 L	2.0 L	120 I	0.01 U	6.0 U	82	0.06 U	4.0	540	1.0 U	8.2	1,300
MAY-1A	MW-6A	0.50 U	2.0 L	2.0 L	18,000	0.02 I,J	6.0 U	25	0.06 U	3.0	59	0.05 U	6.7	160
MAY-PATE 1,000 1,000 2	MW-6B	0.50 U	2.0 L	2.0 L	1,600	0.02 I	6.0 U	12	0.06 U	1.8 I	25	0.05 U	0.18	86
MAY-PATE 1,000 1,000 2														
MAY-MAY-MAY-MAY-MAY-MAY-MAY-MAY-MAY-MAY-														
MAY-BRY 1														
Mon-Air														
MW-94 MW-95	MWV-8B	U.80 I	2.0 L	8.9	46,000	0.01 U	6.0 U	30	0.09 I	3.8 I	17	0.05 U	1.4	1,000
MW-94 MW-95	MW-9A	0.50 U	3.9 1	2.0 U	610	0.01 U	6.0 U	17	0.06 U	3.4	18	0.02 U	4.7	180
MW-19A	MW-9A Duplicate (Dup-1)													
MAY-168 13 20 21 11000 001 U 60 U 17 008 U 23 56 I 0.10 U 75 880 MAY-141 0.55 U 2.0 U 2.0 U 460 0.01 U 6.0 U 18 0.05 U 2.0 U 0.05 U 0.04 U 72 MAY-141 MA	MW-9B	0.80 I	2.0 L	3.0 I	7,800	0.01 U	6.0 U	38	0.06 U	3.2	490	0.49 U	20 J	1,600
MAY-168 13 20 21 11000 001 U 60 U 17 008 U 23 56 I 0.10 U 75 880 MAY-141 0.55 U 2.0 U 2.0 U 460 0.01 U 6.0 U 18 0.05 U 2.0 U 0.05 U 0.04 U 72 MAY-141 MA	MW-10A	0.50 U	2.0 L	2.0 L	16.000	0.01 U	6.0 U	25	0.06 U	1.8 I	17	0.05 U	23	590
MM-118	MW-10B	1.3 I	2.0 L	3.1 I	11,000	0.01 U	6.0 U	17	0.06 U	2.3	5.6 I	0.10 U	7.5	850
MM-118	100/444	0.50			44.000	0.04		40	0.00			0.05	15	000
MM-12AR														
MM-198					-									
MM-19A														
MM-198	MW-12B	0.50 U	2.0 U	2.0 U	660	0.01 U	6.0 U	7.3	0.06 U	0.91 I	14	0.05 U	0.04 L	60
MW-19AR	MW-13A	0.50 U	2.0 L	2.0 U	29,000	0.01 U	6.0 U	500	0.06 U	8.4	990	1.0 U	11	1,900
MM-15RR	MW-13B	0.50 U	2.0 L	2.0 L	1,100	0.01 U	6.0 U	10	0.06 U	0.71 L	22	0.05 U	0.04 L	77
MM-15RR	MAN 16AD	0.60	21 1	20 1	660	0.01	60 11	140	0.06	12	210	0.10	4.0	760
MM-17AR														
MM-17BR 0.50 U 2.0														
MM-22AR						0.01 U	7.6 I							
MM-22BR 0.50 U 2.0 U 2.0 U 1,100 0.01 U 6.0 U	IMWY-17DR	0.50 0	2.0	2.0	560	0.01 0	6.0 0	15	0.06	1.1	13	0.06	0.10	01
MM-23A			2.7	2.0 U	20,000				0.06 U					
MW-23B	MW-22BR	0.50 U	2.0 L	2.0 L	1,100	0.01 U	6.0 U	6.9	0.06 U	0.97 I	14	0.05 U	0.18 J	58
MW-23B	MW-23A	0.50 U	24	20 1	360 I	0.01 U	18 I	500	0.06	15	870	10 U	42	1 900
MM-25A	MW-23B													
MM-25A					040			45		4.0		0.05		
MW-25A														
MM-25B		0.00	2.0	1 200	400	0.01	0.0	0.0	0.00	0	0.0	0.00 0,0	0.04	
MM-27A														
MM-28A 0.50 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 147 720 MM-28A 0.50 U 2.0 U 2.0 U 2.0 U 2.0 U 1.6700 0.01 U 6.4 U 160 0.06 U 0.72 I 1.450 0.07 U 141 720 MM-28A 0.50 U 2.0 U 1.20 U 1	MW-25B	0.50 U	2.0 L	2.0 L	1,300	0.01 U	6.0 U	15	0.06 U	1.6 I	26	0.05 U	0.08	130
MM-28A 0.50 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 147 720 MM-28A 0.50 U 2.0 U 2.0 U 2.0 U 2.0 U 1.6700 0.01 U 6.4 U 160 0.06 U 0.72 I 1.450 0.07 U 141 720 MM-28A 0.50 U 2.0 U 1.20 U 1	MW-27A	0.50 U	2.0 U	2.0 U	470	0.01 U	6.0 U	14	0.06 U	9.1	26	0.73	4.0	130
MM-28B	MW-27B		2.0 U	2.0 U	470			25	0.06 U				0.11	
MM-28B	MAN 20A	0.60	20 1	20 1	6 700	0.01	64	160	0.06	0.72	420	0.10	14	720
MM-29A 0.50 U 2.0 I 2.0 U 2.0														
MM-30A 0.50 U 2.0 U 2.0 U 2.0 U 1,600 0.01 U 6.0 U 18 0.06 U 2.2 31 0.05 I 0.05 I 100 MM-30A 0.50 U 2.0 U 2.0 U 1,600 0.01 U 6.0 U 2.7 0.06 U 2.0 I 33 0.05 U 1.0 20 MM-31A 4.8 I 3.8 I 2.3 60,000 0.01 U 6.0 U 7.7 0.06 U 0.93 I 2.2 0.05 U 0.07 63 MM-31A 4.8 I 3.8 I 2.3 60,000 0.01 U 16 I 21 0.06 U 11 24 0.10 U 8.8 870 MM-31B 2.0 2 0.0 U 2.0 U 2.3 80,000 0.01 U 16 I 2.2 0.06 U 11 I NM														
MW-30R														
MM-30B	NWV-29B	U.50 U	2.0 L	2.0 L	2,900	U.U1 U	6.0 U	18	U.06 U	Z.2	31	U.U5 I	U.05 I	160
MM-31A	MW-30A	0.50 U	2.0 L	2.0 L	1,600	0.01 U	6.0 U	27	0.06 U	2.0 I	33	0.05 U	1.0	200
MW-314 (Filtered) 3.7 2.0 U 23 80.000 0.01 U 16 I 22 0.06 U 11 I NM NM NM NM NM NM NM S18	MW-30B													
MW-314 (Filtered) 3.7 2.0 U 23 80.000 0.01 U 16 I 22 0.06 U 11 I NM NM NM NM NM NM NM NM S18	MW-31A	40	3.0	22	80 000	0.04	16 '	21	0.06	11	24	0.10 ''	8.0	870
MW-31B 2.0 2.0 U 28 70,000 0.01 U 20 I 31 0.06 U 4.0 I 21 I 0.25 U 1.4 1.200 CW-1A 0.50 U 5.8 I 2.0 U 8,000 0.01 U 6.0 U 24 0.06 U 4.3 35 J 0.05 U 1.3 340 CW-2A 0.50 U 3.8 I 2.0 U 330 I 0.01 U 6.0 U 220 0.06 U 4.3 330 0.50 U 23 1.200 CW-3A 0.50 U 17 2.0 U 2.30 0.01 U 10 I 400 0.06 U 18 550 0.50 U 21 1,500 CW-2A 0.50 U 17 2.0 U 2.30 0.01 U 10 I 400 0.06 U 18 550 0.50 U 21 1,500 CW-2A 0.50 U 1.50 U 24 0.06 U 18 550 0.50 U 27 1,500 CW-2A 0.50 U 17 2.0 U 2.30 0.01 U 10 I 400 0.06 U 18 550 0.50 U 21 1,500 CW-2A 0.50 U 1.50 U 24 0.06 U 18 550 0.50 U 27 1,500 CW-2A 0.50 U 1.50														
CM-2A 0.50 U 3.8 I 2.0 U 330 I 0.01 U 6.0 U 230 0.06 U 4.3 330 0.50 U 22 1200 CM-3A 0.50 U 17 2.0 U 2.300 0.01 U 10 I 400 0.06 U 18 550 0.50 U 21 1200 CM-3A 0.50 U 22 1 1200 CM-3A 0.50 U 17 2.0 U 2.300 0.01 U 10 U 10 U 400 0.06 U 18 550 0.50 U 21 1200 CM-3A 0.50 U 12 U 10 U 10 U 10 U 10 U 10 U 10 U 1	MW-31B										21 I	0.25 U	1.4	1,200
CM-2A 0.50 U 3.8 I 2.0 U 330 I 0.01 U 6.0 U 230 0.06 U 4.3 330 0.50 U 22 1200 CM-3A 0.50 U 17 2.0 U 2.300 0.01 U 10 I 400 0.06 U 18 550 0.50 U 21 1200 CM-3A 0.50 U 22 1 1200 CM-3A 0.50 U 17 2.0 U 2.300 0.01 U 10 U 10 U 400 0.06 U 18 550 0.50 U 21 1200 CM-3A 0.50 U 12 U 10 U 10 U 10 U 10 U 10 U 10 U 1	0111.44				0.000					10	05	0.05	10	
CW-3A 0.50 U 17 2.0 U 2,300 0.01 U 10 I 400 0.06 U 18 550 0.50 U 21 1,600					0,000									
CW-3A Duplicate (Dup-2) 0.50 U 17 2.0 U 2,300 0.01 U 9.5 I 390 0.06 U 3.7 490 0.50 U 20 1,600		0.50 U	17		2,300	0.01 U	10 I		0.06 U	18	550		21	1,600
	CW-3A Duplicate (Dup-2)	0.50 U	17	2.0 L	2,300	0.01 U	9.5 I	390	0.06 U	3.7	490	0.50 U	20	1,600

NOTES:

Reported value exceeds the applicable GCTL PDWS, or SDWS

I indicates the sample was analyzed but not detented above the laboratory method detection limit (MDL).
I indicates proported value is between the laboratory MDL and the laboratory practical quantitation limit.
O includes a laboratory MDL greater than the GCTL.
O includes a missed hold time.
J indicates an estimated result
NIN indicates parameter not measured
GCTL includes Groundwater Cleanup Target Lines
DPWS indicates Prisary Direkting Water Standard
SDWS indicates Secondary Direkting Water Standard

Table 4 (1 of 4)

GROUNDWATER LEVEL MEASUREMENTS 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name: JED Solid Waste Management Facility Sampling Personnel: Neil Stapley, Daniel Montiel Field Conditions: Sunny ~70°F

Location: Osceola County, Florida
Date: November 18, 2019

Date:	November 18	3, 2019										
Well ID	Time	TOC Elevation ⁽¹⁾	Depth to Water (ft)	Well Depth (ft) ⁽²⁾	GW Elevation	Field Observations						
DP-1		•	F	Piezometer Aba	ndoned Octob	per 3, 2003						
DP-2			F	Piezometer Aba	ndoned Octob	per 3, 2003						
DP-3			P	iezometer Abar	ndoned Januar	ry 16, 2006						
DP-4		Piezometer Abandoned January 16, 2006										
DP-5		Piezometer Abandoned July 10, 2007										
DP-6				Piezometer Ab	andoned July	10, 2007						
DP-7				Piezometer Ab	andoned July	10, 2007						
DP-8				Piezometer Ab	andoned July	10, 2007						
DP-9				Piezometer Ab	andoned July	10, 2007						
DP-10				Piezometer Ab	andoned July	10, 2007						
DP-11				Piezometer Ab	andoned July	10, 2007						
DP-12				Piezometer Ab	andoned July	10, 2007						
DP-13				Piezometer Ab	andoned July	11, 2007						
DP-14				Piezometer Aba	andoned Marc	h 2, 2015						
DP-15				Piezometer Aba	andoned Marc	h 2, 2015						
DP-16			Pie	ezometer Aband	loned Decemb	per 30, 2015						
DP-17			Pie	ezometer Abanc	loned Decemb	per 30, 2015						
DP-18	13:06	84.38	8.59	52.87	75.79							
DP-19	13:13	84.34	9.57	18.20	74.77							
DP-20	12:53	83.07	5.67	18.35	77.40							
DP-21	12:52	83.00	5.68	53.68	77.32							
DP-22	15:34	81.00	5.04	18.63	75.96							
DP-23	15:35	81.27	4.95	53.73	76.32							
DP-24			Pie	ezometer Abanc	loned Decemb	per 30, 2015						
SZ-1				Piezometer Ab	andoned July	10, 2007						
SZ-2	12:55	83.16	7.04	75.39	76.12							
SZ-3	15:32	81.27	5.78	78.85	75.49							
MW-1A	13:38	95.12	17.45	23.15	77.67							
MW-1B	13:36	95.00	17.37	48.07	77.63							
MW-1C	13:35	95.18	17.60	74.58	77.58							
MW-2A	13:44	95.21	17.52	22.84	77.69							
MW-2B	13:43	95.17	17.50	48.26	77.67							
MW-2C	13:41	95.32	17.69	68.57	77.63							
MW-3A	13:50	94.64	16.80	22.97	77.84							
MW-3B	13:48	94.68	16.81	47.88	77.87							
MW-3C	13:47	94.66	16.85	68.95	77.81							

Table 4

(2 of 4) **GROUNDWATER LEVEL MEASUREMENTS**

31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name: JED Solid Waste Management Facility Sampling Personnel: Neil Stapley, Daniel Montiel Field Conditions: Sunny ~70°F

Location: Osceola County, Florida
Date: November 18, 2019

•			•							
Well ID	Time	TOC Elevation ⁽¹⁾	Depth to Water (ft)	Well Depth (ft) ⁽²⁾	GW Elevation	Field Observations				
MW-4A	14:01	95.48	17.54	23.28	77.94	2334 2 334 3 334 3				
MW-4B	14:02	95.18	17.26	47.67	77.92					
MW-4C	14:03	95.39	17.59	72.70	77.80					
MW-5A	14:09	95.32	17.64	22.69	77.68					
MW-5B	14:08	95.30	17.73	47.32	77.57					
MW-5C	14:07	95.39	18.05	73.25	77.34					
MW-6A	14:15	94.72	17.89	22.60	76.83					
MW-6B	14:14	94.60	17.76	47.71	76.84					
MW-6C	14:13	94.58	17.84	73.25	76.74					
MW-7A	14:22	95.48	18.66	23.53	76.82					
MW-7B	14:16	95.27	18.44	48.14	76.83					
MW-7C	14:16	94.93	18.19	73.49	76.74					
MW-8A	14:24	94.67	17.89	22.71	76.78					
MW-8B	14:25	94.58	17.80	49.48	76.78					
MW-8C	14:27	94.50	17.89	73.95	76.61					
MW-9A	14:29	94.66	18.02	22.53	76.64					
MW-9B	14:31	94.63	18.02	49.30	76.61					
MW-9C	14:31	94.54	18.04	73.96	76.50					
MW-10A	14:35	96.25	19.46	22.37	76.79					
MW-10B	14:36	96.23	19.47	48.47	76.76					
MW-10C	14:37	96.36	19.74	73.76	76.62					
MW-11A	14:40	93.56	16.64	22.83	76.92					
MW-11B	14:42	93.59	16.96	48.03	76.63					
MW-11C	14:43	93.65	17.03	73.72	76.62					
MW-12A	14:46	95.10	18.19	23.20	76.91					
MW-12B	14:48	95.01	18.29	49.17	76.72					
MW-12C	14:49	95.10	18.43	73.75	76.67					
MW-13A	14:52	95.19	18.19	22.73	77.00					
MW-13B	14:54	95.12	18.28	47.43	76.84					
MW-13C	14:55	95.04	18.26	73.20	76.78					
MW-14A	Monitoring Well Abandoned July 10, 2007									
MW-14B	Monitoring Well Abandoned July 10, 2007									
MW-14C	Monitoring Well Abandoned July 10, 2007									
MW-15A			M	onitoring Well	Abandoned Ju	ıly 10, 2007				
MW-15B			M	onitoring Well	Abandoned Ju	ıly 10, 2007				
MW-15C	Monitoring Well Abandoned July 10, 2007									

Table 4

(3 of 4)

GROUNDWATER LEVEL MEASUREMENTS 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name: JED Solid Waste Management Facility Sampling

Location: Osceola County, Florida

Date: November 18, 2019

Sampling Personnel: Neil Stapley, Daniel Montiel

Field Conditions: Sunny ~70°F

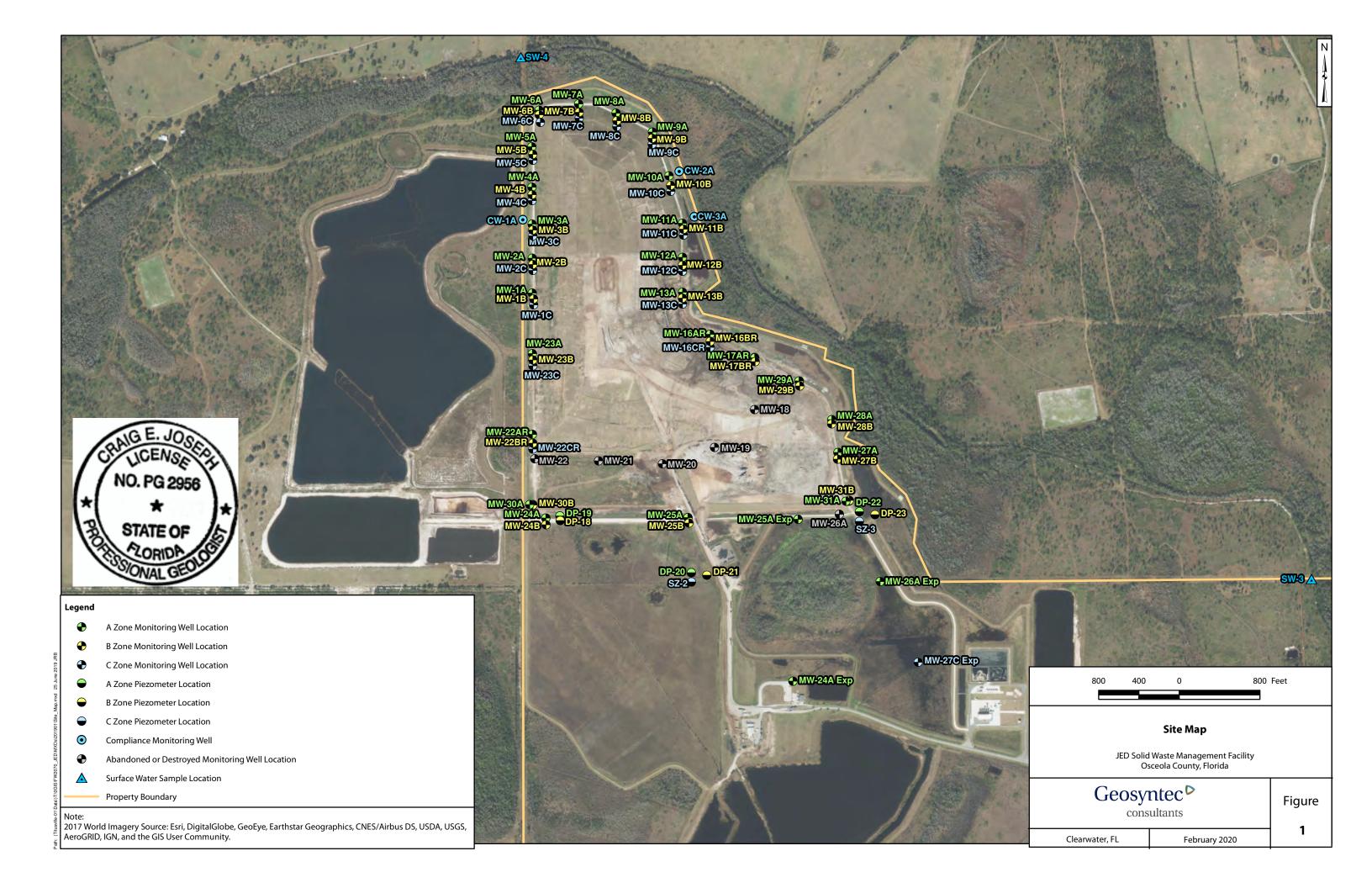
Date:	November 1	8, 2019										
Well ID	Time	TOC Elevation ⁽¹⁾	Depth to Water (ft)	Well Depth (ft) ⁽²⁾	GW Elevation	Field Observations						
MW-16A		1		onitoring Well								
MW-16B		Monitoring Well Abandoned June 24, 2013										
MW-16C		Monitoring Well Abandoned June 24, 2013										
MW-16AR	14:59	14:59 95.01 17.97 23.95 77.04										
MW-16BR	15:01	15:01 94.97 17.99 46.55 76.98										
MW-16CR	15:02	+ + + + + +										
MW-17AR	15:05	94.84	17.97	24.03	76.87							
MW-17BR	15:07	94.78	17.90	48.40	76.88							
MW-17A		,		onitoring Well A		l arch 5, 2014						
MW-17B				onitoring Well A								
MW-17C				onitoring Well A								
MW-18A			Mo	onitoring Well A	Abandoned Ma	arch 5, 2014						
MW-18B			Mo	onitoring Well A	Abandoned Ma	arch 5, 2014						
MW-18C			Mo	onitoring Well A	Abandoned Ma	arch 5, 2014						
MW-19A			Mo	onitoring Well A	Abandoned Ma	arch 5, 2014						
MW-19B	Monitoring Well Abandoned March 5, 2014											
MW-19C	Monitoring Well Abandoned March 5, 2014											
MW-20A			Mo	onitoring Well	Abandoned Ju	ne 24, 2013						
MW-20B			Mo	onitoring Well	Abandoned Ju	ne 24, 2013						
MW-20C			Mo	onitoring Well	Abandoned Ju	ne 24, 2013						
MW-21A				onitoring Well A								
MW-21B				onitoring Well A								
MW-21C				onitoring Well A								
MW-22A				toring Well Aba								
MW-22B				toring Well Aba								
MW-22C		0.7.00		toring Well Aba		ember 11, 2011						
MW-22AR	13:26	95.00	18.77	23.59	76.23							
MW-22BR	13:24	94.86	18.69	46.06	76.17							
MW-22CR	13:23	95.13	18.91	66.50	76.22							
MW-23A	13:32	97.90	20.53	27.95	77.37							
MW-23B	13:30	97.91	20.53	42.98	77.38							
MW-23C	13:29 97.93 20.58 67.19 77.35											
MW-24A	13:15	87.06	11.57	23.41	75.49							
MW-24B	13:16	87.05	11.55	43.05	75.50							
MW-25A	13:02	86.99	9.75	23.36	77.24							
MW-25B	13:00	86.67	9.31	41.41	77.36							
MW-26A	Monitoring Well Abandoned June 15, 2016											
MW-26B			Mo	onitoring Well	Abandoned Ju	ne 15, 2016						

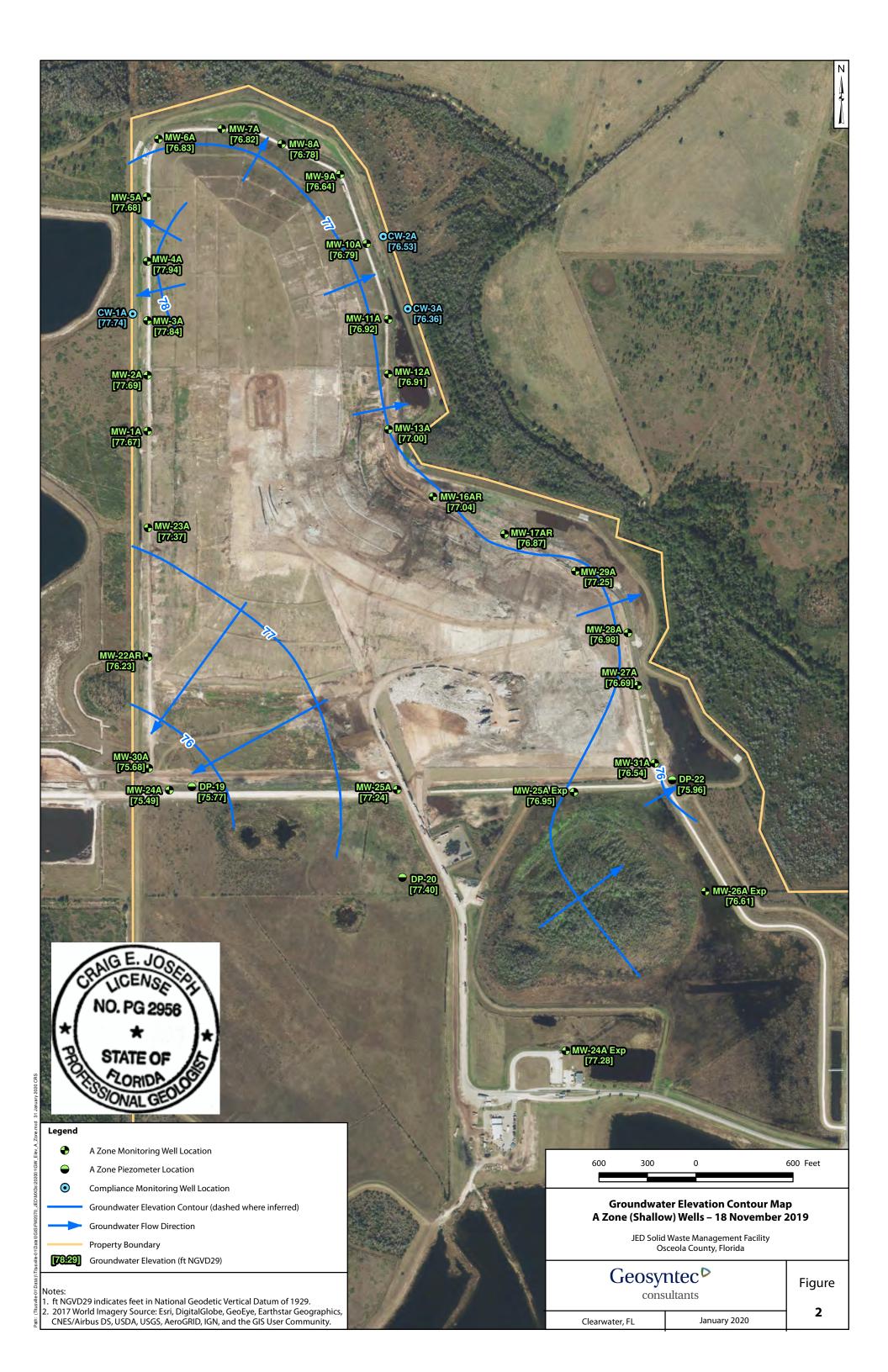
Table 4 (4 of 4)

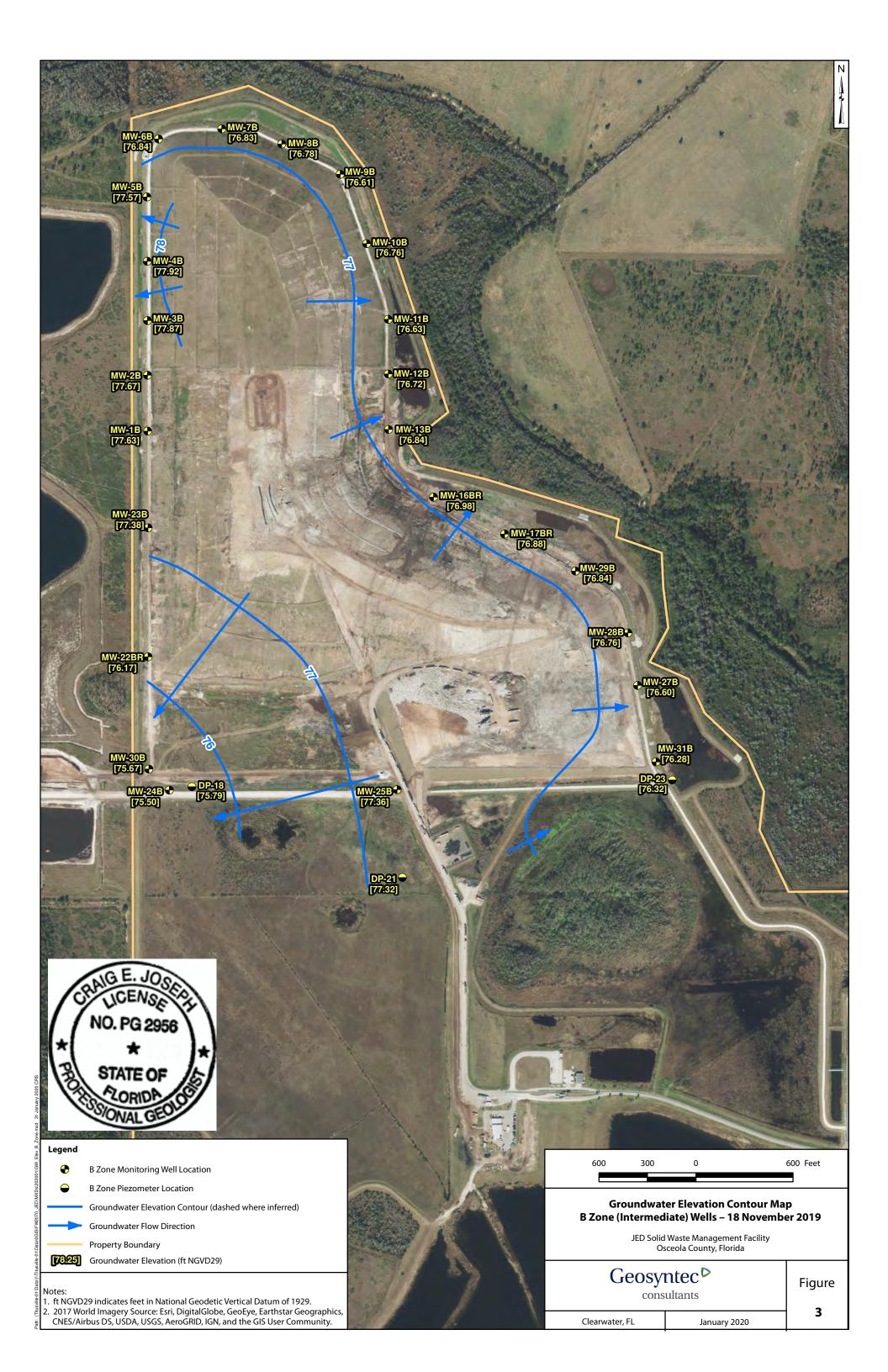
GROUNDWATER LEVEL MEASUREMENTS 31st SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Site Name: JED Solid Waste Management Facility Sampling Personnel: Neil Stapley, Daniel Montiel Field Conditions: Sunny ~70°F

Location: Osceola County, Florida


Date: November 18, 2019


Well ID	Time	TOC Elevation ⁽¹⁾	Depth to Water (ft)	Well Depth (ft) ⁽²⁾	GW Elevation	Field Observations
MW-24A Exp	12:45	86.97	9.69	24.14	77.28	
MW-25A Exp	15:38	82.36	5.41	24.71	76.95	
MW-26A Exp	12:05	82.01	5.40	24.03	76.61	
MW-27C Exp	12:14	81.66	5.11	58.37	76.55	
MW-27A	15:23	94.68	17.99	23.54	76.69	
MW-27B	15:24	94.66	18.06	46.50	76.60	
MW-28A	15:19	94.77	17.79	23.84	76.98	
MW-28B	15:20	94.68	17.92	48.82	76.76	
MW-29A	15:13	94.88	17.63	23.65	77.25	
MW-29B	15:15	94.67	17.83	48.90	76.84	
MW-30A	13:19	96.19	20.51	20.50	75.68	
MW-30B	13:20	96.12	20.45	44.00	75.67	
MW-31A	15:27	94.15	17.61	25.02	76.54	
MW-31B	15:29	93.88	17.60	46.34	76.28	
CW-1A	13:55	84.53	6.79	18.46	77.74	
CW-2A	15:52	82.81	6.28	18.48	76.53	
CW-3A	15:48	81.89	5.53	18.42	76.36	


Notes: Well caps removed site wide and wells allowed to stabilize prior to measurements.


- (1) Elevations represent feet in National Geodetic Vertical Datum of 1929
- (2) Monitoring well total depths were measured following the November 2016 and June 2019 (MW-30A/B) water quality monitoring event

FIGURES

APPENDIX A

Water Quality Monitoring Certification FDEP Form 62-701.900(31)

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31), F.A.C

Form Title: Water Quality Monitoring Certification

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

	RT I GENERAL INFORMATION		
(1)	Facility Name J.E.D. SOLID WASTE No. Address 1501 OMNI WAY	MANAGEMENT FACILITY	
	City SAINT CLOUD	_{Zip} 34773	OSCEOLA
	Telephone Number (813) 388-1026		
(2)	WACS Facility ID 89544		
(3)	DEP Permit Number 0199726-033-SO-0)1	
(4)	Authorized Representative's Name KIRK W	ILLS	Title ENGINEER
	Address 5135 MADISON AVENUE		
	City_TAMPA	Zip_33619	County HILLSBOROUGH
	Telephone Number (813) 388-1026		
	Email address (if available) KIRK.WILLS	@WASTECONNECTIONS	S.COM
do	ertify under penalty of law that I have person cument and all attachments and that, based of a information, I believe that the information is malties for submission of false information include	on my inquiry of those individuals true, accurate, and complete.	immediately responsible for obtaining am aware that there are significant
2/	11/2020	Ruk Will	
	(Date)	(Owner or Authorized Represent	ative's Signature)
PA	RT II QUALITY ASSURANCE REQUIREMEN	TS	
Sa	mpling Organization GEOSYNTEC CO	NSULTANTS, INC.	
An	alytical Lab NELAC / HRS Certification # E82	574	
	Name ADVANCED ENVIRONMENT).
Ad	_{dress} 6681 SOUTHPOINT PARKWA	Y	
	one Number (813) 388-1026		
Em	nail address (if available) kbortle@aellab.c	om	

APPENDIX BMonitoring Well Sampling Logs

MELL NO.	D Solid Waste L			1					. Cloud, FL 347		A.	
VVELL NO:	MW-10,	A		SAMPL	EID: 191	57-MW	1-11	DA		DATE: 5	-17-19	
					PUR	GING DA	TA					
	R (inches): 2		ER (inches): 3	3/16 DE	ELL SCREEN	eet to 22.1 f	feet	STATIC DE	R (feet): 19 · 6	OR	RGE PUMP T' BAILER: PP	YPE
	LUME PURGE: it if applicable)	1 WELL VOL	UME = (TOT) = (ファリ	PTH - ST	TIC DEPTH T	TO WA	ATER) X feet) X	WELL CAPACI	TY	ot = 0.4	D gallor
	NT VOLUME PU t if applicable)	IRGE: 1 EQUI		. = PUMP VC	DLUME + (TU			X TUE	BING LENGTH)	+ FLOW CE	LL VOLUME gallons	
INITIAL DI	JMP OR TUBINO	3	FINAL PLIM	P OR TUBIN	gallons + (PURGIN	ons/foo		1		TOTAL VOI	LIME
	WELL (feet):	20.8		WELL (feet):		INITIATE	ED AT	1009	PURGING ENDED AT: DISSOLVED	1058	PURGED (gallons): 3.4
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	(circ	cle units) nhos/cm µS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBIDI (NTUs)		
1054	3.15	3.15	0.07	20,4	14.81	24.80	8	74	0.23	1.50	Clear	- 9.8
1056	0.14	3.29	0.07	20.31	- M	24.68	8-	74	0.30	1.5		1 11
1058	11.0	3.43	0,67	20.3		24.66	8-	73	0.25	1.16	Clea	-13.8
					_		-			_		
TUBING II	PACITY (Gallon:	PACITY (Gal./F	t.): 1/8" = 0.		6" = 0,0014,	1/4" = 0.002	26;	3" = 0.37; 5/16" = 0.0	04; 3/8" = 0		6" = 1.47; " = 0.010.	12" = 5.88 5/8" = 0.016
TUBING II		PACITY (Gal./F	t.): 1/8" = 0.		6" = 0 0014; r Pump;	1/4" = 0.002 ESP = Electric	26; Subm	5/16" = 0.0 nersible Pum	04; 3/8" = 0		e" = 0.010	
PURGING SAMPLED	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A	PACITY (Gal./F ODES: B FFILIATION:	Ft.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde	6" = 0 0014; r Pump;	1/4" = 0.002 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 nersible Pum	04; 3/8" = 0 np; PP = Pe	.006; 1/2 eristaltic Pun	r" = 0.010; np;	5/8" = 0 016 ther (Specify)
SAMPLED BOOM PUMP OR	DBY (PRINT) / A	FILIATION:	Ft.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING	6" = 0.0014; r Pump; SAM S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 nersible Pum	SAMPLING INITIATED A FILTERED: Y	DOG; 1/2 Pristaltic Pun	SAMPLIN ENDED	5/8" = 0 016 ther (Specify) NG AT: 1110
SAMPLED BOOM PUMP OR DEPTH IN	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet):	PACITY (Gal./FODES: B FFILIATION: 8654711C	= Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; r Pump; SAM S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	26; c Subm	5/16" = 0.0 nersible Pum FIELD-I Filtratio	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty	r: 1100	SAMPLINENDED	5/8" = 0.016 ther (Specify) NG AT: 1110
SAMPLED SAMPLED PUMP OR DEPTH IN FIELD DE	NSIDE DIA. CAF EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATIO	PACITY (Gal./F ODES: B FFILIATION: 21.2 DN: PUM	Et.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; r Pump; SAM S) SIGNATH CODE: HDF	1/4" = 0.002 ESP = Electric PLING DA RE(S): Y (1/4)	Subm	5/16" = 0.0 nersible Purr	04; 3/8" = 0 p; PP = Pe SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE:	.006; 1/2 eristaltic Pun T: 1 0 0	SAMPLINENDED	5/8" = 0.016 ther (Specify) NG
SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE	NSIDE DIA. CAF E EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINE	FEILIATION: LOS VALUE DN: PUM ER SPECIFICA MATERIAL	Et.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; r Pump; SAM S) SIGNATU CODE: HDF TUBING LE PRESER	TOTAL VOL	26; c Subm ATA	5/16" = 0.0 nersible Purr	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty	DED ND/OR I	SAMPLINENDED	ther (Specify) AG AT: 1110 FIZE: µm SAMPLE PUI FLOW RAT
SAMPLED DE SAMPLE ID CODE	D BY (PRINT) / A TUBING I WELL (feet): CONTAMINATION I TUBING I WELL (feet): CONTAMINATION IPLE CONTAINERS	FILIATION: 2054 CODES: B FFILIATION: 2054 CODES: B FFILIATION: 2054 CODES: B	P Y N	SAMPLER TUBING MATERIAL SAMP PRESERVA	6" = 0.0014, r Pump; SAM S) SIGNATU CODE: HDF TUBING LE PRESER' ATIVE ADD	ESP = Electric PLING DA RE(S): Y ATION (include	26; Subm ATA replace ding we	5/16" = 0.0 mersible Purr FIELD-I Filtratio ed) et ice) FINAL	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A	eristaltic Pun T: 1 0 0 pe N PD ND/OR II	SAMPLING	SAMPLE PUT FLOW RAT (mL per minu
SAMPLED BAMPLED SAMPLED SAMPLED DE SAMPLED DE SAMPLED DE CODE	D BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	PACITY (Gal./F CODES: B FFILIATION: 21.2 DN: PUM ER SPECIFICA MATERIAL CODE	P Y N.TION VOLUME	SAMPLER TUBING MATERIAL SAMP PRESERVA USED	6" = 0.0014, r Pump; SAM S) SIGNATU CODE: HDF TUBING LE PRESER' ATIVE ADD	EE Y ATION (included to Total volume to Tota	e Subm ATA Peplace ding we (mL)	FIELD-Filtratio ed) FINAL pH	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	Peristaltic Pun T: 1 0 0 pe: N Y ED ND/OR DB	SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING	SAMPLE PUI
SAMPLED BAMPLED SAMPLED BAMPLED BAMPLE	D BY (PRINT) / A TUBING I WELL (feet): CONTAMINATION CONTAINERS 3 1	PACITY (Gal./F CODES: B FFILIATION: 21.2 DN: PUM ER SPECIFICA MATERIAL CODE CG	P Y N TION VOLUME 40 mL	SAMPLER(TUBING MATERIAL SAMP PRESERV/ USED HCL	6" = 0.0014; r Pump; SAM S) SIGNATU CODE: HDF TUBING LE PRESER* ATIVE ADI ADI F	EE Y (I) YATION (included to Total Vole of the filled by la	eplaceding we (mL)	FIELD-I Filtratio	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI	ED ND/OR DD DB s	SAMPLING EQUIPMENT CODE SAMPLING APP	SAMPLE PUI FLOW RAT (mL per minu)
SAMPLED BAMPLED SAMPLED SAMPLED DE SAMPLED DE SAMPLED DE CODE	D BY (PRINT) / A TUBING I WELL (feet): CONTAMINATION I CONTAINERS 3 1 1	PACITY (Gal./F CODES: B FFILIATION: 21.2 DN: PUM ER SPECIFICA MATERIAL CODE CG PE	P Y NOTION VOLUME 40 mL 500 mL	SAMPLER(TUBING MATERIAL SAMP PRESERVA USED HCL	6" = 0.0014, r Pump; SAM S) SIGNATU CODE: HDF TUBING LE PRESER ATIVE ADD F 4 F	ESP = Electric PLING DA RE(S): YATION (included to the properties of the properties	eplaceding we (mL)	FIELD-IFiltratio ed) et ice) FINAL pH < 2 < 2	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal:	Pristaltic Pun T: 1 0 0 Peristaltic Pun T: 1 0 0 Y ED ND/OR II DB S	SAMPLING EQUIPMENT CODE APP	SAMPLE PU FLOW RAT (mL per minu
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-10 A MW-10 A MW-10 A	D BY (PRINT) / A TUBING I WELL (feet): CONTAMINATIO IPLE CONTAINERS 3 1 1 1 1 S:	PACITY (Gal./F CODES: B FFILIATION: LOS VI CO LOS VI	P Y N TION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERVA USED HCL HNO:	6" = 0.0014, r Pump; SAM S) SIGNATU CODE: HDF TUBING LE PRESER ATIVE ADD F 4 F	EE Y ATION (included to the filled by later f	eplaceding we (mL)	FIELD-Filtratio ed) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI NH3	Pristaltic Pun T: 1 0 0 Peristaltic Pun T: 1 0 0 Y ED ND/OR II DB S	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu 292)
SAMPLED DE SAMPLE ID CODE MW-10 A MW-10 A MW-10 A REMARK: Odor:	D BY (PRINT) / A TUBING I WELL (feet): CONTAMINATIO IPLE CONTAINERS 3 1 1 1	PACITY (Gal./F CODES: B FFILIATION: LOS VI CO LOS VI	P Y N TION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIAL SAMP PRESERVA USED HCL HNO:	6" = 0.0014, r Pump; SAM S) SIGNATU CODE: HDF TUBING LE PRESER' ATIVE ADD F 3 F 4 F	EE Y ATION (included to the filled by later f	eplace (mL) b	FIELD-Filtratio et ice) FINAL pH < 2 < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI NH3	DB S TDS	SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PUFLOW RA (mL per min 292)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL NO: MW-103 SAMPLE ID: 19157- MW-103 DATE: 5-17-1 PURGING-DATA WELL DIAMETER (inches): 2 WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)	IP TYPE
WELL DIAMETER (inches): 2 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER)	IP TYPE
WELL TUBING WELL SCREEN INTERVAL DIAMETER (inches): 3/16 DEPTH: 38.3 feet to 48.3 feet TO WATER (feet): 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)	
DIAMETER (inches): 2 DIAMETER (inches): 3/16 DEPTH: 38. Seet to 48. Seet TO WATER (feet): 1.00 OR BAILER WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)	
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)	PP
(only fill out if applicable)	
= (feet - feet) X gallons/foot =	gallor
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable)	ME
= 0 gallons + (0.0014) gallons/foot X 46 feet) + 0.1 gallons	ons = 0.16 gallor
DEPTH IN WELL (feet): 43 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 43 PURGING INITIATED AT: 1007 ENDED AT: 1026 PURG	VOLUME D (gallons): 1.3
CUMUI DEPTH COND DISSOLVED	1
TIME VOLUME VOLUME PURGE TO PH TEMP (circle units) OXYGEN TURBIDITY (OLOR ORP escribe) (mV)
A Section of the sect	eur 85.3
	leer 75.9
1000 0 11 0 11 0 00 0 00 0 00 0 00 0 00 0	er 69.4
	lear 63 5
000000000000000000000000000000000000000	lev 56.7
	ear 52.0
1020 0.04 1.53 0.0 1 1.77 3.13 23.30 102 2 0.16 0.20 0	- COL
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.4	7: 12 " = 5.88
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016	
	= Other (Specify)
SAMPLING DATA	
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 1030 SAMPLING INITIATED AT: 1030 END	PLING VALL
Single Constitute Constitute	ED AT: 1047
PUMP OR TUBING DEPTH IN WELL (feet): TUBING MATERIAL CODE: HDPE FIELD-FILTERED: Y Filtration Equipment Type:	ER SIZE: μm
FIELD DECONTAMINATION: PUMP Y (N) TUBING Y (N (replaced) DUPLICATE: (Y) N	
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLI	G SAMPLE PUN
SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL) PH ANALYSIS AND/OR CODE CODE	NT FLOW RATI
MY 10B 3 CG 40 mL HCL Prefilled by lab < 2 VOA/EDB APP	300
MW-10B 1 PE 500 mL HNO3 Prefilled by lab < 2 Metals APP	300
MW-10B 1 PE 250 mL H2SO4 Prefilled by lab <2 NH3 APP	300
MW - 100 1 PE 250 mL None None 3.43 CL/NO3/TDS APP	300
DEMARKS: 0.0	
odor: DUP-2 faken at 0001	
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; S = Silicone; T = Teflon; O = Other (Specify)	PP = Polypropylen
SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submer SM = Straw Method (Tubing Gravity Drain); O = Other (Specific Submer SM)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

PH: + 0.2 units. Temperature: + 0.2 °C. Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see T

	MW-IIA	,				7 MW.			DATE: 5-	1 1	
WELL		TUBING	3	10/1	LL SCREEN		STATIC D	EPTH	PHE	RGE PUMP T	YPF
	(inches): 2		TER (inches)				eet TO WATE			BAILER: PP	
	UME PURGE: if applicable)	1 WELL VOI					O WATER) X				
			= (22.8		6.87	feet) X	0.16	gallons/for	ot = 0.	5 gal
	IT VOLUME PI if applicable)	URGE: 1 EQU	IIPMENT VO	L. = PUMP VC	LUME + (TU	BING CAPACI	TY X TU	IBING LENGTH) + FLOW CE	ELL VOLUME	
			T. Carlotte	= (gallons + (ons/foot X	feet)		gallons	
	MP OR TUBIN WELL (feet)	G 19.8	DEPTH IN	IMP OR TUBIN WELL (feet):	^G 21.5	PURGIN	ED AT: 0817	PURGING ENDED AT:	0859	TOTAL VO	
		CUMUL.		DEPTH			COND	DISSOLVED			
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE		pH (standard	TEMP,	(circle units)	OXYGEN (circle units)	TURBIDIT		
	(gallons)	(gallons)	(gpm)	(feet)	units)	(°C)	μmhos/cm or (μS/cm	mg/L or % saturation	(NTUs)	(descril	pe) (m)
0859	0.99	0.99	0.01	19.72	521	27.19	479	2.04	9.83	(lour	106.
043					-	CA 1.51	1.4.4	0.0	100	CVC	10.0
				-							_
									1		
						1 7					
WELL CAP	PACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.0	16; 2 " = 0.1	6; 3 " = 0.37;	4 " = 0.65;	5" = 1.02;	6 " = 1.47;	12" = 5.88
TUBING IN	SIDE DIA. CAI	PACITY (Gal./	Ft.): 1/8" = (0.0006; 3/16	" = 0.0014:	1/4" = 0.002	26: 5/16" = 0.0	004: 3/8" = 0	0.006; 1/2	" = 0.010;	5/8" = 0.016
TUBING IN		PACITY (Gal./			" = 0.0014: Pump; I	1/4" = 0.002 ESP = Electric	26: 5/16" = 0.0 Submersible Pur	004: 3/8" = 0		" = 0.010;	5/8" = 0.016
TUBING IN	SIDE DIA. CAI	PACITY (Gal./i	Ft.): 1/8" = (0 0006: 3/16 BP = Bladder	" = 0.0014; Pump; I	1/4" = 0.002 ESP = Electric PLING DA	26: 5/16" = 0.0 Submersible Pur	004: 3/8" = 0	0.006; 1/2 eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016 ther (Specify)
PURGING SAMPLED	SIDE DIA. CAI EQUIPMENT O BY (PRINT) / A	PACITY (Gal / CODES: B	Ft.): 1/8" = (0 0006: 3/16 BP = Bladder	" = 0.0014: Pump; I	1/4" = 0.002 ESP = Electric PLING DA	26: 5/16" = 0.0 Submersible Pur	004: 3/8" = 0	0.006; 1/2 eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016
SAMPLED SOONA	EQUIPMENT OF STREET	PACITY (Gal // CODES: B	Ft.): 1/8" = (BP = Bladder SAMPLER(S TUBING	Pump; Pump; SAMF	1/4" = 0.002 ESP = Electric PLING DA	Submersible Pur	3/8" = 0 np; PP = P SAMPLING INITIATED A FILTERED: Y	0.006; 1/2 eristaltic Purr	" = 0.010; np; O = C	5/8" = 0 016 ther (Specify)
SAMPLED BOOMS PUMP OR DEPTH IN	BY (PRINT) / A BY (BRINT) / A TUBING WELL (feet):	PACITY (Gal/) CODES: B AFFILIATION:	Ft.): 1/8" = (= Bailer;	SAMPLERS TUBING MATERIAL	Pump; Pump; SAMF SAMF SOURCE HOPE	1/4" = 0.002 ESP = Electric PLING DA E(S)	Submersible Pur	SAMPLING INITIATED A FILTERED: Y on Equipment Ty	eristaltic Pum T: 0900	" = 0.010; np; O = C SAMPLIN ENDED A	5/8" = 0 016 ther (Specify)
SAMPLED SOME PUMP OR DEPTH IN	BY (PRINT) / A BY (PRINT) / A CONTAMINATION CONT	PACITY (Gal/) CODES: B AFFILIATION: 3344 40 21.5 ON: PUN	Ft.): 1/8" = (= Bailer;	BP = Bladder SAMPLER(S TUBING MAYERIAL (S)	Pump; SAMF SAMF SIGNATUR CODE: HDPI TUBING	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Nore	Submersible Pur ATA FIELD- Filtratic eplaced)	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE	7.0900 T:0900	"= 0.010; np; O = C SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify)
SAMPLED SAMPLED SON PUMP OR DEPTH IN THELD DEC	BY (PRINT) / A BY (PRINT) / A CONTAMINATION CONT	PACITY (Gal/) CODES: B AFFILIATION:	Ft.): 1/8" = (= Bailer; IP Y (BP = Bladder SAMPLER(S TUBING MAYERIAL (S) SAMPLER(S)	Pump;	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Nore	Submersible Pur ATA FIELD- Filtratic eplaced) ing wet ice)	SAMPLING INITIATED A FILTERED: Y on Equipment Ty	T: 0900	" = 0.010; np; O = C SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
SAMPLED BOOM A PUMP OR DEPTH IN FIELD DEC	BY (PRINT) / A BY (PR	PACITY (Gal/) CODES: B AFFILIATION: AFFILI	Ft.): 1/8" = (= Bailer; IP Y (ATION VOLUME	D 0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C N SAMPL PRESERVA USED	Pump; SAMF SAMF SISSINATUR CODE: HDPI TUBING E PRESERV	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Note ATION (includi TOTAL VOL ED IN FIELD (i	FIELD-Filtratic eplaced) ing wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	T: 0900	SAMPLING SAMPLING CODE	SAMPLE P FLOW RA (mL per mi
SAMPLED DECOME	EQUIPMENT C BY (PRINT) / A CONTAMINATION #	PACITY (Gal/) CODES: B AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: MATERIAL	Ft.): 1/8" = (= Bailer; IP Y (ATION VOLUME 40 mL	BP = Bladder SAMPLER(S TUBING MATERIAL (S) SAMPL PRESERVA	Pump; SAMF SAMF SISSINATUR CODE: HDPI TUBING E PRESERV	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Nore ATION (includi	FIELD-Filtratic eplaced) ing wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y DUPLICATE INTEND ANALYSIS A	T: 0900	" = 0.010; np; O = C SAMPLING FILTER S SAMPLING EQUIPMENT	SAMPLE P
SAMPLED PUMP OR DEPTH IN SAMPLE ID CODE MU ALA	BY (PRINT) / A BY (PR	PACITY (Gal/) CODES: B AFFILIATION: AFFILI	Ft.): 1/8" = 0 = Bailer; IP Y (ATION VOLUME 40 mL 500 mL	D 0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C N SAMPL PRESERVA USED	Pump; SAMF SAMF SIGNATUR CODE: HDPI TUBING E PRESERV TIVE ADD P	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Note ATION (includi TOTAL VOL ED IN FIELD (i	FIELD-Filtration support of the property of t	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	T: 0900	SAMPLING SAMPLING CODE	SAMPLE P FLOW RA (mL per mi
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MU 1 A MW1 A	BY (PRINT) / A BY (PRINT) / A CONTAINERS 3	PACITY (Gal/) CODES: B AFFILIATION: 374 H(21.5 ON: PUM ER SPECIFICA MATERIAL CODE CG	TP Y (ATION VOLUME 40 mL 500 mL	SAMPLERS TUBING MATERIAL O SAMPL SAMPL PRESERVA USED HCL	Pump;	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Nore ATION (includi TOTAL VOL ED IN FIELD (i refilled by lab	FIELD-Filtratic eplaced) ing wet ice) FINAL pH C < 2 C < 2	SAMPLING INITIATED A FILTERED: Y ON Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/E	T: 0900	SAMPLING SAMPLING COUPMENT CODE	SAMPLE P FLOW RA (mL per mi
SAMPLED DECTOR SAMPLE ID CODE MUTIA MUTIA	BY (PRINT) / A BY (PR	PACITY (Gal/) CODES: B AFFILIATION: 344 Jec 21.5 ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; IP Y (ATION VOLUME 40 mL 500 mL	SAMPLERS TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3	Pump;	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Nre ATION (includ TOTAL VOL ED IN FIELD (includ) refilled by lab	FIELD-Filtration ing wet ice) FINAL pH column > 2	SAMPLING INITIATED A FILTERED: Y DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal	T: 0900 T:	SAMPLING SOUPMENT CODE APP	SAMPLE P FLOW RA (mL per min
SAMPLED DECTOR SAMPLE ID CODE SAMPLE ID CODE MUTIA	BY (PRINT) / A BY (PR	PACITY (Gal // CODES: B AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: CODE CODE PE PE	TP Y (ATION VOLUME 40 mL 500 mL	SAMPLER(S MATERIAL O SAMPLER(S TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3 H2SO4	Pump;	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Note ATION (includi TOTAL VOL ED IN FIELD (included by lab refilled by lab refilled by lab	FIELD-Filtratic eplaced) ing wet ice) FINAL pH C < 2 C < 2	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	T: 0900 T:	SAMPLING SAMPLING SAMPLING CODE APP APP	SAMPLE P FLOW RA (mL per min
SAMPLED DECTOR SAMPLE ID CODE SAMPLE ID CODE MUTIA	BY (PRINT) / A BY (PR	PACITY (Gal // CODES: B AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: CODE CODE PE PE	TP Y (ATION VOLUME 40 mL 500 mL	SAMPLER(S MATERIAL O SAMPLER(S TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3 H2SO4	Pump;	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Note ATION (includi TOTAL VOL ED IN FIELD (included by lab refilled by lab refilled by lab	FIELD-Filtration ing wet ice) FINAL pH column > 2	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	T: 0900 T:	SAMPLING SAMPLING SAMPLING CODE APP APP	SAMPLE P FLOW RA (mL per mi
SAMPLED DEPTH IN FIELD DEC SAMPLE ID CODE MULLA	BY (PRINT) / A BY (PR	PACITY (Gal/) CODES: B AFFILIATION: AFFILI	TP Y (ATION VOLUME 40 mL 500 mL 360 mL	SAMPLER(S MATERIAL OF N SAMPLER(S MATERIAL OF N SAMPL PRESERVA USED HCL HNO3 H2SO4 None	Pump;	1/4" = 0.002 ESP = Electric PLING DA E(S) Y Nore ATION (includi TOTAL VOL ED IN FIELD (includi refilled by lab refilled by lab refilled by lab	FIELD-Filtration ing wet ice) FINAL pH column > 2	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3 CL/NO3/	T: 0900 T:	SAMPLING SAMPLING SAMPLING CODE APP APP	SAMPLE P FLOW RA (mL per mi

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	WM-11	13		O/AIVIF I			1M-11B		DATE: 4	5-17-	
		1				GING DA					
WELL DIAMETER	(inches): 2	TUBING	3 TER (inches)	3/16 D	ELL SCREEF FPTH: 37 4	N INTERVAL feet to U.T. 9. f	eet TO WATE	EPTH R (feet): 17	OF PU	IRGE PUMP T R BAILER: PP	YPE
WELL VOL	UME PURGE:			TAL WELL DI	EPTH - S	ATIC DEPTH T	O WATER) X	WELL CAPACI	ITY		
(only fill out	if applicable)		= (feet -		feet) X		gallons/fo	oot =	gallo
	IT VOLUME PU	URGE: 1 EQL	JIPMENT VO	L. = PUMP V		JBING CAPACI		BING LENGTH)			
(Offiny fill Out	п аррпсавіс)			= 0	gallons + ().0014 gallo	ons/foot X 48	feet)	+ 0.1	gallons	=0.17 gallo
	MP OR TUBIN WELL (feet):	^G 43		IMP OR TUBI WELL (feet)		PURGIN INITIATE	IG STED AT:	PURGING ENDED AT:	0833	TOTAL VO PURGED (LUME gallons): \ , \ \
	VOLUME	CUMUL	BURGE	DEPTH	рН	TE145	COND	DISSOLVED OXYGEN	TURRIRU	T) (0010	
TIME	PURGED	VOLUME PURGED	PURGE RATE	TO WATER	(standar	d TEMP.	(circle units) μmhos/cm	(circle units)	TURBIDI (NTUs		
	(gallons)	(gallons)	(gpm)	(feet)	units)		or (18/cm)	mg/D or % saturation			
0829	0.90	09.0	0.06	17.3			115	0.36	134	Clear	
0831	0.13	1.02	0.06	17.3		127.07	114	0.58	3.39		
0833	0.15	1.14	0.06	17.32	3 4.63	27.08	113	0.23	2.3	o Cheur	· 2.
			UU .		lillia						
			111								
WELL CAD	ACITY (C-II	Des Face	27511 - 0.00	49 - 2.04	105%	20 20 - 21	00.7	411 - 0.05	FII - 4.00	011 - 1 47	408 - 5.00
	PACITY (Gallon SIDE DIA. CAI					06; 2 " = 0.1 1/4 " = 0.002			5 " = 1 02;	6" = 1,47; 2" = 0,010;	12" = 5.88 5/8" = 0.016
TUBING IN		PACITY (Gal /			6" = 0 0014 er Pump;	1/4" = 0.002 ESP = Electric	26; 5/16" = 0.0 Submersible Pur	004: 3/8" = 0		2" = 0.010;	
TUBING IN PURGING I	SIDE DIA. CAI EQUIPMENT C	PACITY (Gal./ CODES: B	Ft_): 1/8" = (0 0006; 3/1 BP = Bladde	6" = 0.0014 er Pump; SAN	1/4" = 0.002 ESP = Electric PLING DA	26; 5/16" = 0.0 Submersible Pur	004: 3/8" = 0	0.006; 1/3	2" = 0.010;	5/8" = 0.016
PURGING IN SAMPLED	SIDE DÍA. CAI	PACITY (Gal / CODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Bladde	6" = 0.0014 er Pump; SAM S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	26; 5/16" = 0.0 Submersible Pur	004: 3/8" = 0	0.006; 1/3 eristaltic Pur	2" = 0.010; mp; O = 0	5/8" = 0.016 Other (Specify)
TUBING IN PURGING I	SIDE DIA. CAI EQUIPMENT O BY (PRINT) / A Aboo H	PACITY (Gal./ CODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Bladde	6" = 0.0014 er Pump; SAN	1/4" = 0.002 ESP = Electric PLING DA	Submersible Pun	3/8" = 0 np;	0.006; 1/3 eristaltic Pur	2" = 0.010; mp; O = C	5/8" = 0.016 Other (Specify) NG AT: 0845
SAMPLED SUMPORT	SIDE DIA. CAI EQUIPMENT O BY (PRINT) / A Aboo H	PACITY (Gal / CODES: B	Ft.): 1/8" = 0 = Bailer;	DO006: 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014 er Pump; SAM S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	Submersible Pun	004: 3/8" = 0	0.006; 1/3 eristaltic Pur	2" = 0.010; mp; O = C SAMPLIN ENDED	5/8" = 0.016 Other (Specify) NG AT: 0845
SAMPLED SOME PUMP OR DEPTH IN	SIDE DÍA. CAI EQUIPMENT O BY (PRINT) / A TUBING	PACITY (Gal/) CODES: B AFFILIATION: / Closyn 43	Ft.): 1/8" = 0 = Bailer;	BP = Bladde SAMPLER TUBING	6" = 0 0014 er Pump; SAM (S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	Submersible Pun	SAMPLING INITIATED A' FILTERED: Y	0.006; 1/2 eristaltic Pur T: 0735	2" = 0.010; mp; O = C	5/8" = 0.016 Other (Specify) NG AT: 0845
SAMPLED SOME PUMP OR DEPTH IN V FIELD DEC	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet):	PACITY (Gal/CODES: B	Ft.): 1/8" = 0 = Bailer; Pe C	SAMPLER TUBING MATERIAL	6" = 0 0014 er Pump; SAM S) SIGNATI	1/4" = 0.002 ESP = Electric PLING DA	Submersible Pun ATA FIELD- Filtratic eplaced) ing wet ice)	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND	D 006; 1/2 eristaltic Pur	SAMPLING	SAMPLE PL
SAMPLED SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	PACITY (Gal / GODES: B AFFILIATION: / OLOSYA GODES: B AFFILIATION: / MATERIAL	Ft.): 1/8" = 0 = Bailer; Pe C	SAMPLER TUBING MATERIAL SAMP SAMP PRESERVA	6" = 0.0014 or Pump; SAM S) SIGNATI CODE: HD TUBING LE PRESER	PE VATION (includ TOTAL VOL	Submersible Pun ATA FIELD- Filtratic eplaced) ing wet ice) FINAL	004: 3/8" = 0 np; PP = Pe SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE:	D 006; 1/2 eristaltic Pur T: 0835 V/Pe: Y ED ND/OR	2" = 0.010; mp; O = C SAMPLIN ENDED /	5/8" = 0.016
SAMPLED PUMP OR DEPTH IN THELD DECC SAMPLE SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO	PACITY (Gal/CODES: B	Ft.): 1/8" = 0 = Bailer; Pe C ATION	SAMPLER(TUBING MATERIAL N) SAMP	6" = 0.0014 or Pump; SAM S) SIGNATU CODE: HD TUBING LE PRESER	1/4" = 0.002 ESP = Electric PLING DA RE(S) PE S Y N VATION (includ	FIELD-Filtratic eplaced) ing wet ice) FINAL pH	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A	T: 0835 T: 0835 Vipe: Y ED UND/OR DD	SAMPLING SAMPLING EQUIPMENT	SAMPLE PL
SAMPLED PUMP OR DEPTH IN SAMPLE ID CODE TO SAMPLE ID CODE TO SAMPLE ID CODE TO SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS	PACITY (Gal / CODES: B AFFILIATION: / COSYN 4 3 ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; He C ATION VOLUME	SAMPLER TUBING MATERIAL N SAMP PRESERV USED	6" = 0.0014 or Pump; SAM S) SIGNATI CODE: HD TUBING LE PRESER ATIVE AD	PE S Y VATION (includ TOTAL VOL DED IN FIELD (FIELD-Filtration eplaced) ing wet ice) FINAL pH C 2	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO	D. 006; 1//2 eristaltic Pur T: 0735 T: 0735 T: 0705 T: 0705 T: 0705 T: 0705	SAMPLING EQUIPMENT CODE	SAMPLE PL FLOW RA' (mL per min
SAMPLED PUMP OR DEPTH IN V FIELD DEC SAMPLE ID CODE NW-118	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAINERS 3	PACITY (Gal / GODES: B AFFILIATION: / CLOSYO 4 3 ON: PUM ER SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0 = Bailer; PP Y ATION VOLUME 40 mL	SAMPLER TUBING MATERIAL SAMP SAMP PRESERV USED HCL	6" = 0.0014 or Pump; SAM S) SIGNATU CODE: HD TUBING LE PRESER ATIVE AD	PE S Y N VATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat	FIELD-Filtratic eplaced) ing wet ice) FINAL pH C < 2 C < 2	SAMPLING INITIATED A' FILTERED: Y OR Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI	T: 0835 T: 0835 T: 0835 T: 0835 T: 0835	SAMPLING EQUIPMENT CODE	SAMPLE PL FLOW RA' (mL per min 260
SAMPLED PUMP OR DEPTH IN THE DECCURRENCE SAMPLE ID CODE MW-118 MW-118 MW-118	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1	PACITY (Gal / CODES: B AFFILIATION: / COSyn 4 3 ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; PEC ATION VOLUME 40 mL 500 mL	SAMPLER(TUBING MATERIAL N) SAMP PRESERV USEL HNO:	6" = 0.0014 or Pump; SAM S) SIGNATU CODE: HD TUBING LE PRESER ATIVE AD	PE S Y VATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat	FIELD-Filtration ing wet ice) FINAL pH co	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO Wetal	T: 0835 T: 0835 T: 0835 T: 0835 T: 0835	SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA' (mL per min 260
SAMPLED PUMP OR DEPTH IN V FIELD DEC SAMPLE ID CODE NW-118	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1	PACITY (Gal / CODES: B AFFILIATION: 4 3 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	THE Y ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL N SAMP PRESERV USED HCL HNO:	6" = 0.0014 or Pump; SAM S) SIGNATU CODE: HD TUBING LE PRESER ATIVE AD	PE S Y VATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat Prefilled by lat	FIELD-Filtratic eplaced) ing wet ice) FINAL pH C < 2 C < 2	SAMPLING INITIATED A' FILTERED: Y ON Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	T: 0835 T: 0835 T: 0835 T: 0835 T: 0835	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA' (mL per min 260
SAMPLED PUMP OR DEPTH IN THE DECCURRENCE SAMPLE ID CODE MW-118 MW-118 MW-118	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1	PACITY (Gal / CODES: B AFFILIATION: 4 3 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	THE Y ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL N SAMP PRESERV USED HCL HNO:	6" = 0.0014 or Pump; SAM S) SIGNATU CODE: HD TUBING LE PRESER ATIVE AD	PE S Y VATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat Prefilled by lat	FIELD-Filtration ing wet ice) FINAL pH co	SAMPLING INITIATED A' FILTERED: Y ON Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	T: 0835 T: 0835 T: 0835 T: 0835 T: 0835	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA' (mL per min 260
SAMPLED PUMP OR DEPTH IN THE DECCURRENCE SAMPLE ID CODE MW-118 MW-118 MW-118	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1	PACITY (Gal / CODES: B AFFILIATION: / COSYN 4 3 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	THE Y ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL N SAMP PRESERV USED HCL HNO:	6" = 0.0014 or Pump; SAM S) SIGNATU CODE: HD TUBING LE PRESER ATIVE AD	PE S Y VATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat Prefilled by lat	FIELD-Filtration ing wet ice) FINAL pH co	SAMPLING INITIATED A' FILTERED: Y ON Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	T: 0835 T: 0835 T: 0835 T: 0835 T: 0835	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA' (mL per min 260
SAMPLED PUMP OR DEPTH IN V FIELD DEC SAMPLE ID CODE NW-11 B MW-11 B MW-11 B REMARKS	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1 1	PACITY (Gal / CODES: B AFFILIATION: / COSYN 4 3 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	TION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL N SAMP PRESERV USED HCL HNO:	6" = 0 0014 or Pump; SAM S) SIGNATU CODE: HD TUBING LE PRESER ATIVE AD A	PE S Y VATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat Prefilled by lat	FIELD-Filtratic eplaced) ing wet ice) FINAL pH C C C C C C C C C C C C C C C C C C C	SAMPLING INITIATED A' FILTERED: Y ON Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	T: 0835 T: 0835 T: 0835 T: 0835 TDS	SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PL FLOW RA (mL per mir 260

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	5. MW-12	A		SAMPLE	ID: 1915	6. MW-	19 V		DATE: 5	-16-19	
		***************************************			PURG	ING DA	TA				
	R (inches): 2	TUBING DIAME	3 TER (inches)	: 16 DEF	LL SCREEN PTH: 13 fe	et to 23 fe	STATIC I	ER (feet): 8 0	OR	RGE PUMP T BAILER: 🕈	
(only fill o	ut if applicable)		= (23	feet -	8.25	feet) X	0.16	gallons/fo	ot = 0.	76 gal
(only fill o	ENT VOLUME Pout if applicable)		JIPMENT VO		.UME + (TUB allons + (TY X Tons/foot X	UBING LENGTH) feet)		gallons	= ga
INITIAL P	UMP OR TUBIN NWELL (feet):	G 20.6		IMP OR TUBINO N WELL (feet):	20.9	PURGIN INITIATE	G ED AT: 132	PURGING ENDED AT:	1355	TOTAL VOI PURGED (UME gallons): 3
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/l or % saturation	TURBIDIT (NTUs)	TY COLO	R OF
1349	1,68	1.68	0.06	18.78	4.04	25.52	818	0.91	0.2	7 Clear	92.
1351	0.15	1.80	0.06	18.78	404	25.34	818	0.55	0.36		
1353	0.12	1.92	0.06	18.78	4.09	25.21	818	6.48	0,31		-
1355		a.04	0.06	18 78	4.04	25.17	818	0.58	0,31	Clev	
WELL CA	APACITY (Gallor	ns Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.0	6; 2 " = 0_1	6; 3" = 0.37;	4" = 0.65;	5 " = 1.02;	6" = 1.47;	12" = 5.88
TUBING	APACITY (Gallor INSIDE DIA. CA	PACITY (Gal./			= 0.0014;	1/4" = 0.002		004; 3/8" = 0		!" = 0.010;	5/8" = 0.016
PURGING	INSIDE DIA. CA GEQUIPMENT (PACITY (Gal./ CODES: B	Ft.): 1/8" = 0	0,0006; 3/16" BP = Bladder I	e 0,0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	26; 5/16" = 0 Submersible Pu	004; 3/8" = 0	.006; 1/2	!" = 0.010;	5/8" = 0.016
PURGING SAMPLEI	D BY (PRINT) / A	PACITY (Gal./ CODES: B	Ft.): 1/8" = 0	0.0006; 3/16 "	e 0,0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = Pe	.006; 1/2 eristaltic Pun	e" = 0.010; np)	5/8" = 0.016 ther (Specify)
PURGING SAMPLEI BUNG PUMP OF	D BY (PRINT) / A	PACITY (Gal./ CODES: B	Ft.): 1/8" = 0	BP = Bladder f SAMPLER(S) TUBING	SAMP	1/4" = 0.002 SP = Electric LING DA	Submersible Pu	SAMPLING INITIATED A' D-FILTERED: Y	.006; 1/2 eristaltic Pum	P" = 0.010; O = C SAMPLIN ENDED A	5/8" = 0.016 other (Specify)
SAMPLEI PUMP OF DEPTH IN	D BY (PRINT) / A	PACITY (Gal/CODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Bladder I	SAMP	1/4" = 0.002 SP = Electric LING DA E(S):	Submersible Pu	SAMPLING INITIATED A	r: \355	P" = 0.010; O = C SAMPLIN ENDED A	5/8" = 0.016 other (Specify)
PURGING SAMPLEI BURGING PUMP OF DEPTH IN FIELD DE	D BY (PRINT) / A R TUBING N WELL (feet):	PACITY (Gal/CODES: B AFFILIATION: PLASY DEC ON: PUN	Ft.): 1/8" = t = Bailer;	D.0006; 3/16" BP = Bladder I SAMPLER(S) TUBING MATERIAL C	Pump; E SAMP SIGNATUR ODE: HD TUBING	1/4" = 0.002 SP = Electric LING DA E(S):	Submersible Pu	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE:	eristaltic Purr	SAMPLING	5/8" = 0.016 ther (Specify) AT: \(\subseteq 0 \) SAMPLE P
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A TO BY (PRINT)	PACITY (Gal / CODES: B AFFILIATION: PLASY OF COME ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME	D.0006; 3/16" BP = Bladder I SAMPLER(S) TUBING MATERIAL C N SAMPLE PRESERVAT USED	Pump; E SAMP SIGNATUR ODE: HD TUBING E PRESERVA	1/4" = 0.002 SP = Electric LING DA E(S): Y N (A	Submersible Pu ATA FIELD Filtrat eplaced) ing wet ice) FINAL pH	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	eristaltic Purr	SAMPLING SAMPLING CODE	SAMPLE P FLOW RA
SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A TUBING N WELL (feet): ECONTAMINATION CONTAINERS 3	PACITY (Gal/CODES: B AFFILIATION: PLASY DEC ON: PUN ER SPECIFICA MATERIAL CODE C G	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME	D.0006; 3/16" BP = Bladder I SAMPLER(S) TUBING MATERIAL C N SAMPLE PRESERVAT USED 14(1) Non	Pump; E SAMP SIGNATUR ODE: HD TUBING E PRESERVA	1/4" = 0.002 SP = Electric LING DA E(S): Y N (J ATION (includit FOTAL VOL	Submersible Pula TA FIELD Filtration ing wet ice) FINAL PH	SAMPLING INITIATED A' D-FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	eristaltic Purr	SAMPLING EQUIPMENT CODE	SAMPLE P FLOW RA (mL per min
SAMPLE DEPTH IN SAMPLE ID CODE	D BY (PRINT) / A A DO TO THE RESTRICT OF THE R	PACITY (Gal/CODES: B AFFILIATION: PLOSYNIC ON: PUN ER SPECIFICA CODE C.G. P.E.	TP Y (ATION VOLUME 40 mL	D.0006; 3/16" BP = Bladder I SAMPLER(S) TUBING MATERIAL C N SAMPLE PRESERVAT USED H. I. Non	Pump; E SAMP SIGNATUR ODE: HD TUBING E PRESERVA	1/4" = 0.002 SP = Electric LING DA E(S): Y N (J ATION (includit FOTAL VOL	Submersible Pulatra FIELD Filtrati epiaced) ing wet ice) FINAL pH	SAMPLING INITIATED A' D-FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	eristaltic Purr	SAMPLING EQUIPMENT CODE	SAMPLE P FLOW RA (mL per min
SAMPLEID CODE AND DATE OF THE LID CODE	D BY (PRINT) / A A DO TO	PACITY (Gal/CODES: B AFFILIATION: PROSYNTEC ON: PUN ER SPECIFICA MATERIAL CODE CG PE PE	FL): 1/8" = 0 = Bailer; IP Y (ATION VOLUME 40 mL 500 mL	D.0006; 3/16" BP = Bladder I SAMPLER(S) TUBING MATERIAL C N SAMPLE PRESERVAT USED H. I. Non H. No.	Pump; E SAMP SIGNATUR ODE: HD TUBING E PRESERVA	1/4" = 0.002 SP = Electric LING DA E(S): Y N (J ATION (includit FOTAL VOL	Submersible Pula TA FIELD Filtration ing wet ice) FINAL PH	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO WHAL	eristaltic Purr	SAMPLING EQUIPMENT CODE APP	SAMPLE P FLOW RA (mL per mi
SAMPLE ID CODE	D BY (PRINT) / A A DO TO	PACITY (Gal/CODES: B AFFILIATION: PLOSYNIC ON: PUN ER SPECIFICA CODE C.G. P.E.	TP Y (ATION VOLUME 40 mL	D.0006; 3/16" BP = Bladder I SAMPLER(S) TUBING MATERIAL C N SAMPLE PRESERVAT USED H. I. Non	Pump; E SAMP SIGNATUR ODE: HD TUBING E PRESERVA	Y N () ATION (includit FOTAL VOL.	Submersible Pulatra FIELD Filtrati epiaced) ing wet ice) FINAL pH	SAMPLING INITIATED A' D-FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	eristaltic Purr	SAMPLING EQUIPMENT CODE	SAMPLE P FLOW RA (mL per mi
SAMPLEID CODE AND DATE OF THE PROPERTY OF T	D BY (PRINT) / A TO BY (PRINT) / A TO BY (PRINT) / A TO BING WELL (feet): ECONTAMINATION CONTAINERS \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PACITY (Gal/CODES: B AFFILIATION: PROSYNTEC ON: PUN ER SPECIFICA MATERIAL CODE CG PE PE	FL): 1/8" = 0 = Bailer; IP Y (ATION VOLUME 40 mL 500 mL	D.0006; 3/16" BP = Bladder I SAMPLER(S) TUBING MATERIAL C N SAMPLE PRESERVAT USED H. I. Non H. No.	Pump; E SAMP SIGNATUR ODE: HD TUBING E PRESERVA	Y N () ATION (includit FOTAL VOL.	Submersible Pulatra FIELD Filtrati epiaced) ing wet ice) FINAL pH	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO WHAL	eristaltic Purr	SAMPLING EQUIPMENT CODE APP	SAMPLE P FLOW R (mL per mi

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-	213		SAMPLE	ID: 1915	6-MW-	12B		Coy, St. Clar	DATE:	5-	16-19	
						SING DA							
WELL DIAMETEI	R (inches): 2	TUBING DIAMET	ER (inches):	3/16 DEF	LL SCREEN PTH: 39 fe	INTERVAL et to 4 9 fe	STATIO	C DE	PTH R (feet): 18	34 8		EPUMP TY	
	LUME PURGE: it if applicable)	1 WELL VOL		TAL WELL DEF	111 - 312	TIC DEPTH T	O WATER)	^	WELL CAPACI		/51	_	
	NT VOLUME PU	JRGE: 1 EQU	= (IPMENT VO		·	BING CAPACI		TUE	BING LENGTH)		CELL'	VOLUME	9 = 0.17g
	UMP OR TUBIN WELL (feet):	G 4L		MP OR TUBING I WELL (feet):		T		_	PURGING ENDED AT:	1337	1		
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units µmhos/cm or µS/em)	OXYGEN (circle units) (mg/l or % saturation	TURBI (NTU	DITY	COLOF (describ	₹ 0
1329	0.60	0.60	0.06	18.50	4.59	25.82	76	T	0.78	1.2	0	Clear	130
1331	0.13	0.72	0.06	18.50	4.58	25.84	77		0.93	1.61	0	Cled	
1333	0.12	0.84	0.06	12.50	4.5-1	25.89	78	1	0.18	1.58	3	Clear	150
								+					
								1					
								+					
				1				+					
								-					
TUBING II	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal./F			Pump; f	1/4" = 0,002 SP = Electric	Submersible	0.0	04; 3/8" = 0	5 " = 1.02 .006; eristaltic F	1/2" =		12" = 5,88 5/8" = 0.01 ther (Speci
PURGING SAMPLED	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A	PACITY (Gal /FCODES: B	t.): 1/8" = 0	BP = Bladder SAMPLER(S	" = 0.0014: Pump; E SAMF) SIGNATUR	1/4" = 0.002 SP = Electric PLING DA	Submersible	0.0	04; 3/8" = 0 p; PP = Pe	.006; eristaltic F	1/2" = Pump;	0 010; O = O	5/8" = 0.01 ther (Speci
PURGING SAMPLED	NSIDE DIA. CAI EQUIPMENT O BY (PRINT) / A Abbott / (A	PACITY (Gal /FCODES: B	t.): 1/8" = 0	BP = Bladder	" = 0.0014: Pump; £ SAMF) SIGNATUR	1/4" = 0,002 ESP = Electric PLING DA	Submersible	= 0.0 Pum	04; 3/8" = 0. pp; PP = Pe SAMPLING INITIATED AT	.006; eristaltic F	1/2" = Pump;	0 010; O = O SAMPLIN ENDED A	5/8" = 0.01 ther (Special T: /3()
SAMPLED PUMP OR	NSIDE DIA. CAI EQUIPMENT O BY (PRINT) / A Abbott / (A	PACITY (Gal /FCODES: B	t.): 1/8" = 0	BP = Bladder SAMPLER(S	" = 0.0014: Pump; £ SAMF) SIGNATUR	1/4" = 0.002 ESP = Electric PLING DA E(S):	Submersible ATA FIE Filt	Pum	04; 3/8" = 0 p; PP = Pe	.006; eristaltic F	1/2" = Pump;	0 010; O = O SAMPLIN ENDED A FILTER S	5/8" = 0.01 ther (Special T: /3()
SAMPLED PUMP OR DEPTH IN	NSIDE DIA. CAI EQUIPMENT OF DBY (PRINT) / A Abbott / (A) TUBING	PACITY (Gal/F CODES: B AFFILIATION:	Et.): 1/8" = 0	D.0006: 3/16* BP = Bladder SAMPLER(S TUBING MATERIAL C	Pump; B SAMF SAMF) SIGNATUR CODE: 11	1/4" = 0.002 ESP = Electric PLING DA E(S): Y N 0	Submersible ATA FIE Filt eplaced)	Pum	3/8" = 0. PP = Pe SAMPLING INITIATED AT FILTERED: Y	.006; eristaltic F	1/2" = Pump;	0 010; O = O SAMPLIN ENDED A	5/8" = 0.01 ther (Special T: /3()
PUMP OR DEPTH IN	NSIDE DIA. CAI E EQUIPMENT C D BY (PRINT) / A A DOOT / (A) TUBING I WELL (feet): CONTAMINATION	PACITY (Gal /F CODES: B AFFILIATION: 20511-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Et.): 1/8" = 0 = Bailer; P Y (D.0006: 3/16* BP = Bladder SAMPLER(S TUBING MATERIAL C	Pump; SAMF SAMF SIGNATUR CODE: 11 TUBING	1/4" = 0.002 ESP = Electric PLING DA E(S):	Submersible ATA FIE Filt eplaced)	Pum	3/8" = 0. SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDI ANALYSIS A	noo6; eristaltic F T: 13 3 Nope: Y ED ND/OR	SAN EQU	O 010; O = O SAMPLIN ENDED A FILTER S N WPLING JIPMENT	5/8" = 0.01 ther (Speci
SAMPLED DE SAMPLE ID CODE	NSIDE DIA. CAI E EQUIPMENT C D BY (PRINT) / A A DOOTH / (A) R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINERS	PACITY (Gal /F CODES: B AFFILIATION: ROSINFUL ON: PUM ER SPECIFICA MATERIAL CODE	P Y TION TION TOUR	D.0006: 3/16' BP = Bladder SAMPLER(S TUBING MATERIAL C N SAMPLE PRESERVAT USED	Pump; f SAMF SAMF SIGNATUR CODE: TUBING E PRESERV	Y NO	Submersible ATA FIE Filt eplaced) ing wet ice)	Pum	04; 3/8" = 0. pp; PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO	eristaltic F F: \ \ 3 \ 3 \ \ \ \ Y ED \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SAMEQUE	O 010; O = O SAMPLIN ENDED A FILTER S WPLING JIPMENT CODE	5/8" = 0.01 ther (Special Control Cont
PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	NSIDE DIA. CAI E EQUIPMENT C D BY (PRINT) / A A DOOT / (A) R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINE	PACITY (Gal /F CODES: B AFFILIATION: ROSINFUL ON: PUM ER SPECIFICA MATERIAL CODE ()	P Y (TION VOLUME	SAMPLER(S TUBING MATERIAL C N SAMPLE TUBING MATERIAL C N SAMPLE PRESERVAT USED	Pump; f SAMF SAMF SIGNATUR CODE: TUBING E PRESERV	Y NO	Submersible ATA FIE Filt eplaced) ing wet ice)	Pum	SAMPLING INITIATED AT FILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO	ED ND/OR	SAMEQUE	O 010; O = O SAMPLING ENDED A FILTER S WPLING IPPMENT CODE	SAMPLE FLOW (mL per r
PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	D BY (PRINT) / A ADDOTY / (A R TUBING I WELL (feet): CONTAMINATION CONTAINERS 3	PACITY (Gal/F CODES: B AFFILIATION: POSTIPE ON: PUM ER SPECIFICA MATERIAL CODE CODE CODE	P Y (TION VOLUME	D.0006: 3/16' BP = Bladder SAMPLER(S) TUBING MATERIAL CO N SAMPLE PRESERVAT USED	Pump; f SAMF SAMF SIGNATUR CODE: TUBING E PRESERV	Y NO ATION (includ	Submersible ATA FIE Filt eplaced) ing wet ice) FINA FINA BY PH FINA PH	Pum	SAMPLING INITIATED AT FILTERED: Y n Equipment Tyl DUPLICATE: INTENDI ANALYSIS A METHO	ED ND/OR	SAN EQU	O 010; O = O SAMPLINENDED A FILTER S N MPLING JIPMENT CODE	SAMPLE FLOW (mL per I
SAMPLED DE SAMPLE ID CODE MV-12/5	D BY (PRINT) / A ADDOTY / (A R TUBING I WELL (feet): CONTAMINATION CONTAINERS 3	PACITY (Gal /F CODES: B AFFILIATION: 205) PUM ER SPECIFICA MATERIAL CODE (2	P Y (TION VOLUME COME)	D.0006: 3/16' BP = Bladder SAMPLER(S TUBING MATERIAL C N SAMPLI PRESERVAT USED 1-1/103	Pump; f SAMF SAMF SIGNATUR CODE: TUBING E PRESERV	Y NO ATION (includ	Submersible ATA FIE Filt eplaced) ing wet ice)	Pum	SAMPLING INITIATED AT THE EQUIPMENT TO A METHO NOTE: THE THE THE PROPERTY OF	eristaltic F F: 13 3 pe: Y ED ND/OR D 10 13	SAN EQU	O 010; O = O SAMPLING INDED A FILTER S WPLING INPMENT CODE PP PP	SAMPLE FLOW I (mL per r
PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	D BY (PRINT) / A ADDOTY / (A R TUBING I WELL (feet): CONTAMINATION CONTAINERS 3	PACITY (Gal /F CODES: B AFFILIATION: 205) PUM ER SPECIFICA MATERIAL CODE (2	P Y (TION VOLUME	D.0006: 3/16' BP = Bladder SAMPLER(S) TUBING MATERIAL CO N SAMPLE PRESERVAT USED	Pump; f SAMF SAMF SIGNATUR CODE: TUBING E PRESERV	Y NO ATION (includ	Submersible ATA FIE Filt eplaced) ing wet ice) FINA FINA BY PH FINA PH	Pum	SAMPLING INITIATED AT FILTERED: Y n Equipment Tyl DUPLICATE: INTENDI ANALYSIS A METHO	eristaltic F F: 13 3 pe: Y ED ND/OR D 10 13	SAN EQU	O 010; O = O SAMPLINENDED A FILTER S N MPLING JIPMENT CODE	SAMPLE FLOW (mL per r
SAMPLED DE SAMPLE ID CODE MV-12/5	D BY (PRINT) / A A HOBOTT / (A) R TUBING I WELL (feet): CONTAMINATION CONTAINERS 3	PACITY (Gal /F CODES: B AFFILIATION: 205) PUM ER SPECIFICA MATERIAL CODE (2	P Y (TION VOLUME COME)	D.0006: 3/16' BP = Bladder SAMPLER(S TUBING MATERIAL C N SAMPLI PRESERVAT USED 1-1/103	Pump; f SAMF SAMF SIGNATUR CODE: TUBING E PRESERV	Y NO ATION (includ	Submersible ATA FIE Filt eplaced) ing wet ice) FINA FINA BY PH FINA PH	Pum	SAMPLING INITIATED AT THE EQUIPMENT TO A METHO NOTE: THE THE THE PROPERTY OF	eristaltic F F: 13 3 pe: Y ED ND/OR D 10 13	SAN EQU	O 010; O = O SAMPLING INDED A FILTER S WPLING INPMENT CODE PP PP	SAMPLE FLOW I (mL per r

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	WM-13	SA		SAMPLE			11 Dani Wa 3A		DATE: 5	16/19	
		_				SING DA					
WELL DIAMETER	(inches):	TUBING	β ΓER (inches):	3/1 WE	LL SCREEN	INTERVAL	STATIC D eet TO WATE	EPTH R (feet): 18 3	5 PU	RGE PUMP T' BAILER: P	
				TAL WELL DEF	TH - STA	TIC DEPTH TO	O WATER) X	WELL CAPACI	TY	DAILLIN.)	
	t if applicable)			22.5		8.35	feet) X	0 17		ot = 0.6	64 gallo
	NT VOLUME P	URGE: 1 EQU	IPMENT VOI	= PUMP VOL	UME + (TUE	ING CAPACIT	TY X TU	BING LENGTH	+ FLOW CE	ELL VOLUME	O 1 gono
(only fill out	t if applicable)			= 6 0	allons + (-f)	CO 14 gallor	ns/foot X 4	(- feet)	+ 0.1	gallons	=0.16 gallo
	IMP OR TUBIN			MP OR TUBING	(iv	DURGING	G	PURGING	1153	TOTAL VOI	LUME gallons): 2, 2
DEPTHIN	WELL (feet):	- LA COM	DEPTHIN	WELL (feet):	149	, DINITIATE	DAT: 1056	ENDED AT:	1100	PURGED	galloris). 🗷 · 🐷
TIME	VOLUME	VOLUME	PURGE	DEPTH TO	pH	TEMP.	COND, (circle units)	OXYGEN	TURBIDI	TY COLO	R ORP
TIME	PURGED (gallons)	PURGED	RATE (gpm)	WATER	(standard units)	(°C)	μmhos/cm	(circle units) mg/D or	(NTUs)	(describ	pe) (mV)
111-7		(gallons)		(feet)	11 20	0/7/	or as/cm	% saturation	7 11	01-	29.9
1147	2.04	2.09	0.04	19.77	4.88	26.86	2892	0.10	7.11	Clear	0 1
1144	80.0	2.12	0.04	19.67	488	26.83	2875	0.16	3.11	Clear	
1151	86.0	2.20	0.04	17./1	488	26.65	3868	0.09	2.11	Clear	
1153	0.08	5.38	0.04	14.68	4.88	26.74	2864	0.14	1.79	Clear	7.5
			1								
				1							
	PACITY (Gallor			1" = 0.04;	1.25" = 0.0				5" = 1.02;	6" = 1,47; 2" = 0,010;	12 " = 5.88 5/8" = 0.016
TUBING IN	ISIDE DÍA. CA	PACITY (Gal./F	=t_): 1/8" = 0	0006; 3/16	" = 0.0014:	1/4" = 0.002	6: 5/16" = 0.	004: 3/8" = 0	0.006; 1/2	2" = 0_010;	5/8" = 0.016
TUBING IN		PACITY (Gal./F			" = 0.0014: Pump;	1/4" = 0.0026 SP = Electric	6; 5/16" = 0, Submersible Pur	004: 3/8" = 0		2" = 0_010;	
TUBING IN	ISIDE DÍA. CA	PACITY (Gal./F CODES: B	=t_): 1/8" = 0	0006; 3/16 BP = Bladder SAMPLER(S	" = 0.0014; Pump; E SAMF) SIGNATUR	1/4" = 0.0026 SP = Electric	6; 5/16" = 0, Submersible Pur	004; 3/8" = 0	0.006; 1/2 eristaltic Pun	2" = 0_010; mp;	5/8" = 0.016 Other (Specify)
PURGING SAMPLED	ISIDE DÍA. CA EQUIPMENT (PACITY (Gal./FCODES: B	=t_): 1/8" = 0	0006; 3/16 BP = Bladder SAMPLER(S	" = 0.0014; Pump; E SAMF) SIGNATUR	1/4" = 0.0026 SP = Electric	6: 5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	0.006; 1/2 eristaltic Pun	2" = 0_010; mp;	5/8" = 0.016 Other (Specify)
PURGING SAMPLED SOURCE ALONG PUMP OR	BY (PRINT) / A TUBING	PACITY (Gal./FCODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	BP = Bladder	" = 0.0014: Pump; E SAMF) SIGNATUR	1/4" = 0.0020 SP = Electric PLING DA E(S):	6: 5/16" = 0. Submersible Pur	3/8" = 0 mp: PP = P SAMPLING INITIATED A -FILTERED: Y	0.006; 1/2 eristaltic Pun	2" = 0.010; np;	5/8" = 0.016 Other (Specify)
SAMPLED SOME ADDRESS PUMP OR DEPTH IN	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet):	PACITY (Gal./IICODES: B AFFILIATION:	Et.): 1/8" = 0 = Bailer;	SAMPLER(S TUBING MATERIAL C	" = 0.0014; Pump; E SAMF) SIGNATUR CODE: HD	1/4" = 0.0020 ESP = Electric PLING DA E(S):	Submersible Pur	004: 3/8" = 0 mp: PP = P SAMPLING INITIATED A FILTERED: Y on Equipment Ty	eristaltic Pun	SAMPLIN ENDED	5/8" = 0.016 Other (Specify)
SAMPLED SOME AMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) / A BY (PR	PACITY (Gal./II CODES: B AFFILIATION: AFFILIATION: ON: PUM	= Bailer;	BP = Bladder SAMPLER(S TUBING MATERIAL C	" = 0.0014: Pump; E SAMF) SIGNATUR CODE: H D TUBING	I/A" = 0.0020 ESP = Electric PLING DA E(S):	Submersible Pur	004: 3/8" = 0 mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE	0.006; 1/2 eristaltic Pun	2" = 0.010; np; O = C SAMPLIN ENDED A FILTER S	5/8" = 0.016 Other (Specify) NG AT: 12 10 SIZE:
SAMPLED SOME ADDRESS SAMPLED SOME ADDRESS SAMPLE SAMPLE	BY (PRINT) / A BY (PR	PACITY (Gal./FCODES: B AFFILIATION: AFFILIATION: AFFILIATION: PUM ER SPECIFICA MATERIAL	= Bailer;	SAMPLERIAL CONTROL SAMPLE SAMPLERIAL CONTROL SAMPLE PRESERVA	" = 0.0014: Pump; E SAMF SIGNATUR CODE: H D TUBING E PRESERV.	ATION (includitotal Vol	Submersible Pur TA FIELD Filtration splaced) ng wet ice) FINAL	004: 3/8" = 0 mp: PP = P SAMPLING INITIATED A FILTERED: Y on Equipment Ty	D.006; 1/2 eristaltic Pun T: 1155 (N) //pe: (Y) DED AND/OR II	SAMPLIN ENDED	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PR	PACITY (Gal./FCODES: B AFFILIATION: AFFILI	Et.): 1/8" = 0 = Bailer; IP Y (I	SAMPLERIS TUBING MATERIAL C SAMPLE SAMPLE SAMPLE V SAMPLE V SAMPLE V V V V V V V V V V V V V	" = 0.0014; Pump; E SAMF SIGNATUR CODE: HD TUBING E PRESERV.	1/4" = 0.0020 ESP = Electric : PLING DA E(S): Y N (see	Submersible Pur TA FIELD Filtration applaced) Ing wet ice) FINAL	MP = P SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO	D.006; 1/2 eristaltic Pun T: 1155 (N) //Pe: (Y) DED UND/OR I	SAMPLING	SAMPLE PU
SAMPLED SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PR	PACITY (Gal./IIICODES: B AFFILIATION: INTEL ON: PUM ER SPECIFICA MATERIAL CODE C.G.	Et.): 1/8" = 0 = Bailer; P Y (I	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI PRESERVA USED	" = 0.0014; Pump; E SAMF SIGNATUR CODE: HD TUBING E PRESERV.	ATION (includitotal Vol	Submersible Pur TA FIELD Filtration applaced) ing wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: You Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA / EC	D.006; 1/2 eristaltic Pun T: 1 5 5 /pe: (Y) DED NND/OR I	SAMPLING EQUIPMENT CODE	SAMPLE PU
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MM-13 A MJ-13 A	BY (PRINT) / A BY (PR	PACITY (Gal./II CODES: B AFFILIATION: IN IV ON: PUM ER SPECIFICA MATERIAL CODE C.G. PE	Et.): 1/8" = 0 = Bailer; P Y (I	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI I SAMPLI I SAMPLI I I I I I I I I I I I I I I I I I I	TE O.0014: Pump; E SAMF SAMF SIGNATUR CODE: HD TUBING E PRESERV. TIVE ADDI	ATION (includitotal Vol	Submersible Pur TA FIELD Filtration splaced) ng wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA /EC	D.006; 1/2 eristaltic Pun T: 1 5 5 /pe: (Y) DED NND/OR I	SAMPLING EQUIPMENT CODE	SAMPLE PU FLOW RAT (mL per minu
SAMPLED DECEMBER SAMPLE DEPTH IN FIELD DECEMBER SAMPLE ID CODE MA-13 A MV-13 A MV-13 A	BY (PRINT) / A BY (PR	PACITY (Gal./II CODES: B AFFILIATION: TOLEC TOLEC TOLEC MATERIAL CODE CG PE PE	Et): 1/8" = 0 = Bailer: IP Y (ITION VOLUME 10 m L 500 m L	SAMPLERIS SAMPLERIS SAMPLE SAMPLE SAMPLI PRESERVA USED	TE O.0014: Pump; E SAMF SAMF SIGNATUR CODE: HD TUBING E PRESERV. TIVE ADDI	ATION (includitotal Vol	Submersible Pur ATA FIELD- Filtratic eplaced) ng wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA / EO // Let ol N 1 + 3	D.006; 1/2 eristaltic Pun T: 1155 (N) //Pe: (Y) DED AND/OR II	SAMPLING EQUIPMENT CODE	SAMPLE PU FLOW RAT (mL per minu)
SAMPLED DECEMBER SAMPLE DEPTH IN FIELD DECEMBER SAMPLE ID CODE MA-13 A MV-13 A MV-13 A	BY (PRINT) / A BY (PR	PACITY (Gal./II CODES: B AFFILIATION: TO REC ON: PUM ER SPECIFICA MATERIAL CODE CG PE PF	Et.): 1/8" = 0 = Bailer; P Y (I	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI I SAMPLI I SAMPLI I I I I I I I I I I I I I I I I I I	TE O.0014: Pump; E SAMF SAMF SIGNATUR CODE: HD TUBING E PRESERV. TIVE ADDI	ATION (includitotal Vol	Submersible Pur TA FIELD Filtration splaced) ng wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA /EC	D.006; 1/2 eristaltic Pun T: 1155 (N) //Pe: (Y) DED AND/OR II	SAMPLING EQUIPMENT CODE	SAMPLE PU FLOW RAT (mL per minu
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A BY (PR	PACITY (Gal./II CODES: B AFFILIATION: TO REC ON: PUM ER SPECIFICA MATERIAL CODE CG PE PF	Et): 1/8" = 0 = Bailer: P Y (TION VOLUME 10 m L 500 m L	SAMPLERIS SAMPLERIS SAMPLE SAMPLE SAMPLI PRESERVA USED	TE O.0014: Pump; E SAMF SAMF SIGNATUR CODE: HD TUBING E PRESERV. TIVE ADDI	ATION (includitotal Vol	Submersible Pur ATA FIELD- Filtratic eplaced) ng wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA / EO // Let ol N 1 + 3	D.006; 1/2 eristaltic Pun T: 1155 (N) //Pe: (Y) DED AND/OR II	SAMPLING EQUIPMENT CODE	SAMPLE PU FLOW RAT (mL per mini
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE -MJ-13A -MJ-13A -MJ-13A	BY (PRINT) / A BY (PR	PACITY (Gal./II CODES: B AFFILIATION: TOLEC TOLEC	Et): 1/8" = 0 = Bailer: P Y (I) ATION VOLUME 10 m L 500 m L	SAMPLERIS TUBING MATERIAL CO SAMPLIA PRESERVA USED 1-101/N	Pump; E SAMF SAMF SIGNATUR CODE: HD TUBING E PRESERV. TIVE ADDI	ATION (includitotal Vol	Submersible Pur ATA FIELD- Filtratic eplaced) ng wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA / EO // Let ol N 1 + 3	D.006; 1/2 eristaltic Pun T: 1155 (N) //Pe: (Y) DED AND/OR II	SAMPLING EQUIPMENT CODE	SAMPLE PUFLOW RATION OF THE PUMPLE PUMPL PUMPL PUMPL PUMPL PUMPL PUMPL P
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE -MJ-13A -MJ-13A -MJ-13A	BY (PRINT) / A BY (PR	PACITY (Gal // CODES: B AFFILIATION: (A) VEC VIEW PUM ER SPECIFICA CODE PE PF PF DUP-1 S	Et): 1/8" = 0 = Bailer; IP Y (I ATION VOLUME 40 m L 500m L 500m L 60m L	SAMPLERIS TUBING MATERIAL CO SAMPLIA PRESERVA USED 1-101/N	Pump; E SAMF SAMF) SIGNATUR DODE: HD TUBING E PRESERV TIVE ADDI	ATION (includitotal Vol	FIELD-Filtration wet ice) FINAL PH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA / EO // Let ol N 1 + 3	D.006; 1/2 eristaltic Pun T: 1155 (N) //pe: (Y) DED AND/OR II DIS S	SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PL FLOW RA' (mL per min

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	W/V-13	0.15		SAMPLI		6-MW-			DATE:	5/11	6/17	
		-			PURC	SING DAT	TA					
WELL	R (inches): 2	TUBIN	G TER (inches)	3/11 WE	LL SCREEN	INTERVAL et to 4.7.2 fe	STATIC D	EPTH R (feet): 18.3	K 5		PUMP TYPER: PP	
WELL VO	LUME PURGE:			TAL WELL DE	PTH - STA	TIC DEPTH TO	O WATER) X	WELL CAPACI		JN DAILE	ER. P	
(only fill or	ut if applicable)		= (feet -		feet) X	0160	gallons	/foot =		gall
	NT VOLUME P	URGE: 1 EQ		L. = PUMP VO	LUME + (TUE	ING CAPACIT		JBING LENGTH)	+ FLOW	CELL V	OLUME	gom
(Offiny fill) Of	ит п аррпсавіе)		, in the second	= 🔘 g	allons + (0.	014 gallor	ns/foot X 4	(feet)	+ 0.1		gallons =	0. \ 6 gall
	UMP OR TUBIN WELL (feet):	e (19		MP OR TUBIN I WELL (feet):	G 92	PURGING INITIATE	DAT: 1058	PURGING ENDED AT:	1226	TO PU	TAL VOLU RGED (ga	JME illons): 5,
	VOLUME	CUMUL, VOLUME	PURGE	DEPTH	pН		COND.	DISSOLVED OXYGEN	TURRU	DITY	201.00	
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	TO WATER (feet)	(standard units)	TEMP (°C)	(circle units) µmhos/cm or µS/cm	(circle units) mg/L)or % saturation	TURBII (NTU		COLOR (describe	
1222	5.04	5.04	0.06	18.44	444	2727	108	0.20	2.7	6	Clear	13.
1224	0.12	5.16	0.06	18.44	4,49	27.07	104	0.20	2.6	0	Clear	
1226	0.12	5.28	0.06	18.44	94.49	27.17	106	0.20	2.8	7	Cleur	19.
											(A)	
												111
WELLCA	PACITY (Callor	Der Foot)	0.75" - 0.02	4" - 0.04:	4.25" = 0.0	2" = 0.10	211 - 0.27.	4U = 0.05	E" = 1.00:	611 -	4 47.	12" - 5 00
	PACITY (Gallor					6; 2" = 0.16 1/4" = 0.0026			5" = 1.02;	6" = 1/2" = 0.		12" = 5.88 18" = 0.016
TUBING I		PACITY (Gal.			" = 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	5; 5/16" = 0. Submersible Pu	004: 3/8" = 0		1/2" = 0.	010; 5	3/8" = 0.016
PURGING	NSIDE DÍA. CA	PACITY (Gal.	/Ft.): 1/8" = 0 3 = Bailer;	BP = Bladder	" = 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp, PP = Pe	.006;	1/2" = 0. ump;	010; 5 O = Oth	i/8" = 0.016 ner (Specify)
PURGING SAMPLED	NSIDE DIA. CA BEQUIPMENT (PACITY (Gal, CODES: E	/Ft.): 1/8" = 0 3 = Bailer;	0.0006; 3/16	" = 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = Pe	.006; eristaltic P	1/2" = 0. 'ump;	010; 5 0 = Oth	i/8" = 0.016 ner (Specify)
SAMPLET BUMP OF	BY (PRINT) /A	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0 3 = Bailer;	SAMPLER(S	" = 0.0014; Pump; E SAMP SIGNATUR	SP = Electric S LING DA	5; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp, PP = Pe	r: 3	1/2" = 0. lump;	O10; 5 O = Oth SAMPLING ENDED AT	7/8" = 0.016 ner (Specify)
SAMPLET BUNN OF DEPTH IN	DBY (PRINT) / ARTUBING N WELL (feet):	PACITY (Gal., CODES: E	(Ft.): 1/8" = (D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (" = 0.0014; Pump; E SAMP SIGNATURE	SP = Electric S LING DA E(S):	5/16" = 0. Submersible Pur TA FIELD Filtratic	mp; PP = Pe SAMPLING INITIATED A -FILTERED: Y on Equipment Ty	n.006; eristaltic P	1/2" = 0. lump;	O = Oth SAMPLING ENDED AT	7/8" = 0.016 ner (Specify)
SAMPLEE BUND OF DEPTH IN FIELD DE	DBY (PRINT) / A BEQUIPMENT (DBY (PRINT) / A BBY (PRINT) / A B	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0 3 = Bailer;	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (Pump; E SAMP SIGNATUR CODE: UBING	1/4" = 0.0026 SP = Electric S LING DA E(S):	5/16" = 0. Submersible Pur TA FIELD Filtration	3/8" = 0 mp; PP = Pe SAMPLING INITIATED A -FILTERED: Y on Equipment Ty, DUPLICATE:	eristaltic P	1/2" = 0. lump;	O = Oth SAMPLING ENDED AT ILTER SIZ	i/8" = 0.016 ner (Specify) G Τ: ZE: μ
SAMPLEE BUMP OF DEPTH IN FIELD DE	DBY (PRINT) / A R TUBING N WELL (feet): CONTAMINATION	PACITY (Gal., CODES: E	/Ft.): 1/8" = 0 3 = Bailer; //P Y C	SAMPLER(S TUBING MATERIAL (S) SAMPL	Pump: E SAMP SIGNATUR CODE: P TUBING	SP = Electric S LING DA E(S): PE Y NO	Submersible Pur TA FIELD Filtration placed) ng wet ice)	3/8" = 0 mp; PP = Pe SAMPLING INITIATED AFILTERED: Y on Equipment Ty DUPLICATE: INTEND	D.006; eristaltic P T: 3 3	1/2" = 0. ump; SE F SAMP	O = Oth SAMPLING ENDED AT SILTER SIZE PLING	i/8" = 0.016 ner (Specify) i i i i i i i i i i i i i
SAMPLEE BUNN A PUMP OF DEPTH IN FIELD DE	DBY (PRINT) / A DOWN THE CONTAINERS	PACITY (Gal., CODES: E	(Ft.): 1/8" = 0 B = Bailer; MP Y ATION VOLUME	D.0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (S) SAMPL PRESERVA USED	Pump: E SAMP SIGNATUR CODE: UD TUBING E PRESERVA	1/4" = 0.0026 SP = Electric S LING DA E(S):	FIELD Filtration placed) g wet ice) FINAL	SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO	ED ND/OR	1/2" = 0. Tump; SE SAMP EQUIP CO	O = Oth O = Oth SAMPLING ENDED AT ILTER SIZ PLING PMENT DE	SAMPLE PIFLOW RA (mL per mir
SAMPLED DE SAMPLE ID CODE	NSIDE DÍA. CA BEQUIPMENT (D BY (PRINT) / A B D D D D D D D D D D D D D D D D D D D	PACITY (Gal., CODES: E	IFL): 1/8" = 0 B = Bailer; MP Y CATION VOLUME	SAMPLER(S TUBING MATERIAL (S) SAMPL PRESERVA USED	Pump: E SAMP SIGNATUR CODE: UD TUBING E PRESERVA	1/4" = 0.0026 SP = Electric S LING DA E(S): PE Y NO	FIELD Filtration placed) g wet ice) FINAL	SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A	ED ND/OR	1/2" = 0. Tump; SAMPEQUIP CO	O = Oth O = Oth SAMPLING ENDED AT ELTER SIZ PLING PMENT DDE	SAMPLE PLE FLOW RA (mL per mir
SAMPLE DEPTH IN FIELD DE SAMPLE ID CODE	DBY (PRINT) / A DOWN THE CONTAINERS	PACITY (Gal., CODES: E	MP Y CATION VOLUME LIONL 500mL	SAMPLER(S TUBING MATERIAL C SAMPL SAMPLER(S TUBING MATERIAL C SAMPL PRESERVA USED HC1 1-1 NO 2	Pump: E SAMP SIGNATUR CODE: UD TUBING E PRESERVA	SP = Electric S LING DA E(S): PF Y NO ATION (including FOTAL VOL. ED IN FIELD (m.)	FIELD Filtration placed) ng wet ice) FINAL pH	SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/FI Metal	ED ND/OR	1/2" = 0. Tump; SAMPEQUIP CO	O = Oth O = Oth SAMPLING ENDED AT SILTER SIZE PLING PMENT DE	SAMPLE PLE FLOW RA (mL per mir
SAMPLE DEPTH IN SAMPLE ID CODE MW-13B MW-13B	DBY (PRINT) / A DOWN THE CONTAINERS	PACITY (Gal., CODES: E	MP Y CATION VOLUME LOML 500mL	SAMPLER(S TUBING MATERIAL (S) SAMPL PRESERVA USED	Pump: E SAMP SIGNATUR CODE: UD TUBING E PRESERVA	ATION (including TOTAL VOL.)	FIELD Filtration placed) ng wet ice) FINAL pH	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDIA ANALYSIS A METHO VOA/FO Metal	ED ND/OR ND	TAP	O = Oth O = Oth SAMPLING ENDED AT SILTER SIZE PLING PMENT DDE	SAMPLE PLE FLOW RA (mL per mir
SAMPLE DEPTH IN SAMPLE ID CODE MW-13B MW-13B	DBY (PRINT) / A DOWN THE CONTAINERS	PACITY (Gal., CODES: E	MP Y CATION VOLUME LIONL 500mL	SAMPLER(S TUBING MATERIAL C SAMPL SAMPLER(S TUBING MATERIAL C SAMPL PRESERVA USED HC1 1-1 NO 2	Pump: E SAMP SIGNATUR CODE: UD TUBING E PRESERVA	ATION (including TOTAL VOL	FIELD Filtration placed) Type wet ice) FINAL pH	SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/FI Metal	ED ND/OR ND	1/2" = 0. Tump; SAMPEQUIP CO	O = Oth O = Oth SAMPLING ENDED AT SILTER SIZE PLING PMENT DDE	SAMPLE PLE FLOW RA (mL per mir
SAMPLED DE SAMPLE SAMPLE SAMPLE	DBY (PRINT) / A D DS H / (A D	PACITY (Gal., CODES: E	MP Y CATION VOLUME LOML 500mL	SAMPLER(S TUBING MATERIAL (S SAMPL PRESERVA USED HC1 1-1504	Pump: E SAMP SIGNATUR CODE: UD TUBING E PRESERVA	SP = Electric S LING DA E(S): PE Y NO ATION (including TOTAL VOL. D IN FIELD (m.	FIELD Filtration placed) FINAL PH	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDIA ANALYSIS A METHO VOA/FO Metal	ED ND/OR ND	TAP	O = Oth O = Oth SAMPLING ENDED AT SILTER SIZE PLING PMENT DDE	SAMPLE P FLOW RA (mL per min
PURGING SAMPLET BUMP OF DEPTH IN FIELD DE SAMPLE ID CODE MV-13B MV-13B MV-13B	DBY (PRINT) / A D DS H / (A D	PACITY (Gal., CODES: E	MP Y CATION VOLUME LIOML 500mL	SAMPLER(S TUBING MATERIAL (S SAMPL PRESERVA USED HC1 1-1504	Pump: E SAMP SIGNATUR CODE: UD TUBING E PRESERVA	SP = Electric S LING DA E(S): PE Y NO ATION (including TOTAL VOL. D IN FIELD (m.	FIELD Filtration placed) FINAL PH	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDIA ANALYSIS A METHO VOA/FO Metal	ED ND/OR ND	TAP	O = Oth O = Oth SAMPLING ENDED AT SILTER SIZE PLING PMENT DDE	SAMPLE P FLOW RA (mL per min

² STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	Solid Waste L	andfill				ITE DCATION: 15	01 Omni Way, S	t. Cloud, FL 347		,	
WELL NO:	CW-JA	,		SAMPLE	ID: 191	37 - CL	V- 2A		DATE: 5	1171	19
						GING DA					
WELL		TUBING	3	WEL	L SCREEN	INTERVAL	STATIC D	EPTH		GE PUMP T	YPE
DIAMETER	(inches): 2		TER (inches): 3	/16 DEP	TH: & fe	eet to / X fe	eet TO WATE	R (feet): 6.3	5 OR I	BAILER: PP	
	.UME PURGE: if applicable)	1 WELL VOL	.UME = (TOTA	IL WELL DEPT	TH - STA	ATIC DEPTH T	O WATER) X	WELL CAPAC	IY		
` -			= (feet -		feet) X		gallons/foo	1 =	gallon
	IT VOLUME PU	RGE: 1 EQU	IPMENT VOL.	= PUMP VOLU	JME + (TUE	BING CAPACI	TY X TU	BING LENGTH	+ FLOW CE		
(0111) 1111 0 111	. и орригоско			= - ga	llons + (0-	OOIY gallo	ns/foot X (6	+	+ 0.1	gallons	= O.37 gallon
	MP OR TUBINO WELL (feet):	13	FINAL PUM DEPTH IN V	P OR TUBING VELL (feet):	13	PURGIN INITIATE	G AT: 08 55	PURGING ENDED AT:	0917	PURGED (LUME gallons): 2.1
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/D or % saturation	TURBIDIT (NTUs)	Y COLO (describ	
0905	1.0	1.0	0.10	6.56	5.>3	22 93	1852	1.40	3.40	Yellow	- 23.2
909	0.Y	1.4	0.10	6.57	5.16	23.87	1858	0.46	3.44	-1	-57.5
0913	0.4	1.8	0.10	6.57	5.12	22 86	1859	0.39	3.71	40	-61.1
0917	0.4	3.7	0.10	6.57	5.05	23.87	1863	0.37	3.16	te.	-63.4
- 117		0		1		201		/			
					-ith-, 0.36	V					
			1								
			-							_	-
_			-	-						-	
										_	_
										-	-
WELLCAR	PACITY (Gallons	Per Footh: (75" - 0.02:	1" - 0.04:	1 25" = 0 0	06; 2" = 0.1	6· 3" = 0.37:	4" = 0.65;	5" = 1.02;	6" = 1.47;	12 " = 5.88
TUBING IN	ISIDE DIA. CAP	ACITY (Gal./	Ft.): 1/8" = 0.0	0006; 3/16"						= 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer; E	BP = Bladder P			Submersible Pur	np; PP = P	eristaltic Pum	p; O = C	other (Specify)
						PLING DA	ATA			-	
01110100	D14 (DD1117) / 4	CCU IATION		CAMPLED(O)							
	BY (PRINT) / A			SAMPLER(S)		(E(S)		SAMPLING INITIATED A	T. 0917	SAMPLIN	NG 6933
Neil	Studen	/ Georg	ptec	120	SIGNATUR	(E(S)	FIELD-	INITIATED A		ENDED A	AT: 693)
Ne:1	Studen		ptec		10			SAMPLING INITIATED A FILTERED: Y on Equipment Ty	(N)	FILTER S	NG AT: 69>λ BIZEμm
PUMP OR DEPTH IN	Staden TUBING	/ Georg	ptec 3	TUBING MATERIAL CO	10			INITIATED A	pe:	ENDED A	AT: 693)
PUMP OR DEPTH IN FIELD DEC	TUBING WELL (feet)	/ Georg	ntec 3 1P Y (N)	TUBING MATERIAL CO	ODE: HDPE		Filtration (Principle)	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE:	rpe: Y ED S	FILTER S SAMPLING	AT: 6932 SIZE µm SAMPLE PUM
PUMP OR DEPTH IN FIELD DEC SAMI	TUBING WELL (feet) CONTAMINATIO PLE CONTAINE	DN: PUM R SPECIFICA MATERIAL	ATION	TUBING MATERIAL CO SAMPLE PRESERVATI	DDE: HDPE TUBING PRESERV	Y (N)(re	Filtration	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE:	y ED S	FILTER S	AT: 693)
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS	DN: PUM R SPECIFICA MATERIAL CODE	MP Y N	TUBING MATERIAL CO	TUBING PRESERV	Y (N)(re	ing wet ice) FINAL pH	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE: INTEND ANALYSIS A	Ppe: Y ED S AND/OR E	FILTER S SAMPLING QUIPMENT	SAMPLE PUM FLOW RATE (mL per minute
PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 4 3	DN: PUM R SPECIFICA MATERIAL CODE CG	ATION VOLUME 40 mL	TUBING MATERIAL CO	DDE: HDPE TUBING PRESERV. IVE ADDI	Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (i	Filtration papers of the property of the prope	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	ED S E	FILTER S FILTER S SAMPLING QUIPMENT CODE	SAMPLE PUM FLOW RATE (mL per minute
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 4 3 4 1	N: PUM R SPECIFICA MATERIAL CODE CG PE	ATION VOLUME 40 mL 500 mL	TUBING MATERIAL CO	DDE: HDPE TUBING PRESERVE IVE ADDI P	Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (includi refilled by lab	Filtratic eplaced) ing wet ice) FINAL pH 0 < 2 0 < 2	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E	ED S ENDONE DB S	FILTER S SAMPLING QUIPMENT CODE APP	SAMPLE PUM FLOW RATE (mL per minute) - 150
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 4 3 1 1	DN: PUM R SPECIFICA MATERIAL CODE CG PE PE	ATION VOLUME 40 mL 500 mL	TUBING MATERIAL CO	DDE: HDPE TUBING PRESERVE IVE ADDI P	ATION (including to Total volument) Total volument in Field (including to the filled by lab refilled by lab refilled by lab	Filtratic eplaced) ring wet ice) FINAL pH 0 < 2 0 < 2 0 < 2	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PPE: Y ED S END/OR ED DD DB S	FILTER S SAMPLING QUIPMENT CODE APP APP	SAMPLE PUM FLOW RATE (mL per minute) ~ 150 ~ 3300
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 4 3 4 1	N: PUM R SPECIFICA MATERIAL CODE CG PE	ATION VOLUME 40 mL 500 mL	TUBING MATERIAL CO	DDE: HDPE TUBING PRESERVE IVE ADDI P	Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (includi refilled by lab	Filtratic eplaced) ing wet ice) FINAL pH 0 < 2 0 < 2	INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal	PPE: Y ED S END/OR ED DD DB S	FILTER S SAMPLING QUIPMENT CODE APP APP	SAMPLE PUN FLOW RATE (mL per minut
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 4 3 1 1	DN: PUM R SPECIFICA MATERIAL CODE CG PE PE PE	MP Y N ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE PRESERVATI USED HCL HNO3 H2SO4 None	DDE: HDPE TUBING PRESERVE IVE ADDI P	ATION (including to Total volument) Total volument in Field (including to the filled by lab refilled by lab refilled by lab	Filtratic eplaced) ring wet ice) FINAL pH 0 < 2 0 < 2 0 < 2	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PPE: Y ED S END/OR ED DD DB S	FILTER S SAMPLING QUIPMENT CODE APP APP	SAMPLE PUM FLOW RATE (mL per minut - 150 - 3300
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 4 3 4 1 1	DN: PUM R SPECIFICA MATERIAL CODE CG PE PE PE	ATION VOLUME 40 mL 500 mL	SAMPLE PRESERVATI USED HCL HNO3 H2SO4 None	DDE: HDPE TUBING PRESERVE IVE ADDI P	ATION (including to Total volument) Total volument in Field (including to the filled by lab refilled by lab refilled by lab	Filtratic eplaced) ring wet ice) FINAL pH 0 < 2 0 < 2 0 < 2	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PPE: Y ED S END/OR ED DD DB S	FILTER S SAMPLING QUIPMENT CODE APP APP	SAMPLE PUN FLOW RATE (mL per minut
PUMP OR DEPTH IN FIELD DEC SAMI SAMPLE ID CODE	TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 4 3 4 1 1	DN: PUM R SPECIFICA MATERIAL CODE CG PE PE PE PE	MP Y N ATION VOLUME 40 mL 500 mL 250 mL	TUBING MATERIAL CO	DDE: HDPE TUBING PRESERV. IVE ADDI PI PI	ATION (including to Total volument) Total volument in Field (including to the filled by lab refilled by lab refilled by lab	Filtratic splaced) sing wet ice) FINAL pH	INITIATED A FILTERED: Y IN Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PPE: Y ED S END/OR ED DB S TDS	FILTER S SAMPLING QUIPMENT CODE APP APP APP	SAMPLE PUM FLOW RATE (mL per minut - 150 - 3300

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	CW-3A			SAN	1PLE ID: 19	137 - CW	-31		[DATE: 5	117/10	9
	CW 3/1			7		RGING DA						
WELL		TUBING	,		WELL SCRE	EN INTERVAL	STATIO	C DEPT	ГН	PUI	RGE PUMP T	YPE
	R (inches): 2		ΓER (inches):	3/16	DEPTH: X	feet to 18	feet TO W/	TER (f	eet) 5.5	8 OR	BAILER: PP	
WELL VO	LUME PURGE:	1 WELL VOL	.UME = (TOT	AL WELL	DEPTH -	STATIC DEPTH	TO WATER)	X W	ELL CAPACII	Υ		
, ,	ut if applicable)		= (feet -		feet)	X		gallons/fo	ot =	gall
		IRGE: 1 EQU	IPMENT VOL	= PUMP	VOLUME + (TUBING CAPAC	ITY X	TUBIN	IG LENGTH)	+ FLOW CE	LL VOLUME	×3
(only fill or	ut if applicable)			å -	gallons + (0.0014 galle	ons/foot X	16	feet)	+ 0-1	gallons	= 0.3 Zgall
	UMP OR TUBING	3 13	FINAL PUI DEPTH IN		.1 %	PURGIN INITIAT	NG ED AT: 0 7	52 1	PURGING ENDED AT:	0880	TOTAL VO PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet	ER (standa	ard (°C)	COND. (circle units µmhos/cm or µS/cm	000	OXYGEN circle units) mg/L or saturation	TURBIDI (NTUs)		
0802	01.20	1.30	0.12	5-9	1 4-80	23.60	2317	1	.39	7-19	Yella	v -71.
2080	0.40	1.60	0.10	5.8			2330		1.02	8.89	41	-65
0810	0.40	>.00	0.10	5.8			>358	-	0-87	8.13	4	- 70.
0814	0.40	3-40	0.10	5.8		-	3370		08.0	7.78	.,	- 80.
	0.40	7.80	0.10	15-8			3371		7.79	8.00	la la	- 81.
0818		3.10	0.10	5.80			2413		78	6.33		-87
0837	0.40	3.60	0.10				3430			4.77	_	-91.
3426			-	0-8					2.75	4.31	60	-84.
0830	0.40	4.00	0,10	5. B	4 5.1	6 33.69	06 AC	-	7.77	4.25		81.
			1)									
WELL CA	APACITY (Gallons INSIDE DIA. CAF	PACITY (Gal./F	0.75" = 0.02; Ft.): 1/8" = 0 = Bailer;	.0006;	3/16" = 0.001 dder Pump;	= 0.06; 2" = 0.04; 1/4" = 0.00 ESP = Electric	26; 5/16" = C Submersible	0,004	3/8" = 0. PP = Pe	5" = 1.02; 006; 1/2 ristaltic Pun	6" = 1.47; " = 0.010; np; O = 0	12" = 5.88 5/8" = 0.016 Other (Specify)
	DEV (DDINT) / A			SAMPLE						00		10
SAMPLE	DBY (PRINT) / A	FFILIATION	- (.	SAMPLE	R(S) SIGNAT	TURE(S);	-	\$ 1	SAMPLING INITIATED AT	181)	SAMPLII ENDED	NG AT: <i>O 8</i> 35
SAMPLE	St-plan	FFILIATION:	nhe	SAMPLE	R(S) SIGNAT	TURE(S);	FIE	LD-FIL	SAMPLING INITIATED AT TERED: Y	181)	SAMPLII ENDED	
SAMPLEI Nz: PUMP OF DEPTH II	R TUBING N WELL (feet)	FFILIATION:		TUBING MATERI	AL CODE: H	TURE(S);	Filt	LD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ	(A81)	FILTER S	NG AT: Ο 8 35 SIZE:μ
SAMPLEI Nz: PUMP OF DEPTH II	S/-p/-y R TUBING	FFILIATION:		TUBING	ER(S) SIGNAT	TURE(S);		LD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE:	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	FILTER S	SIZE:μ
PUMP OF DEPTH III	R TUBING N WELL (feet): CONTAMINATION MPLE CONTAINE	ISON: PUMER SPECIFICA	IP Y (TUBING MATERI SAI	AL CODE: H TUBII	DPE NG Y NY ERVATION (include	Filt replaced) ding wet ice)	LD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE: INTENDE	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	FILTER S	SIZE: µ
PUMP OF DEPTH III	R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINE	DN: PUMER SPECIFICA	IP Y (TUBING MATERI SAI PRESER	AL CODE: H TUBII MPLE PRESE	DPE NG Y NSI ERVATION (included to the control of t	Filt replaced) ding wet ice)	ELD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE:	y SD ND/OR E	FILTER S	SIZE:μ
PUMP OF DEPTH III FIELD DE SAM SAMPLE ID CODE	R TUBING N WELL (feet): CONTAMINATION MPLE CONTAINE	ISON: PUMER SPECIFICA	IP Y (TUBING MATERI SAI PRESEF US	AL CODE: H TUBII MPLE PRESE	DPE NG Y NY ERVATION (include	replaced) ding wet ice) FINA	ELD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE: INTENDE ANALYSIS A	DED ND/OR D	FILTER S SAMPLING EQUIPMENT	SAMPLE PU
PUMP OF DEPTH IF	R TUBING N WELL (feet): CONTAMINATION MPLE CONTAINE CONTAINERS 3	DN: PUMER SPECIFICA MATERIAL CODE	ATION VOLUME	TUBING MATERI SAI PRESEF US	AL CODE: H TUBII MPLE PRESE RVATIVE SED A	DPE NG Y NY ERVATION (includent total vol.) DDED IN FIELD	replaced) ding wet ice) (mL) pH ab < 2	ELD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE: INTENDE ANALYSIS A METHO	DB	SAMPLING EQUIPMENT CODE	SAMPLE PU FLOW RA (mL per mir
PUMP OF DEPTH III	R TUBING N WELL (feet): CONTAMINATION MPLE CONTAINE CONTAINERS 3	IFFILIATION: (73 DN: PUM ER SPECIFICA MATERIAL CODE CG	ATION VOLUME 40 mL 500 mL	TUBING MATERI SAI PRESEF US HG	AL CODE: H TUBII MPLE PRESE RVATIVE SED A	DPE NG Y NO ERVATION (included to the control of	Filtreplaced) ding wet ice)	ELD-FIL tration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE: INTENDE ANALYSIS AI METHO VOA/ED	DB	SAMPLING EQUIPMENT CODE APP	SAMPLE PU FLOW RA (mL per mir
PUMP OF DEPTH IF	R TUBING N WELL (feet) CONTAMINATION PLE CONTAINERS 3 1	DN: PUM ER SPECIFICA MATERIAL CODE CG PE	ATION VOLUME 40 mL 500 mL	TUBING MATERI SAI PRESEF US HG HN H25	AL CODE: H TUBII MPLE PRESE RVATIVE SED CL	DPE NG Y NOTE ERVATION (included to the control of	Filtreplaced) ding wet ice)	ELD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE: INTENDE ANALYSIS AI METHO VOA/ED Metals	De: Y ED ND/OR D DB	SAMPLING EQUIPMENT CODE APP	SAMPLE PU FLOW RA (mL per mir
PUMP OF DEPTH III FIELD DE SAM SAMPLE ID CODE	R TUBING N WELL (feet) CONTAMINATION PLE CONTAINERS 3 1 1	DN: PUM ER SPECIFICA MATERIAL CODE CG PE PE	ATION VOLUME 40 mL 500 mL	TUBING MATERI SAI PRESEF US HG HN H25	AL CODE: H TUBII MPLE PRESE RVATIVE SED CL 103 SO4	DPE NG Y NOTE ERVATION (included to the content of	Filtreplaced) ding wet ice) (mL)	ELD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE: INTENDE ANALYSIS AI METHO VOA/ED Metals NH3	De: Y ED ND/OR D DB	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PI FLOW RA (mL per mir ~ /50 ~ 380 ~ 380
PUMP OF DEPTH III FIELD DE SAM SAMPLE ID CODE	R TUBING N WELL (feet): ECONTAMINATION MPLE CONTAINERS 3 1 1 1	DN: PUM ER SPECIFICA MATERIAL CODE CG PE PE	ATION VOLUME 40 mL 500 mL	TUBING MATERI SAI PRESEF US HG HN H25	AL CODE: H TUBII MPLE PRESE RVATIVE SED CL 103 SO4	DPE NG Y NOTE ERVATION (included to the content of	Filtreplaced) ding wet ice) (mL)	ELD-FIL ration E	SAMPLING INITIATED AT TERED: Y Equipment Typ DUPLICATE: INTENDE ANALYSIS AI METHO VOA/ED Metals NH3	De: Y ED ND/OR D DB	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PI FLOW RA (mL per mir ~ /50 ~ 380 ~ 380

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: JE	D Solid Waste	Landfill				SITE LOCATION: 1:	501 Omni Wav. S	St. Cloud, FL 34	733		
	MW-2			SAM	1		9W-24A	-		5/16	1,9
	, , , , ,					RGING DA			- 6		
	R (inches): 2		ΓER (inches): 3	3/16	DEPTH: 13	N INTERVAL feet to 33	STATIC I	ER (feet): 13.	49 01	JRGE PUMP 1 R BAILER: PP	YPE
/ 1 CTI	10 to 11 to							WELL CAPAC		oot = /. \$	gallons
(only fill ou	t if applicable)	ORGE: TEQU	IPWENT VOL.	= PUIVIP) + FLOW (×3 = 0.39 gallons
	IMP OR TUBIN WELL (feet):	G 19	FINAL PUM DEPTH IN \		BING	DUDGU		PURGING ENDED AT:			LUME gallons): 5 - 7
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet)	R (standar	d TEMP	COND (circle units) µmhos/cm or (µS/cm)	OXYGEN (circle units) (mg/l) or % saturation	TURBID (NTUs	s) (descri	be) (mV)
1356	4.50	4.50	0.13	(3.52	1 4.0)	24.36	184	0.14	0.4	} Geo	-4.0
1400	0.40	4.90	0.10	13.5		34.39	180	0.15	0.3		211.0
1404	0.40	5.36	0.10	13.5	1 4.33	74.42	183	0.14	0.36		-12.5
1408	0.40	5.70	0.10	13.50	1 4.23	24.45	184	0.12	0.35	11	-15.7
TUBING IN PURGING	BY (PRINT)	PACITY (Gal./FCODES: B	= Bailer; E	SAMPLER	/16" = 0_0014; ler Pump;	PLING D	26; 5/16" = 0 c Submersible Pu	3/8" = 0 mp; PP = P SAMPLING INITIATED A	eristaltic Pu	SAMPLII ENDED	12" = 5.88 5/8" = 0.016 Other (Specify)
	WELL (feet)	/9	0.000		L CODE: HD	1 2300		on Equipment Ty		6	
	CONTAMINATION				TUBING		replaced)	DUPLICATE		4	T
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESER'	VATIVE AD	VATION (include TOTAL VOL DED IN FIELD	(mL) FINAL	ANALYSIS A METHO	AND/OR DD	SAMPLING EQUIPMENT CODE	SAMPLE PUMF FLOW RATE (mL per minute
36-MW.	4A 3	CG	40 mL	HC		Prefilled by la	b < 2	VOA/E	DB	APP	~150
	1	PE	500 mL	HNO	03	Prefilled by la	b < 2	Metal	s	APP	~375
	1		250-mL	H2S	04	Prefilled by la		NH3		APP	~377
J	1	PE	250 mL	Nor	ne	None	4.73	CL/NO3/	TDS	APP	~375
REMARKS	i breizi ode										
MATERIA		AG = Amber S = Silicone; CODES: A	Glass; CG = T = Teflon; APP = After (Th	nrough) Pe	er (Specify) ristaltic Pump				SP = Electri	thylene; Pf	P = Polypropylene Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-24	B		SAN	APLE ID: 19	136-MW.	14B		DATE 5	116/1	9
					PL	RGING DA	TA				
WELL		TUBING				EN INTERVAL	STATIC			RGE PUMP T	YPE
	R (inches): 2		TER (inches):	3/16 AL W/FIT	DEPTH: 5	STATIC DEPTH	TO WATER) X	LR (feet): / Ś.	YX OR	BAILER: PP	
	t if applicable)			712 44222		OTATIO DEL TIT	,				
EQUIPME	NT VOLUME PL	JRGE: 1 EQL	= (JIPMENT VOL	= PUMP	feet – VOLUME +	TUBING CAPAC	feet) X	UBING LENGTH	gallons/fo) + FLOW CE		gallo
(only fill ou	t if applicable)			=	gallons +	(0.0014 galle	ons/foot X) feet	+ 6. /	gallons	=0 Y& gallo
INITIAL PL	JMP OR TUBING	G	FINAL PUI	MP OR TU	RING	DURCIN	10	DUDONIO		TOTAL MO	LIME
DEPTH IN	WELL (feet):	38	DEPTH IN	WELL (fee	et): 38	INITIAT	ED AT: /3>6	ENDED AT:	1346	PURGED (gallons): 3-8
TIME	VOLUME	CUMUL. VOLUME	PURGE	DEP1	(etano	ard LEIVIP	COND. (circle units)	DISSOLVED OXYGEN (circle units)	TURBIDIT	TY COLO	R ORP
,	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATI (fee	ER unit		or uS/cm	mg/L)or % saturation	(NTUs)	(descril	be) (mV)
(336	1.)0	1.10	0.12	/3.8	0 4.0	5 34.36	61	1.05	4.76	Clev	- 3a.7
1334	0.40	1.60	0.10	13.7		3 34.45	61	0.52	4.10	ø,	18.5
1338	0.40	3.00	0.10	137	2 4.)	4 24.56	61	0.33	3.54	1 4	12.0
1347	0.40	2.40	0.10	13.7	1 4.2	3 24.57	66	0.35	3.33	4	(3.5
1346	0.40	7.80	0.16	137	2 4)	3 24,64	61	0.0	3.39	2.0	10.5
		-									
					1						
	-										
WELL CAP	PACITY (Gallons	s Per Foot): (0.75" = 0 02; Ft.): 1/8" = 0	1" = 0.0	94; 1.25 " = 8/ 16 " = 0.001	: 0,06; 2" = 0.1 4: 1/4" = 0.002				6" = 1.47; " = 0.010:	12" = 5.88 5/8" = 0.016
TUBING IN	PACITY (Gallons ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0	0006;	04; 1.25 " = 03/ 16" = 0_001 der Pump;	4; 1/4" = 0 002		004; 3/8" = 0		" = 0 010;	12" = 5.88 5/8" = 0.016 ther (Specify)
TUBING IN PURGING	ISIDE DÍA. CAF EQUIPMENT C	ODES: B	Ft.): 1/8" = 0	0006; ; BP = Blad	3/16" = 0_001 der Pump; SAI	4; 1/4" = 0 002 ESP = Electric	26; 5/16" = 0 Submersible Pu	004; 3/8" = 0	006: 1/2	" = 0 010;	5/8" = 0,016
PURGING SAMPLED	EQUIPMENT C BY (PRINT) / A	PACITY (Gal./I ODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Blad	3/16" = 0.001 der Pump; SA R(S) SIGNA	4: 1/4" = 0 002 ESP = Electric WPLING DA TURE(S):	26; 5/16" = 0 Submersible Pu	004; 3/8" = 0 mp; PP = Pe	eristaltic Pum	" = 0 010; np;	5/8" = 0,016 ther (Specify)
PURGING SAMPLED	BY (PRINT) / A	ODES: B	Ft.): 1/8" = 0 = Bailer;	O006; SBP = Blad	3/16" = 0_001 der Pump; SAI	4: 1/4" = 0 002 ESP = Electric WPLING DA TURE(S):	26; 5/16" = 0 Submersible Pu	mp; PP = Po	eristaltic Pum	"= 0 010; np; O = 0 SAMPLIN ENDED A	5/8" = 0,016 ther (Specify)
PURGING SAMPLED Nz:/ PUMP OR	BY (PRINT) / A	PACITY (Gal./I ODES: B	Ft.): 1/8" = 0 = Bailer;	O006; SAMPLE	3/16" = 0.001 der Pump; SA R(S) SIGNA	ESP = Electric WPLING DA FURE(S):	Submersible Pu	004; 3/8" = 0 mp; PP = Pe	eristaltic Pum	"= 0 010; np; O = 0 SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
SAMPLED PUMP OR DEPTH IN	BY (PRINT) / A	PACITY (Gal/I) ODES: B FEILIATION: George	Ft.): 1/8" = 0 = Bailer;	SAMPLE TUBING	8/16" = 0.001 der Pump; SAI R(S) SIGNA	ESP = Electric MPLING DA FURE(S):	Submersible Pu	3/8" = 0 mp; PP = Po SAMPLING INITIATED A' -FILTERED: Y	eristaltic Pum	"= 0 010; np; O = 0 SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
PUMP OR DEPTH IN	BY (PRINT) / A SHAPE TUBING WELL (feet):	PACITY (Gal./I ODES: B FFILIATION: Grospe 38 ON: PUM	Ft.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERIA	3/16" = 0.001 der Pump; SAI R(S) SIGNA AL CODE: H	ESP = Electric MPLING DA FURE(S):	Submersible Pu	mp; PP = Po SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTEND	Poole: 1/2 Y C	SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A STUBING WELL (feet): CONTAMINATIO PLE CONTAINE	PACITY (Gal./I ODES: B FFILIATION: SECOND ON: PUN R SPECIFICA MATERIAL	Ft.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERIA SAM PRESER	AL CODE: H TUBII	ESP = Electric WPLING DA TURE(S): DPE NG Y (N) RVATION (includ) TOTAL VOL	Submersible Pu ATA FIELD Filtrati eplaced) ing wet ice) FINAL	mp; PP = Po SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE:	Pool: 1/2 Peristaltic Pum T: / > Y C Peristaltic Pum T: / > Y C	SAMPLING	5/8" = 0.016 ther (Specify) IG AT: / \$5/ IZE: µm SAMPLE PUN FLOW RATI
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y (ATION	SAMPLE TUBING MATERIA	AL CODE: H TUBII	ESP = Electric MPLING DA FURE(S): DPE NG Y (N) RVATION (include)	Submersible Pu ATA FIELD Filtrati eplaced) ing wet ice) FINAL pH	mp; PP = Po SAMPLING INITIATED A: -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A	Pool: 1/2 Peristaltic Pum T: / > Y C pe. ND/OR S ED ND/OR S ED S ND/OR S ND/OR S ED S ND	SAMPLING	IG LATE LATE LATE LATE LATE LATE LATE LATE
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./I ODES: B FFILIATION: SCOTION R SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; IF C ATION VOLUME	SAMPLE TUBING MATERIA SAM PRESER US	AL CODE: H TUBII MPLE PRESE VATIVE ED ALOGO A ALCO	ESP = Electric WPLING DA TURE(S): DPE NG Y (N) RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat	Submersible Pu ATA FIELD Filtrati eplaced) ing wet ice) FINAL pH C 2	MP; PP = Po SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI	Pool: 1/2 Pristaltic Pum T: / > Y C Pool: 1/2 Pool:	SAMPLING SAMPLING CQUIPMENT CODE SAMP	SAMPLE PUN FLOW RATI (mL per minu:
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US	AL CODE: H TUBII MPLE PRESE	ESP = Electric MPLING DA FURE(S): DPE RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat	FIELD Filtraticeplaced) ing wet ice) FINAL pH C 2 C 2	mp; PP = Po SAMPLING INITIATED A: -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal:	T: / > Y C Peristaltic Pum T: / > Y C Peristaltic Pum Y ED ND/OR ED DB S	SAMPLING EQUIPMENT CODE APP	SAMPLE PUM FLOW RATI (mL per minur ~ 150)
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A SHAPP OF THE PRINT OF THE CONTAINERS 3 1	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL	SAMPLE TUBING MATERIA SAM PRESER US HC HN:	AL CODE: H TUBII MPLE PRESE EVATIVE ED A CL O3 GO4	ESP = Electric WPLING DA FURE(S): DPE NG Y (N) RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat Prefilled by lat	FIELD Filtration wet ice) FINAL pH C C C C C C C C C C C C C C C C C C C	mp; PP = Po SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	Pool: 1/2	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUT FLOW RAT (mL per minu 150 157 168 178 178 178 178 178 178 17
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A SHAPE CONTAINERS 3 1 1	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC	AL CODE: H TUBII MPLE PRESE EVATIVE ED A CL O3 GO4	ESP = Electric MPLING DA FURE(S): DPE RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat	FIELD Filtraticeplaced) ing wet ice) FINAL pH C 2 C 2	mp; PP = Po SAMPLING INITIATED A: -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal:	Pool: 1/2	SAMPLING EQUIPMENT CODE APP	SAMPLE PUN FLOW RATI (mL per minu ~ 150 ~ 3 75
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A SHAPE CONTAINERS 3 1 1	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC HN:	AL CODE: H TUBII MPLE PRESE EVATIVE ED A CL O3 GO4	ESP = Electric WPLING DA FURE(S): DPE NG Y (N) RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat Prefilled by lat	FIELD Filtration wet ice) FINAL pH C C C C C C C C C C C C C C C C C C C	mp; PP = Po SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	Pool: 1/2	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu ~ 150 ~ 375 ~ 375
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW · JY (BY (PRINT) / A STUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1 1	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC HN:	AL CODE: H TUBII MPLE PRESE EVATIVE ED A CL O3 GO4	ESP = Electric WPLING DA FURE(S): DPE NG Y (N) RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat Prefilled by lat	FIELD Filtration wet ice) FINAL pH C C C C C C C C C C C C C C C C C C C	mp; PP = Po SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	Pool: 1/2	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu ~ 150 ~ 375
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW . JY	BY (PRINT) / A SINGLE ON TABLE BY (PRINT) / A SINGLE TUBING WELL (feet) CONTAMINATION # CONTAINERS 3 1 1 1 1	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y N ATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC HN:	AL CODE: H TUBII MPLE PRESE VATIVE ED ACL O3 GO4 ne	ESP = Electric WPLING DA FURE(S): DPE NG Y (N) RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat Prefilled by lat	FIELD Filtraticeplaced) ing wet ice) FINAL pH	mp; PP = Po SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	Pool: 1/2 Peristaltic Pum T: / > Y C Pool: 1/2 Pool: 1	SAMPLING ENDED A FILTER S SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PUFLOW RAT (mL per minu ~ 150 ~ 3 75

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

-	1441-2	DAR		SAMPI	EID: 1913	C-144-	DAR		DATE:	5/16/	119
						GING DA					-
WELL		TUBING	_	W	ELL SCREE	INTERVAL	STATIC	DEPTH 2/	/- PI	URGE PUMP	
	R (inches): 2		TER (inches):	3/16 DI	EPTH: / ʃ.O	feet to 33 0	feet TO WAT	TER (feet).	7 0	R BAILER: PP	
(only fill ou	it if applicable)	. TWELL VO)3							
EQUIPME	NT VOLUME P	URGE: 1 EQL	= (JIPMENT VOI		feet	SI.17	feet) X	CO.16 TUBING LENGTH	gallons/f	foot = 0.	7 gallo
(only fill ou	it if applicable)				gallons + (ons/foot X				
INITIAL PL	JMP OR TUBIN	G 22.0	FINAL PU	MP OR TUBII	<u> </u>	PURGIN		fee PURGING	-	gallons TOTAL VO	
	WELL (feet): /			WELL (feet):		INITIATI	ED AT: 1) 5	ENDED AT	1237	PURGED	gallons): ₹3
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) (mg/L) or % saturation	TURBID (NTUs		
1220	7.70	2.30	0.085	22.80	4.38	37.10	788	0.46	0.61	V.SL. Ye	110c 25.5
1274	0.34	2.54	0.085	2280	1	57.14	795	62.38	0.68		30.5
1778	0.34	2.88	0.085	>> XO		37.09	748	0.39	0.47		23.7
1232	0.34	3. 22	0.085		4.32	17-11	800	0.36	0, 3,		313
			il.	1							7
					1			-			
WELL CAI	PACITY (Gallon	s Per Foot): (0.75" = 0.02;	1" = 0.04;	1.25" = 0.	06; 2 " = 0.1	6; 3" = 0.37;	4 " = 0.65;	5" = 1.02;	6" = 1.47;	12" = 5,88
TUBING IN	ISIDE DIA. CAF	PACITY (Gal./I	Ft.): 1/8" = 0	0006; 3/10	6" = 0.0014;	1/4" = 0.002	6, 5/16" = 0	0.004; 3/8" =	0.006, 1/	2" = 0.010;	5/8" = 0.016
TUBING IN	PACITY (Gallon ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./I	0.75" = 0.02; Ft.): 1/8" = 0 = Bailer;	1" = 0.04; .0006; 3/16 BP = Bladder	6" = 0.0014; Pump;	1/4" = 0.002 ESP = Electric	6; 5/16" = 0 Submersible P	0.004; 3/8" =		2" = 0.010;	
TUBING IN PURGING	ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./i	Ft.): 1/8" = 0	0006; 3/10 BP = Bladder	S" = 0.0014; Pump; SAMI	1/4" = 0.002 ESP = Electric PLING DA	6; 5/16" = 0 Submersible P	0.004; 3/8" = 6 ump; PP = F	0.006, 1/	mp; O = 0	5/8" = 0.016 Other (Specify)
PURGING SAMPLED	EQUIPMENT C BY (PRINT) / A	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	0006; 3/10 BP = Bladder	6" = 0.0014; Pump;	1/4" = 0.002 ESP = Electric PLING DA	6; 5/16" = 0 Submersible P	0.004; 3/8" = 0	0.006; 1/ Peristaltic Pu	mp; O = 0	5/8" = 0.016 Other (Specify)
SAMPLED AVAIL SPUMP OR	BY (PRINT) A	PACITY (Gal./I	Ft): 1/8" = 0 = Bailer;	SAMPLER(S	6" = 0.0014; Pump; SAMI S) SIGNATUR	1/4" = 0.002 ESP = Electric PLING DA	Submersible Po	SAMPLING INITIATED AD-FILTERED: Y	O 006; 1/ Peristaltic Pu	2" = 0.010; mp; O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT:
SAMPLED PUMP OR DEPTH IN	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet):	PACITY (Gal./II	Ft): 1/8" = 0 = Bailer; A	SAMPLER(S TUBING MATERIAL	SAMI S) SIGNATUR CODE: HDP	1/4" = 0.002 ESP = Electric PLING DA RE(S)	Submersible Po	SAMPLING INITIATED AD-FILTERED: Yellon Equipment T	Peristaltic Pu	2" = 0.010; mp; O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT:
SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) / A BY (PR	PACITY (Gal./I	Ft): 1/8" = 0 = Bailer; Ac 9	SAMPLER(S TUBING MATERIAL	SAMI S) SIGNATUI CODE: HDP	1/4" = 0,002 ESP = Electric PLING DA RE(S):	Submersible Pi	SAMPLING INITIATED A D-FILTERED: Yellon Equipment T DUPLICATE	20.006; 1/Peristaltic Pu	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: SIZE: μm
SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./II CODES: B AFFILIATION: SECTION: DN: PUM ER SPECIFICA	Ft): 1/8" = 0 = Bailer; Ac 9	SAMPLER(S TUBING MATERIAL	SAMI S) SIGNATUI CODE: HDP TUBING	1/4" = 0,002 ESP = Electric PLING DA RE(S): E Y ATION (includ	Submersible Policy ATA FIELD Filtrat eplaced) ing wet ice)	SAMPLING INITIATED AD-FILTERED: Yellon Equipment TOUPLICATE	Peristaltic Pur	SAMPLII FILTER S SAMPLING	5/8" = 0.016 Other (Specify) NG AT: SIZE: μm
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./I	Ft): 1/8" = 0 = Bailer; Ac 9	SAMPLER(S TUBING MATERIAL	SAMI S) SIGNATUI CODE: HDP TUBING LE PRESERV	1/4" = 0,002 ESP = Electric PLING DA RE(S):	Submersible Per FIELD Filtrate eplaced) ing wet ice)	SAMPLING INITIATED A D-FILTERED: Yellon Equipment T DUPLICATE	Peristaltic Pur	2" = 0.010; mp; O = 0 SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: SIZE: µm SAMPLE PUM FLOW RATI
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./II CODES: B AFFILIATION: SECTION: DN: PUM ER SPECIFICA MATERIAL	Ft): 1/8" = 0 = Bailer;	SAMPLER(S TUBING MATERIAL SAMPLE TUBING MATERIAL PRESERVA	SAMI S) SIGNATUI CODE: HDP TUBING LE PRESERV	1/4" = 0,002 ESP = Electric PLING DA RE(S): E Y ATION (includ) TOTAL VOL	Submersible Policy FIELD Filtrate eplaced ing wet ice in ph	SAMPLING INITIATED A D-FILTERED: Y ION Equipment T DUPLICATE ANALYSIS A	Peristaltic Pur	SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: SIZE: μm
SAMPLED DECUMENTS SAMPLE SAMPLED DECUMENTS SAMPLE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./II CODES: B AFFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE	Ft): 1/8" = 0 = Bailer; 9 IP Y (1) VOLUME	SAMPLER(S TUBING MATERIAL SAMPLE TUBING MATERIAL SAMPLE PRESERVA USED	SAMI S) SIGNATUR CODE: HDP TUBING E PRESERV TIVE ADD	1/4" = 0,002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL ED IN FIELD (i	FIELD Filtrate placed) ing wet ice) FINAL pH C 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment T DUPLICATE INTENE ANALYSIS A METHO	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) NG AT: SIZE: μm SAMPLE PUN FLOW RATI (mL per minut
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PR	PACITY (Gal./II CODES: B AFFILIATION: SECTION: PUM ER SPECIFICA MATERIAL CODE CG	Ft): 1/8" = 0 = Bailer; P IP Y TION VOLUME 40 mL	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL	SAMI S) SIGNATUI S) SIGNATUI CODE: HDP TUBING LE PRESERV TIVE ADD P	1/4" = 0,002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL ED IN FIELD (i refilled by lab	FIELD Filtrate placed) ing wet ice) FINAL PH FINAL PH C 2 C 2	SAMPLING INITIATED A D-FILTERED: Yellon Equipment T DUPLICATE ANALYSIS A METHO VOA/E	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE	SAMPLE PUT FLOW RATI (mL per minu) SON SAMPLE PUT FLOW RATI (mL per minu) SON SAMPLE PUT FLOW RATI
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS CONTAINERS 1	PACITY (Gal./III CODES: B AFFILIATION: JON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft): 1/8" = 0 = Bailer; P ATION VOLUME 40 mL 500 mL	SAMPLER(S TUBING MATERIAL SAMPLE FRESERVA USED HCL HNO3	SAMI S) SIGNATUI S) SIGNATUI CODE: HDP TUBING LE PRESERV TIVE ADD P	EEY North Total Volume Filled by laborefilled by labores	FIELD Filtrate placed) ing wet ice) FINAL pH	SAMPLING INITIATED AD-FILTERED: Young Equipment To DUPLICATE ANALYSIS A METHO VOA/E	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP	SAMPLE PUN FLOW RATI (mL per minu 'S' 'S' SAMPLE PUN FLOW RATI (mL per minu 'S' 'S' 'S' 'S' 'S' 'S' 'S' '
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1	PACITY (Gal./III CODES: B AFFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft): 1/8" = 0 = Bailer; 9 IP Y (1) ITION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3	SAMI S) SIGNATUI S) SIGNATUI CODE: HDP TUBING LE PRESERV TIVE ADD P	E Y ATION (includ TOTAL VOL ED IN FIELD (irefilled by lab refilled by lab	FIELD Filtrate placed) ing wet ice) FINAL PH FINAL PH C 2 C 2	SAMPLING INITIATED AD-FILTERED: Y DUPLICATE INTENE ANALYSIS A METHO VOAVE	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUN FLOW RATI (mL per minut) ~ (\$0 ~ \$35 ~ \$35
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1	PACITY (Gal./III CODES: B AFFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft): 1/8" = 0 = Bailer; 9 IP Y (1) ITION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3	SAMI S) SIGNATUI S) SIGNATUI CODE: HDP TUBING LE PRESERV TIVE ADD P	E Y ATION (includ TOTAL VOL ED IN FIELD (irefilled by lab refilled by lab	FIELD Filtrate placed) ing wet ice) FINAL pH	SAMPLING INITIATED AD-FILTERED: Y DUPLICATE INTENE ANALYSIS A METHO VOAVE	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu 'SO 'SO 'SO 'SO 'SO 'SO 'SO '
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-)3A REMARKS	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1 1	PACITY (Gal./III CODES: B AFFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft): 1/8" = 0 = Bailer; 9 IP Y (1) ITION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3	SAMI S) SIGNATUI S) SIGNATUI CODE: HDP TUBING LE PRESERV TIVE ADD P	E Y ATION (includ TOTAL VOL ED IN FIELD (irefilled by lab refilled by lab	FIELD Filtrate placed) ing wet ice) FINAL pH	SAMPLING INITIATED AD-FILTERED: Y DUPLICATE INTENE ANALYSIS A METHO VOAVE	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu 'SO 'SO 'SO 'SO 'SO 'SO 'SO '
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-)3A REMARKS	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1 1	PACITY (Gal./III CODES: B AFFILIATION: DN: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = 0 = Bailer; 9 IP Y (1) TION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3	SAMI S) SIGNATUR S) SIGNATUR TUBING E PRESERV TIVE ADD P	E Y ATION (includ TOTAL VOL ED IN FIELD (irefilled by lab refilled by lab	FIELD Filtrat eplaced) mL) FINAL pH c) c c 2 c) c c 2 c) c c 2 c) c c 2	SAMPLING INITIATED AD-FILTERED: Y DUPLICATE INTENE ANALYSIS A METHO VOAVE	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PU FLOW RAT (mL per minu

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	D Solid Waste	Landfill			_	ITE					
	Mw -):			SAMPI			01 Omni Way,			1.5.110	
VVELE IVO.	101W - J.	3 12/15		SAME		6- M4-			DATE: 7	116/19	
WELL		Тти	BING	1 104	PUR ELL SCREEN	GING DA	STATIC	ACDTII.	1.	NIDOE DUIND	D/DE
	R (inches): 2		METER (inches)	3/16 DE	PTH: 35.5 f	eet to 45.5 f	eet TO WATI	ER (feet)	12 6	PURGE PUMP ' OR BAILER: PP	
WELL VOI	UME PURGE:	1 WELL	VOLUME = (TO	TAL WELL DE	PTH - STA	ATIC DEPTH	O WATER) X	WELL CAPAC	ITY		
	t if applicable)		= (feet -		feet) X		gallons	/foot =	gallons
(only fill ou	NT VOLUME PI t if applicable)	URGE: 1	EQUIPMENT VO	L. = PUMP VO	LUME + (TU	BING CAPACI	TY X T	UBING LENGTH) + FLOW	CELL VOLUME	£×3
(0) 00				= (gallons + (🗸	aory gallo	ons/foot X 4	3,5 feet)+ 0+	(gallons	=0- Yy gallons
	JMP OR TUBIN WELL (feet)	G40.5		MP OR TUBIN WELL (feet):	IG 40.5	PURGIN INITIATE	IG ED AT: // 48	PURGING ENDED AT:	DIO	TOTAL VO	DLUME (gallons): 3.4
TIME	VOLUME PURGED (gallons)	CUMU VOLUM PURGI (gallon	PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or(µS/cm)	OXYGEN (circle units) (mg/L) or % saturation	TURBII (NTU	DITY COLO	OR ORP
1158	1.20	1.30	0.12	21.21	4.64	27 86	83	1.24	3.30	C/co	37.1
1307	3.40	1.60	0.10	21.19	4.45	37.43	87	0.47	1. 5	7) "	12.4
1206	0.40	3 00	0.10	31.19	4.46	37-84	89	0.31	2.5		
1210	0.40	3.410	0.10	21.19	4.47	37-90	88	0.32	1-8		
						100					
WELL CAR	ACITY (Gallon	s Der Foot): 0.75 " = 0.02;	4" - 0.04:	4 25" - 0.0	G: 2" = 0.1	6: 3" = 0.37:	4" = 0.65;	5 " = 1.02;	011 - 4 47	40" - 5.00
TUBING IN	ISIDE DIA. CAF	PACITY (G	al./Ft.): 1/8" = 0	.0006; 3/16	" = 0.0014;	1/4" = 0.002	6; 5/16" = 0	004; 3/8" = 0		6" = 1.47; 1/2" = 0.010,	12" = 5 88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES:	B = Bailer;	BP = Bladder			Submersible Pu	mp; PP = P	eristaltic Pu	ump; O = 0	Other (Specify)
SAMDI ED	BY (PRINT) / A	EEU IATIO	NI:	SAMPLER(S		LING DA	ATA				
	Stopley			SAMPLER(S	SIGNATUR	E(S):	_	SAMPLING INITIATED A	T: 13.17)	SAMPLI	NG AT: ()/5
PUMP OR	TUBING			TUBING	23/	~	FIELD	-FILTERED: Y		-	SIZE: µm
DEPTH IN	WELL (feet)		0.5	MATERIAL C	CODE: HDPE			on Equipment Ty		7 12 12 17	μμ
FIELD DEC	CONTAMINATIO	ON: F	UMP Y (D	TUBING	Y (1) re	eplaced)	DUPLICATE	Y	(N)	
	PLE CONTAINE			SAMPL		ATION (includi	ng wet ice)	INTEND		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIA! CODE	VOLUME	PRESERVATUSED		TOTAL VOL ED IN FIELD (1	FINAL mL) pH	ANALYSIS A		CODE	(mL per minute)
	3	CG	40 mL	HCL		efilled by lab		VOA/E	DB	APP	~ 150
	1	PE	500 mL	HNO3	Pr	efilled by lab	< 2	Metal	s	APP	~ 380
	1	PE	250 mL	H2SO4	Pr	efilled by lab	< 2	NH3		APP	~ 380
	1	PE	250 mL	None		None	4.47	CL/NO3/	TDS	APP	n 380
											- 30
		obje Fol	ilingia pu	ge undar	-						
	CODES:	AG = A==	or Class: CC	- Close Olar	LIDDE	I Bak Daran 5	National Head	LDDE - 1 =			
MATERIAL		AG = Amb		Clear Glass;O = Other (High Density F	olyethylene;	LDPE = Low De	ensity Polye	ethylene; Pi	P = Polypropylene;
SAMPLING	EQUIPMENT		APP = After (T			B = Bailer;	BP = Bladd	ler Pump: F	SP = Electr	ric Submersible	Pump:
			RFPP = Rever				Method (Tubing			her (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL	0: MW-9	TUBIN	0	1 100	PUR(SING DAT		EDTU	PIL	DOE DUMD T	VDE
DIAMET	ER (inches): 2 OLUME PURGE:	DIAME	TER (inches)	: 3/16 DI	PTH:/2.4 fe	eet to 10,4 fe	et TO WATE	R (feet): (X.	11 OR	RGE PUMP T BAILER: PP	YPE
(only fill o	out if applicable)		= (29.4	feet -	18.11	feet) X	O.CC		ot = 0.4	S 9
	ENT VOLUME Pout if applicable)	URGE: 1 EQ	UIPMENT VO		DLUME + (TUI gallons + (Y X TU ns/foot X	BING LENGTH)) + FLOW C	ELL VOLUME gallons	
	PUMP OR TUBIN N WELL (feet):	IG)G		JMP OR TUBII N WELL (feet):	NG _	PURGING		PURGING ENDED AT:		TOTAL NO	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/L) or % saturation	TURBIDI' (NTUs)	TY COLO	OR ORE
1048	2.40	2-40	008	18.78	5.18	26.51	215	0.28	8-61	Yello	w 167
1050	0.32	2.7)	0.08	18.78	5.18	16:56	214	0.25	9.03	67	-1/1.
1056	0.3)	3.04	0.08	18.78	5.17	X. 55	214	0.14	8.31	L	-93.
1100	0-3)	3.36	0.08	18.78	5-18	36.48	216	0.93	8.35	-2,	-110
PURGIN SAMPLE	APACITY (Gallon INSIDE DIA. CAI G EQUIPMENT O	PACITY (Gal./ CODES: E		D 0006; 3/10 BP = Bladde SAMPLER(Pump; E	1/4" = 0.0026 SP = Electric S LING DA E(S):	5/16" = 0.0 Submersible Pun	004: 3/8" = 0	eristaltic Pun	SAMPLIN ENDED	AT: 1106
PUMP O	INSIDE DIA. CAI G EQUIPMENT C	PACITY (Gal./ CODES: E	Ft.): 1/8" = (3 = Bailer;	BP = Bladde SAMPLER(TUBING	S" = 0 0014; Pump; E SAMP SIGNATUR	1/4" = 0,0026 SP = Electric S LING DA E(S):	5/16" = 0.0 Submersible Pun TA	SAMPLING INITIATED AT FILTERED: Y	.006; 1/2 eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016 Other (Specify) NG AT: //06
SAMPLE PURGIN SAMPLE PUMP O DEPTH I	DBY (PRINT)	PACITY (Gal.) CODES: E AFFILIATION:	Ft.): 1/8" = (BP = Bladde SAMPLER(TUBING	Pump; E SAMP SIGNATUR	1/4" = 0,0026 SP = Electric S LING DA E(S):	5; 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio	3/8" = 0. np; PP = Pe SAMPLING INITIATED AT	eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016 Other (Specify) NG AT: //06
PURGIN SAMPLE PUMP O DEPTH I FIELD D	DBY (PRINT) / A R TUBING N WELL (feet): ECONTAMINATION	PACITY (Gal.) CODES: E AFFILIATION: COO. ON: PUM ER SPECIFIC	Ft.): 1/8" = (B = Bailer; AP Y (ATION	D.0006; 3/1/BP = Bladde SAMPLER(I TUBING MATERIAL SAMPLER(II SAMPLER(III SAMPL	Pump; E SAMP SIGNATUR CODE: HDPE TUBING	1/4" = 0,0026 SP = Electric S LING DA E(S): Y (Trep ATION (includin	5; 5/16" = 0.0 Submersible Pun TA FIELD- Filtratio placed) g wet ice)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDI	n.006: 1/2 eristaltic Purr T: // OO pe: Y	SAMPLING	SAMPLE PU
PUMP ODEPTH I FIELD D SAMPLE ID CODE	DBY (PRINT) A R TUBING N WELL (feet): ECONTAINERS	PACITY (Gal./CODES: E AFFILIATION: GOODES: E AFFILIATION: AFFILIATION: GOODES: E AFFILIATION: AFFILIATION	Ft): 1/8" = 0 B = Bailer; AP Y (ATION VOLUME	SAMPLER(I) TUBING MATERIAL SAMPLER(I) SAMPLER(I) SAMPLER(I) SAMPLER(I) SAMPLER(I) SAMPLER(I) SAMPLER(I) SAMPLER(I)	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING LE PRESERVA	1/4" = 0,0026 SP = Electric S LING DA E(S): Y (N) (rep. ATION (including TOTAL VOL. 2D IN FIELD (m.)	FIELD-Filtratio placed) g wet ice) FINAL	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO	noon: 1/2 eristaltic Purr T: // OO pe: Y ED ND/OR E	SAMPLIN ENDED	SAMPLE PL
PUMP ODEPTH I FIELD D SAMPLE ID CODE	D BY (PRINT) / A R TUBING N WELL (feet): ECONTAMINATION # CONTAINERS 3	PACITY (Gal./CODES: E AFFILIATION: COON: PUN ER SPECIFIC/ MATERIAL CODE CG	Ft.): 1/8" = 0 B = Bailer; MP Y (ATION VOLUME 40 mL	SAMPLER(I) SAMPLER(I) TUBING MATERIAL SAMPLER(I) S	Pump; E SAMP SAMP SIGNATUR CODE: HDPE TUBING E PRESERV, TIVE ADDE	1/4" = 0,0026 SP = Electric S LING DA E(S): Y (V) rep ATION (including FOTAL VOL D IN FIELD (melilled by lab	FIELD-Filtratio	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS AI METHO VOA/EE	PED ND/OR EDDB	SAMPLING SAMPLING EQUIPMENT CODE APP	SAMPLE PL
PURGIN SAMPLE PUMP O DEPTH I FIELD D SAMPLE ID CODE	DBY (PRINT) / A R TUBING N WELL (feet): ECONTAMINATION CONTAINERS 3 1	PACITY (Gal J CODES: E AFFILIATION: JO- ON: PUN ER SPECIFICA MATERIAL CODE CG PE	Ft): 1/8" = (B = Bailer; APP Y (ATION VOLUME 40 mL 500 mL	SAMPLER(I TUBING MATERIAL SAMP SAMP PRESERVA USED HCL HNO3	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	Y (T) (reparting to the control of t	FIELD-Filtratio placed) g wet ice) FINAL PH	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS AI METHO VOA/EE Metals	ED ND/OR END DB	SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA (mL per min
PURGIN SAMPLE PUMP O DEPTH I FIELD D SAMPLE ID CODE	DBY (PRINT) A R TUBING N WELL (feet): ECONTAINERS 3 1	PACITY (Gal.) CODES: E AFFILIATION: COO: ON: PUM ER SPECIFIC, MATERIAL CODE CG PE PE	Ft): 1/8" = (3 = Bailer; AP Y (ATION VOLUME 40 mL 500 mL	SAMPLER(I) TUBING MATERIAL SAMPLER(I) TUBING MATERIAL SAMPLER(I) HOUSE HO	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	Y TOTAL VOLE IN FIELD (me filled by lab efilled by lab	FIELD-Filtratio placed) g wet ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS AI METHO VOA/EE Metals NH3	Pope: Y ED ND/OR END DB S	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA' (mL per min
PUMP O DEPTH I FIELD D SAMPLE ID CODE	DBY (PRINT) / A R TUBING N WELL (feet): ECONTAMINATION CONTAINERS 3 1	PACITY (Gal J CODES: E AFFILIATION: JO- ON: PUN ER SPECIFICA MATERIAL CODE CG PE	Ft): 1/8" = (B = Bailer; APP Y (ATION VOLUME 40 mL 500 mL	SAMPLER(I TUBING MATERIAL SAMP SAMP PRESERVA USED HCL HNO3	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	Y (T) (reparting to the control of t	FIELD-Filtratio placed) g wet ice) FINAL PH	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS AI METHO VOA/EE Metals	Pope: Y ED ND/OR END DB S	SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA (mL per min

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

I WELL NO		Landfill		-1-		LOCATION: 1		_	t. Cloud, F		_	- 1	
TALLE INC	Mhr - 9	1B		SAM		1136- MW		•		DAT	TE: MA	w 5/1	6/19
						JRGING DA							
	R (inches): 2		TER (inches)	: 3/16	DEPTH: 34	EEN INTERVAL	feet TC	ATIC D	R (feet):	6.10		RGE PUMP ⁻ BAILER: PP	
	DLUME PURGE: ut if applicable)	1 WELL VO		TAL WELL		STATIC DEPTH			WELL CA		-1115		
	NT VOLUME Pout if applicable)	URGE: 1 EQ	= (UIPMENT VO	_		(TUBING CAPAC	ITY X			GTH) + F		LL VOLUME	~3
4			_	= -		(0.0014 gall			17	feet) +	0-1		= 0. Sogallo
	UMP OR TUBIN WELL (feet):	G 44		MP OR TUI WELL (fee		Y PURGIN	NG ED AT: (016		AT: (C	38	PURGED	(gallons): 3. 3
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet)	R (stand	lard (°C)	CON (circle u µmhos or (iS	inits) /cm	OXYGE (circle ur mg/L) % satura	its) T	URBIDIT (NTUs)	Y COLO	
1036	1.0	100	0.10	18.6	4 410	X.54	CY6		1.11	1	1-51	Ulea.	. 333
10%	0.4	1.4	0.10	18.6			64	3	0.45		0.36	6.9	31.2
1034	0.4	1.8	0.10	18.6			643	_	0.33		0.3)		39.5
1038	0.4	3.2	0.10	18.6			64		0.37		0.35	1 18	37.5
PURGING SAMPLED	BY (PRINT) / A	ODES: E	0.75" = 0.02; Ft.): 1/8" = 0 B = Bailer;	0.0006; 3 BP = Blado	/16" = 0.00 ler Pump;	ESP = Electric MPLING DA	26; 5/1 Submers	: 0.37; 6" = 0.0	004; 3/8 np; PF	e" = 0.006 P = Perista	altic Pump	SAMPLI	12" = 5.88 5/8" = 0.016 Other (Specify)
PURGING SAMPLED No. 1	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A Stuple 7	PACITY (Gal.) CODES: E	Ft.): 1/8" = 0	BP = Bladd	/16" = 0.00 der Pump;	ESP = Electric MPLING DA	26; 5/1 Submersi	6" = 0 0	SAMPLI	P = 0 006 P = Perista NG ED AT: ((1/2" altic Pump	SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: 1043
SAMPLED /Vc./	SHUPMENT C SHUPMENT C BY (PRINT) / A SHUPMENT TUBING	PACITY (Gal.) CODES: E	Ft): 1/8" = (3 = Bailer; 5 gn fcc	BP = Bladd SAMPLEF TUBING	r16" = 0.00 der Pump; SA R(S) SIGNA	ESP = Electric MPLING DA TURE(S):	Submersi	6" = 0 0	SAMPLI INITIATI	" = 0.006 P = Perista NG ED AT:	altic Pump	SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: 1043
SAMPLED PUMP OR DEPTH IN	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A Stuple 7	PACITY (Gal.) CODES: E	Ft.): 1/8" = (B = Bailer; Synfac	SAMPLEF TUBING MATERIA	der Pump; SA R(S) SIGNA	ESP = Electric MPLING DA TURE(S):	Submersi ATA	6" = 0 0	SAMPLI INITIATI FILTERED n Equipme	NG ED AT:	i: 1/2" altic Pump	SAMPLII ENDED	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR DEPTH IN FIELD DE	SEQUIPMENT CONTROL OF THE PROPERTY OF THE PROP	PACITY (Gal.) CODES: E OFFILIATION: 4 ON: PUM	Ft.): 1/8" = (B = Bailer; Synfice 1/4	SAMPLEF TUBING MATERIA	der Pump; SA S(S) SIGNA L CODE: I	1/4" = 0.002 ESP = Electric MPLING D TURE(S): DPE NG Y (1)	26; 5/1 Submersi	6" = 0 0 ible Pun FIELD- Filtratio	SAMPLI INITIATI FILTERED n Equipme DUPLIC	NG ED AT:	i; 1/2" altic Pump	SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: (Ο 4) SIZE: μπ
SAMPLED PUMP OR DEPTH IN FIELD DE	SEQUIPMENT CONTROL OF	PACITY (Gal.) CODES: E OFFILIATION: 4 ON: PUM	Ft.): 1/8" = (B = Bailer; Synfice 1/4	SAMPLEF TUBING MATERIA	Ide" = 0.00 Ider Pump; SA R(S) SIGNA L CODE: I TUBI PLE PRES	ESP = Electric MPLING DA TURE(S): DPE NG Y N ERVATION (includ TOTAL VOL	eplaced)	6" = 0 C ble Pun FIELD- Filtratio	SAMPLI INITIATI FILTERED n Equipme DUPLIC INT ANALYS	NG ED AT:	i; 1/2" altic Pump	SAMPLII ENDED	SAMPLE PU
SAMPLED SAMPLE ID CODE	D BY (PRINT) / A Shaple 7 R TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS	PACITY (Gal./ CODES: E OFFILIATION: UNCORPORATION: PUNCORPORATION: MATERIAL	Ft.): 1/8" = (0) = Bailer; S gn fcc (1) ATION	SAMPLER TUBING MATERIA SAM PRESER	ler Pump; SA R(S) SIGNA L CODE: I TUBI PLE PRES	ESP = Electric MPLING DA TURE(S): DPE NG Y N ERVATION (include)	eplaced) ling wet ica	6" = 0 C ble Pun FIELD- Filtratio	SAMPLI INITIATI FILTERED n Equipme DUPLIC INT ANALYS	NG ED AT: THE TYPE: ATE: ENDED BIS AND/6	i; 1/2" altic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PU
SAMPLED DE SAMPLE SAMPLE SAMPLE SAMPLE	D BY (PRINT) / A Shaple 7 R TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS	PACITY (Gal./ CODES: E OFFILIATION: U ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = (0) B = Bailer; S pn fcc d MP Y (0) ATION VOLUME	SAMPLER TUBING MATERIA SAMPRESER VUSE	AGE = 0.00 AGE PUMP; SA AGE SIGNA L CODE: H TUBI PLE PRES VATIVE L	ESP = Electric MPLING DA TURE(S): DPE NG Y N ERVATION (includ TOTAL VOL DDED IN FIELD (eplaced) eplaced) ing wet icc	FIELD-Filtratio	SAMPLI INITIATI FILTERED n Equipme DUPLIC INT ANALYS	NG PED AT: YE ATE: ENDED SIS AND/ ETHOD	i; 1/2" altic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT CODE	SAMPLE PUI
SAMPLED SAMPLE ID CODE	D BY (PRINT) / A SHUNE 7 R TUBING WELL (feet) CONTAMINATION PLE CONTAINERS 3	PACITY (Gal./ CODES: E OFFILIATION: UN: PUN ER SPECIFIC/ MATERIAL CODE CG	Synfac ATION VOLUME 40 mL	SAMPLER TUBING MATERIAN SAM PRESERY USE HC	Icone: Heres L Code: Heres	ESP = Electric MPLING D TURE(S): DPE NG Y N ERVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by Isl	eplaced) ing wet icc	FIELD-Filtratio	SAMPLI INITIATI FILTERED IN Equipme DUPLIC INT ANALYS ME	NG ED AT: (() TY Y CONTROL OF THE PROPERTY OF	i; 1/2" altic Pump	SAMPLIING QUIPMENT CODE	SAMPLE PU FLOW RAT (mL per minu)
SAMPLED SAMPLE ID CODE	REQUIPMENT CONTAINERS # CONTAINERS # CONTAINERS # 3 1	PACITY (Gal./ CODES: E OFFILIATION: ON: PUN ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = (6) = Bailer; S 20	SAMPLER TUBING MATERIA SAMPLER TUBING MATERIA SAM PRESER' USE HC HNC	Ide" = 0.00 Ider Pump; SA R(S) SIGNA L CODE: I TUBI PLE PRES VATIVE L D3	ESP = Electric MPLING DA TURE(S): DPE NG Y ERVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat	eplaced) ing wet icc mL) b c c c c c c c c c c c c	FIELD-Filtratio	SAMPLI INITIATI FILTERED DUPLIC INT ANALY: ME VC	NG ED AT: Type: ATE: ENDED BIS AND/ ETHOD A/EDB Metals	Y OR S COR S COR COR COR COR COR	SAMPLING CODE APP APP	SAMPLE PU FLOW RAT (mL per minu
SAMPLED DE SAMPLE ID CODE	D BY (PRINT) / A SHUNE 7 TUBING I WELL (feet): CONTAINERS 3 1 1	PACITY (Gal.) CODES: E ON: PUN ER SPECIFIC, MATERIAL CODE CG PE PE	Ft.): 1/8" = (6) = Bailer; Sph (2) = Bailer; MP Y (ATION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIA SAM PRESER USE HC HNC H2S6	Ide" = 0.00 Ider Pump; SA R(S) SIGNA L CODE: I TUBI PLE PRES VATIVE L D3	ESP = Electric MPLING DA TURE(S): DPE NG Y N ERVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lal Prefilled by lal	eplaced) ing wet icc mL) b c c c c c c c c c c c c	FIELD-Filtratio	SAMPLI INITIATI FILTERED DUPLIC INT ANALY: ME VC	NG ED AT: NG The property of	Y OR S COR S COR COR COR COR COR	SAMPLII ENDED FILTER S AMPLING QUIPMENT CODE APP APP	SAMPLE PU FLOW RAT (ML per minu)
SAMPLED DE SAMPLE ID CODE	D BY (PRINT) / A SHUNE 7 TUBING I WELL (feet): CONTAINERS 3 1 1 1	PACITY (Gal.) CODES: E ON: PUN ER SPECIFIC, MATERIAL CODE CG PE PE	Ft.): 1/8" = (6) = Bailer; Sph (2) = Bailer; MP Y (ATION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIA SAM PRESER USE HC HNC H2S6	Ide" = 0.00 Ider Pump; SA R(S) SIGNA L CODE: I TUBI PLE PRES VATIVE L D3	ESP = Electric MPLING DA TURE(S): DPE NG Y N ERVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lal Prefilled by lal	eplaced) ing wet icc mL) b c c c c c c c c c c c c	FIELD-Filtratio	SAMPLI INITIATI FILTERED DUPLIC INT ANALY: ME VC	NG ED AT: NG The property of	Y OR S COR S COR COR COR COR COR	SAMPLII ENDED FILTER S AMPLING QUIPMENT CODE APP APP	SAMPLE PU FLOW RAT (ML per minu)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-8A			SAN	MPLE ID: 1913	6-MW	1-8	A		DATE: 5	5/16/	19	
	7 (0-			h.		GING DA		• /		_	•		
WELL		TUBING	3		WELL SCREEN		- 1	STATIC DI	PTH	P	URGE PUI	MP TYP	E
DIAMETER	(inches): 2	DIAME	TER (inches)		DEPTH: ()-5	eet to 🕽 5 f	feet	TO WATE	R (feet): 17-8	9 0	R BAILER		
		1 WELL VOI	LUME = (TO	TAL WELL	DEPTH - ST	ATIC DEPTH T	TO WA	TER) X	WELL CAPAC	ITY			
(only fill out	if applicable)		= (97-2	feet -	17.89			0.16	gallons/	foot = 4	0.79	/ gallo
	NT VOLUME PU if applicable)	JRGE: 1 EQU	JIPMENT VO	L. = PUMP	VOLUME + (TU	BING CAPACI	ITY	X TU	BING LENGTH) + FLOW (CELL VOL	UME	
(Offig fill Out	. II applicable)			=	gallons + (gallo	ons/foo	ot X	feet) +	ga	llons =	gallo
	MP OR TUBIN	G		IMP OR TU	BING ,	PURGIN	1G	-9-1	PURGING	0944	TOTA	L VOLU	
DEPTH IN	WELL (feet):	70.2	DEPTH IN	WELL (fe	et) 3 (INITIATE		0902	ENDED AT:	0179	PURG	ED (gal	lons): (- F
	VOLUME	CUMUL. VOLUME	PURGE	DEP		TEMP.		OND_ le units)	OXYGEN	TURBIC	OITY (COLOR	ORP
TIME	PURGED	PURGED	RATE	WATI	ER (standard	(°C)	μml	hos/cm	(circle units)	(NTU		lescribe)	
	(gallons)	(gallons)	(gpm)	(fee	t) units)		<u>or</u> ((IS/cm)	% saturation				
0932	3.40	3.40	0.11	19.5	3 4.02	23.74	14	100	0.36	1.47	7 (loon.	-61.
0936	0,44	3.84	0.11	19.5	3 4.23	33.81	14	(0)	0.33	0.7	5 US	1. Y dla	-65.0
0940	0.44	4.28	0.11	19.5	3 4.23	2383	14	101	0.33	0.7	6)	44	-71.
0944	0.44	4.72	0.11	17.5		13.92	14		0.31	0.6		14	-59.8
			1	-									
			-					-			-		
							1						1
						1	1						
			4)										
									48. 0.05		0) 4	47.	011 5 00
	PACITY (Gallon				04; 1.25" = 0, 3/16" = 0.0014;			3" = 0.37; 5/16" = 0.0		5" = 1.02; 0.006; 1	6" = 1.4 /2" = 0.010		2" = 5.88 8" = 0.016
TUBING IN		PACITY (Gal./I		0.0006:	3/16" = 0.0014;		26:	5/16" = 0.0	04; 3/8" = 0		/2" = 0.010	0; 5/8	
TUBING IN PURGING	ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./I	Ft.): 1/8" = (BP = Blac	3/16" = 0.0014; dder Pump; SAMI	1/4" = 0.002 ESP = Electric PLING DA	26; Subm	5/16" = 0.0	04; 3/8" = 0	0 006; 1	/2" = 0.010	0; 5/8	8" = 0.016
TUBING IN PURGING SAMPLED	EQUIPMENT C BY (PRINT) / A	PACITY (Gal./I	Ft.): 1/8" = (= Bailer;	BP = Blace	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subm	5/16" = 0.0	04; 3/8" = 0	0 006; 1 eristaltic Pu	/2" = 0.010 ump; (0; 5/6 O = Othe	8" = 0.016 er (Specify)
TUBING IN PURGING SAMPLED Ve; /	BY (PRINT) / A	PACITY (Gal./I	Ft.): 1/8" = (= Bailer;	BP = Blace	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subm	5/16" = 0.0 ersible Pun	04; 3/8" = 0 p; PP = P SAMPLING INITIATED A	o 006; 1 eristaltic Pu	/2" = 0.010 ump; 0 9 SAN	0; 5/3 O = Othe MPLING DED AT:	8" = 0.016 er (Specify)
SAMPLED Ve; PUMP OR	BY (PRINT) / A Stopley	PACITY (Gal./I	Ft.): 1/8" = (= Bailer;	BP = Blace SAMPLE TUBING	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI	1/4" = 0.002 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 ersible Pun	04; 3/8" = 0 pp. PP = P SAMPLING INITIATED A	o 006; 1 eristaltic Pu	/2" = 0.010 ump; 0 9 SAN	0; 5/3 O = Othe MPLING DED AT:	8" = 0.016 er (Specify)
SAMPLED Ve; PUMP OR DEPTH IN	BY (PRINT) / A Stopley TUBING WELL (feet):	PACITY (Gal./I) CODES: B FFILIATION: Grosy	Ft.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERI	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submo	5/16" = 0.0 ersible Pun FIELD- Filtratio	04; 3/8" = 0 pp; PP = P SAMPLING INITIATED A FILTERED: Y n Equipment Ty	o 006; 1 eristaltic Pu T: 074	/2" = 0.010 ump; () SAN END FILT	0; 5/3 O = Othe MPLING DED AT:	8" = 0.016 er (Specify)
SAMPLED Ve; PUMP OR DEPTH IN	BY (PRINT) / A Sheple 7 TUBING WELL (feet):	ACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERI	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26: Submi	5/16" = 0.0 ersible Pun FIELD- Filtratio	04: 3/8" = 0 APP = P SAMPLING INITIATED A FILTERED: Y Equipment Ty DUPLICATE	O 006; 1 eristaltic Pu T: 094 (V) //pe:	12" = 0.010 ump; SAM END FILT	O: 5/3 O = Othe MPLING DED AT:	8" = 0.016 er (Specify)
SAMPLED PURGING SAMPLED C; PUMP OR DEPTH IN FIELD DEC SAMF	BY (PRINT) / A Stopley TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y CATION	SAMPLE TUBING MATERI	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING	TATION (includ	26: Submi	5/16" = 0.0 ersible Pun FIELD- Filtratio d) et ice)	04; 3/8" = 0 pp; PP = P SAMPLING INITIATED A FILTERED: Y n Equipment Ty	T: 094	/2" = 0.010 ump; () SAN END FILT	O; 5/8 O = Othe MPLING DED AT: FER SIZI	8" = 0.016 er (Specify) - 09 49 E: μπ
SAMPLED Ve; PUMP OR DEPTH IN	BY (PRINT) / A Sheple 7 TUBING WELL (feet):	ACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERI SAI PRESEF	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUE AL CODE: HDP TUBING MPLE PRESERV	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Submo	5/16" = 0.0 ersible Pun FIELD- Filtratio	SAMPLING INITIATED A FILTERED: Y DUPLICATE INTEND ANALYSIS A METHO	T: 094	J2" = 0.010 Jmp; G SAM END SAMPLII EQUIPME CODE	O; 5/MO = Other MPLING DED AT: FER SIZI NG SENT SENT SENT SENT SENT SENT SENT SENT	8" = 0.016 er (Specify)
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A Shaple T TUBING WELL (feet): CONTAMINATION # CONTAINERS	ACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y CATION	SAMPLE TUBING MATERI SAI PRESEF US	3/16" = 0.0014: dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESER\ RVATIVE EED ADE	TOTAL VOL	26; Submo	FIELD-Filtratio	O4: 3/8" = (pp: PP = P SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE INTEND ANALYSIS A	T: 094	/2" = 0.010 Imp; SAM END FILT SAMPLII EQUIPME	O: 5/MO = Other	8" = 0.016 er (Specify) - 09 99 E: μπ SAMPLE PUI FLOW RAT
SAMPLED PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A Shaple T TUBING WELL (feet): CONTAMINATION # CONTAINERS	ACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME	SAMPLE TUBING MATERI PRESEF US	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESERV EVATIVE EED ADD	EE Y ATION (included to Total voled in Field (included to the property) YATION (included total voled in Field (included tot	Submice Submic	FIELD-Filtratio d) FINAL pH	SAMPLING INITIATED A FILTERED: Y DUPLICATE INTEND ANALYSIS A METHO	T: 094	J2" = 0.010 Jmp; G SAM END SAMPLII EQUIPME CODE	O: 5/M O = Other MPLING DED AT: FER SIZI	8" = 0.016 er (Specify) O 9 49 E: µm SAMPLE PU FLOW RAT (mL per minu
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A Sheple 7 TUBING WELL (feet): CONTAMINATION PLE CONTAINERS A 3	ACITY (Gal./II CODES: B FFILIATION: Grosy DN: PUM ER SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL	SAMPLE TUBING MATERI PRESEF US HO HN	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESERV RVATIVE LED ADD LICON F	EE Y NOTAL VOLED IN FIELD (refilled by lal	eplaced (mL) b	FIELD-Filtratio ot ice) FINAL pH < 2	O4: 3/8" = (pp; PP = P SAMPLING INITIATED A FILTERED: Y n Equipment T; DUPLICATE INTEND ANALYSIS A METHO VOA/E	T: 094	J2" = 0.010 Jmp; G SAM END FILT SAMPLII EQUIPME CODE	O: 5/M O = Other MPLING DED AT: FER SIZI	SAMPLE PU FLOW RAT (mL per minu V / 5/5)
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A Stepley TUBING WELL (feet): CONTAMINATION PLE CONTAINERS A 3 1	PACITY (Gal./II CODES: B FFILIATION: LEGISLATION: LEGIS	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERI PRESEF US HG HN H25	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESERV RVATIVE LED ADD LICON F	EE Y NATION (includ refilled by lal	eplaced (mL) b b b b	FIELD-Filtratio	04: 3/8" = (pp; PP = P SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal	T: 094	J2" = 0.010 Jmp; G SAM END SAMPLIF EQUIPME CODE APP	O: 5/M O = Other MPLING DED AT: FER SIZI NG ENT E	SAMPLE PU FLOW RAT (mL per minu 4/5) 4/15
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A SHOPLE ONTAINERS A 1	PACITY (Gal./II CODES: B OFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERI PRESEF US HG HN H25	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESERV RVATIVE EED CL F 103 F SO4 F	EEY (N) TOTAL VOLED IN FIELD (refilled by lalirefilled by lali	eplaced (mL) b b b b	FIELD-Filtratio	SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal NH3	T: 094	J2" = 0.010 Jmp; G SAM END FILT SAMPLII EQUIPME CODE APP APP	O: 5/M O = Other MPLING DED AT: FER SIZI NG ENT E	SAMPLE PUI FLOW RAT (mL per minu
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A SHOPLE ONTAINERS A 1	PACITY (Gal./II CODES: B OFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERI PRESEF US HG HN H25	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESERV RVATIVE EED CL F 103 F SO4 F	EEY (N) TOTAL VOLED IN FIELD (refilled by lalirefilled by lali	eplaced (mL) b b b b	FIELD-Filtratio	SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal NH3	T: 094	J2" = 0.010 Jmp; G SAM END FILT SAMPLII EQUIPME CODE APP APP	O: 5/M O = Other MPLING DED AT: FER SIZI NG ENT E	SAMPLE PU FLOW RATION (ML per minute) Y 15 Y 15 Y 15
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-8	BY (PRINT) / A Steple T TUBING WELL (feet): CONTAMINATION CONTAINERS 1 1 1	PACITY (Gal./II CODES: B OFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERI PRESEF US HG HN H25	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESERV RVATIVE EED CL F 103 F SO4 F	EEY (N) TOTAL VOLED IN FIELD (refilled by lalirefilled by lali	eplaced (mL) b b b b	FIELD-Filtratio	SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal NH3	T: 094	J2" = 0.010 Jmp; G SAM END FILT SAMPLII EQUIPME CODE APP APP	O: 5/M O = Other MPLING DED AT: FER SIZI NG ENT E	SAMPLE PU FLOW RAT (mL per minu V 150 ~ 415 ~ 415 ~ 415
TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MU-9 REMARKS	BY (PRINT) / A Stoley TUBING WELL (feet): CONTAMINATION CONTAINERS A 1 1	PACITY (Gal./IIII) CODES: B OFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERI PRESEF US HG HN H25	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUI AL CODE: HDP TUBING MPLE PRESERV RVATIVE EED CL F 103 F SO4 F	EEY (N) TOTAL VOLED IN FIELD (refilled by lalirefilled by lali	eplaced (mL) b b b b	FIELD-Filtratio	SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal NH3	T: 094	J2" = 0.010 Jmp; G SAM END FILT SAMPLII EQUIPME CODE APP APP	O: 5/M O = Other MPLING DED AT: FER SIZI NG ENT E	SAMPLE PU FLOW RATION (ML per minimum)
TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MU-9 REMARKS	BY (PRINT) / A Sheple 7 TUBING WELL (feet): CONTAINERS A 1 1 1	PACITY (Gal./IIII) CODES: B OFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = 0 = Bailer; IP Y ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERI PRESEF US HG HN H25	3/16" = 0.0014; dder Pump; SAMI ER(S) SIGNATUE AL CODE: HDP TUBING MPLE PRESERV RVATIVE LED ADE CL F 103 F SO4 F One	EEY (N) TOTAL VOLED IN FIELD (refilled by lalirefilled by lali	eplaceding we (mL) b b b	FIELD-Filtratio tice) FINAL pH < 2 < 2 < 2 < 2	SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal NH3	T: 094 T: 094 VPE: VPED NND/OR DB S TDS	J2" = 0.010 Jmp; G SAM END SAMPLIF EQUIPME CODE APP APP APP	O: 5/M O = Other MPLING DED AT: FER SIZI	SAMPLE PU FLOW RATION (ML per minimum)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: January 2017

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW- 8	B		SAMPL	EID: 190	36- MW	-85		DATE: C	5/16/19	}
				-		GING DA			-		
WELL	R (inches): 2	TUBIN	G ETER (inches)		ELL SCREEN	INTERVAL	STATIC I		07 F	PURGE PUMP	
WELL VO	LUME PURGE: ut if applicable)			TAL WELL DE	PTH - ST	ATIC DEPTH T	O WATER) X	WELL CAPAC	CITY	OR BAILER: PF	
			= (feet -		feet) X			/foot =	gall
(only fill ou	NT VOLUME PI ut if applicable)	URGE: 1 EQ	UIPMENT VO			BING CAPACI ∞(Y gallo		JBING LENGTH	t) + FLOW		×3 s = 0.5 6 gall
INITIAL PU	UMP OR TUBIN I WELL (feet):	G44.5		IMP OR TUBIN	NG	PURGIN		PURGING ENDED AT		TOTALLE	
DEI 111	The proof	CUMUL	DEI MI	DEPTH	1110	INVITATION	COND	DISSOLVED	T	PURGED	(galloris).
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)		pH (standard units)	TEMP_ (°C)	(circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBII (NTU		
0910	1.10	1.10	0.11	18.73	4.08	24.55	1356	0.77	2.9	14 c/2	78
0914	0.44	1.54	0.11	18.74	4.05	34.59	1259	0.43	1.9		-77.
0918	0.44	1.98	0.11	18.74	4.06	34.58	1263	0.40	1.9		-34
6660	0.44	2.47	0.11	18.73	4.06	34.63	1369	0.36	1-3	5	-72
			1		-						
				-	-					-	
											_
									1		-
WELL CA	PACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.0				5 " = 1.02;		12" = 5.88
TUBING IN	NSIDE DIA. CAR	PACITY (Gal	'Ft.): 1/8" = 0	0 0006; 3/16	6" = 0.0014;	1/4" = 0 002	6; 5/16" = 0	004; 3/8" =	0.006; 1	/2" = 0 010:	5/8" = 0_016
TUBING IN	NSIDE DIA. CAR EQUIPMENT C	PACITY (Gal.	0.75" = 0 02; (Ft.): 1/8" = 0 3 = Bailer;	BP = Bladder	S" = 0,0014; Pump; E	1/4" = 0 002 ESP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8" =		/2" = 0 010:	
PURGING SAMPLED	NSIDE DIA. CAR	PACITY (Gal /	(Ft.): 1/8" = 0 B = Bailer;	BP = Bladder	S" = 0.0014; Pump; I	1/4" = 0 002 ESP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8" = mp; PP = F	0 006; 1 Peristaltic Pu	//2" = 0.010; ump; O =	5/8" = 0.016 Other (Specify)
PURGING SAMPLED No: [PUMP OR	BY (PRINT) / A	CODES: E	(Ft): 1/8" = 0 B = Bailer;	D 0006; 3/16 BP = Bladder SAMPLER(S	S' = 0.0014; Pump, I	1/4" = 0 002 ESP = Electric PLING DA E(S)	6; 5/16" = 0. Submersible Pu	mp; PP = F SAMPLING INITIATED A -FILTERED: Y	O.006: 1 Peristaltic Pu	/2" = 0 010: ump;	5/8" = 0.016 Other (Specify) NG AT: 093.7
SAMPLED NC: L PUMP OR DEPTH IN	BY (PRINT) / A	PACITY (Gal / CODES: E	(Ft.): 1/8" = 0 B = Baller:	SAMPLER(S TUBING MATERIAL	S' = 0.0014; Pump, E SAMF S) SIGNATUR CODE: HDPE	1/4" = 0 002 ESP = Electric PLING DA E(S):	5/16" = 0. Submersible Pu	004; 3/8" = mp; PP = F SAMPLING INITIATED A FILTERED: You require the second of the	O 006: 1 Peristaltic Pu	JZ" = 0 010: Jmp; O = SAMPLI ENDED FILTER	5/8" = 0.016 Other (Specify) NG AT: 093.7
PUMP OR DEPTH IN	D BY (PRINT) / A STUDIES TUBING WELL (feet): CONTAMINATIO	PACITY (Gal A CODES: E AFFILIATION: AFFILIAT	(Ft.): 1/8" = 0 B = Baller: 	D 0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL	S'' = 0.0014; Pump, I SAMF SIGNATUR CODE: HDPE TUBING	1/4" = 0 002 ESP = Electric PLING DA E(S) Y (N) re	Submersible Pu	004; 3/8" = mp; PP = F SAMPLING INITIATED A -FILTERED: Y on Equipment T: DUPLICATE	0.006: 1 Peristaltic Pt	JZ" = 0 010: Jmp; O = SAMPLI ENDED FILTER	5/8" = 0.016 Other (Specify) NG AT: 0937 SIZE: μ
PUMP OR DEPTH IN	DBY (PRINT) / A STUDING TUBING WELL (feet):	PACITY (Gal A CODES: E AFFILIATION: A GEOS: YY ON: PUM ER SPECIFICA MATERIAL	(Ft.): 1/8" = 0 B = Baller: 	SAMPLERIS TUBING MATERIAL SAMPL SAMPLERIS TUBING MATERIAL PRESERVA	S'' = 0.0014; Pump, I SAMF SIGNATUR CODE: HDPE TUBING E PRESERV.	1/4" = 0 002 ESP = Electric PLING DA E(S): Y (N) re ATION (includi	FIELD Filtration wet ice) FINAL	004; 3/8" = mp; PP = F SAMPLING INITIATED A FILTERED: You require the second of the	Peristaltic Pu	JZ" = 0 010: Jmp; O = SAMPLI ENDED FILTER	SAMPLE PL
SAMPLED DEC	D BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet) CONTAMINATION # CONTAINERS	PACITY (Gal A CODES: E AFFILIATION: A GEOS Y Y ON: PUM ER SPECIFICA	(Ft.): 1/8" = 0 B = Baller;	SAMPLER(S) TUBING MATERIAL (S) SAMPLER(S)	S'' = 0.0014; Pump, I SAMF S) SIGNATUR CODE: HDPE TUBING LE PRESERV. TIVE ADDI	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N) re	FIELD Filtration wet ice) FINAL PH	MP = F SAMPLING INITIATED A FILTERED: You Equipment To DUPLICATE INTENE ANALYSIS A	O.006: 1 Peristaltic Pu	JAZ" = 0 010: JIMP; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	SAMPLE PL FLOW RA (mL per mir
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	D BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet) CONTAMINATION # CONTAINERS	PACITY (Gal A CODES: E AFFILIATION: A GEOS: Y Y ON: PUM ER SPECIFIC, MATERIAL CODE	ATION VOLUME	SAMPLERIS TUBING MATERIAL SAMPL SAMPL PRESERVA USED	S' = 0.0014; Pump; SAMF SI SIGNATUR CODE: HDPE TUBING E PRESERV. TIVE ADDI	Y (N) re ATION (includit TOTAL VOL	FIELD Filtration wet ice) FINAL PH FINAL PH < 2	SAMPLING INITIATED A FILTERED: YOU Equipment TO DUPLICATE INTENE ANALYSIS A METHO	O.006: 1 Peristaltic Portion of the Company of the	SAMPLING EQUIPMENT CODE	SAMPLE PL
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	D BY (PRINT) / A SHOPP TO BY (PRINT) / A TUBING WELL (feet) CONTAMINATION PLE CONTAINERS 3	PACITY (Gal A) CODES: E OFFILIATION: YY ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	ATION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL (SAMPLER) SAMPLER(SAMPLER) SAMPLER(SAMPLER) SAMPLER(SAMPLER) HCL	S'' = 0.0014; Pump, I SAMF S) SIGNATUR CODE: HDPE TUBING LE PRESERV. TIVE ADDI	1/4" = 0 002 ESP = Electric PLING DA E(S) Y (N) re ATION (includi TOTAL VOL ED IN FIELD (refilled by lab	FIELD Filtration splaced) ng wet ice) FINAL pH < 2 < 2	METHO SAMPLING INITIATED A FILTERED: Y ON Equipment T: DUPLICATE INTENE ANALYSIS A METHO VOA/E	O.006: 1 Peristaltic Pu	SAMPLIENDED FILTER SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA (mL per mir
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	D BY (PRINT) / A D BY (PRINT) / A TUBING WELL (feet) CONTAMINATIO # CONTAINERS 3 1	PACITY (Gal A CODES: E AFFILIATION: 44 ON: PUN ER SPECIFICA MATERIAL CODE CG PE	ATION VOLUME 40 mL	SAMPLERIS TUBING MATERIAL SAMPL SAMPL PRESERVA USED HCL HNO3	S'' = 0.0014; Pump, I SAMF S) SIGNATUR CODE: HDPE TUBING LE PRESERV. TIVE ADDI	1/4" = 0 002 ESP = Electric PLING DA E(S): Y (N) re ATION (includi TOTAL VOI. ED IN FIELD (r efilled by lab	FIELD Filtration splaced) ng wet ice) FINAL pH < 2 < 2	METHO SAMPLING INITIATED A FILTERED: Y ON Equipment TO DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta	Peristaltic Pu	JZ" = 0 010: Jmp; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE W **	D BY (PRINT) / A TUBING WELL (feet) CONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal A) CODES: E OFFILIATION: YY ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	ATION VOLUME 40 mL 500 mL	SAMPLERIS TUBING MATERIAL SAMPLE TUBING MATERIAL SAMPLE HOL HNO3 H2SO4	S'' = 0.0014; Pump, I SAMF S) SIGNATUR CODE: HDPE TUBING LE PRESERV. TIVE ADDI	ATION (includitotal by laberfilled by labers)	FIELD Filtration (FINAL pH < 2 < 2 < 2 < 2	METHON SAMPLING INITIATED A FILTERED: Y ON Equipment T DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	Peristaltic Pu	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PLE FLOW RA (mL per mir
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE W **	D BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 3 1 1 1	PACITY (Gal A) CODES: E OFFILIATION: YY ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	ATION VOLUME 40 mL 500 mL	SAMPLERIS TUBING MATERIAL SAMPLE TUBING MATERIAL SAMPLE HOL HNO3 H2SO4	S'' = 0.0014; Pump, I SAMF S) SIGNATUR CODE: HDPE TUBING LE PRESERV. TIVE ADDI	ATION (includitotal by laberfilled by labers)	FIELD Filtration (FINAL pH < 2 < 2 < 2 < 2	METHON SAMPLING INITIATED A FILTERED: Y ON Equipment T DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	Peristaltic Pu	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PLE FLOW RA (mL per min
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE WW - **	D BY (PRINT) / A D BY (PRINT) / A TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 3 1 1 1	PACITY (Gal A CODES: E AFFILIATION: A GEOS DN: PUN ER SPECIFIC, MATERIAL CODE CG PE PE	(Ft.): 1/8" = 0 B = Baller: MP Y (ATION VOLUME 40 mL 500 mL 5250 mL 250 mL	SAMPLERIS TUBING MATERIAL SAMPLE TUBING MATERIAL SAMPLE HOL HNO3 H2SO4	S'' = 0.0014; Pump, II SAMF S) SIGNATUR CODE: HDPE TUBING LE PRESERV. TIVE ADDI PI	ATION (includitotal by laberfilled by labers)	FIELD Filtration (Public Plants) FIELD Filtration (Plants) FINAL PH	METHON SAMPLING INITIATED A FILTERED: Y ON Equipment T DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	Peristaltic Purchase	JZ" = 0 010: Jmp; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PI FLOW RA (mL per mir

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

		Solid Waste			949	MPLE ID: 4					t. Cloud, FL 3	DATE:		1		
***	LL NO.	MW-7	A		SAI			- MW		A		DATE:	5	116/	9	
WE	11		TUBIN	10		WELL SCF		ING DA	IA	OTATIO	COTIL	Т	5115	0= 011110		
		(inches): 2		ETER (inches)	: 3/16				eet	STATIC D	R (feet): /8	80		GE PUMP 1 BAILER: PP	YPE	
(onl	LL VOL ly fill out	UME PURGE: if applicable)	1 WELL VO	DLUME = (TC	TAL WELL	DEPTH -	STATI	(8.80	o w	ATER) X feet) X	WELL CAPA	CITY	ac/fon	1 = O-	37	gall
		IT VOLUME PI if applicable)	JRGE: 1 EQ	UIPMENT VO	L. = PUMF =	VOLUME -	(TUBIN	NG CAPACI	TY ons/fo	X TU	JBING LENGT	H) + FLOV	V CEI	L VOLUME	>/ ·	ر ر gal
		MP OR TUBIN WELL (feet):	G >1		JMP OR TU N WELL (fe	JBING		PURGIN	IG	:0756	PURGING		1	TOTAL VO		_
Т	IME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)		DEP TC WAT (fee	TH p	H dard	TEMP (°C)	(circ	COND. cle units) nhos/cm	DISSOLVED OXYGEN (circle units) mg/L) or % saturation	TURI (N			OR	OR (m\
04	No.	260	3.60	0.11	18.7	25 4.9	94	33.51	7	56	0.86	0.) Y	clea	3	0.
o g	YC	0.44	3,04	0-11	18.7	5 4	99	33.51	2	53	0.84	0.	38	40		27
08	808	0.44	3.48	0.11	18.7	5 4.4	9	13.52	3	5)	0.81	0.	3 4	4.	- 3	39
08	331	0.44	3.93	0.11	18.7	5 4.9	9 7	33.53	3	51	0-77	0.3	5	L	- 1	38
PUF	RGING IN	ACITY (Gallon SIDE DIA, CAI EQUIPMENT C	PACITY (Gal.: ODES: E	/Ft.): 1/8" = (B = Bailer;	D_0006; BP = Blac	3/16" = 0.00 Ider Pump; SA B(S) SIGN/	MPL ATURE(S	1/4" = 0 002 P = Electric ING DA S):	6; Subm		004; 3/8" =	5" = 1.0 : 0.006; Peristaltic	1/2 " Pump	SAMPLII	12" = 5.8 5/8" = 0.0 Other (Spec	016 cify)
	MP OR	tuple,	(5:0574		TUBING	D	NO			LEIELD	FILTERED:				AT: US	
DEF	PTH IN V	NELL (feet)		21		AL CODE: I	HDPE			Filtratio	n Equipment				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ l
FIEL	LD DEC	ONTAMINATIO	ON: PUI	MP Y C	N	TUB	ING	Y (N)re	place	ed)	DUPLICAT	E: \	,	(A)		
011		LE CONTAINE		ATION				ION (includi	ng we		INTEN ANALYSIS			AMPLING QUIPMENT	SAMPL	
	MPLE CODE	# CONTAINERS	MATERIAL CODE	VOLUME		RVATIVE ED		TAL VOL IN FIELD (1	nL)	FINAL pH	METH			CODE	(mL per	
Mu	1-71		CG	40 mL	Н			illed by lab		< 2	VOA	EDB		APP	~ 15	0
1		1	PE	500 mL	HN			illed by lab	1	< 2	Met	als		APP	~ 41.	
		1		\$ 250 mL	H25		Prefi	illed by lab		< 2	NH	13		APP	~ 41	5
J		1	PE	250 mL	No	ne		None	- 1	4.99	CL/NO:	3/TDS		APP	241	5
REN Odo	MARKS:	·L														

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MU. 7	70		SAME	PLE ID: 191				St. Cloud, FL 34	DATE:	5/16	1.0	
	/10	13				GING DA		74		DATE.	3/16	119	
WELL		TUBIN	G		WELL SCREEN		AIA	STATIC D	COTU	l pi	JRGE PUMP	TVDE	
	R (inches): 2		TER (inches)				feet	TO WATE	R (feet): /%		R BAILER: P F	—	
only fill ou	it if applicable)								WELL CAPAC				
EQUIPME	NT VOLUME P	URGE: 1 EQI	JIPMENT VO	L. = PUMP \	feet - /OLUME + (TL	BING CAPAC	ITY	feet) X	JBING LENGTH	gallons/f	oot =	E X	gallo
(only fill ou	it if applicable)			-	collops + (A	.o∪≀Y gali	lone/fe	Y	7 (+ 0.			so gallo
INITIAL PL	JMP OR TUBIN	IG	FINAL PU	MP OR TUB	RING	PURCU	NG						
	WELL (feet):	47.5		WELL (feet		INITIAT	ED AT	0752	ENDED AT:	0814	PURGED	(gallon	(s): 1.8
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATE (feet)	R (standard	TEMP (°C)	(circ	COND cle units) nhos/cm	DISSOLVED OXYGEN (circle units) mg/L/or % saturation	TURBID (NTUs	ITY COL	.OR	ORP (mV)
0802	0.80	0.80	0.08	18.7	4 4.14	13.99	G.	3/	1.94	3.8	Y cle	9	-44.
DNOC	0-31	1.12	0.08	18.70		34.10		33	1.38	3.34			.40.
0810	0.31	1.44	0.08	18.76		24.15		33	1.06	3.7			- 36.6
0814	0.33	1.76	0.08	18.7		34.18		36	0.91	1.19			-37
		1							0. 1.	1.1.7			-57.
							1					-	
	-											-	_
			-	+	_								
			+										
WELL CAP	PACITY (Gallon	ns Per Foot):	0.75" = 0.02:	1" = 0.04	: 1.25 " = 0	06: 2" = 0 :	16:	3" = 0.37:	4 " = 0.65	5" = 1 02·	6" = 1 47*	12"	= 5 8R
TUBING IN	ISIDE DIA. CA	PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0	.0006; 3/	16" = 0.0014;	06; 2" = 0.0	16; 26;	3" = 0.37; 5/16" = 0.0	4" = 0.65; 004; 3/8" = 0		6" = 1.47; 2" = 0.010;		= 5.88 = 0.016
TUBING IN	PACITY (Gallon NSIDE DIA. CA EQUIPMENT (PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0	1" = 0.04 .0006; 3/ BP = Bladde	16" = 0.0014; er Pump;	1/4" = 0.000 ESP = Electric	26; Subm	5/16" = 0.0 nersible Pun	004; 3/8" = 0		2" = 0.010;	5/8"	
PURGING	EQUIPMENT O	PACITY (Gal./I	Ft.): 1/8" = 0	BP = Bladde	16" = 0.0014; er Pump; SAMI	1/4" = 0.000 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 nersible Pun	004; 3/8" = 0 np; PP = Pe	006; 1/ eristaltic Pu	2" = 0.010;	5/8"	= 0.016
PURGING	ISIDE DIA. CA	PACITY (Gal./I	Ft.): 1/8" = 0	BP = Bladde	16" = 0.0014; er Pump; SAMI	1/4" = 0.000 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 nersible Pun	004; 3/8" = 0 np; PP = Pe	006; 1/ eristaltic Pu	2" = 0.010; np; O =	5/8" : Other (: ING	= 0.016
PURGING	BY (PRINT) /A	PACITY (Gal./I	Ft.): 1/8" = 0	BP = Bladde	16" = 0.0014; er Pump; SAMI	1/4" = 0.000 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 nersible Pun	SAMPLING	.006; 1/ eristaltic Pu	2" = 0.010; np; O = SAMPLI ENDED	5/8" : Other (: ING AT:	= 0.016 Specify)
SAMPLED No: 1 S PUMP OR DEPTH IN	BY (PRINT) / A TUBING WELL (feet):	PACITY (Gal./) CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAMI	1/4" = 0.000 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 nersible Pun	004; 3/8" = 0 np; PP = Pe	.006; 1/ eristaltic Pul	2" = 0.010; np; O = SAMPLI ENDED	5/8" : Other (: ING AT:	= 0.016 Specify)
SAMPLED No:16 PUMP OR DEPTH IN	BY (PRINT) /A	PACITY (Gal./) CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	SAMPLER	er Pump; SAMF	1/4" = 0.000 ESP = Electric PLING DA RE(S):	26; Subm	5/16" = 0.0 nersible Pun FIELD- Filtratio	SAMPLING INITIATED AT	eristaltic Pur	2" = 0.010; np; O = SAMPLI ENDED	5/8" : Other (: ING AT:	= 0.016
SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION	PACITY (Gal./) CODES: B AFFILIATION: (3205) ON: PUM	Ft.): 1/8" = 0 = Bailer; AC	SAMPLER TUBING MATERIAL	er Pump; SAMI SSIGNATUR CODE: HDP	1/4" = 0.000 ESP = Electric PLING D RE(S): Y N N	26; c Subm ATA	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTENDI	eristaltic Pul	2" = 0.010; np; O = SAMPLI ENDED FILTER SAMPLING	Other (SING AT: SIZE:	= 0.016 Specify)
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A Laply TUBING WELL (feet): CONTAMINATION #	PACITY (Gal./) CODES: B AFFILIATION: GEOSTO ON: PUM ER SPECIFICA MATERIAL	Ft.): 1/8" = 0 = Bailer; AC	SAMPLER TUBING MATERIAL SAMF	er Pump; SAMI (S) SIGNATUR L CODE: HDP TUBING PLE PRESERV	1/4" = 0.000 ESP = Electric PLING DA RE(S): Y Nor ATION (includ TOTAL VOL	26; c Subm ATA replace	FIELD-Filtratio	DO4; 3/8" = 0 DP = Pe SAMPLING INITIATED A' FILTERED: Y DESCRIPTION OF THE PERIOD TO THE PERIOD	eristaltic Pur Pristaltic Pur Prista	2" = 0.010; mp; O = SAMPLI ENDED FILTER	5/8": Other (SING AT: SIZE: SAM	= 0.016 Specify)
SAMPLED DECEMBER SAMPLE ID CODE	BY (PRINT) / A LAPIS (Feet) TUBING WELL (feet) CONTAINERS	PACITY (Gal./) CODES: B AFFILIATION: (JEOS) ON: PUM ER SPECIFICA	Ft.): 1/8" = 0 = Bailer; ALC ATION	SAMPLER TUBING MATERIAL SAMF	er Pump; SAMI SAMI SSIGNATUR CODE: HDP TUBING PLE PRESERV ATIVE ADD	1/4" = 0.00: ESP = Electric PLING D RE(S): Y Nor ATION (include	26; c Subm ATA replace ding we	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y IN Equipment Ty DUPLICATE: INTENDIA ANALYSIS A	eristaltic Puristaltic Purista	2" = 0.010; np; O = SAMPLIENDED FILTER SAMPLING EQUIPMENT	Other (SING AT: SIZE: SAME FL.	= 0.016 Specify) μπ MPLE PUI .OW RAT . per minu
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A LAPIS (Feet) TUBING WELL (feet) CONTAINERS	PACITY (Gal./) CODES: B AFFILIATION: GEOSTO ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; AP Y (I	SAMPLER TUBING MATERIAL SAMP SAMP PRESERV USEI	er Pump; SAMI SS SIGNATUF CODE: HDP TUBING PLE PRESERV ATIVE D P	1/4" = 0.00: ESP = Electric PLING DA RE(S): Y N ATION (includ TOTAL VOL ED IN FIELD (26; c Subm ATA replace ding we	FIELD-Filtrationed) FINAL pH	SAMPLING INITIATED A' FILTERED: Y PREquipment Ty DUPLICATE: INTENDI ANALYSIS A METHO	eristaltic Puristaltic Purista	SAMPLIER SAMPLIENDED FILTER SAMPLING SAMPLING EQUIPMENT CODE	Other (: ING AT: SIZE: SAM FL (mL	= 0.016 Specify) μη MPLE PUI OW RAT per minu (S O
SAMPLED DECEMBER SAMPLE ID CODE	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	PACITY (Gal.// CODES: B AFFILIATION: (JEOS) ON: PUM ER SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0 = Bailer; AP Y (ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL	er Pump; SAMI SAMI SSIGNATUR CODE: HDP TUBING PLE PRESERV ATIVE D ADD P 13 P	ATION (included TOTAL VOLED IN FIELD (refilled by lai	e Submareplace (mL) b	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y IN Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO VOA/EE	eristaltic Puristaltic Purista	SAMPLING EQUIPMENT CODE APP	SAM FL (mL	MPLE PUI OW RAT. per minu (SO
SAMPLED DECEMBER SAMPLE ID CODE	BY (PRINT) / A FUBING' WELL (feet): CONTAMINATION CONTAINERS 3 1	PACITY (Gal.// CODES: B AFFILIATION: GEOSTO ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; ALL ATION VOLUME 40 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL	er Pump; SAMI SAMI SIGNATUR CODE: HDP TUBING PLE PRESERV ATIVE D ADD P 3 P 4 P 4 P	TOTAL VOLED IN FIELD OF refilled by lair	e Submareplace (mL) b	FIELD-Filtrationed by FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y INTENDI ANALYSIS A METHO Wetals	eristaltic Puristaltic Purista	SAMPLING EQUIPMENT CODE APP	SAM FL (mL	MPLE PUI OW RAT per minu (SO 3 ΦΟ
SAMPLED DECEMBER SAMPLE ID CODE	BY (PRINT) / A LAPIC (Feet): CONTAINATION CONTAINERS 3 1 1	PACITY (Gal./) CODES: B AFFILIATION: CYCOS ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; AP Y (I) ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMI SAMI SIGNATUR CODE: HDP TUBING PLE PRESERV ATIVE D ADD P 3 P 4 P 4 P	TOTAL VOLED IN FIELD or refilled by lairefilled by	e Submareplace (mL) b	FIELD-Filtration et ice) FINAL pH < 2 < 2	SAMPLING INITIATED A' FILTERED: Y INTERNOI ANALYSIS A METHO VOA/EI Metals NH3	eristaltic Puristaltic Purista	SAMPLING EQUIPMENT CODE APP APP	SAM FL (mL	= 0.016 Specify) MPLE PUI .OW RAT per minu (≤ ○
SAMPLED DECEMBER SAMPLE ID CODE	BY (PRINT) / A LAPIC (Feet): CONTAINATION CONTAINERS 3 1 1	PACITY (Gal./) CODES: B AFFILIATION: CYCOS ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; AP Y (I) ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMI SAMI SIGNATUR CODE: HDP TUBING PLE PRESERV ATIVE D ADD P 3 P 4 P 4 P	TOTAL VOLED IN FIELD or refilled by lairefilled by	e Submareplace (mL) b	FIELD-Filtrationed by FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y INTERNOI ANALYSIS A METHO VOA/EI Metals NH3	eristaltic Puristaltic Purista	SAMPLING EQUIPMENT CODE APP APP	SAM FL (mL	MPLE PUI OW RAT per minu (SO 3 ΦΟ
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW - 7	BY (PRINT) / A Laply (TUBING WELL (feet): CONTAINERS 3 1 1 1	PACITY (Gal./) CODES: B AFFILIATION: CYCOS ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; AP Y (I) ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMI SAMI SIGNATUR CODE: HDP TUBING PLE PRESERV ATIVE D ADD P 3 P 4 P 4 P	TOTAL VOLED IN FIELD or refilled by lairefilled by	e Submareplace (mL) b	FIELD-Filtrationed by FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y INTERNOI ANALYSIS A METHO VOA/EI Metals NH3	eristaltic Puristaltic Purista	SAMPLING EQUIPMENT CODE APP APP	SAM FL (mL	MPLE PU OW RAT per minu (SO 3 ΦΟ
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW - 7	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1 1	PACITY (Gal./) CODES: B AFFILIATION: CYCOS ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; ATION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMI SAMI SIGNATUF TUBING PLE PRESERV ATIVE D P 13 P 14 P 15 P 16 P 16 P 17 P 18	TOTAL VOLED IN FIELD or refilled by lairefilled by	e Submereplace	FIELD-Filtration of tice) FINAL pH < 2 < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y INTERNOI ANALYSIS A METHO VOA/EI Metals NH3	Pristaltic Puristaltic Purista	2" = 0.010; mp; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE APP APP APP	SAM FL (mL	MPLE PU OW RAT per minu (SO 3 ΦΟ

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	o: Mw-6	7			PLE ID:	MANAGE RGING DA		J=10	16-6A		5/15/1	-
WELL		TUBING	3	1		EN INTERVAL		ATIC D	FPTH	PI	JRGE PUMP 1	TYPE
	ER (inches): 2		TER (inches)			6 feet to 33.6 f					R BAILER: PP	
	OLUME PURGE: out if applicable)	1 WELL VOI	LUME = (TO					,				
	ENT VOLUME P	UDCE: 4 FOL	= (feet -	17.58	fee	et) X	0.16	gallons/f	oot = 0 -	26 gall
	out if applicable)	URGE: 1 EQU	JIPIWENI VO						BING LENGTH)		ELL VOLUME	
INITIAL	DUMP OD TUDIN	^	T FINIAL DU	=	gallons +		ons/foot X		feet)	+	gallons	
	PUMP OR TUBIN IN WELL (feet):	20	DEPTH IN	MP OR TUB I WELL (feet): 30	PURGIN	ED AT: /	326	PURGING ENDED AT:	1410	PURGED (gallons): 3. (
	1	CUMUL	1	DEPTH	Н		CON	D.	DISSOLVED OXYGEN			
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE	TO WATER	(stand		(circle u		(circle units)	TURBID (NTUs		
	(gallons)	(gallons)	(gpm)	(feet)	` units) ()	or (IS/		mg/L) or % saturation	(,,,,,	(4000)	(,,,,
1358	2.30	3-30	0.07	17.7	5 4.8	5 25.10	36.	7	0.01	0.9	Cle	43
140)	0.38	2.58	0.07	17.7	5 4.8		367	7	0.19	0.8		-51.
1406	0.38	2.86	0.07	17.7	1 4.8		366		0.17	0.81	4	-50
1410	0.38	3-14	0.07	17.70	1 4.83		364	/	0.15	0.75	64	-50.
	1									7.		
				_	_			_				
								-				
	APACITY (Gallon					0.06; 2" = 0.1		0.37;		5" = 1.02;	6" = 1,47;	12" = 5.88
TUBING	INSIDE DIA. CAI	PACITY (Gal /	Ft.): 1/8" = 0	0.0006; 3/	16" = 0.001	4. 1/4" = 0.002	26; 5/10	6" = 0.0	004: 3/8" = 0	006; 1/	2" = 0.010:	5/8" = 0.016
TUBING		PACITY (Gal /			16" = 0.001 er Pump;	4; 1/4" = 0.002 ESP = Electric	26; 5/1 0 Submersil	6" = 0.0	004: 3/8" = 0		2" = 0.010:	
TUBING PURGIN	INSIDE DIA. CAI	PACITY (Gal /I CODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Bladd	16" = 0.001 er Pump; SAI (S) SIGNAT	4: 1/4" = 0.002 ESP = Electric //PLING D/	26; 5/1 0 Submersil	6" = 0.0	004: 3/8" = 0 np; PP = Pe	006; 1/ eristaltic Pui	2" = 0.010; mp; O = 0	5/8" = 0.016 Other (Specify)
PURGIN SAMPLE No.: 1	INSIDE DIA. CAI G EQUIPMENT C	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	BP = Bladd	16" = 0,001 er Pump; SAI	4: 1/4" = 0.002 ESP = Electric //PLING D/	26; 5/1 0 Submersil	6" = 0.0	004: 3/8" = 0	006; 1/ eristaltic Pui	2" = 0.010; mp; O = 0	5/8" = 0.016 Other (Specify)
PURGIN SAMPLE Ve: / PUMP O	ED BY (PRINT) / A	PACITY (Gal /I CODES: B	Ft.): 1/8" = 0 = Bailer; 	SAMPLER TUBING	16" = 0.001 er Pump; SAI (S) SIGNAT	ESP = Electric MPLING DA URE(S):	Submersil	6" = 0.0 ble Pur	SAMPLING INITIATED AT FILTERED: Y	eristaltic Pul	2" = 0.010; mp; O = 0 SAMPLI ENDED	5/8" = 0.016 Other (Specify) NG AT: / // >
SAMPLE PUMP O DEPTH	INSIDE DIA. CAI G EQUIPMENT C	PACITY (Gal./I CODES: B AFFILIATION: しょめりる	Ft.): 1/8" = 0 = Bailer; 	SAMPLER TUBING MATERIAL	16" = 0.001 er Pump; SAI (S) SIGNAT	ESP = Electric MPLING DA URE(S):	Submersil	6" = 0.0 ble Pur	3/8" = 0 np; PP = Pe SAMPLING INITIATED A	eristaltic Pul	2" = 0.010; mp; O = 0 SAMPLI ENDED	5/8" = 0.016 Other (Specify) NG AT: / // >
SAMPLE PUMP O DEPTH I FIELD D	ED BY (PRINT) / A TR TUBING IN WELL (feet):	PACITY (Gal // CODES: B AFFILIATION: GY 05) 3 ON: PUM	Ft.): 1/8" = 0 = Bailer; Fe (0.0006; 3/BP = Bladdo	16" = 0.001 er Pump; SAI (S) SIGNAT CODE: HI	ESP = Electric MPLING DA URE(S): DPE	Submersil ATA splaced)	S" = 0,0 ble Pur FIELD- Filtratic	Od4: 3/8" = 0 pp: PP = Pe SAMPLING INITIATED AT FILTERED: Y n Equipment Ty, DUPLICATE:	one: 1/ eristaltic Pui	2" = 0.010; mp; O = 0 SAMPLI ENDED FILTER :	5/8" = 0.016 Other (Specify) NG AT: / // Σ
SAMPLE PUMP O DEPTH I FIELD D	ED BY (PRINT) / A TR TUBING IN WELL (feet): ECONTAMINATION	PACITY (Gal // CODES: B AFFILIATION: GY 05) 3 ON: PUM	Ft.): 1/8" = 0 = Bailer;	D.0006: 3/BP = Bladd	SAI (S) SIGNAT CODE: HI TUBIN	ESP = Electric MPLING DA URE(S):	Submersil ATA pplaced) ing wet ice	S" = 0.0 ble Pur FIELD- Filtratio	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDIA ANALYSIS A	eristaltic Pur	SAMPLING SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) NG AT: / // > SIZE: µ SAMPLE PL FLOW RA
PURGIN SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A TR TUBING IN WELL (feet): ECONTAMINATION # CONTAINERS	PACITY (Gal./I CODES: B AFFILIATION: Gray 3 OC ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = C = Bailer; /e / IP Y ATION VOLUME	SAMPLER TUBING MATERIAL SAMP SAMP PRESERV USE	GET = 0.001 FOR PUMP; SAI (S) SIGNAT CODE: HI TUBIN PLE PRESE ATIVE A	ESP = Electric MPLING DA URE(S): DPE IG Y N-(I) RVATION (includ TOTAL VOL DDED IN FIELD (Submersil ATA pplaced) ing wet ice mL) Fi	FIELD- Filtration	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty, DUPLICATE: INTENDIA ANALYSIS A METHO	Pristaltic Puristaltic Purista	SAMPLING EQUIPMENT CODE	SAMPLE PL
PURGIN SAMPLE PUMP O DEPTH I FIELD D SA SAMPLE	ED BY (PRINT) / A TO BY (PRINT)	PACITY (Gal // CODES: B AFFILIATION: GY 57 3 ON: PUM ER SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0 = Bailer; Fe (ATION VOLUME 40 mL	D.0006: 3/BP = Bladd	(S) SIGNAT CODE: HI TUBIN PLE PRESE ATIVE A	ESP = Electric MPLING DA URE(S): DPE RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat	Submersil ATA pplaced) ing wet ice mL)	FIELD-Filtration	SAMPLING INITIATED A FILTERED: Y IN Equipment Ty, DUPLICATE: INTENDI ANALYSIS A METHO VOA/EI	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE	SAMPLE PL FLOW RA' (mL per min
PURGIN SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A TUBING N WELL (feet): ECONTAMINATION ###################################	PACITY (Gal./II CODES: B AFFILIATION: Green A. OC. ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; Fe () ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP SAMI PRESERV USE HCL HNO	SAI (S) SIGNAT CODE: HI TUBIN PLE PRESE CATIVE A 3	ESP = Electric MPLING DA URE(S): DPE RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat	Submersil ATA splaced) ing wet ice mt.) o	FIELD-Filtration NAL pH < 2	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty, DUPLICATE: INTENDIANALYSIS A METHO VOA/EI Metals	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA' (mL per min
SAMPLE PURGIN SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A R TUBING IN WELL (feet): ECONTAMINATION MPLE CONTAINERS A 1 1	PACITY (Gal./II CODES: B AFFILIATION: Green 3 OC ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = 0 = Bailer; PP Y ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAI SAMPLER TUBING MATERIAI PRESERV USE HCL HNO H2SC	CODE: HI TUBIN PLE PRESE ATIVE A 3 04	ESP = Electric IPLING DA URE(S): PE RVATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat Prefilled by lat	pplaced) ing wet ice mL) co	FIELD- Filtration NAL pH < 2 < 2	SAMPLING INITIATED AT Equipment Ty, DUPLICATE: INTENDIAN METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per min
PURGIN SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A TUBING N WELL (feet): ECONTAMINATION ###################################	PACITY (Gal./II CODES: B AFFILIATION: Green A. OC. ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; P Y ONLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP SAMI PRESERV USE HCL HNO	CODE: HI TUBIN PLE PRESE ATIVE A 3 04	ESP = Electric MPLING DA URE(S): DPE RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by lat	pplaced) ing wet ice mL) co	FIELD-Filtration NAL pH < 2	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty, DUPLICATE: INTENDIANALYSIS A METHO VOA/EI Metals	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP	SAMPLE PLOW RA (mL per mir
PURGIN SAMPLE V.: / PUMP O DEPTH FIELD D SA SAMPLE ID CODE NW-	ED BY (PRINT) / A Short of the property of th	PACITY (Gal./II CODES: B AFFILIATION: Green 3 OC ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = 0 = Bailer; PP Y ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAI SAMPLER TUBING MATERIAI PRESERV USE HCL HNO H2SC	CODE: HI TUBIN PLE PRESE ATIVE A 3 04	ESP = Electric IPLING DA URE(S): PE RVATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat Prefilled by lat	pplaced) ing wet ice mL) co	FIELD- Filtration NAL pH < 2 < 2	SAMPLING INITIATED AT Equipment Ty, DUPLICATE: INTENDIAN METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir
SAMPLE PURGIN SAMPLE PUMP O DEPTH I FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A Short of the property of th	PACITY (Gal./II CODES: B AFFILIATION: Green 3 OC ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = 0 = Bailer; PP Y ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAI SAMPLER TUBING MATERIAI PRESERV USE HCL HNO H2SC	CODE: HI TUBIN PLE PRESE ATIVE A 3 04	ESP = Electric IPLING DA URE(S): PE RVATION (includ TOTAL VOL DED IN FIELD (Prefilled by lat Prefilled by lat	pplaced) ing wet ice mL) co	FIELD- Filtration NAL pH < 2 < 2	SAMPLING INITIATED AT Equipment Ty, DUPLICATE: INTENDIAN METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PLE FLOW RA (mL per mir

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-63	R		SAME	LE ID: [91	35-MW	·- G	R		1	DATE:	C1.	5/16		
	1100	<u> </u>				GING DA		0				3 /1	> //6		
WELL		TUBIN	G	Tv	VELL SCREE		IA	STATIC D	EDTH		1.	DIDGE	PUMP T	VDE	
DIAMETER	R (inches): 2	DIAME	TER (inches):	3/16	EPTH: 37. 4	feet to 47. 41	feet	TO WATE	R (feet):	17.5	14 0		LER: PP	IFE	
(only fill ou	LUME PURGE: t if applicable)	1 WELL VO		TAL WELL D		ATIC DEPTH 1	TO WA		WELL C	APACIT		2.3	-		472
EQUIPME	NT VOLUME P	URGE: 1 EQU	= (JIPMENT VO	L. = PUMP V	feet – 'OLUME + (TI	JBING CAPACI	ITY	feet) X X TL	JBING LE	NGTH)	gallons/ + FLOW	CELL	= VOLUME	V 3	gallo
(only fill ou	t if applicable)			= -		oo 14 gallo			7.5		+ 0. (galions		A 11 -
INITIAL PL	JMP OR TUBIN	IG /	FINAL PU	MP OR TUB		PURGIN) NIO	PURG		+ 0.1		OTAL VO		galic
	WELL (feet):	A)- 2		WELL (feet)		INITIATE	ED AT	1324	ENDE	D AT:	1346	PI	URGED (gallons):	1.4
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standar	TEMP (°C)	(circ	COND cle units) nhos/cm	OXYG (circle u mg/L) % satur	EN inits) lor	TURBII (NTU		COLC (descri		ORP (mV)
1334	1.10	1.10	0.11	17.83	3 4.07	36.08	(3	3 8	0.6		0.3	7	Cleo		6.0
1338	0.44	1.54	0.11	17.8		36.12		35	0.3		03		1+		5.5
1342	0.44	1.98	0.11	17.81		36.07		36	0.3		0.3		4		4.1
1346	0.44	5.42	0.11	17.80		35.49		35	0.3		6.3		4.		0.
				17.00						`	0.0				
									-	-				_	_
					+	-						-		-	
					-									-	
					141										
WELL CAP	PACITY (Gallon	is Per Foot): (0.75" = 0.02; Ft): 1/8" = 0	1" = 0.04;	1.25" = 0	06; 2 " = 0.1					" = 1.02;		= 1.47;	12" = 5	
TUBING IN	ISIDE DIA. CAI	PACITY (Gal./	Ft.): 1/8" = 0	_0006; 3/1	16" = 0.0014;	1/4" = 0.002	26;	5/16" = 0.0	004; 3	/8" = 0.0	006; 1	/2" = C	0.010;	5/8" = 0	016
TUBING IN	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0 = Bailer;	1" = 0 04; 0006; 3/1 BP = Bladde	16" = 0.0014; er Pump;	1/4" = 0 002 ESP = Electric	26; Subm	5/16" = 0.0 ersible Pur	004; 3	/8" = 0.0		/2" = C	0.010;		016
PURGING	ISIDE DIA. CAI	PACITY (Gal /I	Ft.): 1/8" = 0	.0006; 3/1 BP = Bladde	16" = 0.0014; er Pump;	1/4" = 0 002 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 ersible Pur	004; 3/ np; P	/8" = 0 (PP = Per	006; 1	/2" = 0 ump;	O = C	5/8" = 0 ther (Sp	016
PURGING SAMPLED	ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer,	BP = Bladde	16" = 0.0014; er Pump; SAM	1/4" = 0 002 ESP = Electric PLING DA	26; Subm	5/16" = 0.0 ersible Pur	004; 3/np; P	/8" = 0.0 PP = Per	006; 1	/2" = 0 ump;	0.010;	5/8" = 0 other (Sp	.016 ecify)
SAMPLED Ve. 19 PUMP OR	BY (PRINT) / A	PACITY (Gal/I	Ft.): 1/8" = 0 = Bailer;	SAMPLER TUBING	16" = 0.0014; er Pump; SAM (S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subm	5/16" = 0.0 persible Pur	SAMPLINITIAT	/8" = 0.0 PP = Per LING FED AT:	006: 1 ristaltic Pu	/2" = 0	0 = 0 SAMPLIN	5/8" = 0 other (Sp	.016 ecify)
SAMPLED Ve. 15 PUMP OR DEPTH IN	BY (PRINT) / A Faple TUBING WELL (feet):	PACITY (Gal // CODES: B AFFILIATION: (5:05-) (3-	Ft.): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAM (S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subm	5/16" = 0.0 rersible Pur	SAMPLINITIAT	PP = Per ING FED AT: O: Y ent Typ	noo6: 1	/2" = 0	O.010; O = C SAMPLIN ENDED A	5/8" = 0 other (Sp	.016 ecify)
SAMPLED Ve. 15 PUMP OR DEPTH IN	BY (PRINT) / A TUBING WELL (feet):	PACITY (Gal // CODES: B AFFILIATION: (5 7 0 5 -/ ON: PUM	Ft.): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAM (S) SIGNATU . CODE: HDF	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (re	26; Subm ATA eplace	5/16" = 0.0 lersible Pur	SAMPLINITIAT	PP = Per ING FED AT: O: Y ent Typ	006: 1 ristaltic Pu	/2" = 0	O = C SAMPLIN ENDED	5/8" = 0 other (Sp	.016 ecify)
SAMPLED Ve. 15 PUMP OR DEPTH IN FIELD DEC	BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO	PACITY (Gal // CODES: B AFFILIATION: (5 20 5 -/ CON: PUM ER SPECIFICA	Ft.): 1/8" = 0 = Bailer;	SAMPLERI TUBING MATERIAL N SAMP	16" = 0.0014; er Pump; SAM (S) SIGNATU CODE: HDF TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (re	26; Subm ATA eplace	FIELD-Filtratio	SAMPLINITIAT FILTEREI ON Equipm DUPLIC	PP = Per LING FED AT: D: Y ent Typ CATE: TENDE	2006: 1 ristaltic Pu 1 / 3 // N e: Y	/2" = 0 ump; SAM	SAMPLINE SILTER S	other (Sp	.016 ecify) // μm LE PUI
SAMPLED Ve. 15 PUMP OR DEPTH IN	BY (PRINT) / A BY (PR	PACITY (Gal // CODES: B AFFILIATION: (5 * 0 5 - ON: PUM ER SPECIFICA MATERIAL	Ft.): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL N SAMP	16" = 0.0014; er Pump; SAM (S) SIGNATU CODE: HDF TUBING PLE PRESER' ATIVE	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (re /ATION (includi	26; Subm ATA eplace	FIELD-Filtratio	SAMPLINITIAN FILTEREI DUPLIC IN ANALY	PP = Per ING FED AT: D: Y ent Typ CATE:	D D D D D D D D D D D D D D D D D D D	SAM EQUI	O.010; O = C SAMPLIN ENDED A FILTER S	SAMP	.016 ecify)
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal // CODES: B AFFILIATION: (5 20 5 -/ CON: PUM ER SPECIFICA	Ft.): 1/8" = 0 = Bailer; Partion	SAMPLERI TUBING MATERIAL N SAMP	SAM (S) SIGNATU CODE: HDF TUBING PLE PRESER ATIVE ADD	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (re	26; Subm ATA eplace ing we	FIELD-Filtratio	SAMPI INITIAT FILTEREI IN Equipm DUPLK IN ANALY	ING FED AT: D: Y ent Typ CATE: TENDE (SIS AN)	DD/OR	SAM EQUI	SAMPLING PMENT	SAMP FLO' (mL pr	LE PUI
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal // CODES: B AFFILIATION: (5 = 0 5 - ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; The Property of the	SAMPLER TUBING MATERIAL N SAMP PRESERV. USEL	ATIVE ADDE: AD	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (re /ATJON (includi TOTAL VOL DED IN FIELD (i	eplace ing we	FIELD-Filtration et ice) FINAL pH	SAMPLINITIAT FILTEREI n Equipm DUPLIC IN ANALY N	ING FED AT: D: Y ent Typ CATE: TENDE YSIS AN METHOD	DD/OR	SAM EQUI	O.010; O = C SAMPLINENDED A FILTER S N PLING PMENT DDE	SAMP FLO' (mL pr	LE PUI W RAT er minu
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal // CODES: B AFFILIATION: (S = 0 5 - V) ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL N SAMP PRESERV USEE HCL	16" = 0.0014; er Pump; SAM (S) SIGNATU CODE: HDF TUBING PLE PRESER* ATIVE ADD F 3 F	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (re //ATJON (includ TOTAL VOL DED IN FIELD (i) Prefilled by lab	eplace ing we	FIELD-Filtration of ice) FINAL pH < 2	SAMPLINITIAT FILTEREI n Equipm DUPLIC IN ANALY N	VB" = 0.0 PP = Per LING FED AT: D: Y ent Typ CATE: TENDE YSIS AN METHOD OA/ED	DD/OR	SAM EQUI	O.010; O = C SAMPLINENDED A FILTER S N PLING PMENT DDE PP	SAMP FLOW (mL po	LE PUI W RAT er minu
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1	PACITY (Gal // CODES: B AFFILIATION: (S = 0 5 - V) ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; IP Y NATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO:	ATIVE ADIC	TOTAL VOL DEFIELD (a) Prefilled by lab Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtration FINAL PH < 2 < 2 < 2	SAMPLINITIATION Equipm DUPLICATION EVALUATION IN ANALY IN	Very Per	DD/OR DD/OR D	SAM EQUII	O.010: O = C SAMPLINE ENDED A FILTER S N PLING PMENT DDE PP PP	SAMP FLOY (mL pr	LE PUW RATE er minu
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1	PACITY (Gal // CODES: B AFFILIATION: Y 2-05- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL N SAMP PRESERV USEE HOL	ATIVE ADIC	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (re //ATJON (includ TOTAL VOL DED IN FIELD (includ) Prefilled by lab	eplace ing we	FIELD-Filtration et ice) FINAL pH < 2 < 2	SAMPLINITIATION Equipm DUPLICATION EVALUATION IN ANALY IN	P = Per LING FED AT: D: Y ent Typ CATE: TENDE FSIS AN METHOD Metals	DD/OR DD/OR D	SAM EQUII	O.010: O = C SAMPLINE ENDED A FILTER S N PLING PMENT DDE PP	SAMP FLOY (mL pr	LE PUW RAT
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1	PACITY (Gal // CODES: B AFFILIATION: Y 2-05- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; IP Y NATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO:	ATIVE ADIC	TOTAL VOL DEFIELD (a) Prefilled by lab Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtration FINAL PH < 2 < 2 < 2	SAMPLINITIATION Equipm DUPLICATION EVALUATION IN ANALY IN	Very Per	DD/OR DD/OR D	SAM EQUII	O.010: O = C SAMPLINE ENDED A FILTER S N PLING PMENT DDE PP PP	SAMP FLOY (mL pr	LE PUW RATE minu
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1	PACITY (Gal // CODES: B AFFILIATION: Y 2-05- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; IP Y NATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO:	ATIVE ADIC	TOTAL VOL DEFIELD (a) Prefilled by lab Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtration FINAL PH < 2 < 2 < 2	SAMPLINITIATION Equipm DUPLICATION EVALUATION IN ANALY IN	Very Per	DD/OR DD/OR D	SAM EQUII	O.010: O = C SAMPLINE ENDED A FILTER S N PLING PMENT DDE PP PP	SAMP FLOY (mL pr	LE PUW RAT
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PR	PACITY (Gal // CODES: B AFFILIATION: Y 2-05- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; IP Y NATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO:	ATIVE ADIC	TOTAL VOL DEFIELD (a) Prefilled by lab Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtration FINAL PH < 2 < 2 < 2	SAMPLINITIATION Equipm DUPLICATION EVALUATION IN ANALY IN	Very Per	DD/OR DD/OR D	SAM EQUII	O.010: O = C SAMPLINE ENDED A FILTER S N PLING PMENT DDE PP PP	SAMP FLOY (mL pr	LE PUW RATE minu
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW - 6	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1 1	PACITY (Gal // CODES: B AFFILIATION: Y 2-05- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; IP Y N ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO:	ATIVE ADD F	TOTAL VOL DEFIELD (a) Prefilled by lab Prefilled by lab Prefilled by lab	eplace mL)	FIELD-Filtration of ice) FINAL pH	SAMPLINITIATION Equipm DUPLICATION EVALUATION IN ANALY IN	/8" = 0.6 P = Per LING FED AT: D: Y ent Typ CATE: TENDE /SIS AN IETHOL OA/ED Metals NH3 NO3/T	D D DS	SAMMEQUIL	O.010: O = C SAMPLINENDED A FILTER S N PLING PMENT DDE PP PP PP	SAMP FLOY (mL pr	LE PUW RATE MINISTER

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW- 9	51		SA	MPLE ID:	9135	5- MW-	- 5	A		DATE	5	15/1	P
	7						ING DAT				1	, (. , , ,	
WELL		TUBING	3		WELL SO	REENI	INTERVAL		STATIC D	EPTH _		PURG	SE PUMP 1	TYPE
	ER (inches): 2		TER (inches)		DEPTH:	1) 5 fe	et to ス ダ fe	eet	TO WATE	R (feet):	-75		AILER: PP	
(only fill o	DLUME PURGE: ut if applicable)	1 WELL VO	LUME = (TO					O W	ATER) X					
			= (رر ا			7-15		feet) X	0.16	gallo	ns/foot	= 0	84 gallo
(only fill o	ENT VOLUME PI	URGE: 1 EQU	JIPMENT VO	L. = PUMI	P VOLUME	+ (TUB	ING CAPACIT	ſΥ	X TL	IBING LENG	ΓH) + FLO	W CELI	VOLUME	
		7.4	_	=	gallons	+ (gallor	ns/fo	ot X	fe	eet) +		gallons	= gallo
	PUMP OR TUBIN N WELL (feet):			IMP OR TI NWELL (fe		0	PURGINO INITIATEI	G D AT	1210		T: 135	Y	TOTAL VO PURGED (PLUME (gallons): 多3
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TO WAT (fee	ER (sta	oH ndard nits)	TEMP (°C)	(circ	COND cle units) nhos/cm uS/cm	OXYGEN OXYGEN (circle units mg/L) or % saturation) TUR	BIDITY ITUs)	COLO (descri	
1717	2.40	3.40	0.075	17.	12 5	02	24.44	1	91	0.13	5.	85	Yello	· 110.
1246	0.30	1.70	0.075	17.	12 5	03	34.61		83	070	6.		2,	-130.
1350	0.30	3.∞	0.075	17.	7) 5.	03	34.75	1	81	0.18	6.	41	11	-101.
1754	0.30	3.30	0.075			03	24.73	1	87	0.18		١٤.	4	-111
					- 1							11		
	4												1	
								_			_		_	_
WELL C	APACITY (Gallon	c Por Footh	75" - 0.00	4" = 0	04: 4.25	" – 0 06	22 - 0.40		211 - 0.07	4V = 0.05.	F" - 4 (20. 6	1-442	1011 - 5.00
WELL CA	APACITY (Gallon	s Per Foot): 0	0.75" = 0.02; Ft.): 1/8" = 0	1" = 0 0.0006;	04; 1.25 3/16" = 0.0	" = 0.06	5; 2" = 0.16 1/4" = 0.0026		3" = 0.37; 5/16" = 0.0	4" = 0.65; 004; 3/8"	5" = 1.0 = 0.006;		" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
TUBING	APACITY (Gallon INSIDE DIA, CAR BEQUIPMENT C	PACITY (Gal./F	0.75" = 0.02; Ft.): 1/8" = 0	0.0006;	3/16" = 0.0 dder Pump	014; E	1/4" = 0.0026 SP = Electric S	Subm	5/16" = 0.0 nersible Pur	004; 3/8"		1/2" =	0.010;	
PURGING	INSIDE DIA, CAR S EQUIPMENT C	PACITY (Gal./F	Ft.): 1/8" = 0	0.0006; BP = Bla	3/16" = 0.0 dder Pump	014; E: AMPI	1/4" = 0.0026 SP = Electric S LING DA	Subm	5/16" = 0.0 nersible Pur	004; 3/8"	= 0.006;	1/2" =	0.010;	5/8" = 0.016
PURGING SAMPLEI	D BY (PRINT) / A	PACITY (Gal./F CODES: B	Ft.): 1/8" = 0 = Bailer;	0.0006; BP = Bla	3/16" = 0.0 dder Pump	014; E: AMPI	1/4" = 0.0026 SP = Electric S LING DA	Subm	5/16" = 0.0 nersible Pur	004; 3/8" np; PP =	= 0.006; Peristaltic	1/2" =	O = (5/8" = 0.016 Other (Specify)
PURGING SAMPLEI	INSIDE DIA. CAR BEQUIPMENT O BBY (PRINT) / A Shada	PACITY (Gal./F CODES: B	=t.): 1/8" = 0 = Bailer;	BP = Bla	3/16" = 0.0 dder Pump S, ER(S) SIGN	014; E: AMPI	1/4" = 0.0026 SP = Electric S LING DA	Subm	5/16" = 0.0 nersible Pur	SAMPLING	e 0.006; Peristaltic	1/2" =	O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify)
PURGING SAMPLEI	D BY (PRINT) / A	PACITY (Gal./F CODES: B	=t.): 1/8" = 0 = Bailer;	BP = Blan	3/16" = 0.0 dder Pump S, ER(S) SIGN	O14; ESAMPI	1/4" = 0.0026 SP = Electric S LING DA	Subm	5/16" = 0.0 nersible Pur	004; 3/8" np; PP =	Peristaltic	1/2" =	O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify)
SAMPLEI PUMP OF DEPTH IN	D BY (PRINT) / A	PACITY (Gal./F CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer; /	SAMPLI TUBING MATER	3/16" = 0.0 dder Pump S. ER(S) SIGN AL CODE:	O14; ESAMPI	1/4" = 0.0026 SP = Electric S LING DA	Subm	FIELD- Filtratio	SAMPLING INITIATED	Peristaltic AT: /) S Y Type:	1/2" =	O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify)
PURGING SAMPLEI //e:/ PUMP OF DEPTH IN FIELD DE	BY (PRINT) / A SHARE TUBING N WELL (feet):	AFFILIATION: ODES: B OFFILIATION: OODES: B OFFILIATION: OODES: B	Ft): 1/8" = 0 = Bailer; /	SAMPLI TUBING MATER	3/16" = 0.0 dder Pump S. ER(S) SIGN AL CODE:	AMPI IATURE HDPE BING	1/4" = 0.0026 SP = Electric S LING DA E(S):	Subm TA	FIELD-Filtratio	SAMPLINI INITIATED FILTERED: IN Equipment DUPLICA	Peristaltic AT: /) S Y Type:	1/2" = Pump;	SAMPLII ENDED	5/8" = 0.016 Other (Specify)
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE	D BY (PRINT) / A Shall (Feet): ECONTAMINATION #	PACITY (Gal./F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL	Ft): 1/8" = 0 = Bailer; /	SAMPLI TUBING MATER SA PRESE	3/16" = 0.0 dder Pump S. EB(S) SIGM AL CODE: TU MPLE PRE	MPI AMPI ATURE HDPE BING SERVA	Y NOESTITION (including TOTAL VOL	Subm TA	FIELD-Filtratio	SAMPLINI INITIATED FILTERED: DUPLICA*	O 0.006; Peristaltic AT: /) S Y N Type: TE: NDED S AND/OR	1/2" = Pump; Fump; Y SA EQI	SAMPLII ENDED FILTER S MPLING JIPMENT	SAMPLE PU
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A Shall (Feet): ECONTAMINATION # CONTAINERS	PACITY (Gal./F CODES: B AFFILIATION: AFFIL	Et): 1/8" = 0 = Bailer;	SAMPLI TUBING MATER SA PRESE	3/16" = 0.0 dder Pump S ER(S) SIGN AL CODE: TU	AMPI ATURE HDPE BING SERVA T ADDE	Y Neg	Subm TA	FIELD- Filtratio	SAMPLINI INITIATED FILTERED: DUPLICA INTE ANALYSI:	GAT: / 3 S Y N Type: TE: NDED S AND/OR HOD	1/2" = Pump; Pump; Y SA	SAMPLII ENDED	SAMPLE PU FLOW RAT (mL per minu
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE	D BY (PRINT) / A Shall (Feet): ECONTAMINATION # CONTAINERS	PACITY (Gal./F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE	HCC PY TION VOLUME	SAMPLI TUBING MATER SA PRESELUS H	3/16" = 0.0 dder Pump S. EB(S) SIGN HAL CODE: TU MPLE PRE RVATIVE BED	AMPI ATURE HDPE BING SERVA ADDE	Y NO PER TION (including TOTAL VOLD IN FIELD (m. 1940)	Subm TA	FIELD- Filtratio	SAMPLININITIATED FILTERED: IN Equipment DUPLICA INTE ANALYSIS MET VOA	GAT: / 3 S Y N Type: TE: NDED S AND/OR HOD	Y SA EQU	SAMPLII ENDED FILTER S MPLING JIPMENT CODE	SAMPLE PU FLOW RATI (mL per minu)
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A Shada a R TUBING N WELL (feet): ECONTAMINATION PLE CONTAINERS A 3	PACITY (Gal./F CODES: B OFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG	P Y COLUME 40 mL	SAMPLI TUBING MATER SA PRESEL US H	3/16" = 0.0 dder Pump S. EB(S) SIGM AL CODE: TU MPLE PRE RVATIVE SED CL	MAMP HDPE BING SERVA T ADDE Pre	A1/4" = 0.0026 SP = Electric S LING DA E(S): Y N eg TION (including TOTAL VOL D IN FIELD (me efilled by lab	Subm TA	FIELD-Filtration et ice) FINAL pH < 2	SAMPLINI INITIATEL FILTERED: n Equipment DUPLICA INTE ANALYSI MET VOA Me	Feristaltic AT: /) S Y Type: TE: NDED S AND/OR HOD	Y SA EQU	SAMPLII ENDED FILTER S MPLING JIPMENT CODE APP	SAMPLE PU FLOW RAT (mL per minu
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A R TUBING WELL (feet): CONTAINERS 3 1	PACITY (Gal./F CODES: B AFFILIATION: COOPE MATERIAL CODE CG PE	PYOLUME	SAMPLI TUBING MATER SA PRESE US H H1	3/16" = 0.0 dder Pump S. ER(S) SIGN HAL CODE: TU MPLE PRE RVATIVE SED CL	MAMP HDPE BING SERVA T ADDE Pre	Y Negation of the control of the con	Subm TA	FIELD-Filtration et ice) FINAL pH < 2 < 2 < 2	SAMPLINI INITIATED FILTERED: PEquipment DUPLICA INTE ANALYSI: MET VOA Me	Peristaltic AT: / 3 S Y N Type: E: NDED S AND/OR HOD /EDB tals H3	Y SA EQU	SAMPLII ENDED FILTER S MPLING JIPMENT CODE APP	SAMPLE PU FLOW RAT (mL per minu)
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A Shall (Feet): R TUBING N WELL (feet): ECONTAINATION CONTAINERS 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	P Y OLUME 40 mL 500 mL	SAMPLI TUBING MATER SA PRESE US H H1	3/16" = 0.0 dder Pump S. EB(S) SIGM HAL CODE: TU MPLE PRE RVATIVE SED CL HO3 SO4	MAMP HDPE BING SERVA T ADDE Pre	Y NOESTITION (including TOTAL VOLD IN FIELD (mefilled by laberfilled by laberfill	Subm TA	FIELD-Filtration et ice) FINAL pH < 2 < 2	SAMPLINI INITIATED FILTERED: PEquipment DUPLICA INTE ANALYSI: MET VOA Me	Peristaltic AT: / 3 S Y N Type: TE: NDED S AND/OR HOD /EDB tals	Y SA EQU	SAMPLII ENDED FILTER S MPLING JIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / A Shall (Feet): R TUBING N WELL (feet): ECONTAINATION CONTAINERS 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	P Y OLUME 40 mL 500 mL	SAMPLI TUBING MATER SA PRESE US H H1	3/16" = 0.0 dder Pump S. EB(S) SIGM HAL CODE: TU MPLE PRE RVATIVE SED CL HO3 SO4	MAMP HDPE BING SERVA T ADDE Pre	Y NOESTITION (including TOTAL VOLD IN FIELD (mefilled by laberfilled by laberfill	Subm TA	FIELD-Filtration et ice) FINAL pH < 2 < 2 < 2	SAMPLINI INITIATED FILTERED: PEquipment DUPLICA INTE ANALYSI: MET VOA Me	Peristaltic AT: / 3 S Y N Type: E: NDED S AND/OR HOD /EDB tals H3	Y SA EQU	SAMPLII ENDED FILTER S MPLING JIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu)
PURGING PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE MW - S	D BY (PRINT) / A Shall (Feet): R TUBING N WELL (feet): CONTAINERS 1 1 1 1 S:	PACITY (Gal./F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	P Y OLUME 40 mL 500 mL	SAMPLI TUBING MATER SA PRESE US H H1	3/16" = 0.0 dder Pump S. EB(S) SIGM HAL CODE: TU MPLE PRE RVATIVE SED CL HO3 SO4	MAMP HDPE BING SERVA T ADDE Pre	Y NOESTITION (including TOTAL VOLD IN FIELD (mefilled by laberfilled by laberfill	Subm TA	FIELD-Filtration et ice) FINAL pH < 2 < 2 < 2	SAMPLINI INITIATED FILTERED: PEquipment DUPLICA INTE ANALYSI: MET VOA Me	Peristaltic AT: / 3 S Y N Type: E: NDED S AND/OR HOD /EDB tals H3	Y SA EQU	SAMPLII ENDED FILTER S MPLING JIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu)
PURGING PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE NW - S REMARK Odor:	D BY (PRINT) / A Shall (Feet): R TUBING N WELL (feet): CONTAINERS 1 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	P Y (TION VOLUME 40 mL 500 mL 250 mL	SAMPLI TUBING MATER SA PRESE US H H1	3/16" = 0.0 dder Pump S. ER(S) SIGN HAL CODE: TU MPLE PRE RVATIVE SED CL HO3 SO4 One	HDPE BING SERVA Pre Pre	Y NOESTITION (including TOTAL VOLD IN FIELD (mefilled by laberfilled by laberfill	Subm.TA	FIELD-Filtration of the set ice) FINAL pH < 2 < 2 < 2	SAMPLINI INITIATED FILTERED: PEquipment DUPLICA INTE ANALYSI: MET VOA Me	GAT: / JS Y N Type: TE: NDED S AND/OR HOD /EDB tals 13	Y SA EQU	SAMPLII ENDED FILTER S MPLING JIPMENT CODE APP APP APP	SAMPLE PU FLOW RAT (mL per minu)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	0: MW-5	\mathcal{B}		SAN	MPLE ID: 191	35- MW	-5B		= 7 G	DATE: Ç	11.5	1,9		
						GING DA					7.5	. ,		
WELL		TUBING			WELL SCREE	N INTERVAL	STATI	C DEPT	Н	PL PL	JRGE PUM	P TYPE		
	ER (inches): 2	DIAME	TER (inches):	inches): 3/16 DEPTH: 37. / feet to 97. / feet TO WATER (feet): /7.38 OR BAI							R BAILER: F	AILER: PP		
(only fill o	out if applicable)	1 WELL VOI	LUME = (101	AL WELL	DEPTH - ST	ATIC DEPTH	TO WATER)	X WE	ELL CAPACI	TY				
EQUIPM	ENT VOLUME P	URGE: 1 FQU	= (IIPMENT VOL	= PLIMP	feet	IRING CAPAC	feet)	THRINI	CLENCTH	gallons/fo	oot =	4E \$	gallo	
(only fill o	out if applicable)					.0014 gall							-	
INITIAL	PUMP OR TUBIN	IG 412	FINAL PU		DINC	PURGIN		T.	DUBCING	+ 0.1	1		Y9 gallo	
	N WELL (feet):	47.	DEPTH IN			INITIATI	ED AT: 1)0	T: 1)06 ENDED AT		1332	PURGE	OTAL VOLUME URGED (gallons): 6		
	VOLUME	CUMUL. VOLUME	PURGE	DEP1		TEMP	COND		SSOLVED DXYGEN					
TIME	PURGED	PURGED	RATE	TO WATE	(standard	TEMP (°C)	(circle units µmhos/cm	(ci	rcle units)	TURBIDI (NTUs)		LOR scribe)	ORP (mV)	
	(gallons)	(gallons)	(gpm)	(feet) units)		or µS/cm	1 6	mg/L or saturation				()	
1216	1.00	1.00	0.10	17.4	6 4.02	25.02	1889	3	.54	1.03	V.S/. >	do	11-7	
1220	Q.40	1-40	0.10	17.4	6 4-00	35.06	1895	1	. 80	1.01	4		7.4	
1724	0.40	1.40	0.10	17.4	6 3.98	25.06	1904	1	.45	0.40	> -		66	
1778	0.40	1.40	0.10	17.4	6 3.98	25.07	1911	1	1.15	0.33		· ·	4.8	
1232	0.40	1.80	0.10	17.4	6 3.98	25.10	1913	0	- 88	0.54	1 4	,	4.1	
	101									71				
WELL CA	APACITY (Gallon	as Per Foot): 0	0.75" = 0.02; ft): 1/8" = 0.	1" = 0.0 0006: 3	4; 1.25" = 0 /16" = 0.0014:	06; 2" = 0.1 1/4" = 0.002	6; 3" = 0.3			" = 1.02;	6" = 1.47;		= 5.88 = 0.016	
TUBING	APACITY (Gallon INSIDE DIA. CAR G EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0.	0006; 3	/16" = 0.0014;	06; 2" = 0.1 1/4" = 0.002 ESP = Electric	26; 5/16" =	0.004;	3/8" = 0.		2" = 0.010,	5/8"	= 5.88 = 0.016 (Specify)	
PURGING	INSIDE DIA. CAF GEQUIPMENT C	PACITY (Gal./F CODES: B	t.): 1/8" = 0.	0006; 3 BP = Blade	/16" = 0.0014; der Pump; SAMI	1/4" = 0.002 ESP = Electric PLING DA	26; 5/16" = Submersible	0.004;	3/8" = 0.	006; 1/2	2" = 0.010,	5/8"	= 0.016	
PURGING SAMPLE	D BY (PRINT) / A	PACITY (Gal./F CODES: B	t); 1/8" = 0 = Bailer;	0006; 3 BP = Blade SAMPLE	/16" = 0.0014; der Pump; SAMI R(S) SIGNATIVI	1/4" = 0.002 ESP = Electric PLING DA	26; 5/16" = Submersible	0.004; Pump;	3/8" = 0. PP = Pe	006; 1/2 ristaltic Pun	2" = 0.010; np; O =	5/8" = Other (= 0.016 (Specify)	
PURGING SAMPLE	D BY (PRINT) / A	PACITY (Gal./F CODES: B	t); 1/8" = 0 = Bailer;	SAMPLE	/16" = 0.0014; der Pump; SAMI R(S) SIGNATIVI	1/4" = 0.002 ESP = Electric PLING DA	Submersible	Pump;	3/8" = 0. PP = Pe AMPLING IITIATED AT	ristaltic Pun	2" = 0.010; np; O = SAMPI ENDEI	5/8" = Other (LING D AT:	= 0.016 (Specify)	
PURGING SAMPLE Ve./ PUMP O	D BY (PRINT) / A	PACITY (Gal./F CODES: B	1/8" = 0.	SAMPLE	/16" = 0.0014; der Pump; SAMI R(S) SIGNATIVI	1/4" = 0.002 ESP = Electric PLING DA	Submersible ATA FIE	Pump; S/IN	3/8" = 0. PP = Pe	ristaltic Pun	2" = 0.010; np; O = SAMPI ENDEI	5/8" = Other (LING D AT:	= 0.016 (Specify)	
SAMPLE //e./ PUMP OIDEPTH II	D BY (PRINT) / A	PACITY (Gal./F CODES: B AFFILIATION: (G2057)	= Bailer;	SAMPLE TUBING MATERIA	/16" = 0.0014; der Pump; SAMI R(S) SIGNATUI	1/4" = 0.002 ESP = Electric PLING DA	Submersible ATA FIE	Pump. SA	3/8" = 0. PP = Pe AMPLING IITIATED AT ERED: Y	ristaltic Pun	2" = 0.010; np; O = SAMPI ENDEI	5/8" = Other (LING D AT:	= 0.016 (Specify)	
SAMPLE Ve. PUMP OI DEPTH II FIELD DE	D BY (PRINT) / A Stapley R TUBING N WELL (feet):	PACITY (Gal./F CODES: B AFFILIATION: (GEOSTIC Y) DN: PUMI	= Bailer;	SAMPLE TUBING MATERIA	/16" = 0.0014; der Pump; SAMI R(S) SIGNATUI	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible ATA FIE Filtr eplaced)	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y uipment Typ UPLICATE: INTENDE	ristaltic Pun	SAMPLING	5/8" = Other (LING D AT: R SIZE:	= 0.016 (Specify)	
SAMPLE PUMP OI DEPTH II FIELD DE SAMPLE	D BY (PRINT) / A Standard R TUBING N WELL (feet): ECONTAMINATION #	PACITY (Gal./F CODES: B AFFILIATION: (GEOS) ON: PUM ER SPECIFICA MATERIAL	= Bailer;	SAMPLE TUBING MATERIA SAM PRESER	JOHE = 0.0014; der Pump; SAMI R(S) SIGNATUII LL CODE: HDP TUBING	I/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includi TOTAL VOL	Submersible ATA FIE Filtr eplaced) ing wet ice) FINA	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y IUIPMENT TYP UPLICATE: INTENDE NALYSIS AN	ristaltic Pun // 3 3 4 Dec: Y ED ND/OR E	SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING	5/8" Other (LING D AT: R SIZE:	= 0.016 (Specify) / J 3 > µm MPLE PUM LOW RATE	
SAMPLE DE SAMPLE ID CODE	D BY (PRINT) / A SHOPLY R TUBING N WELL (feet): ECONTAMINATION # CONTAINERS	PACITY (Gal./F CODES: B AFFILIATION: (GEOS) ON: PUM ER SPECIFICA	= Bailer;	SAMPLE TUBING MATERIA	JOHE = 0.0014; JOHE PUMP; SAMI R(S) SIGNATUR AL CODE: HDP TUBING IPLE PRESERV VATIVE ED ADD	I/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includi TOTAL VOL ED IN FIELD (i	Submersible ATA FIE Filtr eplaced) ing wet ice) FINA pH	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y juipment Typ UPLICATE: INTENDE NALYSIS AN METHOI	ristaltic Pun	SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING CODE	5/8" = Other (LING D AT: R SIZE: T SAI	= 0.016 (Specify) / J 3 > µm MPLE PUN LOW RATE L per minut	
SAMPLE DE SAMPLE ID CODE	D BY (PRINT) / A SHOPLY R TUBING N WELL (feet): ECONTAMINATION # CONTAINERS	PACITY (Gal./F CODES: B AFFILIATION: GEOSPI ON: PUM ER SPECIFICA MATERIAL CODE	Et): 1/8" = 0. = Bailer; I	SAMPLE TUBING MATERIA SAM PRESER USE	MIG" = 0.0014; der Pump; SAMI R(S) SIGNATUII L CODE: HDP TUBING IPLE PRESERV VATIVE ED ADD	ESP = Electric PLING DA RE(S): E Y ATION (includi TOTAL VOL ED IN FIELD (i refilled by lab	Submersible ATA FIE Filtr eplaced) ing wet ice) mL) FINA pH 0 < 2	S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y juipment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED	instaltic Pun	SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING CODE APP	5/8" = Other (LING DAT: R SIZE: SAIT FI (ml	= 0.016 (Specify) / J 3 > µm MPLE PUN LOW RATE L per minut	
SAMPLE PUMP OI DEPTH II FIELD DE SAMPLE	D BY (PRINT) / A Standard R TUBING N WELL (feet): ECONTAMINATION PLE CONTAINERS 3	PACITY (Gal./F CODES: B AFFILIATION: (G205) ON: PUM ER SPECIFICA MATERIAL CODE CG PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USE HO	In the second se	I/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ) TOTAL VOL ED IN FIELD (i refilled by lab refilled by lab	FIE Filtr eplaced) ing wet ice) FINA FINA FINA FINA PH C C C C C C C C C C C C C	S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y uppment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED Metals	instaltic Pun	SAMPLING EQUIPMENT CODE APP	5/8" Other (LING D AT: R SIZE: SAIT FI (ml	= 0.016 (Specify) / J 3 > µm MPLE PUN LOW RATE L per minut	
SAMPLE PUMP OI DEPTH II FIELD DE SAMPLE ID CODE	D BY (PRINT) / A Standard R TUBING WELL (feet): CONTAINER # CONTAINERS 3 1	PACITY (Gal./F CODES: B AFFILIATION: (G205) ON: PUM ER SPECIFICA MATERIAL CODE CG PE	P Y OTON VOLUME 40 mL	SAMPLE TUBING MATERIA SAM PRESER USE HO	JOHE TO SAMI R(S) SIGNATUR L CODE: HDP TUBING RIPLE PRESERV VATIVE ED ADD L F DO3 F O04 F	E Y ATION (including to the filled by laboration) Total voluments of the filled by laboration in the filled by	FIE Filtr eplaced) ing wet ice) FINA pH C < 2 C < 2 C < 2	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y quipment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED Metals NH3	ristaltic Pun // / / / / / / / / / / / / / / / / /	SAMPLING EQUIPMENT CODE APP APP	5/8" Other (LING D AT: R SIZE: T FI (ml	E 0.016 (Specify) A 3 7 Ammunum MPLE PUN LOW RATE L per minut A 50 380 380	
SAMPLE DE SAMPLE ID CODE	D BY (PRINT) / A SHOPPY R TUBING N WELL (feet): ECONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: (GEOS) ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USE HC HN0 H2S	JOHE TO SAMI R(S) SIGNATUR L CODE: HDP TUBING RIPLE PRESERV VATIVE ED ADD L F DO3 F O04 F	I/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ) TOTAL VOL ED IN FIELD (i refilled by lab refilled by lab	FIE Filtr eplaced) ing wet ice) FINA FINA FINA FINA PH C C C C C C C C C C C C C	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y uppment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED Metals	ristaltic Pun // / / / / / / / / / / / / / / / / /	SAMPLING EQUIPMENT CODE APP	5/8" Other (LING D AT: R SIZE: T FI (ml	= 0.016 (Specify) / J 3 > µm MPLE PUN LOW RATE L per minut	
SAMPLE PUMP OI DEPTH II FIELD DE SAMPLE ID CODE	D BY (PRINT) / A SHOPPY R TUBING N WELL (feet): ECONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: (GEOS) ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USE HC HN0 H2S	JOHE TO SAMI R(S) SIGNATUR L CODE: HDP TUBING RIPLE PRESERV VATIVE ED ADD L F DO3 F O04 F	E Y ATION (including to the filled by laboration) Total voluments of the filled by laboration in the filled by	FIE Filtr eplaced) ing wet ice) FINA pH C < 2 C < 2 C < 2	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y quipment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED Metals NH3	ristaltic Pun // / / / / / / / / / / / / / / / / /	SAMPLING EQUIPMENT CODE APP APP	5/8" Other (LING D AT: R SIZE: T FI (ml	E 0.016 (Specify) A 3 7 A primary MPLE PUN LOW RATIL L per minu A S O 3 8 0 3 8 0	
SAMPLE PUMP OI DEPTH II FIELD DE SAMPLE ID CODE	D BY (PRINT) / A Stanley R TUBING N WELL (feet): CONTAMINATION MPLE CONTAINERS 1 1 1 1 1 S:	PACITY (Gal./F CODES: B AFFILIATION: (GEOS) ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USE HC HN0 H2S	JOHE TO SAMI R(S) SIGNATUR L CODE: HDP TUBING RIPLE PRESERV VATIVE ED ADD L F DO3 F O04 F	E Y ATION (including to the filled by laboration) Total voluments of the filled by laboration in the filled by	FIE Filtr eplaced) ing wet ice) FINA pH C < 2 C < 2 C < 2	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y quipment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED Metals NH3	ristaltic Pun // / / / / / / / / / / / / / / / / /	SAMPLING EQUIPMENT CODE APP APP	5/8" Other (LING D AT: R SIZE: T FI (ml	E 0.016 (Specify) A 3 7 A primary MPLE PUN LOW RATIL L per minu A S O 3 8 0 3 8 0	
SAMPLE PUMP OI DEPTH II FIELD DE SAMPLE ID CODE	D BY (PRINT) / A Shapley R TUBING N WELL (feet): ECONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: (GEOS) ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USE HC HN0 H2S	JOHE TO SAMI R(S) SIGNATUR L CODE: HDP TUBING RIPLE PRESERV VATIVE ED ADD L F DO3 F O04 F	E Y ATION (including to the filled by laboration) Total voluments of the filled by laboration in the filled by	FIE Filtr eplaced) ing wet ice) FINA pH C < 2 C < 2 C < 2	Pump: S/IN LD-FILT ation Eq	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y quipment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED Metals NH3	ristaltic Pun // / / / / / / / / / / / / / / / / /	SAMPLING EQUIPMENT CODE APP APP	5/8" Other (LING D AT: R SIZE: T FI (ml	E 0.016 (Specify) A 3 7 A primary MPLE PUN LOW RATIL L per minu A S O 3 8 0 3 8 0	
SAMPLE PUMP OID PUMP OID SAMPLE ID CODE REMARK Odor: \$1.	D BY (PRINT) / A Stanley R TUBING N WELL (feet): CONTAMINATION MPLE CONTAINERS 1 1 1 1 1 S:	PACITY (Gal./F CODES: B AFFILIATION: (GEOS) ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERIA SAM PRESER USE HC HN0 H2S	MIG" = 0.0014; der Pump; SAMI R(S) SIGNATUII R(S) SIGNATUII RL CODE: HDP TUBING RPLE PRESERV VATIVE LD ADD L F D3 F O4 F ne	E Y ATION (including to the filled by laboration) Total voluments of the filled by laboration in the filled by	Submersible ATA FIE Filtr eplaced) ing wet ice) FINA pH 0 < 2 0 < 2 0 < 2 3.93	Pump: S/IN LD-FILT ation Eq DI	3/8" = 0.1 PP = Pe AMPLING IITIATED AT ERED: Y quipment Typ UPLICATE: INTENDE NALYSIS AN METHOI VOA/ED Metals NH3	instaltic Pun	SAMPLING EQUIPMEN' CODE APP APP	5/8" Other (LING D AT: R SIZE: SAIT FI (ml	MPLE PUIL LOW RAT L per minu (50 380	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-			- 1		RGING DA							
WELL		TUBING			WELL SCRE	N INTERVAL	STATIO				RGE PUMP T	YPE	
	ER (inches): 2		ER (inches):	3/16 DEPTH: /3./feet to)3./ feet TO WATER (feet): TAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL						et): 16-90 OR BAILER: PP			
(only fill o	out if applicable)		= (13.1	feet -	16.90	feet)	Х	0.16	gallons/foo	0.9	9 gallor	
	ENT VOLUME PL out if applicable)	JRGE: 1 EQU	IPMENT VOL	= PUMP` =	VOLUME + () gallons + (TY X	TUBI	NG LENGTH)	+ FLOW CE	LL VOLUME gallons		
	PUMP OR TUBING N WELL (feet):	3)0	FINAL PUR		BING	PURGIN		2	PURGING ENDED AT:	1136	TOTAL VOI PURGED (9	LUME gallons): 5- 8	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet)	R (standa	(-(-)	COND (circle units µmhos/cm or (S/cm		OISSOLVED OXYGEN (circle units) (mg/L) or % saturation	TURBIDIT (NTUs)	COLO (describ		
1130	3.80	3.80	0.14	17.8	8 4.6	1 24.91	1600		0.29	1.45	st. Yella	-94.8	
1/24	0.40	4.26	0.10	17.4	-	34.85	1596	1	0.36	5.03	be	-77.1	
1138	0.40	4,60	0.10	17.40			1539	-	0.17	2.17	82	-114.3	
1132	0.40	5.00	0.10	17.4		5 24.70	1536	1	0.15	3.14	4	-118.0	
1136	0.40	5.40	0.10	17.34			1539	1	5.14	1.91	2,	-1190	
/	1												
TUBING PURGIN	APACITY (Gallon INSIDE DIA. CAI G EQUIPMENT C	ODES: B	0.75" = 0.02; -t.): 1/8" = 0 = Bailer;	BP = Blad	der Pump;	ESP = Electric	Submersible	0.00	4; 3/8" = 0 PP = Pe	And a street of		12" = 5.88 5/8" = 0.016 Other (Specify)	
PURGIN SAMPLE	INSIDE DIA. CAI G EQUIPMENT C	PACITY (Gal./F	= Bailer;	BP = Blad	#/16" = 0.001 der Pump; SAI R(S) SIGNAT	ESP = Electric //PLING D/ URE(S):	Submersible	Pump	4; 3/8" = 0 PP = Pe	.006; 1/2 eristaltic Pum	" = 0.010; p; O = 0	5/8" = 0.016 Other (Specify)	
SAMPLE PUMP O	ED BY (PRINT) / A OR TUBING	PACITY (Gal /F CODES: B	= Bailer;	SAMPLE	der Pump; SAN R(S) SIGNAT	ESP = Electric MPLING DA URE(S):	Submersible ATA FIE	Pump	4, 3/8" = 0 PP = Pe SAMPLING INITIATED A' ILTERED: Y	.006; 1/2 eristaltic Purr T: //36	" = 0 010; pp; O = 0	5/8" = 0.016 Other (Specify)	
SAMPLE PUMP O DEPTH I	ED BY (PRINT) / A OR TUBING IN WELL (feet):	PACITY (Gal./F CODES: B	= Bailer;	SAMPLE TUBING MATERIA	der Pump; SAN R(S) SIGNAT	ESP = Electric MPLING DA URE(S): DPE	Submersible ATA FIE Filt	Pump	3/8" = 0 PP = Pe SAMPLING INITIATED A' ILTERED: Y Equipment Ty	eristaltic Pum	SAMPLINE ENDED	5/8" = 0.016 Other (Specify)	
SAMPLE PUMP O DEPTH FIELD D	ED BY (PRINT) / A PRINT OF THE BRIDGE TO BE THE BRIDGE T	PACITY (Gal /F CODES: B AFFILIATION: AFFILIATION: DON: PUM	Ft.): 1/8" = 0 = Bailer; 7 - /	SAMPLE TUBING MATERIA	M/16" = 0.001- der Pump; SAI R(S) SIGNAT AL CODE: HI	ESP = Electric MPLING D URE(S): D OPE	Submersible ATA FIE Filt eplaced)	Pump	3/8" = 0 PP = Pe SAMPLING INITIATED A' ILTERED: Y Equipment Ty DUPLICATE:	2006; 1/2 Peristaltic Purr T: // 36 Peristaltic Purr	SAMPLINE ENDED	5/8" = 0.016 Other (Specify) NG AT: // Υ/ SIZE: μπ	
PURGIN SAMPLE PUMP O DEPTH FIELD D SA SAMPLE	ED BY (PRINT) / A PR TUBING IN WELL (feet): MPLE CONTAINE #	PACITY (Gal /F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL	Ft.): 1/8" = 0 = Bailer; 7 - /	SAMPLE TUBING MATERIA	MAL CODE: HI TUBIN MPLE PRESE	ESP = Electric MPLING DA URE(S): DPE	Submersible ATA FIE Filt eplaced) fing wet ice)	Pump LD-Firation	3/8" = 0 PP = Pe SAMPLING INITIATED A' ILTERED: Y Equipment Ty	ED ND/OR E	SAMPLINE ENDED	S/8" = 0.016 Other (Specify) NG AT: // Y/ SIZE: µm SAMPLE PUI FLOW RAT	
SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A PR TUBING IN WELL (feet): ECONTAMINATION # CONTAINERS	PACITY (Gal./F CODES: B AFFILIATION: AFFILIATION: AFFILIATION: PUM ER SPECIFICA	Ft.): 1/8" = 0 = Bailer; P Y (SAMPLE TUBING MATERIA SAM PRESER	MAL CODE: HI TUBIN MPLE PRESE	ESP = Electric MPLING D URE(S): DPE IG Y N RVATION (includ TOTAL VOL	Submersible ATA FIE Filt eplaced) ling wet ice) FINA (mL) FINA pH	Pump	SAMPLING INITIATED A' ILTERED: Y Equipment Ty DUPLICATE: INTEND ANALYSIS A	eristaltic Purr	" = 0 010; ip; O = C SAMPLII ENDED FILTER S SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify)	
PURGIN SAMPLE PUMP O DEPTH FIELD D SA SAMPLE	ED BY (PRINT) / A PR TUBING IN WELL (feet): ECONTAMINATION # CONTAINERS	PACITY (Gal /F CODES: B AFFILIATION: AFFILIATION: AFFILIATION: PUM ER SPECIFICA MATERIAL CODE	P Y OTION VOLUME	SAMPLE TUBING MATERIA SAM PRESER USI	MAL CODE: HI TUBIN MPLE PRESE WATIVE ED A	ESP = Electric MPLING D URE(S): DPE GG Y N RVATION (includ TOTAL VOL DDED IN FIELD (Submersible ATA FIE Filt eplaced) ding wet ice) FINA pH b < 2	Pump	SAMPLING INITIATED A' ILTERED: Y Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	ED ND/OR DB	SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING COUIPMENT CODE	SAMPLE PUT FLOW RAT (mL per minu	
SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A PRINT OF THE	PACITY (Gal /F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG	P Y (TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USI HC	MATORIE DE COMPANION DE COMPANI	ESP = Electric MPLING D URE(S): OPE G Y N RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by la	FIE Filt eplaced) (mL) pH b < 2	Pump LD-FI ration	SAMPLING INITIATED A' ILTERED: Y Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	ED ND/OR EDD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu	
SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A OR TUBING IN WELL (feet): ECONTAMINATION MPLE CONTAINERS 4 3 1	PACITY (Gal./F CODES: B AFFILIATION: AFFILIATION: PUM ER SPECIFICA MATERIAL CODE CG PE	P Y CATION VOLUME 40 mL	SAMPLE TUBING MATERIA SAM PRESER US HO HN	MAL CODE: HI TUBIN MPLE PRESE VATIVE ED A SO4	ESP = Electric MPLING DA URE(S): DPE G Y NT RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by la Prefilled by la	FIE Filt eplaced) (mL) pH b < 2	Pump	SAMPLING INITIATED A' ILTERED: Y Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal	ED ND/OR EDD DB s	SAMPLING SAMPLING CODE APP	SAMPLE PUFLOW RAT (mL per minu)	
PURGIN SAMPLE PUMP O DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A OR TUBING IN WELL (feet): ECONTAMINATION MPLE CONTAINERS 1 1 1 1 KS:	PACITY (Gal /F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	EL): 1/8" = 0 = Bailer; P Y (TION) VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USI HO HN H2S	MAL CODE: HI TUBIN MPLE PRESE VATIVE ED A SO4	ESP = Electric IPLING DA URE(S): OPE IG Y NOT RVATION (includ TOTAL VOL DDED IN FIELD (Prefilled by la Prefilled by la	FIE Filt eplaced) (mL) PH b < 2 b < 2 b < 2	Pump	SAMPLING INITIATED A' ILTERED: Y Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	ED ND/OR EDD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUFLOW RAT (mL per minu) SAMPLE PUFLOW RAT (mL per minu) A \$80	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-	4B		SAMP	PLE ID: 1913	5-MW	/-	4B		DATE	51	15/1	9
					PUR	GING DA	TA			-			
WELL		TUBING	3		WELL SCREEN	INTERVAL	T	STATIC D		1	PURG	E PUMP T	YPE
DIAMETER	R (inches): 2	DIAME	TER (inches):	3/16	DEPTH: 37. Vf	eet to 47.4 fo	eet	t TO WATER (feet): 16,65 OR BAILER: PP WATER) X WELL CAPACITY					
(only fill ou	LUME PURGE: t if applicable)	1 WELL VO	LUME = (TO	TAL WELL D	DEPTH - STA	ATIC DEPTH T	TO WA	ATER) X	WELL CAPA	CITY			
			= (feet -			feet) X		gallons	s/foot	=	gallo
(only fill ou	NT VOLUME Po	URGE: 1 EQU	JIPMENT VO		·				BING LENGT	·			
					ganono (JI A	- S fe	et) + O.			=0.49 gallor
	JMP OR TUBIN WELL (feet):	G 42.5		MP OR TUB I WELL (feet)		PURGIN INITIATE		1029	PURGING ENDED A	T: III C		TOTAL VOL PURGED (g	UME pallons): 2.0
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATEF (feet)	pH	TEMP (°C)	(circ	cOND. cle units) nhos/cm µS/cm	OXYGEN (circle units) mg/L or % saturation	TURB		COLO (describ	
1058	0.90	0.90	0.09	1703	5.07	25.56	13	769	0.48	0.2	88	Syell	a -74.
1102	0.36	1.26	0.05	17.0				764	0. 11	0.		41	-68.
1106	0.36	1.60	0.09	-		1		7.59	0.18	0.5			-66.9
1110	0.36	1. 78	0.09			35.73		762	0.15	0.7		4,	.58.5
1.10	0.70	1	0.07	17.0	3 1.70	33.47	-	102	0.15	0.7	_	1	- 30.0
				_	_		_	-		+	_	1	_
				-				_		-		-	
WELL CAI	PACITY (Gallon								4" = 0.65;			" = 1,47;	12" = 5.88
WELL CAI	ISIDE DIA. CAI	PACITY (Gal./	Ft_): 1/8" = 0	0006; 3/	16" = 0 ₋ 0014;	1/4" = 0,002	26;	5/16" = 0.0	004; 3/8" =	0,006;	1/2" =	0.010;	5/8" = 0.016
WELL CAI		PACITY (Gal./			16" = 0 ₋ 0014; er Pump; I	1/4" = 0,002 ESP = Electric	?6; Subm	5/16" = 0.0 nersible Pun	004; 3/8" =		1/2" =	0.010;	
WELL CAI TUBING IN PURGING	ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal./I	Ft_): 1/8" = 0	BP = Bladde	16" = 0.0014; er Pump; SAMF	1/4" = 0,002 ESP = Electric PLING DA	?6; Subm	5/16" = 0.0 nersible Pun	004; 3/8" = np; PP =	0.006; Peristaltic F	1/2" =	0.010; O = O	5/8" = 0.016 ther (Specify)
WELL CAI TUBING IN PURGING	EQUIPMENT O	PACITY (Gal./ICODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Bladde	16" = 0.0014; er Pump; SAMF (S) SIGNATUR	1/4" = 0,002 ESP = Electric PLING DA	?6; Subm	5/16" = 0.0 nersible Pun	004; 3/8" = np; PP =	e 0.006; Peristaltic F	1/2" = Pump;	0.010; 0 = 0	5/8" = 0.016 ther (Specify)
WELL CAI TUBING IN PURGING	BY (PRINT)	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	BP = Bladde	16" = 0.0014; er Pump; SAMF	1/4" = 0,002 ESP = Electric PLING DA	?6; Subm	5/16" = 0.0 nersible Pun	SAMPLING	Peristaltic F	1/2" = Pump;	O = O SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
WELL CAI TUBING IN PURGING SAMPLED No. 1 S	BY (PRINT)	PACITY (Gal./ICODES: B	Ft): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAMF (S) SIGNATUR	1/4" = 0,002 ESP = Electric PLING DA E(S):	?6; Subm	5/16" = 0.0 nersible Pun	004; 3/8" = np; PP =	Peristaltic F	1/2" = Pump;	SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
WELL CAI TUBING IN PURGING SAMPLED No. 1 S PUMP OR DEPTH IN	BY (PRINT)	PACITY (Gal./) CODES: B AFFILIATION:	Ft): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAMF ((S) SIGNATUR	1/4" = 0,002 ESP = Electric PLING DA E(S):	Subm	5/16" = 0.0 nersible Pun FIELD- Filtratio	SAMPLING INITIATED FILTERED:	Peristaltic F AT: /// Type:	1/2" = Pump;	O = O SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
WELL CAI TUBING IN PURGING SAMPLED Vc. 1 S PUMP OR DEPTH IN	BY (PRINT) TUBING WELL (feet):	PACITY (Gal // CODES: B AFFILIATION: (scosyn /-	Ft): 1/8" = 0 = Bailer;	BP = Bladde SAMPLER TUBING MATERIAL	er Pump; SAMF (S) SIGNATUR CODE: HDPI	1/4" = 0,002 ESP = Electric PLING DA E(S): Y (N)(re	Subm	5/16" = 0.0 hersible Pun FIELD- Filtratio	SAMPLING INITIATED FILTERED: n Equipment DUPLICAT INTEN	Peristaltic F AT: /// Y Type: E: Y	1/2" = 3'ump;	SAMPLING SAMPLING	5/8" = 0.016 ther (Specify) IG /// G IZE: µm
WELL CAI TUBING IN PURGING SAMPLED Ve. 1 S PUMP OR DEPTH IN FIELD DEC	BY (PRINT) / PERINT (PR	PACITY (Gal // CODES: B AFFILIATION: (COSJIN // ON: PUN ER SPECIFICA MATERIAL	Ft): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL SAMF	er Pump; SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N)(re ATION (includi TOTAL VOL	Subm ATA	FIELD-Filtratio	SAMPLING INITIATED FILTERED: IN Equipment DUPLICAT INTEN ANALYSIS	Peristaltic F AT: /// Type: E: Y IDED AND/OR	1/2" = Oump;	SAMPLING JIPMENT	5/8" = 0.016 ther (Specify) IG /// G IT: /// G IZE: µm SAMPLE PUM FLOW RATI
WELL CAI TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / OF PRINT (PRINT) / OF PRINT (PRINT) / OF PRINT (PRINT) / OF PRINT (PRINT) / CONTAINERS	PACITY (Gal // CODES: B AFFILIATION: (\$20370 // ON: PUN ER SPECIFICA MATERIAL CODE	Ft): 1/8" = C = Bailer; //c MP Y (I	SAMPLER TUBING MATERIAL SAMP SAMP PRESERV USEI	er Pump: SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (r	Subm ATA eplace ing we	FIELD-Filtratio	SAMPLING INITIATED FILTERED: The Equipment DUPLICAT INTEN ANALYSIS METH	Peristaltic F AT: /// Type: E: Y DED AND/OR HOD	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE	5/8" = 0.016 ther (Specify) IG /// G IZE: µm SAMPLE PUN FLOW RATI (mL per minut
WELL CAI TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / POR A CONTAINERS 3	PACITY (Gal // CODES: B AFFILIATION: (\$ cosyn f ON: PUN ER SPECIFICA MATERIAL CODE CG	Ft): 1/8" = C = Bailer; //c IP Y (I ATION VOLUME 40 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL	PLE PRESERV	1/4" = 0,002 ESP = Electric PLING DA E(S): Y (No recommendation of the commendation o	eplace	FIELD-Filtratio	SAMPLING INITIATED FILTERED: IN Equipment DUPLICAT ANALYSIS METH VOA/	Peristaltic F AT: /// Y Type: E: Y IDED AND/OR HOD EDB	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP	SAMPLE PUN FLOW RATI
WELL CAI TUBING IN PURGING SAMPLED Ve. 1 S PUMP OR DEPTH IN FIELD DEC	BY (PRINT) BY (PRINT) TÜBING WELL (feet): CONTAMINATION # CONTAINERS 3 1	PACITY (Gal // CODES: B AFFILIATION: (COS70 / ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft): 1/8" = 0 = Bailer; IP Y (ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL	er Pump: SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE ADD P 13 P	ATION (includit TOTAL VOLED IN FIELD (refilled by labers)	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED FILTERED: n Equipment DUPLICAT INTEN ANALYSIS METH VOA/	Peristaltic F AT: /// Y Type: E: Y DED AND/OR HOD EDB als	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP	5/8" = 0.016 ther (Specify) IG (III 6) IZE:
WELL CAI TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) BY (PRINT) TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1	PACITY (Gal // CODES: B AFFILIATION: (\$20370 /- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	THE Y TO THE TOTAL THE TOT	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P OA P OA P	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (refilled by lab refilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED Equipment DUPLICAT INTEN ANALYSIS METH VOAV	Peristaltic F AT: /// Type: E: Y DED AND/OR HOD EDB als	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP APP	SAMPLE PUN FLOW RATI (mL per minu ~ 3 %0
WELL CAI TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) BY (PRINT) TÜBING WELL (feet): CONTAMINATION # CONTAINERS 3 1	PACITY (Gal // CODES: B AFFILIATION: (COS70 / ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft): 1/8" = 0 = Bailer; IP Y (ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL	er Pump; SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P OA P OA P	ATION (includit TOTAL VOLED IN FIELD (refilled by labers)	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED FILTERED: n Equipment DUPLICAT INTEN ANALYSIS METH VOA/	Peristaltic F AT: /// Type: E: Y DED AND/OR HOD EDB als	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP	5/8" = 0.016 ther (Specify) G T: /// IZE: SAMPLE PUM FLOW RATI (mL per minu) ~ 150 ~ 3 90
WELL CAI TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) BY (PRINT) TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1	PACITY (Gal // CODES: B AFFILIATION: (\$20370 /- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	THE Y TO THE TOTAL THE TOT	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P OA P OA P	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (refilled by lab refilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED Equipment DUPLICAT INTEN ANALYSIS METH VOAV	Peristaltic F AT: /// Type: E: Y DED AND/OR HOD EDB als	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu \ 150 \ 2
WELL CAI TUBING IN PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) BY (PRINT) TÜBING WELL (feet): CONTAMINATION # CONTAINERS 3 1 1 1	PACITY (Gal // CODES: B AFFILIATION: (\$2037n /- ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE	THE Y LANGE TO THE TOTAL THE T	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P OA P OA P	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (refilled by lab refilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED Equipment DUPLICAT INTEN ANALYSIS METH VOAV	Peristaltic F AT: /// Type: E: Y DED AND/OR HOD EDB als	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu \ 150 \ 2
WELL CAI TUBING IN PURGING SAMPLED DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) BY (PRINT) TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1 1	PACITY (Gal // CODES: B AFFILIATION: (S.COS) IN FORM ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE SINGAMO	TION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	er Pump; SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P OA P OA P	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (refilled by lab refilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED Equipment DUPLICAT INTEN ANALYSIS METH VOAV	Peristaltic F AT: /// Type: E: Y DED AND/OR HOD EDB als	SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu
WELL CAI TUBING IN PURGING SAMPLED DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) POR CONTAINERS 3 1 1 1	PACITY (Gal // CODES: B AFFILIATION: (S.COS) IN FORM ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE SINGAMO	Et): 1/8" = 0 = Bailer; ATION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL HNO H2SC	PLE PRESERV (ATIVE D ADD P P P P P P P P P P P P P P P P P	1/4" = 0.002 ESP = Electric PLING DA E(S): Y (N)(re ATION (includi TOTAL VOL ED IN FIELD (refilled by lab refilled by lab	Submark ATA eplace mL) D D D	FIELD-Filtration of the state o	SAMPLING INITIATED Equipment DUPLICAT INTEN ANALYSIS METH VOAV	Peristaltic F AT: /// Y Type: E: Y IDED AND/OR HOD EDB als I3 3/TDS	SA EQU	SAMPLING JIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu 2 3 %0

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	10: MW-34	1		SAN	IPLE ID: (4135-141	w ·	-3A	- 21	DATE:	5/15	1.9	
				1		JRGING DA							
WELL		TUBING	3			EEN INTERVAL		STATIC D	EPTH .	PL	JRGE PUMP	TYPE	
	ER (inches): 2		TER (inches):				feet to ∫ ∫ feet TO WATER				R BAILER: PP		
	OLUME PURGE: out if applicable)	1 WELL VOI	LUME = (TO			STATIC DEPTH	TO W	ATER) X			,	. An	
<u> </u>			= (17.				feet) X	0.16	gallons/fo	oot = 1.	gall	
	out if applicable)	URGE: 1 EQU	JIPMENT VO	L. = PUMP	VOLUME +	(TUBING CAPAC	HY	X TU	BING LENGTH) + FLOW C	ELL VOLUME		
		G 19.5		=	gallons +	(gall	lons/fc	oot X	feet)	+	gallons	s = gall	
	PUMP OR TUBIN IN WELL (feet):	G 30.5		MP OR TU I WELL (fee		PURGII INITIAT	NG ED A	T: 09\$8		1018	PURGED	DLUME (gallons): 🔾	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATI (feet	ER (stan	dard (°C)	(cir	COND rcle units) mhos/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBID (NTUs			
1006	2.40	2.40	0.085	17.1	1 5.	18 34.69	10	603	0.17	1.57	2 Clea	- 1/3.	
1010	0.34	3.74	0.085	17.0	7 5.	36 14.69	15	591	0.19	7.03		-110.	
1014	034	3.08	0.085	17.0	6 5.	DO 24.70		585	0.18	2.00	14	-712.	
1014	0.34	3.42	0.085	17.0	× 5.3	5 34.66	1	578	0.18	3.5	6 "	-177	
							+						
	+		-	1.5		_	-			-			
_				-	_	-	-					_	
	-												
							_					_	
WELL C	CAPACITY (Gallon	ns Per Foot): (0.75" = 0.02; Ft.): 1/8" = 0	1" = 0.0	04; 1.25" 3/16" = 0.00	= 0.06; 2" = 0. 14: 1/4" = 0.00	16; 26:	3" = 0.37; 5/16" = 0.0		5" = 1.02; 0.006: 1/	6 " = 1.47; 2 " = 0.010;	12" = 5.88 5/8" = 0.016	
TUBING	CAPACITY (Gallor GINSIDE DIA. CA NG EQUIPMENT (PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0 = Bailer;	0 0006;	04; 1.25" 3/16" = 0.00	= 0.06; 2" = 0. 14; 1/4" = 0.00 ESP = Electric	26;	5/16" = 0.0	004: 3/8" = 0		2" = 0.010;	12" = 5.88 5/8" = 0.016 Other (Specify)	
TUBING	INSIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0	0 0006;	3/16" = 0 ₋ 00 lder Pump;	14; 1/4" = 0.00	26; c Subr	5/16" = 0.0 mersible Pur	004: 3/8" = 0	.006; 1/	2" = 0.010;	5/8" = 0.016	
PURGIN SAMPLE	S INSIDE DIA. CA NG EQUIPMENT (ED BY (PRINT) / A	PACITY (Gal./I	Ft.): 1/8" = 0	BP = Blad	3/16" = 0.00 lder Pump; SA R(S) SIGNA	ESP = Electric MPLING D ATURE(S):	26; c Subr	5/16" = 0.0 mersible Pur	004: 3/8" = 0 np; PP = Pr	eristaltic Pur	2" = 0.010; mp; O =	5/8" = 0.016 Other (Specify)	
PURGIN SAMPLE	SINSIDE DIA. CAI	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	BP = Blad	3/16" = 0.00 Ider Pump; SA	ESP = Electric MPLING D ATURE(S):	26; c Subr	5/16" = 0.0 mersible Pur	004: 3/8" = 0 np; PP = Pr	1.006; 1/ eristaltic Pul	2" = 0.010; mp; O = SAMPL ENDED	5/8" = 0.016 Other (Specify) ING AT: (<i>O</i> 3 Y	
PURGIN SAMPLE Ve. PUMP C	EINSIDE DIA. CAI NG EQUIPMENT OF ED BY (PRINT) / A 1 Stapley DR TUBING	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; 7 h A C	SAMPLE	3/16" = 0.00 ider Pump; SA R(S) SIGNA	114; 1/4" = 0.00 ESP = Electric MPLING D ATURE(S):	26; c Subr	5/16" = 0.0 mersible Pur	SAMPLING INITIATED A' FILTERED: Y	1.006; 1/ eristaltic Pur T: (0/8	2" = 0.010; mp; O = SAMPL ENDED	5/8" = 0.016 Other (Specify) ING AT: (<i>O</i> J Y	
SAMPLE Ve. PUMP CODEPTH	EINSIDE DIA. CAI NG EQUIPMENT OF ED BY (PRINT) / A Staple TOBING IN WELL (feet):	PACITY (Gal./) CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERIA	3/16" = 0.00 ider Pump; SA :R(S) SIGNA	ESP = Electric MPLING D ATURE(S):	26; c Subr	FIELD-Filtratic	3/8" = 0 mp; PP = Pr SAMPLING INITIATED A' FILTERED: Y m Equipment Ty	eristaltic Pul	2" = 0.010; mp; O = SAMPL ENDED	5/8" = 0.016 Other (Specify) ING AT: (<i>O</i> 3 Y	
SAMPLE PUMP C DEPTH FIELD D	EINSIDE DIA. CANG EQUIPMENT OF STANDARD OF TUBING IN WELL (feet):	PACITY (Gal.// CODES: B AFFILIATION: George ON: PUN	Ft.): 1/8" = 0 = Bailer; 7	SAMPLE TUBING MATERIA	3/16" = 0.00 ider Pump; SA R(S) SIGNA AL CODE: I	ESP = Electric MPLING D ATURE(S): HDPE ING Y	26; c Subr	FIELD-Filtratic	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE:	D.006: 1/ eristaltic Pur T: (0/8	2" = 0.010; mp; O = SAMPL ENDED FILTER	5/8" = 0.016 Other (Specify) ING AT: (Ο) γ	
PURGIN SAMPLE PUMP CO DEPTH FIELD D SA	EINSIDE DIA. CAI NG EQUIPMENT OF ED BY (PRINT) / A OR TUBING IN WELL (feet): DECONTAMINATION MMPLE CONTAINE	PACITY (Gal // CODES: B AFFILIATION: (300) ON: PUN ER SPECIFICA	Ft.): 1/8" = C = Bailer; Ph HC ATION	SAMPLE TUBING MATERIA	3/16" = 0.00 ider Pump; SA ER(S) SIGNA AL CODE: I TUB	ESP = Electric MPLING D ATURE(S): HDPE ING Y ERVATION (included)	26; c Subr	FIELD-Filtratic	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND	2.006; 1// eristaltic Pur T: (0/8	2" = 0.010; mp; O = SAMPL ENDED	5/8" = 0.016 Other (Specify) ING AT: (2 3 4 SIZE: µr	
SAMPLE PUMP C DEPTH FIELD D	EINSIDE DIA. CANG EQUIPMENT OF EDBY (PRINT) / A P C P C P C P C P C P C P C P C P C P	PACITY (Gal.// CODES: B AFFILIATION: George ON: PUN	Ft.): 1/8" = 0 = Bailer; 7	SAMPLE TUBING MATERIA SAMPRESER	3/16" = 0.00 Ider Pump; SA R(S) SIGNA AL CODE: I TUB WPLE PRES	ESP = Electric MPLING D ATURE(S): HDPE ING Y	26; c Subr ATA	FIELD-Filtratic	004; 3/8" = 0 np; PP = Pe SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE:	D.006; 1// eristaltic Pur T: (0/8 N) pe: Y ED ND/OR	2" = 0.010; mp; O = SAMPL ENDED FILTER SAMPLING	5/8" = 0.016 Other (Specify) ING AT: (2 3 4 SIZE: µr	
PURGIN SAMPLE PUMP CO DEPTH FIELD D SAMPLE	EINSIDE DIA. CAING EQUIPMENT OF SHAPE Y (PRINT) / A PRINT OF TUBING IN WELL (feet): DECONTAMINATION HELD CONTAINERS	PACITY (Gal.// CODES: B AFFILIATION: George ON: PUN ER SPECIFICA MATERIAL	Ft.): 1/8" = C = Bailer; Ph HC ATION	SAMPLE TUBING MATERIA SAMPRESER	AL CODE: I TUB WPLE PRES	ERVATION (included to TOTAL VOL.) ESP = Electric MPLING D ATURE(S): ERVATION (included to TOTAL VOL.)	26; c Subr ATA replaceding w	FIELD-Filtratic edd) FINAL	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A	D.006; 1// eristaltic Puri T: (0/8 (N) pe: Y ED ND/OR DD	2" = 0.010; mp; O = SAMPL ENDED FILTER SAMPLING EQUIPMENT	SAMPLE PL FLOW RA' (mL per min	
PURGIN SAMPLE PUMP C DEPTH FIELD D SAMPLE ID CODE	EINSIDE DIA. CAING EQUIPMENT OF SHAPE Y (PRINT) / A PRINT OF TUBING IN WELL (feet): DECONTAMINATION HELD CONTAINERS	PACITY (Gal.// CODES: B AFFILIATION: (Gal.// CODES: B AFFILIATION: (Gal.// B AFFILIATION: AFFILIATION: (Gal.// B AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: AFFILIATION: CODE	Ft.): 1/8" = C = Bailer; Ph + C ATION VOLUME	SAMPLE TUBING MATERIA SAM PRESEF US	AL CODE: I TUB MPLE PRES RVATIVE ED CL	ESP = Electric MPLING D ATURE(S): HDPE ING Y ERVATION (included to the content of the conte	26; c Subr ATA replac ding w (mL)	FIELD-Filtratic sed) FINAL pH	SAMPLING INITIATED A' FILTERED: Y Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	T: (0/8 Ppe: Y ED IND/OR DB	2" = 0.010; mp; O = SAMPL ENDED FILTER SAMPLING EQUIPMENT CODE	5/8" = 0.016 Other (Specify) ING AT: (Ο) Υ SIZE: μr SAMPLE PL FLOW RA	
PURGIN SAMPLE PUMP C DEPTH FIELD D SAMPLE ID CODE	EINSIDE DIA. CANG EQUIPMENT OF	PACITY (Gal.// CODES: B AFFILIATION: George ON: PUN ER SPECIFICA MATERIAL CODE CG	TION VOLUME 40 mL 500 mL	D 0006; BP = Blad SAMPLE TUBING MATERIA SAM PRESER US HO	AL CODE: I TUB MPLE PRES RVATIVE ED CL	ESP = Electric MPLING D ATURE(S): HDPE ING Y (C) ERVATION (included to the content of the c	replaceding w	FIELD-Filtration (FINAL pH < 2	SAMPLING INITIATED A' FILTERED: Yon Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI	T: (0/8 Peristaltic Puristaltic Puristalt	2" = 0.010; mp; O = SAMPL ENDED FILTER SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA' (mL per min	
PURGIN SAMPLE PUMP C DEPTH FIELD D SAMPLE ID CODE	EINSIDE DIA. CAING EQUIPMENT OF SHAPE OF TUBING IN WELL (feet): DECONTAMINATION OF TUBING IN WELL (foet): AMPLE CONTAINERS 3 1	PACITY (Gal.// CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = C = Bailer; Ph A-C) IP Y (ATION VOLUME 40 mL	SAMPLE TUBING MATERIA PRESER US HO	AL CODE: IT TUB WPLE PRES RVATIVE ED CL CO3 GO4	ESP = Electric MPLING D ATURE(S): HDPE ING Y ERVATION (included to the content of the conte	replaceding w	FIELD-Filtration (ced) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal	DO06: 1// eristaltic Pur T: (0/8 (N) ppe: Y ED ND/OR DD DB s	2" = 0.010; mp; O = SAMPL ENDED FILTER SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per min	
PURGIN SAMPLE Ve. / PUMP C DEPTH FIELD D SA SAMPLE ID CODE MW - 3	EINSIDE DIA. CAING EQUIPMENT OF EQUIPMENT OF TUBING IN WELL (feet): DECONTAMINATION # CONTAINERS 3 1	PACITY (Gal.// CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAMPLE TUBING MATERIA N SAM PRESEF US HO HN H25	AL CODE: IT TUB WPLE PRES RVATIVE ED CL CO3 GO4	ESP = Electric MPLING D ATURE(S): HDPE ING Y ERVATION (included to the content of the conte	replaceding w	FIELD-Filtratic red) ret ice) FINAL pH < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	DO06: 1// eristaltic Pur T: (0/8 (N) ppe: Y ED ND/OR DD DB s	2" = 0.010; mp; O = SAMPL ENDED FILTER N SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir	
PURGIN SAMPLE Ve. / PUMP C DEPTH FIELD D SA SAMPLE ID CODE MW - 3	EINSIDE DIA. CAING EQUIPMENT OF EQUIPMENT OF TUBING IN WELL (feet): DECONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal.// CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAMPLE TUBING MATERIA N SAM PRESEF US HO HN H25	AL CODE: IT TUB WPLE PRES RVATIVE ED CL CO3 GO4	ESP = Electric MPLING D ATURE(S): HDPE ING Y ERVATION (included to the content of the conte	replaceding w	FIELD-Filtration (ced) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	DO06: 1// eristaltic Pur T: (0/8 (N) ppe: Y ED ND/OR DD DB s	2" = 0.010; mp; O = SAMPL ENDED FILTER N SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir	
PURGIN SAMPLE Ve. / PUMP C DEPTH FIELD D SAM SAMPLE ID CODE AW- 3	EINSIDE DIA. CANG EQUIPMENT OF EQUIPMENT OF EQUIPMENT OF EXAMPLE CONTAINERS A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PACITY (Gal./) CODES: B AFFILIATION: (JCO) ON: PUN ER SPECIFICA MATERIAL CODE CG PE PE PE PE	TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAMPLE TUBING MATERIA N SAM PRESEF US HO HN H25	AL CODE: IT TUB WPLE PRES RVATIVE ED CL CO3 GO4	ESP = Electric MPLING D ATURE(S): HDPE ING Y ERVATION (included to the content of the conte	replaceding w	FIELD-Filtration (ced) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	DO06: 1// eristaltic Pur T: (0/8 (N) ppe: Y ED ND/OR DD DB s	2" = 0.010; mp; O = SAMPL ENDED FILTER N SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir	
PURGIN SAMPLE Ve PUMP C DEPTH FIELD D SAMPLE ID CODE MW- 2 W REMAR Odor:	EINSIDE DIA. CANG EQUIPMENT OF EQUIPMENT OF EQUIPMENT OF EXAMPLE CONTAINERS A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PACITY (Gal.// CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = C = Bailer; P Y (ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERIA SAMPLE TUBING MATERIA N SAM PRESEF US HO HN H25	AL CODE: I TUB MPLE PRES RVATIVE ED CL O3 GO4	ESP = Electric MPLING D ATURE(S): HDPE ING Y ERVATION (included to the content of the conte	26; c Subra ATA replace ding w (mL) b	FIELD-Filtratic red) ret ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	DO06: 1// eristaltic Pur T: (0/8 N) pe: Y ED ND/OR DD DB S TDS	2" = 0.010; mp; O = SAMPL ENDED FILTER SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PIFLOW RA (mL per mir	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: January 2017

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

): MW-3	213		SAM	-	35- MW		, St. Cloud, FL 3	DATE:	5/15/	114		
	MM	3 D	_	07 11111					DATE:	2/12/	7		
WELL		TUBING				RGING DA		DEDTH		DUDGE DUMP	TVDE		
	ER (inches): 2		J TER (inches)		WELL SCREE			DEPTH TER (feet): //			JRGE PUMP TYPE R BAILER: PP		
	LUME PURGE;			TAL WELL I	DEPTH - S	TATIC DEPTH 1	O WATER)	X WELL CAPA	CITY				
	ut if applicable)		= (feet -		feet)	X	gallons	s/foot =	gal		
	ENT VOLUME PU ut if applicable)	JRGE: 1 EQI	JIPMENT VO	L. = PUMP \ =		UBING CAPACI	TY X	TUBING LENGT	H) + FLOW et) + <i>O</i> -	CELL VOLUME	×3 s =0.49 gal		
INITIAL P	UMP OR TUBINO	3	FINAL PL	MP OR TUE		DUDCIN	C	DURCING		TOTAL V	SLUBAT		
DEPTH IN	WELL (feet):	42.5	DEPTH II	WELL (fee	t): Y 2.	5 INITIATE	DAT: 09	Y ENDED A	T: 0950	PURGED			
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTI TO WATE (feet)	R (standar	TEMP (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/) or % saturation	TURBI				
6944	0-1-1.00	1.00	0.10	16.19	7.06	25 32	1780	1.53	0.5	12 de	5.		
0948	0.40	1.40	0.10	16.19	1 4.06	25.32	1786	0.65	0 19	8 .,	-10.		
0951	0.40	1.80	0.10	16.19	9 4.06	25.31	1788	0.35	0.)	4	-43		
0956	0.40	2.10	0.10	16.19	4.06	35.35	1786	0.35	0.3) 4	-13.		
					100								
	APACITY (Gallons				4; 1.25 " = 0				5" = 1 02;		12" = 5.88 5/8" = 0.016		
TUBING I	APACITY (Gallons INSIDE DIA. CAP BEQUIPMENT CO	ACITY (Gal./			/ 16" = 0.0014;		6: 5/16" =	0.004: 3/8" =		1/2" = 0.010;	5/8" = 0.016		
TUBING I	NSIDE DIA. CAP	ACITY (Gal./	Ft.): 1/8" = (0.0006; 3/	/16" = 0.0014; ler Pump;	1/4" = 0_002	6; 5/16" = Submersible F	0.004: 3/8" =	0 006;	1/2" = 0.010;			
PURGING SAMPLED	BY (PRINT) / AI	ACITY (Gal./ ODES: B	Ft.): 1/8" = (= Bailer;	BP = Bladd	/16" = 0.0014; der Pump; SAM R(S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA RE(S):	6; 5/16" = Submersible F	0.004: 3/8" =	Peristaltic P	1/2" = 0.010; Pump; O =	5/8" = 0.016 Other (Specify)		
PURGING SAMPLET	BEQUIPMENT CO	ACITY (Gal./ ODES: B	Ft.): 1/8" = (= Bailer;	BP = Bladd	/16" = 0.0014; der Pump; SAM	1/4" = 0.002 ESP = Electric PLING DA RE(S):	6; 5/16" = Submersible F	0.004; 3/8" = Pump; PP = SAMPLING INITIATED	Peristaltic P	1/2" = 0.010; Pump; O = 1	5/8" = 0.016 Other (Specify)		
SAMPLET PUMP OF	BEQUIPMENT CO BEQUIPMENT CO BEY (PRINT) / AI Stapley (RTUBING	ACITY (Gal./ ODES: B	Ft.): 1/8" = (= Bailer;	BP = Bladd SAMPLEF TUBING	716" = 0.0014; der Pump; SAM R(S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	6: 5/16" = Submersible F	0.004; 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED:	Peristaltic P	1/2" = 0.010; Pump; O = 1	5/8" = 0.016 Other (Specify)		
SAMPLED PUMP OF DEPTH IN	BEQUIPMENT CO	PACITY (Gal // ODES: B	Ft.): 1/8" = 0 = Bailer; n fee	BP = Bladd SAMPLEF TUBING	/16" = 0.0014; der Pump; SAM R(S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA RE(S):	6: 5/16" = Submersible F ATA FIEL Filtra	0.004; 3/8" = Pump; PP = SAMPLING INITIATED	Peristaltic P	1/2" = 0.010; Pump; O = SAMPLI ENDED FILTER	5/8" = 0.016 Other (Specify)		
PURGING SAMPLED PUMP OF DEPTH IN FIELD DE	BY (PRINT) / AI SHAPE TUBING N WELL (feet):	PACITY (Gal./ODES: B FFILIATION: (5 cos.) ON: PUM	Ft.): 1/8" = (= Bailer; n fcc	D 0006; 3/BP = Bladd SAMPLEF TUBING MATERIA	PIG" = 0.0014; der Pump; SAM R(S) SIGNATU	TI/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible F TA FIEL Filtra eplaced)	0 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: attion Equipment	Peristaltic P AT: 99 Y Type: E: Y	1/2" = 0.010; tump; O = SAMPLI ENDED FILTER	5/8" = 0.016 Other (Specify) NG AT: / 0 0 / SIZE: μ		
SAMPLET PUMP OF DEPTH IN FIELD DE SAMPLE	D BY (PRINT) / AI R TUBING N WELL (feet): CONTAMINATIO	PACITY (Gal./ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL	Ft.): 1/8" = (= Bailer; n fee ATION	D 0006; 3/BP = Bladd SAMPLEF TUBING MATERIA	JAG" = 0.0014; Jer Pump; SAM R(S) SIGNATU L CODE: HDI TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible F TA FIEL Filtra eplaced)	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS	Peristaltic P AT: 09 Type: E: Y IDED AND/OR	1/2" = 0.010; Dump; O = 1 SAMPLIENDED FILTER SAMPLING EQUIPMENT	5/8" = 0.016 Other (Specify) ING AT: //o/ SIZE: µ SAMPLE PU FLOW RA		
PURGING SAMPLET PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE	D BY (PRINT) / AI TO BY (PRINT) / AI TO STANDARY TO BY (PRINT) / AI TO BY (PRINT)	PACITY (Gal./ ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE	Ft.): 1/8" = (= Bailer; The property of the	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA N SAM PRESERV USE	PLE PRESER	PLING DARE(S): PE YATION (includ TOTAL VOL DED IN FIELD ()	FIEL Filtra phase splaced) rg wet ice) FINAL PH	SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT UNTERNATIVE ANALYSIS METH	Peristaltic P AT: 09 Type: E: Y DED AND/OR HOD	1/2" = 0.010; Dump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE	SAMPLE PL FLOW RA (mL per mir		
PURGING SAMPLET PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE	D BY (PRINT) / AI R TUBING N WELL (feet): CONTAINERS # CONTAINERS B 3	PACITY (Gal./ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 6 = Bailer; The first state of the state of	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA N SAM PRESERV USE HCI	ATION OF THE PRESERVATIVE LC	PE ATION (includ TOTAL VOL DED IN FIELD (Prefilled by lab	FIEL Filtra eplaced) ng wet ice) FINAL pH C 2	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS METH VOA/	Peristaltic P AT: 09 Y Type: E: Y IDED AND/OR HOD EDB	1/2" = 0.010; pump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE APP	SAMPLE PUFFLOW RA		
SAMPLEID CODE	BY (PRINT) / AI BY (PRINT) / AI R TUBING WELL (feet): CONTAMINATIO MPLE CONTAINERS B 3 1	PACITY (Gal./) ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 6 = Bailer; The Property of the	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA SAM PRESERV USE HCI	ATE" = 0.0014; der Pump; SAM R(S) SIGNATU L CODE: HDI TUBINO PLE PRESER VATIVE ED AD L	PE VATION (includ TOTAL VOL DED IN FIELD (i) Prefilled by lab	FIEL Filtra eplaced) ng wet ice) FINAL pH c 2 c 2 c 2	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS METH VOA/ Met	Peristaltic P AT: 99 Y Y Type: E: Y IDED AND/OR HOD EDB als	1/2" = 0.010; Pump; O = 1 SAMPLIENDED FILTER SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per min		
SAMPLET PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE	D BY (PRINT) / AI R TUBING N WELL (feet): CONTAMINATIO MPLE CONTAINERS B 1 1	PACITY (Gal./ ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA N) SAM PRESERV USE HC: HNC H2S0	JAGE = 0.0014; der Pump; SAM R(S) SIGNATU L CODE: HDI TUBING PLE PRESER VATIVE ED AD L D3 O4	PE VATION (includ TOTAL VOL DED IN FIELD (includ by lab Prefilled by lab Prefilled by lab	FIEL Filtra splaced) ng wet ice) FINAL pH	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS METH VOA/ Met	Peristaltic P AT: 09 Type: E: Y IDED AND/OR HOD EDB als	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir		
SAMPLEID CODE	BY (PRINT) / AI BY (PRINT) / AI R TUBING WELL (feet): CONTAMINATIO MPLE CONTAINERS B 3 1	PACITY (Gal./) ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 6 = Bailer; The Property of the	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA SAM PRESERV USE HCI	JAGE = 0.0014; der Pump; SAM R(S) SIGNATU L CODE: HDI TUBING PLE PRESER VATIVE ED AD L D3 O4	PE VATION (includ TOTAL VOL DED IN FIELD (i) Prefilled by lab	FIEL Filtra eplaced) ng wet ice) FINAL pH c 2 c 2 c 2	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS METH VOA/ Met	Peristaltic P AT: 09 Type: E: Y IDED AND/OR HOD EDB als	1/2" = 0.010; Pump; O = 1 SAMPLIENDED FILTER SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per min		
SAMPLET PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE	BY (PRINT) / AI R TUBING N WELL (feet): CONTAMINATIO MPLE CONTAINERS B 1 1 1	PACITY (Gal./ ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA N) SAM PRESERV USE HC: HNC H2S0	JAGE = 0.0014; der Pump; SAM R(S) SIGNATU L CODE: HDI TUBING PLE PRESER VATIVE ED AD L D3 O4	PE VATION (includ TOTAL VOL DED IN FIELD (includ by lab Prefilled by lab Prefilled by lab	FIEL Filtra splaced) ng wet ice) FINAL pH	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS METH VOA/ Met	Peristaltic P AT: 09 Type: E: Y IDED AND/OR HOD EDB als	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PLE FLOW RA (mL per mir		
PURGING SAMPLET PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE	BY (PRINT) / AI BY (PRINT) / AI CONTAMINATION MPLE CONTAINERS B 1 1 1 1 1	PACITY (Gal./ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE CG PE PE PE	TION VOLUME 40 mL 500 mL	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA N) SAM PRESERV USE HC: HNC H2S0	JAGE = 0.0014; der Pump; SAM R(S) SIGNATU L CODE: HDI TUBING PLE PRESER VATIVE ED AD L D3 O4	PE VATION (includ TOTAL VOL DED IN FIELD (includ by lab Prefilled by lab Prefilled by lab	FIEL Filtra splaced) ng wet ice) FINAL pH	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS METH VOA/ Met	Peristaltic P AT: 09 Type: E: Y IDED AND/OR HOD EDB als	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PLE FLOW RA (mL per mir		
PURGING SAMPLET PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE REMARK Odor: Size	D BY (PRINT) / AI R TUBING N WELL (feet): CONTAMINATIO MPLE CONTAINERS B 1 1 1 1 1 S: MA Advantage MA Advantag	PACITY (Gal./ODES: B FFILIATION: ON: PUM R SPECIFICA MATERIAL CODE CG PE PE PE	Ft.): 1/8" = 6 = Bailer; IP Y ATION VOLUME 40 mL 500 mL	D.0006; 3/BP = Bladd SAMPLEF TUBING MATERIA N) SAM PRESERV USE HC: HNC H2S0	ATE PRESER VATIVE ED O O O O O O O O O O O O O	PE VATION (includ TOTAL VOL DED IN FIELD (includ by lab Prefilled by lab Prefilled by lab	FIEL Filtra eplaced) ng wet ice) FINAL FINAL pH 1 < 2 2 < 2 4 0 (2)	O 004: 3/8" = Pump; PP = SAMPLING INITIATED D-FILTERED: ation Equipment DUPLICAT INTEN ANALYSIS METH VOA/ Met	Peristaltic P AT: 09 Y Type: E: Y IDED AND/OR HOD EDB als I3 3/TDS	1/2" = 0.010; pump; O = 1 SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PLE FLOW RA (mL per mir		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: JEC	Solid Waste	Land	ıfili					TE DCATION: 15	01 Omni Way,	St. Cloud, F	L 34733			
WELL NO:	MW-)	8			SA	MPLE ID:	1913	5- ML	-93		DATE:	51	15/1	9
		-					PURC	SING DA	TA					
WELL DIAMETER				TER (inches):		DEPTH	38 . 3 fe	INTERVAL eet to 78.3 f	eet TO WAT	ER (feet): /	6.73	PURGE I OR BAIL	PUMP TY ER: PP	PE .
(only fill out	if applicable)			= (fee	et –		O WATER) X		gallons	s/foot =		gallons
	if applicable)	URGI	E: 1 EQU	IPMENT VOL	. = PUMI = -		-		TY X T ens/foot X 4	_	GTH) + FLOW feet) + O			×3 = ひ Y∳gallons
	MP OR TUBIN WELL (feet)	AG A	3.5	FINAL PUN DEPTH IN			43-6	PURGIN INITIATE	G ED AT: 083		AT: OGO	8 TO	TAL VOL RGED (g	UME allons): 48
TIME	VOLUME PURGED (gallons)	V P	OLUMUL. OLUME URGED gallons)	PURGE RATE (gpm)	DEP TO WAT (fee	ER (s	pH tandard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLV OXYGE (circle un mg/L) % saturat	N TURB		COLOF (describe	
0856	3.40	3	- 40	0.14	16.8		.93	24.46	1458	0.11	0.4	2	der	-23.7
0900	0.44		84	0.11	16.8		. 92	34.46	145C	0.10			E-	-54.8
090Y	0.44		38	0.11	16 8		-92	24.45	1448	0.12	0.4	10	и	-22.0
0908	8.44	4.	87	0.11	16.2	33 3	.9)	24.46	1447	0.13	0.1	19	10	-55.7
TUBING IN	ACITY (Gallor SIDE DIA. CA	PACI	TY (Gal./F	0.75" = 0.02; -ft): 1/8" = 0. = Bailer;	0006;	3/16" = 0 dder Pum	,0014; p; E	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	.004; 3/8		1/2" = 0.	010;	12" = 5.88 5/8" = 0.016 her (Specify)
	-/11-0							LING DA	ATA					
Ne.1	Stuples	_	,	2 h he	/	R(S) SIC	SNATURI	E(S):		SAMPLII INITIATE	NG ED AT: 090	8	SAMPLING ENDED A	E190
PUMP OR	TUBING NELL (feet):		43	.5	TUBING	AL CODE	- HDPE)-FILTERED:		F	ILTER SI	ZE: μm
FIELD DEC	ONTAMINATI	ON:	PUM	PY			UBING	-	eplaced)	DUPLICA		(Ø	
	LE CONTAIN							ATION (includi			ENDED SIS AND/OR	SAMP	LING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	0	TERIAL	VOLUME	US	RVATIVE SED		TOTAL VOL D IN FIELD (I		ME	THOD	co	DE	(mL per minute)
MW->			CG	40 mL		CL		efilled by lab			A/EDB	AF		~150
	1		PE I	500 mL		103		efilled by lab			etals	AF		~415
	1		PE 🔥	250 mL		SO4	Pro	efilled by lab			NH3	AF		~415
4	1	-	PE	250 mL	INC	one		None	3.92	CL/N	O3/TDS	AF	-12	~ 415
REMARKS:	ucing od-						1							
MATERIAL		AG	= Amber (Silicone;	Glass; CG =	Clear G	lass; I		High Density F	Polyethylene;	LDPE = Lo	w Density Poly	yethylene	; PP	= Polypropylene;
SAMPLING	EQUIPMENT	COD		PP = After (TI FPP = Revers	rough) F	Peristaltic	Pump;	B = Bailer; SM = Straw	BP = Blad Method (Tubing		ESP = Elec in); O = O	tric Subm ther (Spe		ump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: JEI	D Solid Waste	Landfill				SITE LOCATION: 1	501 Omni Way,	St. Cloud, FL 34	733		
WELL NO:	MW-)	A		SAN	IPLE ID: (9135-14	W-JB		DATE:	5/15	119
						IRGING DA					
WELL		TUBIN	-		WELL SCR	EEN INTERVAL	STATIC	DEPTH //	PU	RGE PUMP 1	ГҮРЕ
	(inches): 2		TER (inches):	TAL WELL	DEPTH: 13	STATIC DEPTH	feet TO WAT	ER (feet): /6.	OR OR	BAILER: PP	
	if applicable)		= (22.6		16.78		0.16		ot = 0-9	3
EQUIPMEN	NT VOLUME P	JRGE: 1 EQI		= PUMP	VOLUME +	(TUBING CAPAC	ITY X T	UBING LENGTH) + FLOW CI	ELL VOLUME	gallons
(only fill out	if applicable)			=	gallons +	(gall	ons/foot X	feet) +	gallons	= gallons
	MP OR TUBIN		FINAL PU		BING .	PURGIN	lG	DUDOINO		TOTAL VO	LUME .
DEPTH IN	WELL (feet):	30	DEPTH IN			INITIAT	ED AT: 6828	ENDED AT:	7680	PURGED (gallons): 2. 4
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet	R (stand	ard (°C)	COND (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBIDI (NTUs)		
0840	1.30	1.30	0.10	17.2	0 4-30	33.71	943	0.31	0.75	Wee	-14.9
0844	0,40	1.60	0.10	17.)			938	0.35	0.63	liq.	-18.7
848	0.40	7.00	0.10	17.2		-		0.18	0.75	3	-24.7
0827	0.40	1.40	0.10	17.1	8 4.3	>3.74	939	0.15	0.62	. 4	-24.1
				-					-		
									-		
-					-						
			-								
						-					
					-						
WELL CAP	ACITY (Gallon:	s Per Foot): (0.75" = 0.02;	1" = 0.0	4; 1.25" =	= 0.06; 2 " = 0.1	6; 3 " = 0 37:	4" = 0.65;	5" = 1.02;	6" = 1.47;	12 " = 5.88
						4; 1/4" = 0 002		.004; 3/8" = 0	.006; 1/2	" = 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Blad		MPLING DA	Submersible Pu	ımp; PP = P	eristaltic Pun	np; O = 0	Other (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLE	R(S) SIGNA		AIA	CAMPLING		CAMPILI	10
Ne:1	Staply 1	(51057 =	tre		27/2			SAMPLING INITIATED A	T: 0852	SAMPLII ENDED	NG AT: 0857
PUMP OR	TUBING WELL (feet):	9		TUBING				D-FILTERED: Y	(A)		SIZE: μm
	ONTAMINATIO			•	L CODE: H		eplaced)	ion Equipment Ty DUPLICATE:		(A)	
	LE CONTAINE					RVATION (includ		INTEND			CAMPLE DUME
SAMPLE	#	MATERIAL	VOLUME	PRESER		TOTAL VOL	FINAL	ANALYSIS A	ND/OR E	SAMPLING EQUIPMENT	SAMPLE PUMF FLOW RATE
ID CODE	CONTAINERS 3	CODE	40 mL	USI		DDED IN FIELD (Prefilled by lat	mL) pH	VOA/EI		APP	(mL per minute
MW->	1	PE	500 mL	HNO		Prefilled by lat					~150
	1	-		H2S		Prefilled by lat		Metal NH3		APP	~ 380
de	1	PE PE	250 mL 250 mL	Noi		None		CL/NO3/		APP	~ 380
U			LOUTTE	1401		HOUSE	4.31	CL/NO3/	, 50	AFF	~ 380
							-				
REMARKS:				-							
Odor: Slig	14) redu	cini ud	o /								
MATERIAL	CODES:	AG = Amber S = Silicone;		= Clear Gla	ss; HDP er (Specify)	E = High Density	Polyethylene;	LDPE = Low De	ensity Polyeth	nylene; PF	= Polypropylene;
SAMPLING	EQUIPMENT		APP = After (T			p; B = Bailer	BP = Blad	der Pump:	SP = Flectric	Submersible	Pump:
			RFPP = Rever				Method (Tubing			r (Specify)	т интр,

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

VVLLL INC.	MW-1	R		SAMP	LE ID: /9	135-144	V -	11		DATE:	51	151	19
***************************************	19W-1	٥		0,							~ 1	.51	7
Maria		TUDING			VELL SCREE	GING DA	IA	STATIC D	EDTU	10	LIDOE	DUMP T	VDE
WELL	R (inches): 2	TUBING DIAME:	TER (inches):	3/16 D	EPTH: 33.9	feet to 47.9 f	eet	TO WATE	R (feet): 167	8 6		PUMP T' LER: PP	IPE
WELL VOL			LUME = (TO	TAL WELL D	EPTH - ST	ATIC DEPTH 1	ro w	ATER) X	WELL CAPACI	TY			
FOLIPMEN	NT VOLUME P	URGE: 1 FOL	= (= PLIMP V	feet –	IBING CAPACI	ITY	feet) X	JBING LENGTH)	gallons/	CFII \	OLUME	gall
	t if applicable)	ONOL. I EQU	, million voi		·								
MUTIAL DI	ILAD OD TUDIN	10	T FINAL BUI		-	gallo		001 X 3	-	+ 0.		TAL VOI	= 0, % gall
	JMP OR TUBIN WELL (feet):	43		MP OR TUBI WELL (feet)	: 43	PURGIN	ED AT	0710	PURGING ENDED AT: DISSOLVED	0807	- PL	JRGED (gallons): 6.
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	PH (standar	TEMP (°C)	(cire	COND. rcle units) nhos/cm	OXYGEN (circle units) impl or % saturation	TURBII (NTU		COLO (descrit	
3750	4.00	4.80	9.16	16.87	4.00	34.28	20	-CC	0.19	0.4	4	Clark	-30.6
0754	0.64	5.44	0.16	16.87	4.00	34.78	20	>54	0.27	0.30		5-4	- 30.5
0758	0.48	5.92	0.11	16.88	4,00	24.99	3	078	0.35	0.5	8	4	-30.
1080	0.44	6.40	0:12	16.85		15.00	3	047	0.33	0.10		66	- 75.
											7		
			-	+						1	-		
			-				-			-	-4		
			1							-	-		
											- 1		
-													
		7											
		7.											
WELL CAI	PACITY (Gallor	ns Per Foot):	0.75" = 0 02; Et): 4/9" = 0	1" = 0.04;	1.25" = 0	06; 2 " = 0.1	16;			5" = 1.02;		= 1.47;	12" = 5.88 5/8" = 0.016
TUBING IN	NSIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0	.0006; 3/1	16" = 0_0014;	1/4" = 0.002	26;	5/16" = 0.	004; 3/8" = 0	006; 1	1/2" = 0	0.010;	5/8" = 0.016
TUBING IN	PACITY (Gallor NSIDE DIA. CA EQUIPMENT (PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0	1" = 0,04; .0006; 3/1 BP = Bladde	16" = 0.0014; er Pump;	1/4" = 0,002 ESP = Electric	26; Subn	5/16" = 0 mersible Pu	004; 3/8" = 0		1/2" = 0	0.010;	
TUBING IN	NSIDE DÍA. CA EQUIPMENT (PACITY (Gal./ CODES: B	Ft.): 1/8" = 0	.0006; 3/1 BP = Bladde	16" = 0.0014; er Pump; SAM	1/4" = 0.002 ESP = Electric PLING D/	26; Subn	5/16" = 0 mersible Pu	004; 3/8" = 0 mp; PP = Pe	006; 1 eristaltic P	1/2" = 0 ump;	0 010; O = O	5/8" = 0.016 ther (Specify)
TUBING IN PURGING	EQUIPMENT	PACITY (Gal./ CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	BP = Bladde	16" = 0.0014; er Pump; SAM	1/4" = 0.002 ESP = Electric PLING D/	26; Subn	5/16" = 0 mersible Pu	004; 3/8" = 0 mp; PP = Pe	006; 1 eristaltic P	1/2" = 0 ump;	0 010; O = O	5/8" = 0.016
TUBING IN	EQUIPMENT	PACITY (Gal./ CODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Bladde	16" = 0.0014; er Pump; SAM	1/4" = 0.002 ESP = Electric PLING D/	26; Subn	5/16" = 0 mersible Pu	004; 3/8" = 0 mp; PP = Pe	eristaltic P	1/2" = 0 ump;	0 = 0 SAMPLINENDED A	5/8" = 0.016 ther (Specify)
PURGING SAMPLED Mc. 1. PUMP OR	EQUIPMENT	PACITY (Gal./ CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	SAMPLER	16" = 0.0014; er Pump; SAM	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subn	5/16" = 0 mersible Pui	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A	eristaltic Property of the Control o	1/2" = 0 ump;	0 = 0 SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
SAMPLED VC: 1 PUMP OR DEPTH IN	BY (PRINT) // TUBING	PACITY (Gal./ CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIAL	Pump; SAM SIGNATU	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subn	5/16" = 0 mersible Pui	3/8" = 0 mp; PP = Pe SAMPLING INITIATED A -FILTERED: Y	noo6; 1	1/2" = 0 ump;	0 = 0 SAMPLINENDED A	5/8" = 0.016 ther (Specify)
PUMP OR DEPTH IN	EQUIPMENT (BY (PRINT) // Shape / TUBING WELL (feet):	PACITY (Gal./ CODES: B AFFILIATION: GC 57 ON: PUN	Ft.): 1/8" = 0 = Bailer; A ke	.0006: 3/1 BP = Bladde SAMPLER TUBING MATERIAL	SAM SIGNATU CODE: HDI	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subn ATA	FIELD Filtratio	SAMPLING INITIATED A' FILTERED: Y Dun Equipment Ty DUPLICATE: INTEND	DO06; 1 Pristaltic Pri	1/2" = 0 ump;	0 = 0 SAMPLINENDED A FILTER S PLING	5/8" = 0.016 ther (Specify) IG AT: OSOC IZE: μ SAMPLE PL
SAMPLED DEC	BY (PRINT) / Styles BY (PRINT) / TUBING WELL (feet): CONTAMINATI PLE CONTAIN	PACITY (Gal./ CODES: B AFFILIATION: (500 57 ON: PUN ER SPECIFICA MATERIAL	Ft.): 1/8" = 0 = Bailer; A Rec ATION	SAMPLER TUBING MATERIAL SAMP	SAM SIGNATU CODE: HDI TUBING	1/4" = 0.002 ESP = Electric PLING D/ RE(S): PE Y NATION (includ TOTAL VOL	26; Subn ATA replace	5/16" = 0 mersible Pur FIELD Filtration ret ice) FINAL	MP = PO SAMPLING INITIATED A FILTERED: Y DUPLICATE:	DO06; 1 Pristaltic Pri	SAM EQUI	0 = 0 SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG OSOC IZE: μ SAMPLE PL FLOW RA
SAMPLED DEC	BY (PRINT) / Styles (PRINT) / TUBING WELL (feet): CONTAMINATI PLE CONTAIN # CONTAINERS	PACITY (Gal./CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; HP Y (1 ATION VOLUME	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE	SAM SSIGNATU CODE: HDI TUBING PLE PRESER	1/4" = 0.002 ESP = Electric PLING D/ RE(S): YE YATION (includ TOTAL VOL DED IN FIELD (26; Subn ATA eplace	FIELD Filtrationed) ret ice) FINAL pH	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	T: None: Pristaltic Principal (None: Y ED (ND/OR) DD	SAM EQUI	SAMPLING PMENT	SAMPLE PL
SAMPLED DEC	BY (PRINT) TUBING WELL (feet): CONTAMINATI PLE CONTAIN # CONTAINERS 3	PACITY (Gal./CODES: B AFFILIATION: ON: PUN ER SPECIFICA MATERIAL CODE CG	Ft.): 1/8" = 0 = Bailer; MP Y (1) ATION VOLUME 40 mL	SAMPLERI TUBING MATERIAL SAMP PRESERV. USEE HCL	TUBING PLE PRESER ATIVE D ADDITIONAL CODE: HDI ADDITIONAL CODE PRESER ATIVE D ADDITIONAL CODE	1/4" = 0.002 ESP = Electric PLING D/ RE(S): PE Y NATION (includ TOTAL VOL DED IN FIELD (Prefilled by lal	eplace (mL)	FIELD Filtration ed to PH	MP = 0004; 3/8" = 00 mp; PP = Po SAMPLING INITIATED A: -FILTERED: Y on Equipment Ty DUPLICATE:	pe: Y ED ND/OR DB	SAM EQUI	O = 0 SAMPLINENDED A FILTER S PLING PMENT DDE PP	SAMPLE PL FLOW RA (mL per min
SAMPLED DEC SAMPLE SAMPLE	TUBING WELL (feet): CONTAMINATI PLE CONTAINERS 3 1	PACITY (Gal./CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL	CODE: HDF TUBING PLE PRESER ATIVE ADI	TOTAL VOLDED IN FIELD (Prefilled by lal	eplaceding w	FIELD Filtration et ice) FINAL pH < 2 < 2	SAMPLING INITIATED A' FILTERED: YON Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/E Metal	DO06; The pristaltic Principle of the pristaltic Principle of the principl	SAM EQUI	O.010; O = O SAMPLIN ENDED A FILTER S PLING PMENT DDE PPP	SAMPLE PL FLOW RA (mL per min
SAMPLED DEC SAMPLE ID CODE	RSIDE DIA. CA EQUIPMENT (BY (PRINT) / Standard (BY (BY (BY (BY (BY (BY (BY (BY (BY (BY (PACITY (Gal./CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; MP Y (1 ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO H2SC	SAM SIGNATU CODE: HDI TUBING PLE PRESER ATIVE ADI	TOTAL VOL DED IN FIELD (Prefilled by lal Prefilled by lal	eplaceding w	FIELD Filtration ed) ret ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	ED ND/OR DB	SAM EQUI CC	O = 0 SAMPLIN ENDED A FILTER S PLING PMENT DDE PP	SAMPLE PLE FLOW RA (mL per min
SAMPLED DEC	TUBING WELL (feet): CONTAMINATI PLE CONTAINERS 3 1	PACITY (Gal./CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEI HCL	SAM SIGNATU CODE: HDI TUBING PLE PRESER ATIVE ADI	TOTAL VOLDED IN FIELD (Prefilled by lal	eplaceding w	FIELD Filtration et ice) FINAL pH < 2 < 2	SAMPLING INITIATED A' FILTERED: YON Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/E Metal	ED ND/OR DB	SAM EQUI CC	O.010; O = O SAMPLIN ENDED A FILTER S PLING PMENT DDE PPP	SAMPLE PL FLOW RA' (mL per min
SAMPLED DEC SAMPLE ID CODE	RSIDE DIA. CA EQUIPMENT (BY (PRINT) / Standard (BY (BY (BY (BY (BY (BY (BY (BY (BY (BY (PACITY (Gal./CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Ft.): 1/8" = 0 = Bailer; MP Y (1 ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO H2SC	SAM SIGNATU CODE: HDI TUBING PLE PRESER ATIVE ADI	TOTAL VOL DED IN FIELD (Prefilled by lal Prefilled by lal	eplaceding w	FIELD Filtration ed) ret ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	ED ND/OR DB	SAM EQUI CC	O = 0 SAMPLIN ENDED A FILTER S PLING PMENT DDE PP	SAMPLE PLE FLOW RA (mL per mir
SAMPLED DECEMBER 10 CODE	BY (PRINT) TUBING WELL (feet): CONTAMINATI PLE CONTAINERS 3 1 1 1	PACITY (Gal./CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE	Ft.): 1/8" = 0 = Bailer; MP Y (1 ATION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO H2SC	SAM SIGNATU CODE: HDI TUBING PLE PRESER ATIVE ADI	TOTAL VOL DED IN FIELD (Prefilled by lal Prefilled by lal	eplaceding w	FIELD Filtration ed) ret ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	ED ND/OR DB	SAM EQUI CC	O = 0 SAMPLIN ENDED A FILTER S PLING PMENT DDE PP	SAMPLE PLE FLOW RA (mL per min
SAMPLED DECEMBER 10 CODE	BY (PRINT) TUBING WELL (feet): CONTAMINATI PLE CONTAIN # CONTAINERS 3 1 1 1	PACITY (Gal./CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE	Ft.): 1/8" = 0 = Bailer; MP Y (1) ATION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIAL SAMP PRESERV. USEE HCL HNO H2SC	CODE: HDI TUBING PLE PRESER ATIVE ADI 3 04	TOTAL VOL DED IN FIELD (Prefilled by lal Prefilled by lal	eplace eplace (mL) b b	FIELD Filtration ed) ret ice) FINAL pH < 2 < 2 < 2 < 2	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/EI Metal NH3	ED ND/OR DD DB s	SAM EQUI CC A A	O.010; O = O SAMPLIN ENDED A FILTER S PLING PMENT DDE PP PP PP	SAMPLE PLOW RA (mL per mir

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-14	4		SAME	PLE ID: 191	<u> </u>				DATE.	>/'	5/19	
					PUR	GING DA	ATA						
WELL		TUBING			VELL SCREEN			STATIC D				PUMP TY	PE
	R (inches): 2 LUME PURGE:		TER (inches):						R (feet): /6.		OR BAIL	LER: PP	
	ut if applicable)	I WELL VOL	,				IO W	•				- 0	7
EOLIIDME	NT VOLUME P	IIDGE: 4 EOU		- DIIMD /	feet -	IG. 91	TTV	feet) X	O./6 IBING LENGTH	gallons	/foot =	_ 0, 9	gallo
	ut if applicable)	ORGE. TEQU	NEWE VOL	– FUIVIF V	·						OLLL V		
			T	=	gallons + (lons/fo	oot X	feet) +	1 -	gallons =	
	UMP OR TUBIN WELL (feet):)o		/IP OR TUB WELL (feet)		PURGII	ED A	T: 0714	PURGING ENDED AT: DISSOLVED	0740	p PU	OTAL VOLU URGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	(standard units)	TEMP. (°C)	(cir	COND rcle units) nhos/cm ruS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBII (NTU		COLOR (describe	
1650	1.30	1.70	0.085	476	4.63	14.36	10	728	1.10	4.3	Y	S. Yellow	1 -43
0732	0.34	1.54	0.085	17.68	4.60	34.38	1	735	0.57	3.3		4.	-56.
0736	0.34	1.28	0.085	(7.0		34.39		35	0.31	3.6		e.	- 66
0740	0.34	3.22	0,085	17.75		JY. 39		731	0.27	3.0		6«	-77
			0,00		1.00								
	1												
				1			1						
				1									
			1		111	1	1						
WELL CA	APACITY (Gallor	as Per Footh: (0.75" = 0.02	1" = 0.04	125" = 0	06: 2" = 0	16:	3" = 0.37	4 " = 0.65	5" = 1.02°	6":	= 1.47:	12" = 5.88
	NPACITY (Gallor			1" = 0 04 0006; 3/	; 1.25" = 0 16" = 0.0014;			3" = 0.37; 5/16" = 0.		5" = 1.02; 0.006;	6" = 1/2" = 0		12" = 5.88 8/8" = 0.016
TUBING		PACITY (Gal /	Ft.): 1/8" = 0.		16" = 0.0014; er Pump;	1/4" = 0.00 ESP = Electric	26; c Subr	5/16" = 0.0 mersible Pur	004; 3/8" =		1/2" = 0	0.010; 5	
PURGING	NSIDE DIA. CA	PACITY (Gal /I CODES: B	Ft.): 1/8" = 0.	0006; 3/ BP = Bladd	16" = 0.0014; er Pump; SAMI	1/4" = 0.00 ESP = Electric PLING D	26; c Subr	5/16" = 0.0 mersible Pur	004; 3/8" =	0.006;	1/2" = 0	0.010; 5	5/8'' = 0.016
PURGING SAMPLEI	D BY (PRINT) /	PACITY (Gal /I CODES: B	Ft.): 1/8" = 0 = Bailer;	0006; 3/ BP = Bladd	16" = 0.0014; er Pump; SAMI	1/4" = 0.00 ESP = Electric PLING D	26; c Subr	5/16" = 0.0 mersible Pur	004; 3/8" = 1 mp; PP = F	0 006; Peristaltic P	1/2" = 0 ump;	0.010; 5 0 = Oth	6/8" = 0.016 her (Specify)
PURGING SAMPLET	D BY (PRINT)	PACITY (Gal /I CODES: B AFFILIATION:	Ft): 1/8" = 0 = Bailer;	0006; 3/ BP = Bladd	16" = 0.0014; er Pump; SAMI	1/4" = 0.00 ESP = Electric PLING D	26; c Subr	5/16" = 0, mersible Pur	3/8" = 0 mp; PP = F SAMPLING INITIATED A	0 006; Peristaltic P	1/2" = 0 rump;	O = Oth SAMPLING ENDED AT	6/8" = 0.016 her (Specify)
PURGING SAMPLEI PUMP OF	D BY (PRINT) /	PACITY (Gal /I CODES: B	Ft): 1/8" = 0 = Bailer;	0006: 3/ BP = Bladd SAMPLER TUBING	16" = 0.0014; er Pump; SAMI	1/4" = 0.00 ESP = Electric PLING D	26; c Subr	5/16" = 0, mersible Pur	004; 3/8" = 1 mp; PP = F	O 006; Peristaltic P	1/2" = 0 rump;	O = Oth SAMPLING ENDED AT	6/8" = 0.016 her (Specify)
PURGING SAMPLET PUMP OF DEPTH IN	BY (PRINT)	PACITY (Gal./I) CODES: B AFFILIATION: (Scosyal	Ft.): 1/8" = 0. = Bailer;	0006: 3/ BP = Bladd SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAMI (S) SIGNATUR	1/4" = 0.00 ESP = Electric PLING D. RE(S):	26; c Subr	5/16" = 0, mersible Pur A FIELD- Filtratic	3/8" = 0004; 3/8" = 0004; PP = F	o 006; Peristaltic P	1/2" = 0	O = Oth SAMPLING ENDED AT	6/8" = 0.016 her (Specify)
SAMPLEI PUMP OF DEPTH IN	D BY (PRINT) // R TUBING N WELL (feet):	PACITY (Gal // CODES: B AFFILIATION: SOSTA ON: PUM	Ft.): 1/8" = 0 = Bailer;	0006: 3/ BP = Bladd SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAMI	1/4" = 0.00 ESP = Electric PLING D RE(S): E Y N (26; c Subr	FIELD: Filtratic	904: 3/8" = 1 pp: PP = F SAMPLING INITIATED A FILTERED: You be a company to the	o 006; Peristaltic P	1/2" = 0 'ump;	O = Oth SAMPLING ENDED AT	is (Specify) Graph (Specify) Graph (Specify) Graph (Specify)
SAMPLEI PUMP OF DEPTH IN	D BY (PRINT) / PRINTS (PRINT) / PRINTS (PRINT) / PRINTS (PRINT) / PRINTS (PRINTS (PRIN	PACITY (Gal // CODES: B AFFILIATION: SOSTA ON: PUM	Ft.): 1/8" = 0. = Bailer; IP Y N	0006: 3/ BP = Bladd SAMPLER TUBING MATERIAL	16" = 0.0014; er Pump; SAMI (S) SIGNATUF L CODE: HDP TUBING	1/4" = 0.00 ESP = Electric PLING D RE(S): E Y N (26; c Subr	FIELD: Filtratic	SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE ANALYSIS A	D 006; Peristaltic P AT: 077 N Vpe: Y DED AND/OR	SAM EQUI	O.010: 5 O = Ott SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT	SAMPLE PU
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / PRINTS (PRINT) / PRINTS (PRINT) / PRINTS (PRINT) / PRINTS (PRINTS (PRIN	PACITY (Gal // CODES: B AFFILIATION: SOS 16/ ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0. = Bailer; IP Y NATION VOLUME	0006: 3/BP = Bladd SAMPLEB TUBING MATERIAI SAMI PRESERV USE	16" = 0.0014; er Pump; SAMI SSIGNATUR L CODE: HDP TUBING PLE PRESERV ATIVE D ADD	1/4" = 0.00 ESP = Electric PLING D RE(S): E Y N (included to the content of the	replaceding w	FIELD-Filtration retrieved) FINAL PH 17 PH 18	SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE INTENE ANALYSIS A METHO	DO 006; Peristaltic P	SAM EQUI	SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE	SAMPLE PU
SAMPLEI PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE	D BY (PRINT) / PRINTS (PRINT) / PRINTS (PRINT) / PRINTS (PRINT) / PRINTS (PRINTS (PRIN	PACITY (Gal // CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE CG	Ft): 1/8" = 0 = Bailer; IP Y N ATION VOLUME 40 mL	0006: 3/BP = Bladd SAMPLER TUBING MATERIAL SAMI PRESERV USE HCI	16" = 0.0014; er Pump; SAMI L(S) SIGNATUF L CODE: HDP TUBING PLE PRESERV ATIVE D ADD	TOTAL VOL	replaceding which (mL)	FIELD-Filtration ret ice) FINAL pH < 2	SAMPLING INITIATED A FILTERED: You Equipment T: DUPLICATE ANALYSIS A METHIC VOA/E	O 006; Peristaltic P AT: 077 N AT: 077 N AND/OR DB	SAM EQUI	O.010: 5 O = Ott SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE	SAMPLE PL FLOW RA' (mL per min
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) // R TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 3 1	PACITY (Gal./I CODES: B AFFILIATION: SOSTAL ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft): 1/8" = 0. = Bailer; IP Y NATION VOLUME 40 mL 500 mL	O006: 3/BP = Bladd SAMPLEB TUBING MATERIAL SAMI PRESERV USE HCI HNC	16" = 0.0014; er Pump; SAMI US) SIGNATUF TUBING PLE PRESERV VATIVE D ADD L P D3 F	1/4" = 0.00 ESP = Electric PLING D RE(S): E Y N (i ATION (included) TOTAL VOL DED IN FIELD Prefilled by la Prefilled by la	replaceding was (mL)	FIELD-Filtration ret ice) FINAL pH < 2 < 2	SAMPLING INITIATED A FILTERED: Y ON Equipment T DUPLICATE ANALYSIS A METH VOA/E Meta	O 006; Peristaltic P AT: 077 N Pype: Y DED AND/OR DB Is	SAM EQUI	O.010: 5 O = Ott SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE APP	SAMPLE PUFLOW RATION OF THE POWER TO THE POW
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) / PRINTS	PACITY (Gal // CODES: B AFFILIATION: SOS 16/ ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	O006: 3/BP = Bladd SAMPLEB TUBING MATERIAI SAMI PRESERV USE HCI HNC H2SC	16" = 0.0014; er Pump; SAMI SSIGNATUR L CODE: HDP TUBING PLE PRESERV ATIVE D ADD L F D ATIVE D ADD F D A A A A	TOTAL VOLUME OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY I	replaceding was (mL)	FIELD Filtration (Control of the Control of the Con	SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE ANALYSIS A METH VOA/E Meta NH3	o 006; Peristaltic P AT: 074 N ype: Y DED AND/OR DB Is	SAM EQUI CC	SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE APP	SAMPLE PL FLOW RA' (mL per min (SO) (MS) (MS) (MS) (MS) (MS) (MS) (MS) (MS
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	D BY (PRINT) // R TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 3 1	PACITY (Gal./I CODES: B AFFILIATION: SOSTAL ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft): 1/8" = 0. = Bailer; IP Y NATION VOLUME 40 mL 500 mL	O006: 3/BP = Bladd SAMPLEB TUBING MATERIAL SAMI PRESERV USE HCI HNC	16" = 0.0014; er Pump; SAMI SSIGNATUR L CODE: HDP TUBING PLE PRESERV ATIVE D ADD L F D ATIVE D ADD F D A A A A	1/4" = 0.00 ESP = Electric PLING D RE(S): E Y N (i ATION (included) TOTAL VOL DED IN FIELD Prefilled by la Prefilled by la	replaceding was (mL)	FIELD-Filtration ret ice) FINAL pH < 2 < 2	SAMPLING INITIATED A FILTERED: Y ON Equipment T DUPLICATE ANALYSIS A METH VOA/E Meta	o 006; Peristaltic P AT: 074 N ype: Y DED AND/OR DB Is	SAM EQUI CC	SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE APP	SAMPLE PL FLOW RA' (mL per min
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE MW - I	D BY (PRINT) / PRINTS	PACITY (Gal // CODES: B AFFILIATION: SOS 16/ ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	O006: 3/BP = Bladd SAMPLEB TUBING MATERIAI SAMI PRESERV USE HCI HNC H2SC	16" = 0.0014; er Pump; SAMI SSIGNATUR L CODE: HDP TUBING PLE PRESERV ATIVE D ADD L F D ATIVE D ADD F D A A A A	TOTAL VOLUME OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY I	replaceding was (mL)	FIELD Filtration (Control of the Control of the Con	SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE ANALYSIS A METH VOA/E Meta NH3	o 006; Peristaltic P AT: 074 N ype: Y DED AND/OR DB Is	SAM EQUI CC	SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE APP	SAMPLE PL FLOW RA' (mL per min (SO) (MS) (MS) (MS) (MS) (MS) (MS) (MS) (MS
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAMPLE ID CODE MW - I	D BY (PRINT) / PRINTS	PACITY (Gal // CODES: B AFFILIATION: SOS 16/ ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	TION VOLUME 40 mL 500 mL	O006: 3/BP = Bladd SAMPLEB TUBING MATERIAI SAMI PRESERV USE HCI HNC H2SC	16" = 0.0014; er Pump; SAMI SSIGNATUR L CODE: HDP TUBING PLE PRESERV ATIVE D ADD L F D ATIVE D ADD F D A A A A	TOTAL VOLUME OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY I	replaceding was (mL)	FIELD Filtration (Control of the Control of the Con	SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE ANALYSIS A METH VOA/E Meta NH3	o 006; Peristaltic P AT: 074 N ype: Y DED AND/OR DB Is	SAM EQUI CC	SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE APP	SAMPLE PLE FLOW RA' (mL per min
PURGING SAMPLEI PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE MW -1	D BY (PRINT) // R TUBING WELL (feet): CONTAMINATI MPLE CONTAINERS 3 1 1 1 1 1 S:	PACITY (Gal // CODES: B AFFILIATION: SOSTA / PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE	TION VOLUME 40 mL 500 mL	O006: 3/BP = Bladd SAMPLEB TUBING MATERIAI SAMI PRESERV USE HCI HNC H2SC	16" = 0.0014; er Pump; SAMI SSIGNATUR L CODE: HDP TUBING PLE PRESERV ATIVE D ADD L F D ATIVE D ADD F D A A A A	TOTAL VOLUME OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY I	replaceding was (mL)	FIELD Filtration (Control of the Control of the Con	SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE ANALYSIS A METH VOA/E Meta NH3	o 006; Peristaltic P AT: 074 N ype: Y DED AND/OR DB Is	SAM EQUI CC	SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE APP	SAMPLE PLE FLOW RA' (mL per min
PURGING SAMPLEI PUMP OF DEPTH IN SAMPLE ID CODE MIN - I	D BY (PRINT) / PER TUBING WELL (feet): CONTAMINATION TO THE CONTAINERS 1 1 1 1	PACITY (Gal // CODES: B AFFILIATION: SOSTA / PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE	TP Y NATION VOLUME 40 mL 500 mL 250 mL	O006: 3/BP = Bladd SAMPLEB TUBING MATERIAI SAMI PRESERV USE HCI HNC H2SC	16" = 0.0014; er Pump; SAMI SAMI SIGNATUF TUBING PLE PRESERV ATIVE D ADD P D A A A A A A A A A A A A A A	TOTAL VOLUME OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY IN SIZE OF CHILLED BY IN SIZE OF CHILD BY I	replace replac	FIELD-Filtration ret ice) FINAL pH < 2 < 2 < 2 < 2	SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE ANALYSIS A METH VOA/E Meta NH3	O 006; Peristaltic P AT: 077 N Pype: Y AND/OR DB Is TDS	SAM EQUI CO	O.010: 5 O = Ott SAMPLING ENDED AT FILTER SIZ N IPLING IPMENT ODE APP APP	SAMPLE PLE FLOW RA (mL per mir ~ 1 50 ~ 3 30 0

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: January 2017

	NO: C	W-3	L IA		SAMPL	EID: 191	34-CW	- (A		DATE: 5	1141.	1
		NS				PUR	GING DA	TA				
WELL	TER (inch		TUBING		W	ELL SCREEN	INTERVAL	STATIC [DEPTH	PU	RGE PUMP 1	YPE
			1 WELL VOI	TER (inches)	TAL WELL DE	PTH - STA	eet to / X f	eet TO WATE	ER (feet): 5-	OF OF	BAILER: PP	
(only fi	II out if ap	plicable)					THO DEL THE					
EQUIP	MENT VO	LUME PL	JRGE: 1 EQU	= (IPMENT VO	L. = PUMP VO	feet - DLUME + (TU	BING CAPACI	feet) X	JBING LENGTH	gallons/fo + FLOW Ci	ot = ELL VOLUME	gallo
(only fi	II out if ap	plicable)				nallons + (2)	OO! Y nallo	ons/foot X		+ 0.1		=0.}7 gallo
INITIA	L PUMP C	OR TUBING	3	FINAL PU	MP OR TUBIN		PURGIN	G	DUDOING	-	TOTAL VO	LUMAT
DEPTI	IN WELL	L (feet):	13	DEPTH IN	WELL (feet):	13	INITIATE	DAT: 1116	ENDED AT:	(728	PURGED (gallons): 4.6
	_ vo	OLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	TEMP:	COND, (circle units)	DISSOLVED OXYGEN	TUDDID		000
TIMI	E PU	URGED	PURGED	RATE	WATER	(standard units)	(°C)	μmhos/cm	(circle units) mg/L or	TURBIDI (NTUs)		
		gallons)	(gallons)	(gpm)	(feet)	dinio,		or μS/cm	% saturation		Yelle	2
1746	F1-	.60	3.60	0.12	5-69	4.96	1207	571	0.11	1.81	ele.	
135	7.4	, y y	4.08	0.13	5-85	4.96	10-07	571	0.11	1.78	(/20	2
172	9 0.	48	4.5L	0.12	5.89	4.96	27.08	585	0.10	3.37	? 4	- 40
				1								
	_	_										
	_											
1	_											
WFII	CAPACIT	V (Gallons	Per Foot)	75" = 0.02	1" - 0.04:	4 25" - 0.0	G: 2" - 0.4	2H = 0.27.	42 - 0.05	FII - 4.00	av	
WELL TUBIN	CAPACIT G INSIDE	Y (Gallons	s Per Foot): 0	0.75" = 0.02; Ft.): 1/8" = 0	1" = 0,04;	1.25" = 0.0 " = 0.0014;	6; 2" = 0.11 1/4" = 0.002	3; 3 " = 0.37; 6; 5/16 " = 0.		5" = 1.02; .006; 1/2	6" = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016
TUBIN	G INSIDE	Y (Gallons DIA, CAP PMENT C	ACITY (Gal./F	0.75" = 0.02; Ft.): 1/8" = 0	1" = 0.04; 0.0006; 3/16 BP = Bladder	" = 0.0014; Pump; E	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0		" = 0.010;	
PURG	G INSIDE ING EQUI	DIA, CAP	ODES: B	t.): 1/8" = 0	BP = Bladder	" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric PLING DA	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0	.006; 1/2	" = 0.010;	5/8" = 0.016
PURG	G INSIDE	PMENT C	ACITY (Gal./FODES: B	Ft.): 1/8" = 0 = Bailer;	BP = Bladder	Pump; E SAMP S) SIGNATUR	1/4" = 0.002 SP = Electric PLING DA	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0. mp; PP = Pe	.006; 1/2 eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016 Other (Specify)
SAMPI PURGI	G INSIDE	PMENT C	FILIATION:	Ft.): 1/8" = 0 = Bailer;	BP = Bladder	" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric PLING DA	5/16" = 0. Submersible Pur	3/8" = 0. mp: PP = Pe SAMPLING INITIATED AT	.006; 1/2 eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016 Other (Specify)
SAMPI Vei PUMP DEPTH	G INSIDE ING EQUI LED BY (P I Stage OR TUBIN H IN WELL	PMENT C	PACITY (Gal./FODES: B	Et.): 1/8" = 0 = Bailer;	BP = Bladder SAMPLER(S	Pump; E SAMP SIGNATUR CODE: HDPE	1/4" = 0.002 ESP = Electric PLING DA E(S).	Submersible Pur	004; 3/8" = 0. mp; PP = Pe	eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016 Other (Specify)
SAMPI Vei PUMP DEPTH	G INSIDE ING EQUI LED BY (P I Stage OR TUBIN H IN WELL	PMENT C	PACITY (Gal./FODES: B	Et.): 1/8" = 0 = Bailer;	BP = Bladder SAMPLER(S	Pump; E SAMP S) SIGNATUR	1/4" = 0.002 ESP = Electric PLING DA E(S).	5/16" = 0. Submersible Pur	SAMPLING INITIATED AT	eristaltic Pum	" = 0.010; np; O = 0	5/8" = 0.016 Other (Specify)
SAMPI PURGI PUMP DEPTH FIELD	G INSIDE ING EQUII LED BY (P OR TUBIN H IN WELL DECONTA	PMENT C PRINT) A PRINT) PRINTT PRINTT PRINTT PRINT) PRINTT P	FFILIATION: FFILI	Et.): 1/8" = 0 = Bailer;	SAMPLERS TUBING MATERIAL O	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING	1/4" = 0.002 ESP = Electric PLING DA E(S) Y (re	Submersible Pur TA FIELD: Filtratic	SAMPLING INITIATED AT PEQUIPMENT TY DUPLICATE INTENDE	Pristaltic Purr	SAMPLINE ENDED / FILTER S CN) SAMPLING	SAMPLE PUN
SAMPI New PUMP DEPTH FIELD	G INSIDE ING EQUI LED BY (P COR TUBIN H IN WELL DECONTA	PMENT C PRINT) A PRINT A PRINT) A PRINT	FILIATION: MATERIAL	Et.): 1/8" = 0 = Bailer;	SAMPLERS TUBING MATERIAL O SAMPL SAMPLERS TUBING MATERIAL O SAMPL	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERV/	1/4" = 0.002 ESP = Electric PLING DA E(S) Y O(re ATION (includi	Submersible Pur TA FIELD: Filtratic placed) ng wet ice) FINAL	904; 3/8" = 0. PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE	eristaltic Purr	SAMPLIN ENDED / FILTER S	SAMPLE PUN FLOW RATE
SAMPL FIELD SAMPL DEDTI- FIELD SAMPL ID COD	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONTA AMPLE C E CONT	PRINT) / Al PRINT)	FFILIATION: FFILI	Et): 1/8" = 0 = Bailer; P Y (SAMPLERS TUBING MATERIAL O	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERV/	1/4" = 0.002 ESP = Electric PLING DA E(S) Y (re	FIELD: placed) ng wet ice) FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Tyl DUPLICATE INTENDE ANALYSIS AI	Pristaltic Purr	SAMPLINE ENDED / FILTER S CN SAMPLING EQUIPMENT	SAMPLE PUM FLOW RATE (mL per minut
SAMPL PUMP DEPTH FIELD S SAMPL	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONTA AMPLE C E CONT	PMENT C PRINT) A PMENT C PRINT) A PMENT C PMEN	PACITY (Gal./FODES: B FFILIATION: TOTAL T	P Y (TION)	SAMPLERS TUBING MATERIAL O SAMPL SAMPLERS TUBING MATERIAL O SAMPL PRESERVA USED	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERV TIVE ADDE	1/4" = 0.002 ESP = Electric PLING DA E(S) Y O(re ATION (includi TOTAL VOL ED IN FIELD (r	FIELD Filtration placed) rig wet ice) FINAL pH < 2	SAMPLING INITIATED AT FILTERED: Y DESCRIPTION DUPLICATE INTENDE ANALYSIS AI METHO	eristaltic Purr	SAMPLINE ENDED / FILTER S CN) SAMPLING COUPMENT CODE	SAMPLE PUN FLOW RATE (mL per minut)
SAMPL FIELD SAMPL DEDTI- FIELD SAMPL ID COD	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONTA AMPLE C E CONT	PRINT C PRINT (A PRINT) A PRINT (C PRINT) A PRINT (C PRINT) A PRINT (C PRIN	PACITY (Gal./FODES: B FFILIATION: FFILIATI	P Y TION VOLUME 40 mL 500 mL	SAMPLERS TUBING MATERIAL O SAMPL PRESERVA USED HCL	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ESP = Electric LING DA E(S) Y (re ATION (includi TOTAL VOL ED IN FIELD (re efilled by lab	FIELD-Filtration placed) ng wet ice) FINAL pH < 2 < 2	SAMPLING INITIATED AT FILTERED: Y DE Equipment Ty DUPLICATE INTENDE ANALYSIS AI METHO VOA/EE	eristaltic Purr	SAMPLINE ENDED / FILTER S CN) SAMPLING CODE APP	SAMPLE PUN FLOW RATI (mL per minut
SAMPL FIELD SAMPL DEDTI- FIELD SAMPL ID COD	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONTA AMPLE C E CONT	PMENT C PRINT) / AI PMENT C PRINT) / AI PMENT C PMENT	PACITY (Gal./FODES: B FFILIATION: TOTAL T	P Y TION VOLUME 40 mL	SAMPLERS TUBING MATERIAL O SAMPLERS TUBING MATERIAL O HOL HNO3	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ATION (includitottal No Includitottal No	FIELD: placed) ng wet ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED AT FILTERED: Y DI Equipment Tyj DUPLICATE INTENDE ANALYSIS AI METHO VOA/ED Metals	Pristaltic Purr	SAMPLING SAMPLING ENDED SAMPLING ENDED FILTER S CN SAMPLING EQUIPMENT CODE APP	SAMPLE PUN FLOW RATI (mL per minu
SAMPL FIELD SAMPL DEDTI- FIELD SAMPL ID COD	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONTA AMPLE C E CONT	PMENT C PRINT) A PMENT C PRINT) A PMENT C PMEN	RACITY (Gal./FODES: B FFILIATION: TOTAL CODE CODE CODE CODE CODE PE PE	P Y TION VOLUME 40 mL 500 mL	SAMPLERS TUBING MATERIAL O SAMPL FRESERVA USED HCL HNO3 H2SO4	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	Y D(refilled by lab	FIELD-Filtration placed) FINAL pH < 2 < 2	SAMPLING INITIATED AT FILTERED: Y DUPLICATE ANALYSIS AI METHO VOA/EL Metals NH3	Pristaltic Purr	SAMPLINE ENDED / FILTER S CN) SAMPLING OUIPMENT CODE APP APP	SAMPLE PUN FLOW RATI (mL per minur
SAMPL FIELD SAMPL DEDTI- FIELD SAMPL ID COD	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONTA AMPLE C E CONT	PMENT C PRINT) A PMENT C PRINT) A PMENT C PMEN	RACITY (Gal./FODES: B FFILIATION: TOTAL CODE CODE CODE CODE CODE PE PE	P Y TION VOLUME 40 mL 500 mL	SAMPLERS TUBING MATERIAL O SAMPL FRESERVA USED HCL HNO3 H2SO4	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	Y D(refilled by lab	FIELD: placed) ng wet ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED AT FILTERED: Y DUPLICATE ANALYSIS AI METHO VOA/EL Metals NH3	Pristaltic Purr	SAMPLINE ENDED / FILTER S CN) SAMPLING OUIPMENT CODE APP APP	SAMPLE PUT FLOW RAT (mL per minu
SAMPLID COD	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONT AMPLE C E CON'	PRINT CORRESPONDED TO THE PRINT OF THE PRINT	RACITY (Gal./FODES: B FFILIATION: FFILIATIO	P Y TION VOLUME 40 mL 500 mL 250 mL	SAMPLERS TUBING MATERIAL O SAMPLE SAMPLERS TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3 H2SO4 None	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERV/ TIVE ADDE Pr Pr	Y D(refilled by lab	FIELD: placed) ng wet ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED AT FILTERED: Y DUPLICATE ANALYSIS AI METHO VOA/EL Metals NH3	Pristaltic Purr	SAMPLINE ENDED / FILTER S CN) SAMPLING OUIPMENT CODE APP APP	SAMPLE PUT FLOW RAT (mL per minu
SAMPLID COD	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONT AMPLE C E CON'	PMENT C PRINT) A PMENT C PRINT) A PMENT C PMEN	RACITY (Gal./FODES: B FFILIATION: FFILIATIO	P Y TION VOLUME 40 mL 500 mL 250 mL	SAMPLERS TUBING MATERIAL O SAMPL FRESERVA USED HCL HNO3 H2SO4	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERV/ TIVE ADDE Pr Pr	Y D(refilled by lab	FIELD: placed) ng wet ice) FINAL pH < 2 < 2 < 2	SAMPLING INITIATED AT FILTERED: Y DUPLICATE ANALYSIS AI METHO VOA/EL Metals NH3	Pristaltic Purr	SAMPLINE ENDED / FILTER S CN) SAMPLING OUIPMENT CODE APP APP	SAMPLE PUI FLOW RAT (mL per minu
SAMPI PURGI PUMP PUMP DEPTI FIELD SAMPI ID COD CW-	G INSIDE ING EQUII LED BY (F OR TUBIN H IN WELL DECONT AMPLE C E CON'	PRINT COPRENT	RACITY (Gal./FODES: B FFILIATION: FFILIATIO	P Y TION VOLUME 40 mL 500 mL	SAMPLERS TUBING MATERIAL OF SAMPLE SAMPLERS SAMPLERS SAMPLERS HATERIAL OF SAMPLE PRESERVA USED HCL HNO3 H2SO4 None	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERV TIVE ADDE Pr Pr	Y D(refilled by lab	FIELD Filtration placed FINAL pH	SAMPLING INITIATED AT FILTERED: Y DUPLICATE ANALYSIS AI METHO VOA/EL Metals NH3	Pristaltic Purr	SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PU FLOW RAT (mL per minu

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: JE I	D Solid Waste	Landfill				TE DCATION: 15	501 Omni Way,	St. Cloud, FL 34	733		
WELL NO:	MW-3	OB		SAMPL	EID: /913				DATE: 5	114/1	9
					PURC	SING DA	TA			•	/
	R (inches): 2		TER (inches):	3/16 DE	ELL SCREEN PTH: fe	INTERVAL eet to	STATIC feet TO WAT	ER (feet): >)	79 OR B	GE PUMP T AILER: PP	YPE
(only fill out	t if applicable)		= (feet -		feet) X	WELL CAPAC	gallons/foot	é	gallon
(only fill out	T VOLUME P	URGE: 1 EQU	IPMENT VOL		DLUME + (TUE		TY X T	UBING LENGTH) + FLOW CEL) + <i>O</i> . (L VOLUME	= 0. 19 gallon
	MP OR TUBIN WELL (feet):	^G 43		MP OR TUBIN WELL (feet):		PURGIN		PURGING		TOTAL VO PURGED (LUME
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLC (descri	
1120	3.30	3:30	0.11	33.11	4.75	34.77	67	0.14	4.74	Cle	- 328
1124	0.44	3.74	014/	33.11	4.76	24-90	66	0.12	4.37	-	29.6
1128	0.44	4.18	0.11	>3.11	4.77	2448	67	0.10	4.19		24- Z
11.37	0.44	4.62	0.11	23.//	4.76	94.88	CC	0.09	4.43	61	3Y.Y
PURGING IN		PACITY (Gal./F CODES: B	Et.): 1/8" = 0.1 = Bailer; I	BP = Bladder SAMPLER(S	" = 0.0014; Pump; E	SP = Electric	6 5/16" = 0 Submersible Pu	004: 3/8" = 0	.006; 1/2" = eristaltic Pump;	SAMPLIN ENDED A	12" = 5.88 5/8" = 0.016 ther (Specify)
	WELL (feet):	4			ODE: HDPE			on Equipment Ty		FILTERS	IZE: μm
FIELD DEC	ONTAMINATIO	ON: PUM	PYN)	TUBING	Y (N)re	eplaced)	DUPLICATE:	Υ	0	
SAMPLE ID CODE	*CONTAINE	MATERIAL CODE	VOLUME	SAMPL PRESERVAT USED		TION (includi OTAL VOL D IN FIELD (r	FINAL	INTENDI ANALYSIS A METHO	ND/OR EQI	MPLING JIPMENT CODE	SAMPLE PUMF FLOW RATE (mL per minute
MW-30[CG	40 mL	HCL		efilled by lab		VOA/E	ОВ	APP	~150
1	1	PE	500 mL	HNO3	Pre	efilled by lab	< 2	Metals	3	APP	2415
	1	PE 🚜	250 mL	H2SO4	Pre	efilled by lab	< 2	NH3		APP	-45
V	1	PE	250 mL	None		None	4.76	CL/NO3/	rds -	APP	N415
Odor:			-								
MATERIAL		AG = Amber (Glass; CG =	Clear Glass; O = Other (ligh Density P	olyethylene;	LDPE = Low De	nsity Polyethyle	ene; PP	= Polypropylene;
	EQUIPMENT	- O.I.OOTIO,	· - renon,	O - Other (opeony)						

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	: MW-30	A		SAN	MPLE ID: 19	134 - ML	la/-	201		DATE:	5/14/19	2
						RGING DA					11.11.7	
WELL		TUBIN	G	- 0	WELL SCREE			STATIC D	EPTH	Р	URGE PUMP	TYPF
	R (inches): 2		TER (inches)		DEPTH:		feet	TO WATE	R (feet):	0 88	R BAILER: PF	
(only fill or	LUME PURGE: ut if applicable)	1 WELL VO	LUME = (TO	TAL WELL	DEPTH - S	TATIC DEPTH	TO W	ATER) X	WELL CAPAC	TY		
			= (feet -			feet) X		gallons/		
	NT VOLUME Pout if applicable)	URGE: 1 EQ	JIPMENT VO	L. = PUMP	VOLUME + (T	UBING CAPAC	ITY	X TL	JBING LENGTH) + FLOW (CELL VOLUMI	Ē
			7	=	gallons + (gallo	ons/fo	ot X	feet	1 +	gallon	s =
	UMP OR TUBIN WELL (feet):	JY		IMP OR TU I WELL (fee		PURGIN		1044	PURGING ENDED AT:	1111	TOTAL VI	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATI (feet	ER (standa	d TEMP.	(cir μn	cond cle units) nhos/cm	OXYGEN (circle units) (mg/) or % saturation	TURBIE (NTU:		
1059	1.50	1.50	0.10	J).9	3 4.34	34.67	3	Y3	0.51	1.31	cles	- 80
1103	2.40	1.90	0,10	23 9.	3 4.43	14.63)	31	0-33	3.37	"	8
1107	0.40	2.30	0.10	2).9	3 4.45	34.63)	25	0.36	1.54		75
1111	0.46	3.70	0.10	13.9	3 4.51	34.59	د	70	0-19	1.02		
				7								
	1		+			+						
	1		+			+					-	_
	+		+	-								
		1										
			}	-								
WELL CA	PACITY (Gallon	as Per Foot)	0.75" = 0.02·	1" = 0.0)4· 125" = (06: 2" = 0.1	6:	3" - 0 37:	A" - 0 65:	E" - 1.02:	C" - 1 A7:	42" - 5 90
	PACITY (Gallon				04; 1.25" = 0 3/16" = 0.0014	.06; 2" = 0.1 1/4" = 0.002	6; 26;	3" = 0.37; 5/16" = 0.0		5" = 1 02; .006; 1/	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.0
TUBING I		PACITY (Gal.)		0.0006;	04; 1.25" = 0 3/16" = 0.0014 der Pump;	.06; 2" = 0.1 1/4" = 0.002 ESP = Electric	26;	5/16" = 0.0	004; 3/8" = 0		2" = 0.010;	
PURGING	NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	Ft.): 1/8" = (BP = Blad	3/16" = 0.0014 der Pump; SAN	1/4" = 0.002 ESP = Electric PLING DA	26; Subn	5/16" = 0.0 nersible Pun	004; 3/8" = 0	.006; 1/	2" = 0.010;	5/8" = 0.0
PURGING SAMPLED	NSIDE DIA. CAI BEQUIPMENT O	PACITY (Gal., CODES: E	Ft.): 1/8" = (I = Bailer:	BP = Blad	3/16" = 0.0014 der Pump; SAN B(8) SIGNATU	ESP = Electric PLING DA RE(S):	26; Subn	5/16" = 0.0 nersible Pun	004; 3/8" = 0 np; PP = Pe	.006; 1/ eristaltic Pu	mp; O =	5/8" = 0.0" Other (Speci
PURGING SAMPLED No.	NSIDE DIA. CAI BEQUIPMENT OF BY (PRINT) / A Studen	PACITY (Gal., CODES: E	Ft.): 1/8" = (BP = Blad	3/16" = 0.0014 der Pump; SAN	ESP = Electric PLING DA RE(S):	26; Subn	5/16" = 0.0 nersible Pun	SAMPLING INITIATED A	.006; 1/ eristaltic Pu	2" = 0.010; mp; O = SAMPLI ENDED	5/8" = 0.0° Other (Special ING AT:
SAMPLED NC. /	NSIDE DIA. CAI BEQUIPMENT OF BY (PRINT) / A Studen	PACITY (Gal.) CODES: E	Ft.): 1/8" = (I = Bailer:	SAMPLE TUBING	3/16" = 0.0014 der Pump; SAM R(8) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA RE(S):	26; Subn	5/16" = 0.0 nersible Pun	SAMPLING INITIATED A FILTERED: Y	eristaltic Pu	2" = 0.010; mp; O = SAMPLI ENDED	5/8" = 0.0" Other (Speci
SAMPLED NC. PUMP OR DEPTH IN	SEQUIPMENT OF SILVER TUBING	PACITY (Gal. CODES: E	Ft): 1/8" = (B = Bailer:	SAMPLE TUBING	3/16" = 0.0014 der Pump; SAN B(8) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Subm	5/16" = 0.0 nersible Pun FIELD- Filtratio	SAMPLING INITIATED A FILTERED: Y n Equipment Ty	eristaltic Pu	mp; O = SAMPLI ENDED	5/8" = 0.0° Other (Special ING AT:
PUMP OR DEPTH IN	BY (PRINT) / A TUBING WELL (feet):	PACITY (Gal., CODES: E	Ft): 1/8" = (J = Bailer: Purka	SAMPLE TUBING MATERIA	AL CODE: HD	1/4" = 0.002 ESP = Electric PLING DA RE(S): PE Y N Y Y	Subm	5/16" = 0.0 nersible Pun FIELD- Filtratio	3/8" = 0 APP = Pe SAMPLING INITIATED AT FILTERED: Y Equipment Ty DUPLICATE:	Peristaltic Pu	SAMPLIENDED FILTER	5/8" = 0.0" Other (Special NG AT:
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE	NSIDE DIA. CAI BEQUIPMENT OF DBY (PRINT) / A STUDIO R TUBING I WELL (feet): CONTAMINATIO IPLE CONTAINE	PACITY (Gal., CODES: E	Ft): 1/8" = (B = Bailer: Y ATION	SAMPLE TUBING MATERIA	AL CODE: HD TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Subm	5/16" = 0.0 nersible Pun FIELD- Filtratio	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS A	eristaltic Pu	SAMPLING	5/8" = 0.0" Other (Special NG AT: 1// (SIZE: SAMPLE FLOW
SAMPLED DE SAMPLE DE SAMPLE DE SAMPLE DE SAMPLE DE SAMPLE DE DE SAMPLE D DE SAMPLE D DE SAMPLE D D D D D D D D D D D D D D D D D D D	DBY (PRINT) / A R TUBING WELL (feet): CONTAMINATION CONTAINERS	PACITY (Gal., CODES: E	FE): 1/8" = 0 B = Bailer: Y ATION VOLUME	SAMPLE TUBING MATERIA SAM PRESER US	AL CODE: HD TUBING MPLE PRESER VATIVE ED A.0.0014 OCCUPANT AL CODE: HD TUBING AL CODE: HD AL CODE:	PLING DA RE(S): PLING DA RE(S): PE VATION (includity of the property of the	Subn ATA eplace ing we	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO	eristaltic Pu	SAMPLING EQUIPMENT CODE	SAMPLE FLOW (mL per i
SAMPLED DE SAMPLE DE SAMPLE DE SAMPLE DE SAMPLE DE SAMPLE DE DE SAMPLE D DE SAMPLE D DE SAMPLE D D D D D D D D D D D D D D D D D D D	DBY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	PACITY (Gal., CODES: E	FE): 1/8" = 0 B = Bailer: Y MP Y ATION VOLUME 40 mL	SAMPLE TUBING MATERIA PRESER USI HO	AL CODE: HD TUBING MPLE PRESER EVATIVE ED AD	PE VATION (includ) TOTAL VOL DED IN FIELD (i) Prefilled by lab	eplace	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO VOA/EI	Peristaltic Puristaltic Purist	mp; 0 = SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE APP	5/8" = 0.0" Other (Special NG AT: 1// (SIZE: SAMPLE FLOW
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	D BY (PRINT) / A SHOPPING R TUBING WELL (feet): CONTAMINATION PLE CONTAINERS A 3 1	PACITY (Gal., CODES: E	Ft): 1/8" = 0 B = Bailer: Y ATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIAN SAM PRESER US HO	AL CODE: HD TUBING MPLE PRESER EVATIVE ED AD	PE ATION (includ TOTAL VOL DED IN FIELD (i) Prefilled by lab	eplace ing we	FIELD-Filtration et ice) FINAL pH < 2 < 2	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO VOA/EL Metals	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP	SAMPLE FLOW (mL per i
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	DBY (PRINT) / A R TUBING WELL (feet): CONTAMINATION CONTAINERS A 3 1 1	PACITY (Gal., CODES: E	HE HATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USI HO HN H2S	AL CODE: HD TUBING MPLE PRESER AD CL O3 604	PE VATION (includ) TOTAL VOL DED IN FIELD (includ) Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTENDIAN ANALYSIS A METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE FLOW (mL per i
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	D BY (PRINT) / A SHOPPING R TUBING WELL (feet): CONTAMINATION PLE CONTAINERS A 3 1	PACITY (Gal., CODES: E	Ft): 1/8" = 0 B = Bailer: Y ATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIAN SAM PRESER US HO	AL CODE: HD TUBING MPLE PRESER AD CL O3 604	PE ATION (includ TOTAL VOL DED IN FIELD (i) Prefilled by lab	eplace ing we	FIELD-Filtration et ice) FINAL pH < 2 < 2	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTENDI ANALYSIS A METHO VOA/EL Metals	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP	SAMPLE FLOW (mL per I
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-30	DBY (PRINT) / A R TUBING WELL (feet): CONTAMINATION CONTAINERS A 3 1 1	PACITY (Gal., CODES: E	HE HATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USI HO HN H2S	AL CODE: HD TUBING MPLE PRESER AD CL O3 604	PE VATION (includ) TOTAL VOL DED IN FIELD (includ) Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTENDIAN ANALYSIS A METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE FLOW (mL per I > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-30	D BY (PRINT) / A R TUBING WELL (feet): CONTAMINATION CONTAINERS A 1 1 1	PACITY (Gal., CODES: E	HE HATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USI HO HN H2S	AL CODE: HD TUBING MPLE PRESER AD CL O3 604	PE VATION (includ) TOTAL VOL DED IN FIELD (includ) Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTENDIAN ANALYSIS A METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE FLOW (mL per I > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-30 REMARKS Odor:	D BY (PRINT) / A R TUBING WELL (feet): CONTAMINATION CONTAINERS A 1 1 1	PACITY (Gal., CODES: E	HE HATION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER USI HO HN H2S	AL CODE: HD TUBING MPLE PRESER AD CL O3 604	PE VATION (includ) TOTAL VOL DED IN FIELD (includ) Prefilled by lab Prefilled by lab	eplace ing we	FIELD-Filtratio	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTENDIAN ANALYSIS A METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP	SAMPLE FLOW (mL per I > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800
PURGING SAMPLEE VC. PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW-30 REMARKS Odor: VS.	DBY (PRINT) / A R TUBING WELL (feet): CONTAMINATIO CONTAINERS 1 1 1 1 SS:	PACITY (Gal., CODES: E	Ft): 1/8" = 6 Bealler: ATION VOLUME 40 mL 500 mL 250 mL	SAMPLE TUBING MATERIA SAM PRESER USI HO HN H2S	AL CODE: HD TUBING MPLE PRESER EVATIVE ED CL O3 GO4 ne	PE VATION (includ) TOTAL VOL DED IN FIELD (includ) Prefilled by lab Prefilled by lab	eplace mL)	FIELD-Filtrationed) FINAL pH	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTENDIAN ANALYSIS A METHO VOA/EI Metals NH3	Peristaltic Puristaltic Purist	SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE FLOW (mL per I > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800 > \$800

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	Mw-	J-0.5				RGING DA			DATE:	5/14/1	7
WELL		TUBING	G			EN INTERVAL		DEDTU	I D	UDOE DUMB	T)/DE
DIAMETE	R (inches): 2	DIAME	TER (inches):	3/16	DEPTH: 33.	Freet to 4) >	feet TO WAT	ER (feet):	89 0	URGE PUMP ' R BAILER: PP	
WELL VO	LUME PURGE:	1 WELL VO	LUME = (TO	TAL WELL	DEPTH -	STATIC DEPTH	TO WATER)	WELL CAPAC	ITY		
			= (feet -		feet)	<	gallons/f	oot =	ga
(only fill ou	NT VOLUME P it if applicable)	URGE: 1 EQL	JIPMENT VO	L. = PUMP	VOLUME + (TUBING CAPAC	TY X	UBING LENGTH) + FLOW C	ELL VOLUME	×3
				= -	gallons + (o oviy gal	lons/foot X	10.5 feet	+ 01	gallons	s = 0.47 ga
	JMP OR TUBIN WELL (feet):	IG 37.5	FINAL PU DEPTH IN	MP OR TUI	BING 37	FURGI INITIAT	NG ED AT: つれの		1011	TOTAL VO	OLUME (gallons): 6.
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet)	R (standa	1 (~(:)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBID (NTUs		
1000	5.50	5.50	30.74	€70.1	1 Y28	XC 12	2541	0.19	0.53	4. Ye	1/ac 104.
1004	0.44	5.94	0.11	20.9	1 4.08	16.10	1534	0.19	0.70	Le	104.
1008	0.44	6.38	0.11	20.90	1 4.0	76-09	2528	0.17	0.70	**	101.
1012	044	6.87	0.11	30.94	4.0	7 36.08	1540	0.17	0.34	н	99.
	-										
			-		_						
			0								
WELL CA	PACITY (Gallon	ns Per Foot): (0.75" = 0.02;	1" = 0 04	1: 1.25" =	0.06: 2 " = 0.	16: 3" = 0.37:	4 " = 0.65	5" = 1.02	6" = 1.47	12" = 5.88
TUBING I	ISIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0	0006; 3		1/4" = 0.00		.004; 3/8" = 0		6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
TUBING I	PACITY (Gallor NSIDE DIA. CA EQUIPMENT (PACITY (Gal./	Ft.): 1/8" = 0	1" = 0 04 0006 3 BP = Bladd	/16" = 0.0014 ler Pump;	ESP = Electric	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0		2" = 0.010;	5/8" = 0.016
PURGING SAMPLED	EQUIPMENT O	PACITY (Gal./I	Ft.): 1/8" = 0	0006 3 BP = Blado	16" = 0.0014 ler Pump;	ESP = Electric IPLING DA	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = P	0.006; 1/	2" = 0.010; mp; O = 0	5/8" = 0.016 Other (Specify)
PURGING SAMPLED	EQUIPMENT	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	O006 3 BP = Blado	16" = 0.0014 ler Pump; SAN R(6) SIGNAT	ESP = Electric IPLING DA JRE(S):	26; 5/16" = 0 Submersible Pu	.004; 3/8" = (imp; PP = P	0.006; 1/ eristaltic Pur	2" = 0.010; mp; O = 0	5/8" = 0.016 Other (Specify)
PURGING SAMPLED Ve.: PUMP OR	BY (PRINT) / A	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	O006; 3. BP = Blado SAMPLEE	ler Pump; SAN R(S) SIGNAT	ESP = Electric IPLING DA JRE(S):	26; 5/16" = 0 Submersible Pt ATA FIELD	3/8" = (imp; PP = P SAMPLING INITIATED A D-FILTERED: Y	0.006; 1// eristaltic Pur	2" = 0.010; mp; O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: /0/6
SAMPLED PUMP OR DEPTH IN	BY (PRINT) / A Shape (TUBING WELL (feet):	PACITY (Gal./I) CODES: B AFFILIATION: G 20 57	Ft.): 1/8" = 0 = Bailer;	O006: 3. BP = Blado SAMPLEE TUBING MATERIA	ler Pump; SAN R(S) SIGNAT	ESP = Electric IPLING D JRE(S): PE	26; 5/16" = 0 Submersible Pu ATA FIELD Filtrat	SAMPLING INITIATED A D-FILTERED: Y on Equipment Ty	D.006; 1// eristaltic Pur T: /0/3	2" = 0.010; mp; O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: /0/6
PUMP OR DEPTH IN	BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO	PACITY (Gal.// CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	SAMPLES TUBING MATERIA	In the second se	ESP = Electric IPLING D JRE(S): PE G Y ON	26; 5/16" = 0 c Submersible Pu ATA FIELD Filtrat replaced)	SAMPLING INITIATED A D-FILTERED: Y ON Equipment Ty DUPLICATE:	D.006; 1// eristaltic Pur T: /// //pe:	2" = 0.010; mp; O = 0 SAMPLII ENDED: FILTER S	5/8" = 0.016 Other (Specify) NG AT: / O / C SIZE: µ
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAM	BY (PRINT) / A SHAPP TUBING WELL (feet): CONTAINE	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer; IP Y C	SAMPLES TUBING MATERIA	In Public Purple	ESP = Electric IPLING D JRE(S): PE G Y ON RVATION (include)	Submersible Pu ATA FIELD Filtrat replaced)	SAMPLING INITIATED A D-FILTERED: Y ON Equipment Ty DUPLICATE: INTEND	D.006; 1// eristaltic Pur T: /// // // // // // // ED	2" = 0.010; mp; O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: / / / / SIZE: µ
SAMPLED DEC	BY (PRINT) / A Shape TUBING WELL (feet): CONTAINERS	PACITY (Gal.// CODES: B AFFILIATION: 37.5 ON: PUM ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 = Bailer; IP Y CONTION VOLUME	SAMPLES TUBING MATERIA SAM PRESERV USE	In the second se	ESP = Electric IPLING D JRE(S): PE G Y Q RVATION (included to the control of t	FIELD Filtrat replaced) FINAL PH	SAMPLING INITIATED A D-FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO	D.006; 1// eristaltic Pur T: /// //pe: Y ED ND/OR DD	SAMPLING EQUIPMENT CODE	SAMPLE PL
SAMPLED DEC	BY (PRINT) / A STUBING WELL (feet): CONTAMINATION CONTAINERS 3 3	PACITY (Gal.// CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME 40 mL	SAMPLER TUBING MATERIA SAM PRESERV USE HC	In Purple	ESP = Electric IPLING DA JRE(S): PE G Y ON TOTAL VOL DED IN FIELD (Prefilled by la:	FIELD Filtrat eplaced) (mL) FINAL pH b < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI	D.006; 1// eristaltic Pur T: /// /pe: Y ED NND/OR DD DB	SAMPLING EQUIPMENT CODE	SAMPLE PL
SAMPLED DECEMBER SAMPLE ID CODE	BY (PRINT) / A Shape (TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1	PACITY (Gal./I) CODES: B AFFILIATION: 37.5 ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; IP Y CONTION VOLUME 40 mL 500 mL	SAMPLES TUBING MATERIA SAM PRESERV USE HC HNC	In Public Pumping SAN RAS SIGNAT TUBIN PLE PRESEINAT ALL CODE: HE TUBIN PLE PRESEINAT ALL CODE: HE DE ALL CODE	ESP = Electric IPLING D JRE(S): PE RVATION (included to the control of the co	### 100 5 5 5 16 1 1 1 1 1 1 1 1	SAMPLING INITIATED A D-FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal	D.006; 1// eristaltic Pur T: /// // // // // ED ND/OR DD DB S	SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA (mL per mir
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A SHAPP (BY (PRINT) / A SHAPP (TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 4 CONTAINERS 1 1	PACITY (Gal.// CODES: B AFFILIATION: G 20 57 3 7. 5 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE A A A A A A A A A A A A A	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME 40 mL 500 mL	SAMPLES TUBING MATERIA SAM PRESERV USE HC HNC	In the second se	ESP = Electric IPLING DA JRE(S): PE G Y QUA TOTAL VOL DED IN FIELD of Prefilled by la Prefilled by la	FIELD Filtrat replaced) Imply the property of	SAMPLING INITIATED A D-FILTERED: You Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO Wetal NH3	D.006; 1// eristaltic Pur T: /// //pe: Y ED //ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUFLOW RA
SAMPLED DECEMBER SAMPLE ID CODE	BY (PRINT) / A Shape (TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1	PACITY (Gal./I) CODES: B AFFILIATION: 37.5 ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Ft.): 1/8" = 0 = Bailer; IP Y CONTION VOLUME 40 mL 500 mL	SAMPLES TUBING MATERIA SAM PRESERV USE HC HNC	In the second se	ESP = Electric IPLING D JRE(S): PE RVATION (included to the control of the co	### 100 5 5 5 16 1 1 1 1 1 1 1 1	SAMPLING INITIATED A D-FILTERED: You Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO Wetal NH3	D.006; 1// eristaltic Pur T: /// //pe: Y ED //ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA (mL per min
SAMPLED DEC SAMPLE ID CODE	BY (PRINT) / A SHAPP (BY (PRINT) / A SHAPP (TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 4 CONTAINERS 1 1	PACITY (Gal.// CODES: B AFFILIATION: G 20 57 3 7. 5 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE A A A A A A A A A A A A A	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME 40 mL 500 mL	SAMPLES TUBING MATERIA SAM PRESERV USE HC HNC	In the second se	ESP = Electric IPLING DA JRE(S): PE G Y QUA TOTAL VOL DED IN FIELD of Prefilled by la Prefilled by la	FIELD Filtrat replaced) Imply the property of	SAMPLING INITIATED A D-FILTERED: You Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO Wetal NH3	D.006; 1// eristaltic Pur T: /// //pe: Y ED //ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PLE FLOW RA (mL per mir
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A Shape of the second se	PACITY (Gal.// CODES: B AFFILIATION: G 20 57 3 7. 5 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE A A A A A A A A A A A A A	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME 40 mL 500 mL	SAMPLES TUBING MATERIA SAM PRESERV USE HC HNC	In the second se	ESP = Electric IPLING DA JRE(S): PE G Y QUA TOTAL VOL DED IN FIELD of Prefilled by la Prefilled by la	FIELD Filtrat replaced) Imply the property of	SAMPLING INITIATED A D-FILTERED: You Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO Wetal NH3	D.006; 1// eristaltic Pur T: /0/) //pe: Y ED ND/OR DD DB S	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PERLOW RA (mL per min
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE REMARKS	BY (PRINT) / A SHAPP (TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1 1	PACITY (Gal.// CODES: B AFFILIATION: AFFIL	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME 40 mL 500 mL	SAMPLES TUBING MATERIA SAM PRESERV USE HC HNC	In the second se	ESP = Electric IPLING DA JRE(S): PE G Y QUA TOTAL VOL DED IN FIELD of Prefilled by la Prefilled by la	FIELD Filtrat replaced) Imply the property of	SAMPLING INITIATED A D-FILTERED: You Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO Wetal NH3	D.006; 1// eristaltic Pur T: /0/) //pe: Y ED ND/OR DD DB S	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PERLOW RA (mL per min
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A STUDING WELL (feet): CONTAMINATION CONTAINERS 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PACITY (Gal.// CODES: B AFFILIATION: 37.5 ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE PE PE	Ft.): 1/8" = 0 = Bailer; IP Y CATION VOLUME 40 mL 500 mL 250 mL	SAMPLES TUBING MATERIA SAM PRESERV USE HC HNC	PLE PRESEI ACTUAL AC	ESP = Electric IPLING DA JRE(S): PE G Y QUA TOTAL VOL DED IN FIELD of Prefilled by la Prefilled by la	FIELD Filtrat eplaced) (mL) FINAL pH b < 2 b < 2 Y. 0.7	SAMPLING INITIATED A D-FILTERED: You Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO Wetal NH3	D.006; 1// eristaltic Pur T: /// // // // // // // // // // // // //	SAMPLII ENDED FILTER S SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PERLOW RA (mL per min

S: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: JE	D Solid Waste	Landfill				ITE DCATION: 18	501 Omni Way, S	St. Cloud, FL 34	733		
WELL NO:	MW->	3A		SAMPL	EID: 1913	4 - Mh	~ >? 4		DATE:	114/1	9
						GING DA		d			
	R (inches): 2		ΓER (inches):	3/16 DE	ELL SCREEN PTH: 7 3fe	INTERVAL eet to ファン	STATIC D	R (feet): 🞾 🗣	2 OF	JRGE PUMP T R BAILER: PP	
WELL VOL (only fill out	LUME PURGE: t if applicable)	1 WELL VOL		AL WELL DE フラ·ス			FO WATER) X			oot = (.6)
EQUIPMENT (only fill out	NT VOLUME P t if applicable)	URGE: 1 EQU	IPMENT VOL	. = PUMP VO	LUME + (TUE	BING CAPAC	TY X TU	JBING LENGTH) + FLOW C	ELL VOLUME	gallor
INTERNAL PRO		_	T =10 =0.0	V	gallons + (ons/foot X	feet)) +	gallons	
DEPTH IN	MP OR TUBIN WELL (feet): الم	GOT 15		MP OR TUBIN WELL (feet):	G 25	PURGIN	IG ED AT: 6905	PURGING ENDED AT:	0136	PURGED (gallons): 2.5
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs		
7910	1.20	1.30	0.08	21.85	5-39	26.05	1331	1.38	(.30	Yelle	257
7974	2.37	1.53	0.08	21.56	4.38	36.0Y	1597	0.75	1.34	"	31.1
0918	0.32	184	0.08	31-57	5-38	36.04	1846	0.46	1-34		71
0931	8.32	2.16	0.08	31-58	538	36.01	1833	0.41	6.27	4	.5.6
0936	0.32	7. 48	0.08	21-58	5.37	26.00	1833	0.35	(33		-13. L
WELL CAF	PACITY (Gallon	s Per Foot): 0	.75" = 0.02; it.): 1/8" = 0.0	1" = 0.04; 0006; 3/16	1,25" = 0.00 " = 0.0014;	6; 2 " = 0.1 1/4 " = 0.002	6; 3 " = 0 37; 6; 5/16" = 0.0		5" = 1.02; .006; 1/2	6" = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer; E	BP = Bladder	Pump; E	SP = Electric	Submersible Pur	np; PP = Pe	eristaltic Pun		ther (Specify)
OALIDI ED	Disconnicioni i		-			LING DA	ATA				
Nil .	Story 1	Suspe /u		SAMPLER(S		E(S):		SAMPLING INITIATED AT	0936	SAMPLIN ENDED	NG AT: 0941
PUMP OR	TUBING WELL (feet):	25		TUBING MATERIAL C	ODE: HODE		FIELD-	FILTERED: Y n Equipment Typ	W	FILTER S	SIZE: μm
	CONTAMINATION	ON: PUMI			TUBING		eplaced)	DUPLICATE:	Y	0	
SAME	PLE CONTAINE	R SPECIFICA	TION	SAMPLE	E PRESERVA	TION (includi		INTENDE		SAMPLING	SAMPLE PUM
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	TVE T	OTAL VOL D IN FIELD (r	nL) FINAL	ANALYSIS A	ND/OR E	EQUIPMENT CODE	FLOW RATE (mL per minute
MLV-)		CG	40 mL	HCL	Pre	efilled by lab	< 2	VOA/ED	DB	APP	~ 150
1	1	PE	500 mL	HNO3		efilled by lab		Metals	3	APP	~ 300
	1	PE N	250 mL 250 mL	H2SO4	Pre	efilled by lab	< 2	NH3		APP	200
<i>y</i>	1	PE	250 mL	None		None	2.33	CL/NO3/7	rds	APP	~ 300
					_						
REMARKS											
Odor:		40 - 4 :	N	01 -							
		AG = Amber (Glass; CG = T = Teflon;	Clear Glass; O = Other (High Density F	olyethylene;	LDPE = Low De	nsity Polyeth	nylene; PP	= Polypropylene

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2, STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-1					ING DA	V-16BR TA			115/19	
WELL		TUBING		W	ELL SCREEN		STATIC D	EPTH _	PUI	RGE PUMP T	YPE
	R (inches): 2		ER (inches):		:PTH:36.5fe					BAILER: PP	
	LUME PURGE: ut if applicable)	1 WELL VOL	UME = (TOT) = (AL WELL DE	PTH - STA	TIC DEPTH T	O WATER) X	WELL CAPAC	ITY gallons/fo	ot =	gal
	NT VOLUME PU ut if applicable)		PMENT VOL		DLUME + (TUE gallons + (0.			JBING LENGTH feet			= 0.17 gall
	UMP OR TUBING I WELL (feet):	G 1/2		MP OR TUBIN WELL (feet):		DUDGIN		PURGING ENDED AT:	1431	TOTAL VOI PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (S/cm)	OXYGEN (circle units) (ng/L) or % saturation	TURBIDIT (NTUs)		
1407	0.80	0.80	0.04	18.01	4.97	26.28	155	3 03	1.94	Clean	c 23.
14 09	0.08	0-88	0.04	18-01	494	26.33	137	2-69	1.87		40.
1411	0.08	0.96	0.04	18.01	4 94	26.32	132	2.64	1.32		43
1413	80.0	1.04	0.04	18.01	4.93	26.31	129	2.60	1.45		53
1415	0.08	1.12	0 04	18.01	4.93	26.30	128	7.59	1.91		84.
	10 0										
	PACITY (Gallon:			1" = 0 04; 0006; 3/16	1.25" = 0.0 6" = 0.0014;	3; 2" = 0.10 1/4" = 0.002			5" = 1.02; 0.006; 1/2	6 " = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016
WELL CA		PACITY (Gal./Fi	1/8" = 0		6" = 0.0014; Pump; E	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0		" = 0.010;	
WELL CA TUBING II PURGING	PACITY (Gallon: NSIDE DIA. CAF EQUIPMENT C	PACITY (Gal./Fi	1/8" = 0	0006; 3/16 BP = Bladder	S" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0	0.006; 1/2	" = 0.010;	5/8" = 0.016
WELL CA TUBING II PURGING	PACITY (Gallon: NSIDE DIA: CAF E EQUIPMENT C	PACITY (Gal /F	t.): 1/8" = 0.	0006; 3/16 BP = Bladder SAMPLER(S	6" = 0.0014; Pump; E	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	eristaltic Pum	" = 0.010; np; O = C	5/8" = 0.016 Other (Specify)
WELL CA TUBING II PURGING SAMPLED	PACITY (Gallon: NSIDE DIA: CAF E EQUIPMENT C	PACITY (Gal /Fi	t.): 1/8" = 0.	0006; 3/16 BP = Bladder SAMPLER(S	S" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0. Submersible Pu	mp; PP = P SAMPLING INITIATED A -FILTERED: Y	eristaltic Purr	np; O = C	5/8" = 0.016 Other (Specify)
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN	PACITY (Gallon: NSIDE DIA: CAF E EQUIPMENT C	PACITY (Gal/FI CODES: B =	t.): 1/8" = 0.	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL	S'' = 0.0014; Pump; E SAMP S) SIGNATUR	1/4" = 0.002 SP = Electric LING DA E(S):	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	eristaltic Pum	" = 0.010; np; O = C	5/8" = 0.016 Other (Specify)
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C DBY (PRINT) / A R TUBING I WELL (feet):	PACITY (Gal/Ficodes: B =	i.): 1/8" = 0. = Bailer;	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL	S'' = 0.0014; Pump; E SAMP S) SIGNATURI	1/4" = 0.002 SP = Electric LING DA E(S):	Submersible Pur ATA FIELD Filtratio	MP; PP = P SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND	T: 1418	SAMPLING SAMPLING	SAMPLE PL
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAM SAMPLE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C DEV (PRINT) / A R TUBING I WELL (feet): CONTAMINATIO IPLE CONTAINE #	PACITY (Gal /FI CODES: B = FFILIATION: FOR PUMF R SPECIFICAT MATERIAL	i.): 1/8" = 0. = Bailer;	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL SAMPL PRESERVA	S'' = 0.0014; Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING LE PRESERVA	1/4" = 0.002 SP = Electric LING DA E(S): Y N (re ATION (includit FOTAL VOL.	Submersible Pur ATA FIELD Filtration applaced) ing wet ice) FINAL	mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE	D.006; 1/2 eristaltic Purr T: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAMPLIN ENDED A	5/8" = 0.016 Other (Specify)
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS	PACITY (Gal/FI CODES: B = FFILIATION: DN: PUMF ER SPECIFICAT	E Bailer; P Y N	SAMPLER(S	S' = 0.0014; Pump; E SAMP S) SIGNATURE CODE: HDPE TUBING LE PRESERVA	Y N (re	Submersible Pur ATA FIELD Filtration eplaced) ing wet ice) FINAL pH	MP; PP = P SAMPLING INITIATED A FILTERED: You Equipment Ty DUPLICATE INTENE ANALYSIS A	T: 1418 T: YPED AND/OR EDD	SAMPLING	SAMPLE PL FLOW RA (mL per min
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS	PACITY (Gal /FI CODES: B = FFILIATION: DN: PUMF ER SPECIFICAT MATERIAL CODE	Bailer; Y N TION VOLUME	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED	S'' = 0.0014; Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE	1/4" = 0.002 SP = Electric LING DA E(S): Y N (FE ATION (includit TOTAL VOL	Submersible Pur ATA FIELD Filtration ing wet ice) FINAL pH C 2	MP; PP = P SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO	T: 1418 T: Y DED AND/OR DB	SAMPLING SAMPLING SQUIPMENT CODE	SAMPLE PL
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C DEV (PRINT) / A R TUBING WELL (feet): CONTAMINATION PLE CONTAINERS Q 3	PACITY (Gal /FI CODES: B = FEILLATION: FUNE ON: PUMF ER SPECIFICAT MATERIAL CODE CG	Bailer; P Y N FION VOLUME 40 mL	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL	S'' = 0.0014; Pump; E SAMP S) SIGNATURI CODE: HDPE TUBING LE PRESERVA TIVE ADDE Pr	ATION (includit fotal vol. defilled by lab	FIELD Filtration wet ice) FINAL pH	METHO Model: 3/8" = 0 Model: 2/8" = 0	T: 1418 T: V September 1/2 PED NAD/OR ED DB September 1/2 DB Se	SAMPLING SAMPLING EQUIPMENT CODE SAMP	SAMPLE PL FLOW RA (mL per mir
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAM SAMPLE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS R 3 1	PACITY (Gal /FI CODES: B = FFILIATION: DN: PUMF R SPECIFICAT MATERIAL CODE CG PE	E Bailer; P Y N FION VOLUME 40 mL 500 mL	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3	CODE: HDPE TUBING LE PRESERVA TIVE ADDE Pr Pr	Y North ATION (includit FOTAL VOL. D) IN FIELD (includit by lab efilled by lab	FIELD Filtration wet ice) FINAL pH	METHON SAMPLING INITIATED A -FILTERED: Y ON Equipment Ty DUPLICATE ANALYSIS A METHO VOA/E Meta	D.006: 1/2 eristaltic Purr T: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAMPLING EQUIPMENT CODE APP	SAMPLE PL FLOW RA (mL per mir
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS Q 3 1 1	PACITY (Gal /FI CODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE PE	P Y N N N N N N N N N N N N N N N N N N	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3 H2SO4	CODE: HDPE TUBING LE PRESERVA TIVE ADDE Pr Pr	Y (N/FE) ATION (includity of the filled by labeled by l	FIELD Filtration wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METH VOA/E Meta NH3	D.006: 1/2 eristaltic Purr T: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATION PLE CONTAINERS Q 3 1 1	PACITY (Gal /FI CODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE PE	P Y N N N N N N N N N N N N N N N N N N	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3 H2SO4	CODE: HDPE TUBING LE PRESERVA TIVE ADDE Pr Pr	Y (N/FE) ATION (includity of the filled by labeled by l	FIELD Filtration wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METH VOA/E Meta NH3	D.006: 1/2 eristaltic Purr T: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PLOW RA (mL per mir
WELL CA TUBING II PURGING SAMPLET PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	PACITY (Gallon: NSIDE DIA. CAF E EQUIPMENT C D BY (PRINT) / A R TUBING I WELL (feet): CONTAMINATIO IPLE CONTAINERS Q 3 1 1 1	PACITY (Gal /FI CODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE PE	P Y N N N N N N N N N N N N N N N N N N	SAMPLER(S TUBING MATERIAL SAMPL PRESERVA USED HCL HNO3 H2SO4	CODE: HDPE TUBING LE PRESERVA TIVE ADDE Pr Pr	Y (N/FE) ATION (includity of the filled by labeled by l	FIELD Filtration wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE ANALYSIS A METH VOA/E Meta NH3	D.006: 1/2 eristaltic Purr T: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA (mL per mir

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: January 2017

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL NO:	MW-1	GAR		SAMPLE	ID: 1913	S- MI	W-16A	R	DATE: 5	115/19	
	IVVV	10/11		_	4 1 1 /	ING DA				, () (
WELL		TUBING	3		LL SCREEN	INTERVAL	STATIC D	EPTH , -) PUR	GE PUMP TYF	PE
	R (inches): 2		ΓER (inches):				eet TO WATE			BAILER: PP	
	t if applicable)	1 WELL VOL	,	73 S		TIC DEPTH 1	feet) X	WELL CAPACI	galions/foo	· = 0.8	gall
	NT VOLUME PU t if applicable)	URGE: 1 EQU	IPMENT VO		_UME + (TUE allons + (JBING LENGTH) feet)		L VOLUME	gall
INITIAL PU	IMP OR TUBIN	G a	FINAL PU	MP OR TUBIN	2	PURGIN	IG	PURGING	T	TOTAL VOLU	INAC
DEPTH IN	WELL (feet):	21		WELL (feet):	21	INITIATE	ED AT: \33		1410	PURGED (ga	llons):
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBIDIT' (NTUs)	Y COLOR (describe	
1346	0.40	0.40	10.04	18.60	5.39	26.56	1727	0.03	4.73	Clear	-51.
1341	0.08	0 48	0.04	18.61	5 39	26.57	17-28	0.03	5 29		-52
1350	0.08	0.56	0.04	18.61	5.39	26.56	1731	0.02	5.38		-59
1352	0.08	0.64	0.04	18.61	5.38	26.52	1734	0 03	4.71		-66
1354	80.0	0.72	0.04	18.61	5.38	26.51	1735	0.02	3 92		-61
1356	0.08	0.80	0.04	18-61	5.38	76.48	1736	0.02	4.34	1	-60
1358	0.08	0.88	0.04	12.61	5 3 &	26.47	1734	0.03	4.47		-70
1400	80.0	0.96	0.04	18.61	5.38	26.47	1735	0.02	4.11	1	75-
TUBING IN	PACITY (Gallon	PACITY (Gal./F	= t.): $1/8" = 0$		1.25 " = 0.0 " = 0.0014;	1/4" = 0.002	26; 5/16" = 0.	004; 3/8" = 0	0.006; 1/2 "	= 0.010; 5	2" = 5.88 /8" = 0.016
TUBING IN		PACITY (Gal./F			" = 0,0014; Pump; E	1/4" = 0.002 SP = Electric	26; 5/16" = 0 Submersible Pu	004; 3/8" = 0		= 0.010; 5	/8" = 0.016
TUBING IN PURGING I	ISIDE DIA. CAI	PACITY (Gal./F CODES: B	Ft.): 1/8" = 0 = Bailer;	.0006; 3/16	" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric	26; 5/16" = 0 Submersible Pu	004; 3/8" = 0 mp; PP = P	0.006; 1/2" eristaltic Pump	= 0.010; 5. o; O = Oth	/8" = 0.016 ler (Specify)
PURGING IN	ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal./F CODES: B	Ft.): 1/8" = 0 = Bailer;	.0006; 3/16' BP = Bladder	" = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric	26; 5/16" = 0 Submersible Pu	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	0.006; 1/2" eristaltic Pump T: 1403	= 0.010; 5	/8" = 0.016 ler (Specify)
SAMPLED PUMP OR	BY (PRINT) / A TUBING	PACITY (Gal./F CODES: B	Ft.): 1/8" = 0 = Bailer;	.0006; 3/16' BP = Bladder SAMPLER(S	" = 0.0014; Pump; E SAMP) SIGNATUR	1/4" = 0.002 SP = Electric LING DA	26; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = P: SAMPLING INITIATED A -FILTERED: Y	eristaltic Pump	= 0.010; 5.0; O = Oth	/8" = 0.016 per (Specify)
SAMPLED PUMP OR DEPTH IN	BY (PRINT) / A	PACITY (Gal /F CODES: B AFFILIATION: 2	= Bailer;	SAMPLER(S TUBING MATERIAL C	" = 0.0014; Pump; E SAMP) SIGNATUR	1/4" = 0.002 SP = Electric LING DA E(S):	Submersible Pu ATA FIELD Filtrati	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	eristaltic Pump T: 1403	= 0.010; 5.0; O = Oth	/8" = 0.016 per (Specify)
SAMPLED PUMP OR DEPTH IN V	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet):	PACITY (Gal /F CODES: B AFFILIATION: COUNTY COUNTY PUM	= Bailer;	SAMPLER(S TUBING MATERIAL C	" = 0.0014; Pump; E SAMP) SIGNATUR CODE: HDPE TUBING	1/4" = 0.002 SP = Electric LING DA E(S):	Submersible Pu ATA FIELD Filtrati eplaced)	mp; PP = P: SAMPLING INITIATED A -FILTERED: Y on Equipment Ty	eristaltic Pump	SAMPLING ENDED AT FILTER SIZ	/8" = 0.016 per (Specify) (CE: µ
SAMPLED DOMESTIC PUMP OR DEPTH IN THELD DECUMENT OF SAMPLE SAMPLE	EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO #	PACITY (Gal/F CODES: B AFFILIATION: COUNTY COUNTY COUNTY PUM ER SPECIFICA MATERIAL	= Bailer;	SAMPLER(S MATERIAL C SAMPLE SAMPLE SAMPLE PRESERVA	"= 0.0014; Pump; E SAMP) SIGNATUR CODE: HDPE TUBING E PRESERV/	1/4" = 0.002 SP = Electric LING DA E(S): Y NA ATION (includ TOTAL VOL	Submersible Pu ATA FIELD Filtrati eplaced) [ing wet ice) FINAL	mp; PP = P: SAMPLING INITIATED AFILTERED: Y on Equipment Ty DUPLICATE:	O.006; 1/2" eristaltic Pump T: 1403 //pe: Y DED SAND/OR EG	SAMPLING ENDED AT FILTER SIZ	/8" = 0.016 Per (Specify) ZE: SAMPLE PI FLOW RA
SAMPLED DECT SAMPLE DECT SAMPLE DECC SAMPLE DECC SAMPLE ID CODE	BY (PRINT) / A EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS	PACITY (Gal/F CODES: B AFFILIATION: COUNTY PUM ER SPECIFICA	= Bailer; P Y (I	SAMPLER(S TUBING MATERIAL C	"= 0.0014; Pump; E SAMP) SIGNATUR CODE: HDPE TUBING E PRESERV/	1/4" = 0.002 SP = Electric LING D E(S): Y N M	Submersible Pu ATA FIELD Filtrati eplaced) ling wet ice) FINAL pH	MP; PP = P: SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A	PED SAND/OR DD	SAMPLING ENDED AT FILTER SIZ	/8" = 0.016 er (Specify) E:
SAMPLED DOMESTIC PUMP OR DEPTH IN THELD DECUMENT OF SAMPLE SAMPLE	BY (PRINT) / A EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS	PACITY (Gal./F CODES: B AFFILIATION: Z \ DN: PUM ER SPECIFICA MATERIAL CODE	P Y (I	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI PRESERVAT USED	" = 0.0014; Pump; E SAMP) SIGNATUR CODE: HDPE TUBING E PRESERV/ TIVE ADDE	1/4" = 0.002 SP = Electric LING DA E(S): Y NA ATION (includ TOTAL VOL ED IN FIELD (FIELD Filtrati eplaced) ling wet ice) FINAL pH b < 2	MP; PP = P: SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	PED SAND/OR DD	SAMPLING ENDED AT FILTER SIZE AMPLING QUIPMENT CODE	/8" = 0.016 Per (Specify) ZE: P SAMPLE P FLOW RA
SAMPLED DECT SAMPLE DECT SAMPLE DECC SAMPLE DECC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal./F CODES: B AFFILIATION: Z DN: PUM ER SPECIFICA MATERIAL CODE CG	P Y (OLUME 40 mL	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI PRESERVAT USED HCL	" = 0.0014; Pump; E SAMP SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	ATION (includ TOTAL VOL efilled by lal	FIELD Filtrati eplaced) fing wet ice) find pH color	MP; PP = P: SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHC VOA/E	PED SAND/OR DD DB	SAMPLING ENDED AT FILTER SIZE OF SAMPLING CODE APP	/8" = 0.016 er (Specify) E: SAMPLE PI FLOW RA (mL per mir
SAMPLED DECT SAMPLE DECT SAMPLE DECC SAMPLE DECC SAMPLE ID CODE	EQUIPMENT OF THE PROPERTY OF THE CONTAINERS 3 1	PACITY (Gal./F CODES: B AFFILIATION: Z DN: PUM ER SPECIFICA MATERIAL CODE CG PE	P Y (Intercolon to the colon to	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI HRESERVA USED HCL HNO3	" = 0.0014; Pump; E SAMP SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	ATION (includ TOTAL VOL. D IN FIELD (efilled by lal	FIELD Filtrati eplaced) fing wet ice) find pH color	MP; PP = P: SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal	PED SAND/OR DD DB	SAMPLING ENDED AT FILTER SIZ AMPLING QUIPMENT CODE APP APP	/8" = 0.016 er (Specify) E:
SAMPLED DECT SAMPLE DECT SAMPLE DECC SAMPLE DECC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: Z ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	P Y (TION VOLUME 40 mL 250 mL	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI PRESERVAT USED HCL HNO3 H2SO4	" = 0.0014; Pump; E SAMP SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	ATION (includ total volume filled by latefilled by latefil	FIELD Filtrati eplaced) fing wet ice) find pH color	MP; PP = P: SAMPLING INITIATED A' -FILTERED: Yon Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PED SAND/OR DD DB	SAMPLING PUIPMENT CODE APP APP	/8" = 0.016 fer (Specify) E: μ SAMPLE PL FLOW RA (mL per mir
SAMPLED DECT SAMPLE DECT SAMPLE DECC SAMPLE DECC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: Z ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	P Y (TION VOLUME 40 mL 250 mL	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI PRESERVAT USED HCL HNO3 H2SO4	" = 0.0014; Pump; E SAMP SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	ATION (includ total volume filled by latefilled by latefil	FIELD Filtrati eplaced) fing wet ice) find pH color	MP; PP = P: SAMPLING INITIATED A' -FILTERED: Yon Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PED SAND/OR DD DB	SAMPLING PUIPMENT CODE APP APP	/8" = 0.016 ler (Specify) E: SAMPLE P FLOW RA (mL per min)
SAMPLED DECT SAMPLE DECT SAMPLE DECC SAMPLE DECC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: Z ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	P Y (TION VOLUME 40 mL 250 mL	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI PRESERVAT USED HCL HNO3 H2SO4	" = 0.0014; Pump; E SAMP SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	ATION (includ total volume filled by latefilled by latefil	FIELD Filtrati eplaced) fing wet ice) find pH color	MP; PP = P: SAMPLING INITIATED A' -FILTERED: Yon Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PED SAND/OR DD DB	SAMPLING PUIPMENT CODE APP APP	/8" = 0.016 ler (Specify) E: SAMPLE P FLOW RA (mL per min)
SAMPLED DECT SAMPLE ID CODE WHICH PARENTS AMPLE ID CODE	BY (PRINT) / A EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1 1 1	PACITY (Gal./F CODES: B AFFILIATION: Z ON: PUM ER SPECIFICA MATERIAL CODE CG PE PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL 250 mL Column Col	SAMPLER(S TUBING MATERIAL C SAMPLI SAMPLI PRESERVAT USED HCL HNO3 H2SO4 None	"= 0.0014; Pump; E SAMP SAMP SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr Pr	ATION (includ TOTAL VOLED IN FIELD (efilled by lal lefilled by lal None	FIELD Filtrati eplaced) fing wet ice) find pH color	MP; PP = P: SAMPLING INITIATED A' -FILTERED: Yon Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	PED SAND/OR DB	SAMPLING ENDED AT FILTER SIZE AMPLING QUIPMENT CODE APP APP APP	/8" = 0.016 er (Specify) E:

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	10: MALL	-17BR		SAME	LEID: 10	35-MW	1-170 b		DATE 5	1/15/19	
	INTO	11010		-		SING DAT				/ ((
WELL		TUBING		Ιv	VELL SCREEN		STATIC D	EPTH .	PU PU	RGE PUMP T	YPE
DIAMET	ER (inches): 2		ER (inches):	3/16	EPTH: 3& f	eet to 48 fee				BAILER: PP	
	OLUME PURGE: out if applicable)	1 WELL VOL	UME = (TOT	AL WELL D	EPTH - STA	TIC DEPTH TO	WATER) X	WELL CAPAC	ITY		
			= (feet -		feet) X		gallons/fo		gallo
	MENT VOLUME PU out if applicable)	JRGE: 1 EQUI	PMENT VOL		•			JBING LENGTH	er creat		0.17-7
()				= 0	gallons + (2	oaly gallon	s/foot X	& feet)+ 0-1	gallons	= 0.17 gallo
	PUMP OR TUBIN IN WELL (feet):	^G 43	FINAL PUN DEPTH IN	MP OR TUB WELL (feet)		PURGING INITIATEI	AT: 1252	PURGING ENDED AT:	1326	PURGED (LUME gallons): - 2
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATEF (feet)	PH (standard	TEMP (°C)	COND (circle units) μπηροθές or (ιS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)		
1302	- 0.40	0.40	0.04	18. Ra	4.24	26.48	130	0.26	2.15	Cles	r 166.
1307		0.60	0.04	18.90	4.85	26.55	118	0.27	2.17		113.
1300	_ ^	0.68	0.04	18.90		26.54	113	0.19	2.3		68.
1311	0	0-76	0.04	1291	4-86	26.57	112	0.14	1.7		59.
13 13		0.84	0-04	18-9		26.59	113	0.12	_	2	54.0
1319		0.92	0.04	18.9	1	26.60	112	0-11	1.8		53.
(2)	5 6.00	0.12	0.01	10-1	9.00	24.40		0-11	1.0		- 25.
	CAPACITY (Gallon	s Der Foot): 0	.75" = 0.02·	1" = 0.04	1.25" = 0.0	16; 2 " = 0.16					
TUBING	INSIDE DIA. CAF	PACITY (Gal./F	t.): 1/8" = 0.		16" = 0.0014; er Pump;	1/4" = 0.0026 ESP = Electric S PLING DA	5/16" = 0 Submersible Pu	004; 3/8" =	5" = 1.02; 0.006; 1/2 Peristaltic Pur	6" = 1.47; 2" = 0.010; mp;	12" = 5.88 5/8" = 0.016 other (Specify)
PURGIN	IG EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0. = Bailer;	0006; 3/ BP = Bladd	16" = 0.0014; er Pump;	1/4" = 0 0026 ESP = Electric S PLING DA	5/16" = 0 Submersible Pu	004; 3/8" = 1	0 006; 1/2 Peristaltic Pur	2" = 0.010; mp;	5/8" = 0.016 hther (Specify)
PURGIN	IG EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0. = Bailer;	0006; 3/ BP = Bladd	16" = 0.0014; er Pump; SAMF	1/4" = 0 0026 ESP = Electric S PLING DA	5/16" = 0 Submersible Pur	004; 3/8" = 1 mp; PP = F	0 006; 1/2 Peristaltic Pur	2" = 0.010; mp;	5/8" = 0.016 other (Specify)
PUMP C	ED BY (PRINT) / A	PACITY (Gal./F	t): 1/8" = 0. = Bailer;	0006; 3/BP = Bladd	16" = 0.0014; er Pump; SAMF	1/4" = 0 0026 ESP = Electric S PLING DA E(S):	5/16" = 0. Submersible Pur TA FIELD Filtratio	mp; PP = F SAMPLING INITIATED A FILTERED: You be greated as a second of the control of the con	20 006; 1/2 Peristaltic Pur	SAMPLINE ENDED A	5/8" = 0.016 other (Specify)
SAMPLE PUMP C DEPTH	ED BY PRINT / A	FILIATION: L/George 43	t): 1/8" = 0. = Bailer;	0006; 3/BP = Bladdo	16" = 0.0014; er Pump; SAMF (S) SIGNATUR CODE: HDPI	1/4" = 0 0026 ESP = Electric S PLING DA E(S): Y (Version 1)	5/16" = 0. Submersible Pur TA FIELD Filtration	mp; PP = F SAMPLING INITIATED A	20 006; 1/2 Peristaltic Pur	2" = 0.010; mp;	5/8" = 0.016 other (Specify)
SAMPLE PUMP C DEPTH FIELD D	ED BY (PRINT) / A OR TUBING IN WELL (feet): DECONTAMINATION	PACITY (Gal./F CODES: B FFILIATION: //Georg DN: PUMI	t.): 1/8" = 0. = Bailer;	0006; 3/BP = Bladdo	16" = 0.0014; er Pump; SAMF (S) SIGNATUR CODE: HDPI	1/4" = 0 0026 ESP = Electric S PLING DA E(S): Y (Verental Control of the Control	Submersible Pur TA FIELD Filtratio	mp; PP = F SAMPLING INITIATED A FILTERED: Your Equipment T DUPLICATE INTENE	0.006; 1/2 Peristaltic Pur AT: 1318 Vype: Y DED	SAMPLING SAMPLING	5/8" = 0.016 ther (Specify) IG AT: \326 SIZE: µr
PURGIN SAMPLE PUMP C DEPTH FIELD D SA SAMPLE	DRY (PRINT) / A DR TUBING IN WELL (feet): DECONTAMINATION MPLE CONTAINE	PACITY (Gal./F CODES: B FFILIATION: //Geo.y ON: PUMI R SPECIFICA MATERIAL	t.): 1/8" = 0. = Bailer;	SAMPLER TUBING MATERIAL SAMF	er Pump; SAMF SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV	1/4" = 0 0026 ESP = Electric S PLING DA E(S): Y N (res ATION (includin	FIELD Filtration of the property of the proper	mp; PP = F SAMPLING INITIATED A FILTERED: You Equipment T DUPLICATE	DO 0006; 1/2 Peristaltic Pur AT: 1318 Vype: Y DED AND/OR II	2" = 0.010; mp; O = C SAMPLIN ENDED A FILTER S	5/8" = 0.016 ther (Specify) IG AT: \326 EIZE: µr
SAMPLE DEPTH FIELD D SA SAMPLE ID CODE	DR TUBING IN WELL (feet): DECONTAMINATION MPLE CONTAINERS	FFILIATION: FFILIATION: FFILIATION: FFILIATION: FFILIATION: FFILIATION: FFILIATION: FRICATION: FRICATION:	t.): 1/8" = 0 = Bailer;	0006; 3/BP = Bladd	er Pump; SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV	1/4" = 0 0026 ESP = Electric S PLING DA E(S): Y (Verental Control of the Control	FIELD Filtration of the property of the proper	mp; PP = F SAMPLING INITIATED A FILTERED: You Equipment T DUPLICATE INTENE ANALYSIS A	DED AND/OR	SAMPLING	ther (Specify) AT: \32C SAMPLE PL FLOW RA
PURGIN SAMPLE PUMP C DEPTH FIELD D SA SAMPLE	DR TUBING IN WELL (feet): DECONTAMINATION MPLE CONTAINERS	PACITY (Gal./F CODES: B FFILIATION: //Georg DN: PUMI R SPECIFICA MATERIAL CODE	t): 1/8" = 0. = Bailer; P Y N VOLUME	SAMPLER TUBING MATERIAL SAMF	er Pump; SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D P	1/4" = 0 0026 ESP = Electric S PLING DA E(S): Y (replace of the control of the c	FIELD Filtration of the photostate of the photos	METH	AT: 1318 AT: 1318 ADDED AND/OR AND/OR	SAMPLING EQUIPMENT CODE	ther (Specify) AT: \326 EIZE: µr SAMPLE PU FLOW RAT
SAMPLE DEPTH FIELD D SA SAMPLE ID CODE	DR TUBING IN WELL (feet): DECONTAMINATION MPLE CONTAINERS 3	PACITY (Gal./F CODES: B FFILIATION: // George // 3 DN: PUMI R SPECIFICAT MATERIAL CODE CG	E DE LE	SAMPLER TUBING MATERIAL SAMI PRESERV USE HCL	er Pump; SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE ADD P	1/4" = 0 0026 ESP = Electric S PLING DA E(S): Y N (representation of the content	FIELD Filtration of the photostate of the photos	mp; PP = F SAMPLING INITIATED A FILTERED: You Equipment T DUPLICATE INTENE ANALYSIS A METH	DO 0006; 1/2 Peristaltic Pur AT: 1318 Yes Peristaltic Pur AND AND AND AND AND AND AND AN	SAMPLING SAMPLING EQUIPMENT CODE APP	ther (Specify) GAT: \326 SIZE:
SAMPLE DEPTH FIELD D SA SAMPLE ID CODE	ED BY (PRINT) / A DR TUBING IN WELL (feet): ECONTAMINATIO MPLE CONTAINERS THE TOTAL STATE	PACITY (Gal./FICODES: BETTE	t): 1/8" = 0 = Bailer; TION VOLUME 40 mL	SAMPLER TUBING MATERIAL SAMI PRESERV USE HCL	SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P 3 P 04 P	ATION (including TOTAL VOLED IN FIELD (merilled by lab	FIELD Filtration of the phase o	mp; PP = F SAMPLING INITIATED A FILTERED: You Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta	DED AND/OR DE	SAMPLING EQUIPMENT CODE APP	ther (Specify) GAT: \320 SAMPLE PL FLOW RA
SAMPLE DEPTH FIELD D SA SAMPLE ID CODE	DR TUBING IN WELL (feet): DECONTAMINATION MPLE CONTAINERS 3 1 1	PACITY (Gal./F CODES: B FFILIATION: //Georgy DN: PUMI CR SPECIFICA MATERIAL CODE CG PE PE	t): 1/8" = 0. = Bailer; FION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMF PRESERV USE HCL HNO	SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P 3 P 04 P	ATION (including TOTAL VOLED IN FIELD (merilled by lab refilled by lab refilled by lab	FIELD Filtration of the phase o	METH SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta NH:	DED AND/OR DE	SAMPLING EQUIPMENT CODE APP APP	ther (Specify) GAT: \320 SAMPLE PL FLOW RA
SAMPLE DEPTH FIELD D SA SAMPLE ID CODE	DR TUBING IN WELL (feet): DECONTAMINATION MPLE CONTAINERS 3 1 1 1	PACITY (Gal./F CODES: B FFILIATION: //Georgy DN: PUMI CR SPECIFICA MATERIAL CODE CG PE PE	t): 1/8" = 0. = Bailer; FION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMF PRESERV USE HCL HNO	SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D ADD P 3 P 04 P	ATION (including TOTAL VOLED IN FIELD (merilled by lab refilled by lab refilled by lab	FIELD Filtration of the photostate of the photos	METH SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta NH:	DED AND/OR DE	SAMPLING EQUIPMENT CODE APP APP	ther (Specify) GAT: \320 SAMPLE PL FLOW RA
PURGIN SAMPLE PUMP C DEPTH FIELD D SA SAMPLE ID CODE NW)	DR TUBING IN WELL (feet): DECONTAMINATION MPLE CONTAINERS 3 1 1 1	PACITY (Gal./F CODES: B FFILIATION: //Georgy DN: PUMI CR SPECIFICA MATERIAL CODE CG PE PE	t): 1/8" = 0 = Bailer; FION VOLUME 40 mL 500 mL 250 mL	SAMPLER TUBING MATERIAL SAMF PRESERV USE HCL HNO H2SC	SAMF (S) SIGNATUR CODE: HDPI TUBING PLE PRESERV ATIVE D P 3 P 04 P 9	ATION (including TOTAL VOLED IN FIELD (merilled by lab refilled by lab refilled by lab	FIELD Filtration of the color o	METH SAMPLING INITIATED A FILTERED: Y on Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta NH:	DED AND/OR OD IS	SAMPLING ENDED A FILTER S SAMPLING ENDED A FILTER S APP APP APP	SAMPLE F

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL DIAME		MW-1													
DIAME:								S-MW ING DA					115/1		_
WELL			TUBING						1	STATIC DI	EPTH \ O o) PU	RGE PUMP	YPE	
		inches): 2		ER (inches):	3/16	DEPTH: 1	2 fee	t to 22 fe	eet	TO WATE	R (feet): 18 C	OR	BAILER: PP		
, ,		ME PURGE: applicable)	1 WELL VOL	.UME = (TO	IAL WELL	DEPTH -	SIAI	DEPTH 1	O WAI	ER) X	WELL CAPACIT	Y		()	
FOLUD			IRGE: 1 EQU	= (22 - PUMP	feet -	/TUDI	FO. 61	TV	feet) X X TU	O.16 BING LENGTH)	gallons/fo	ot = O.	62	gallo
		applicable)	IKGE, I EQU	IFINIENT VOI											
10.117.4.1	D. 11.	D 0D TUDIN		T ENIAL DU	=	gallons +	+ (ns/foot	X	feet)		gallons		galle
		P OR TUBINO ELL (feet):	20	1	MP OR TUI			PURGIN	D AT:		PURGING ENDED AT: DISSOLVED	1242	TOTAL VO		1.1
TIME		VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet	R (stan	dard	TEMP (°C)	(circle µmh	OND. e units) os/çm S/cm	OXYGEN (circle units) (ng/l) or % saturation	TURBIDI' (NTUs)			ORF (mV
1213	+	0.40	0.40	0.04	18.4	941	Q	26.89	99		0.24	11.5	ales	W	18
122	_	0.70	0-60	0.04	18.4		λ	26.79	96		0.14	8.74			203
122	_	0.12	0.72	0.04		94.1	9	26.80	90		0.11	7.31			14
122		0.12	0.84	0.04		941	-	26.79			0.10	5.8	2		16
123		0.12	0.96	0.04		941	-	26.78	100	N.	0.11	5.40			18
123		0.12	1.08	0.04	12.4			26.75			0.11	3. j			25
1.0		0.12		3.0			, 1		1			·			
TUBIN	G INS	IDE DÍA. CAP	Per Foot): 0	(t.): 1/8" = 0		/16" = 0.00		1/4" = 0.002	6:	" = 0,37; 5/16" = 0.0	004; 3/8" = 0	25	6" = 1.47; " = 0.010;	12" = 5. 5/8" = 0.	016
PURGI	NG E	QUIPMENT C	ODES: B	= Bailer;	BP = Blade			P = Electric		rsible Pun	np, PP = Pe	ristaltic Pun	ip; 0 = 1	Other (Spe	city)
SAMPL	ED B	Y (PRINT) / A	FFILIATION:		SAMPLE	R(S) SIGNA			NIA.	_	SAMPLING	1-26	SAMPLI	NG	
		hantiel	1 George	rtee			-				INITIATED AT	1236	ENDED		24
PUMP	OR T	JBING	"	70	TUBING	AL CODE: 1	UDDE				FILTERED: Y	W	FILTER	SIZE:	μ
		ELL (feet): NTAMINATIO	N: PUM	LA PY(I			ING	Y (N (re	eplaced	-	DUPLICATE:	y Y	(N)		
	_		R SPECIFICA					TION (includi			INTENDE	-	SAMPLING	SAMPI	E DI
SAMPLE ID CODE	T	# CONTAINERS	MATERIAL CODE	VOLUME	PRESER	VATIVE	Т	OTAL VOL		FINAL	ANALYSIS AI METHO	ND/OR E	EQUIPMENT CODE	FLOV (mL pe	N RA
MW-1			CG	40 mL	HC			filled by lab		< 2	VOA/ED	В	APP	15	0
1		1	PE	500 mL	HN	D3	Pre	filled by lab)	< 2	Metals		APP	ı	
		1	PE	250 mL	H2S	04	Pre	filled by lab)	< 2	NH3		APP		
V		1	PE	250 mL	No	ne	al	None			CL/NO3/7	DS	APP	1	/
REMAR Odor:	KKS:														
MATER	RIAL C	ODES:	AG = Amber (Glass; CG	= Clear Gla	iss; HD	PE = H	igh Density F	Polyeth	ylene;	LDPE = Low De	nsity Polyet	hylene; P	P = Polypi	opyle

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	Anna 2	Landfill		CANAD		OCATION: 15		, 5. 5. 5. 5. 5. 5. 6. 7. 1	DATE:	C,		
WELL NO:	MW-2	1 B		SAIVIF		35-MW			DATE.	5/	15/19	
NA/ELI		TUDING	,	1.		GING DA	-	DEDTH	0	DUDC	E DUME T	VDE
WELL DIAMETER	R (inches): 2	TUBING DIAME	τΕR (inches):	3/16	NELL SCREE	eet to		DEPTH TER (feet):	7.81		E PUMP T ILER: PP	YPE
WELL VOL	UME PURGE:							X WELL CAP	PACITY	-		
(only fill out	t if applicable)		= (feet -		feet)	Х	gallo	ns/foot	=	gall
	NT VOLUME PU	JRGE: 1 EQL	IPMENT VOL	= PUMP \	OLUME + (TU	BING CAPACI	TY X	TUBING LENG	GTH) + FLO	W CELL	VOLUME	Ø
(Offig thi Out	t ii applicable)			= 0	gallons + (C	.0014 gallo	ns/foot X	49	feet) +	0.1	gallons	= 0.17 gall
	JMP OR TUBIN WELL (feet):	^G 43		MP OR TUB WELL (feet	477	PURGIN INITIATE	G ED AT: 103		AT: \\ 5		OTAL VO PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATEI (feet)	R (standard	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	OXYGE (circle uni (mg/l) o % saturat	N TUR	BIDITY ITUs)	COLC (descri	
1042	0.40	0.40	0.04	18.3	1 4.52	25.63	200	0.53	0.	46	Clea	r 9.
1047	0.20	0.60	0.04	18.3	3 4.52	25-62	201	0.19		76	-	-4
1052	0.20	0.80	0.04	18.3			201	0.15	-	23		-8
1057	0.20	1.00	0.04	18.3		25.61	701	0.10		96		-12
1102	0.20	1-20	0.04	18.3		25.60	701	0.12		48	1	-27
									_		-	_
									-			
	PACITY (Gallon										' = 1.47;	12" = 5.88
TUBING IN	ISIDE DIA. CAF	PACITY (Gal /	Ft.): 1/8" = 0	0006; 3/	16" = 0.0014;	1/4" = 0.002	e6; 5/16" =	0.004; 3/8	" = 0_006;	1/2" =	0.010;	5/8" = 0.016
TUBING IN		PACITY (Gal /			/16" = 0.0014; ler Pump;	1/4" = 0 002 ESP = Electric	26; 5/16" = Submersible	0.004; 3/8		1/2" =	0.010;	
PURGING SAMPLED	EQUIPMENT C	PACITY (Gal./I	Ft.): 1/8" = 0	0006; 3/ BP = Bladd	/16" = 0.0014; ler Pump;	1/4" = 0 002 ESP = Electric PLING DA	26; 5/16" = Submersible	Pump; PP	" = 0_006; P = Peristaltion	1/2" =	0.010; 0 = 0	5/8" = 0.016 Other (Specify)
PURGING SAMPLED	ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	0006; 3/ BP = Bladd	r16" = 0.0014; ler Pump; SAM	1/4" = 0 002 ESP = Electric PLING DA	Submersible	Pump; PP SAMPLII	" = 0.006; P = Peristaltion NG ED AT:	1/2" = c Pump;	O = C SAMPLINENDED	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR	BY (PRINT) / A TUBING	PACITY (Gal./I	Ft.): 1/8" = 0 = Bailer;	SAMPLER	(16" = 0.0014; ler Pump; SAM R(S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	Submersible	O.004; 3/8 Pump; PP SAMPLII INITIATE	" = 0.006; P = Peristaltic NG ED AT: NG	1/2" = c Pump;	O = C SAMPLINENDED	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR DEPTH IN	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet):	FILIATION:	Et.): 1/8" = 0 = Bailer;	SAMPLER TUBING MATERIA	In the second se	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible ATA FIE Filtr	Pump; PP SAMPLII	W = 0.006; P = Peristaltic NG ED AT: Y N NT N	1/2" = c Pump;	O.010; O = C SAMPLINENDED A FILTER S	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR DEPTH IN	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO	FILIATION: LEGITY (Gal./I	Et.): 1/8" = 0 = Bailer;	SAMPLEF TUBING MATERIA	In the second se	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N (SE	Submersible ATA FIE Filtreplaced)	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC,	NG N	1/2" = c Pump;	O.010; O = C SAMPLINENDED A FILTER S	5/8" = 0.016 Other (Specify) NG AT: 1130 SIZE: μ
SAMPLED PUMP OR DEPTH IN	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet):	FILIATION: LEGITY (Gal./I	Et.): 1/8" = 0 = Bailer;	SAMPLEF TUBING MATERIA	In the second se	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible ATA FIE Filtr eplaced) ing wet ice) FINA	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT ANALYS	NG N	1/2" = c Pump;	SAMPLINE SUPPRENT CODE	5/8" = 0.016 Other (Specify)
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: FILIATION: H3 ON: PUM R SPECIFICA MATERIAL	= Bailer;	SAMPLEF TUBING MATERIA SAMI	INTERPOLATION AND THE PRESERVATIVE D. ADD.	I/4" = 0.002 ESP = Electric PLING DA RE(S): Y N (re VATION (includi TOTAL VOL	FIE Filtr eplaced) ing wet ice) FINA pH	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT ANALYS ME	NG NG NT Y N NT TYPE: ATE: ENDED SIS AND/OR	1/2" = c Pump;	SAMPLING FILTER S MPLING JIPMENT	SAMPLE PL
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./I	Et): 1/8" = 0 = Bailer; IP Y (NOTION) VOLUME	SAMPLER TUBING MATERIA SAMI PRESERY USE	INTERPOLATION AND INTERPOLATIO	TOTAL VOL	Submersible ATA FIE Filtr eplaced) ing wet ice) ML) pH C 2	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT ANALYS ME VO	NG PED AT: NG NG PED AT: NG NG PED AT: NG NG PED AT: NG	1/2" = c Pump;	SAMPLING FILTER S MPLING JIPMENT CODE APP	SAMPLE PORTS
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	FILIATION: PACITY (Gal./I CODES: B FILIATION: PUN R SPECIFICA MATERIAL CODE CG	Et.): 1/8" = 0 = Bailer; IP Y (NOTION VOLUME 40 mL	SAMPLEF TUBING MATERIA SAM PRESERV USE HC	In the second se	TOTAL VOL refilled by lake	FIE Filtr eplaced) ing wet ice) FINA FINA FINA FINA TO STAND FINA FINA	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT L VO N	NG NG ED AT: NG	1/2" = c Pump;	SAMPLING FILTER S MPLING JIPMENT CODE APP	SAMPLE PORTS
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1	PACITY (Gal./I	P Y VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIA SAM PRESERV USE HC	In the second se	E Y ATION (includ TOTAL VOL ED IN FIELD (irefilled by lab	FIE Filtr eplaced) ing wet ice) FINA FINA FINA FINA TO STAND FINA FINA	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT L VO N	NG PED AT: NG NG PED AT: NG NG PED AT: NG NG PED AT: NG	1/2" = c Pump; O & Y SA EQL	SAMPLING FILTER S MPLING JIPMENT CODE APP	SAMPLE PORTS
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAINATION # CONTAINERS 3 1 1	PACITY (Gal./I	Et): 1/8" = 0 = Bailer; EP Y (VITION VOLUME 40 mL 500 mL 250 mL	SAMPLEF TUBING MATERIA SAMI PRESERV USE HC HNC	In the second se	E Y N (refilled by lab (refilled by lab)	FIE Filtr eplaced) ing wet ice) FINA FINA FINA FINA TO STAND FINA FINA	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT L VO N	NG NG ED AT: NG	1/2" = c Pump; O & Y SA EQL	SAMPLINE SILTER	SAMPLE PORTS
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-29	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAINATIO PLE CONTAINERS 3 1 1	PACITY (Gal./I	Et): 1/8" = 0 = Bailer; EP Y (VITION VOLUME 40 mL 500 mL 250 mL	SAMPLEF TUBING MATERIA SAMI PRESERV USE HC HNC	In the second se	E Y N (refilled by lab (refilled by lab)	FIE Filtr eplaced) ing wet ice) FINA FINA FINA FINA TO STAND FINA FINA	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT L VO N	NG NG ED AT: NG	1/2" = c Pump; O & Y SA EQL	SAMPLINE SILTER	SAMPLE PORTS
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAINATIO PLE CONTAINERS 3 1 1	PACITY (Gal./I	Et): 1/8" = 0 = Bailer; EP Y (VITION VOLUME 40 mL 500 mL 250 mL	SAMPLEF TUBING MATERIA SAMI PRESERV USE HC HNC	In the second se	E Y N (refilled by lab (refilled by lab)	FIE Filtr eplaced) ing wet ice) FINA FINA FINA FINA TO STAND FINA FINA	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC. INT L VO N	NG NG ED AT: NG	1/2" = c Pump; O & Y SA EQL	SAMPLINE SILTER	SAMPLE PORTS
PURGING SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW-29 REMARKS	BY (PRINT) / A TUBING WELL (feet): CONTAINERS 3 1 1 1	PACITY (Gal./I	Et.): 1/8" = 0 = Bailer; IP Y (INTION VOLUME 40 mL 250 mL 250 mL	SAMPLEF TUBING MATERIA SAM PRESERV USE HCI HNC	ITE" = 0.0014; Ider Pump; SAM R(S) SIGNATU L CODE: HDF TUBING PLE PRESER //ATIVE D ADD L F 03 F 04 F 19	E Y N (refilled by lab (refilled by lab)	FIE Filtreplaced) ing wet ice) FINA FINA FINA C 2 C 2 C 2	SAMPLII INITIATE LD-FILTERED ation Equipme DUPLIC, INT L ANALYS ME VO N CL/N	NG NG ED AT: NG	1/2" = c Pump; O & Y SA EQU	SAMPLING FILTER S MPLING JIPMENT CODE APP APP APP	SAMPLE PORTS

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: January 2017

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	10: MW-2	90		SAM	IPLE ID: 10	35 - M	N-29A		DATE: S	115/19	
	1-100	- IA				GING DA		,			
WELL		TUBING			WELL SCREEN	INTERVAL	STATI	C DEPTH		GE PUMP TYPE	
	TER (inches): 2		ER (inches): 3			eet to 23 f				BAILER: PP	
	OLUME PURGE: out if applicable)	1 WELL VOL	UME = (TOTA		DEPTH - ST			X WELL CAPAC		200	-
` '	MENT VOLUME PI	IDOE: 4 FOLIII	= (23	feet -	17.68	feet)	x 0.16 TUBING LENGTH	gallons/foc	ot = 0.89	gal
	out if applicable)	JRGE: 1 EQUI	PIVIENT VOL.	-416					_		
			n	= 0	gallons + (ons/foot X	fee	t) +	gallons =	gal
	PUMP OR TUBININ WELL (feet):	^G 21	FINAL PUM DEPTH IN V			PURGIN	ED AT: [01	PURGING ENDED AT DI\$SOLVED	1052	TOTAL VOLUM PURGED (galic	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet	ER (standard	TEMP (°C)	COND. (circle units µmhos/cm or µS/cm	OXYGEN (circle units)	TURBIDIT (NTUs)	Y COLOR (describe)	OR (m)
102	1 0.40	0.40	0.04	14.1:	2 4.19	24.97	247	0.50	25.4	light	145
1026		0.60	0.04	18.1		24.91	247	0.53	13.2		150
1031		0.80	0.04	18.1		24.86	247	0.65	10.4		167
1030		1.00	0.04	16.1			247	0.38	8.40		18
103		1.08	0.04	18-1:		1 - 1 0 -	247	0.41	6-17	- 4	18
		1-04		150 11							
				1							
WELL	CAPACITY (Gallon	s Per Foot): 0.	75 " = 0 02:	1" = 0 0	04: 1.25 " = 0	06: 2 " = 0.1	6; 3 " = 0;	37; 4 " = 0.65;	5" = 1.02;	6" = 1.47; 12	" = 5.88
TUBING	CAPACITY (Gallon G INSIDE DIA. CAR	PACITY (Gal./Fi	t.): 1/8" = 0.0		3/16" = 0_0014;	1/4" = 0 002	26; 5/16 "	= 0.004; 3/8" =	0_006; 1/2	' = 0.010; 5/8	" = 0.016
TUBING	CAPACITY (Gallon 3 INSIDE DIA. CAP NG EQUIPMENT C	PACITY (Gal./Fi	t.): 1/8" = 0.0	0006;	3/16" = 0.0014; der Pump;	1/4" = 0 002 ESP = Electric	26; 5/16": Submersible	= 0.004; 3/8" =		' = 0.010; 5/8	" = 0_016
PURGIN	S INSIDE DIA. CAR	PACITY (Gal./FI	t.): 1/8" = 0.0	0006; 3 BP = Blad	3/16" = 0 0014; der Pump; SAM	1/4" = 0 002 ESP = Electric	26; 5/16": Submersible	Pump; PP = F	0_006; 1/2' Peristaltic Pum	' = 0.010; 5/8 p; O = Othe	" = 0_016
PURGIN	S INSIDE DIA. CAR	PACITY (Gal./Fi CODES: B =	t.): 1/8" = 0.1 = Bailer; I	0006; 3 BP = Blad	3/16" = 0.0014; der Pump;	1/4" = 0 002 ESP = Electric	26; 5/16": Submersible	Pump; PP = F	0.006; 1/2' Peristaltic Pum	' = 0.010; 5/8	" = 0.016
PUMP (E INSIDE DIA. CAR NG EQUIPMENT C ED BY (RRINT) (A DR TUBING	CODES: B=	t.): 1/8" = 0.0	SAMPLE	8/16" = 0 0014; der Pump; SAM R(S) SIGNATU	1/4" = 0 002 ESP = Electric PLING DA	26; 5/16": Submersible	= 0.004; 3/8" = Pump; PP = 1 SAMPLING INITIATED /	0.006; 1/2* Peristaltic Pum AT: 1040	' = 0.010; 5/8 p; O = Othe	" = 0.016 r (Specify)
PUMP (DEPTH	E INSIDE DIA. CAP NG EQUIPMENT OF ED BY (RRINT) /A ED BY (RRINT) /A DR TUBING IN WELL (feet):	PACITY (Gal./FI	t.): 1/8" = 0.0	SAMPLE TUBING MATERIA	8/16" = 0.0014; der Pump; SAM R(S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	26; 5/16": Submersible ATA FIE Filt	Pump; PP = f SAMPLING INITIATED ELD-FILTERED: N ration Equipment T	O.006; 1/2* Peristaltic Pum AT: 1040 Y N ype:	p; O = Othe SAMPLING ENDED AT: FILTER SIZE	" = 0_016 r (Specify)
PUMP (DEPTH	E INSIDE DIA. CAP RED BY (RRINT) /A ED BY (RRINT) /A DR TUBING IN WELL (feet): DECONTAMINATIO	PACITY (Gal./FI	a.): 1/8" = 0.0	SAMPLE TUBING	3/16" = 0.0014; der Pump; SAM; R(S) SIGNATU AL CODE: HDP TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible ATA FIE Filt eplaced)	Pump; PP = i SAMPLING INITIATED / ELD-FILTERED: retion Equipment T DUPLICATE	0.006; 1/2* Peristaltic Pum AT: 1040 Y N Type: Y Y	sAMPLING ENDED AT:	" = 0_016 r (Specify)
PUMP (DEPTH FIELD C	E INSIDE DIA. CAP NG EQUIPMENT CO ED BY (RRINT) /A DR TUBING IN WELL (feet): DECONTAMINATION AMPLE CONTAINE	PACITY (Gal./FI	E.): 1/8" = 0.0	SAMPLE TUBING MATERIA	B/16" = 0.0014; der Pump; SAM R(S) SIGNATU AL CODE: HDP TUBING	TIA" = 0.002 ESP = Electric PLING DA RE(S). E Y N/ATION (included)	26; 5/16": Submersible ATA FIE Filt eplaced)	SAMPLING INITIATED STATE OF THE PROPERTY OF T	O.006; 1/2* Peristaltic Pum AT: 1040 Yype: E: Y DED S	SAMPLING ENDED AT: FILTER SIZE	" = 0.016 r (Specify)
PUMP (DEPTH	E INSIDE DIA. CAP RED BY (RRINT) /A POR TUBING IN WELL (feet): DECONTAMINATION AMPLE CONTAINE #	PACITY (Gal./FI	a.): 1/8" = 0.0	SAMPLE TUBING MATERIA SAM PRESER	AL CODE: HDP TUBING MPLE PRESERV RVATIVE ED AL 0014; 0014	TOTAL VOL	Submersible ATA FIE eplaced) ling wet ice) FINA PH	SAMPLING INITIATED LD-FILTERED: ration Equipment T DUPLICATE INTENIA AL ANALYSIS METH	O.006; 1/2* Peristaltic Pum AT: 1040 Y N ype: E: Y DED AND/OR O E	SAMPLING ENDED AT: FILTER SIZE N SAMPLING SAMPLING SQUIPMENT CODE	" = 0.016 r (Specify)
PUMP CODEPTH FIELD CO	E INSIDE DIA. CAP RED BY (RRINT) / (A CONTAINERS ED BY (RRINT) / (A CONTAINERS ED BY (RRINT) / (A CONTAINERS	PACITY (Gal./FI CODES: B = OFFILIATION: ON: PUMF ER SPECIFICAT MATERIAL	E.): 1/8" = 0.0	SAMPLE TUBING MATERIA SAM PRESER	AL CODE: HDP TUBING MPLE PRESERV RVATIVE ED AL 0014; 0014	TOTAL VOL	Submersible ATA FIE eplaced) ling wet ice) FINA PH	SAMPLING INITIATED AT THE PUMP; PP = 1	O.006; 1/2* Peristaltic Pum AT: 1040 Y N ype: E: Y DED AND/OR O E	SAMPLING ENDED AT: FILTER SIZE N SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE (I	" = 0.016 r (Specify) :: AMPLE P
PUMP C DEPTH FIELD C SAMPLE ID CODE	E INSIDE DIA. CAP RED BY (RRINT) / (A CONTAINERS ED BY (RRINT) / (A CONTAINERS ED BY (RRINT) / (A CONTAINERS	PACITY (Gal./FI CODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE	E.): 1/8" = 0.0 = Bailer; I P Y N FION VOLUME	SAMPLE TUBING MATERIA SAM PRESER	AL CODE: HDP TUBING MPLE PRESERVATIVE ED ALCO TO TUBING MPLE PRESERVATIVE ED ADD F	TOTAL VOL	Eplaced) FIE Filt eplaced) mL) PHA FIE Filt pH b < 2	SAMPLING INITIATED ELD-FILTERED: N ration Equipment T DUPLICATE INTEN ANALYSIS METH VOA/E Meta	O.006; 1/2* Peristaltic Pum AT: 1040 Y N Type: E: Y DED AND/OR EDB als	SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE APP APP	" = 0.016 r (Specify, AMPLE PFLOW RAME Per mi
PUMP C DEPTH FIELD C SAMPLE ID CODE	E INSIDE DIA. CAP RED BY (RRINT) /A POR TUBING IN WELL (feet): DECONTAMINATION AMPLE CONTAINERS 3	PACITY (Gal./FI CODES: B = FFILIATION: PUMF ER SPECIFICAT MATERIAL CODE CG	E.): 1/8" = 0.0 = Bailer; I P Y N FION VOLUME 40 mL	SAMPLE TUBING MATERIA SAM PRESER US HC	AL CODE: HDP TUBING MPLE PRESERVENTIVE ED CO BYTHE STATE ADDITIONAL STATE ADDITION	EE Y N/M TOTAL VOL PED IN FIELD (Prefilled by lal	Eplaced) FILE Filt eplaced) fing wet ice) FINA FILE PRINT FINA FILE PRINT FINA FILE PRINT PH b < 2	SAMPLING INITIATED A SAMPLING	O.006; 1/2* Peristaltic Pum AT: 1040 Y N Type: E: Y DED AND/OR IOD EDB als	SAMPLING ENDED AT: FILTER SIZE N SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE (I	" = 0.016 r (Specify AMPLE P FLOW R/ mL per mi
PUMP C DEPTH FIELD C SAMPLE ID CODE	EINSIDE DIA. CAP NG EQUIPMENT CONTAINERS 2 CONTAINERS 3 1	PACITY (Gal./FI CODES: B = FFILIATION: PUMF ER SPECIFICAT MATERIAL CODE CG PE	E.): 1/8" = 0.0 = Bailer; I FION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC	AL CODE: HDP TUBING MPLE PRESERV RVATIVE ED AD SO4 F SO4 F	EEYNOLUCED IN FIELD (Prefilled by lale	Eplaced) FILE Filt eplaced) fing wet ice) FINA FILE PRINT FINA FILE PRINT FINA FILE PRINT PH b < 2	SAMPLING INITIATED ELD-FILTERED: N ration Equipment T DUPLICATE INTEN ANALYSIS METH VOA/E Meta	O.006; 1/2* Peristaltic Pum AT: 1040 Yype: E: Y DED AND/OR EDB als 3	SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE APP APP	" = 0.016 r (Specify, AMPLE PFLOW RAME Per mi
PUMP C DEPTH FIELD C SAMPLE ID CODE	E INSIDE DIA. CAP RED BY (RRINT) / (A CONTAINERS RED BY (RRINT) / (A CONTAINERS RED BY (RRINT) / (A CONTAINERS RED BY (RRINT) / (A RED BY (RRINT) /	PACITY (Gal./FI CODES: B = FFILIATION: PUMF ER SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0.0 Bailer; I Y N TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC HN H2S	AL CODE: HDP TUBING MPLE PRESERV RVATIVE ED AD SO4 F SO4 F	TOTAL VOLUME IN FIELD (Prefilled by lale)	Eplaced) FILE Filt eplaced) fing wet ice) FINA FILE PRINT FINA FILE PRINT FINA FILE PRINT PH b < 2	SAMPLING INITIATED A STATE INTENTIAL ANALYSIS METH VOA/E VOA/E NH NH NH NH NH NH NH NH NH N	O.006; 1/2* Peristaltic Pum AT: 1040 Yype: E: Y DED AND/OR EDB als 3	SAMPLING ENDED AT: FILTER SIZE N SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE APP APP APP	" = 0.016 r (Specify) AMPLE PFLOW R/mL per mi
PUMP C DEPTH FIELD D SAMPLE ID CODE MW - 2	E INSIDE DIA. CAP NG EQUIPMENT OF ED BY (RRINT) / (A ED BY (RRINT) / (PACITY (Gal./FI CODES: B = FFILIATION: PUMF ER SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0.0 Bailer; I Y N TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC HN H2S	AL CODE: HDP TUBING MPLE PRESERV RVATIVE ED AD SO4 F SO4 F	TOTAL VOLUME IN FIELD (Prefilled by lale)	Eplaced) FILE Filt eplaced) fing wet ice) FINA FILE PRINT FINA FILE PRINT FINA FILE PRINT PH b < 2	SAMPLING INITIATED A STATE INTENTIAL ANALYSIS METH VOA/E VOA/E NH NH NH NH NH NH NH NH NH N	O.006; 1/2* Peristaltic Pum AT: 1040 Yype: E: Y DED AND/OR EDB als 3	SAMPLING ENDED AT: FILTER SIZE N SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE APP APP APP	" = 0.016 r (Specify) AMPLE PFLOW RAMIL per mi
PUMP C DEPTH FIELD D SAMPLE ID CODE	E INSIDE DIA. CAP NG EQUIPMENT OF ED BY (RRINT) / (A ED BY (RRINT) / (PACITY (Gal./FI CODES: B = FFILIATION: PUMF ER SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0.0 Bailer; I Y N TION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERIA SAM PRESER US HC HN H2S	AL CODE: HDP TUBING MPLE PRESERV RVATIVE ED AD SO4 F SO4 F	TOTAL VOLUME IN FIELD (Prefilled by lale)	Eplaced) FILE Filt eplaced) fing wet ice) FINA FILE PRINT FINA FILE PRINT FINA FILE PRINT PH b < 2	SAMPLING INITIATED A STATE INTENTIAL ANALYSIS METH VOA/E VOA/E NH NH NH NH NH NH NH NH NH N	O.006; 1/2* Peristaltic Pum AT: 1040 Yype: E: Y DED AND/OR EDB als 3	SAMPLING ENDED AT: FILTER SIZE N SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE APP APP APP	" = 0.016 r (Specify) AMPLE PFLOW RAMPL per min
PUMP CODEPTH FIELD C SAMPLE ID CODE MW - 2 REMAR Odor:	E INSIDE DIA. CAP NG EQUIPMENT OF ED BY (RRINT) / (A ED BY (RRINT) / (PACITY (Gal./FI CODES: B = FFILIATION: PUMF ER SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0.0 = Bailer; I	SAMPLE TUBING MATERIA SAM PRESER US HC HN H2S	AL CODE: HDP TUBING MPLE PRESERVATIVE ED COS FOO TO THE TUBING APPLE PRESERVATIVE ED TUBING APPLE PRESERVATIVE FOO TO THE TUBING APPLE PRESERVATIVE FOO TO THE THE TUBING APPLE PRESERVATIVE FOO THE TUBING THE TUBING APPLE THE TUBING	TOTAL VOLUME IN FIELD (Prefilled by lale)	Esubmersible ATA FIE Filt eplaced) fing wet ice) FINA pH b <2 b <2 c	= 0.004; 3/8" = Pump; PP = 6 RAMPLING INITIATED / INI	O.006; 1/2* Peristaltic Pum AT: 1040 Yype: E: Y DED AND/OR EDB als 3	SAMPLING ENDED AT: FILTER SIZE N SAMPLING SQUIPMENT CODE APP APP APP APP	" = 0.016 r (Specify) AMPLE PFLOW R/mL per mi

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-Z	OB		SAMPLE			M-58B		DATE: S	> / °	>/19	
					PURC	SING DA	TA					
	R (inches): 2		TER (inches):	3/16 DEF		et to 4d f	eet TO WATE	R (feet):	. O.Z. OI	URGE F R BAILI	PUMP TY ER: PP	PE.
	LUME PURGE: t if applicable)	1 WELL VOI	.UME = (TOT = (AL WELL DEF	PTH - STA feet -	TIC DEPTH T	FO WATER) X	WELL CAPAC	ITY gallons/f	oot =	4	gall
	NT VOLUME PU t if applicable)	URGE: 1 EQU	IPMENT VOL		,	BING CAPACI		BING LENGTH feet				= 0.17 gall
	MP OR TUBIN WELL (feet):	^G 43		MP OR TUBINO WELL (feet):	े ५३	PURGIN INITIATE	IG ED AT: 09 25	PURGING ENDED AT:	1000		TAL VOL RGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL_ VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP, (°C)	COND. (circle units) µmhos/cm or (S/cm)	OXYGEN (circle units) mg/L or % saturation	TURBID (NTUs		COLOF (describ	
0935	0.40	0.40	0.04	18.56	4-64	24.93	175	0.76	0.74	1	Clean	c -12
0938	0-12	0-92	0-04	18.56	4.63	24.91	175	0-44	0.7	1	1	-20
0941	0.12	0.64	0.04	14.SG	4.63	24.42	173	0.34	1.17)		-26
0944	0.12	0.76	0.04	12.56	4-62	24.92	172	0.31	0.60			-25
0947	0.12	0.88	PG.0	18.50	4.62	24.93	172	0.36	0-7	2	1	-23
									1			
			-	-						_		
WELL CAP	PACITY (Gallon:	s Per Foot): 0	0. 75 " = 0.02;	1" = 0.04;	1.25" = 0.0	6; 2 " = 0.1	6; 3" = 0.37;	4" = 0.65;	5 " = 1.02;	6" =	1.47;	12" = 5.88
TUBING IN	SIDE DIA. CAF	PACITY (Gal./F	t.): 1/8" = 0.	0006; 3/16"	= 0.0014;	1/4" = 0.002	26; 5/16" = 0.0	004; 3/8" = 0	0.006; 1	/2" = 0.	010;	5/8" = 0.016
TUBING IN	PACITY (Gallon: SIDE DIA. CAP EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder F	' = 0.0014; Pump; E	1/4" = 0 002 SP = Electric	26; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0		/2" = 0.	010;	
PURGING SAMPLED	SIDE DIA. CAF	PACITY (Gal /F ODES: B	t.): 1/8" = 0.	0006; 3/16"	' = 0.0014; Pump; E SAMP	1/4" = 0 002 SP = Electric	26; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0	0.006; 1/ eristaltic Pu	/2" = 0.	010; 0 = Ot	5/8" = 0.016 ther (Specify)
SAMPLED DOWNER PUMP OR	BY (PRINT) A	PACITY (Gal./F ODES: B	Et.): 1/8" = 0 = Bailer;	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	Pump; E SAMP SIGNATURI	1/4" = 0 002 SP = Electric LING DA	Submersible Pur	sampling initiated A	0.006; 1/2 eristaltic Pu	/2" = 0.	010; 0 = Ot	5/8" = 0.016 ther (Specify) G T: 095
SAMPLED PUMP OR DEPTH IN	BY (PRINT) (A TUBING WELL (feet):	PACITY (Gal /FODES: B	= Bailer;	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	Pump; E SAMP SIGNATURI	SP = Electric LING DA	Submersible Pur	SAMPLING INITIATED A FILTERED: Y on Equipment Ty	o.006; 1/2 eristaltic Pu	/2" = 0. imp; S E	O10; SAMPLING ENDED A	5/8" = 0.016 ther (Specify) G T: 095
SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) (A BY	PACITY (Gal/F DODES: B DEFILIATION: DEFILIAT	Ft.): 1/8" = 0 = Bailer;	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	Pump; E SAMP SIGNATURI ODE: HDPE TUBING	1/4" = 0 002 SP = Electric LING DA E(S):	Submersible Pur ATA FIELD- Filtratic	3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y n Equipment Ty DUPLICATE:	D 006; 1/2 eristaltic Pu	/2" = 0.	O = Ot SAMPLING ENDED A ILTER SI	5/8" = 0.016 ther (Specify) G T: 09 5° ZE: μ
SAMPLED PUMP OR PUMP OR PUMP OR SEPTH IN FIELD DEC	BY (PRINT) (A TUBING WELL (feet):	PACITY (Gal /F DODES: B FFILIATION: PL GODES: B FFILIATION: PL GODES: B FFILIATION: PL GODES: B FFILIATION: PL GODES: B GODES:	Et.): 1/8" = 0 = Bailer;	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C SAMPLE	Per 0.0014; Pump; E SAMP SIGNATURI ODE: HDPE TUBING E PRESERVA	1/4" = 0 002 SP = Electric LING DA E(S): Y Next	FIELD-Filtratic éplaced) ing wet ice) 526; 5/16" = 0.0 FIELD-Filtratic éplaced) FIRAL	SAMPLING INITIATED A FILTERED: Y on Equipment Ty	D.006; 1/2 eristaltic Pu	/2" = 0. imp; S E	O = Ot SAMPLING ENDED A ILTER SI PLING PMENT	5/8" = 0.016 ther (Specify) G T: 095
SAMPLED PUMP OR DEPTH IN THELD DECTH IN THELD DECTH IN THELD DECTH IN THE SAMPLE ID CODE	BY (RRINT) (A BY (RRINT) (A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS	PACITY (Gal /F DODES: B FFILIATION: PUM R SPECIFICA MATERIAL	Et.): 1/8" = 0. = Bailer; P Y N TION	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT	Personal Control Contr	1/4" = 0 002 SP = Electric LING DA E(S): Y NAME ATION (includit FOTAL VOL	FIELD-Filtratic splaced) ing wet ice) FINAL pH	SAMPLING INITIATED A FILTERED: Y DUPLICATE: INTEND ANALYSIS A	D.006; 1/2 eristaltic Pu	SAMPEQUIP	010; 0 = Ot SAMPLING: NDED A' ILTER SI PLING MENT DE	SAMPLE PL
SAMPLED PUMP OR DEPTH IN THE SAMPLE SAMPLE DECCURRENCE SAMPLE ID CODE	BY (RRINT) (A BY (RRINT) (A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS	PACITY (Gal /F DODES: B OFFILIATION: US ON: PUM OFFICE MATERIAL CODE	P Y N TION VOLUME	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED	C = 0.0014; Pump; E SAMP SIGNATURE SIGNATURE TUBING E PRESERVA VE ADDE Preserva	1/4" = 0 002 SP = Electric LING DA E(S): Y NA ATION (includit FOTAL VOL. D IN FIELD (in	FIELD-Filtration splaced) ing wet ice) FINAL pH 26; 5/16" = 0.0 FIELD-Filtration prints in the	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	DO 006; 1/2 eristaltic Puriting Puritin	SAMPEQUIP	O10; O = Ot SAMPLING: NDED A: ILTER SI PLING MENT DE PP	5/8" = 0 016 ther (Specify) G T: O9 5° ZE: μι SAMPLE PL FLOW RA' (mL per min
SAMPLED DEPTH IN SAMPLE SAMPLE DEPTH IN SAMPLE ID CODE MW-202	BY (PRINT) (A BY (PRINT) (A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	PACITY (Gal /F DODES: B OFFILIATION: US ON: PUM OFFICA MATERIAL CODE CG PE PE	P Y N TION VOLUME 40 mL 500 mL	O006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL	CODE: HDPE TUBING E PRESERVA ADDE Pri	1/4" = 0.002 SP = Electric LING DA E(S): Y NA ATION (includifotal VOL D IN FIELD (include by label)	FIELD-Filtratic Eplaced) ing wet ice) FINAL pH C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	D. 006; 1/2 eristaltic Purton	SAMPEQUIP	O10; O = Ot SAMPLING NDED A ILTER SI PLING MENT DE PP	5/8" = 0 016 ther (Specify) G T: O9 5° ZE: μι SAMPLE PL FLOW RA' (mL per min
SAMPLED DECC SAMPLE DECC SAMPLE DECC SAMPLE DECC	BY (RRINT) (A BY (RRINT) (A TUBING WELL (feet) CONTAMINATIO PLE CONTAINERS 3 1	PACITY (Gal /F DODES: B FFILIATION: U 3 DN: PUM R SPECIFICA MATERIAL CODE CG PE	Et.): 1/8" = 0 = Bailer; P Y N TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3	CODE: HDPE TUBING E PRESERVA ADDE Pri	1/4" = 0.002 SP = Electric LING DA E(S): Y NA ATION (includ) FOTAL VOL D IN FIELD (includ) efilled by lab efilled by lab	FIELD-Filtratic Eplaced) ing wet ice) FINAL pH C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAMPLING INITIATED A FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal	D. 006; 1/2 eristaltic Purton	SAMPEQUIP	O10; O = Ot SAMPLING NDED A ILTER SI PLING MENT DE PP	5/8" = 0 016 ther (Specify) G T: O9 5° ZE: μι SAMPLE PL FLOW RA' (mL per min
SAMPLED DEPTH IN SAMPLE DEPTH IN SAMPLE ID CODE NW-218	BY (RRINT) (A BY (RRINT) (A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1	PACITY (Gal /F DODES: B OFFILIATION: US ON: PUM OFFICA MATERIAL CODE CG PE PE	P Y N TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3 H2SO4	CODE: HDPE TUBING E PRESERVA ADDE Pri	1/4" = 0 002 SP = Electric LING DA E(S): Y NA ATION (includit FOTAL VOL D IN FIELD (inefilled by lab efilled by lab efilled by lab	FIELD-Filtratic Eplaced) ing wet ice) FINAL pH C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	D. 006; 1/2 eristaltic Purton	SAMPEQUIP	O10; O = Ot CAMPLING NDED A ILTER SI PLING PMENT DE PP	SAMPLE PL FLOW RA' (mL per min
SAMPLED DEPTH IN SAMPLE DEPTH IN SAMPLE ID CODE NW-218	BY (RRINT) (A BY (RRINT) (A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3 1 1 1	PACITY (Gal /F DODES: B OFFILIATION: US ON: PUM OFFICA MATERIAL CODE CG PE PE	P Y N TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3 H2SO4	CODE: HDPE TUBING E PRESERVA ADDE Pri	1/4" = 0 002 SP = Electric LING DA E(S): Y NA ATION (includit FOTAL VOL D IN FIELD (inefilled by lab efilled by lab efilled by lab	FIELD-Filtratic Eplaced) ing wet ice) FINAL pH C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	D. 006; 1/2 eristaltic Purton	SAMPEQUIP	O10; O = Ot CAMPLING NDED A ILTER SI PLING PMENT DE PP	SAMPLE PL FLOW RA' (mL per min

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

***	NO: MW	-284			SAMPI	EID: 191	35 - MW	1-28A		DATE: 5	115/	19	
							GING DA						
WELL		Т	rubing			ELL SCREEN	INTERVAL	STATIC	DEPTH , 0	PU	RGE PUM	P TYPE	
	TER (inches): 2			R (inches):			eet to 24 f		ER (feet): 18		BAILER: I	PP	
	VOLUME PURO		LL VOLU	JME = (TOT		EPTH – STA		O WATER) X	WELL CAPAC			na	_
	MENT VOLUME		4 501115	= (24	feet -	18-01	feet) >	UBING LENGTH	gallons/fo	,0,	0.9	9 gall
	I out if applicabl		1 EQUIP	PIVIENT VOL	= PUIVIP V)LUIVIE + (TU							
			T	511141 B114		gallons + (DUDON	ons/foot X	feet) +		ons =	gall
	L PUMP OR TUI I IN WELL (feet)	-,	-1		MP OR TUBII WELL (feet):	vG 21	PURGIN	DAT: 084.	PURGING ENDED AT: DISSOLVED	0917	PURGE	D (gallo	ons): \-3
TIME	VOLUM PURGE (gallons	VOL PUR	MUL LUME RGED Ions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) μmhos/cm or μS/cm	OXYGEN (circle units) ng/l or % saturation	TURBIDI (NTUs		OLOR scribe)	ORI (mV
085	3 0.40	0.1	40	0.04	19.19	16.4	24-67	592	0.22	2.60	1 0	ear	-11.
085		0.	60	0.04	19.89	4.83	24-68	594	0.24	3.73		1	-27
09 0		0 -	.80	0.04	19.80		24-75	579	0.0	3.21			-43
090			00	0.04	19.8	14.85	24.72	579	0.06	3.40			1-55
090		1.2	20	0.04	19.80	-	24.78	575	0.06	3.15		1	-63
WELL	CAPACITY (Ga	llong Per Ed	oot\: 0.3	75" - 0.02	4" - 0.04:	1.25 " = 0.	ne. 2 " = 0.1	6: 2" = 0.37	. A" = 0.65	5" = 1.02	6" = 1 47	7. 49	" = 5.88
	CAPACITY (Ga G INSIDE DIA.				1" = 0 04; 0006; 3/1	1.25 " = 0 6" = 0 0014;	06; 2" = 0.1 1/4" = 0.002			5" = 1.02; 0.006; 1/2	6 " = 1.47 2 " = 0.010;		" = 5 88 " = 0.016
TUBIN		CAPACITY	(Gal./Ft): 1/8" = 0		6" = 0 0014; r Pump;	1/4" = 0 002 ESP = Electric	26; 5/16" = 0 Submersible P	0.004; 3/8" =		2" = 0.010;	5/8	
PURGI	G INSIDE DÍA.	T CODES:	(Gal./Ft): 1/8" = 0	0006; 3/1 BP = Bladde	6" = 0.0014; r Pump; SAMI	1/4" = 0 002 ESP = Electric PLING DA	26; 5/16" = 0 Submersible P	0.004; 3/8" = 1 ump; PP = F	0 006; 1/	2" = 0.010; mp; O	5/8	" = 0.016
PURGI	G INSIDE DÍA. ING EQUIPMEN LED BY (PRINT)	T CODES:	(Gal./Ft B =): 1/8" = 0 Bailer;	0006; 3/1 BP = Bladde	6" = 0 0014; r Pump;	1/4" = 0 002 ESP = Electric PLING DA	26; 5/16" = 0 Submersible P	0.004; 3/8" =	0 006; 1/2 Peristaltic Pur	2" = 0.010; mp; O	5/8	" = 0.016 r (Specify)
SAMPL PURGI	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT OR TUBING	T CODES:	(Gal./Ft B = TION:): 1/8" = 0 Bailer;	0006; 3/1 BP = Bladde SAMPLER(6" = 0 0014; r Pump; SAMI S) SIGNATUR	1/4" = 0 002 ESP = Electric PLING DA RE(S):	Submersible P	0.004; 3/8" = 1 ump; PP = F SAMPLING INITIATED A D-FILTERED: Y	Peristaltic Pur	2" = 0.010; mp; O SAMI ENDI	= Other PLING ED AT:	" = 0.016 r (Specify) 0917
SAMPL PURGI SAMPL PUMP DEPTH	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT) OR TUBING IN WELL (feet)	CAPACITY T CODES:	(Gal./Ft B = TION:): 1/8" = 0 Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	SAMI S) SIGNATUR CODE: HDP	1/4" = 0 002 ESP = Electric PLING DA RE(S):	Submersible PATA FIEL Filtra	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T	O 006; 1// Peristaltic Pur AT: 09\S	2" = 0.010; mp; O SAMI ENDE	= Other PLING ED AT:	" = 0.016
SAMPL PUMP PUMP DEPTH FIELD	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT OR TUBING H IN WELL (feet) DECONTAMINA	T CODES:	(Gal /Ft B = TION: CO Y): 1/8" = 0 Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; r Pump; SAMF S) SIGNATUF CODE: HDP TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y N M	Submersible PATA FIEL Filtra	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T DUPLICATE	0 006; 1// Peristaltic Pur	2" = 0.010; mp; O SAMI ENDI FILTE	5/8 = Other PLING ED AT: ER SIZE	" = 0.016 r (Specify) 0917 :μ
SAMPL PUMP PUMP DEPTH FIELD	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT) OR TUBING I IN WELL (feet) DECONTAMINA AMPLE CONTA	T CODES: AFFILIAT AFFILIAT Z ATION: INER SPEC	Gal/Ft B = TION: PUMP CIFICAT RIAL): 1/8" = 0 Bailer;	0006; 3/1 BP = Bladde SAMPLER(TUBING MATERIAL	6" = 0.0014; r Pump; SAMI S) SIGNATUR CODE: HDP TUBING LE PRESERV	1/4" = 0 002 ESP = Electric PLING DA RE(S):	Submersible PATA FIEL Filtra pplaced) ing wet ice)	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T	AT: 0915 AT: 0915 AT: 0915 AT: O915 AT: O915	2" = 0.010; mp; O SAMI ENDE	= Other PLING ED AT: ER SIZE	" = 0.016 r (Specify) 0917
SAMPLE SA	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT OR TUBING I IN WELL (feet) DECONTAMINA AMPLE CONTA E # E CONTAINER	T CODES: AFFILIAT AFFILIAT Z ATION: INER SPEC	PUMP CIFICAT RIAL DE): 1/8" = 0 Bailer; Y N	0006: 3/1 BP = Bladde SAMPLER(TUBING MATERIAL SAMP PRESERVA	6" = 0.0014; r Pump; SAMI S) SIGNATUF CODE: HDP TUBING LE PRESERV	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL	Submersible PATA FIEL Filtra pplaced) ing wet ice) FINAL pH	D.004; 3/8" = Fump; PP	O 006; 1// Peristaltic Purion Nat: 09\S	2" = 0.010; mp; O SAMI ENDE FILTE SAMPLINEQUIPME	= Other PLING ED AT: ER SIZE	" = 0.016 r (Specify) O917 AMPLE PL
PUMP DEPTH FIELD SAMPLI ID COD	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT OR TUBING I IN WELL (feet) DECONTAMINA AMPLE CONTA E # E CONTAINER	T CODES: AFFILIAT AFFILIAT ATION: INER SPEC	PUMP CIFICAT RIAL DE G): 1/8" = 0 Bailer; Y ION VOLUME	0006: 3/1 BP = Bladde SAMPLER(TUBING MATERIAL SAMP PRESERVA USED	6" = 0.0014; r Pump; SAMI S) SIGNATUF CODE: HDP TUBING LE PRESERV TIVE ADD	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL ED IN FIELD (Submersible PATA FIEL Filtra eplaced) ing wet ice) mL) FINAL pH o < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T DUPLICATE INTENE ANALYSIS A METH	O 006; 1// OPIS AT: 0915 AT: 0915 AT: OPIS AT: OPIS AND/OR OD EDB	SAMPLINEQUIPMET	= Other PLING ED AT: ER SIZE	" = 0 016 r (Specify) O9 17 AMPLE PL FLOW RA mL per mir
PUMP DEPTH FIELD SAMPLI ID COD	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT OR TUBING IN WELL (feet) DECONTAMINA AMPLE CONTA E CONTAINEF 28 3	T CODES: AFFILIAT ATION: INER SPECIAL MATERICAL CODES:	PUMP CIFICAT RIAL DE G): 1/8" = 0 Bailer; Y ION VOLUME 40 mL	0006: 3/1 BP = Bladde SAMPLER(TUBING MATERIAL SAMP PRESERVA USED HCL	6" = 0.0014; r Pump; SAMI S) SIGNATUF TUBING LE PRESERV ADD P	1/4" = 0.002 ESP = Electric PLING DA RE(S): Y N ATION (includ TOTAL VOL ED IN FIELD (refilled by lab	Submersible PATA FIEL Filtra eplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T DUPLICATE ANALYSIS A WETH	O 006; 1// OPERISTANT: OPIS	SAMIENDE SAMPLINEQUIPMER CODE APP	= Other PLING ED AT: ER SIZE	" = 0.016 r (Specify) Oq\ \(\text{T} \) AMPLE PLE FLOW RAMPLE PER FLOW RAM
PUMP DEPTH FIELD SAMPLI ID COD	G INSIDE DIA. ING EQUIPMEN LED BY (PRINT) OR TUBING IN WELL (feet) DECONTAMINA AMPLE CONTA E CONTAINEF A 3 1	T CODES: AFFILIAT ATION: INER SPECIAL COD COD PE	PUMP CIFICAT RIAL DE	Y NOUNME 40 mL 5000 mL	SAMPLER(TUBING MATERIAL SAMP PRESERV/ USED HCL HNO3	6" = 0.0014; r Pump; SAMI S) SIGNATUR CODE: HDP TUBING LE PRESERV TIVE ADD P 4 P	1/4" = 0 002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL ED IN FIELD (refilled by lat)	Submersible PATA FIEL Filtra eplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta	O 006; 1// Peristaltic Purion Nat: 09\S	SAMPLINEQUIPMER CODE APP	= Other PLING ED AT: ER SIZE	" = 0.016 r (Specify) Oq\ \(\text{T} \) AMPLE PLE FLOW RAMPLE PER FLOW RAM
PUMP DEPTH FIELD SAMPLI ID COD	G INSIDE DIA. ING EQUIPMEN OR TUBING IN WELL (feet) DECONTAMINA AMPLE CONTA E CONTAINEF 2 A 1 1	T CODES: AFFILIAT ATION: INER SPECIAL COD COD PE	PUMP CIFICAT RIAL DE	Y NON VOLUME 40 mL 250 mL	SAMPLER(TUBING MATERIAL SAMP PRESERVA USED HCL HNO3	6" = 0.0014; r Pump; SAMI S) SIGNATUR CODE: HDP TUBING LE PRESERV TIVE ADD P 4 P	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL ED IN FIELD (refilled by laterefilled by laterefille	Submersible PATA FIEL Filtra eplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta	O 006; 1// Peristaltic Purion Nat: 09\S	SAMPLINEQUIPMER CODE APP APP	= Other PLING ED AT: ER SIZE	MPLE PLE FLOW RAMPLE PER FLOW
PUMP DEPTH FIELD SAMPLI ID COD	G INSIDE DIA. ING EQUIPMEN OR TUBING IN WELL (feet) DECONTAMINA AMPLE CONTA E CONTAINEF 1 1 1	T CODES: AFFILIAT ATION: INER SPECIAL COD COD PE	PUMP CIFICAT RIAL DE	Y NON VOLUME 40 mL 250 mL	SAMPLER(TUBING MATERIAL SAMP PRESERVA USED HCL HNO3	6" = 0.0014; r Pump; SAMI S) SIGNATUR CODE: HDP TUBING LE PRESERV TIVE ADD P 4 P	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL ED IN FIELD (refilled by laterefilled by laterefille	Submersible PATA FIEL Filtra eplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta	O 006; 1// Peristaltic Purion Nat: 09\S	SAMPLINEQUIPMER CODE APP APP	= Other PLING ED AT: ER SIZE	" = 0.016 r (Specify) OΠ Γ AMPLE PL FLOW RA The per mir
SAMPLID COD	G INSIDE DIA. ING EQUIPMEN OR TUBING IN WELL (feet) DECONTAMINA AMPLE CONTA E CONTAINEF 1 1 1	T CODES: AFFILIAT ATION: JINER SPEC COD COD PE PE	PUMP CIFICAT RIAL DE	Y NON VOLUME 40 mL 250 mL 250 mL	SAMPLER(TUBING MATERIAL SAMP PRESERVA USED HCL HNO3	6" = 0.0014; r Pump; SAMI S) SIGNATUF TUBING LE PRESERV TIVE ADD P 4 P	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL ED IN FIELD (refilled by laterefilled by laterefille	Submersible PATA FIEL Filtra eplaced) ing wet ice) mL) FINAL pH 0 < 2 0 < 2 0 < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T DUPLICATE INTENE ANALYSIS A METH VOA/E Meta	O 006; 1// Peristaltic Purion No. 1/ O 1 S	SAMPLINEQUIPMER CODE APP APP	5/8 = Other PLING ED AT: ER SIZE G S,	" = 0.016 r (Specify) OΠ Γ AMPLE PL FLOW RA The per mir

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

******	NO: MW-	27B		SAMP	LE ID:	135- N	W-27	B	DATE: S	115/19	7
	1.(11	- , -		_		SING DA					1
WELL		TUBING			ELL SCREEN	INTERVAL	STATIC I	EPTH . D	PUR	GE PUMP T	YPE
	TER (inches): 2		ER (inches):	3/16 D	EPTH: 36 fe	et to 46 fe	eet TO WATE	R (feet):	OR E	BAILER: PP	
	VOLUME PURGE: I out if applicable)	1 WELL VOL	UME = (IO	IAL WELL DI	EPIH - SIA	TIC DEPTH I	OWATER) X	WELL CAPACI	TY		
FOLIDI	MENT VOLUME P	UPGE: 1 FOU	= (= DIIMD V	feet -	ING CAPACI	feet) X	JBING LENGTH)	gallons/foot		gallo
	l out if applicable)	OKOL. I LQO	I MILITI VOI		gallons + (0			10			016-7
INITIAL	PUMP OR TUBIN	10	EINAL BU	MP OR TUBI				7	0 1,	TOTAL VO	= 0,16gallo
	I IN WELL (feet):	41		WELL (feet):		INITIATE	G ED AT: 0803	ENDED AT:	0840	PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (etandard	TEMP. (°C)	COND (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) mg/l_or	TURBIDITY (NTUs)	COLO (descrit	
0213		0-40	0.04	11 3	7 4.93	24.26	154	% saturation	1.06	Clean	10.4
081		0.56	0.04	18.3	1	24.31	154	0.36	0.91	i	1.3
082		0.68	0-04	18.3	1	24.37	153	0-24	0.85		
082		0.30	0.04	18.3	2	24.36	153	0.23	0.72		-12.
082		0.92	0.04	18.3	2	24.3	153	0.22	0.68	11	- 20.
002	0.12	0.12	0.01	10.30	1.13	21.3	123	0.00	0.00	V	ω.
										1	
_			-	+				-		-	
			-	+		-				1	-
				-	-						-
	CADACITY (College		75" - 0.00:								
WELL (CAPACITY (Gallor	is Per Foot): 0		1" = 0.04:	1.25" = 0.0	6: 2" = 0.1	6: 3" = 0.37:	4 " = 0.65:	5 " = 1.02:	6" = 1,47;	12 " = 5.88
	G INSIDE DIA. CA	ns Per Foot): 0 PACITY (Gal /F		1" = 0 04; 0006; 3/1	1.25 " = 0.00	6; 2 " = 0.10 1/4 " = 0.002				6" = 1.47; = 0.010;	12 " = 5.88 5/8" = 0.016
TUBING		PACITY (Gal /F			6" = 0 0014; er Pump;	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8" = 0		= 0 010;	
PURGII	G INSIDE DÍA. CA NG EQUIPMENT (PACITY (Gal./F	t): 1/8" = 0	0006; 3/1 BP = Bladde	er Pump; E SAMF	1/4" = 0 002 SP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8" = 0	006; 1/2"	= 0 010;	5/8" = 0.016
PURGII	G INSIDE DIA. CA	PACITY (Gal /F	t): 1/8" = 0 = Bailer;	0006; 3/1 BP = Bladde	6" = 0 0014; er Pump;	1/4" = 0 002 SP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8" = 0 mp; PP = Pe	eristaltic Pump	= 0 010; O = 0	5/8" = 0.016 other (Specify)
SAMPL Down	G INSIDE DÍA. CA NG EQUIPMENT (PACITY (Gal./F	t): 1/8" = 0 = Bailer;	0006; 3/1 BP = Bladde	er Pump; E SAMF	1/4" = 0 002 SP = Electric	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = Pe	eristaltic Pump	= 0.010; O = C SAMPLIN ENDED A	5/8" = 0.016 hther (Specify)
SAMPL Dawn	G INSIDE DIA. CA NG EQUIPMENT (LED BY (PRINT) / A	PACITY (Gal /F	t): 1/8" = 0 = Bailer;	SAMPLER(er Pump; E SAMF	1/4" = 0.002 ESP = Electric LING DA E(S):	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A	eristaltic Pump	SAMPLIN ENDED A	5/8" = 0,016 hther (Specify)
SAMPL Daw PUMP O DEPTH	ED BY (PRINT) / A OR TUBING	PACITY (Gal /F CODES: B AFFILIATION: THE CODE LY	t): 1/8" = 0 = Bailer;	SAMPLER(6" = 0 0014; er Pump; E SAMF (S) SIGNATUR	1/4" = 0.002 :SP = Electric LING DA E(S):	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A P-FILTERED: Y	eristaltic Pump	= 0.010; O = C SAMPLIN ENDED A	5/8" = 0.016 other (Specify)
SAMPL Daw PUMP (DEPTH FIELD I	ED BY (PRINT) / A OR TUBING IN WELL (feet):	PACITY (Gal /F CODES: B AFFILIATION: L ON: PUMI	t): 1/8" = 0 = Bailer; y tec	SAMPLER(TUBING MATERIAL	er Pump; E SAMF (S) SIGNATUR CODE: HDPE TUBING	1/4" = 0.002 ESP = Electric LING DA E(S): Y Note ATION (includi	Submersible Pu	mp; PP = Po SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND	eristaltic Pump	= 0 010; o; O = C SAMPLINE FILTER S AMPLING	SAMPLE PU
SAMPLE SAMPLE SAMPLE	G INSIDE DIA. CA NG EQUIPMENT (LED BY (PRINT) / A OR TUBING IIN WELL (feet): DECONTAMINATION AMPLE CONTAINE #	PACITY (Gal /F CODES: B AFFILIATION ON: PUMI ER SPECIFICA MATERIAL	t): 1/8" = 0 = Bailer; y tec	SAMPLER(TUBING MATERIAL SAMP PRESERV/	er Pump; Es SAMF (S) SIGNATUR CODE: HDPE TUBING LE PRESERV.	1/4" = 0.002 ESP = Electric LING DA E(S): Y N (see ATION (includi	Submersible Pu ATA FIELD Filtrati eplaced) ing wet ice) FINAL	mp; PP = Po SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE:	eristaltic Pump T: Q2 2 8 Ppe: Y ED S ND/OR EC	SAMPLINENDED A	SAMPLE PU
SAMPLE DEPTH FIELD I SAMPLE ID CODE	ED BY (PRINT) / A OR TUBING IN WELL (feet): DECONTAMINATION AMPLE CONTAINERS ## CONTAINERS	PACITY (Gal /F CODES: B AFFILIATION ON: PUMI ER SPECIFICA	t): 1/8" = 0 = Bailer; y tec P Y (SAMPLER(TUBING MATERIAL SAMP	CODE: HDPE TUBING TLE PRESERV.	1/4" = 0.002 ESP = Electric LING DA E(S): Y Note ATION (includi	Submersible Pu TA FIELD Filtrati eplaced) ing wet ice) FINAL pH	mp; PP = Po SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A	T: Ol 28 T: Ol 28 TED S ND/OR DD	= 0 010; O = C SAMPLINE FILTER S AMPLING QUIPMENT	SAMPLE PUFLOW RATION (ML per min
SAMPLE SAMPLE SAMPLE	ED BY (PRINT) / A OR TUBING IN WELL (feet): DECONTAMINATION AMPLE CONTAINERS ## CONTAINERS	PACITY (Gal /F CODES: B AFFILIATION ON: PUMI ER SPECIFICA MATERIAL CODE	t): 1/8" = 0 = Bailer; Y TION VOLUME	SAMPLER(TUBING MATERIAL SAMP PRESERV USEE	CODE: HDPE TUBING LE PRESERV. ATIVE D ADDI	ATION (includit TOTAL VOLED IN FIELD (in 1921)	FIELD Filtration wet ice) FINAL pH (2) (3) (4) (5) (6) (7) (7) (7) (8) (8) (9) (9) (9) (10)	mp; PP = Po SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	T: Od 28 pe: Y ED S S ND/OR DD DB	SAMPLING QUIPMENT CODE	SAMPLE PU
SAMPLE DEPTH FIELD I SAMPLE ID CODE	ED BY (PRINT) / OR TUBING IN WELL (feet): DECONTAMINATION AMPLE CONTAINES CONTAINERS 3	PACITY (Gal /F CODES: B AFFILIATION ON: PUMI ER SPECIFICA MATERIAL CODE CG	t): 1/8" = 0 = Bailer; Y FION VOLUME 40 mL	SAMPLER(TUBING MATERIAL SAMP PRESERV USEE HCL	CODE: HDPE TUBING LE PRESERV. ATIVE ADDI 3 PI	ATION (includit TOTAL VOLefilled by lab	FIELD Filtration wet ice) FINAL pH C 2 C 2	mp; PP = Pi SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI	T: Ol 28 T: Ol 28 PPE: Y ED SIND/OR DD DB S	SAMPLING FILTER S AMPLING ODE APP	SAMPLE PUFLOW RATION (ML per min
PUMP O DEPTH FIELD I SAMPLE PUMP O DEPTH FIELD I SAMPLE ID CODE	ED BY (PRINT) / A OR TUBING ED BY (feet): DECONTAMINATION AMPLE CONTAINES CONTAINERS 3 1	PACITY (Gal /F CODES: B AFFILIATION ON: PUMI ER SPECIFICA MATERIAL CODE CG PE	E): 1/8" = 0 = Bailer; Y FION VOLUME 40 mL	SAMPLER(TUBING MATERIAL SAMP PRESERV USEE HCL HNO:	CODE: HDPE TUBING TE PRESERV. ATIVE D ATIVE ADDI ATIVE ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADD	ATION (includit TOTAL VOLED IN FIELD (includit by laberfilled by l	FIELD Filtration wet ice) FINAL pH C 2 C 2	mp; PP = Point PP = Point SAMPLING INITIATED A FILTERED: You Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal	T: Ol 28 T:	SAMPLING AMPLING OUIPMENT CODE APP	SAMPLE PUFLOW RATION (ML per min
SAMPLE DEPTH FIELD I SAMPLE ID CODE	CONTAINERS 2 R 3 1 1	PACITY (Gal /F CODES: B AFFILIATION ON: PUMP ER SPECIFICA MATERIAL CODE CG PE PE	t): 1/8" = 0 = Bailer; Y TION VOLUME 40 mL 500 mL	SAMPLER(SAMPLER(TUBING MATERIAL SAMP PRESERV, USEE HCL HNO: H2SO	CODE: HDPE TUBING TE PRESERV. ATIVE D ATIVE ADDI ATIVE ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADD	ATION (includit TOTAL VOLefilled by laberfilled by	FIELD Filtration wet ice) FINAL pH C 2 C 2	mp; PP = Po SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	T: Ol 28 T:	SAMPLING SUIPMENT CODE APP APP	SAMPLE PU
PUMP O DEPTH FIELD I SAMPLE PUMP O DEPTH FIELD I SAMPLE ID CODE	CONTAINERS 2 R 3 1 1	PACITY (Gal /F CODES: B AFFILIATION ON: PUMP ER SPECIFICA MATERIAL CODE CG PE PE	t): 1/8" = 0 = Bailer; Y TION VOLUME 40 mL 500 mL	SAMPLER(SAMPLER(TUBING MATERIAL SAMP PRESERV, USEE HCL HNO: H2SO	CODE: HDPE TUBING TE PRESERV. ATIVE D ATIVE ADDI ATIVE ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADD	ATION (includit TOTAL VOLefilled by laberfilled by	FIELD Filtration wet ice) FINAL pH C 2 C 2	mp; PP = Po SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	T: Ol 28 T:	SAMPLING SUIPMENT CODE APP APP	SAMPLE PUFLOW RATION (ML per min
PUMP O DEPTH FIELD I SAMPLE PUMP O DEPTH FIELD I SAMPLE ID CODE	GINSIDE DIA. CA NG EQUIPMENT (LED BY (PRINT) / A OR TUBING IIN WELL (feet): DECONTAMINATION AMPLE CONTAINERS 2 3 1 1 1 1	PACITY (Gal /F CODES: B AFFILIATION ON: PUMP ER SPECIFICA MATERIAL CODE CG PE PE	t): 1/8" = 0 = Bailer; Y TION VOLUME 40 mL 500 mL	SAMPLER(SAMPLER(TUBING MATERIAL SAMP PRESERV, USEE HCL HNO: H2SO	CODE: HDPE TUBING TE PRESERV. ATIVE D ATIVE ADDI ATIVE ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADDI ATIVE ATIVE ADDI ATIVE ADD	ATION (includit TOTAL VOLefilled by laberfilled by	FIELD Filtration wet ice) FINAL pH C 2 C 2	mp; PP = Po SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	T: Ol 28 T:	SAMPLING SUIPMENT CODE APP APP	SAMPLE PU
SAMPLE ID CODE NW-2 REMAR Odor:	GINSIDE DIA. CA NG EQUIPMENT (LED BY (PRINT) / A OR TUBING IIN WELL (feet): DECONTAMINATION AMPLE CONTAINERS 2 3 1 1 1 1	PACITY (Gal /F CODES: B AFFILIATION ON: PUMP ER SPECIFICA MATERIAL CODE CG PE PE	t): 1/8" = 0 = Bailer; Y FION VOLUME 40 mL 500 mL 250 mL	SAMPLER(TUBING MATERIAL SAMP PRESERV USEE HCL HNO: H2SO None	G" = 0.0014; or Pump;	ATION (includit TOTAL VOLefilled by laberfilled by	FIELD Filtration (Control of the Control of the Con	mp; PP = Po SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal NH3	ED S SIND/OR DB S	SAMPLING PUIPMENT CODE APP APP APP	SAMPLE PL

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: January 2017

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-	27 A		SAN	IPLE ID:	1913	S-MW	-27A			DATE:	5/1	5/19		
	7.00	- 17					ING DA						2111		
WELL		TUBING			WELL SO	CREEN	NTERVAL	STAT	IC DE		A4 PL	JRGE	PUMP TY	PE.	
DIAMETER			ER (inches):				et to 23 fe			R (feet) 18-		RBAIL	LER: PP		
	if applicable)	1 WELL VOL	UME = (TO	23	DEPTH		I & CH	O WATER) feet)		WELL CAPACI	gallons/fo	not =	0.5	18	gallo
	IT VOLUME PU if applicable)	JRGE: 1 EQUI		= PUMP	VOLUME	+ (TUB	ING CAPACIT	TY X		BING LENGTH)	+ FLOW C		/OLUME		
			T =	=	gallons	5 + (ns/foot X		feet)	+	1	gallons =	_	gallo
	MP OR TUBING WELL (feet):	21	FINAL PUI DEPTH IN			21	PURGING	D AT: 07	14	PURGING ENDED AT: DISSOLVED	0751		JRGED (g): 1.4
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TO WATI (fee	ER (sta	pH andard inits)	TEMP. (°C)	COND (circle uni µmhos/ci or S/cr	m	OXYGEN (circle units) mg/L or % saturation	TURBID (NTUs		COLOF (describ		ORF (mV)
0724	0.40	0.40	0.04	18.5	1 4.	69	24.06	180		0.27	3.45		Class	~	27.
0727	0.17	0-52	0.04	18.0	-	71	24.09	176		0.24	3.2	8	1		14
9730	0.12	0.64	0.04	il	-	72	24.08	175		0.22	298	_			6.8
0733	0.12	0.76	0.04			72	24.08	176		0.20	2.7				2.
0736	012	0.88	0.04	18.9		72	24.08	177		0-20	2.7		1/		-1.
			75" - 0.02:	1" = 0 (04: 4.25										
		s Per Foot): 0				5" = 0.00					5 " = 1,02;			12" =	
TUBING IN	SIDE DIA. CAF	PACITY (Gal./F	t ₁): 1/8" = 0	0006;	3/16" = 0.0	0014:	1/4" = 0 002	6; 5/16 "	= 0.0	04: 3/8" = 0	,006; 1/	2" = 0	0.010:	5/8" =	0.016
TUBING IN		PACITY (Gal./F			3/16" = 0.0 der Pump	0014 <u>:</u>	1/4" = 0 0020 SP = Electric	6: 5/16 " Submersibl	= 0.0	04: 3/8" = 0		2" = 0	0.010:	5/8" =	
PURGING E	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A	PACITY (Gal./FODES: B :	t.): 1/8" = 0 = Bailer:	0006; ; BP = Blac	3/16" = 0.0 der Pump	0014: E	1/4" = 0 0020 SP = Electric LING DA	6: 5/16 " Submersibl	= 0.0	04: 3/8" = 0	006; 1/ eristaltic Pu	2" = 0 mp;	0.010:	5/8" = ther (S	0.016 Specify)
SAMPLED PUMP OR T	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A LUCY IVE	PACITY (Gal./F	t.): 1/8" = 0 = Bailer:	SAMPLE	3/16" = 0.0 der Pump S R(S) SIGI	AMP	1/4" = 0 0020 SP = Electric LING DA	Submersibl	e Pum	3/8" = 0 PP = Pe SAMPLING INITIATED A FILTERED: Y	7: 0730	2" = 0 mp;	0 = Ot	5/8" = ther (S G T:	0.016 Specify)
SAMPLED PUMP OR TO DEPTH IN V	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A FUBING VELL (feet):	PACITY (Gal./FODES: B:	t): 1/8" = 0 = Bailer:	SAMPLE TUBING	3/16" = 0.0 der Pump S R(S) SIGI	AMP	1/4" = 0 0020 SP = Electric LING DA	Submersibl	e Pum	04: 3/8" = 0 pp; PP = Pe SAMPLING INITIATED A' FILTERED: Y n Equipment Ty	n.006; 1/ eristaltic Pur T: 0730 pe:	2" = 0 mp;	O = Ot SAMPLIN ENDED A FILTER SI	5/8" = ther (S G T:	0.016 Specify)
PUMP OR TO DEPTH IN N	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A FUBING WELL (feet): ONTAMINATIO	PACITY (Gal./F CODES: B: FFILIATION: CODES: B: FFILIATION: PUMF	t.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERIA	3/16" = 0.0 der Pump S R(S) SIGN AL CODE:	AMP NATURE HDPE	1/4" = 0.0020 SP = Electric LING DA E(S):	Submersible TA Figure placed)	e Pum	04: 3/8" = 0 pp: PP = Pe SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE:	OO6; 1/Peristaltic Pull	72" = 0 mp;	O = Oth SAMPLING ENDED A FILTER SI	5/8" = ther (S G T: 0 ZE: _	0.016 Specify) 7-7-S \ µг
SAMPLED DEPTH IN V	BY (PRINT) / A FUBING WELL (feet): ONTAMINATIO	PACITY (Gal./FODES: BEFILIATION: FFILIATION: PUMF R SPECIFICA	t.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERIA	SAL CODE:	MATURE HDPE	1/4" = 0 0020 SP = Electric LING DA E(S) Y Nire	Submersible TA Figure placed) Ing wet ice)	e Pum	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND	DO06; 1/Peristaltic Pull T: 0730 pe: Y	2" = 0 mp;	O.010: O = Ot SAMPLING ENDED A FILTER SI	sher (S G T: Q ZE: _	PLE PLE
PUMP OR TO DEPTH IN N	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A FUBING WELL (feet): ONTAMINATIO	FFILIATION: FOR SPECIFICATION: PUMP R SPECIFICATION:	t.): 1/8" = 0 = Bailer;	SAMPLE TUBING MATERIA	SAL CODE: TUMPLE PRE	O014: AMP NATURE: HDPE JBING ESERVA	Y Nore	5; 5/16" Submersible TA Final polaced g wet ice) FIN	= 0.00 e Pum	04: 3/8" = 0 pp: PP = Pe SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE:	T: 0730 Peristaltic Puristaltic Puristalt	2" = 0 mp; SAM EQUI:	O = Oth SAMPLING ENDED A FILTER SI	sher (S	PLE PU
PURGING E SAMPLED PUMP OR T DEPTH IN T FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PR	FILIATION: FILIATION: PUMP R SPECIFICA MATERIAL	t.): 1/8" = 0 = Bailer; 	SAMPLE TUBING MATERIA SAMPRESEF	AL CODE: TUMPLE PRE	O014: AMP NATURE HDPE JBING ESERVA	1/4" = 0 0020 SP = Electric LING DA E(S) Y Nire	Submersible TA Find policies Find policies Find policies FIND pl FIND pl	ELD-Filtration	SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A	T: 0734 ED ND/OR ND	SAM EQUI:	SAMPLING ENDED A FILTER SI PLING PMENT	sher (S	PLE PLOW RA
SAMPLED DECC SAMPLE	BY (PRINT) / A BY (PR	PACITY (Gal./F CODES: B: FFILIATION: 2 DN: PUMF R SPECIFICA MATERIAL CODE	t.): 1/8" = 0 = Bailer: Y FION VOLUME	SAMPLE TUBING MATERI SAI PRESEF	AL CODE: TUMPLE PRE	AMP NATURE HDPE UBING ESERVA ADDE	Y Nore	Submersible TA Final population of the placed of the pla	ELD-Filtration	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO	pe: Y ED ND/OR DD	SAM EQUI	SAMPLINE ENDED A FILTER SI	sher (S	PLE PU
PURGING E SAMPLED PUMP OR T DEPTH IN T FIELD DEC SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A FUBING WELL (feet): ONTAMINATIO LE CONTAINERS 4 3	PACITY (Gal./F CODES: B: FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG	t.): 1/8" = 0 = Bailer: Y FION VOLUME 40 mL	SAMPLE TUBING MATERI SAI PRESEFUS HO	MPLE PRE	MATURE HDPE JBING ESERVA ADDE Pro	Y North Total Volume In the Indian Control of the Indian Control o	Submersible TA Final placed) Ing wet ice) FINAL p Complete the co	ELD-Filtration	04: 3/8" = 0 pp; PP = Pe SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI	T: 07 30 pe: Y ED ND/OR DD DB s	SAM EQUI	SAMPLING ENDED A FILTER SI IPLING PMENT ODE	sher (S	PLE PLOW RA per min
PURGING E SAMPLED PUMP OR T DEPTH IN T FIELD DEC SAMPLE ID CODE	BY (PRINT) / A FUBING NELL (feet): ONTAMINATIO LE CONTAINERS A 3 1	PACITY (Gal./F CODES: B: FFILIATION: 2 DN: PUMF ER SPECIFICAT MATERIAL CODE CG PE	t.): 1/8" = 0 = Bailer; P Y (FION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERI SAI PRESEF US HO	AL CODE: TUMPLE PRE	MATURE HDPE JBING ESERVA ADDE Pro	Y Nre ATION (includicated by laberfilled	Submersible TA Final placed) Ing wet ice) FINAL p Complete the co	ELD-Filtration	04: 3/8" = 0 pp; PP = Pe SAMPLING INITIATED A' FILTERED: Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal:	DB s	SAM EQUI	SAMPLINE ENDED A FILTER SI	sher (S	PLE PU
SAMPLE D CODE	BY (PRINT) / A BY (PRINT) / A FUBING WELL (feet): ONTAMINATION LE CONTAINERS 1 1 1	PACITY (Gal./F CODES: B: FFILIATION: 2 DN: PUMF CODE CODE CG PE PE	t.): 1/8" = 0 = Bailer: Y FION VOLUME 40 mL 500 mL	SAMPLE TUBING MATERI SAI PRESEF US HO HN H2S	AL CODE: TUMPLE PRE	MATURE HDPE JBING ESERVA ADDE Pro	Y Nore TION (includicated by laberfilled by laberfi	Submersible TA Final placed) Ing wet ice) FINAL p Complete the co	ELD-Filtration	SAMPLING INITIATED A' FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHC VOA/EI NH3	DB s	SAM EQUI	SAMPLING PMENT ODE	sher (S	PLE PLOW RA per min

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	D Solid Waste I			1					t. Cloud, FL 347			
WELL NO	MW-3	BIA		SAMPL	EID: 191			1 A		DATE: '	5/14/19	
				7		SING DA		77.45		-		
WELL	R (inches): 2	TUBING	ER (inches): 3		ELL SCREEN PTH: 5 fe			TATIC D	R (feet): 17	1//	JRGE PUMP T R BAILER: PP	YPE
	LUME PURGE:										(b) (IZEIX. I I	_
(only fill ou	ıt if applicable)		= (25	feet -	719	-	eet) X	0.16	gallons/f	not = i	25 ga
	NT VOLUME PL	JRGE: 1 EQU							JBING LENGTH)			go go
(only fill of	ıt if applicable)			= (gallons + (gallo	ons/foot	X	feet)	+	gallons	= ga
	JMP OR TUBING WELL (feet):	3 21	FINAL PUM DEPTH IN V	P OR TUBIN VELL (feet):	G 21	PURGIN INITIATE	IG ED AT:	1028	PURGING ENDED AT:	1148	TOTAL VO PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	μmhg	ND units) ps/cm S/cm/	OXYGEN (circle units) (moul or % saturation	TURBID (NTUs	(descri	be) (m
1038	0.60	0.60	0.06	17.29	5.28	26.00	102	6	0.40	356	yello	N -81
ioss	1.20	1.80	0.06	17.29	4.99	26.26	11:	23	0.22	164	relax	
1108	0.60	2-40	0.06	17.30	5.01	25.91	11	17	0.11	49.		w 6
8111	0.60	3.00	0.06	17.30	5.00	25.95	11/2	24	0.09	16.	7 1	-6
1128	0.60	3.60	0.06	17.30	4.97	25.92		23	0.09	d.C	3	-6
1130	0.12	3.72	0.06	1730	4.98	25.90	117	21	0.08			-6;
1132	0.12	3.24	0.06	17.30	4.95	75.89	11 7		0.08			-60
1134	0.12	3.96	0.06	17.30	1	25.90	112	20	0.07		V	-Cc
	PACITY (Gallons			1" = 0.04;	1.25" = 0.0	6; 2" = 0.1 1/4" = 0.002		= 0.37; / 16" = 0		5" = 1.02;	6" = 1.47; '2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C	-		BP = Bladder	" = 0.0014; Pump; E	SP = Electric				eristaltic Pu		Other (Specify
					SAMP	LING DA	ATA		M.			
SAMPLED	BY (PRINT) / A		gatee	SAMPLER(S	S) SIGNATUR	E(S):			SAMPLING INITIATED A	т: 113		AT: 114
PUMP OR	TUBING WELL (feet)	2		TUBING MATERIAL (CODE: HDPE				-FILTERED: Yon Equipment Ty		FILTER S	SIZE:
	CONTAMINATIO	N: PUM	^	1	TUBING	-	eplaced)	-	DUPLICATE:	-	(N)	
SAM	PLE CONTAINE	R SPECIFICA	TION	SAMPL	E PRESERV				INTEND		SAMPLING	SAMPLE F
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED	ADDI	TOTAL VOL ED IN FIELD (FINAL pH	ANALYSIS A METHO	DD	EQUIPMENT CODE	FLOW R (mL per m
1-MW-3	1A 3	CG	40 mL	HCL		efilled by lat	b	< 2	VOA/E	DB	APP	25
	1	PE	500 mL	HNO3	Pı	efilled by lat	b	< 2	Metal		APP	1
	1	PE	250 mL	H2SO4	Pr	efilled by lal	b	< 2	NH3		APP	
V	1	PE	250 mL	None		None			CL/NO3/	TDS	APP	1
REMARKS Odor:	S:											
Odor:		AG = Amber 0	Glass: CG =	Clear Glass:	HDPE =	High Density	Polvethy	vlene:	LDPE = Low Do	ensity Polye	ethylene; Pl	P = Polyp

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MM	-31B		SAMPL	EID: 1913	14 - MI	N-31B		DATE:	5/14/10	
	lalad	311				ING DA					1
WELL		TUBING			LL SCREEN	INTERVAL	STATIC I	DEPTH	PU	JRGE PUMP T	YPE
	R (inches): 2		ER (inches):	3/16 DE	PTH: 36 fe	et to 46 fe	eet TO WAT			R BAILER: PP	
	LUME PURGE: t if applicable)	1 WELL VOL	UME = (TOT.	AL WELL DE	PTH – STA	TIC DEPTH T	O WATER) X	WELL CAPAC	ΠY		
	NT VOLUME PL	IDOE: 4 FOUR	= (- DUMP VO	feet -	INC CADACE	feet) X	UBING LENGTH	gallons/f		gallo
	t if applicable)	JRGE: 1 EQUI	PMENT VOL		Schillist Color		7.7			L VOLUME	= 0.16 gallo
INITIAL DI			EINIAL DIA		gallons + (6.	PURGIN		PURGING) + •••		
	IMP OR TUBING WELL (feet):	91		IP OR TUBIN WELL (feet):	41	INITIATE	DAT:	ENDED AT:	1214	PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) μmhos/cm <u>or</u> (IS/cm)	OXYGEN (circle units) (mg/L or % saturation	TURBID (NTUs		be) (mV)
1126	0.60	0.60	0.06	17	464	25,49	1200	0.41	1.70	Clea	-48.
1156	1.80	2.40	0.06	111	4.61	25.48	1202	0.26	2-3		
1158	0.12	2.52	0.06			25.47		0.28	1.8	2 Lie	- 70
1200	0.12	2.64	0.06		4.59	25.46	1202	0.24	1.5		-21
1202	0.12	2.76	0.06		4.59	25,47	1202	0.22	1-3		- 79
1000		2.10								- 4	1
	PACITY (Gallon:			1" = 0 04; 0006; 3/16	1.25 " = 0.0				5" = 1.02; 0.006; 1,	6" = 1.47; /2" = 0.010;	12" = 5.88 5/8" = 0.016
TUBING IN		PACITY (Gal./Fi	t.): 1/8" = 0		" = 0.0014; Pump; E	1/4" = 0 002 SP = Electric	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0		/2" = 0.010;	
TUBING IN PURGING	ISIDE DÍA. CAF EQUIPMENT C	PACITY (Gal./Fi	t.): 1/8" = 0	0006; 3/16 BP = Bladder	Pump; E SAMP	1/4" = 0.002 SP = Electric	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 ump; PP = P	0.006; 1	/2" = 0.010; imp; O = 0	5/8" = 0.016 Other (Specify)
TUBING IN PURGING	ISIDE DÍA. CAF	PACITY (Gal /F	t): 1/8" = 0 = Bailer; I	0006; 3/16 BP = Bladder	" = 0.0014; Pump; E	1/4" = 0.002 SP = Electric	26; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	0.006; 1. Peristaltic Pu	/2" = 0.010; imp; O = C	5/8" = 0.016 Other (Specify)
TUBING IN PURGING	BY (PRINT)	PACITY (Gal./Fi	t): 1/8" = 0 = Bailer; I	0006; 3/16 BP = Bladder	Pump; E SAMP	1/4" = 0.002 SP = Electric	Submersible Pu	0,004; 3/8" = 0 ump; PP = P	o.006; 1, Peristaltic Pu	/2" = 0.010; imp; O = 0 SAMPLII ENDED	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR DEPTH IN	BY (PRINT) A TUBING WELL (feet):	PACITY (Gal/FI DODES: B= FFILIATION: U	t): 1/8" = 0	0006; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (Pump; E SAMP S) SIGNATUR CODE: HDPE	1/4" = 0.002 SP = Electric PLING DA E(S):	Submersible Pu	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	o.006; 1. Peristaltic Pu	SAMPLINE ENDED	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATIO	FACITY (Gal./FI DODES: B = FEILIATION: U DN: PUMF	t): 1/8" = 0 = Bailer;	0006: 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING	1/4" = 0.002 SP = Electric LING DA E(S):	Submersible Pu	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE	o.006; 1. Peristaltic Pu	SAMPLINE SAMPLINE	5/8" = 0.016 Other (Specify) NG AT: 2 4 SIZE: μπ
SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATIO	PACITY (Gal /FI ODES: B = FFILIATION: L ON: PUMF R SPECIFICAT	t): 1/8" = 0 = Bailer;	0006: 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL () SAMPL	Pump, E SAMP S) SIGNATUR CODE: HDPE TUBING	ATION (includ	Submersible Pu	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE	o.006; 1. Peristaltic Pu	SAMPLINE ENDED	5/8" = 0.016 Other (Specify)
SAMPLED PUMP OR DEPTH IN FIELD DEC	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATIO	FFILIATION: FFILIATION: FFILIATION: PUMP R SPECIFICAT	t): 1/8" = 0 = Bailer;	0006: 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERV	1/4" = 0.002 SP = Electric LING DA E(S):	Submersible Pu ATA FIELE Filtrat eplaced) ing wet ice) FINAL	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO	AND/OR	SAMPLING EQUIPMENT CODE	S/8" = 0.016 Other (Specify) NG AT: /2/4 SIZE: SAMPLE PU
SAMPLED PUMP OR PUMP OR PEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	FEILIATION: FOR EXAMPLE 1 STATE OF THE PUMP OF THE PU	E Bailer; 1/8" = 0 E Bailer; E Baile	0006: 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (S SAMPL PRESERVA	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING LE PRESERV TIVE ADDE	ATION (includ	Submersible Put ATA FIELL Filtrate eplaced) ing wet ice) FINAL pH o < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A	AND/OR	SAMPLING EQUIPMENT	SAMPLE PU
SAMPLED PUMP OR DEPTH IN SAMPLE SAMPLE SAMPLE	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./FI DODES: B = FFILIATION: U DN: PUMF R SPECIFICAT MATERIAL CODE	E Bailer; No. Part Part	O006: 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (SAMPL PRESERVA USED HCL HNO3	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ATION (includ TOTAL VOL Edilled by lab	Submersible Put ATA FIELE Filtrateplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta	AND/OR OD	SAMPLING EQUIPMENT CODE APP	SAMPLE PU
SAMPLED PUMP OR PUMP OR PEPTH IN FIELD DEC SAMPLE ID CODE	BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal./FI DODES: B = FFILIATION: PUMP R SPECIFICAT MATERIAL CODE CG	E): 1/8" = 0 Bailer; Y N N N N N N N N N N N N	0006: 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL () SAMPL PRESERVA USED HCL	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ATION (includ TOTAL VOL efilled by lake	Submersible Put ATA FIELE Filtrateplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	o.006; 1. Peristaltic Purchart III Purchart	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu
SAMPLED PUMP OR PUMP OR PEPTH IN FIELD DEC SAMPLE ID CODE	EQUIPMENT C BY (PRINT) A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS # CONTAINERS 1	PACITY (Gal /FI DODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE	E Bailer; P Y N N N N N N N N N N N N N N N N N N	O006: 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL (SAMPL PRESERVA USED HCL HNO3	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ATION (includ TOTAL VOL Edilled by lab	Submersible Put ATA FIELE Filtrateplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta	o.006; 1. Peristaltic Purchart III Purchart	SAMPLING EQUIPMENT CODE APP	SAMPLE PU
SAMPLED PUMP OR DEPTH IN SAMPLE ID CODE NW 3	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATION CONTAMINERS 1 1	PACITY (Gal /FI DODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0 = Bailer; P Y N FION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3 H2SO4	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ATION (includ TOTAL VOL efilled by late	Submersible Put ATA FIELE Filtrateplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	o.006; 1. Peristaltic Purchart III Purchart	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu
SAMPLED PUMP OR DEPTH IN SAMPLE ID CODE NW 3	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATION CONTAMINERS 1 1	PACITY (Gal /FI DODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0 = Bailer; P Y N FION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3 H2SO4	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ATION (includ TOTAL VOL efilled by late	Submersible Put ATA FIELE Filtrateplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	o.006; 1. Peristaltic Purchart III Purchart	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per min)
SAMPLED PUMP OR DEPTH IN SAMPLE ID CODE NW 3	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATION CONTAMINATION TOUR STATEMENT STA	PACITY (Gal /FI DODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0 = Bailer; P Y N FION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3 H2SO4	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVATIVE ADDE Pr	ATION (includ TOTAL VOL efilled by late	Submersible Put ATA FIELE Filtrateplaced) ing wet ice) FINAL pH o < 2 o < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	o.006; 1. Peristaltic Purchart III Purchart	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PU FLOW RAT (mL per minu
SAMPLED PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE REMARKS	BY (PRINT) A EQUIPMENT C BY (PRINT) A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 1 1 1	PACITY (Gal /FI DODES: B = FFILIATION: PUMF R SPECIFICAT MATERIAL CODE CG PE PE	E): 1/8" = 0 = Bailer;	SAMPLER(S TUBING MATERIAL O SAMPL PRESERVA USED HCL HNO3 H2SO4	Pump; E SAMP S) SIGNATUR CODE: HDPE TUBING E PRESERVA TIVE ADDE Pr	ATION (includ TOTAL VOL efilled by late	Submersible Put ATA FIELD Filtrateplaced) ing wet ice) FINAL pH 0 < 2 0 < 2 0 < 2	SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty DUPLICATE INTENE ANALYSIS A METHO VOA/E Meta NH3	one; 1. Pure restaltic Pure restalti	SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PU FLOW RAT (mL per min)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MWZSA			SAMP	LE ID: 19	34-MV	V-ZSA		DATE: S	114/10	1
						GING DA					
WELL		TUBING			VELL SCREE	N INTERVAL	STATIC	DEPTH , a	All PUI	RGE PUMP T	YPE
	R (inches): 2		ER (inches):			feet to 23 f		TER (feet): 0 -		BAILER: PP	
	LUME PURGE: it if applicable)	1 WELL VOL	UME = (TOT	AL WELL D	EPTH - ST	ATIC DEPTH T	O WATER)	WELL CAPAC	ITY		
		IDCE: 4 FOLK	= (- DUMD V	feet -	IDINIC CADACI	feet)		gallons/fo		ga
	NT VOLUME PU it if applicable)	JRGE: 1 EQUI	PWENT VOL					TUBING LENGTH	12.1	ELE VOLUME	= 0.13ga
			Ī	= .0	gallons + (0	-	ons/foot X	24 feet			
	JMP OR TUBING WELL (feet):	18		MP OR TUB WELL (feet)		PURGIN	EDAT: 125		1322	PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard	TEMP (°C)	COND (circle units) μmhos/cm or S/cm	OXYGEN (circle units) (mg/l) or % saturation	TURBIDIT (NTUs)	TY COLO	
1301	0.60	0.60	0.06	10.0	74.81	23-67	1209	0.88	13.6	Clea	r 25
1305	0.24	0.84	0.00		1	123.77	1170	0.16	8.76		
1307	0.12	0.96	0.06	10.0		23,93	1130	0.15	4.04	Clean	
1309	0.12	0.02	0.06	10.0		-	1128	0.13	3.78	Clea	
1311	0:12	1.70	0.06				1121	0.11	3.54	Clear	r -4.
1312	0-06	1-26	0.06			n -	1123	0.11	3.21	A 7.	
1210	4700	1.04		10.0	111	03.41	110)		3-01	Cres	1
	-		11.	Ų,							
WELL CA	PACITY (Gallons	s Per Foot): 0	. 75 " = 0.02;	1" = 0 04;				; 4 " = 0 65;	5" = 1.02;	6" = 1.47;	12" = 5.88
TUBING II	NSIDE DIA. CAP	ACITY (Gal./F	t.): 1/8" = 0	0006; 3/1	6" = 0.0014;	1/4" = 0.002	26: 5/16" = 0	0,004: 3/8" = 0	0.006; 1/2	" = 0.010;	5/8" = 0 016
TUBING II	PACITY (Gallon: NSIDE DIA. CAP EQUIPMENT C	ACITY (Gal./F	t.): 1/8" = 0		6" = 0.0014; er Pump;	1/4" = 0.002 ESP = Electric	26; 5/16" = 0 Submersible P	0,004: 3/8" = 0		" = 0.010;	
TUBING II	NSIDE DIA. CAP	ODES: B	t.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde	6" = 0.0014; er Pump;	1/4" = 0.002 ESP = Electric PLING DA	26; 5/16" = 0 Submersible P	0,004: 3/8" = 0 ump; PP = P	0.006; 1/2 eristaltic Pun	" = 0.010; np; O = C	5/8" = 0.016 Other (Specify
TUBING II	NSIDE DIA. CAF EQUIPMENT C	ODES: B	t.): 1/8" = 0	SAMPLER	6" = 0.0014; er Pump; SAM	1/4" = 0.002 ESP = Electric PLING DA	Submersible P	0,004; 3/8" = 0 ump; PP = P SAMPLING INITIATED A	0.006; 1/2 eristaltic Purr T: \3\3	" = 0 010; np; O = 0	5/8" = 0,016 other (Specify
SAMPLED PUMP OR	BY (PRINT) / A TUBING	ODES: B	t.): 1/8" = 0. = Bailer;	SAMPLER TUBING	6" = 0.0014; er Pump; SAM (S) SIGNATU	1/4" = 0.002 ESP = Electric PLING DA	Submersible P	0.004: 3/8" = 0 ump; PP = P SAMPLING INITIATED A D-FILTERED: Y	0.006; 1/2 eristaltic Purr T: \3\3	" = 0 010; np; O = 0	5/8" = 0.016 Other (Specify
SAMPLED PUMP OR DEPTH IN	EQUIPMENT C	PACITY (Gal./FODES: B	t.): 1/8" = 0. = Bailer;	0006; 3/1 BP = Bladde SAMPLER TUBING MATERIAL	6" = 0.0014; er Pump; SAM	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible P	0,004; 3/8" = 0 ump; PP = P SAMPLING INITIATED A	n 006; 1/2 eristaltic Purr T: 1313	" = 0 010; np; O = 0	5/8" = 0,016 other (Specify
PUMP OR DEPTH IN	EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO	PACITY (Gal/FODES: B	t.): 1/8" = 0. = Bailer;	0006; 3/16 BP = Bladde SAMPLER TUBING MATERIAL	6" = 0.0014; er Pump; SAM S SIGNATU CODE: HDF TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S):	Submersible PATA FIELL Filtra eplaced)	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE	7. 13\3\4. (N)	SAMPLIN ENDED A	other (Specify NG AT:)32
PUMP OR DEPTH IN FIELD DEE SAMPLE	EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	PACITY (Gal./FODES: BEFILIATION: PUMP R SPECIFICA MATERIAL	t.): 1/8" = 0. = Bailer;	SAMPLER TUBING MATERIAL SAMF	G" = 0.0014; er Pump; SAM S) SIGNATU CODE: HDF TUBING PLE PRESER' ATIVE	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y ATION (includ TOTAL VOL	Submersible PATA FIELI Filtra eplaced) ing wet ice) FINAL	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty	T: \3\2 V/pe: Y ED ND/OR E	SAMPLIN ENDED A	5/8" = 0,016 other (Specify
PUMP OR DEPTH IN FIELD DEI SAMPLE ID CODE	EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./FODES: B	t.): 1/8" = 0. = Bailer; - y	SAMPLER TUBING MATERIAL	CODE: HDF TUBING	1/4" = 0.002 ESP = Electric PLING DA RE(S): E Y VATION (includ	Submersible PATA FIEL Filtra eplaced) ing wet ice) FINAL pH	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE INTEND ANALYSIS A	T: 13\2 V/pe: Y ED (ND/OR D)	SAMPLING	SAMPLE F FLOW R, (mL per mi
PUMP OR DEPTH IN FIELD DEFINED SAMPLE ID CODE	EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal./FODES: BEFILIATION: PUMF R SPECIFICA MATERIAL CODE	t.): 1/8" = 0. = Bailer, Y TION VOLUME	SAMPLER TUBING MATERIAL SAMP PRESERV USEL	SAM S SIGNATU CODE: HDF TUBING PLE PRESER ATIVE ADD	TOTAL VOL	Submersible PATA FIELI Filtra eplaced) ing wet ice) mL) FINAL pH c < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	T: \3\3\cdots	SAMPLING EQUIPMENT CODE	SAMPLE F FLOW R (mL per mi
PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 3	PACITY (Gal./FODES: BETTE BE	t,): 1/8" = 0. = Bailer, Y TION VOLUME 40 mL	SAMPLER TUBING MATERIAL SAMF PRESERV. USEI HCL	SAM SS SIGNATU CODE: HDF TUBING PLE PRESER ATIVE ADD ADD ADD ADD ADD ADD ADD ADD ADD AD	TOTAL VOL Prefilled by late	Submersible PATA FIELI Filtra eplaced) ing wet ice) FINAL pH 0 < 2 0 < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E	T: \3\2 V/pe: Y ED ND/OR DD DB S	SAMPLING SAMPLING SAMPLING SOUPMENT CODE APP	SAMPLE F FLOW R (mL per mi
PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	TUBING WELL (feet): CONTAINERS A 1 CONTAINERS A 1	PACITY (Gal./FODES: BETT) FILIATION: DN: PUMP R SPECIFICAT MATERIAL CODE CG PE	t.): 1/8" = 0 = Bailer; 	SAMPLER TUBING MATERIAL SAMP PRESERV USEL HOL	CODE: HDF TUBING PLE PRESER ATIVE ADD THE PRESER THE PR	TOTAL VOLDED IN FIELD (Prefilled by late	Submersible PATA FIELI Filtra eplaced) ing wet ice) FINAL pH 0 < 2 0 < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE INTEND ANALYSIS A METHO VOA/E Metal	T: \3\3\7	SAMPLING EQUIPMENT CODE APP	SAMPLE F FLOW R (mL per mi
PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	TUBING WELL (feet): CONTAINERS 3 1 1	PACITY (Gal./FODES: BEFILIATION: PUMP R SPECIFICA: MATERIAL CODE CG PE PE	t.): 1/8" = 0 = Bailer; P Y N TION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEE HCL HNO H2SC	CODE: HDF TUBING PLE PRESER ATIVE ADD THE PRESER THE PR	TOTAL VOL DED IN FIELD (Prefilled by late	Submersible PATA FIELI Filtra eplaced) ing wet ice) FINAL pH 0 < 2 0 < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	T: \3\2 V/pe: Y ED DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE F FLOW R (mL per mi
PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	TUBING WELL (feet): CONTAINERS 3 1 1	PACITY (Gal./FODES: BEFILIATION: PUMP R SPECIFICA: MATERIAL CODE CG PE PE	t.): 1/8" = 0 = Bailer; P Y N TION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEE HCL HNO H2SC	CODE: HDF TUBING PLE PRESER ATIVE ADD THE PRESER THE PR	TOTAL VOL DED IN FIELD (Prefilled by late	Submersible PATA FIELI Filtra eplaced) ing wet ice) FINAL pH 0 < 2 0 < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	T: \3\2 V/pe: Y ED DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE F FLOW R (mL per mi
PUMP OR DEPTH IN FIELD DE ID CODE -MW-25	TUBING WELL (feet): CONTAINERS 3 1 1 1	PACITY (Gal./FODES: BEFILIATION: PUMP R SPECIFICA: MATERIAL CODE CG PE PE	t.): 1/8" = 0 = Bailer; P Y N TION VOLUME 40 mL 500 mL	SAMPLER TUBING MATERIAL SAMP PRESERV USEE HCL HNO H2SC	CODE: HDF TUBING PLE PRESER ATIVE ADD THE PRESER THE PR	TOTAL VOL DED IN FIELD (Prefilled by late	Submersible PATA FIELI Filtra eplaced) ing wet ice) FINAL pH 0 < 2 0 < 2	SAMPLING INITIATED A D-FILTERED: Y tion Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/E Metal NH3	T: \3\2 V/pe: Y ED DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE F FLOW R (mL per mi

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	MW-	-SSB		SAMPLE			W-25	R	DATE:	5/14/19	1
					PURC	ING DA	TA				
WELL		TUBING			LL SCREEN		STATIC D		V / I	RGE PUMP T	YPE
	(inches): 2		ER (inches):	3/16 DEF	TH: 5 TE	TIC DEPTH T	eet TO WATE O WATER) X			BAILER: PP	
	if applicable)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		THE WELL DE		110 027 111 1					0
EQUIPMEN	NT VOLUME P	URGE: 1 EQU	= (IPMENT VOL	= PUMP VOL	feet – .UME + (TUE	ING CAPACI	feet) X TY X TU	BING LENGTH)	+ FLOW CI		galle
(only fill out	if applicable)			- 00	allons + (a	acy gallo		46 feet)			= 0.16 gallo
INITIAL PU	MP OR TUBIN	G 2 C	FINAL PUI	MP OR TUBINO	`	PURGIN		PURGING		TOTAL VO	
	WELL (feet):	G 36		WELL (feet):	36	INITIATE	DAT: 1330		1401	PURGED (gallons)
	VOLUME	CUMUL	PURGE	DEPTH	pН	TEMP.	COND. (circle units)	DISSOLVED OXYGEN	TURBIDI	TY COLO	R ORF
TIME	PURGED	PURGED	RATE	TO WATER	(standard	(°C)	μmhos/cm	(circle units)	(NTUs)		
	(gallons)	(gallons)	(gpm)	(feet)	units)		or (S/cm	mg/V or % saturation			
1340	0.60	0.60	0.06	9.77	4.78	23.90	146	0.19	2.97		
1345	0.30	090	0.06	9.78	4.72	23.84	140	0.13	1.97		~ -25.
1347	0.12	01.02	0.06	9.78	4.70	23.88	136	0.12	1.7	Olesv	-30
1349	0.12	1.24	0.06	9.78	4.78	23.88	134	11.6	1.34	Clea	W-37
		,		1							
			1							_	
		ns Per Foot): 0				6; 2 " = 0.1			5" = 1.02;	6" = 1.47;	12" = 5.88
TUBING IN	ISIDE DIA. CA	PACITY (Gal./F	(t.): 1/8" = 0	.0006: 3/16'	' = 0.0014;	1/4" = 0.002	26; 5/16" = 0	004; 3/8" = 0	.006; 1/2	2" = 0.010;	5/8" = 0.016
TUBING IN		PACITY (Gal./F			' = 0.0014; Pump; E	1/4" = 0 002 SP = Electric	26; 5/16" = 0. Submersible Pur	004; 3/8" = 0		2" = 0.010;	
TUBING IN PURGING I	ISIDE DIA. CA	PACITY (Gal./F	(t.): 1/8" = 0	.0006: 3/16'	' = 0.0014; Pump; E SAMP	1/4" = 0 002 SP = Electric LING DA	26; 5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = Pe	.006; 1/2 eristaltic Pur	2" = 0.010; np; O = C	5/8" = 0.016 ther (Specify)
PURGING IN	ISIDE DIA. CA EQUIPMENT C	PACITY (Gal./F CODES: B	Ft.): 1/8" = 0 = Bailer;	.0006; 3/16' BP = Bladder i	' = 0.0014; Pump; E SAMP	1/4" = 0 002 SP = Electric LING DA	26; 5/16" = 0. Submersible Pur	004; 3/8" = 0	.006; 1/2 eristaltic Pur	2" = 0.010; np; O = C	5/8" = 0.016 other (Specify)
SAMPLED PUMP OR	BY PRINT / A	PACITY (Gal./F CODES: B AFFILIATION:	Ft.): 1/8" = 0 = Bailer;	0006; 3/16' BP = Bladder I SAMPLER(S) TUBING	' = 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0 002 SP = Electric LING DA	Submersible Pur	3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y	.006; 1/: eristaltic Pur	2" = 0.010; np;	5/8" = 0.016 other (Specify)
SAMPLED PUMP OR DEPTH IN	BY (PRINT) A TUBING WELL (feet):	PACITY (Gal/F CODES: B AFFILIATION: Joerry 36	Et.): 1/8" = 0 = Bailer;	.0006: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	' = 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0 002 SP = Electric LING DA	Submersible Pur	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty	.006; 1/2 eristaltic Pur T: 1353 pe:	SAMPLIN ENDED A	5/8" = 0.016 other (Specify)
PUMP OR DEPTH IN V	BY PRINT / A TUBING WELL (feet):	PACITY (Gal/F CODES: B AFFILIATION: Jeany ON: PUMI	Et.): 1/8" = 0 = Bailer; 	.0006: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	Y = 0.0014; Pump; E SAMP I SIGNATUR ODE: HDPE TUBING	1/4" = 0 002 SP = Electric LING DA E(S)	Submersible Pur ATA FIELD Filtratio	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE:	n.006; 1// eristaltic Pur T: 1353	2" = 0.010; np; O = C SAMPLIN ENDED A	5/8" = 0.016 ther (Specify) AT: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
PUMP OR DEPTH IN SAMP	BY (PRINT) / A BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINE	PACITY (Gal /F CODES: B AFFILIATION: J ON: PUMI ER SPECIFICA	Et.): 1/8" = 0 = Bailer; TION	.0006: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE	ODE: HDPE TUBING	1/4" = 0.002 SP = Electric LING DA E(S): Y N(re	Submersible Pur ATA FIELD- Filtratic eplaced) ling wet ice)	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A	eristaltic Pur	SAMPLING	SAMPLE PU
PUMP OR DEPTHIN SAMP	BY PRINT / A TUBING WELL (feet):	PACITY (Gal./F CODES: B AFFILIATION: J ON: PUM ER SPECIFICA MATERIAL CODE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME	O006: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED	Pump, E SAMP SIGNATUR ODE: HDPE TUBING E PRESERV/	1/4" = 0 002 SP = Electric LING DA E(S) Y N(re ATION (includ) TOTAL VOL D IN FIELD (in	FIELD: Filtratic eplaced) ing wet ice) FINAL pH	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO	DED ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PL
PUMP OR DEPTH IN THE LONG TO THE LONG T	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS	PACITY (Gal /F CODES: B AFFILIATION: J ON: PUMI ER SPECIFICA MATERIAL CODE CG	Et.): 1/8" = 0 = Bailer; P Y (I TION VOLUME 40 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL	ODE: HDPE TUBING PRESERVA ADDE Pr	Y Nra ATION (includ FOTAL VOL D IN FIELD (iefilled by lake	Submersible Pur ATA FIELD Filtration eplaced) ling wet ice) FINAL pH 0 < 2	SAMPLING INITIATED A' -FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHC VOA/EI	pe: Y ED ND/OR DD	SAMPLING EQUIPMENT CODE APP	SAMPLE PUFFLOW RA
PURGING IN PURGING IN PUMP OR DEPTH IN THELD DECCURING SAMPLE ID CODE	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS	PACITY (Gal./F CODES: B AFFILIATION: 36 ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3	ODE: HDPE TUBING PRESERVA	Y N(re ATION (includ FOTAL VOL D IN FIELD (inclide by labelefilled by labelefi	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' -FILTERED: Y DESCRIPTION OF THE PROPERTY	DB s	SAMPLING EQUIPMENT CODE APP	SAMPLE PUFFLOW RA
PUMP OR DEPTH IN THE SAMPLE DOCODE	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3	PACITY (Gal /F CODES: B AFFILIATION: J ON: PUMI ER SPECIFICA MATERIAL CODE CG	Et.): 1/8" = 0 = Bailer; P Y (I TION VOLUME 40 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL	ODE: HDPE TUBING PRESERVA	Y Nra ATION (includ FOTAL VOL D IN FIELD (iefilled by lake	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	ED ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP	SAMPLE PUFFLOW RA' (mL per min
PUMP OR DEPTH IN THE SAMPLE DO CODE	BY PRINT / A EQUIPMENT (BY PRINT / A TUBING WELL (feet): CONTAMINATION PLE CONTAINERS 3 1	PACITY (Gal./F CODES: B AFFILIATION: 36 ON: PUM ER SPECIFICA MATERIAL CODE CG PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3	ODE: HDPE TUBING PRESERVA	Y N(re ATION (includ FOTAL VOL D IN FIELD (inclide by labelefilled by labelefi	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' -FILTERED: Y DESCRIPTION OF THE PROPERTY	ED ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP	5/8" = 0.016 ther (Specify)
PUMP OR DEPTH IN N	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUMI ER SPECIFICA MATERIAL CODE CG PE PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3 H2SO4	ODE: HDPE TUBING PRESERVA	Y North	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	ED ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PL FLOW RA' (mL per min
PUMP OR DEPTH IN N FIELD DEC SAMPLE ID CODE	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION # CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUMI ER SPECIFICA MATERIAL CODE CG PE PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3 H2SO4	ODE: HDPE TUBING PRESERVA	Y North	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	ED ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUFFLOW RA (mL per mir
PUMP OR DEPTH IN N FIELD DEC SAMPLE ID CODE NO. 25	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUMI ER SPECIFICA MATERIAL CODE CG PE PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3 H2SO4	ODE: HDPE TUBING PRESERVA	Y North	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	ED ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUFFLOW RA (mL per mir
PUMP OR DEPTH IN N FIELD DEC SAMPLE ID CODE	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUMI ER SPECIFICA MATERIAL CODE CG PE PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3 H2SO4	ODE: HDPE TUBING PRESERVA	Y North	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	ED ND/OR DD DB s	SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUFFLOW RA (mL per mir
PUMP OR DEPTH IN N FIELD DEC SAMPLE ID CODE REMARKS:	BY (PRINT) / A TUBING WELL (feet): CONTAMINATION CONTAINERS 3 1 1 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUMI ER SPECIFICA MATERIAL CODE CG PE PE	Et.): 1/8" = 0 = Bailer; P Y (TION VOLUME 40 mL 500 mL 250 mL	SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED HCL HNO3 H2SO4	ODE: HDPE TUBING Pre Pre Pre	Y N(re ATION (includ FOTAL VOL D IN FIELD (includ FOTAL VOL D IN FIELD (includ Fotal vol D in Field by lak efilled by lak None	FIELD-Filtration support in the property of t	SAMPLING INITIATED A' FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO VOA/EI Metal: NH3	pe: Y ED ND/OR DD S TDS	SAMPLING ENDED A SAMPLING ENDED A FILTER S SAMPLING EQUIPMENT CODE APP APP APP APP	SAMPLE PFLOW RA (mL per mir

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:					SI	CATION:					
WELL NO:	F-WM	В		SAMPLE		25 - M	W-7B		DATE: 11	121/19	
					PURG	ING DA	TA				
	R (inches): 2	TUBING DIAMET	ER (inches):	2/(6 DEF	L SCREEN I	et to 47. Sf	STATIC D	R (feet):	13 OR B	SE PUMP TY AILER:	PE
(only fill ou	LUME PURGE: t if applicable)	1 WELL VOL		AL WELL DEP		TIC DEPTH T	O WATER) X	WELL CAPACI			
	NT VOLUME PI	URGE: 1 EQUI	PMENT VOL.					IBING LENGTH)		LVOLUME	gallons $\times 3 = 0$.
INITIAL DI	JMP OR TUBIN	0	LEWAL BUR			gallo		feet)	+ 0.1		= 0.17gallons
	WELL (feet):	43		IP OR TUBING WELL (feet):	43	PURGIN	DAT: 1405			TOTAL VOL	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (ng/L or % saturation	TURBIDITY (NTUs)	COLOF (describe	
1412	0.56	0.56	0.08	19.05	4.02	25.31	573	1.49	3.43	Clev	x 3.0
1414	0.16	072		19.05	4.02	25.37	576	1.55	7.24	1	0.2
1416	0 16	0.88		19.05	4.03	75.37	577	1.57	1.80	1	-1.5
1418	0.16	1.04	V	19.05	4.03	25.35	578	1.58	1.54	1	-2.3
PURGING	PACITY (Gallon ISIDE DIA. CAP EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0.0 Bailer; E		= 0.0014; ump; E:	1/4" = 0 002 SP = Electric LING DA	6; 5/16'' = 0.0 Submersible Pur	004; 3/8" = 0 mp: PP = Pe		= 0.010;	12" = 5,88 5/8" = 0.016 her (Specify)
Danie	1 1. 1.	1 /Gens	intec	DAMI LENG)	OIGNATORE	.(0).	-	SAMPLING INITIATED AT	r: 1420	SAMPLING ENDED A	
PUMP OR		43		TUBING MATERIAL CO	DDE: HD	E		FILTERED: Y on Equipment Ty	N	FILTER SIZ	
	ONTAMINATIO	ON: PUMF	77)	TUBING	-	eplaced)	DUPLICATE:		®	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL		PRESERVATI USED	VE T	ESERVATIO OTAL VOL D IN FIELD (I	FINAL	INTENDE ANALYSIS AI METHO	ND/OR EQ	MPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
				2	e af	ache	d	/			
REMARKS											
MATERIAL	. CODES:	AG = Amber G	lass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropyle	ene; S = Silico	one; T = Tefl	on; O = O	ther (Specify)
SAMPLING	EQUIPMENT			istaltic Pump; e Flow Peristal	B = Bail tic Pump;		Bladder Pump; Method (Tubing		ic Submersible O = Other (· · · · · · · · · · · · · · · · · · ·	

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL	. 34733
WELL NO:	MW-7B	SAMPLE ID: 19325 - MW-7B	DATE: 11/21/19

	SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute
5-1	MW-7B	3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	300
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
	1	1	PE	250mL	None	None		CL/NO3/TDS	APP	V
	REMARKS	:								
4	MATERIAL	_ CODES:	AG = Amber	· Glass: CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon: O = 0	Other (Specify)

SITE NAME:					SI'	TE CATION:					
WELL NO	· MW-	1A		SAMPLE	ID: 1932	25 - MV	0-7A		DATE:)),	121/19	
					PURG	ING DA	TA				
DIAMETE	R (inches): 2	TUBIN	G TER (inches):	3/16 DEP	L SCREEN	et to 23.3 fe	STATIC (3 OR	GE PUMP TY BAILER:	PE
	ut if applicable)	1 AAETT AO	= (FOIME = (101	23 3	feet -	18.93	feet) X	0.16	gallons/foo	t = 0.	→o gallons
	NT VOLUME Plut if applicable)	URGE: 1 EQU	JIPMENT VOL			ing capaci . o o14gallo		UBING LENGTH	+ FLOW CEI	LL VOLUME	×3-
	UMP OR TUBIN I WELL (feet):	G 21	FINAL PUN	IP OR TUBING WELL (feet):		PURGIN		PURGING	1344		
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP, (°C)	COND. (circle units) µmhos/cm or uS/con	DISSOLVED OXYGEN (circle units) or % saturation	TURBIDIT (NTUs)		R ORP
1338	0.56	0.56	0.07	19.01	5.00	25.50	337	1.76	0.41	Clea	~ -12.6
1340	0.14	0.70	1	19.01	5 00	25.56	337	1.94	0.63		-29.3
1342	0.14	0.84		19.02	5.00	25.63	336	1.99	0.46		-34.5
1344	0.14	0.98	1	19.02	5.00	25.67	336	2.00	0.39	1	-39.1
			1								
										1	
	PACITY (Gallon NSIDE DIA, CAR				1.25" = 0.00 = 0.0014;	5; 2" = 0.16 1/ 4" = 0.002					12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder F	ump; E	SP = Electric	Submersible Pu		eristaltic Pum		ther (Specify)
SAMPI ED	BY (PRINT) / A	EEU IATION		SAMPLER(S)		LING DA	TA	T		1	
Dame	Monte	1/Cear	jutea	O'AIVII LETTO	SIGNATURE	101		SAMPLING INITIATED A		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet);	21		TUBING MATERIAL CO	DDE: HI	SPE	Filtrat	D-FILTERED: Y ion Equipment Ty		FILTER SI	IZE:μm
FIELD DE	CONTAMINATIO	ON: PUM	IPY 🔃		TUBING	Y Nre	placed)	DUPLICATE	Y	® ,	
SAMPLE	PLE CONTAINE		ATION			RESERVATIO		INTEND ANALYSIS A		AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL D IN FIELD (r	nL) FINAL pH	METHO		CODE	(mL per minute)
				Dee	ata	hed					
REMARKS	3:										
MATERIAL		AG = Amber		Clear Glass;	PE = Poly		PP = Polypropy				ther (Specify)
SAMPLING	G EQUIPMENT		NPP = After Pe RFPP = Revers	ristaltic Pump; e Flow Peristal	B = Bai tic Pump;		Bladder Pump; Method (Tubing	ESP = Elect g Gravity Drain);	ric Submersibl O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME: JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL	. 34733
WELL NO: MW-7A	SAMPLE ID 19325 - MW-7A	DATE: 11/21/19

SAM	PLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)
25- MW	7A 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250
	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	
	1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
V	1	PE	250mL	None	None		CL/NO3/TDS	APP	<u> </u>
REMARKS	CODES:	AG = Ambe	Clana: CC	= Clear Glass: P	E = Polyethylene; PP =	· Polypropyl	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

WELL NO:						TE DCATION:					
	MW-d	В		SAMPLE	ID: 193	25 - MV	7-8B		DATE:	1/21/10	9
					PURC	SING DA	TA				
	R (inches):	TUBII DIAM	NG ETER (inches) OLUME = 770	3/16 DEF	LL SCREEN PTH: 39.6 fe PTH = STA	et to 49,6 fe	STATIC Deet TO WATE		O OR B	SE PUMP TYF AILER:	bb be
only fill ou	t if applicable)		= (L. = PUMP VOI	feet -		feet) X		gallons/foot		gailons
	t if applicable)					- 0014 gallo					0-17 gallons
	JMP OR TUBIN WELL (feet):	^G 45		JMP OR TUBING N WELL (feet):	³ 45	PURGIN INITIATE	G DAT: 124			TOTAL VOLU PURGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or us/cm	OXYGEN (circle units) (ng/l or % saturation	TURBIDITY (NTUs)	COLOR (describe	
255	0.64	0.6		18.67	3.96	24.72	1100	0.64	0.60	Clear	73.5
257	0.16	0.8		18.68	4.01	24.63	1135	0.53	0.58		55.3
259	0.16	0.90		1866	4.02	24.60	1139	0.57	0.97		47.7
301	0.16	1.12	-	18.66	4.03	24.60	1142	0.58	0.71	V	41.7
	PACITY (Gallon	o Dor Footh	0.75" = 0.02		1.25" = 0.0	6; 2" = 0.16	3" = 0.37;	4" = 0.65;	5" = 1.02; 6	" = 1.47; 1	2" = 5.88
				10008- 2/46"	= 0.0014:	1/4" = 0.002			006 1/2"	= 0.010; 5	1011 0 0 10
	EQUIPMENT C	PACITY (Gal	/Ft.): 1/8" = 0 B = Bailer;				1				/8" = 0.016 er (Specify)
URGING	EQUIPMENT C	PACITY (Gal	/Ft.): 1/8" = 0 B = Bailer;	BP = Bladder i	oump; E	SP = Electric	Submersible Pu		eristaltic Pump		er (Specify)
URGING	EQUIPMENT C	PACITY (Gal ODES:	/Ft): 1/8" = (B = Bailer;		oump; E	SP = Electric	Submersible Pu		eristaltic Pump		er (Specify)
AMPLED JMP OR	BY (PRINT) / A TUBING	PACITY (Gal ODES:	/Ft): 1/8" = (B = Bailer;	SAMPLER(S)	SAMP	SP = Electric LING DA	Submersible Pu	SAMPLING INITIATED AT	1304	O = Oth	er (Specify)
AMPLED UMP OR EPTH IN	BY (PRINT) / A	PACITY (Gal PODES: PFILIATION	JFt): 1/8"=(B=Bailer;	BP = Bladder i	SAMP	SP = Electric LING DA E(S):	Submersible Pu	SAMPLING	1304	O = Oth	er (Specify)
AMPLED UMP OR EPTH IN	BY (PRINT) A TUBING WELL (feet):	PACITY (Gal PODES: FFILIATION L ON: PU	### 1/8" = (B = Bailer; ###################################	BP = Bladder if SAMPLER(S) TUBING MATERIAL C	SAMP SIGNATURE ODE: +	SP = Electric LING DA E(S):	Submersible Pu TA FIELD Filtrati	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE	r: 1304 Peristaltic Pump; Y ED SA	SAMPLING ENDED AT FILTER SIZ	er (Specify) : 1318 E: µm SAMPLE PUMP
AMPLED UMP OR EPTH IN IELD DEC SAMF	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): CONTAMINATIO	PACITY (Gal PODES: FFILIATION L ON: PU	### 1/8" = (B = Bailer; ###################################	BP = Bladder if SAMPLER(S) TUBING MATERIAL C	SAMP SIGNATURI ODE: H TUBING SAMPLE PF	SP = Electric LING DA E(S): PE Y N (re	FIELD Filtrati	SAMPLING INITIATED AT -FILTERED: Y on Equipment Tyl DUPLICATE:	Pristaltic Pump; 1304 Pristaltic Pump; 1304 Y ED SA ND/OR EQI	O = Oth SAMPLING ENDED AT FILTER SIZ MPLING JIPMENT	er (Specify) : 13 \
AMPLED UMP OR EPTH IN IELD DEC SAMF	BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	PACITY (Gal CODES: FFILIATION ON: PU ER SPECIFIC MATERIAL	B = Bailer; MP Y (CATION	SAMPLER(S) TUBING MATERIAL C PRESERVAT	SAMP SIGNATUR ODE: + TUBING SAMPLE PF IVE ADDE	SP = Electric LING DA E(S): Y N (re RESERVATION TOTAL VOL	FIELD Filtrati	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI	Pristaltic Pump; 1304 Pristaltic Pump; 1304 Y ED SA ND/OR EQI	O = Oth SAMPLING ENDED AT FILTER SIZ MPLING JIPMENT	E:μm SAMPLE PUMP FLOW RATE
EAMPLED DUMP OR DEPTH IN THE SAMPLE SAMPLE	BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	PACITY (Gal CODES: FFILIATION ON: PU ER SPECIFIC MATERIAL	B = Bailer; MP Y (CATION	BP = Bladder in SAMPLER(S) TUBING MATERIAL C N PRESERVAT USED	SAMP SIGNATUR ODE: + TUBING SAMPLE PF IVE ADDE	SP = Electric LING DA E(S): Y N (re RESERVATION TOTAL VOL	FIELD Filtrati	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI	Pristaltic Pump; 1304 Pristaltic Pump; 1304 Y ED SA ND/OR EQI	O = Oth SAMPLING ENDED AT FILTER SIZ MPLING JIPMENT	E:μm SAMPLE PUMP FLOW RATE
CAMPLED UMP OR DEPTH IN SAMPLE CAMPLE	BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINE #	PACITY (Gal CODES: FFILIATION ON: PU ER SPECIFIC MATERIAL	B = Bailer; MP Y (CATION	BP = Bladder in SAMPLER(S) TUBING MATERIAL C N PRESERVAT USED	SAMP SIGNATUR ODE: + TUBING SAMPLE PF IVE ADDE	SP = Electric LING DA E(S): Y N (re RESERVATION TOTAL VOL	FIELD Filtrati	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI	Pristaltic Pump; 1304 Pristaltic Pump; 1304 Y ED SA ND/OR EQI	O = Oth SAMPLING ENDED AT FILTER SIZ MPLING JIPMENT	E:μm SAMPLE PUMP FLOW RATE
AMPLED WHO POR EPTH IN I IELD DEC SAMPLE O CODE	BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal CODES: FFILIATION ON: PU ER SPECIFIC MATERIAL	B = Bailer; MP Y (CATION	BP = Bladder in SAMPLER(S) TUBING MATERIAL C N PRESERVAT USED	SAMP SIGNATUR ODE: + TUBING SAMPLE PF IVE ADDE	SP = Electric LING DA E(S): Y N (re RESERVATION TOTAL VOL	FIELD Filtrati	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI	Pristaltic Pump; 1304 Pristaltic Pump; 1304 Y ED SA ND/OR EQI	O = Oth SAMPLING ENDED AT FILTER SIZ MPLING JIPMENT	E:μm SAMPLE PUMP FLOW RATE
EAMPLED PUMP OR PUMP OR PEPTH IN	BY (PRINT) A TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS	PACITY (Gal CODES: FFILIATION ON: PU ER SPECIFIC MATERIAL	B = Bailer; MP Y (CATION VOLUME	BP = Bladder in SAMPLER(S) TUBING MATERIAL C N PRESERVAT USED	SAMP SIGNATUR ODE: + TUBING SAMPLE PF IVE ADDE	SP = Electric LING DA (S): Y N (re RESERVATION TOTAL VOL D IN FIELD (r	FIELD Filtrati	SAMPLING INITIATED AT -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	Pristaltic Pump; 1304 Pristaltic Pump; Y ED SA ND/OR EQU	O = Oth SAMPLING ENDED AT FILTER SIZ MPLING JIPMENT CODE	E:μm SAMPLE PUMP FLOW RATE

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME:	JED Solid Waste Landfill		SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733				
WELL NO:	MW-8B	SAMPLE ID:	19325 - MW-8B	DATE: 11/21/19			

L		PLE CONTAINE	ER SPECIFIC	ATION	SAN	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute
1	WW-81	3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	300
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
_	A	1	PE	250mL	None	None		CL/NO3/TDS	APP	V
-										
	REMARKS	1			1;			10		
-	MATERIAL	CODES:	AG = Amber	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

SITE NAME:					SI	TE CATION:					
WELL NO	MW-8,	A		SAMPLE			W-8A		DATE:	1/21/19	1
					PURG	ING DA	TA				
	R (inches):		TER (inches):	16 DEP		et to 22. Sfe			OR	RGE PUMP T' BAILER:	PA PA
(only fill or	ut if applicable)		= (22.5	feet -	18.16	feet) X	0.16	gallons/foo	ot = 0.	69 gallons
	NT VOLUME P ut if applicable)	URGE: 1 EQL	JIPMENT VOL			OOL gallo		JBING LENGTH) feet)	10000		x 3 = 0. = 0.13 gallons
	UMP OR TUBIN I WELL (feet):	G ZO		IP OR TUBING WELL (feet):		DUDCIN		PURGING ENDED AT:	1228	TOTAL VOI PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) (mg/L or	TURBIDIT (NTUs)	(descrit	pe) (mV)
1222	0.49	0.49	0.07	18.80	4.18	25.12	1241	1.07	2.17		v 2.6
1224	0.14	0.63		18.83	4.18	25.25	1243	1.11	2.08		1.0
1226	9.14	0.77		18.22	4.17	25.30	1245	1.18	1.63	3	-2.7
1224	0-14	0.91	1	18.83	4.17	25.34	1246	1.20	1.3	1	-4.0
TUBING II	PACITY (Gallon NSIDE DIA, CAI EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.	0006; 3/16"	1,25" = 0,00 = 0.0014;	1/4" = 0.002	5; 5/16" = 0.	004; 3/8" = 0	5" = 1.02; .006; 1/2'	6" = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016
FORGING	EQUIPMENT	ODES. B	- baller,	BP = Bladder P		LING DA	Submersible Pur	шр, гг-ге	mstanic muni	p. 0-0	ther (Specify)
SAMPLED	BY (PRINT) / A	1 10	anntec	SAMPLER(S)				SAMPLING INITIATED AT	r: 1230	SAMPLIN ENDED A	
PUMP OR		7	0	TUBING MATERIAL CO	DDE: +	DPE		-FILTERED: Y	De:	FILTER S	IZE: μm
FIELD DE	CONTAMINATIO	ON: PUM	PYN		TUBING	Y N (re	placed)	DUPLICATE:	Υ	N	
SAM SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	R SPECIFICA MATERIAL CODE	VOLUME	PRESERVATI USED	VE T	ESERVATION OTAL VOL D IN FIELD (n	FINAL	INTENDE ANALYSIS AI METHO	ND/OR E	SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
				Del	ata	hed					
					"						<u> </u>
REMARKS	i:										
MATERIAI	CODES:	AG = Amber (Glass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropyl	ene; S = Silico	ne; T = Te	flon; O = C	Other (Specify)
SAMPLING	GEQUIPMENT		.PP = After Pe FPP = Revers	ristaltic Pump; e Flow Peristal	B = Bail tic Pump;		Bladder Pump; Method (Tubing	ESP = Electr Gravity Drain);	ic Submersib O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL	34733
WELL NO:	MW-SA	SAMPLE ID: 1932 S-MW-SA	DATE: 11/21/19

	SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMI
SAMP ID CO	DE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute
MW.	-84	3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250
1		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
1		1	PE	250mL	None	None		CL/NO3/TDS	APP	V
REMA	RKS				•					
MATE	RIAL	CODES:	AG = Amber	Glass: CG	= Clear Glass; Pi	E = Polvethylene: PP =	Polypropyle	ene: S = Silicone: T	= Teflon; O = 0	Other (Specify)

NAME: LOCATION:
IAINA IAD ALIMITETE 1 (25) - IANA - IAD
PURGING DATA
WELL DIAMETER (inches): 3/16 WELL SCREEN INTERVAL DEPTH 38.3 feet to 98.3 feet to 9
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)
= (feet - feet) X gallons/foot = gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) x 3
= O gallons + (0.0014 gallons/foot X 48 feet) + 0.1 gallons = 0.17 gallons NITIAL PUMP OR TUBING DEPTH IN WELL (feet): 43 PURGING INITIATED AT: 1110 PURGING ENDED AT: (122 PURGED (gallons): 0.80
TIME VOLUME VOLUME PURGE PURGED (gallons) (gpm) PH (standard units) (standard units) (gpm) (feet) PURGED (gallons) (gpm) (feet) (feet) (circle units) (circle units) (circle units) (circle units) (circle units) (circle units) (mg/L or wasturation) (describe) (mV)
1116 0.42 0.42 0.07 19.80 054.13 26.35 885 0.90 0.76 Clear 52.1
1118 0.14 0.56 19.80 4.12 26.35 979 2.07 0.91 13.7
1120 0.14 0.70 19.80 4.09 26.41 978 2.09 1.32 8.7
1122 0.14 0.84 1 19.80 4.10 26.38 980 2.10 0.89 1 5.3
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)
SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING SAMPLING SAMPLING
SAMPLED BY (PRIM) APPLICATION. SAMPLED BY (PRIM) APPLICATION. SAMPLING INITIATED AT: 1126 ENDED AT: 1137
PUMP OR TUBING DEPTH IN WELL (feet): TUBING MATERIAL CODE: HDPE FILTERED: Y N FILTER SIZE:µm Filter Size:µm
TELD DECONTAMINATION: PUMP Y N TUBING Y (Treplaced) DUPLICATE: Y
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLING SAMPLE PUMP
SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR EQUIPMENT FLOW RATE (DCODE CONTAINERS CODE VOLUME USED ADDED IN FIELD (mL) pH METHOD CODE (mL per minute)
see stocked
REMARKS:
REMARKS:

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, Fi	L 34733	
WELL NO: WW - 10B	SAMPLE ID: 19325 - MW - 10B	DATE:	11/21/19

	SAM	PLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute
25	- MW-19	B 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	ZSO
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1
	_\	1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	
	REMARKS	:								
-	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypri							ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

WELL NO: MW-IQA SAMPLE ID: 1932S -MW-IQA DATE: 11/21/19 PURGING DATA WELL DIAMETER (inches): 2 TUBING DIAMETER (inches): 3/16 WELL SCREEN INTERVAL DEPTH: 12.1 feet to 22. feet DIAMETER (inches): 19.71 PURGE PUMP TYPE PP
PURGING DATA WELL DIAMETER (inches): 3/16 DEPTH: 12.1 (seet to 22.1 (seet to 22.1 (seet to 23.1 (seet) 19.2)) PURGE PUMP TYPE DEPTH: 12.1 (seet to 23.1 (seet to 23.1 (seet) 19.2)) PURGE PUMP TYPE DEPTH: 12.1 (seet to 23.1 (seet to 23.1 (seet to 23.1 (seet to 23.1 (seet) 19.2))
DIAMETER (inches): DIAMETER (inches): 3/16 DEPTH: 12.1 feet to 22 (feet TO WATER (feet): 19.31 OR BAUER.
NELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY
only fill out if applicable) = (27.) feet 19.7 feet x 0.16 gallons/foot = 0.38 gallons/foot gallons/foot gallons/foot gallons/foot gallons/foot gallons/foot gallons gallons gallons gallons/foot gallons
gallons + (0.00
TIME VOLUME PURGED PURGED RATE (gallons) (gallons) (gpm) (feet) PURGE (feet) (occupance) (
046 0.49 0.49 0.07 20.02 4.74 27.21 853 1.35 2.93 Clear -36.
1048 0.14 0.63 20.04 4.75 26.87 849 1.60 2.71 1 -So.
050 0.14 0.77 20.05 4.75 26.80 848 1.59 2.05 -56.
052 0.14 0.91 1 20.05 4.76 26.78 847 1.64 1.83 1 -56
ELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA, CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 URGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)
SAMPLING DATA
SAMPLING DATA AMPLED BY (PRINTY AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 1054 SAMPLING ENDED AT: 1106
SAMPLING DATA MPLED BY (PRINT) AFFILIATION: MPOR TUBING TUBING SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 105 4 SAMPLING ENDED AT: // 06
SAMPLING DATA AMPLED BY (PRINT) AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 105 Y SAMPLING ENDED AT: 1106 JUMP OR TUBING TUBING TUBING MATERIAL CODE: HOPE FILTERED: Y N FILTER SIZE: ELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced) DUPLICATE: Y N
SAMPLING DATA AMPLED BY (PRINT) AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 105 4 SAMPLING ENDED AT: // 06 UMP OR TUBING EPTH IN WELL (feet): ELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR EQUIPMENT FLOW RATE
SAMPLING DATA AMPLED BY (PRINT) AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 105 Y SAMPLING ENDED AT: /106 WITHOUT PROPERTY OF THE PROPERT
SAMPLING DATA MPLED BY (PRINTY/AFFILIATION: MPOR TUBING PITH IN WELL (feet): SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: SAMPLING INITIATED AT: FILED-FILTERED: MATERIAL CODE: MATERIAL CODE: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION MPLE MATERIAL CODE SAMPLE PRESERVATION SAMPLE PRESERVATION MPLE MATERIAL CODE MATERIAL MATERIAL CODE MATERIAL
SAMPLING DATA AMPLED BY (PRINT) AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 105 4 SAMPLING ENDED AT: 1106 SAMPLING INITIATED AT: 105 4 SAMPLING ENDED AT: 1106 SAMPLE CONTAINANTION: PUMP Y N TUBING Y N (replaced) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PUMPENT FLOW RATE (mL per minut)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION 1501 Omni Way, St. Cloud, FL	. 34733
WELL NO:	MW-10A	SAMPLE ID: 19325-MW-10A	DATE: 11/21/19

- 1	SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP		
Ì	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute		
25	-MW-1	A 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250		
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	A		
ĺ		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP			
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V		
	REMARK	S:										
	MATERIA	L CODES:	AG = Ambe	r Glass; CG	= Clear Glass; P	clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone				; T = Teflon; O = Other (Specify)		

SITE NAME:						TE DCATION:		(31B)			
WELL NO	1 MW-3	BIB		SAMPLE			1325 - N		DATE: ()	121/19	7
					PURC	SING DA	TA	·			
		TUBING DIAME:	TER (inches):	3/16 DEP	L SCREEN TH: 36 fe	et to 46 fe	STATIC Deet TO WATE	ER (feet):	PUR OR E	GE PUMP T BAILER:	YPE PP
(only fill o	ut if applicable)	1 WELL VOI	LUME = (TOT	AL WELL DEP	IH - SIA	TIC DEPTH T	O WATER) X	WELL CAPACI	17		2000
EQUIPME (only fill o	ENT VOLUME P ut if applicable)	URGE: 1 EQU	IPMENT VOL	= PUMP VOL				UBING LENGTH)		L VOLUME	gallons ×3=
INITIAL P	UMP OR TUBIN	IG . I .	T FINAL PUR	# OR TUBING		PURGIN	G	PURGING	+ 0.1	gallons TOTAL VO	= 0. Ogallons
DEPTH IN	WELL (feet):	41		WELL (feet):	41	INITIATE	DAT: 0950	ENDED AT:	1002	PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) µmhos/cm or S/cm	OXYGEN (circle units) (ng/L or % saturation	TURBIDITY (NTUs)	Y COLO (descril	
0956	0.42	0.42	0.07	18.25	4.49	25.99	1338	1.23	0.83	Clas	r 2.9
0958	11.0	0.56		18.27	4.48	25.79	1342	1.27	1.39	1	-3.0
1002	0.14	0.84	1	18.2G	4.48	25.13	1341	1.24	1.12	1	-4.9
1002	V-17	0.39	¥	18.26	4.47	23.47	1342	1.25	0.89		-5.3
										111	
-										4	
	PACITY (Gallor NSIDE DIA, CA				1.25" = 0.00		3; 3" = 0.37; 3; 5/16" = 0.			6" = 1.47;	12" = 5.88
	EQUIPMENT (-	BP = Bladder P			Submersible Pu		eristaltic Pump		5/8" = 0.016 other (Specify)
04410/50	DV (DBH IZ)					LING DA	TA				
DAN	BY (PRINT)	1 0	es y te	SAMPLER(S)	SIGNATURE	=(S):		SAMPLING INITIATED AT	1006	SAMPLIN ENDED A	
PUMP OR	TUBING	U		TÚBING		HDPE		-FILTERED: Y	(N)		IZE: μm
	WELL (feet): CONTAMINATION	ON: PUMI	-	MATERIAL CO	TUBING		placed)	DUPLICATE:	y Y	N	
SAM	PLE CONTAINE	R SPECIFICA			SAMPLE PR	RESERVATION		INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		OTAL VOL D IN FIELD (m	rINAL pH	ANALYSIS AN METHOL		UIPMENT CODE	FLOW RATE (mL per minute)
				Se	0 1	dod	1		-		
				26	~ ajj	nunce					
		4									
REMARKS											-61
MATERIAL	CODES	AG = Ambas C	lass: CC -	Cloar Class:	DC - Dali	othylog: *	D = Dobes	one: S = 0:::	T T 2		Nh (0 'C)
	EQUIPMENT		PP = After Per		PE = Poly B = Bail		PP = Polypropyl Bladder Pump;		ne; T = Tefle c Submersible		Other (Specify)
		RI	PP = Reverse	e Flow Peristalt	ic Pump;	SM = Straw N	Method (Tubing		O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

SITE		SITE
NAME: JED Solid Waste Landfill		LOCATION: 1501 Omni Way, St. Cloud, FL 34733
WELL NO	MW-31B	SAMPLE ID: 19325 - MW-318 DATE: 11/21/19

	SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP		
	AMPLE CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)		
- N	W.	IB 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	750		
	1	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP			
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP			
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V		
RE	REMARKS:											
MA	ATERIA	L CODES:	AG = Amber	Glass: CG	= Clear Glass: Pl	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)		

SITE NAME:			SITE LOCATION:					
WELL NO: MW-31 A		SAMPLE ID: 19		-31A		DATE: 11	121/19	
			RGING DA					
WELL VOLUME PURGE: 1 WELL VOL (only fill out if applicable)	ER (inches): / [.UME = (TOTAL W	DEPTH: S VELL DEPTH - S	TATIC DEPTH T	feet) X	WELL CAPACIT	OR B	SE PUMP TYPE AILER:	94 gallons
EQUIPMENT VOLUME PURGE: 1 EQU (only fill out if applicable)	IPMENT VOL. = P		TUBING CAPACI		JBING LENGTH) 7 feet)	+ FLOW CEL	L VOLUME gallons = 0	×3=
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 2 2	FINAL PUMP OF DEPTH IN WEL	R TUBING L (feet): 2	Z PURGIN	IG ED AT: 0128	PURGING ENDED AT:	0928	TOTAL VOLUME PURGED (gallor	is): Lod
TIME VOLUME VOLUME PURGED (gallons) CUMUL.	PURGE RATE V (gpm)	DEPTH pH TO (standa WATER units)	(*C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)
0900 0.64 0.64	0.02	8.09 4.7		1068	1.02	54 ₀	Yellow	2.7
0915 0.30 0.94	1	8.09 4.7		1063	0.95	392	1	-18.3
0970 0.10 1.04	1	8 09 47		1055	1.10	338	+	- 27.4
0922 0.04 1.06	1	8.09 4.7		1055	1.12	221	—	-31.0
0926 0.04 1.12	I i	8.09 4.7		1054	1.13	180	*	-35.1
WELL CAPACITY (Gallons Per Foot): 0 TUBING INSIDE DIA. CAPACITY (Gal./F PURGING EQUIPMENT CODES: B	t.): 1/8" = 0.0006	= 0.04; 1.25" = ; 3/16" = 0.0014 Bladder Pump;	1/4" = 0.002		004; 3/8" = 0.0		= 0.010; 5/8"	= 5.88 = 0.016 (Specify)
CAMPLED BY (DOINT) (AFEILATION	1.800		IPLING DA	ATA				
	syntec .	IPLER(S) SIGNAT	URE(S);		SAMPLING INITIATED AT:	0926	SAMPLING ENDED AT:	0939
PUMP OR TUBING DEPTH IN WELL (feet): 22	TUB MAT	ING ERIAL CODE:	HOPE		FILTERED: (Y) on Equipment Typ	e T. P.	FILTER SIZE:	_ _ µm
FIELD DECONTAMINATION: PUMI	YW	TUBIN	G Y Wire	placed)	DUPLICATE:	Y	N	
SAMPLE CONTAINER SPECIFICA' SAMPLE # MATERIAL CODE CONTAINERS CODE		SERVATIVE	PRESERVATIO TOTAL VOL DED IN FIELD (FINAL	INTENDE ANALYSIS AN METHOD	ID/OR EQI	UIPMENT FI	MPLE PUMP LOW RATE _ per minute)
		see a	. Jacher					
REMARKS: High typichty	ismes.	Container	white	d for	hetals (A	ppIMeh	lu + Fe, Ha,	na) wan
MATERIAL CODES: AG = Amber G			Polyethylene;	PP = Polypropyle		·		- 111
SAMPLING EQUIPMENT CODES: A	PP = After Peristalt		Bailer; BP =	Bladder Pump; Method (Tubing	ESP = Electric		Pump;	(ореспу)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733
WELL NO:	MW-31A	SAMPLE ID: 19325 - MW-31A DATE: 11/21/19

SAI	MPLE CONTAINI	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute	
W-31A	3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	75	
1	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1	
	1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
	1	PE	250mL	None	None		CL/NO3/TDS	APP	V	
REMARK	S:									
MATERIA	AL CODES:	AG = Ambei	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	

SITE NAME:						TE CATION:					
WELL NO	MW-	1B		SAMPLE			MW-98	3	DATE:	120/19	
						ING DA					
WELL VO	R (inches): Z LUME PURGE: ut if applicable)	TUBIN DIAME 1 WELL VO	TER (inches):	7/16 DEF	TH - STA	et to 49 \f	O WATER) X	WELL CAPACI	TY	GE PUMP TYP BAILER:	44 a.
EQUIPME (only fill ou	NT VOLUME P ut if applicable)	URGE: 1 EQ	= (UIPMENT VOL			ING CAPACI		UBING LENGTH)		L VOLUME	gallons ×3 = 0.17 gallons
	UMP OR TUBIN I WELL (feet):	1G 44		MP OR TUBING WELL (feet):	44	PURGIN INITIATE	IG ED AT: 1447			TOTAL VOLU PURGED (ga	IME Ilons): @ .);
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (mg/l) or % saturation	TURBIDITY (NTUs)	COLOR (describe	
1455	0.64	0.64	0.08	18.62	4.54	25.98	435	0.81	0.48	Clear	63.7
1457	0.16	0.80		18.65	4.48	25.99	462	0.79	0.61		17.7
1459	0.16	0.96		18.66	4 45	26.02	471	0-89	1.83		76.4
1201	0.16	1-12	V	18.66	440	26.04	478	0.91	1.14	1	74-6
TUBING II	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.		ump; E	1/4" = 0.002	6; 5/16" = 0 Submersible Pu	004; 3/8" = 0		= 0.010; 5	2" = 5.88 /8" = 0.016 er (Specify)
SAMPLED	BY (PRINT) / A	1.01/	oratec	SAMPLER(S)			NIA	SAMPLING INITIATED A	T:)504	SAMPLING ENDED AT	
PUMP OR		44	0	TUBING	DDE: H	PE		-FILTERED: Y	(N)	FILTER SIZ	
	WELL (feet): CONTAMINATION	ON: PUN	AP Y (N	MATERIAL CO	TUBING		Filtrati	DUPLICATE:		5	
SAM	PLE CONTAINE	ER SPECIFIC				RESERVATIO		INTENDI			SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	VE 1	TOTAL VOL D IN FIELD (I	FINAL	ANALYSIS A METHO	ND/OR EQ	UIPMENT	FLOW RATE (mL per minute)
				See	affec	hed					
REMARKS	<u> </u>										
MATERIAL	L CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropy	lene; S = Silico	one; T = Tef	lon; O = Oth	ner (Specify)
SAMPLING	3 EQUIPMENT		APP = After Pe RFPP = Revers	ristaltic Pump; se Flow Peristal	B = Bai tic Pump;		Bladder Pump; Method (Tubing		ic Submersible O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733
WELL NO:	MW-98	SAMPLE ID: 19324 - MW-98 DATE: 11/20/19

	SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP	
	SAMPLE ID CODE	# CONTAINERS	MATERIAL VOLUME		PRESERVATIVE TOTAL VOL USED ADDED IN FIELD (mL)		FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)	
324	-MW-6	3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	300	
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1	
		11	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	1	
	REMARK	S:									
+	MATERIA	L CODES:	AG = Amber	Glass: CG	= Clear Glass; P	E = Polyethylene: PP =	Polypropyle	ene; S = Silicone; T	`≕ Teflon; O = (Other (Specify)	

SITE NAME:					SI	TE CATION:					
	MW-9	A		SAMPLE		24 - MI	N-9A		DATE: [\/	20/19	
				*	PURG	ING DA	TA				
		TUBING DIAMET 1 WELL VOL		16 DEP	TH - STA	et to 22.4 fo TIC DEPTH T		WELL CAPAC		GE PUMP TYP AILER:	
	IT VOLUME PU	JRGE: 1 EQUI			UME + (TUB	IS. 27 ING CAPACI OO (4 gallo		UBING LENGTH	0.1	L VOLUME '	gallons *3:0
	MP OR TUBIN WELL (feet):	³ 21	FINAL PUM DEPTH IN V	P OR TUBING				PURGING ENDED AT:	A	TOTAL VOLU PURGED (gal	145
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	100	ORP
1402	0.56	0.56	0.08	1880	5.26	27.10	222	184	10.5	Yellow	d -27.3
1404	0-16	0.72		18.81	5 26	27.15	221	1-7d	9.98		-37.2
1406	0.16	0.88		12.80	5.26	27.10	220	1.75	9.71		-44.8
1408	0-16	1.04	1	18.81	5.26	27.12	220	1-73	9.01	-	- 47.3
TUBING IN PURGING I	ACITY (Gallon SIDE DIA. CAR EQUIPMENT C	PACITY (Gal /F ODES: B =	t.): 1/8" = 0.0 = Bailer: E	1" = 0.04; 0006; 3/16" BP = Bladder F	SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0 Submersible Pu	004; 3/8" = 0	eristaltic Pump	= 0.010; 5/	2" = 5.88 8" = 0.016 er (Specify)
PUMP OR T	TUBING WELL (feet):	21	9	TUBING MATERIAL C	ODE:	DPE		P-FILTERED: Y			E: μm
FIELD DEC	ONTAMINATIO	ON: PUMF	YN		TUBING	Y N (re	eplaced)	DUPLICATE	13.	N	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL		PRESERVAT USED	IVE	RESERVATION TOTAL VOL	FINAL	INTEND ANALYSIS A METHO	ND/OR EQ	UIPMENT	SAMPLE PUMP FLOW RATE (mL per minute)
REMARKS:	Collec	ted a	dipl				Dup-16	2001)			
MATERIAL	CODES:	AG = Amber G		Clear Glass;	PE = Poly		PP = Polypropy			ion; O = Oth	ner (Specify)
SAMPLING	EQUIPMENT		PP = After Per PP = Reverse	ristaltic Pump; e Flow Perista	B = Bai Itic Pump;		Bladder Pump; Method (Tubing	ESP = Elect g Gravity Drain);	tric Submersible O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill		SITE LOCATION: 1501 Omni Way, St. Cloud, F	L 34733
WELL NO:	MW-9A	SAMPLE ID:	19324-MW-9A	DATE: 11/20/19

SAM	IPLE CONTAINS	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute	
-MW-	A 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	360	
	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP		
	1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
¥	1	PE	250mL	None	None		CL/NO3/TDS	APP	-	
REMARK	S:	AG = Amber	Glass: CG	= Clear Glass; PI	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	

SITE NAME:					LC	TE CATION:					
WELL NO:	MW-II	В		SAMPLE	ID: 193	524- N	IW-IIB		DATE: \\	20/19	
						ING DA					
		TUBING DIAME: 1 WELL VOI	TER (inches):	DEP	L SCREEN TH: 37.9 fe TH – STA	et to 479 f	STATIC (eet TO WATE O WATER) X		U OR BA	E PUMP TYF ILER:	PEPP
EQUIPMEN		JRGE: 1 EQU	= (IIPMENT VOL.	^	,	ING CAPACI		UBING LENGTH)			gallons
	MP OR TUBIN	^G 43		P OR TUBING		DUBCIN		DUBCING			
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP_ (°C)	COND (circle units) µmhos/cm ox µS/cm	DISSOLVED OXYGEN (circle units) (mg/L) or % saturation	TURBIDITY (NTUs)	COLOR (describe	ORP
1312	0.56	0.56	80.0	1737	4.89	28.37	113	0.65	0.68	Clear	r 6.5
1314	0.16	0.72		17.32	4.89	28.49	PII	0.60	0.74		4.4
1316	0.16	88.0		17.37	4.89	74.4-	115	0.53	1.01		3.7
1318	0.16	1.04	V	17.32	4.00	28.53	115	0.75	0.91	V	2.1
			0.75" = 0.02; =t): 1/8" = 0.0							A STATE OF THE RESERVE OF THE PARTY OF THE P	12" = 5.88 18" = 0.016
	EQUIPMENT C			BP = Bladder F			Submersible Pu		eristaltic Pump;		ner (Specify)
2111111111						LING DA	ATA				
SAMPLED	y (PRINT) / A	George / George		SAMPLER(S)	SIGNATURE	E(S):	>	SAMPLING INITIATED AT	: 1320	SAMPLING ENDED AT	1335
PUMP OR T		43		TUBING MATERIAL CO	DDE:	DPE)-FILTERED: Y		FILTER SIZ	ZE: μm
	ONTAMINATIO	ON: PUM			TUBING	73	placed)	DUPLICATE:	Y	N	
SAMP	LE CONTAINE	R SPECIFICA	TION		SAMPLE PR	RESERVATIO	N	INTENDE			SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	ADDE	OTAL VOL D IN FIELD (I	mL) FINAL	ANALYSIS AI METHO		ODE	FLOW RATE (mL per minute)
REMARKS:											
MATERIAL SAMPLING	CODES:		Glass; CG =		PE = Poly B = Bai	ler; BP =	PP = Polypropy Bladder Pump; Method (Tubing		one; T = Teflo ic Submersible O = Other (S	Pump;	her (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	SITE NAME:	JED Solid \	Naste Landfil	ı		SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733							
	WELL NO:	-WM	IIB		SAMPLE ID:	19324 - MW	J-11B		DATE:	11/20/	19		
					1								
	SAM	PLE CONTAINE	ER SPECIFIC	ATION	SAM	SAMPLE PRESERVATION				SAMPLING	SAMPLE PUMP		
	SAMPLE ID CODE	# CONTAINERS	ERS CODE VOLUME		PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD		EQUIPMENT CODE	FLOW RATE (mL per minute)		
1324	-MW-11	B 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/E	DB.	APP	.300		
		1	PE	500mL	HNO3	Prefilled by lab	<2	Meta	ls	APP	1		
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3		APP			
	V	1	PE	250mL	None	None		CL/NO3	/TDS	APP			

REMARKS:

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon;

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

O = Other (Specify)

SITE NAME:						TE DCATION:					
WELL NO:	MW-11A	+		SAMPLE		24-MV	J-11A	1	DATE: 11 /	20/19	
					PURG	ING DA	TA				
		TUBIN DIAMI 1 WELL VO	ETER (inches):	TAL WELL DEP	TH - STA	INTERVAL eet to 22-8 fo TIC DEPTH T	O WATER) X	WELL CAPACIT	ГҮ	SE PUMP TY AILER:	PP Or-
	T VOLUME PU if applicable)	JRGE: 1 EQ	UIPMENT VO	L. = PUMP VOL		ING CAPACI		JBING LENGTH)	A district control	L VOLUME	75 gallons x3 = 0.13 gallons
INITIAL PUN DEPTH IN V	MP OR TUBINO VELL (feet):	^G 20		MP OR TUBING WELL (feet):		DUBCIN		DUDCING		TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) μmhos/cm or (iS/cm	DISSOLVED OXYGEN (circle units) ing/L or % saturation	TURBIDITY (NTUs)	COLOF (describ	
1150	0.48	0.48	0.08	1891	5.01	28.62	731	2.02	20.5	Cles	72.5
1157	0.16	0.64		14.93	5.09	28.48	732	1.63	14.7		57.
1154	0 16	0 80		18.93	5.10	28-56	728	1.68	9.31		56.4
1156	0.16	0.96	-	18.94	S. i 0	z8.5X	726	1,71	6.86	1	69.1
TUBING INS PURGING E	SIDE DIA. CAF	ODES: I	/Ft.): 1/8" = 0 B = Bailer;	.0006; 3/16" BP = Bladder P	= 0.0014; /ump; E	1/4" = 0.002 SP = Electric	Submersible Pu	.004; 3/8" = 0.		= 0.010;	12" = 5.88 5/8" = 0.016 ther (Specify)
Danie	e Mon	1-06	consitec	SAMPLER(S)	SIGNATURI	E(S):		SAMPLING INITIATED AT	_	SAMPLIN ENDED A	
PUMP OR T DEPTH IN V		20		TUBING MATERIAL CO	ODE:	HDPE		-FILTERED: Y on Equipment Typ	De:	FILTER SI	ZE: μm
FIELD DEC	OITAMINATIO	DN: PUI	MP Y	1	TUBING	Y (N (re	eplaced)	DUPLICATE:	Υ	N	
SAMPLE	LE CONTAINE # CONTAINERS	R SPECIFIC MATERIAL CODE	VOLUME	PRESERVATI USED	VE	RESERVATIO TOTAL VOL ED IN FIELD (FINAL	INTENDE ANALYSIS AN METHOI	ND/OR EQ	MPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
				75	ce a	Jache	d				
REMARKS											
MATERIAL SAMPLING	CODES:		APP = After P	= Clear Glass; eristaltic Pump; se Flow Peristal	B = Bai		PP = Polypropy Bladder Pump; Method (Tubing	ESP = Electri	ne; T = Teflic Submersible O = Other (Pump;	ther (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: JED Solid Waste Landfill		SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733					
VELL NO: MW - NA	SAMPLE ID:		oud, FL 34/33				
	OAWII LE ID.	19324 - MW-11A	DATE: 11/20/19				

SAMPLE	PLE CONTAIN		ATION	SAM	PLE PRESERVATION		INTENDED		
ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL	FINAL	INTENDED ANALYSIS AND/OR	SAMPLING EQUIPMENT	SAMPLE PUM FLOW RATE
124- WM	1-11A 3	CG	40mL	HCI	ADDED IN FIELD (mL) Prefilled by lab	pH	METHOD	CODE	(mL per minute
1	1	PE	500mL	HNO3		<2	VOA/EDB	APP	300
	1	PE	250mL		Prefilled by lab	<2	Metals	APP	1
V	1	PE		H2SO4	Prefilled by lab	<2	NH3	APP	
-1		FE	250mL	None	None		CL/NO3/TDS	APP	
REMARKS									
MATERIAL SAMPLING	CODES:		PP = After Pe		D-0-1-	Polypropyle	ne; S = Silicone; T = ESP = Electric Submer	: Teflon; O = O	ther (Specify)

SITE NAME:						TE DCATION:					
WELL NO	MW-	12B		SAMPLE II			W-12B		DATE: 11/	20/19	
					PURC	ING DA	TA				
WELL VO	r (mones).	TUBIN DIAME 1 WELL VC	ETER (inches)	TAL WELL DEPT	H: 3 1 fe H - STA	INTERVAL eet to 49 fe TIC DEPTH T	O WATER) X	ER (feet): X · Z WELL CAPACI	OR BA	GE PUMP TY AILER:	bb
	NT VOLUME Pout if applicable)	URGE: 1 EQ	UIPMENT VO	L. = PUMP VOLU		BING CAPACI	10	UBING LENGTH)	+ FLOW CELL		gallons ×3≥0 = 0.17 gallons
	UMP OR TUBIN I WELL (feet):	G 44		MP OR TUBING I WELL (feet):	44	PURGIN INITIATE	G ED AT: 105			TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOF (describ	
1104	0.56	0.56	60.07	18.63	4-71	26.94	76	0.90	1.34	Cles	v 66.0
1106	0.14	0.70		18.63	4-78	26.99	75	0.96	127		64.3
11.08	014	084		18.63	4.77	26.91	75	70.0	1-39		63.3
1100	0.14	0.98	V	18.64	4.77	26.92	44	0.97	1.15	1	63.0
SAMPLED PUMP OR	BY (PRINT) A	PACITY (Gal. CODES: I	/Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; 1 0.0006; 3/16" = BP = Bladder Pu SAMPLER(S) S	SAMP	SP = Electric LING DA	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A* D-FILTERED: Y	.006: 1/2" = eristaltic Pump;	O = Ot SAMPLINE	
	WELL (feet):	44	-	MATERIAL COI		DRE		ion Equipment Ty		-	
	CONTAMINATIO			-	TUBING		eplaced)	DUPLICATE:	Y	(N/	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED	Æ ADDE	RESERVATIO	FINAL	ANALYSIS AI METHO	ND/OR EQ	MPLING JIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
REMARKS	5:					ta che					
MATERIAI SAMPLING	L CODES:	AG = Amber		= Clear Glass; eristaltic Pump;	PE = Poly	yethylene;	PP = Polypropy Bladder Pump;		ne; T = Teflo		ther (Specify)
27 HIN EIN	- Zgon men			se Flow Peristalti				Gravity Drain);	O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St Cloud, FL 34733	
WELL NO:	MW-12B	SAMPLE ID: 19324 - MW-12B DATE: 11/20/19	

	SAN	PLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP	
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute	
性	-MW-	2B 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	750	
	1	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1	
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V	
	REMARK	3:	-								
-	MATERIA	L CODES:	AG = Amber	· Glass: CG	= Clear Glass; PI	E = Polyethylene; PP =	: Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)	

SITE NAME:						TE CATION:					
WELL NO	AFI-WM	R		SAMPLE			W- 17A	R	DATE: \\	19/19	
						ING DA				.,,,,,,	
WELL VO	. ,		TER (inches): LUME = (TOT)	AL WELL DEPT	H – STA		O WATER) X	ER (feet): 16 -	OR BA		44
	NT VOLUME P ut if applicable)	URGE: 1 EQU	= (JIPMENT VOL.	. = PUMP VOLU		18.16 BING CAPACI 0014 gallo		O./G UBING LENGTH) 2.5 feet)	2.00	VOLUME	gallons y3= 0.13 gallons
	JMP OR TUBIN WELL (feet):	G 20		P OR TUBING WELL (feet):	20	PURGIN- INITIATE	G DAT: 130		1320	OTAL VOLU PURGED (gal	ME 0.98
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP, (°C)	COND. (circle units) µmhos/cm or (µS/cm)	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)
1312	0.42	0.42	0.07	18.73	4.44	28.47	879	2.12	2.76	Clear	- 151.9
1314	0.14	0.56	Y	18.73	4.44	28.52	901	2.27	2.49	V	160.4
1318	0.14	0.70	Y	18-12	4.45	28.53	906	7.29	2.28		161.3
1370	0.14	0.84	1	1122	4.44	28.56	908	2.37	2.13	1	162.4
WELL CAI	PACITY (Gallon	s Per Foot): (PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0.0		1.25" = 0.00 = 0.0014;	6, 2" = 0.16 1/4" = 0.002					2" = 5.88 8" = 0.016
PURGING	EQUIPMENT O	ODES: B	= Bailer; E	BP = Bladder Pu			Submersible Pu	imp; PP = Pe	ristaltic Pump;	O = Oth	er (Specify)
Donnel	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	IGNATURE		-	SAMPLING INITIATED AT	1322	SAMPLING ENDED AT:	
PUMP OR DEPTH IN	TUBING WELL (feet):	20 1		TUBING MATERIAL CO	DE:	HDPE)-FILTERED: Y ion Equipment Typ		FILTER SIZ	E:μm
FIELD DEC	CONTAMINATION	ON: PUM	-		TUBING	Y N (pe	placed)	DUPLICATE:	Υ	N	
SAM	PLE CONTAINE	R SPECIFICA	TION	S	AMPLE PF	RESERVATION	N	INTENDE			SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED	ADDE	TOTAL VOL D IN FIELD (r	mL) FINAL	ANALYSIS AN METHOI		IPMENT SODE	FLOW RATE (mL per minute)
				see	altac	hed					
REMARKS											
MATERIAL	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly		PP = Polypropy Bladder Pump;		ne; T = Teflo		ner (Specify)
		R	FPP = Reverse	e Flow Peristalti	c Pump;	SM = Straw	Method (Tubing	Gravity Drain);	O = Other (S		

OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St Cloud, FL	. 34733
WELL NO: MW-17AR	SAMPLE ID: 19323 - MW - 17AR	DATE: 11/19/19

-	SAMPLE	PLE CONTAINE	R SPECIFIC		SAM PRESERVATIVE	IPLE PRESERVATION TOTAL VOL.	FINAL	INTENDED ANALYSIS AND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE	
	ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN FIELD (mL)	pH	METHOD	CODE	(mL per minute)	
323	MW 17/	K 3	CG	40mL	HCI	Prefilled by lab	Prefilled by lab <2		APP	025	
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	-	
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
-	V	1	PE	250mL	None	None		CL/NO3/TDS	APP		
	REMARKS	:	/								

SITE NAME:					SIT	TE CATION:					
WELL NO:	Eq. Bl	whe		SAMPLE			5 - EQ -	2	DATE:	121/10	
	1					ING DA					
	R (inches):		TER (inches):	DEP	L SCREEN I	et to fe		EPTH R (feet): WELL CAPAC	OR E	GE PUMP T BAILER:	(PE
(only fill our	t if applicable)	_	= (feet -		feet) X	JBING LENGTH	gallons/foo		gallons
(only fill ou	t if applicable)			= ga	llons + (gallo	ns/foot X	feet) +	gattons	gallons
	JMP OR TUBIN WELL (feet):	3	FINAL PUM DEPTH IN V	P OR TUBING		PURGING	3	PURGING ENDED AT:		TOTAL VOL PURGED (g	UME
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT' (NTUs)	Y COLO (describ	
					Egnis	net.	alanh				
					+ 1					-	
WELL CAR	PACITY (Gallon	s Per Foot):	0.75" = 0.02	1" = 0.04;	1.25 " = 0.06	5: 2" = 0.16	i: 3 " = 0.37:	4" = 0.65;	5 " = 1.02:	6" = 1.47:	12" = 5.88
TUBING IN	ISIDE DIA. CAF	PACITY (Gal /	Ft): 1/8" = 0.0		= 0.0014; ump; E	1/4" = 0.0026 SP = Electric	Si; 5/16" = 0. Submersible Pu	004; 3/8" = 0		= 0.010;	5/8" = 0.016 ther (Specify)
CAMBUED	BY (BRILLY) IA	FEIL LATION	T	OALD EDIO		LING DA	TA	1		1	
Dani		sel/c	comple	SAMPLER(S)	SIGNATURE	:(5):	>	SAMPLING INITIATED A		ENDED A	AT: 150+
	WELL (feet): CONTAMINATION	DN: PUN		TUBING MATERIAL CO				on Equipment Ty DUPLICATE	rpe:	FILTERS	IZE: μm
					TUBING				-		SAMPLE PUMP
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL CODE		PRESERVATI USED	VE T	ESERVATION OTAL VOL D IN FIELD (r	FINAL	ANALYSIS A METHO	ND/OR E	AMPLING QUIPMENT CODE	FLOW RATE (mL per minute)
			Se	e at	Like	d					
								12			
REMARKS	:		'								
MATERIAL	. CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropy	lene; S = Silic	one; T = Te	flon; O = 0	Other (Specify)
SAMPLING	EQUIPMENT		APP = After Per RFPP = Reverse		B = Bail tic Pump;		Bladder Pump; Method (Tubing	ESP = Elect Gravity Drain);	ric Submersibl		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0,2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, F	L 34733
WELL NO: Eg. Blank	SAMPLE ID: 19325 - EQ-Z	DATE: 11/21/19

	SAM	PLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute
4	9325 A	3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	
E	1-2	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
	1	1	PE	250mL	None	None		CL/NO3/TDS	APP	
-	1									
	REMARK	S:								
1	MATERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

SITE NAME:						ITE OCATION:					
WELL NO	: MW-1	2A		SAMPLE		24-MV	J-12A		DATE: \	1/20/19	
						GING DA					
WELL VO		TUBINI DIAME 1 WELL VO	TER (inches):	1/16 DE	LL SCREEN PTH: \3 fo PTH - STA	eet to 22 f	STATIC I eet TO WATI O WATER) X	DEPTH ER (feet):	\$7. I of	IRGE PUMP 1 R BAILER:	PP
EQUIPME (only fill or	ENT VOLUME P ut if applicable)	PURGE: 1 EQU	= (JIPMENT VOL			BING CAPACI	TY X T	UBING LENGTH	300	ELL VOLUME	71 gallons ×3= 0 = 0.14 gallons
	UMP OR TUBIN WELL (feet):	IG 21		MP OR TUBING WELL (feet):	3 21	PURGIN INITIATE		PLIBGING	1031	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) (mg/l or % saturation	TURBIDI (NTUs)	TY COLO	OR ORP
1024	0.42	0.42	10.07	19.04	3.94	27.43	1713	2-32	1.37	Cler	r 54.5
1026	11.0	0.56	1	19.04	3.94	27.44	1742	2.21	1.42	- 1	53.6
1028	0-14	0.70	+	19.04	3.94	27.49	1778	1.78	1.14		49.8
1030	0.14	0.24	V	19.04	3.94	27.50	1782	1.75	1-10		48.2
1031	40.0	0.91	¥	19.04	3.94	27.52	1784	1.72	1-18	↓	47.7
											1 = = =
TUBING II	PACITY (Gallon NSIDE DIA, CAI EQUIPMENT O	PACITY (Gal./F	t.): 1/8" = 0.0	1" = 0.04; 0006; 3/16" BP = Bladder F	= 0.0014;	1/4" = 0.0026	5; 3" = 0.37; 6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pun	6" = 1.47; !" = 0.010;	12" = 5.88 5/8" = 0.016
			2411011	Di Cidadei i		LING DA		mp, FF - FE	enstante Pun	$np; \mathbf{O} = \mathbf{C}$	Other (Specify)
SAMPLED	BY (PRINT) /A	11 1	-	SAMPLER(S)				SAMPLING INITIATED AT	r: 1032	SAMPLIN	
PUMP OR DEPTH IN	TUBING WELL (feet):	21		TUBING MATERIAL CO	DDE: HÎ	DPE		-FILTERED: Y on Equipment Type	(N		SIZE: µm
FIELD DEC	CONTAMINATIO	ON: PUM	PYN	1	TUBING	Y (N (re	placed)	DUPLICATE	Υ	N	
	PLE CONTAINE		TION			RESERVATION	V	INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL D IN FIELD (n	nL) pH	ANALYSIS AI METHO		QUIPMENT	FLOW RATE (mL per minute)
				ree o	that	red					
					4						
REMARKS								L	- 1		
MATERIAL	CODES:	AG = Amber G	Glass; CG =	Clear Glass;	PE = Poly	ethylene; I	PP = Polypropyl	ene; S = Silico	ne; T = Te	eflon: O = 0	Other (Specify)
SAMPLING	EQUIPMENT		PP = After Per PP = Reverse	istaltic Pump; e Flow Peristal	B = Bai	ler; BP = E	Bladder Pump; Method (Tubing	ESP = Electri	ic Submersit		suisi (openiy)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL	1501 Omni Mov St Cloud El 34733					
WELL NO:	MW-12A	SAMPLE ID: 19324 - MW-12A	DATE: 11/20/19					

	SAM	IPLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING EQUIPMENT CODE	SAMPLE PUMP	
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD		FLOW RATE (mL per minut	
Y	-12A	2A 3 CG 40mL		40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250	
	-1	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP		
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V	
	REMARK	5:									
	MATERIA	L CODES:	AG = Ambe	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	≃ Teflon; O = 0	Other (Specify)	

	MW-13	₾			SAMPLE		24 - M			DATE:	120/10	
WELL		TUDING			LAZEI		SING DA		COTIL	Dun	OC DUMP T	WDE.
VVELL DIAMETER	(inches): 2	TUBING DIAME	ם TER (inch	es):	16 DEP	TH: 3]. 2fe	et to 47.2 fe	STATIC D	R (feet):	3\ OR E	GE PUMP T BAILER:	DD AL
	UME PURGE: if applicable)	1 WELL VOL	LUME = (TOTAL	WELL DEP	TH - STA	TIC DEPTH T	O WATER) X	WELL CAPACI	TY		
		IDOE: 4 FOU	= (OLUMB VOI	feet -	UNIO CARACI	feet) X	IDINO LENOTIN	gallons/foot		gallons
	IT VOLUME PU if applicable)	JRGE: TEQU	JIPIVIENT			`			JBING LENGTH)			_ X 2 =
NITIAL DU	MD OD TUDIN	2	TENAL				COIY gallo		feet)	+ 0.1		= Q.\ +gallons
	MP OR TUBINO WELL (feet):	43			OR TUBING ELL (feet):	43	PURGIN	D AT: 09 18	PURGING ENDED AT:	0932	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED	PUR RA	TE	DEPTH TO WATER	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) (mg/V) or	TURBIDITY (NTUs)	Y COLO	OR ORP
0000		(gallons)	(gp		(feet)		-2.02	on uS/cm	% saturation		(0)	211 6
0926	0.56	0.56	0-1	1	18.65	4.70	27.23	103	1.00	0.33	Oles	
0928	0.14	0.70		-	18.65	4.69	27.15	102	1.05	0.48		28.8
0930		0.84			18.66	4.69	27.20	103	0.99	0.37		29.8
132	0.14	0.98	V	-	18.66	4.69	27.17	101	0.11	0.22	V	31.5
				-								-
				-	_						1	
			+		-						+	
				_							1	-
				_								1
			#-								1	
	ACITY (Gallons					1.25" = 0.00					6" = 1.47;	12" = 5.88
TUBING IN	SIDE DIA. CAP	PACITY (Gal./F	Ft.): 1/8"	= 0.00	06; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16'' = 0	004; 3/8" = 0	.006; 1/2"	= 0.010;	5/8" = 0.016
UBING IN		PACITY (Gal./F		= 0.00		= 0.0014; Pump; E	1/4" = 0.002	6; 5/16" = 0.9 Submersible Pur	004; 3/8" = 0		= 0.010;	
UBING IN: PURGING I	SIDE DÍA. CAP EQUIPMENT C BY (PRINT) // A	PACITY (Gal./FODES: B	Ft.): 1/8" = Bailer;	BF	06; 3/16" • = Bladder F	= 0.0014; Pump; E	1/4" = 0.002 SP = Electric	6; 5/16" = 0.9 Submersible Pur	004; 3/8" = 0 mp; PP = Pe	eristaltic Pump	= 0.010; b; O = 0	5/8" = 0.016 Other (Specify)
PURGING IN	SIDE DÍA. CAP EQUIPMENT C BY (PRINT) / A	PACITY (Gal./FODES: B	Ft.): 1/8"	= 0.00 BF	06; 3/16" = Bladder F	= 0.0014; Pump; E SAMP SIGNATURE	1/4" = 0,002 SP = Electric LING DA E(S):	6; 5/16" = 0 Submersible Pur	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A	006; 1/2" eristaltic Pump	= 0.010; o; O = 0	5/8" = 0.016 Other (Specify)
AMPLED DOWNER OF THE PUMP OR THE	SIDE DÍA. CAP EQUIPMENT C BY (PRINT) / A	PACITY (Gal./FODES: B	Ft.): 1/8" = Bailer;	= 0.00 BF	06; 3/16" • = Bladder F	= 0.0014; Pump; E SAMP SIGNATURE	1/4" = 0,002 SP = Electric LING DA E(S):	5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = Pe	eristaltic Pump	= 0.010; o; O = 0	5/8" = 0.016 Other (Specify)
PUMP OR TOPERT IN N	SIDE DÍA. CAP EQUIPMENT C BY (PRINT) A TUBING	PACITY (Gal./FODES: B	Ft): 1/8" = Bailer;	= 0.00 BF	06; 3/16" P = Bladder F AMPLER(S) UBING	= 0.0014; Pump; E SAMP SIGNATURE	1/4" = 0,002 SP = Electric LING DA E(S):	5/16" = 0. Submersible Pur	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A -FILTERED: Y	eristaltic Pump	= 0.010; o; O = 0	5/8" = 0.016 Other (Specify)
SAMPLED IN	SIDE DIA. CAP EQUIPMENT C BY (PRINT) (A TUBING WELL (feet):	FELLIATION: H 3 ON: PUM	Ft.): 1/8" = Bailer; Tyte	= 0.00 BF	06; 3/16" P = Bladder F AMPLER(S) UBING	= 0.0014; Pump; E SAMP SIGNATURI DDE: +D	1/4" = 0,002 SP = Electric LING DA E(S):	Submersible Pur	MP: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE	eristaltic Pump	SAMPLII ENDED FILTER S	5/8" = 0.016 Other (Specify) NG AT: 09 1 1 SIZE: μm
SAMPLED DEC SAMPLED SAMPLED SAMPLE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) (A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE #	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; Tyte	S. T. M.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PE	1/4" = 0.002 SP = Electric LING DA E(S): Y NOTE RESERVATION	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE:	eristaltic Pump	SAMPLII ENDED	5/8" = 0.016 Other (Specify) NG AT: 09 μμ SIZE: μm
SAMPLED DEC SAMPLED SAMPLED SAMPLE	BY (PRINT) A BY (PRINT) A TUBING WELL (feet): ONTAMINATIO	FELIATION: FOR SPECIFICA FREE SPECIFICA FRE	Ft.): 1/8" = Bailer; IP Y	S. T. M.	06; 3/16" P = Bladder F AMPLER(S) UBING ATERIAL CO	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF VE ADDE	1/4" = 0.0020 SP = Electric LING DA E(S): Y N (RESERVATIO) TOTAL VOL ED IN FIELD (r	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP
SAMPLED DEC	SIDE DIA. CAP EQUIPMENT C BY (PRINT) (A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE #	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; IP Y	S. T. M.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO RESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF VE ADDE	1/4" = 0.002 SP = Electric LING DA E(S): Y NOTE RESERVATION	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP
SAMPLED DEC	SIDE DIA. CAP EQUIPMENT C BY (PRINT) (A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE #	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; IP Y	S. N.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF VE ADDE	1/4" = 0.0020 SP = Electric LING DA E(S): Y N (RESERVATIO) TOTAL VOL ED IN FIELD (r	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP
SAMPLED DEC	SIDE DIA. CAP EQUIPMENT C BY (PRINT) (A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE #	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; IP Y	S. N.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO RESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF	1/4" = 0.0020 SP = Electric LING DA E(S): Y N (RESERVATIO) TOTAL VOL ED IN FIELD (r	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP
SAMPLED DEC SAMPLED SAMPLED SAMPLE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) (A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE #	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; IP Y	S. N.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO RESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF	1/4" = 0.0020 SP = Electric LING DA E(S): Y N (RESERVATIO) TOTAL VOL ED IN FIELD (r	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP
SAMPLED DEC SAMPLED SAMPLED SAMPLE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) (A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE #	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; IP Y	S. N.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO RESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF	1/4" = 0.0020 SP = Electric LING DA E(S): Y N (RESERVATIO) TOTAL VOL ED IN FIELD (r	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP
SAMPLED IN	SIDE DIA. CAP EQUIPMENT C BY (PRINT) A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE CONTAINERS	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; IP Y	S. N.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO RESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF	1/4" = 0.0020 SP = Electric LING DA E(S): Y N (RESERVATIO) TOTAL VOL ED IN FIELD (r	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP
PUMP OR TOP THE NAME OF THE NA	SIDE DIA. CAP EQUIPMENT C BY (PRINT) A TUBING WELL (feet): ONTAMINATIO PLE CONTAINE # CONTAINERS	PACITY (Gal./FODES: B FEILIATION: GRAPH STATE	Ft.): 1/8" = Bailer; IP Y	S. N.	06; 3/16" P = Bladder F AMPLER(S) UBING IATERIAL CO RESERVATI USED	= 0.0014; Pump; E SAMP SIGNATURE TUBING SAMPLE PF	1/4" = 0.0020 SP = Electric LING DA E(S): Y N (RESERVATIO) TOTAL VOL ED IN FIELD (r	Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED A' -FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A	eristaltic Pump	SAMPLII ENDED FILTER S AMPLING QUIPMENT	SAMPLE PUMP

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL	L 34733
WELL NO: MW-13B	SAMPLE ID: 19324 - MW-13B	DATE: 11/20/19

	SAM	PLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP	
	MPLE ODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute	
4-1	NW-	13B 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250	
,	1	1	PE	500mL	ниоз	Prefilled by lab	<2	Metals	APP	1	
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
-		1	PE	250mL	None	None		CL/NO3/TDS	APP	V	
REM	MARKS	S:									
MA	ΓERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon; O =	Other (Specify)	

SITE NAME:					11000	ITE OCATION:					
WELL NO	MW- 13	A		SAMPLE		24 - M	W-13A		DATE ()	120/10	
					PUR	GING DA	TA	-			
(only fill ou	LUME PURGE: it if applicable)	1 WELL VO	TER (inches) LUME = (TC	DEF TAL WELL DEF 22. S DL. = PUMP VOL	PTH - STA feet - .UME + (TUI	eet to 22.50 ATIC DEPTH 1) f. S & BING CAPACI	O WATER) X feet) X TY X TI	WELL CAPACI	gallons/foc	LL VOLUME	63 gallons x3=
	JMP OR TUBIN WELL (feet):	IG 21		JMP OR TUBINON WELL (feet):		PURGIN			0856	gallons TOTAL VOI PURGED (9	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND (circle units) µmhos/cm or (µS/cm/	DISSOLVED OXYGEN (circle units) mg/l/or % saturation	TURBIDIT (NTUs)	Y COLO (descril	R ORP De) (mV)
02/46	0.42	0.42	0.07	19.01	4.69	27.74	3524	0.85	23 6	Clea	
0850	0.28	0-70		19.00	4.69	27.68	3538	1.11	11.0		36.0
0852	0-14	0.24		19.07	4.69	27.74	3534	1.13	8.11		26.3
0286	0.14	\$ 17		19.03	4.70	27.66 27.60	354o	1.15	6.32		21.6
					12-10	07.01	33-10		W - 1 T		20.2
				4	_						
TUBING IN	PACITY (Gallon ISIDE DIA, CAI EQUIPMENT C	PACITY (Gal./	0.75" = 0.02; FL): 1/8" = 0 = Bailer;	1" = 0.04; 0.0006; 3/16" BP = Bladder F	= 0.0014;	1/4" = 0.002		004; 3/8" = 0		6" = 1.47; ' = 0.010; O; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED	BY (PRINT) / A	EEU IATION:		SAMPLER(S)	SAMP	LING DA	TA			1	
PUMP OR	2 hange	1 10	ritec	TUBING	-		FIELD	SAMPLING INITIATED AT -FILTERED: Y		_	T: 0904
DEPTH IN	WELL (feet): CONTAMINATION	ON: PUN	P Y	MATERIAL CO	DDE:	1DPE Ru		on Equipment Type DUPLICATE:	pe: Y	(N)	IZE: μm
SAME	PLE CONTAINE	ER SPECIFICA			SAMPLE PE	RESERVATIO		INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	VE	TOTAL VOL ED IN FIELD (I	FINAL	ANALYSIS AN METHO	ND/OR EC	CODE	FLOW RATE (mL per minute)
				See	allo	hed					
REMARKS											
MATERIAL	CODES:		PP ≈ After P	= Clear Glass; eristaltic Pump; se Flow Peristal	PE = Poly B = Bai tic Pump;	ler; BP =	PP = Polypropyl Bladder Pump; Method (Tubing	ESP = Electri		e Pump;	Other (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733	
WELL NO:	MW-13A	SAMPLE ID: 19324- MW -13A DATE: 11/20/19	

S.	AMPLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE		MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute	
Y-MW	13A 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250	
	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP		
	1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
V	1	PE	250mL	None	None		CL/NO3/TDS	APP	J.	
REMAR	KS:									
MATER	IAL CODES:	AG = Amber	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	≈ Teflon; O =	Other (Specify)	

SITE NAME:						TE DCATION:					
WELL NO:	MW-	28A		SAMPLE	D: 193	323 - M	W-281	4	DATE: 11/	19/19	
					PURC	SING DA					
		TUBING DIAMET	ΓER (inches): "	2//6 DEPT	SCREEN TH: 14 fe TH - STA	et to 24 f	STATIC I set TO WATE O WATER) X		95 PURG OR BA	E PUMP TYF AILER:	^{'E} } Å
EQUIPMEN		JRGE: 1 EQU	= (IPMENT VOL.	. = PUMP VOLU		19 95 BING CAPACI	TY X T	UBING LENGTH)	0 1	VOLUME	97 gallons $3=$ 0.13 gallons
	MP OR TUBIN	G 21		IP OR TUBING WELL (feet):		PURGIN INITIATE	G /01	PURGING	1020	TOTAL VOLU PURGED (gal	IME
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	(describe) (mV)
1022	0.72	SF.0	0.06	18.96	4.63	27.07	1674	7.22	1.20	Cler	F.85-
1024	0.12	0.84	1	19.18	4-63	27.10	1555	2.08	1-15	1	-28.6
076	0.12	0.96	10:14:15	19.20	4.66	27.02	1542	1.77	1.13		-31.9
028	0.12	1.08	1	19-19	4.67	27.11	1538	1.56	1.18	1	-43.0
TUBING IN	ACITY (Gallon SIDE DIA. CAR EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0.0 = Bailer;	1" = 0.04; 0006; 3/16" : 3P = Bladder Pt	= 0.0014; ump; E SAMP	1/4" = 0.002 SP = Electric PLING DA	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 imp; PP = Pe	5" = 1.02; 6 .006; 1/2" = eristaltic Pump;	0.010; 5; O = Oth	2" = 5.88 /8" = 0.016 er (Specify)
Some	I hart	11 117	eonitec		SIGNATUR	(0).		SAMPLING INITIATED A			1048
PUMP OR T DEPTH IN \	TUBING WELL (feet):	12	10	TUBING MATERIAL CO	DE:	HDAE)-FILTERED: Y ion Equipment Ty	pe:	FILTER SIZ	Έ: μm
	ONTAMINATIO	ON: PUM	P Y (N	7	TUBING	Y (N)	eplaced)	DUPLICATE:	1	(N)	
SAMP	LE CONTAINE	R SPECIFICA	TION	5	SAMPLE P	RESERVATIO	N	INTENDE			SAMPLE PUMF
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (mL) FINAL	ANALYSIS AI METHO		CODE	FLOW RATE (mL per minute
				N	e a	Inche	d				
REMARKS:											
MATERIAL	CODES:	AG = Amber (Glass; CG =	Clear Glass;	PE = Pol	yethylene;	PP = Polypropy	vlene; S = Silico	one; T = Teflo	on; O = Otl	her (Specify)
AMPLING	EQUIPMENT		APP = After Pe FPP = Revers	ristaltic Pump; e Flow Peristalt	B = Ba ic Pump;		Bladder Pump; Method (Tubing	ESP = Electr g Gravity Drain);	ic Submersible O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733
WELL NO:	MW-28A	SAMPLE ID: 19323 - MW-28A DATE: 11/19/19

	SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP	
	MPLE CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)	
3-N	1W-2	A 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	225	
	1	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP		
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
F	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V	
RE	MARKS										
L		_ CODES:	AG = Amber	- 01 00	= Clear Glass: P	E = Polyethylene; PP =	Polypropyl	ene: S = Silicone: 1	= Teflon: O = 6	Other (Specify)	

SITE						TE DCATION:					
WELL NO	: MW-2	9A		SAMPLE		23 - MV	V-29A		DATE:	119/19	
						SING DA					
WELL VO	R (inches):	TUBIN DIAM	ETER (inches)): 1/16 DEP	L SCREEN TH: \3 fe TH - STA	et to $2 < 6$	STATIC (eet TO WATI O WATER) X	DEPTH ER (feet): 17.3 WELL CAPACI	13 OR E	GE PUMP TY BAILER:	PE
EQUIPME (only fill or	ut if applicable)		= (QUIPMENT VO	23 DL. = PUMP VOL = 0 ga		17.73 BING CAPACI		0.(6 UBING LENGTH) 26 feet)		t = 0 d L VOLUME gallons =	84 gallons ×3= 0.14 gallons
1.	UMP OR TUBIN I WELL (feet):	G 21		JMP OR TUBING V WELL (feet):	5	PURGINI INITIATE	G 1145	PURGING ENDED AT:	1158	TOTAL VOLU PURGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBIDITY (NTUs)	COLOR (describe	e) (mV)
1152	0.49	0.40	0.0	18.14	4.38	27.23	308	0.73	9.72	Clean	
1154	0.14	0 63		18.19	4.38	27.24	308	0.54	5.27	1	10[.]
1156 1158	0-14	0 77		18.22	4.39	27.27	309	0.51	3.14		110.6
1120	0.14	091	V	18-23	4.39	27.22	309	0.52	2.81	¥	117.2
			1								
TUBING I	PACITY (Gallor NSIDE DIA, CAI EQUIPMENT (PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = (B = Bailer;	1" = 0.04; 0.0006; 3/16" BP = Bladder P	= 0.0014; ump; E		5/16" = 0. Submersible Pu	.004; 3/8" = 0.		= 0.010; 5	12" = 5.88 1/8" = 0.016 ner (Specify)
SAMPLED	BY (PRINT) / A	CENTATION:		SAMPLER(S)		LING DA	TA				
Same	Chowne	0 .	yetec		SIGNATURE	=(5);		SAMPLING INITIATED AT	1200	SAMPLING ENDED AT	
	WELL (feet):		0	TUBING MATERIAL CO	DE: +	DPE		-FILTERED: Y on Equipment Typ	De: N		ZE:μm
	CONTAMINATIO			N	TUBING		placed)	DUPLICATE:	Y	N	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	VE 1	RESERVATION TOTAL VOL D IN FIELD (n	FINAL	INTENDE ANALYSIS AN METHO	ID/OR EQ	AMPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
				Sec	(1	ched					
REMARKS	ž.										
MATERIAL	CODES:	AG = Amber	Glass; CG	= Clear Glass;	PE = Poly	ethylene; I	PP = Polypropy	lene; S = Silico	ne; T = Tefl	on; O = Ot	her (Specify)
SAMPLING	EQUIPMENT			eristaltic Pump; rse Flow Peristalt	B = Bai ic Pump;	ler; BP = 1	Bladder Pump; Method (Tubing	ESP = Electri	c Submersible O = Other (Pump;	(-1)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL	L 34733	
WELL NO:	MW-29A	SAMPLE ID: 19323 - MW-294	DATE:	11/19/19

SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)
-MW-2	7A 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250
1	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	
	1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V
REMARKS	S:	AG = Amber		= Clear Glass; Pi					

SITE NAME						TE CATION:					
WELL NO	MW-	27A		SAMPLE			W-27A		DATE: \\/	19/19	
				-4		ING DA				1	
WELL DIAMETE		Z TUBING	G TER (inches):	MG DEP		et to 23 fe		ER (feet):	OR B	SE PUMP TY AILER:	PE PE
(only fill ou	ut if applicable)		= (23	feet -	18.09	feet) X		gallons/foot		gallons
	NT VOLUME P ut if applicable)	URGE: 1 EQL	JIPMENT VOL			ING CAPACIT	_	UBING LENGTH) feet)		VOLUME gallons =	×3 = 0
	UMP OR TUBIN I WELL (feet):	G 182		MP OR TUBING WELL (feet):			_	PURGING ENDED AT:		TOTAL VOL PURGED (ga	UME 0.5
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOF (describ	e) (mV)
0836	0.30	0.30	0.06	1904	4.79	26.49	195	2.77	2.65	Clear	v 97.6
0838	0.12	0.42		19.05	4.79	26.60	194	2-75	2.62		91.4
0440	0.12	0.64		19.04	4.79	26.59	193	2.31	2.34		88.6
0842	0.12	0.86	· •	19.06	7-80	2659	192	2.81	2.01	+	80.2
	PACITY (Gallor				1.25" = 0.0					100000000000000000000000000000000000000	12" = 5.88
	NSIDE DIA. CAI EQUIPMENT (0006; 3/16" BP = Bladder F	= 0_0014; Pump; E	1/4" = 0.0020 SP = Electric	6; 5/16" = 0 Submersible Pu		.006; 1/2": eristaltic Pump;		5/8" = 0_016 ther (Specify)
						LING DA	TA				
SAMPLED	BY (PRINT) /	-0 h	ante	SAMPLER(S)	SIGNATURI	E(S)	-	SAMPLING INITIATED A	T: 0845	SAMPLING ENDED A	G T: 01.53
PUMP OR DEPTH IN	TUBING WELL (feet):	18	DM/21	TUBING MATERIAL CO	ODE: H	DPE		D-FILTERED: Y ion Equipment Ty	pe:	FILTER SI	ZE: μm
FIELD DE	CONTAMINATION	ON: PUM	IP Y (N		TUBING	Y Ne	placed)	DUPLICATE:	Y	N	
	PLE CONTAINE		ATION			RESERVATIO		INTENDI ANALYSIS A		MPLING UIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD (r	nL) FINAL	METHO		CODE	(mL per minute)
				rec	#	dod					
					1110	men					
REMARKS	3:										
BRATERIC		40 1 1	01 25	01			86 D.:	1			
MATERIAI SAMPLING	L CODES: G EQUIPMENT	AG = Amber		Clear Glass; eristaltic Pump;	PE = Poly B = Bai		PP = Polypropy Bladder Pump;		one; T = Tefleric Submersible		other (Specify)
SAME CITY	O EMOULAINEM!			se Flow Perista				g Gravity Drain);	O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill		SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733					
WELL NO:	AFS-WM	SAMPLE ID:	19323 -MW-27A	DATE: 11/19/19				

	SAMF	LE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
SAMF ID CC		# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)
MW.	27/	3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	225
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1
		11	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
Y		1	PE	250mL	None	None		CL/NO3/TDS	APP	V
1										
REMA	ARKS									
MAT	RIAL	CODES:	AG = Ambei	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

SITE NAME:						TE CATION:					
WELL NO:	MW-1	6AR		SAMPLE			W-16A	12	DATE:	119/19	
						SING DA				() ()	
WELL DIAMETER WELL VOI (only fill ou		Z TUBING DIAME 1 WELL VOI	TER (inches):	TAL WELL DEP	TH - STA	et to 73 5 fe	O WATER) X	ER (feet):	OR B.	GE PUMP TYPI AILER:	PP
(only fill ou	t if applicable)				allons + (🐧 .	OOIY gallor		UBING LENGTH) () () () () () () () () () (0 1	VOLUME gallons = (gallons ×3=0
	JMP OR TUBIN WELL (feet):	G 21		MP OR TUBING I WELL (feet):	21	PURGING				TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)
1438	0.70	0.70	FO.0	18.86	5 42	27.90	1120	3.61	33.2	Yellowish	-86.6
1443	0.35	1.05		18.8-	5.41	27.65	1118	1.95	17.3	11	-75.9
1448	0.14	1.45		18.88	5.39	27.S9	1147	2.08	11.7	Clear	-92.6
14 52	0.14	1.85		18 80	5.40	27.65	1153	2.10	10.9		-1043
1454	0-14	1,99	1	12 24	5.40	2769	1155	2.02	9.64		-114,7
TUBING IN	PACITY (Gallon SIDE DIA. CAF	PACITY (Gal./F	1.75" = 0.02; ft.): 1/8" = 0	1" = 0.04; .0006; 3/16" BP = Bladder P	= 0.0014; ump; E		Submersible Pu	.004; 3/8" = 0		= 0.010; 5/8	" = 5.88 " = 0.016 r (Specify)
SAMPLED	BY (PRINT) A	FFILIATION:		SAMPLER(S)		LING DA	IA	CAMPLING		24451410	
Dame	(houp	el/Geov	yitec		3		>	SAMPLING INITIATED AT	1456	SAMPLING ENDED AT:	1505
PUMP OR TOP	TUBING ' WELL (feet):	21	U	TUBING MATERIAL CO	DDE:	DAE		D-FILTERED: Y	ne.	FILTER SIZE	: μ m
FIELD DEC	ONTAMINATIO	ON: PUM	PY	V)	TUBING	-	placed)	DUPLICATE:	Υ Υ	(N)	
	LE CONTAINE		TION		SAMPLE PR	RESERVATION		INTENDE			AMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	ADDE	OTAL VOL D IN FIELD (m	FINAL pH	ANALYSIS AN METHOL			FLOW RATE nL per minute)
				ree	17/s	ched					
REMARKS											
MATERIAL		AG = Amber C	Blass; CG	= Clear Glass;	PE = Poly	ethylene; F	PP = Polypropy	rlene; S = Silico	ne; T = Teflo	on; O = Othe	r (Specify)
SAMPLING	EQUIPMENT			eristaltic Pump; se Flow Peristal	B = Bail tic Pump;		Bladder Pump; Method (Tubing	ESP = Electri Gravity Drain);	ic Submersible O ≃ Other (\$		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3).

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733
WELL NO:	MW-16AR	SAMPLE ID: 19323 - MW-16AR DATE: 11/19/19

	SAMI	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)
-	MW-161	12 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP)
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
-	1	1	PE	250mL	None	None		CL/NO3/TDS	APP	1
E										
L	REMARKS	CODES:	AG = Amber		= Clear Glass; P	E = Polyethylene; PP =	: Polypropyl	ene; S = Silicone; T	= Teflon; Q = 0	Other (Specify)

SITE NAME:					SIT LO	CATION:					
WELL NO:	MW-	16BK		SAMPLE	ID: 1937	23 - MV	V-16BR		DATE: 11	119/10	1
					PURG	ING DA	TA				
		DI WILL	TER (inches):	3/16 DEP	L SCREEN I TH: 36 .5 fe TH - STA	et to 46.5 fe	STATIC Deet TO WATE O WATER) X	ER (feet): IS . I	3 OR BA	E PUMP TY \ILER:	PE 44
	NT VOLUME PI t if applicable)	URGE: 1 EQL	= (JIPMENT VOL		•	ING CAPACI		JBING LENGTH)		VOLUME	gallons ×3= 0.5 = 0. (1 gallons
	JMP OR TUBIN WELL (feet):	^G 42		IP OR TUBING WELL (feet):	42	PURGIN INITIATE	G D AT: \S\6			TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOF (describ	
1522	0.42	0.47	10.07	is.22	4.64	26.49	124	1.32	0.79	Clear	~ -49.S
1524	0.14	0.56		18.23	4-60	26.32	116	113	0.71	1	-50.3
1926	0.14	0.70		18.23	4.60	26.36	116	1.12	0.65	1 9	1.84-
1528	0.14	0.84	1	18.24	4.60	26.37	114	1.10	0.59	1	-49.7
TUBING IN	PACITY (Gallon ISIDE DIA. CAR EQUIPMENT C	PACITY (Gal /I	Ft.): 1/8" = 0.0 = Bailer; E		= 0.0014; Pump; E	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0	eristaltic Pump;	= 0.010:	
PUMP OR	TUBING	42		TUBING	ODE	HDPE		-FILTERED: Y	(N)	FILTER SI	IZE: μm
	WELL (feet): CONTAMINATION	ON: PUN	IP Y (N	MATERIAL CO	TUBING		placed)	on Equipment Ty DUPLICATE:		(N)	
	PLE CONTAINE		-			ESERVATIO	Manual State	INTENDI		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	VE T	OTAL VOL D IN FIELD (r	FINAL	ANALYSIS A METHO	ND/OR EQU	JIPMENT CODE	FLOW RATE (mL per minute)
				Nee	01/20	ched					
REMARKS											
MATERIAL	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropy	fene; S = Silico	one; T = Teflo	on; O = O	Other (Specify)
SAMPLING	EQUIPMENT		APP = After Pe RFPP = Revers		B = Bai tic Pump;		Bladder Pump; Method (Tubing	ESP = Electr Gravity Drain);	ric Submersible O = Other (

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill		SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733						
WELL NO:	MW-16BR	SAMPLE ID:	19323-MW-16BR	DATE: 11/19/19					

SAI	IPLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute
MW-16	K 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250
	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	
	1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
J	1	PE	250mL	None	None		CL/NO3/TDS	APP	V
REMARK	S:	AG = Amber	Glass; CG	= Clear Glass; P	E = Polyethylene; PP =	: Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

SITE NAME:						TE DCATION:					
WELL NO	: MW-1	7BR		SAMPLE	ID: 193	323 - N	NW-17B	3R	DATE 11/	19/19	
					PURC	ING DA	TA				
(only fill or	ut if applicable)	1 WELL VO	TER (inches): LUME = (TO	TAL WELL DEP	TH - STA	et to 4 6 fi	O WATER) X	ER (feet):		GE PUMP TY AILER:	PEPP gallons
(only fill ou	NT VOLUME P ut if applicable)	URGE: 1 EQ	JIPMENT VOI			SING CAPACI OOIY gallo		UBING LENGTH)	+ FLOW CEL		×3=0
	UMP OR TUBIN I WELL (feet):	^G 43		MP OR TUBING WELL (feet):	43	PURGIN INITIATE	G ED AT: 1345			TOTAL VOL PURGED (9	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) μmhos/cm or (IS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOI (describ	
1353	0.56	0.56	F0.0	18.86	4 22	26.87	101	0.80	0.89	Class	r -46.2
1355	0-14	0.70		18 90	4.88	26.98	99	0.77	2.07		-57.2
1357	0.14	0.84		18.96	4 87	26.95	100	0.77	2.21		-62.8
1359	0.14	0.98	J	18.98	4.27	26.92	103	0.75	2.14	V	-66.4
TUBING II	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.			= 0.0014; ump; E	SP = Electric	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0		= 0.010;	12" = 5.88 5/8" = 0.016 ther (Specify)
SAMPLED	BY (PRINT) IA	FFILIATION:		SAMPLER(S)		LING DA	NIA			T	
Lame	0 1	1 10	anutec		7			SAMPLING INITIATED A	T: 1400	SAMPLIN ENDED A	
PUMP OR		43	0	TUBING	H	DPE		-FILTERED: Y	(N)	FILTER S	IZE: μm
	WELL (feet): CONTAMINATION		MP Y	MATERIAL CO	TUBING		Piltrat	ion Equipment Ty DUPLICATE:		(N)	
SAM	PLE CONTAINE	ER SPECIFICA	-	_		RESERVATIO		INTENDI		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	VE ADDE	TOTAL VOL ED IN FIELD (I	FINAL	ANALYSIS A METHO	ND/OR EQ	UIPMENT CODE	FLOW RATE (mL per minute)
				ree	also	red					
REMARKS	S:							1	J.		
MATERIAL		AG = Amber		= Clear Glass;	PE = Poly		PP = Polypropy				ther (Specify)
SAMPLING	G EQUIPMENT			eristaltic Pump; se Flow Peristal	B = Bai tic Pump;		Bladder Pump; Method (Tubing	ESP = Electr g Gravity Drain);	ric Submersible O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FI	_ 34733	
WELL NO:	MW-17BR	SAMPLE ID: 19323 - MW-7BR	DATE:	11/19/19

L	SAN	PLE CONTAINE	R SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)
	-MW-	7BK 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250
		1	PE	500mL	HNO3	Prefilled by lab	<2	Metais	APP	l l
1		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V
	051118//									
	REMARK									
	MATERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass; PI	E = Polyethylene; PP =	Polypropyle	ene; S = Silicone; T	= Teflon; O = 0	Other (Specify)

SITE NAME:					SIT	TE CATION:					
_	MW-2	98		SAMPLE			W-29B		DATE: \\/	19/19	
				1	PURG	ING DA	TA				
DIAMETER		TUBING DIAMET	ER (inches):	16 DEP	L SCREEN I	et to 4 fe	STATIC D		14 OR B.	GE PUMP TY AILER:	19E
	t if applicable)	I WELL VOL	= (101A	AL WELL DEP		IIC DEPTH I	feet) X	WELL CAPACI	gallons/foot	_	gallons
	NT VOLUME PU t if applicable)	IRGE: 1 EQUI			•	ING CAPACI	TY X TL	JBING LENGTH)	+ FLOW CEL	LVOLUME	×3=0.\7-gallons
	IMP OR TUBING	³ 43	FINAL PUMI DEPTH IN V	P OR TUBING		PURGIN		PURGING ENDED AT:	1221	TOTAL VOL	UME
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) µmhos/cm or (uS/cm	OXYGEN (circle units) (mg/l) or % saturation	TURBIDITY (NTUs)	COLO (describ	
1228	0.49	0.49	0.07	18.37	4.58	26 22	239	0.66	0.55	Cler	r -9.8
1230	0.14	0.63	1	18.38	4.59	26.19	23&	0.88	1.23	1	-21.4
1232	0.19	6.77		18.38	4.5%	26.22	23.8	0.89	1.14	+	-25.6
1234	0.14	0.91	V	18.38	4.59	26.22	237	0.91	1.08	1	- 24.)
TUBING IN PURGING	PACITY (Gallon ISIDE DIA, CAF EQUIPMENT C	PACITY (Gal./F ODES: B	L): 1/8" = 0.0 = Bailer; B		SAMP	1/4" = 0.002 SP = Electric	Submersible Pu	004; 3/8" = 0 mp; PP = Po			12" = 5.88 5/8" = 0.016 ther (Specify)
Danie	el Mon	1.0 10	mites		-	=	T EVEL O	SAMPLING INITIATED A	-	SAMPLIN ENDED A	T: 1245
PUMP OR DEPTH IN	WELL (feet):	43		TUBING MATERIAL CO	DDE:	1DPE	Filtrati	-FILTERED: Y on Equipment Ty	pe:	FILTER S	IZE: μm
	ONTAMINATIO		_	1	TUBING		eplaced)	DUPLICATE:		(N)	
SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	MATERIAL		PRESERVAT USED	VE 1	RESERVATIO FOTAL VOL ED IN FIELD (FINAL	ANALYSIS A METHO	ND/OR EQ	AMPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
				See	alac	hed					
REMARKS											
MATERIAL	. CODES:	AG = Amber G	Glass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropy	lene; S = Silico	one; T = Tef	lon; O = 0	Other (Specify)
SAMPLING	EQUIPMENT		PP = After Per PP = Reverse		B ≃ Bai Itic Pump;		Bladder Pump; Method (Tubing		ric Submersible O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME:	JED Solid Waste Landfill		SITE LOCATION: 1501 Omni Way, St. Cloud, F	1501 Omni Way, St. Cloud, FL 34733				
WELL NO:	MW-298	SAMPLE ID:	19323-MW-29B	DATE:	11/19/19			

1	SAM	IPLE CONTAINE	ER SPECIFIC	ATION	SAM	SAMPLE PRESERVATION			SAMPLING	SAMPLE PUMP	
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	CODE	FLOW RATE (mL per minute	
23-	MW-29	B 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	250	
		1	PE	500mL	НИОЗ	Prefilled by lab	<2	Metals	APP		
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP		
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	√	
	REMARKS: MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)										

SITE NAME:					SI	TE CATION:					
WELL NO:	MW-2	28B		SAMPLE			1W-28,	R	DATE: 11	/19/9	
		LU I)				ING DA				1771	
WELL DIAMETER		Z TUBING	ΓER (inches):	DEP	L SCREEN TH: 3 & fe	et to 48 f	STATIC I	ER (feet): 🖊 🖔 -	OS PURG	SE PUMP TYP AILER:	PP P
	t if applicable)	1 WELL VOL	.UME = (TOT	AL WELL DEP		TIC DEPTH T		WELL CAPACI			
	NT VOLUME P	URGE: 1 EQU	IPMENT VOL	. = PUMP VOL	feet – UME + (TUB	ING CAPACI	feet) X	UBING LENGTH	gallons/foot) + FLOW CELI		gallons
(only fill out	t if applicable)			= () ga	allons + (🔾	-0014gallo	ns/foot X	3 feet)	+ 0 . 1	gallons =	- 10
	JMP OR TUBIN WELL (feet):	G		MP OR TUBING WELL (feet):		PURGIN INITIATE	G DAT: 100	PURGING ENDED AT:	1116	TOTAL VOLU PURGED (gal	ME lons): 0.96
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) (mg/l/ or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)
1110	0.60	0.60	0.06	18.69	4.82	26.24	154	0.91	2.15	Clear	40.5
1112	51.0	0.72		1869	4.81	26.32	153	0.95	1.67		-43.4
1117	0.12	0.84		18.72	4.60	2634	150	0.95	1.32		-48.1
1116	0.12	096		18.73	4.78	26.36	147	0.94	1-18	-	-50.6
					147						
	PACITY (Gallon			1" = 0.04; 0006: 3/16"	1.25" = 0.06 = 0.0014:	3; 2" = 0.10 1/4" = 0.002	6; 3" = 0.37; 6; 5/16" = 0				2" = 5.88 8" = 0.016
	EQUIPMENT C			BP = Bladder F	'ump; E	SP = Electric	Submersible Pu		eristaltic Pump;		er (Specify)
SAMPLED	BY (PRINT) / A	EEU IATION:		SAMPLER(S)		LING DA	ATA				
Dame	I how	iel Geo	gente	SAMPLENO	SIGNATURE	-101		SAMPLING INITIATED A	T: 1120	SAMPLING ENDED AT:	
PUMP OR	TUBING WELL (feet):	1000		TUBING MATERIAL CO	DDE: H)	DE		-FILTERED: Y		FILTER SIZ	E:μm
	CONTAMINATION	ON: PUM		5	TUBING	-	placed)	DUPLICATE:	-	(N)	
SAMF	PLE CONTAINE	ER SPECIFICA	TION		SAMPLE PR	RESERVATIO		INTENDI	ED SA	_	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	ADDE	OTAL VOL D IN FIELD (1	mL) FINAL	ANALYSIS A METHO		JIPMENT CODE	FLOW RATE (mL per minute)
				~ -	-14	1 . 1					
				ne	2//21	mea					
REMARKS:											
. VENIZIO.											
MATERIAL	. CODES:	AG = Amber (Glass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropy	lene; S = Silico	one; T = Teflo	on; O = Oth	er (Specify)
SAMPLING	EQUIPMENT			ristaltic Pump; e Flow Peristal	B = Bail tic Pump;		Bladder Pump; Method (Tubing	ESP = Electr Gravity Drain);	ric Submersible O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill	SITE LOCATION: 1501 Omni Way, St. Cloud, FL 34733	
WELL NO	MW-28B	SAMPLE ID: 19323 - MW -28B DATE: 11/19	119

	SAM	IPLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	MPLE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	CODE	FLOW RATE (mL per minute
-MI	N-2	RA 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	225
	1	11	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1
		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
	V	1	PE	250mL	None	None		CL/NO3/TDS	APP	V
RE	MARK	S:								
M	ATFRIA	L CODES:	AG = Ambe	r Glass CG	= Clear Glass: P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon: O = 0	Other (Specify)

SITE NAME:					SI	TE CATION:					
WELL NO:	MW-Z	7B		SAMPLE		3 -MW	1-278	1	DATE: \\/	9/19	
						ING DAT				7 . 1	
WELL DIAMETER	(IIICIICS).	Z TUBING DIAME	TER (inches):	16 DEPT	SCREEN	et to 46 fee	STATIC D		OR BA	E PUMP TYF AILER:	PE 44
	t if applicable)	1 WELL VO	_ /		feet -	IIC DEPTH IC	Array St	WELL CAPACI		2.	221222
	NT VOLUME P t if applicable)	URGE: 1 EQU	JIPMENT VOL	. = PUMP VOLU	JME + (TUE	ING CAPACIT		JBING LENGTH)		VOLUME gallons =	0.16 gallons
	IMP OR TUBIN WELL (feet):	G 41		MP OR TUBING WELL (feet):	41	DUDOING		PURGING ENDED AT:		TOTAL VOLU PURGED (gai	ME 00
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP, (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	
0920	0.36	0.36	0.06	18.51	5 22	26.06	149	0.83	1.15	Clear	- 1.3
0922	0.12	0.48	1	18.52	5.18	25.95	150	0.53	1-17		-16.0
0924	0.12	0.60		18.51	5.17	25.95	150	0.49	1.2	-	-18.6
03/26	0.12	0.72	V	14.52	3.1+	23.11	14-1	0.34	1.10	V	- 60.4
TUBING IN	PACITY (Gallon ISIDE DIA, CAI EQUIPMENT C	PACITY (Gal./	Ft.): 1/8" = 0.		= 0_0014; ump; E		; 5/16" = 0. ubmersible Pu	004; 3/8" = 0.		0.010; 5/	2" = 5.88 8" = 0.016 er (Specify)
SAMPLED	BY (PRINT) / A	FAILIATION:		SAMPLER(S) S		LING DA	IA	SAMPLING	0	SAMPLING	
Danie	1 Mo	wiel be	conste		-		-	INITIATED AT	. 0928	SAMPLING ENDED AT:	0942
PUMP OR DEPTH IN	TUBING WELL (feet):	4	(TUBING MATERIAL CO	DE:	HDPE		-FILTERED: Y on Equipment Typ	ne N	FILTER SIZ	E: μm
FIELD DEC	CONTAMINATIO	ON: PUN	IP Y 🔃)	TUBING	Y (N (rep	laced)	DUPLICATE:	Y	N	
	PLE CONTAINE		ATION			ESERVATION		INTENDE ANALYSIS AN		MPLING S	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI\ USED		OTAL VOL D IN FIELD (m	FINAL L) pH	METHO			(mL per minute)
					11 1	1					
				see aj	boh	en		1	-		
REMARKS:											
MATERIAL	. CODES:	AG = Amber	Glass: CG =	Clear Glass;	PE = Poly	ethylene: P	P = Polypropyl	ene; S = Silico	ne; T = Teflo	n. O = Oth	er (Specify)
	EQUIPMENT	CODES: A	\PP = After Pe		B = Bai	er; BP = 8	ladder Pump;		c Submersible O = Other (S	Pump;	(Openy)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

² STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	JED Solid Waste Landfill		SITE LOCATION: 1501 Omni Way, St. Cl	oud, FL 34733
WELL NO:	MW-27B	SAMPLE ID	19323-MW-27B	DATE: 11/19/19

	SAM	IPLE CONTAINE	ER SPECIFIC	ATION	SAM	IPLE PRESERVATION		INTENDED	SAMPLING	SAMPLE PUMP
	SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL pH	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)
73	-MW-2	7B 3	CG	40mL	HCI	Prefilled by lab	<2	VOA/EDB	APP	225
	1	1	PE	500mL	HNO3	Prefilled by lab	<2	Metals	APP	1
Ī		1	PE	250mL	H2SO4	Prefilled by lab	<2	NH3	APP	
	1	1	PE	250mL	None	None		CL/NO3/TDS	APP	V
-							-			
Ī	REMARK	S:						1	!	le
-	MATERIA	L CODES:	AG = Ambe	r Glass: CG	i = Clear Glass: P	E = Polyethylene; PP =	Polypropyl	ene; S = Silicone; T	= Teflon; O =	Other (Specify)

APPENDIX CField Instrument Calibration Logs

Project/Site: JED SWDF - May Dan GW Project #: FR 33478 Field Personnel: No. 1 Shaples Water Quality Meter - Model/Serial #: YSI 556 mps / 106 101446 Turbidimeter - Model/Serial # HACK 2100 @ /18010(064)16 Pass 0.1 - 10 NTU Pass or Dissolved Saturation Reading Reading Reading Temp **DEP SOP** Date Time Date Std (6 NTU (mg/L) (%) or Fail (NTU) Fail FT 1500 (°C) (mg/L)1 Oxygen Acceptance Criteria: +/-0.3mg/L Acceptance Criteria: +/- 10% CAR/ICY CCV 12.58 8.482 9.18/8.48 108.1/100.0 (P) CAL TCY CCV 9.93 O CAL TOV CON OP) F 0 F 8-57 CAL ICV CCV 8. 482 101. 8.51 Ð CAL ICV CCV F 99.C F Р CAL ICV (CCV) 3.25 8.530 CAL ICV CCV Р F CAL ICV CCV F **Pass** 11 - 40 NTU Reading Pass or Specific Standard Standard Reading DEP SOP Standard Date Date Time Std 30 NTU or Fail (NTU) Fail FT 1200 (mS/cm) Lot# Exp. Date (mS/cm) Conductance Acceptance Criteria: +/- 8% Acceptance Criteria: +/- 5% CAL/CV CCV CAL (C) CCV 1.413 (B) 6837 968199 Feb 2000 1375/1.417 19.81 O Ø CAL ICV CCV F CAL ICY CCV F 1414 19.0 77 40 (P) F CAL ICV CCV CAL ICV (CCV) XCIC 1.412 Ρ F CAL ICV CCV F CAL ICV CCV Р F **DEP SOP** Standard Standard Standard Reading **Pass** 41 - 100 NTU Reading Pass or pH Date Time Date Std MNTU FT 1100 (SU) or Fail (NTU) Fail (SU) Lot# Exp. Date Acceptance Criteria: +/-0.2 SU Acceptance Criteria: +/- 6.5% **6000** CAL (CY CCV CAL (CV) CCV 5/14/19 0824 5/14/19 968 719 Feb 2011 700 90.6 CAL (TCV) CCV CAL ICV CCD F Feb >031 F 0817 40 968303 3.75 99.3 CAL (CV) CCV CAL ICV CCV P F 961 1078 Jen 20 21 10.09 0830 10.0 F CAL ICV c.95 F CAL ICV CCV Р 2130 (P) F CAL ICV CCV F CAL ICV CCV 7737 3.91 PF F CAL ICV CCV 10.11 2138 (P) Р F F CAL ICV CCV 5/15/19 2110 6.91 ⊕ F CAL ICV CCV Р F CAL プリラン 3.85 CAL ICV CCV (P) F F CAL ICV 10.06 Р 2126 Pass or Std. mV @ Standard Standard Reading **Pass** >100 NTU Reading ORP SOP N/A Date Time Date Std SOONTU Temp °C Lot# Exp. Date (mV) or Fail (NTU) Fail Acceptance Criteria: +/- 5% Geosyntec Acceptance Criteria: +/- 5% CAL (ICV) CCV 240.0 (P) CAL (CY CCV 806 5/14/99 0835 IL 1013 3426 CAL ICV CCV (D) CAL ICV CCV 795 F 5/14/19 3243 F @ 1390 (P) F CAL ICV CCV F 5/15/19 241.8 Р Specific Conductance Probe Cleaned? Yes Disolved Oxygen membrane Changed? Yes No. 1. See Table FS 2200-2 on the back of this form CAL - Initial Calibration Comments: ICV - Initial Calibration Verification

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable)

Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

Geosyntec consultants

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std <u>(O</u> NTU	Date	Reading (NTU)	Pass o Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV		5/16/19 3/17/19		71.00 77.28	8.664 7.732	9.93 7-57	eptance Criteria:	+/-0.3mg/L P F P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accept 5/16/19 5/17/19	9.66 9.89	ia: +/- 10% - P F - P F
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (mS/cm)	Standard Lot #	Standard Exp. Date	Reading (mS/cm)	Pass or Fail	11 - 40 NTU Std <u>>0</u> NTU	Date	Reading (NTU)	Pass o Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV		5/16/19 5/17/19	1719	1.413	968299	F.6 1010	Acceptance Crit	P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acce 5/15/19 5/13/19	(G. 6	P F
рН	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot #	Standard Exp. Date	Reading (SU)	Pass or Fail	41 - 100 NTU Std (00 NTU	Date	Reading (NTU)	Fail
CAL ICV COV CAL ICV CCV		5/16/19 	1710 1714 1717 1045 1048 1052	7.0 4.0 10.0 SAM	9GB719 9GB 303 9GA 1078 EASA	Feb 2021 Feb 2021 Jun 2021 Bove	3.85 10.01 6.89 3.85 10.01 6.89 10.01	######################################	CAL ICV CCV		Nance Criteria Nance Criteria	
ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU Std GCO NTU	Date	Reading (NTU)	Pass o
CAL ICV CCV CAL ICV CCV CAL ICV CCV		5/16/19	1732	>40.0	305Y \$	Geosynted July 1673	Acceptance Crit	eria: +/- 5% P F P F	CAL ICV CCV CAL ICV CCV	5166 (19 51719	BON 808	P P F
Specific Conductan 1. See Table FS 2200-2			(No)	Disolved Oxyg	gen membrane Ch	nanged? Yes	(NO)					

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable)
Calibrate pH using at least two standards (typ, pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

Geosyntec Consultants

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

		(No		Disolved Oxygen membrane Changed? Yes	Disolved Oxyg	No	eaned? Yes	nce Probe Cl	ific Co
CAL ICV	eria: +/- 5%	Geosyntec Acceptance Criteria 2023 23 (2023 23)	Geosyntec 6/2023 6/2023	3054	240	1828 1828	5/13/19		CAL ICV CCV
Std 400 NTU	Pass or Fail	Reading (mV)	Standard Exp. Date	Standard Lot #	Std. mV @ Temp °C	Time	Date	SOP N/A	ORP
CAL ICA CAL ICA CAL ICA CAL ICA CAL ICA CAL ICA	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acceptance Criteria: +-0.2 SU 6-99 9-96 9-96 9-97 9-97 9-97 9-97 9-97		9GR719 9GR303 9GA1042 9GB719 9GB303 9GA1072	00000	1818	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CAL ICY CCY
41 - 100 NTU Std 100 NTU	Pass or Fall	Reading (SU)	Standard Exp. Date	Standard Lot #	Standard (SU)	Time	Date	DEP SOP	모
CAL ICV	000 C	1.381	2/2020	908299	1.413	918	S/13/19 S/14/19		CAL ICV CCV
Std ZONTU	Pass or Fall	Reading (mS/cm) c	Standard Exp. Date	Standard Lot #	Standard (mS/cm)	Time	Date	DEP SOP FT 1200	Specific Conductance
CAL ICV	יי היי היי היי היי היי היי היי היי היי	1.96 X.76	24.3	8.32	24.63	456	61/F1/S 61/81/5		CAL ICV CCV
Std 10 NTU	Pass or Fail	Reading Pass (%) or Fail	Reading (mg/L)	Saturation (mg/L) ¹	Temp (°C)	Time	Date	DEP SOP FT 1500	Dissolved Oxygen
# #	/lodel/Se	Turbidimeter - Mod		100096	/12M100	1 556	rial#: YS	r - Model/Ser	Water Quality Meter - Model/Serial #:
Marchel	M	Burniel	Field Personnel:	83347B	Project #: FR3347B	2	dandthe		Project/Site: JE)

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

CAL - Initial Calibration
ICV - Initial Calibration Verification
CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

1. See Table FS 2200-2 on the back of this form

Comments:

Calibrate pH using at least two standards (typ pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7) Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable)

Geosyntec Consultants

Specific 1. See Ta	CAL I	ORP	CAL III	РН	CAL	Specific	CAL I	Dissolved Oxygen	Project/Site: Water Quality
able FS 2200-	ICA CONTRACTOR				\$ \$ \$ \$	Specific Conductance	100 00 00 00 00 00 00 00 00 00 00 00 00	lved	/Site: (FD
Specific Conductance Probe Cleaned? \ 1. See Table FS 2200-2 on the back of this form		SOP N/A		DEP SOP FT 1100		DEP SOP FT 1200		DEP SOP FT 1500	
eaned? Yes of this form	113 2 1	Date	217-19	Date	5-16-19	Date	213-19	Date	Solid Wosh Londfill - ModerSerial # 153 556"
(No)	1720	Time	7774	Time	1718	Time	1773	Time	FIN SUMPS /
Disolved Oxyg	2400 25.0 2400 25.0	Std. mV @ Temp °C	10.00 10.00	Standard (SU)	1,413	Standard (mS/cm)	35.32	Temp (°C)	Project #: Ph
Disolved Oxygen membrane Changed?	3054	Standard Lot #	966303 966303 9663719 9665303 9663719 9665303 9663719	Standard Lot #	968249	Standard Lot#	8.466 7.705	Saturation (mg/L) ¹	Project #: FR 3347 (5)
Yes	WSO WOOD	Standard Exp. Date	10000000000000000000000000000000000000	Standard Exp. Date	22 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Standard Exp. Date	8:35 8:35 7.83	Reading (mg/L)	Field Personnel:
(No)	Acceptance Criteria: <u>A45 002641</u> (<u>A41 7027.16</u> (<u>A38.40 28.9</u> 1 (Reading (mV)	Acceptance Criteria: 14-0.2 SU 6.96 9.97 9.97 9.97 9.97 9.97 9.97 9.97	Reading (SU)	Acceptance Criteria:	Reading (mS/cm)	101.6 101.6 103.5	Reading (%)	Turbidimeter - Model/Serial #
	eria: +/- 5%	Pass or Fail	3	Pass or Fail	₽ @ @ O T T T T T S%	Pass or Fail	000 T	Pass or Fail	Model/Seria
	CAL ICY CCY	>100 NTU Std 300 NTU	CAL ICY CCY	41 - 100 NTU Std 100 NTU	CAL ICY CCY CAL ICY CCY	11 - 40 NTU Std <u>QQ</u> NTU	CAL ICY CCY CAL ICY CCY	0.1 - 10 NTU Std 10 NTU	# Hoch 2100 Q/
	5-16-19 5-16-19 5-16-19 5-17-19	Date	21.15	Date	5-15-19 5-16-19	Date	5-16-19 5-16-19	Date	1704060
	Acceptance Criteria: +4-5%	Reading (NTU)	Acceptance Criteria: 4/- 6.5% 100 P F 100 P 10	Reading (NTU)	Acceptance Criteria: +/- 8% 4	Reading (NTU)	Acceptance Criteria: +/- 10%	Reading (NTU)	15754
	900 t	Pass or Fail	ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	Pass or Fail	¬⊚⊚¬ ±	Pass or Fail	ים פרטים י דודודות פינורים מינוים	Pass or Fail	u

WQ Cal Form (Version 2)

If parameter fails to calibrate within SQP acceptance criteria then append sample results with a "J" qualifier

CCV - Continuing Calibration Verification

CAL - Initial Calibration
ICV - Initial Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable)

Comments

Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

Geosyntec consultants

Water Quality Instrument Calibration Form **Geosyntec Consultants**

^{1.} See Table FS 2200-2 on the back of this form CAL - Initial Calibration

Comments:

Geosyntec^D consultants

ICV - Initial Calibration Verification

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable) Calibrate pH using at least two standards (typ., pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7) If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

11/8/2019

Geosyntec Consultants Water Quality Instrument Calibration Form

Project/Site: 51	17'S (13	SED Sulmite Later	1001	Project #: FR 3347 B	33478	Field Personnel:	1.01	Shopley				
Water Quality Meter - Model/Serial #: $75\mathcal{I}$	۶۲ - Model/Se	rial #: YSI	556 MPS,	PS/15C10356x	23 56 4		Turbidimeter - Model/Serial #	Model/Serial	# 4/Kunce	150406	150402040144	
Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std (0 NTU	Date	Reading F (NTU)	Pass or Fail
CAL ICV COV CAL ICV COV CAL ICV CCV CAL ICV CCV		91/18/18	0h 51	21. 78	8-777	8.82	Acceptance Criteria: +7.0.3mg/L (00). 4 (03). 4 P F	9 P F F F F F F F F F F F F F F F F F F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accept 11 24 15	Acceptance Criteria: +/- 10% 19	7, 10% T T T T
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (mS/cm)	Standard Lot #	Standard Exp. Date	Reading (mS/cm)	Pass or Fail	11 - 40 NTU Std 10 NTU	Date	Reading F (NTU)	Pass or Fail
CAL ICV COV CAL ICV COV CAL ICV CCV CAL ICV CCV		11/31/12 61/30/11	xe51 \$4£1	4.403	9CF949	Jen Jelo d	Acceptance Criteria: +1-5% 1, 40 4	######################################	CAL ICV GCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acce,	Acceptance Criteria: 44.8% (1,9	; • • • • • • • • • • • • • • • • • • •
Hd	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot #	Standard Exp. Date	Reading (SU)	Pass or Fail	41 - 100 NTU Std (CENTU	Date	Reading F (NTU)	Pass or Fail
CAL ICV COV CAL ICV CAL IC		11/26/19 11/23/19	1736 1739 1739 1730 1736	20 4.00 0.00 0.00 SAPA	96600) 96F 373 16F 373	1504,3021 May 2031 Dea 2031	Acceptance Criteria: +40.2 SU	\$	CAL ICV CCV	4ccept	Acceptance Criteria: +/- 6.5% 14 10 P F	**************************************
ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU Std 800 NTU	Date	Reading 1 (NTU)	Pass or Fail
CAL ICV COV		11/21/19	1531	240615	46F133	Geosyntec	Geosyntec Acceptance Criteria: +/- 5% - 302c	P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acce	Acceptance Criteria: +1-5% 9	P + 5%
Specific Conductance Probe Cleaned? Yes 1. See Table FS 2200-2 on the back of this form	2 on the back o	leaned? Yes	(No)	Disolved Oxyge	en membrane Cl	Disolved Oxygen membrane Changed? Yes (No)	No					

1. See Table FS 2200-2 on the back of this form

ICV - Initial Calibration Verification CAL - Initial Calibration

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable) Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

Comments:

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Geosyntec^D consultants

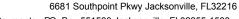
1. See	Spec	CAL	:	ORP	CALCAL	CAPA	Н	CALCAL	Spe	CAL	Dis Oxy	Wat	Proj
Table	ific Co	5 5 E	0		<u> </u>	Q Q Q		<u>5</u> <u>5</u> <u>5</u> <u>5</u>	Specific Conduct	ত্ত্ত্	Dissolved Oxygen	er Qua	Project/Site:
FS 2200	nducta	365			8 5 5 5 5	\$ \$ \$ \$ \$		8888	Specific Conductance	8888	ď	ality M	ie.
)-2 on th	ance F			တ္က			ם ויי				71 -	eter - I	西
ne back	robe (SOP N/A			DEP SOP FT 1100		DEP SOP FT 1200		DEP SOP FT 1500	Model/	5
1. See Table FS 2200-2 on the back of this form	Specific Conductance Probe Cleaned?	EEL						 		I FFE	Ď	Water Quality Meter - Model/Serial #:	L
orm	d? Yes	12/12/		Date	K+2K+8	1 2	Date	120/	Date	12/19/	Date	*	Z
- 11	S No	200	9			وا ا		2 2 2		000		2 1	Warte
	Ĭ	280081	0	Time	827	200	Time	1.83	Time	083	Time	56	8
		1-10		v		111	Φ		Φ	1 6.14	Ф	/12	2
000	Disolv	11 0 k2		Std.	40740#	40/11	Sta	1413	Sta (m:	1-6		L10	Project #
3	ox Open		,	Std. mV @ Temp °C	000000	000	Standard (SU)	- 10	Standard (mS/cm)	.22	Temp (°C)	10130	tt#
province oxygen membrane originate	m nen		6			واواد							FR
CHIDIC	amhrs	de Firs		Standard Lot #	: = = = = =	70133 74543	Standard Lot #	IC-F94	Standard Lot #	45	Saturation (mg/L) ¹		FR3347
i d	ne Ch	1		* ä		245	# ard	NA NA	ard #	STA	tion		
griged	nanna	23/		Sta		200	Sta Exp	06,	Sta	000	_ Z		Field
S		1106	Geosyntec	Standard Exp. Date		1201	Standard Exp. Date	how	Standard Exp. Date	302	Reading (mg/L)		Field Personnel:
No	200	1 M	A			Acce			-	Accep:		-	onnel:
		242	ceptan	Reading (mV)	800000 H	1-0 1-0	Reading (SU)	1.42	Reading (mS/cm)	93 93	Reading (%)	urbidii	2
		7	cceptance Criteria	ٳۊؖٛڎ	- emmo	4.04 10-13 4.08	ding U)	1.428	ding cm)	4cceptance Criteria: +/-	ding	neter -	3
		<u>@</u>	eria: +/	유		0 0 0 0	9 70	000	9 P	ण्कु हु	و ہ	. Mode	6
L		ппп	:: +/- 5%	Pass or Fail	THEFT	POP S	Pass or Fail	л п п п % 2 0 0 0 0 ÷	Pass or Fail	D D D D TI	Pass or Fail	l/Seria	8
		CAL	ľ	s	CALCAL	CAL	4.0)	CAL	"	CAL	(0)	Furbidimeter - Model/Serial # HACH 2100Q	200
		र इ ह इ		>100 NTU	<u> </u>	A 1	41 - 100 NTU Std 100 NTU	00000 00000 00000 00000	11 - 40 NTU Std 20 NTU	2 2 2 (2) 2 (2) (2) 2 (2) (2)	0.1 - 10 NTU Std 10 NTU	至	7
		000 000 000 000 000		DIN DIN	CC	(5(5(5)	UTN	5(5(5)5	DIN DIN	5(5(5)5	D LN	210	4.
						F S						00	>
			A	Date		120/19	Date	121/	Date	121 A	Date	/ 130	E
		11	ccepta			ceptar		Accepta		ccepta		<u>ک</u> ر	5
			cceptance Criteria: +/- 5%	Reading		Acceptance Criteria: +/- 6.5%	Reading (NTU)	Acceptance Criteria: +/-8%	Reading (NTU)	Acceptance Criteria: +/-10% 10.3 (P) F 10.1 P F	Reading (NTU)	13060002613	J.
		ם ס ס ס ס ס	iteria:	- 1		P P P		P P @ P		P P @ +	ng P		Elen
L		ה וד וד ה	+/- 5%	Pass or	T T T T T T T	7- 6.5% F	Pass or Fail	и п п п г % + г о о о о о о о о о о о о о о о о о о 	Pass or Fail	700 T T T T T T T T T T T T T T T T T T		ر م	7.
										7.2		ä	

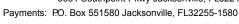
WQ Cal Form (Version 2)

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7) Calibrate specific conductance using at least two standards that bracket the range of expecied sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable) CCV - Continuing Calibration Verification

CAL - Initial Calibration ICV - Initial Calibration Verification


Comments:


Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Geosyntec consultants

APPENDIX D

Groundwater and Surface Water Analytical Laboratory Reports

June 6, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

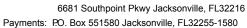
RE: Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, May 15, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

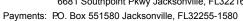

Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 878075 - 774165 Page 1 of 53

SAMPLE SUMMARY


Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected	Date Received
J1906176001	19134-CW-1A	Water	5/14/2019 12:54	5/15/2019 08:45
J1906176002	19134-MW-23A	Water	5/14/2019 09:36	5/15/2019 08:45
J1906176003	19134-MW-23B	Water	5/14/2019 10:12	5/15/2019 08:45
J1906176004	19134-MW-25A	Water	5/14/2019 13:13	5/15/2019 08:45
J1906176005	19134-MW-25B	Water	5/14/2019 13:53	5/15/2019 08:45
J1906176006	19134-MW-30A	Water	5/14/2019 11:11	5/15/2019 08:45
J1906176007	19134-MW-30B	Water	5/14/2019 11:32	5/15/2019 08:45
J1906176008	19134-MW-31A	Water	5/14/2019 11:36	5/15/2019 08:45
J1906176009	19134-MW-31B	Water	5/14/2019 12:04	5/15/2019 08:45
J1906176010	19134-EQ-1	Water	5/14/2019 13:30	5/15/2019 08:45
J1906176011	19134-TripBlank-1	Water	5/14/2019 00:00	5/15/2019 08:45

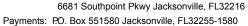
Report ID: 878075 - 774165 Page 2 of 53

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176001 Matrix: Water

19134-CW-1A Date Collected: 05/14/19 12:54 Sample ID:


Sample Description: Location:

				Adjusted	Adjusted		
Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Prep	aration I	Method: SV	V-846 3010A				
Anal	ytical Me	thod: SW-	846 6010				
160		ug/L	1	40	9.0	5/16/2019 13:32	J
69		ug/L	1	4.0	1.0	5/16/2019 13:32	J
0.50	U	ug/L	1	2.0	0.50	5/16/2019 13:32	J
1.0	U	ug/L	1	4.0	1.0	5/16/2019 13:32	J
10		ug/L	1	8.0	2.0	5/16/2019 13:32	J
2.4	I	ug/L	1	8.0	2.0	5/16/2019 13:32	J
4.0	U	ug/L	1	16	4.0	5/16/2019 13:32	J
8500		ug/L	1	400	100	5/16/2019 13:32	J
3.0	U	ug/L	1	12	3.0	5/16/2019 13:32	J
6.0	U	ug/L	1	24	6.0	5/16/2019 13:32	J
40	U	ug/L	1	160	40	5/16/2019 13:32	J
10	U	ug/L	1	40	10	5/16/2019 13:32	J
27		mg/L	1	1.4	0.35	5/20/2019 16:14	J
5.4		ug/L	1	4.0	1.0	5/16/2019 13:32	J
50	U	ug/L	1	200	50	5/16/2019 13:32	J
Prep	aration I	Method: SV	V-846 3010A				
Anal	ytical Me	ethod: SW-	846 6020				
0.21	ı	ug/L	1	0.70	0.11	5/22/2019 18:31	J
0.057	U	ug/L	1	0.20	0.057	5/22/2019 18:31	J
Prep	aration I	Method: SV	V-846 7470A				
Anal	ytical Me	ethod: SW-	846 7470A				
0.011	U	ug/L	1	0.10	0.011	5/16/2019 16:34	J
Prep	aration I	Method: SV	V-846 5030B				
0.54	U	ug/L	1	1.0	0.54	5/16/2019 15:55	J
0.22	U	ug/L	1	1.0	0.22	5/16/2019 15:55	J
0.20	U	ug/L	1	1.0	0.20	5/16/2019 15:55	J
0.30	U	ug/L	1	1.0	0.30	5/16/2019 15:55	J
0.14	Ū	ug/L	1	1.0	0.14	5/16/2019 15:55	J
0.18	Ū	ug/L	1	3.0	0.18	5/16/2019 15:55	J
0.91	U	ug/L	1	1.0	0.91	5/16/2019 15:55	J
	Anal 160 69 0.50 1.0 10 2.4 4.0 8500 3.0 6.0 40 10 27 5.4 50 Prep Anal 0.21 0.057 Prep Anal 0.011 Prep Anal 0.54 0.22 0.20 0.30 0.14 0.18	Analytical Me 160 69 0.50 U 1.0 U 10 2.4 I 4.0 U 8500 3.0 U 6.0 U 40 U 10 U 27 5.4 50 U Preparation M Analytical Me 0.21 I 0.057 U Preparation M Analytical Me 0.011 U Preparation M Analytical Me 0.011 U Preparation M Analytical Me 0.011 U	Analytical Method: SW-1 160	69	Analytical Method: SW-846 6010 160	Analytical Method: SW-846 6010 160	Analytical Method: SW-846 6010 160

Report ID: 878075 - 774165 Page 3 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176001 Matrix: Water

Sample ID: 19134-CW-1A Date Collected: 05/14/19 12:54

Sample Description: Location:

Sample Description:				Location:				
	5 "			5-	Adjusted	Adjusted	A	1 - 1-
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 15:55	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 15:55	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 15:55	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 15:55	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 15:55	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 15:55	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 15:55	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 15:55	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 15:55	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 15:55	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 15:55	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 15:55	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 15:55	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 15:55	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 15:55	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 15:55	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 15:55	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 15:55	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 15:55	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 15:55	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 15:55	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 15:55	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 15:55	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 15:55	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 15:55	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 15:55	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 15:55	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 15:55	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 15:55	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 15:55	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 15:55	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 15:55	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 15:55	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 15:55	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 15:55	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 15:55	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 15:55	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 15:55	J
1,2-Dichloroethane-d4 (S)	99		%	1	70-128		5/16/2019 15:55	
Toluene-d8 (S)	92		%	1	77-119		5/16/2019 15:55	

Report ID: 878075 - 774165 Page 4 of 53

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176001 Matrix: Water

19134-CW-1A Date Collected: 05/14/19 12:54 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	106		%	1	86-123		5/16/2019 15:55	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 15:55	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/16/2019 15:55	J
1,2-Dichloroethane-d4 (S)	121		%	1	77-125		5/16/2019 15:55	
Toluene-d8 (S)	97		%	1	80-121		5/16/2019 15:55	
Bromofluorobenzene (S)	110		%	1	80-129		5/16/2019 15:55	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EPA	A 300.0				
Chloride	58		mg/L	1	5.0	0.50	5/15/2019 12:33	J
Nitrate (as N)	0.050	U,J4	mg/L	1	0.50	0.050	5/15/2019 12:33	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EPA	350.1				
Ammonia (N)	1.7		mg/L	5	0.050	0.040	5/23/2019 11:38	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	380		mg/L	1	10	10	5/17/2019 08:56	J
Lab ID: J1906176002				Date Received:	05/15/19 08:45	Matrix:	Water	

19134-MW-23A Date Collected: 05/14/19 09:36 Sample ID:

Sample Description: Location:

Devenuetore	Daguita	Ougl	l leite	DE	Adjusted	Adjusted	Analyzod	
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/16/2019 13:58	J
Barium	32		ug/L	1	4.0	1.0	5/16/2019 13:58	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/16/2019 13:58	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/16/2019 13:58	J
Chromium	4.1	- 1	ug/L	1	8.0	2.0	5/16/2019 13:58	J

Report ID: 878075 - 774165 Page 5 of 53

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

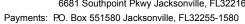
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176002 Matrix: Water

19134-MW-23A Date Collected: 05/14/19 09:36 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/16/2019 13:58	J
Copper	4.0	U	ug/L	1	16	4.0	5/16/2019 13:58	J
Iron	890		ug/L	1	400	100	5/16/2019 13:58	J
Lead	4.7	ı	ug/L	1	12	3.0	5/16/2019 13:58	J
Nickel	6.0	U	ug/L	1	24	6.0	5/16/2019 13:58	J
Selenium	40	U	ug/L	1	160	40	5/16/2019 13:58	J
Silver	10	U	ug/L	1	40	10	5/16/2019 13:58	J
Sodium	250		mg/L	10	14	3.5	5/20/2019 16:17	J
Vanadium	12		ug/L	1	4.0	1.0	5/22/2019 15:29	J
Zinc	50	U	ug/L	1	200	50	5/16/2019 13:58	J
Analysis Desc: SW846 6020B	Pre	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.24	- 1	ug/L	1	0.70	0.11	5/22/2019 18:59	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 18:59	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 16:51	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 16:34	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 16:34	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 16:34	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 16:34	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 16:34	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 16:34	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 16:34	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 16:34	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 16:34	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 16:34	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 16:34	J
2-Butanone (MEK)	0.43	Ū	ug/L	1	5.0	0.43	5/16/2019 16:34	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 16:34	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 16:34	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 16:34	J
Acrylonitrile	1.1	Ū	ug/L	1	5.0	1.1	5/16/2019 16:34	J

Report ID: 878075 - 774165 Page 6 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906176002 Date Received: 05/15/19 08:45 Matrix: Water

Date Collected: 05/14/19 09:36 Sample ID: 19134-MW-23A

Sample Description: Location:

Campic Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 16:34	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 16:34	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 16:34	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 16:34	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 16:34	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 16:34	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 16:34	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 16:34	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 16:34	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 16:34	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 16:34	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 16:34	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 16:34	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 16:34	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 16:34	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 16:34	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 16:34	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 16:34	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 16:34	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 16:34	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 16:34	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 16:34	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 16:34	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 16:34	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 16:34	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 16:34	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 16:34	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 16:34	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 16:34	J
1,2-Dichloroethane-d4 (S)	98		%	1	70-128		5/16/2019 16:34	
Toluene-d8 (S)	89		%	1	77-119		5/16/2019 16:34	
Bromofluorobenzene (S)	109		%	1	86-123		5/16/2019 16:34	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 16:34	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	5/16/2019 16:34	J
1,2-Dichloroethane-d4 (S)	119	-	%	1	77-125		5/16/2019 16:34	-
Toluene-d8 (S)	94		%	1	80-121		5/16/2019 16:34	
· · · · · · · · · · · · · · · · ·	• •		- -					

Report ID: 878075 - 774165 Page 7 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176002 Matrix: Water

19134-MW-23A Date Collected: 05/14/19 09:36 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	680		mg/L	5	25	2.5	5/15/2019 13:16	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	5/15/2019 13:16	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	16	J4	mg/L	20	0.20	0.16	5/20/2019 15:53	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1100		mg/L	1	10	10	5/17/2019 08:56	J

Lab ID: J1906176003 Date Received: 05/15/19 08:45 Matrix: Water

Date Collected: 05/14/19 10:12 Sample ID: 19134-MW-23B

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS	recuito	Quui					7	
Analysis Desc: SW846 6010B	Dror	aration I	Method: SM	V-846 3010A				
Analysis, Water	·							
,a., 6.6, a.e.	Ana	lytical Me	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/16/2019 14:02	J
Barium	150		ug/L	1	4.0	1.0	5/16/2019 14:02	J
Beryllium	0.70	ı	ug/L	1	2.0	0.50	5/16/2019 14:02	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/16/2019 14:02	J
Chromium	2.3	ı	ug/L	1	8.0	2.0	5/16/2019 14:02	J
Cobalt	3.4	ı	ug/L	1	8.0	2.0	5/16/2019 14:02	J
Copper	4.0	U	ug/L	1	16	4.0	5/16/2019 14:02	J
Iron	3100		ug/L	1	400	100	5/16/2019 14:02	J
Lead	3.0	U	ug/L	1	12	3.0	5/16/2019 14:02	J
Nickel	6.0	U	ug/L	1	24	6.0	5/16/2019 14:02	J
Selenium	40	U	ug/L	1	160	40	5/16/2019 14:02	J
Silver	10	U	ug/L	1	40	10	5/16/2019 14:02	J
Sodium	340		mg/L	10	14	3.5	5/20/2019 16:21	J
Vanadium	16		ug/L	1	4.0	1.0	5/22/2019 15:32	J
Zinc	50	U	ua/L	1	200	50	5/16/2019 14:02	.I.

Report ID: 878075 - 774165 Page 8 of 53

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Carbon Disulfide

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon Tetrachloride

Date Received: 05/15/19 08:45 Lab ID: J1906176003 Matrix: Water

19134-MW-23B Date Collected: 05/14/19 10:12 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prep	aration N	Method: S\	V-846 3010A				
Analysis, Total	Anal	vtical Me	ethod: SW-	846 6020				
Author		-			0.70	0.44	F/00/0040 40:00	
Antimony	0.33	!	ug/L	1	0.70	0.11	5/22/2019 19:03	J
Thallium	0.089	I	ug/L	1	0.20	0.057	5/22/2019 19:03	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: S\	V-846 7470A				
Analysis, Water	Anal	vtical Me	ethod: SW-	846 7470A				
Management					0.40	0.044	E/40/0040 40:E4	
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 16:54	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: S\	V-846 5030B				
	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 17:04	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 17:04	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 17:04	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 17:04	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 17:04	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 17:04	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 17:04	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 17:04	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 17:04	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 17:04	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 17:04	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 17:04	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 17:04	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 17:04	J
Acetone	3.1	- 1	ug/L	1	5.0	2.1	5/16/2019 17:04	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 17:04	J
Benzene	0.29	ı	ug/L	1	1.0	0.16	5/16/2019 17:04	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 17:04	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 17:04	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 17:04	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 17:04	J

Report ID: 878075 - 774165 Page 9 of 53

U

U

U

U

U

U

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

0.67

0.36

0.21

0.33

0.18

0.21

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

0.67 5/16/2019 17:04

0.36 5/16/2019 17:04

0.33 5/16/2019 17:04

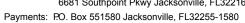
0.18 5/16/2019 17:04

0.21 5/16/2019 17:04

5/16/2019 17:04

0.21

1.0


3.0

3.0

1.0

3.0

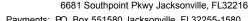
1.0

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Water Lab ID: J1906176003 Matrix:

Date Collected: 05/14/19 10:12 Sample ID: 19134-MW-23B


Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 17:04	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 17:04	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 17:04	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 17:04	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 17:04	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 17:04	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 17:04	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 17:04	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 17:04	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 17:04	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 17:04	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 17:04	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 17:04	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 17:04	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 17:04	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 17:04	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 17:04	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 17:04	J
1,2-Dichloroethane-d4 (S)	96		%	1	70-128		5/16/2019 17:04	
Toluene-d8 (S)	88		%	1	77-119		5/16/2019 17:04	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Anal	ytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 17:04	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/16/2019 17:04	J
1,2-Dichloroethane-d4 (S)	117		%	1	77-125		5/16/2019 17:04	
Toluene-d8 (S)	91		%	1	80-121		5/16/2019 17:04	
Bromofluorobenzene (S)	63		%	1	80-129		5/16/2019 17:04	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	880		mg/L	10	50	5.0	5/15/2019 13:37	J
Nitrate (as N)	0.50	U	mg/L	10	5.0	0.50	5/15/2019 13:37	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	19		mg/L	25	0.25	0.20	5/20/2019 15:56	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	1300		mg/L	1	10	10	5/17/2019 08:56	J

Report ID: 878075 - 774165 Page 10 of 53

CERTIFICATE OF ANALYSIS

Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176003 Matrix: Water

Date Collected: 05/14/19 10:12 Sample ID: 19134-MW-23B

Sample Description: Location:

Adjusted Adjusted **Parameters** Results Units DF **PQL** MDL Analyzed Lab Qual

WET CHEMISTRY

Thallium

Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B Bromofluorobenzene (S) 108 86-123 5/19/2019 19:54

Date Received: 05/15/19 08:45 Matrix: Water Lab ID: J1906176004

Date Collected: 05/14/19 13:13 19134-MW-25A Sample ID:

Sample Description: Location:

Adjusted Adjusted **Parameters** Results Qual Units DF **PQL** MDL Analyzed Lab **METALS** Analysis Desc: SW846 6010B Preparation Method: SW-846 3010A Analysis, Water Analytical Method: SW-846 6010 Arsenic 9.0 U ug/L 40 5/16/2019 14:05 Barium 77 ug/L 4.0 5/16/2019 14:05 1 10 Beryllium 5/16/2019 14:05 1.4 ug/L 2.0 0.50 Cadmium 1.0 U ug/L 4.0 1.0 5/16/2019 14:05 Chromium 2.0 U ug/L 8.0 2.0 5/16/2019 14:05 Cobalt ug/L 8.0 2.0 5/16/2019 14:05 3.2 ı U 4.0 40 5/16/2019 14:05 Copper ug/L 1 16 19000 400 100 5/16/2019 14:05 Iron ug/L 5/16/2019 14:05 U Lead 3.0 ug/L 12 3.0 U 6.0 5/16/2019 14:05 Nickel 6.0 ug/L 1 24 J Selenium 40 U ug/L 160 40 5/16/2019 14:05 J Silver 10 U ug/L 40 10 5/16/2019 14:05 Sodium 61 mg/L 1.4 0.35 5/20/2019 16:24 Vanadium 5/22/2019 15:36 5.4 ug/L 4.0 1.0 50 U 200 5/16/2019 14:05 Zinc ug/L J Analysis Desc: SW846 6020B Preparation Method: SW-846 3010A Analysis, Total Analytical Method: SW-846 6020 U ug/L 0.70 5/22/2019 19:08 Antimony 0.11 1 0.11 J

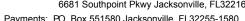
Report ID: 878075 - 774165 Page 11 of 53

1

0.20

0.057

5/22/2019 19:08


ug/L

U

0.057

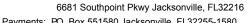
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176004 Matrix: Water

19134-MW-25A Date Collected: 05/14/19 13:13 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 7470A	Prep	aration N	/lethod: SW	/-846 7470A				
Analysis, Water	Anal	vtical Me	thod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 16:57	J
,			3					
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	/lethod: SW	/-846 5030B				
	Anal	ytical Me	thod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 17:40	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 17:40	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 17:40	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 17:40	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 17:40	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 17:40	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 17:40	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 17:40	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 17:40	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 17:40	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 17:40	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 17:40	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 17:40	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 17:40	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 17:40	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 17:40	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 17:40	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 17:40	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 17:40	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 17:40	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 17:40	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 17:40	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 17:40	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 17:40	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 17:40	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 17:40	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 17:40	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 17:40	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 17:40	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 17:40	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 17:40	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 17:40	J

Report ID: 878075 - 774165 Page 12 of 53

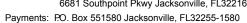
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176004 Matrix: Water

19134-MW-25A Date Collected: 05/14/19 13:13 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 17:40	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 17:40	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 17:40	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 17:40	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 17:40	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 17:40	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 17:40	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 17:40	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 17:40	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 17:40	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 17:40	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 17:40	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 17:40	J
1,2-Dichloroethane-d4 (S)	100		%	1	70-128		5/16/2019 17:40	
Toluene-d8 (S)	90		%	1	77-119		5/16/2019 17:40	
Bromofluorobenzene (S)	114		%	1	86-123		5/16/2019 17:40	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	thod: SW-	846 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 17:40	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	5/16/2019 17:40	J
1,2-Dichloroethane-d4 (S)	122	-	%	1	77-125		5/16/2019 17:40	_
Toluene-d8 (S)	94		%	1	80-121		5/16/2019 17:40	
Bromofluorobenzene (S)	120		%	1	80-129		5/16/2019 17:40	
• •								
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	150		mg/L	2	10	1.0	5/15/2019 13:59	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	5/15/2019 13:59	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	thod: EPA	350.1				
Ammonia (N)	15		mg/L	20	0.20	0.16	5/20/2019 16:42	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	740		mg/L	1	10	10	5/17/2019 08:56	J

Report ID: 878075 - 774165 Page 13 of 53

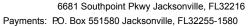
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176005 Matrix: Water

19134-MW-25B Date Collected: 05/14/19 13:53 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	Method: SV	V-846 3010A				
Analysis,Water	Ana	lvtical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/16/2019 14:09	J
Barium	29	U	ug/L ug/L	1	4.0	1.0	5/16/2019 14:09	J
Beryllium	0.50	U	ug/L ug/L	1	2.0	0.50	5/16/2019 14:09	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	5/16/2019 14:09	J
Chromium	2.0	Ü	ug/L	1	8.0	2.0	5/16/2019 14:09	J
Cobalt	2.0	Ū	ug/L	1	8.0	2.0	5/16/2019 14:09	J
Copper	4.0	U	ug/L	1	16	4.0	5/16/2019 14:09	J
Iron	950		ug/L	1	400	100	5/16/2019 14:09	J
Lead	3.1	I	ug/L	1	12	3.0	5/16/2019 14:09	J
Nickel	6.0	U	ug/L	1	24	6.0	5/16/2019 14:09	J
Selenium	40	U	ug/L	1	160	40	5/16/2019 14:09	J
Silver	10	U	ug/L	1	40	10	5/16/2019 14:09	J
Sodium	13		mg/L	1	1.4	0.35	5/20/2019 16:28	J
Vanadium	1.0	U	ug/L	1	4.0	1.0	5/22/2019 15:40	J
Zinc	50	U	ug/L	1	200	50	5/16/2019 14:09	J
Analysis Desc: SW846 6020B	Prep	paration N	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	thod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:12	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 19:12	J
Analysis Desc: SW846 7470A	Prer	naration N	Method: SV	V-846 7470A				
Analysis,Water	·							
		-		846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 17:00	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 18:10	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	5/16/2019 18:10	J
1,1,2,2-Tetrachloroethane	0.20	Ū	ug/L	1	1.0	0.20	5/16/2019 18:10	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 18:10	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 18:10	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 18:10	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 18:10	J

Report ID: 878075 - 774165 Page 14 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176005 Matrix: Water

Sample ID: 19134-MW-25B Date Collected: 05/14/19 13:53

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 18:10	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 18:10	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 18:10	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 18:10	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 18:10	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 18:10	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 18:10	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 18:10	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 18:10	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 18:10	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 18:10	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 18:10	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 18:10	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 18:10	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 18:10	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 18:10	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 18:10	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 18:10	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 18:10	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 18:10	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 18:10	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 18:10	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 18:10	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 18:10	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 18:10	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 18:10	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 18:10	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 18:10	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 18:10	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 18:10	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 18:10	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 18:10	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 18:10	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 18:10	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 18:10	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 18:10	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 18:10	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 18:10	J
1,2-Dichloroethane-d4 (S)	99		%	1	70-128		5/16/2019 18:10	
Toluene-d8 (S)	90		%	1	77-119		5/16/2019 18:10	

Report ID: 878075 - 774165 Page 15 of 53

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

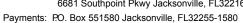
Date Received: 05/15/19 08:45 Lab ID: J1906176005 Matrix: Water

19134-MW-25B Date Collected: 05/14/19 13:53 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	113		%	1	86-123		5/16/2019 18:10	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	thod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 18:10	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/16/2019 18:10	J
1,2-Dichloroethane-d4 (S)	122		%	1	77-125		5/16/2019 18:10	
Toluene-d8 (S)	94		%	1	80-121		5/16/2019 18:10	
Bromofluorobenzene (S)	119		%	1	80-129		5/16/2019 18:10	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EPA	A 300.0				
Chloride	33		mg/L	1	5.0	0.50	5/15/2019 14:20	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/15/2019 14:20	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EPA	A 350.1				
Ammonia (N)	0.25		mg/L	1	0.010	0.0080	5/20/2019 15:59	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	96		mg/L	1	10	10	5/17/2019 08:56	J
Lab ID: J1906176006				Date Received:	05/15/10 08:45	Matrix: \	Vater	

19134-MW-30A Date Collected: 05/14/19 11:11 Sample ID:


Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water			Method: SV ethod: SW-	V-846 3010A 846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/22/2019 13:05	J
Barium	44		ug/L	1	4.0	1.0	5/22/2019 13:05	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/22/2019 13:05	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/22/2019 13:05	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/22/2019 17:00	J

Report ID: 878075 - 774165 Page 16 of 53

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

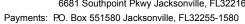
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176006 Matrix: Water

19134-MW-30A Date Collected: 05/14/19 11:11 Sample ID:


Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/22/2019 13:05	J
Copper	4.0	U	ug/L	1	16	4.0	5/22/2019 13:05	J
Iron	740		ug/L	1	400	100	5/22/2019 13:05	J
Lead	3.0	U	ug/L	1	12	3.0	5/22/2019 17:00	J
Nickel	6.0	U	ug/L	1	24	6.0	5/22/2019 13:05	J
Selenium	40	U	ug/L	1	160	40	5/22/2019 13:05	J
Silver	10	U	ug/L	1	40	10	5/22/2019 13:05	J
Sodium	27		mg/L	1	1.4	0.35	5/22/2019 13:05	J
Vanadium	1.0	U	ug/L	1	4.0	1.0	5/22/2019 13:05	J
Zinc	50	U	ug/L	1	200	50	5/22/2019 13:05	J
Analysis Desc: SW846 6020B Analysis,Total	·		Method: SV ethod: SW-	V-846 3010A 846 6020				
Antimony	0.39	ı	ug/L	1	0.70	0.11	5/22/2019 19:16	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 19:16	J
Analysis Desc: SW846 7470A Analysis,Water	·			V-846 7470A 846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 17:10	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 18:46	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 18:46	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 18:46	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 18:46	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 18:46	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 18:46	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 18:46	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 18:46	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 18:46	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 18:46	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 18:46	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 18:46	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 18:46	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 18:46	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 18:46	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 18:46	J

Report ID: 878075 - 774165 Page 17 of 53

CERTIFICATE OF ANALYSIS

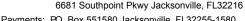
ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906176006 Date Received: 05/15/19 08:45 Matrix: Water

Date Collected: 05/14/19 11:11 Sample ID: 19134-MW-30A

Sample Description: Location:


Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 18:46	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 18:46	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 18:46	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 18:46	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 18:46	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 18:46	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 18:46	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 18:46	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 18:46	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 18:46	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 18:46	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 18:46	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 18:46	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 18:46	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 18:46	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 18:46	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 18:46	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 18:46	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 18:46	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 18:46	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 18:46	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 18:46	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 18:46	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 18:46	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 18:46	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 18:46	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 18:46	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 18:46	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 18:46	J
1,2-Dichloroethane-d4 (S)	100		%	1	70-128		5/16/2019 18:46	
Toluene-d8 (S)	87		%	1	77-119		5/16/2019 18:46	
Bromofluorobenzene (S)	105		%	1	86-123		5/16/2019 18:46	
Analysis Desc: 8260B SIM Analysis,	Prei	paration I	Method: S\	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 18:46	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/16/2019 18:46	J
1,2-Dichloroethane-d4 (S)	123		%	1	77-125		5/16/2019 18:46	
Toluene-d8 (S)	91		%	1	80-121		5/16/2019 18:46	
Bromofluorobenzene (S)	110		%	1	80-129		5/16/2019 18:46	

Bromofluorobenzene (S) 110 80-129 5/16/2019 18:46

Report ID: 878075 - 774165 Page 18 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176006 Matrix: Water

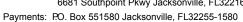
19134-MW-30A Date Collected: 05/14/19 11:11 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	45		mg/L	1	5.0	0.50	5/15/2019 14:42	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/15/2019 14:42	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	0.36		mg/L	1	0.010	0.0080	5/20/2019 14:28	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	130		mg/L	1	10	10	5/17/2019 08:56	J

Lab ID: J1906176007 Date Received: 05/15/19 08:45 Matrix: Water

Date Collected: 05/14/19 11:32 Sample ID: 19134-MW-30B


Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/22/2019 13:09	J
Barium	12		ug/L	1	4.0	1.0	5/22/2019 13:09	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/22/2019 13:09	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/22/2019 13:09	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/22/2019 17:04	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/22/2019 13:09	J
Copper	4.0	U	ug/L	1	16	4.0	5/22/2019 13:09	J
Iron	1600		ug/L	1	400	100	5/22/2019 13:09	J
Lead	4.2	- 1	ug/L	1	12	3.0	5/22/2019 17:04	J
Nickel	6.0	U	ug/L	1	24	6.0	5/22/2019 13:09	J
Selenium	40	U	ug/L	1	160	40	5/22/2019 13:09	J
Silver	10	U	ug/L	1	40	10	5/22/2019 13:09	J
Sodium	6.6		mg/L	1	1.4	0.35	5/22/2019 13:09	J
Vanadium	1.2	ı	ug/L	1	4.0	1.0	5/22/2019 13:09	J
Zinc	50	U	ug/L	1	200	50	5/22/2019 13:09	J

Report ID: 878075 - 774165 Page 19 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176007 Matrix: Water

19134-MW-30B Date Collected: 05/14/19 11:32 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prepa	aration I	Method: S	W-846 3010A				
Analysis, Total	Analy	tical Me	ethod: SW	/-846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:20	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 19:20	J
Analysis Desc: SW846 7470A	Prepa	aration I	Method: S	W-846 7470A				
Analysis, Water	Analy	tical Me	ethod: SW	/-846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 17:13	J

VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prepa	aration	Method: SW	/-846 5030B				
	Analy	ytical M	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 19:16	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 19:16	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 19:16	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 19:16	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 19:16	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 19:16	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 19:16	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 19:16	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 19:16	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 19:16	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 19:16	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 19:16	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 19:16	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 19:16	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 19:16	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 19:16	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 19:16	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 19:16	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 19:16	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 19:16	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 19:16	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 19:16	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 19:16	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 19:16	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 19:16	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 19:16	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 19:16	J

Report ID: 878075 - 774165 Page 20 of 53

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176007 Matrix: Water

Sample ID: 19134-MW-30B Date Collected: 05/14/19 11:32

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 19:16	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 19:16	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 19:16	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 19:16	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 19:16	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 19:16	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 19:16	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 19:16	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 19:16	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 19:16	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 19:16	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 19:16	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 19:16	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 19:16	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 19:16	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 19:16	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 19:16	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 19:16	J
1,2-Dichloroethane-d4 (S)	98		%	1	70-128		5/16/2019 19:16	
Toluene-d8 (S)	90		%	1	77-119		5/16/2019 19:16	
Bromofluorobenzene (S)	113		%	1	86-123		5/16/2019 19:16	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lvtical Me	ethod: SW-	846 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 19:16	J
Ethylene Dibromide (EDB)	0.020	U	ug/L ug/L	1	0.20	0.020	5/16/2019 19:16	J
1,2-Dichloroethane-d4 (S)	120	U	ug/L %	1	77-125	0.020	5/16/2019 19:16	J
Toluene-d8 (S)	94		%	1	80-121		5/16/2019 19:16	
Bromofluorobenzene (S)	119		% %	1	80-129		5/16/2019 19:16	
Biomondorobenzene (3)	113		/0	•	00-129		3/10/2019 19.10	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	18		mg/L	1	5.0	0.50	5/15/2019 15:03	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/15/2019 15:03	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.07		mg/L	1	0.010	0.0080	5/20/2019 14:29	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				

Report ID: 878075 - 774165 Page 21 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176007 Matrix: Water

19134-MW-30B Date Collected: 05/14/19 11:32 Sample ID:

Sample Description: Location:

Total Dissolved Solids	940		mg/L	1	10	10	5/20/2019 12:17	
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

Lab ID: J1906176008 Date Received: 05/15/19 08:45 Matrix: Water

Sample ID: 19134-MW-31A Date Collected: 05/14/19 11:36

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	Method: SV	V-846 3010A					
Analysis, Water	Anal	ethod: SW-	846 6010					
Arsenic	9.0	U	ug/L	1	40	9.0	5/16/2019 14:12	J
Barium	77		ug/L	1	4.0	1.0	5/16/2019 14:12	J
Beryllium	4.0		ug/L	1	2.0	0.50	5/16/2019 14:12	J
Cadmium	1.6	- 1	ug/L	1	4.0	1.0	5/16/2019 14:12	J
Chromium	3.3	- 1	ug/L	1	8.0	2.0	5/16/2019 14:12	J
Cobalt	24		ug/L	1	8.0	2.0	5/16/2019 14:12	J
Copper	4.0	U	ug/L	1	16	4.0	5/16/2019 14:12	J
Iron	96000		ug/L	1	400	100	5/16/2019 14:12	J
Lead	3.0	U	ug/L	1	12	3.0	5/16/2019 14:12	J
Nickel	14	- 1	ug/L	1	24	6.0	5/16/2019 14:12	J
Selenium	40	U	ug/L	1	160	40	5/16/2019 14:12	J
Silver	10	U	ug/L	1	40	10	5/16/2019 14:12	J
Sodium	25		mg/L	1	1.4	0.35	5/20/2019 16:31	J
Vanadium	1.0	U	ug/L	1	4.0	1.0	5/22/2019 15:43	J
Zinc	50	U	ug/L	1	200	50	5/16/2019 14:12	J
Analysis Desc: SW846 6020B	Preparation Method: SW-846 3010A							
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:24	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 19:24	J
Analysis Desc: SW846 7470A	Preparation Method: SW-846 7470A							
Analysis,Water	Anal	ytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 17:16	J

Report ID: 878075 - 774165 Page 22 of 53

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

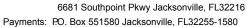
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176008 Matrix: Water

19134-MW-31A Date Collected: 05/14/19 11:36 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Pre	paration N	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 19:53	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 19:53	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 19:53	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 19:53	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 19:53	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 19:53	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 19:53	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 19:53	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 19:53	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 19:53	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 19:53	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 19:53	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 19:53	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 19:53	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 19:53	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 19:53	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 19:53	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 19:53	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 19:53	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 19:53	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 19:53	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 19:53	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 19:53	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 19:53	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 19:53	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 19:53	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 19:53	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 19:53	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 19:53	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 19:53	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 19:53	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 19:53	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 19:53	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 19:53	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 19:53	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 19:53	J

Report ID: 878075 - 774165 Page 23 of 53

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Matrix: Lab ID: J1906176008 Water

Sample ID: 19134-MW-31A Date Collected: 05/14/19 11:36

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 19:53	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 19:53	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 19:53	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 19:53	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 19:53	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 19:53	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 19:53	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 19:53	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 19:53	J
1,2-Dichloroethane-d4 (S)	102		%	1	70-128		5/16/2019 19:53	
Toluene-d8 (S)	86		%	1	77-119		5/16/2019 19:53	
Bromofluorobenzene (S)	112		%	1	86-123		5/16/2019 19:53	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: S\	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 19:53	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/16/2019 19:53	J
1,2-Dichloroethane-d4 (S)	125		%	1	77-125		5/16/2019 19:53	
Toluene-d8 (S)	91		%	1	80-121		5/16/2019 19:53	
Bromofluorobenzene (S)	118		%	1	80-129		5/16/2019 19:53	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	32		mg/L	2	10	1.0	5/15/2019 16:08	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	5/15/2019 16:08	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	.350.1				
Ammonia (N)	16		mg/L	20	0.20	0.16	5/20/2019 16:43	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1000		mg/L	1	10	10	5/20/2019 12:17	J

Report ID: 878075 - 774165 Page 24 of 53

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

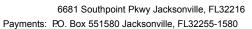
ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176009 Matrix: Water

19134-MW-31B Date Collected: 05/14/19 12:04 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/16/2019 14:15	J
Barium	120	·	ug/L	1	4.0	1.0	5/16/2019 14:15	J
Beryllium	1.5	ı	ug/L	1	2.0	0.50	5/16/2019 14:15	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/16/2019 14:15	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/16/2019 14:15	J
Cobalt	19		ug/L	1	8.0	2.0	5/16/2019 14:15	J
Copper	4.0	U	ug/L	1	16	4.0	5/16/2019 14:15	J
Iron	56000		ug/L	1	400	100	5/16/2019 14:15	J
Lead	3.1	- 1	ug/L	1	12	3.0	5/16/2019 14:15	J
Nickel	13	ı	ug/L	1	24	6.0	5/16/2019 14:15	J
Selenium	40	U	ug/L	1	160	40	5/16/2019 14:15	J
Silver	10	U	ug/L	1	40	10	5/16/2019 14:15	J
Sodium	32		mg/L	1	1.4	0.35	5/20/2019 16:35	J
Vanadium	0.0010	U	mg/L	1	0.0040	0.0010	5/22/2019 15:47	J
Zinc	50	U	ug/L	1	200	50	5/16/2019 14:15	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:29	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 19:29	J
Analysis Desc: SW846 7470A	Pror	naration I	Method: SV	V-846 7470A				
Analysis, Water								
•	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 17:20	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prer	naration I	Method: SV	V-846 5030B				
Analysis Desc. 02000 Analysis, water								
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 20:22	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 20:22	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 20:22	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 20:22	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 20:22	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 20:22	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 20:22	J

Report ID: 878075 - 774165 Page 25 of 53

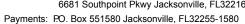
CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176009 Matrix: Water


19134-MW-31B Date Collected: 05/14/19 12:04 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 20:22	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 20:22	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 20:22	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 20:22	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 20:22	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 20:22	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 20:22	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 20:22	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 20:22	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 20:22	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 20:22	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 20:22	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 20:22	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 20:22	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 20:22	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 20:22	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 20:22	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 20:22	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 20:22	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 20:22	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 20:22	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 20:22	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 20:22	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 20:22	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 20:22	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 20:22	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 20:22	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 20:22	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 20:22	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 20:22	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 20:22	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 20:22	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 20:22	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 20:22	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 20:22	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 20:22	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 20:22	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 20:22	J
1,2-Dichloroethane-d4 (S)	101		%	1	70-128		5/16/2019 20:22	
Toluene-d8 (S)	89		%	1	77-119		5/16/2019 20:22	

Report ID: 878075 - 774165 Page 26 of 53

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

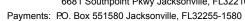
Date Received: 05/15/19 08:45 Lab ID: J1906176009 Matrix: Water

19134-MW-31B Date Collected: 05/14/19 12:04 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	109		%	1	86-123		5/16/2019 20:22	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	7-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 20:22	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/16/2019 20:22	J
1,2-Dichloroethane-d4 (S)	123		%	1	77-125		5/16/2019 20:22	
Toluene-d8 (S)	94		%	1	80-121		5/16/2019 20:22	
Bromofluorobenzene (S)	114		%	1	80-129		5/16/2019 20:22	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	29		mg/L	2	10	1.0	5/15/2019 16:29	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	5/15/2019 16:29	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	1.3		mg/L	2	0.020	0.016	5/20/2019 16:01	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	10	U	mg/L	1	10	10	5/20/2019 12:17	J
Lab ID: J1906176010				Date Received:	05/15/19 08:45	Matrix:	Water	
Sample ID: 19134-EQ-1				Date Collected:	05/14/19 13:30			

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration l	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/16/2019 14:19	J
Barium	1.0	U	ug/L	1	4.0	1.0	5/16/2019 14:19	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/16/2019 14:19	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/16/2019 14:19	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/16/2019 14:19	J

Report ID: 878075 - 774165 Page 27 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176010 Matrix: Water

19134-EQ-1 Date Collected: 05/14/19 13:30 Sample ID:

Sample Description: Location:

 								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lal
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/16/2019 14:19	J
Copper	4.0	U	ug/L	1	16	4.0	5/16/2019 14:19	J
Iron	100	U	ug/L	1	400	100	5/16/2019 14:19	J
Lead	3.0	U	ug/L	1	12	3.0	5/16/2019 14:19	J
Nickel	6.0	U	ug/L	1	24	6.0	5/16/2019 14:19	J
Selenium	40	U	ug/L	1	160	40	5/16/2019 14:19	J
Silver	10	U	ug/L	1	40	10	5/16/2019 14:19	J
Sodium	0.35	U	mg/L	1	1.4	0.35	5/20/2019 16:38	J
Vanadium	1.0	U	ug/L	1	4.0	1.0	5/22/2019 15:50	J
Zinc	50	U	ug/L	1	200	50	5/16/2019 14:19	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SW	/-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:43	J
Thallium	0.057	Ū	ug/L	1	0.20	0.057	5/22/2019 19:43	J
Analysis Desc: SW846 7470A Analysis,Water	Prep	paration i	vietnoa: Sv	/-846 7470A				
, maryoto, vator	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/16/2019 17:23	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	/-846 5030B				
	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 20:59	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 20:59	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 20:59	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 20:59	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 20:59	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 20:59	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 20:59	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 20:59	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 20:59	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 20:59	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 20:59	J
1,4-Dichiorobenzene							E/40/0040 00 E0	J
	0.43	U	ug/L	1	5.0	0.43	5/16/2019 20:59	J
2-Butanone (MEK)	0.43 0.71	U U	ug/L ug/L	1 1	5.0 5.0	0.43 0.71	5/16/2019 20:59 5/16/2019 20:59	J
2-Butanone (MEK) 2-Hexanone			ug/L					
2-Butanone (MEK) 2-Hexanone 4-Methyl-2-pentanone (MIBK) Acetone	0.71	U	_	1	5.0	0.71	5/16/2019 20:59	J

Report ID: 878075 - 774165 Page 28 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Payments: PO. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906176010 Date Received: 05/15/19 08:45 Matrix: Water

Date Collected: 05/14/19 13:30 Sample ID: 19134-EQ-1

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 20:59	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 20:59	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 20:59	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 20:59	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 20:59	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 20:59	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 20:59	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 20:59	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 20:59	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 20:59	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 20:59	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 20:59	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 20:59	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 20:59	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 20:59	J
Methylene Chloride	30		ug/L	1	5.0	2.5	5/16/2019 20:59	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 20:59	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 20:59	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 20:59	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 20:59	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 20:59	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 20:59	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 20:59	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 20:59	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 20:59	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 20:59	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 20:59	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 20:59	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 20:59	J
1,2-Dichloroethane-d4 (S)	96		%	1	70-128		5/16/2019 20:59	
Toluene-d8 (S)	88		%	1	77-119		5/16/2019 20:59	
Bromofluorobenzene (S)	113		%	1	86-123		5/16/2019 20:59	
Analysis Desc: 8260B SIM Analysis,	Prej	paration N	Method: SV	V-846 5030B				
Water				846 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 20:59	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/16/2019 20:59	J
1,2-Dichloroethane-d4 (S)	118		%	1	77-125		5/16/2019 20:59	
Toluene-d8 (S)	92		%	1	80-121		5/16/2019 20:59	
Bromofluorobenzene (S)	119		%	1	80-129		5/16/2019 20:59	

Report ID: 878075 - 774165 Page 29 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176010 Matrix: Water

19134-EQ-1 Date Collected: 05/14/19 13:30 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride Nitrate (as N)	0.50 0.050	U U	mg/L mg/L	1 1	5.0 0.50	0.50 0.050	5/15/2019 16:51 5/15/2019 16:51	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	0.0080	U	mg/L	1	0.010	0.0080	5/20/2019 14:32	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	110		mg/L	1	10	10	5/20/2019 12:17	J

Lab ID: J1906176011 Date Received: 05/15/19 08:45 Matrix: Water

Date Collected: 05/14/19 00:00 Sample ID: 19134-TripBlank-1

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
	Anal	ytical Me	ethod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/16/2019 21:28	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/16/2019 21:28	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/16/2019 21:28	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/16/2019 21:28	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/16/2019 21:28	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 21:28	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/16/2019 21:28	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/16/2019 21:28	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/16/2019 21:28	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/16/2019 21:28	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/16/2019 21:28	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/16/2019 21:28	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/16/2019 21:28	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/16/2019 21:28	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/16/2019 21:28	J

Report ID: 878075 - 774165 Page 30 of 53

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176011 Matrix: Water

19134-TripBlank-1 Date Collected: 05/14/19 00:00 Sample ID:

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/16/2019 21:28	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 21:28	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/16/2019 21:28	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/16/2019 21:28	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/16/2019 21:28	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/16/2019 21:28	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/16/2019 21:28	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/16/2019 21:28	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/16/2019 21:28	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 21:28	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/16/2019 21:28	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/16/2019 21:28	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/16/2019 21:28	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/16/2019 21:28	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/16/2019 21:28	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/16/2019 21:28	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/16/2019 21:28	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 21:28	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/16/2019 21:28	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/16/2019 21:28	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/16/2019 21:28	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/16/2019 21:28	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/16/2019 21:28	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/16/2019 21:28	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/16/2019 21:28	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/16/2019 21:28	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/16/2019 21:28	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/16/2019 21:28	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/16/2019 21:28	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/16/2019 21:28	J
1,2-Dichloroethane-d4 (S)	98		%	1	70-128		5/16/2019 21:28	
Toluene-d8 (S)	89		%	1	77-119		5/16/2019 21:28	
Bromofluorobenzene (S)	112		%	1	86-123		5/16/2019 21:28	
Analysis Desc: 8260B SIM Analysis,	Prei	paration I	Method: SV	N-846 5030B				
Water	•			-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/16/2019 21:28	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	5/16/2019 21:28	J
1,2-Dichloroethane-d4 (S)	120	-	%	1	77-125		5/16/2019 21:28	-
Toluene-d8 (S)	93		%	1	80-121		5/16/2019 21:28	

Report ID: 878075 - 774165 Page 31 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

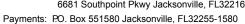
Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/15/19 08:45 Lab ID: J1906176011 Matrix: Water


19134-TripBlank-1 Date Collected: 05/14/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	117		%	1	80-129		5/16/2019 21:2	8

Report ID: 878075 - 774165 Page 32 of 53

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Estimated Result J4

LAB QUALIFIERS

- G DOH Certification #E82001(AEL-G)(FL NELAC Certification)
- J DOH Certification #E82574(AEL-JAX)(FL NELAC Certification)

Report ID: 878075 - 774165 Page 33 of 53

QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/4963 Analysis Method: EPA 300.0

EPA 300.0 QC Batch Method: Prepared:

J1906176001, J1906176002, J1906176003, J1906176004, J1906176005, J1906176006, J1906176007, J1906176008, Associated Lab Samples:

METHOD BLANK: 3096202

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
WET CHEMISTRY				
Chloride	mg/L	0.50	0.50 U	
Nitrate (as N)	mg/L	0.050	0.050 U	

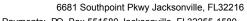
LABORATORY CONTROL SAMPLE & LCSD:	3096203	3096204
-----------------------------------	---------	---------

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec '		% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY Chloride Nitrate (as N)	mg/L mg/L	20	21 1.8	21 1.9	105 92	107 93	90-110 90-110	2	10 10	

MATRIX SEINE SAMELE. 3030203 OHUHAI. 3130017000	MATRIX SPIKE SAMPLE:	3096205	Original:	J1906176001
---	----------------------	---------	-----------	-------------

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Chloride Nitrate (as N)	mg/L mg/L	58 0.009	20 2	64 1.7	28 83	90-110 90-110	

MATRIX SPIKE SAMPLE: 3096350 Original: J1906184002


Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Chloride	mg/L	120	20	110	-10	90-110	
Nitrate (as N)	mg/L	1.3	2	3.9	134	90-110	

QC Batch: DGMj/3402 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 05/16/2019 04:00

J1906176001, J1906176002, J1906176003, J1906176004, J1906176005, J1906176008, J1906176009, J1906176010 Associated Lab Samples:

Report ID: 878075 - 774165 Page 34 of 53

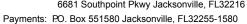
QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3096885	

Parameter	Units	Blank Result	Reporting Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Arsenic	ug/L	9.0	9.0 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Copper	ug/L	4.0	4.0 U
Iron	ug/L	100	100 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Vanadium	ug/L	1.0	1.0 U
Zinc	ug/L	50	50 U

LABORATORY CONTROL SAMPLE: 3096886


Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	200	100	80-120
Arsenic	ug/L	200	190	95	80-120
Barium	ug/L	20	20	101	80-120
Beryllium	ug/L	10	9.8	98	80-120
Cadmium	ug/L	20	20	98	80-120
Cobalt	ug/L	40	40	100	80-120
Chromium	ug/L	40	40	101	80-120
Copper	ug/L	80	79	99	80-120
Iron	ug/L	2000	2000	98	80-120
Nickel	ug/L	120	120	100	80-120
Lead	ug/L	60	58	97	80-120
Selenium	ug/L	800	760	95	80-120
Vanadium	ug/L	20	20	102	80-120
Zinc	ug/L	1000	970	97	80-120

Report ID: 878075 - 774165 Page 35 of 53

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA


Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

METALS

	IATRIX SPIKE DUPL	ICATE: 3096	6920	3096	921	Origi	nal: J1906	3176001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
METALS											
Silver	ug/L	0	200	190	190	97	94	75-125	4	20	
Arsenic	ug/L	160	200	340	340	93	92	75-125	1	20	
Barium	ug/L	69	200	88	86	96	85	75-125	3	20	
Beryllium	ug/L	0.1	10	10	9.7	101	97	75-125	4	20	
Cadmium	ug/L	0.1	20	20	19	98	96	75-125	3	20	
Cobalt	ug/L	2.4	40	42	41	98	96	75-125 75-125	2	20	
Chromium	ug/L	10	40	51	50	102	98	75-125	3	20	
	ug/L	3.4	80	76	74	96	93	75-125	3	20	
Copper Iron	ug/L	8500	2000	10000	10000	92	81	75-125 75-125	2	20	
Nickel	ug/L	1.4	120	120	120	101	98	75-125 75-125	2	20	
Lead	-	1.5	60	59	59	98	98	75-125	0	20	
Selenium	ug/L	0	800	740	720	93	90	75-125 75-125	3	20	
Vanadium	ug/L ug/L	5.4	20	26	720 25	102	99	75-125 75-125	2	20	
Zinc	-	8.3	1000	980	960	98	96	75-125 75-125	2	20	
ZITIC	ug/L	0.3	1000	900	900	90	90	75-125		20	
MATRIX SPIKE & M	IATRIX SPIKE DUPL	ICATE: 3096	6920	3096	921	Origii	nal: J1906	6176001			
		Original	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Qualifiers
METALS											
			7	32	32	70	79	75-125	2	20	
Sodium	mg/L	27									
	-	27			Method:	SW-84	16 7470A				
QC Batch:	DGMj/3408	27		Analysis M	1ethod:		16 7470A	5			
QC Batch: QC Batch Method:	DGMj/3408 SW-846 7470A			Analysis M		05/16/	2019 11:45		1100		07 11006176008
QC Batch: QC Batch Method: Associated Lab San	DGMj/3408 SW-846 7470A nples: J19061760			Analysis M		05/16/	2019 11:45		J1906		07, J1906176008,
Sodium QC Batch: QC Batch Method: Associated Lab Sam METHOD BLANK: 3	DGMj/3408 SW-846 7470A nples: J19061760		002, J190	Analysis M Prepared: 6176003, J1	906176004	05/16/	2019 11:45		J1900		07, J1906176008,
QC Batch: QC Batch Method: Associated Lab San METHOD BLANK: 3	DGMj/3408 SW-846 7470A nples: J19061760	01, J1906176		Analysis M Prepared: 6176003, J1 Reporting	906176004	05/16/	2019 11:45		J1900		07, J1906176008,
QC Batch: QC Batch Method: Associated Lab San	DGMj/3408 SW-846 7470A nples: J190617600	01, J1906176	002, J190 Blank	Analysis M Prepared: 6176003, J1 Reporting	906176004	05/16/	2019 11:45		J1906		07, J1906176008,
QC Batch: QC Batch Method: Associated Lab San METHOD BLANK: 3 Parameter METALS	DGMj/3408 SW-846 7470A nples: J190617600	01, J1906176	002, J190 Blank	Analysis M Prepared: 6176003, J1 Reporting	906176004 Qualifiers	05/16/	2019 11:45		J1900		07, J1906176008
QC Batch: QC Batch Method: Associated Lab San METHOD BLANK: 3 Parameter METALS Mercury	DGMj/3408 SW-846 7470A nples: J19061760 3097875 Units	01, J1906176 I	002, J190 Blank Result	Analysis M Prepared: 6176003, J1 Reporting Limit	906176004 Qualifiers	05/16/	2019 11:45		J1906		07, J1906176008

Report ID: 878075 - 774165 Page 36 of 53

QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3097876

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Mercury	ug/L	2	2.0	101	80-120	

MATRIX SPIKE & MATRI	X SPIKE & MATRIX SPIKE DUPLICATE: 3097877		7877	3097	878	Original: J1906176001					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
METALS Mercury	ug/L	0	2	2.0	2.0	102	102	80-120	0	20	

QC Batch: MSVj/3582 Analysis Method: SW-846 8260B SW-846 5030B QC Batch Method: Prepared: 05/16/2019 11:29

Associated Lab Samples: J1906176001, J1906176002, J1906176003, J1906176004, J1906176005, J1906176006, J1906176007, J1906176008,

METHOD BLANK: 3098837

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
Iodomethane (Methyl Iodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
2-Butanone (MEK)	ug/L	0.43	0.43 U	
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	

Report ID: 878075 - 774165 Page 37 of 53

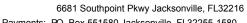
Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

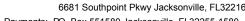
METHOD BLANK: 3098837			
_		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
Benzene	ug/L	0.16	0.16 U
Dibromomethane	ug/L	0.26	0.26 U
1,2-Dichloropropane	ug/L	0.66	0.66 U
Trichloroethene	ug/L	0.29	0.29 U
Bromodichloromethane	ug/L	0.46	0.46 U
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U
1,1,2-Trichloroethane	ug/L	0.30	0.30 U
Toluene	ug/L	0.23	0.23 U
2-Hexanone	ug/L	0.71	0.71 U
Dibromochloromethane	ug/L	0.33	0.33 U
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U
Chlorobenzene	ug/L	0.21	0.21 U
Ethylbenzene	ug/L	0.24	0.24 U
Bromoform	ug/L	0.44	0.44 U
Styrene	ug/L	0.23	0.23 U
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U
1,2,3-Trichloropropane	ug/L	0.91	0.91 U
1,4-Dichlorobenzene	ug/L	0.22	0.22 U
1,2-Dichlorobenzene	ug/L	0.18	0.18 U
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U
Xylene (Total)	ug/L	0.53	0.53 U
1,2-Dichloroethane-d4 (S)	%	106	70-128
Toluene-d8 (S)	%	91	77-119
Bromofluorobenzene (S)	%	106	86-123


LABORATORY CONTROL SAI	MPLE & LCSD:	3098838	3	309883	9				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
VOLATILES									
Chloromethane	ug/L	20	24	15	122	76		47	
Vinyl Chloride	ug/L	20	24	17	118	84	70-130	34	20
Bromomethane	ug/L	20	24	8.9	122	45		93	
Chloroethane	ug/L	20	24	21	122	104		16	
Trichlorofluoromethane	ug/L	20	23	20	117	101		15	
Acetone	ug/L	20	19	15	96	75		25	
1,1-Dichloroethylene	ug/L	20	24	20	118	101	70-130	15	20
Iodomethane (Methyl Iodide)	ug/L	20	22	12	110	61		58	
Acrylonitrile	ug/L	20	20	17	102	85		19	

Report ID: 878075 - 774165 Page 38 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.


QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3098838		309883	3098839				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Methylene Chloride	ug/L	20	23	21	117	106		10	
Carbon Disulfide	ug/L	20	23	19	116	95		20	
trans-1,2-Dichloroethylene	ug/L	20	23	21	117	103		13	
1,1-Dichloroethane	ug/L	20	23	21	115	105		9	
Vinyl Acetate	ug/L	20	20	12	101	61		49	
2-Butanone (MEK)	ug/L	20	19	12	97	61		45	
cis-1,2-Dichloroethylene	ug/L	20	23	20	114	98	70-130	15	20
Bromochloromethane	ug/L	20	26	23	131	114		14	
Chloroform	ug/L	20	24	22	119	112	70-130	6	20
1,2-Dichloroethane	ug/L	20	23	21	113	105		8	
1,1,1-Trichloroethane	ug/L	20	23	23	113	114		1	
Carbon Tetrachloride	ug/L	20	23	22	115	110		4	
Benzene	ug/L	20	24	22	119	110	70-130	8	20
Dibromomethane	ug/L	20	23	22	113	109		4	
1,2-Dichloropropane	ug/L	20	23	22	116	112		3	
Trichloroethene	ug/L	20	23	22	115	112	70-130	2	20
Bromodichloromethane	ug/L	20	23	23	115	115		0	
cis-1,3-Dichloropropene	ug/L	20	20	19	102	97		4	
4-Methyl-2-pentanone (MIBK)	ug/L	20	18	17	92	83		10	
trans-1,3-Dichloropropylene	ug/L	20	20	20	102	99		4	
1,1,2-Trichloroethane	ug/L	20	22	22	111	109		2	
Toluene	ug/L	20	22	20	111	99	70-130	11	20
2-Hexanone	ug/L	20	18	16	89	78		13	
Dibromochloromethane	ug/L	20	21	19	106	97		9	
Tetrachloroethylene (PCE)	ug/L	20	22	19	109	96	70-130	13	20
1,1,1,2-Tetrachloroethane	ug/L	20	22	20	111	100		11	
Chlorobenzene	ug/L	20	22	20	112	99	70-130	12	20
Ethylbenzene	ug/L	20	23	21	115	104	70-130	10	20
Bromoform	ug/L	20	20	18	100	92		9	
Styrene	ug/L	20	21	20	107	99		9	
1,1,2,2-Tetrachloroethane	ug/L	20	21	18	107	91		15	
1,2,3-Trichloropropane	ug/L	20	20	18	100	88		13	
1,4-Dichlorobenzene	ug/L	20	21	19	106	95		12	
1,2-Dichlorobenzene	ug/L	20	21	20	107	98	70-130	10	20
Xylene (Total)	ug/L	60	70	62	117	104	70-130	11	20
1,2-Dichloroethane-d4 (S)	%				93	93	70-128	1	
Toluene-d8 (S)	%				92	92	77-119	1	
Bromofluorobenzene (S)	%				102	101	86-123	1	

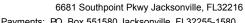
Report ID: 878075 - 774165 Page 39 of 53

Phone: (904)363-9350

Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM


MATRIX SPIKE SAMPLE: 30	98840		Original: J190	6176001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Chloromethane	ug/L	0	20	17	85	
Vinyl Chloride	ug/L	0	20	19	93	70-130
Bromomethane	ug/L	0	20	12	59	
Chloroethane	ug/L	0	20	22	108	
richlorofluoromethane	ug/L	0	20	21	103	
Acetone	ug/L	0	20	17	84	
,1-Dichloroethylene	ug/L	0	20	21	106	70-130
odomethane (Methyl odide)	ug/L	0	20	14	70	
crylonitrile	ug/L	0	20	21	103	
Methylene Chloride	ug/L	0	20	21	106	
Carbon Disulfide	ug/L	0	20	20	99	
rans-1,2-Dichloroethylene	ug/L	0	20	22	108	
,1-Dichloroethane	ug/L	0	20	22	110	
inyl Acetate	ug/L	0	20	16	81	
-Butanone (MEK)	ug/L	0	20	13	66	
is-1,2-Dichloroethylene	ug/L	0	20	20	102	70-130
romochloromethane	ug/L	0	20	24	121	
hloroform	ug/L	0	20	23	115	70-130
,2-Dichloroethane	ug/L	0	20	22	110	
,1,1-Trichloroethane	ug/L	0	20	24	119	
Carbon Tetrachloride	ug/L	0	20	23	113	
Benzene	ug/L	0	20	23	113	70-130
Dibromomethane	ug/L	0	20	22	111	
,2-Dichloropropane	ug/L	0	20	23	114	
richloroethene	ug/L	0	20	22	109	70-130
Bromodichloromethane	ug/L	0	20	23	114	
is-1,3-Dichloropropene	ug/L	0	20	20	100	
-Methyl-2-pentanone MIBK)	ug/L	0	20	19	93	
rans-1,3-Dichloropropylene	ug/L	0	20	20	100	
,1,2-Trichloroethane	ug/L	0	20	22	109	
oluene	ug/L	0	20	20	100	70-130
-Hexanone	ug/L	0	20	18	89	
ibromochloromethane	ug/L	0	20	21	103	
etrachloroethylene (PCE)	ug/L	0	20	19	97	70-130
,1,1,2-Tetrachloroethane	ug/L	0	20	20	100	
Chlorobenzene	ug/L	0	20	20	101	70-130
thylbenzene	ug/L	0	20	22	108	70-130
Bromoform	ug/L	0	20	20	98	
Styrene	ug/L	0	20	20	102	
,1,2,2-Tetrachloroethane	ug/L	0	20	20	101	
,2,3-Trichloropropane	ug/L	0	20	19	93	

Report ID: 878075 - 774165 Page 40 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE:	3098840	Original:	J1906176001
----------------------	---------	-----------	-------------

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
1,4-Dichlorobenzene	ug/L	0	20	21	104	
1,2-Dichlorobenzene	ug/L	0	20	20	101	70-130
Xylene (Total)	ug/L	0	60	64	106	70-130
1,2-Dichloroethane-d4 (S)	%	99			95	70-128
Toluene-d8 (S)	%	92			92	77-119
Bromofluorobenzene (S)	%	106			106	86-123

QC Batch: WCAj/4983 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

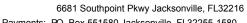
Associated Lab Samples: J1906176001, J1906176002, J1906176003, J1906176004, J1906176005, J1906176006

METHOD BLANK: 3099302

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
WET CHEMISTRY Total Dissolved Solids	mg/L	10	10 U	

LABORATORY CONTROL SAMPLE: 3099303

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY						
Total Dissolved Solids	mg/L	300	330	111	85-115	


SAMPLE DUPLICATE: 3099304 Original: J1906033001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
WET CHEMISTRY Total Dissolved Solid	s mg/L	470	430	10	10
QC Batch:	MSVj/3590		Analysis Meth	od:	SW-846 8260B (SIM)
QC Batch Method:	SW-846 5030B		Prepared:		05/15/2019 15:00

Associated Lab Samples: J1906176001, J1906176002, J1906176003, J1906176004, J1906176005, J1906176006, J1906176007, J1906176008,

Report ID: 878075 - 774165 Page 41 of 53

QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

MEI	HOD	BLANK:	3100285	

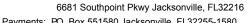
Parameter	Units	Blank Result	Reporting Limit Qualifiers	
VOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.020	0.020 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.11	0.11 U	
1,2-Dichloroethane-d4 (S)	%	119	77-125	
Toluene-d8 (S)	%	96	80-121	
Bromofluorobenzene (S)	%	109	80-129	

LABORATORY	CONTROL SAMPLE & LCSD:	3100286	3100287

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec '	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
VOLATILES									
Ethylene Dibromide (EDB)	ug/L	1	0.81	0.88	81	88	70-130	8	30
1,2-Dibromo-3-Chloropropane	ug/L	1	0.76	0.11U	76	0	70-130	200	30
1,2-Dichloroethane-d4 (S)	%				118	122	77-125	4	
Toluene-d8 (S)	%				93	94	80-121	2	
Bromofluorobenzene (S)	%				114	112	80-129	2	

MATRIX SPIKE SAMPLE: 3100296 Original: J1906176002

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Ethylene Dibromide (EDB)	ug/L	0	1	0.89	89	70-130	
1,2-Dibromo-3- Chloropropane	ug/L	0	1	0.11	0	70-130	
1,2-Dichloroethane-d4 (S)	%	119			120	77-125	
Toluene-d8 (S)	%	94			92	80-121	
Bromofluorobenzene (S)	%	115			110	80-129	


QC Batch: WCAj/5009 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

J1906176007, J1906176008, J1906176009, J1906176010 Associated Lab Samples:

Report ID: 878075 - 774165 Page 42 of 53

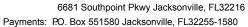
QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM METHOD BLANK: 3100491 Blank Reporting Parameter Limit Qualifiers Units Result WET CHEMISTRY **Total Dissolved Solids** 10 10 U mg/L LABORATORY CONTROL SAMPLE: 3100492 Spike LCS LCS % Rec Parameter Units Conc. % Rec Limits Qualifiers Result WET CHEMISTRY **Total Dissolved Solids** mg/L 300 310 105 85-115 SAMPLE DUPLICATE: 3100493 Original: J1906268001 Original DUP Max Result RPD **RPD Qualifiers** Parameter Units Result WET CHEMISTRY **Total Dissolved Solids** 54 59 9 10 mg/L QC Batch: DGMj/3420 Analysis Method: SW-846 6020 QC Batch Method: SW-846 3010A 05/21/2019 03:30 Prepared: J1906176001, J1906176002, J1906176003, J1906176004, J1906176005, J1906176006, J1906176007, J1906176008, Associated Lab Samples: METHOD BLANK: 3101153 Blank Reporting Parameter Units Result Limit Qualifiers **METALS** Antimony ug/L 0.11 0.11 U Thallium 0.057 0.057 U ug/L LABORATORY CONTROL SAMPLE: 3101154 Spike LCS LCS % Rec Limits Qualifiers Parameter Units Conc. Result % Rec **METALS** 50 103 80-120 Antimony ug/L 51 ug/L 80-120 Thallium 50 55 111

Report ID: 878075 - 774165 Page 43 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.


QUALITY CONTROL DATA

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

WATKIN SPIKE & W.	ATRIX S	IX SPIKE DUPLICATE: 3101155			31011	156	Ori	ginal: J19	06176001			
Parameter		Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	_		RPD	Max RPD	Qualifiers
METALS												
Antimony Thallium		ug/L ug/L	0.21 0.026	50 50	52 56	53 50	104 112			2 12	20 20	
		~ <i>9</i> / =	0.020									
QC Batch:	WCA	g/6515			Analysis M	ethod:	EPA	350.1				
QC Batch Method:	EPA 3	350.1			Prepared:							
Associated Lab Sam	ples:	J1906176001										
METHOD BLANK: 3	101566	3							_			_
Parameter		Units		Blank Result	Reporting Limit	Qualifiers						
WET CHEMISTRY Ammonia (N)		mg/L	0	.0080	0.0080	U						
LABORATORY CON	ITROL S	SAMPLE: 310	1567									
			S	pike	LCS	LO	cs	% Rec				
Parameter		Units		onc.	Result	% R	ec	Limits	Qualifiers			
WET CHEMISTRY Ammonia (N)		mg/L		0.5	0.46	!	93	90-110				
LABORATORY CON	ITROL S	SAMPLE: 310	1568									
			Sı	pike	LCS	LO	cs	% Rec				
Parameter		Units		onc.	Result	% R		Limits	Qualifiers			

Report ID: 878075 - 774165 Page 44 of 53

QUALITY CONTROL DATA

Workorder:	J1906176	J.E.D LAND	FILL (F/K	/a oak hamm

mg/L

Ammonia (N)

16

MATRIX SPIKE & MAT	TRIX SPIKE DUPL	ICATE: 3101	569	31015	570	Origi	inal: G190	3646005			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
WET CHEMISTRY Ammonia (N)	mg/L	0.04	0.4	0.43	0.43	97	96	90-110	0	10	
QC Batch:	WCAg/6516			Analysis M	ethod:	EPA 3	350.1				
QC Batch Method:	EPA 350.1			Prepared:							
Associated Lab Sampl	es: J19061760	02, J1906176	003, J190	6176004, J19	906176005,	J190617	6006, J190	6176007,	J1906	317600	8, J19061760
METHOD BLANK: 310)1582										
Parameter	Units		Blank Result	Reporting Limit	Qualifiers						
WET CHEMISTRY Ammonia (N)	mg/L	0.	.0080	0.0080	U						
			.0800	0.0080	U						
Ammonia (N)		101583 Sp	0080 bike	0.0080 LCS Result	U LC % Re		% Rec Limits C	Qualifiers			
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY	ROL SAMPLE: 3 Units	101583 Sp Co	bike onc.	LCS Result	LC % Re	ec	Limits C	tualifiers.			
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY Ammonia (N)	ROL SAMPLE: 3 Units mg/L	101583 Sp Co	oike	LCS	LC % Re			Qualifiers			
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY	ROL SAMPLE: 3 Units mg/L	101583 Sp Co	bike onc.	LCS Result	LC % Re	ec	Limits C	Qualifiers			
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY Ammonia (N)	ROL SAMPLE: 3 Units mg/L	101583 Sp Cc 101584 Sp	bike onc.	LCS Result	LC % Re	ec 04	Limits C				
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY Ammonia (N) LABORATORY CONT	ROL SAMPLE: 3 Units mg/L ROL SAMPLE: 3	101583 Sr Cc 101584 Sr Cc	bike onc. 0.5	LCS Result 0.52	LC % Re 10 LC % Re	ec 04	90-110 % Rec				
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY	ROL SAMPLE: 3 Units mg/L ROL SAMPLE: 3 Units mg/L	101583 Sp Cc 101584 Sp Cc	oike onc. 0.5 oike onc.	LCS Result 0.52 LCS Result	LC % Re 10 LC % Re	ec 04 05 Sec 97	90-110 % Rec Limits C	Qualifiers			

Report ID: 878075 - 774165 Page 45 of 53

22

22

80

79 90-110

0 10

8

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

QUALITY CONTROL DATA

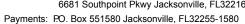
Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

 QC Batch:
 DGMj/3428
 Analysis Method:
 SW-846 6010

 QC Batch Method:
 SW-846 3010A
 Prepared:
 05/22/2019 03:30

Associated Lab Samples: J1906176006, J1906176007

METHOD BLANK: 3102535


		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Arsenic	ug/L	9.0	9.0 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Copper	ug/L	4.0	4.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Vanadium	ug/L	1.0	1.0 U
Zinc	ug/L	50	50 U
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Chromium	ug/L	2.0	2.0 U

LABORATORY CONTROL SAMPLE: 3102536

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	190	94	80-120
Arsenic	ug/L	200	190	94	80-120
Barium	ug/L	20	19	97	80-120
Beryllium	ug/L	10	9.7	97	80-120
Cadmium	ug/L	20	19	94	80-120
Cobalt	ug/L	40	40	99	80-120
Chromium	ug/L	40	38	96	80-120
Copper	ug/L	80	73	91	80-120
ron	ug/L	2000	1800	92	80-120
Sodium	mg/L	7	6.9	98	80-120
Nickel	ug/L	120	120	97	80-120

Report ID: 878075 - 774165 Page 46 of 53

QUALITY CONTROL DATA

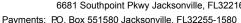
Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3102536

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Lead	ug/L	60	59	99	80-120	
Selenium	ug/L	800	760	94	80-120	
Vanadium	ug/L	20	22	108	80-120	
Zinc	ug/L	1000	960	96	80-120	

MATRIX SPIKE & MATR	RIX SPIKE DUPL	ICATE: 3102	2537	3102	538	Origir	nal: J1906	6268001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
METALS											
Silver	ug/L	0	200	180	180	89	90	75-125	1	20	
Arsenic	ug/L	3	200	190	190	95	95	75-125	0	20	
Barium	ug/L	130	20	150	150	83	89	75-125	1	20	
Beryllium	ug/L	1.2	10	11	11	95	95	75-125	0	20	
Cadmium	ug/L	0	20	19	19	96	95	75-125	1	20	
Cobalt	ug/L	0	40	40	40	99	99	75-125	0	20	
Chromium	ug/L	1.6	40	39	38	98	95	75-125	3	20	
Copper	ug/L	0	80	72	68	90	85	75-125	6	20	
Iron	ug/L	880	2000	2700	2700	92	91	75-125	0	20	
Sodium	mg/L	21	7	27	27	89	90	75-125	0	20	
Nickel	ug/L	1.9	120	120	120	98	98	75-125	0	20	
Lead	ug/L	3.2	60	60	61	95	97	75-125	1	20	
Selenium	ug/L	0	800	760	760	95	95	75-125	0	20	
Vanadium	ug/L	34	20	50	54	84	104	75-125	8	20	
Zinc	ug/L	8.1	1000	990	970	99	97	75-125	2	20	

QUALITY CONTROL DATA QUALIFIERS


Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

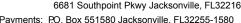
QUALITY CONTROL PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- ı The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J4 **Estimated Result**

Report ID: 878075 - 774165 Page 47 of 53

QUALITY CONTROL DATA CROSS REFERENCE TABLE

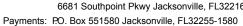
Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM


Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906176001	19134-CW-1A			EPA 300.0	WCAj/4963
J1906176002	19134-MW-23A			EPA 300.0	WCAj/4963
J1906176003	19134-MW-23B			EPA 300.0	WCAj/4963
J1906176004	19134-MW-25A			EPA 300.0	WCAj/4963
J1906176005	19134-MW-25B			EPA 300.0	WCAj/4963
J1906176006	19134-MW-30A			EPA 300.0	WCAj/4963
J1906176007	19134-MW-30B			EPA 300.0	WCAj/4963
J1906176008	19134-MW-31A			EPA 300.0	WCAj/4963
J1906176009	19134-MW-31B			EPA 300.0	WCAj/4963
J1906176010	19134-EQ-1			EPA 300.0	WCAj/4963
J1906176001	19134-CW-1A	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176002	19134-MW-23A	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176003	19134-MW-23B	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176004	19134-MW-25A	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176005	19134-MW-25B	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176008	19134-MW-31A	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176009	19134-MW-31B	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176010	19134-EQ-1	SW-846 3010A	DGMj/3402	SW-846 6010	ICPj/1959
J1906176001	19134-CW-1A	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176002	19134-MW-23A	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176003	19134-MW-23B	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176004	19134-MW-25A	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176005	19134-MW-25B	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176006	19134-MW-30A	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176007	19134-MW-30B	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176008	19134-MW-31A	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176009	19134-MW-31B	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176010	19134-EQ-1	SW-846 7470A	DGMj/3408	SW-846 7470A	CVAj/1518
J1906176001	19134-CW-1A	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176002	19134-MW-23A	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176003	19134-MW-23B	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583

Report ID: 878075 - 774165 Page 48 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906176004	19134-MW-25A	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176005	19134-MW-25B	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176006	19134-MW-30A	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176007	19134-MW-30B	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176008	19134-MW-31A	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176009	19134-MW-31B	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176010	19134-EQ-1	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176011	19134-TripBlank-1	SW-846 5030B	MSVj/3582	SW-846 8260B	MSVj/3583
J1906176001	19134-CW-1A			SM 2540 C	WCAj/4983
J1906176002	19134-MW-23A			SM 2540 C	WCAj/4983
J1906176003	19134-MW-23B			SM 2540 C	WCAj/4983
J1906176004	19134-MW-25A			SM 2540 C	WCAj/4983
1906176005	19134-MW-25B			SM 2540 C	WCAj/4983
J1906176006	19134-MW-30A			SM 2540 C	WCAj/4983
J1906176001	19134-CW-1A	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176002	19134-MW-23A	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176003	19134-MW-23B	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176004	19134-MW-25A	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176005	19134-MW-25B	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176006	19134-MW-30A	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176007	19134-MW-30B	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176008	19134-MW-31A	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176009	19134-MW-31B	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176010	19134-EQ-1	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176011	19134-TripBlank-1	SW-846 5030B	MSVj/3590	SW-846 8260B (SIM)	MSVj/3591
J1906176007	19134-MW-30B			SM 2540 C	WCAj/5009
J1906176008	19134-MW-31A			SM 2540 C	WCAj/5009
J1906176009	19134-MW-31B			SM 2540 C	WCAj/5009
J1906176010	19134-EQ-1			SM 2540 C	WCAj/5009

Report ID: 878075 - 774165 Page 49 of 53

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1906176 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906176001	19134-CW-1A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176002	19134-MW-23A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176003	19134-MW-23B	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176004	19134-MW-25A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176005	19134-MW-25B	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176006	19134-MW-30A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176007	19134-MW-30B	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176008	19134-MW-31A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176009	19134-MW-31B	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176010	19134-EQ-1	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
J1906176001	19134-CW-1A			EPA 350.1	WCAg/6515
J1906176002	19134-MW-23A			EPA 350.1	WCAg/6516
J1906176003	19134-MW-23B			EPA 350.1	WCAg/6516
J1906176004	19134-MW-25A			EPA 350.1	WCAg/6516
J1906176005	19134-MW-25B			EPA 350.1	WCAg/6516
J1906176006	19134-MW-30A			EPA 350.1	WCAg/6516
J1906176007	19134-MW-30B			EPA 350.1	WCAg/6516
J1906176008	19134-MW-31A			EPA 350.1	WCAg/6516
J1906176009	19134-MW-31B			EPA 350.1	WCAg/6516
J1906176010	19134-EQ-1			EPA 350.1	WCAg/6516
J1906176006	19134-MW-30A	SW-846 3010A	DGMj/3428	SW-846 6010	ICPj/1975
J1906176007	19134-MW-30B	SW-846 3010A	DGMj/3428	SW-846 6010	ICPj/1975

Report ID: 878075 - 774165 Page 50 of 53

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1018	
Artamorite Springs. 526 S. Northiake Blvg., Ste. 1018	· Alta
Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608	- 352
Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL	32216
Miramar: 10200 USA Today Way, Miramar, FL 33025 • 98	54.889
Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL	3230
Tampa: 0640 Bringers Bolm Ave. Town 51 ages 54	

Supplier of Water: Site-Address:

Client Name:	Waste Connections, Inc.				DISPOS	DFILL (F/I		BOTTLE SIZE & TYPE	15.3	100				1	ī	1 1	1
Address:	5135 Madison Avenue		ber/Project					BO)	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic					H.
Ta	mpa, Florida 33619	Project Lo	cation:						1		60	NE		-			MB MB
FAX: Contact:	(468-6/42) Kirk Wills		Project Name and Address: JED SWDF /SOI Omn: Way, SI. Claud, FL						App I VOAs+EDB/DBCP	App I Metals+Fe,Hg,Na	DS					LABORATORY I.D. NUMBER	
Turn Around Time: S	Staple, + Daniel Montial STANDARD RUSH			ructio	ns: Jax	Profile: 3	31172	ANALYSIS REQUIRED	P I	b l tals+	CI/NO3/TDS	6		1			MATO
Page	of _ 2	■ At	DaPT	□ EQ	ils			A	A S	App	5	NH3		- 1			, S
SAMPLE ID	SAMPLE DESCRIPTION		Grab Comp	DATI	AMPLING TIME	MATRIX	NO. COUNT	PRESER- VATION	HCL	HNO3	lce	H2SO4				1.1	, A
9134-CW-3A	Stilling - Simple ID should	lbe	G	5/14	19 1254	GW	6		3	1	l	ı					001
19134-146-231	1 1A, not 3A, per 3 Stupley 5/17/19 C	Weil	-	1	0930	-	1				1	1				7.1	002
14134-144-23 1	3 Stupley 5/17/19 C	Du		\square	1012						H					= 4	003
19134-MW-25-	4				1313				12			4				-1	004
19134-MW-181	В				1353												005
19134-AW-30	4				1111				111	717							006
19134-144.30	3				1137											- 1	007
19134-AW-31A					1136	T			File								008
19134-AW-31B			V	1	1304	GW			9	1	V	1			-	1 - 1	009
19734-EQ-1			6	5/14/	19 1330	W	6		3	1	ŧ	1					010
Matrix Code: WW =	wastewater SW = surface water GW = gr	ound water	DW = d	rinking w	ater O = oi	A = air S	O = soil S	L = sludg	je	Preserva	tion Cod	ie: I=ice	H=(HCI) S	= (H2SO4)	N = (HNO3) T = (Sodi	um Thiosulfate)
The state of the s	Yes No MTemp taken from sample ast revised 08/18/2014	le 🔲	Temp fro	m blank	Device use	d for measurin	ng Temp by		□Where	required,	pH chec	ked	Temperati	ure when rec	eived	4_(in a	degrees celcius)
Relino	quished by: Date Time			eived by		Date	Time	1	-				ER USE:		(1-0)	4. Mindel	J. 14
1 /DN	5/14/19 1600		Fed			5/14/19			Who	en PWS Inf	ormation r	not otherwis	a supplied)	PWS ID:	_		
2 Fede	X 5-15-19 8: 45	7	30	a	R	5 519	8:45		Co	ontact Per	son:			P	hone		

Friday, May 24, 2019 9:50:59 AM Page 51 of 53

□ Altamonte Springs: 528 S. Northlake Blvd., Ste. 101
□ Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 3260
□ Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL
□ Miramar: 10200 USA Today Way, Miramar, FL 33025 • 9
□ Tallahassee: 1288 Cedar Center Drive, Tallahassee, Fl
□ Tampa: 9610 Princess Palm Ave. • Tampa, FL 33619 • 8•

11111								
*	11	9	0	6	1	7	6	*

Client Name:	Waste Connections, Inc.	OAK HAN					VA	BOTTLE SIZE & TYP	3	40	~ 0	20							200
Address:	5135 Madison Avenue	P.O. Number/Pro	oject Nun	mber.				BO	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic							ER
Та	ampa, Florida 33619	Project Location	5						1	4/12	47.02	NIL							MB
Phone: 81	13-468-6142	FDEP Facili	ty No:	89544				뿔	۵	m									NUMBER
FAX:		Project Name an	d Addres	55 TE	D Su	DE		20	1 8	Z	3.1								
Contact:	Kirk Wills			150	1 0m	ni way	,	R	B/C	Ĭ	S							- 1	=
Sampled By: Ne.	1 Stopley + Daniel Montice			9 7		,FL		SIS	B	H H	E							_ 1	R.
Turn Around Time: 🔀	STANDARD RUSH	Special Ir	struc				1172	Ž	- 5	- 18	03								FI
Page_∂	of	■ ADaPT			, oux	TOILLE, O		ANALYSIS REQUIRED	App I VOAS+EDB/DBCP	App I Metals+Fe,Hg,Na	CI/NO3/TDS	NH3	-						ABORATORY I.D.
SAMPLE ID	SAMPLE DESCRIPTION	Gr. Con	mn -	SAMP	6.10	MATRIX	NO. COUNT	PRESER- VATION	HCL	HNO3	lce	H2SO4						П	LAB
			110	DATE	TIME		COUNT	8 2											
19134-TripBlad	-/	17.0	-	-	-	DI HO	3		3										011
			1					1										-	-
			+	-					_										
								. }											
				- 1			1												
							T			-									
			+				-											-	
-				_															
- 7																			
						-													
			+															-	
Matrix Code: WW =	Supertougles SIN = endocounter CIN = a	cound mates. DIM	- 92-0		A		and the second		1100								=		
	= wastewater SW = surface water GW = g				O = Oil	A = air SC	soil Si	_							_		T = (Sodio		
7	last revised 08/18/2014	ole Temp	from bi		vice used	for measuring	g Temp by		Where lentifier (cir					erature wh				degrees o	elcius)
Relin	quished by: Date Time		Receive			Date	Time					WATE			15.70	74.00	W. JA	J. (V	
1		Fed	ex									ot otherwise			(D:				
2 Fede	× 545.19 8:45		2	h	2	5-15-19	8:45		Co	ntact Pers	son:				Pho	пе:			
3		1 1							Sup	plier of W	ater:								

Site-Address:

Donniumal hour	5-15-19 8:	45 Log	g-In request numbe	r. J19	06	176	FILL PA
Received by:	BA		Completed by				
ooler/Shipping		* .	*				
urier: 🗆 AEL 🗎 Cl	ient 🗆 UPS 🗆 Blue	Streak K FedEx I	AFS FLASAP FL	Other (decerif	101		
pe: M Cooler D Box	☐ Other (describe)		- THE EMONE E	Other (describ	ie):		
				-		_	
oler temperature, i	dentity the cooler ar	id document the tem	perature blank or ice	water measu	ıremeri	t _	-
Cooler ID		A.					
Temp (°C)	400		4				
Temp taken from	☐ Sample Bottle ☐ Cooler	☐ Sample Bottle ☐ Cooler	☐ Sample Bottle	☐ Sample Bottle		□ Sample	e Bottle
Temp measured	DIR gun-S/N 9333779	☐ IR gun S/N 9333779	☐ Cooler. ☐ IR gun S/N 9333779	☐ Cooler . ☐ IR gun S/N 93	33770	☐ Cooler	
with	☐ Thermometer (enter ID):	☐ Thermometer (enter ID):	☐ Thermométer (enter ID):	☐ Thermometer (ID):	(enter	D Therme	ometer (enter
Were custody se Were custody se	als on shipping contain	ner(s) intact?	* 8		YES	NO	NA
		CHECKLIST					
1. Were custody se	als on shipping contai	ner(s) intact?	* 8		YES	NO	NA
2. Were custody pa	pers properly included	d with samples?		-	1		
Were custody pa	pers properly filled ou	it (ink, signed, match l	abels)?		-		
A Drd oll battles	rive in good condition	(unbroken)?			1		
4. Did all bottles ar	E.A. C					-	-
 Were all bottle la 	abels complete (sample	e #, date, signed, analy	sis, preservatives)?	7	-	11.0	4.0
 Did all bottles ar Were all bottle is Did the sample is 	abels complete (sample abels agree with the ch	ain of custody?	sis, preservatives)?	,	-	1	9
Were all bottle la Did the sample la Were correct bottle	abels complete (sample abels agree with the ch tles used for the tests i	nain of custody?			1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam	abels complete (sample abels agree with the ch tles used for the tests in the preservation technique.	nain of custody? indicated?			-		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples rec	abels complete (sample abels agree with the chat tles used for the tests in the preservation technologies within the preservation technologies.	nain of custody? indicated? iques indicated on the times?		Y	1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples red 10. Were all VOA vi	abels complete (sample abels agree with the chartles used for the tests in the preservation technologies within holding als free of the presence	nain of custody? indicated? indicated on the times? e of air bubbles?	label?	Y	1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO	abels complete (sample abels agree with the chartles used for the tests in the preservation technologies within holding als free of the presence. A Vials and Encores I	nain of custody? indicated? indicated on the times? e of air bubbles?	label?	llection?	1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples red 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in	abels complete (sample abels agree with the chartles used for the tests in the preservation technologies within holding als free of the presence A Vials and Encores Edirect contact with we	nain of custody? indicated? indicated on the times? e of air bubbles? cen placed in a freeze t ice? If "No," check of	label?	Ilection? JE ICE	1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples red 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te	abels complete (sample abels agree with the chartles used for the tests in the preservation technologies within holding als free of the presence A Vials and Encores Edirect contact with we more attract of the presence of t	nain of custody? indicated? indicated on the times? e of air bubbles? ecen placed in a freeze t ice? If "No," check of	label? r within 48 hours of co one: □ NO ICE □ BLI	JE ICE	1111		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser	abels complete (sample abels agree with the challes used for the tests in the preservation technologies within holding als free of the presence. A Vials and Encores Indirect contact with we imperature less than 6° vation is required, are	nain of custody? Indicated? Indicated? Indicated on the times? Indicated? Indicated on the times?	label? r within 48 hours of co one: □ NO ICE □ BLU	JE ICE	1/1/1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control?	abels complete (sample abels agree with the challes used for the tests in the preservation technologies within holding als free of the presence A Vials and Encores Edirect contact with we imperature less than 6° vation is required, are Are all <2 or>102 N	nain of custody? Indicated? Indicated? Indicated on the times? Indicated on the times? Indicated on the times? Indicated on the times? Indicated in a freeze of the times of times of the times of	label? r within 48 hours of co one: □ NO ICE □ BLU	JE ICE	1/1/1	/	
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control? 15. Was sufficient sai	abels complete (sample abels agree with the charles used for the tests in ple preservation technologies within holding als free of the presence A Vials and Encores Edirect contact with we imperature less than 6° vation is required, are Are all <2 or >10? No	nain of custody? indicated? indicated? induces indicated on the times? e of air bubbles? eeen placed in a freeze tice? If "No," check of "C? sample pHs checked a lote: VOA samples are	label? r within 48 hours of coone: □ NO ICE □ BLI nd any anomalies reco	JE ICE rded by analysts.	1/1/1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples red 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control? 15. Was sufficient san 16. If for Bacteriolog	abels complete (sample abels agree with the charles used for the tests in ple preservation technologies within holding als free of the presence A Vials and Encores Edirect contact with we imperature less than 6° vation is required, are Are all <2 or >10? No inple volume provided ical testing, were contact	nain of custody? indicated? indicated? inques indicated on the times? e of air bubbles? eeen placed in a freeze t ice? If "No," check of C? sample pHs checked a lote: VOA samples are to perform all tests?	r within 48 hours of coone: □ NO ICE □ BLI nd any anomalies reco	JE ICE rded by analysts.	1/1/1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples red 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control? 15. Was sufficient sai 16. If for Bacteriolog 17. Were all sample of	abels complete (sample abels agree with the challes used for the tests in the preservation technologies within holding als free of the presence A Vials and Encores Edirect contact with we amperature less than 6° vation is required, are Are all <2 or >10? Number of the provided ical testing, were contacted to the provided by containers provided by	nain of custody? Indicated? Indicated? Indicated on the times? Indicated on the times of times? Indicated on the times? Indica	r within 48 hours of coone: □ NO ICE □ BLI nd any anomalies reco	JE ICE rded by analysts.	1/1/1		
5. Were all bottle la 6. Did the sample la 7. Were correct bot 8. Were proper sam 9. Were samples red 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control? 15. Was sufficient san 16. If for Bacteriolog 17. Were all sample co 18. Were samples acc	abels complete (sample abels agree with the challes used for the tests in the preservation technologies within holding als free of the presence. A Vials and Encores a direct contact with we apperature less than 6° vation is required, are Are all <2 or >10? Number of the presence of the	nain of custody? Indicated? Indicated? Indicated on the times? Indicated on the times of times? Indicated on the times? Indica	label? r within 48 hours of coone: □ NO ICE □ BLU nd any anomalies reco checked by laboratory .? (See QA officer if a cteriological)	JE ICE rded by analysts.	1/1/1		

DCN: AD-D048 Eff date 2/3/10, Last rev 9/6/16

Project No.: J1906176

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 7470A Preparation: SW-846 7470A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: The upper control criterion was exceeded for Mercury in the Continuing Calibration

Verification (CCV) standards for analytical batch 1518, indicating increased sensitivity. The client samples (J1906176001 through -010) reported in this batch did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is

not affected.

B. Blanks: All acceptance criteria were met.C. Duplicates: All acceptance criteria were met.

D. Spikes: All acceptance criteria were met.E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906176

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.
 B. Blanks: All acceptance criteria were met.
 C. Surrogates: All acceptance criteria were met.

D. Spikes: The relative percent difference (RPD) for Vinyl Chloride between the Laboratory Control

Sample (LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in 3098838, in comparison with 3098839. Spike recoveries in the LCS and LCSD were within acceptable limits, indicating the analytical batch was in control. No further corrective action was required.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906176

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B (SIM)

Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Surrogates: The control criterion was exceeded for the following surrogate in sample J1906176003

due to matrix interferences:Bromofluorobenzene. This surrogate is not associated with

any target analytes in the sample. No further corrective action was required.

D. Spikes: All acceptance criteria were met.E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906176

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 350.1

Preparation: None

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike recovery of NH3 for J1906176002 was outside control criteria. Recoveries

in the Laboratory Control Sample (LCS) and %RPD were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in

this matrix. No further corrective action was required.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906176

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 300.0

Preparation: None

V. Preparation

J1906167001 and J1906167002 were analyzed at dilution due to high Chloride levels. The lowest possible dilution was performed to allow the analyte value to be within the calibration curves highest level and to prevent possible carry over in the following sample analyses.

V. Analysis

A. Calibration: All acceptance criteria were met.

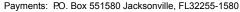
B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The relative percent difference (RPD) for Fluoride between the Laboratory Control Sample

(LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in 3096204 in comparison with3096203. Spike recoveries in the LCS and LCSD were within acceptable limits, indicating the analytical

batch was in control. No further corrective action was required.


The matrix spike (MS) recoveries of Fluoride, Chloride, Nitrate and Sulfate for J1906176001 and J1906184002 were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. The affected sample is qualified to indicate matrix interference.

The matrix spike (MS) recovery of Nitrite for J1906184002 outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential high bias in this matrix. The offending analytes were not detected in the client sample. No further corrective action is required.

The matrix spike recovery of Nitrate for J1906184002 was outside control criteria due to the presence of target analytes in the sample. Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential high bias in this matrix. The affected sample is qualified to indicate matrix interference.

- E. Serial Diluion:
- F. Samples:
- G. Other:

June 6, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

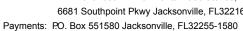
RE: Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, May 16, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

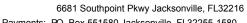

Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 878563 - 812022 Page 1 of 103

SAMPLE SUMMARY


Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected	Date Received
J1906272001	19135-MW-1A	Water	5/15/2019 07:40	5/16/2019 08:45
J1906272002	19135-MW-1B	Water	5/15/2019 08:02	5/16/2019 08:45
J1906272003	19135-MW-2A	Water	5/15/2019 08:52	5/16/2019 08:45
J1906272004	19135-MW-2B	Water	5/15/2019 09:08	5/16/2019 08:45
J1906272005	19135-MW-3A	Water	5/15/2019 10:18	5/16/2019 08:45
J1906272006	19135-MW-3B	Water	5/15/2019 09:56	5/16/2019 08:45
J1906272007	19135-MW-4A	Water	5/15/2019 11:36	5/16/2019 08:45
J1906272008	19135-MW-4B	Water	5/15/2019 11:10	5/16/2019 08:45
J1906272009	19135-MW-5A	Water	5/15/2019 12:54	5/16/2019 08:45
J1906272010	19135-MW-5B	Water	5/15/2019 12:32	5/16/2019 08:45
J1906272011	19135-MW-6A	Water	5/15/2019 14:10	5/16/2019 08:45
J1906272012	19135-MW-6B	Water	5/15/2019 13:46	5/16/2019 08:45
J1906272013	19135-MW-16AR	Water	5/15/2019 14:03	5/16/2019 08:45
J1906272014	19135-MW-16BR	Water	5/15/2019 14:18	5/16/2019 08:45
J1906272015	19135-MW-17AR	Water	5/15/2019 12:26	5/16/2019 08:45
J1906272016	19135-MW-17BR	Water	5/15/2019 13:18	5/16/2019 08:45
J1906272017	19135-MW-27A	Water	5/15/2019 07:39	5/16/2019 08:45
J1906272018	19135-MW-27B	Water	5/15/2019 08:28	5/16/2019 08:45
J1906272019	19135-MW-28A	Water	5/15/2019 09:15	5/16/2019 08:45
J1906272020	19135-MW-28B	Water	5/15/2019 09:50	5/16/2019 08:45
J1906272021	19135-MW-29A	Water	5/15/2019 10:40	5/16/2019 08:45
J1906272022	19135-MW-29B	Water	5/15/2019 11:08	5/16/2019 08:45
J1906272023	19135-TripBlank-2	Water	5/15/2019 00:00	5/16/2019 08:45
J1906272024	19135-TripBlank-3	Water	5/15/2019 00:00	5/16/2019 08:45
J1906272025	19135-TripBlank-4	Water	5/15/2019 00:00	5/16/2019 08:45

Report ID: 878563 - 812022 Page 2 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

VOLATILES

Date Received: 05/16/19 08:45 Lab ID: J1906272001 Matrix: Water

19135-MW-1A Date Collected: 05/15/19 07:40 Sample ID:

Sample Description: Location:

Analyzed	Lab
5/28/2019 14:33	J
5/22/2019 21:33	J
5/22/2019 21:33	J
0/22/2010 21:00	
5/24/2019 16:56	J
5/31/2019 10:04	J
5/31/2019 10:04	J
	·
5	

Report ID: 878563 - 812022 Page 3 of 103

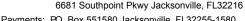
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906272001 Date Received: 05/16/19 08:45 Matrix: Water

Sample ID: 19135-MW-1A Date Collected: 05/15/19 07:40


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Anal	ytical Me	thod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 12:05	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 12:05	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 12:05	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 12:05	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 12:05	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 12:05	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 12:05	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 12:05	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 12:05	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 12:05	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 12:05	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 12:05	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 12:05	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 12:05	J
Acetone	8.3		ug/L	1	5.0	2.1	5/28/2019 12:05	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 12:05	J
Benzene	2.4		ug/L	1	1.0	0.16	5/28/2019 12:05	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 12:05	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 12:05	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 12:05	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 12:05	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 12:05	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 12:05	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 12:05	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 12:05	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 12:05	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 12:05	J
Dibromochloromethane	0.33	Ū	ug/L	1	1.0	0.33	5/28/2019 12:05	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 12:05	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 12:05	J
Iodomethane (Methyl Iodide)	0.16	Ū	ug/L	1	1.0	0.16	5/28/2019 12:05	J
Methylene Chloride	2.5	Ü	ug/L	1	5.0	2.5	5/28/2019 12:05	J
Styrene	0.23	Ü	ug/L	1	1.0	0.23	5/28/2019 12:05	J
Tetrachloroethylene (PCE)	0.36	Ü	ug/L	1	1.0	0.36	5/28/2019 12:05	J
Toluene	0.23	Ü	ug/L	1	1.0	0.23	5/28/2019 12:05	J
Trichloroethene	0.29	Ü	ug/L	1	1.0	0.29	5/28/2019 12:05	J
Trichlorofluoromethane	0.32	Ü	ug/L	1	1.0	0.32	5/28/2019 12:05	J

Report ID: 878563 - 812022 Page 4 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272001 Matrix: Water

19135-MW-1A Date Collected: 05/15/19 07:40 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 12:05	
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 12:05	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 12:05	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 12:05	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 12:05	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 12:05	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 12:05	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 12:05	J
1,2-Dichloroethane-d4 (S)	90		%	1	70-128		5/28/2019 12:05	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 12:05	
Bromofluorobenzene (S)	107		%	1	86-123		5/28/2019 12:05	

WET CHEMISTRY

Analysis Desc: IC,E300.0,Water	Analyti	ical Method	: EPA 30	0.0				
Chloride	550	mg	/L	5	25	2.5	5/16/2019 18:12	J
Nitrate (as N)	0.25	U mg	/L	5	2.5	0.25	5/16/2019 18:12	J
Analysis Desc: Ammonia,E350.1,Water	Analyti	ical Method	: EPA 350	0.1				
Ammonia (N)	12	mg	/L	20	0.20	0.16	5/20/2019 16:44	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Analyti	ical Method	: SM 254	0 C				
Total Dissolved Solids	980	mo	ı/I	1	10	10	5/20/2019 12:17	.I

Date Received: 05/16/19 08:45 Matrix: Water Lab ID: J1906272002

Date Collected: 05/15/19 08:02 Sample ID: 19135-MW-1B

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical M	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 14:37	J
Barium	72		ug/L	1	4.0	1.0	5/28/2019 14:37	J
Beryllium	0.50	ı	ug/L	1	2.0	0.50	5/28/2019 14:37	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 14:37	J

Report ID: 878563 - 812022 Page 5 of 103

CERTIFICATE OF ANALYSIS

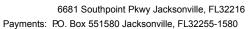
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272002 Matrix: Water

19135-MW-1B Date Collected: 05/15/19 08:02 Sample ID:


Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:37	J
Cobalt	7.8	1	ug/L	1	8.0	2.0	5/28/2019 14:37	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:37	J
Iron	24000		ug/L	1	400	100	5/28/2019 14:37	J
Lead	6.7	ı	ug/L	1	12	3.0	5/28/2019 14:37	J
Nickel	9.1	ı	ug/L	1	24	6.0	5/28/2019 14:37	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:37	J
Silver	10	U	ug/L	1	40	10	5/28/2019 14:37	J
Sodium	250		mg/L	1	1.4	0.35	5/28/2019 14:37	J
Vanadium	17	V	ug/L	1	4.0	1.0	5/28/2019 14:37	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 14:37	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.13	1	ug/L	1	0.70	0.11	5/22/2019 21:38	J
Thallium	0.10	- 1	ug/L	1	0.20	0.057	5/22/2019 21:38	J
Analysis Desc: SW846 7470A	Pre	paration I	Method: SV	V-846 7470A				
Analysis,Water	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:59	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Pre	oaration I	Method: SV	V-846 8011				
Water	Ana	lytical Me	ethod: SW-8	346 8011				
1,2-Dibromo-3-Chloropropane	0.0062	U	ug/L	1	0.021	0.0062	5/31/2019 10:35	J
Ethylene Dibromide (EDB)	0.0064	U	ug/L	1	0.021	0.0064	5/31/2019 10:35	J
Tetrachloro-m-xylene (S)	0	J4	%	1	64-150		5/31/2019 10:35	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Pre	oaration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 12:35	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 12:35	J
1,1,2,2-Tetrachloroethane	0.20	U	_	1	1.0	0.20	5/28/2019 12:35	J
• • •	0.30	Ū	ug/L	1	1.0	0.30	5/28/2019 12:35	J
• •	0.14	Ū	_	1	1.0	0.14	5/28/2019 12:35	J
•	0.18	Ū	_	1	1.0	0.18	5/28/2019 12:35	J
	0.91	Ü	_	1	1.0	0.91		J
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,3-Trichloropropane	0.30 0.14 0.18	U U U	ug/L ug/L ug/L ug/L ug/L	1 1 1	1.0 1.0 1.0	0.30 0.14 0.18	5/28/2019 12:35 5/28/2019 12:35 5/28/2019 12:35	5 5 5

Report ID: 878563 - 812022 Page 6 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272002 Matrix: Water

Sample ID: 19135-MW-1B Date Collected: 05/15/19 08:02

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 12:35	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 12:35	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 12:35	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 12:35	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 12:35	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 12:35	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 12:35	J
Acetone	5.7		ug/L	1	5.0	2.1	5/28/2019 12:35	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 12:35	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 12:35	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 12:35	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 12:35	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 12:35	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 12:35	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 12:35	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 12:35	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 12:35	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 12:35	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 12:35	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 12:35	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 12:35	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 12:35	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 12:35	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 12:35	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 12:35	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 12:35	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 12:35	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 12:35	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 12:35	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 12:35	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 12:35	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 12:35	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 12:35	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 12:35	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 12:35	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 12:35	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 12:35	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 12:35	J
1,2-Dichloroethane-d4 (S)	91		%	1	70-128		5/28/2019 12:35	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 12:35	

Report ID: 878563 - 812022 Page 7 of 103

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272002 Matrix: Water

19135-MW-1B Date Collected: 05/15/19 08:02 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	109		%	1	86-123		5/28/2019 12:35	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EPA	300.0				
Chloride Nitrate (as N)	730 0.50	U	mg/L mg/L	10 10	50 5.0	5.0 0.50	5/16/2019 19:16 5/16/2019 19:16	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EPA	350.1				
Ammonia (N)	8.2		mg/L	20	0.20	0.16	5/20/2019 16:11	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	1300		mg/L	1	10	10	5/20/2019 12:17	J

Date Received: 05/16/19 08:45 Lab ID: J1906272003 Matrix: Water

Date Collected: 05/15/19 08:52 Sample ID: 19135-MW-2A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Water	Ana	lytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 14:41	J
Barium	64		ug/L	1	4.0	1.0	5/28/2019 14:41	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 14:41	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 14:41	J
Chromium	2.0	ı	ug/L	1	8.0	2.0	5/28/2019 14:41	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:41	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:41	J
Iron	13000		ug/L	1	400	100	5/28/2019 14:41	J
Lead	6.4	ı	ug/L	1	12	3.0	5/28/2019 14:41	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 14:41	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:41	J
Silver	10	U	ug/L	1	40	10	5/28/2019 14:41	J
Sodium	73		mg/L	1	1.4	0.35	5/28/2019 14:41	J
Vanadium	9.0	٧	ua/L	1	4.0	1.0	5/28/2019 14:41	J

Report ID: 878563 - 812022 Page 8 of 103

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272003 Matrix: Water

19135-MW-2A Date Collected: 05/15/19 08:52 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Zinc	50	U	ug/L	1	200	50	5/28/2019 14:41	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:43	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 21:43	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:09	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water	Anal	ytical Me	ethod: SW-	846 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 12:12	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 12:12	J
Tetrachloro-m-xylene (S)	79		%	1	64-150		5/31/2019 12:12	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 13:05	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 13:05	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 13:05	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 13:05	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 13:05	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 13:05	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 13:05	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 13:05	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 13:05	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 13:05	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 13:05	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 13:05	J
2-Hexanone	0.71	Ū	ug/L	1	5.0	0.71		J
4-Methyl-2-pentanone (MIBK)	0.47	Ü	ug/L	1	1.0	0.47	5/28/2019 13:05	J
Acetone	3.9	Ī	ug/L	1	5.0	2.1	5/28/2019 13:05	J
Acrylonitrile	1.1	Ü	ug/L	1	10	1.1	5/28/2019 13:05	J
· • · · · · · · · · · · · · · · · · · ·	0.16	Ü	ug/L	1	1.0	0.16	5/28/2019 13:05	J

Report ID: 878563 - 812022 Page 9 of 103

CERTIFICATE OF ANALYSIS

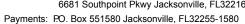
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272003 Matrix: Water

19135-MW-2A Date Collected: 05/15/19 08:52 Sample ID:


Sample Description: Location:

Sample Description.				Lucation.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 13:05	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 13:05	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 13:05	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 13:05	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 13:05	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 13:05	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 13:05	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 13:05	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 13:05	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 13:05	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 13:05	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 13:05	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 13:05	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 13:05	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 13:05	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 13:05	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 13:05	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 13:05	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 13:05	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 13:05	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 13:05	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 13:05	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 13:05	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 13:05	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 13:05	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 13:05	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 13:05	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 13:05	J
1,2-Dichloroethane-d4 (S)	90		%	1	70-128		5/28/2019 13:05	
Toluene-d8 (S)	96		%	1	77-119		5/28/2019 13:05	
Bromofluorobenzene (S)	108		%	1	86-123		5/28/2019 13:05	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	200		mg/L	1	5.0	0.50	5/16/2019 19:59	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/16/2019 19:59	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	9.4		mg/L	10	0.10	0.080	5/20/2019 16:15	G

Report ID: 878563 - 812022 Page 10 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272003 Matrix: Water

19135-MW-2A Date Collected: 05/15/19 08:52 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	530		mg/L	1	10	10	5/20/2019 12:17	J

Lab ID: J1906272004 Date Received: 05/16/19 08:45 Matrix: Water

Date Collected: 05/15/19 09:08 Sample ID: 19135-MW-2B

Sample Description: Location:

Campic Description.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 14:45	J
Barium	49		ug/L	1	4.0	1.0	5/28/2019 14:45	J
Beryllium	1.2	ı	ug/L	1	2.0	0.50	5/28/2019 14:45	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 14:45	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:45	J
Cobalt	9.1		ug/L	1	8.0	2.0	5/28/2019 14:45	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:45	J
Iron	24000		ug/L	1	400	100	5/28/2019 14:45	J
Lead	5.6	- 1	ug/L	1	12	3.0	5/28/2019 14:45	J
Nickel	18	- 1	ug/L	1	24	6.0	5/28/2019 14:45	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:45	J
Silver	10	U	ug/L	1	40	10	5/28/2019 14:45	J
Sodium	140		mg/L	1	1.4	0.35	5/28/2019 14:45	J
Vanadium	16	٧	ug/L	1	4.0	1.0	5/28/2019 14:45	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 14:45	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:46	J
Thallium	0.061	I	ug/L	1	0.20	0.057	5/22/2019 21:46	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 7470A				

Report ID: 878563 - 812022 Page 11 of 103

CERTIFICATE OF ANALYSIS

Adjusted

MDL

Analyzed

Lab

Adjusted

PQL

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Date Received: 05/16/19 08:45 Lab ID: J1906272004 Matrix: Water

Units

Qual

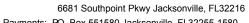
19135-MW-2B Date Collected: 05/15/19 09:08 Sample ID:

Sample Description: Location:

Results

Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:31	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration	Method: SV	V-846 8011				
Water	Anal	ytical M	ethod: SW-8	346 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 12:45	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 12:45	J
Tetrachloro-m-xylene (S)	92		%	1	64-150		5/31/2019 12:45	
VOLATILES								

DF


TOLATILLO		
Analysis Desc: 8260B Analysis.	Water	Preparation I

Pren	aration	Method: SM	/-846 5030B				
·							
Analy	tical Me	ethod: SW-8	346 8260B				
0.54	U	ug/L	1	1.0	0.54	5/24/2019 16:47	J
0.22	U	ug/L	1	1.0	0.22	5/24/2019 16:47	J
0.20	U	ug/L	1	1.0	0.20	5/24/2019 16:47	J
0.30	U	ug/L	1	1.0	0.30	5/24/2019 16:47	J
0.14	U	ug/L	1	1.0	0.14	5/24/2019 16:47	J
0.18	U	ug/L	1	3.0	0.18	5/24/2019 16:47	J
0.91	U	ug/L	1	1.0	0.91	5/24/2019 16:47	J
0.18	U	ug/L	1	3.0	0.18	5/24/2019 16:47	J
0.23	U	ug/L	1	3.0	0.23	5/24/2019 16:47	J
0.66	U	ug/L	1	1.0	0.66	5/24/2019 16:47	J
0.22	U	ug/L	1	3.0	0.22	5/24/2019 16:47	J
0.43	U	ug/L	1	5.0	0.43	5/24/2019 16:47	J
0.71	U	ug/L	1	5.0	0.71	5/24/2019 16:47	J
0.47	U	ug/L	1	5.0	0.47	5/24/2019 16:47	J
4.1	ı	ug/L	1	5.0	2.1	5/24/2019 16:47	J
1.1	U	ug/L	1	5.0	1.1	5/24/2019 16:47	J
0.16	U	ug/L	1	1.0	0.16	5/24/2019 16:47	J
0.17	U	ug/L	1	1.0	0.17	5/24/2019 16:47	J
0.46	U	ug/L	1	1.0	0.46	5/24/2019 16:47	J
0.44	U	ug/L	1	5.0	0.44	5/24/2019 16:47	J
0.29	U	ug/L	1	1.0	0.29	5/24/2019 16:47	J
0.67	U	ug/L	1	1.0	0.67	5/24/2019 16:47	J
0.36	U	ug/L	1	3.0	0.36	5/24/2019 16:47	J
0.21	U	ug/L	1	3.0	0.21	5/24/2019 16:47	J
0.33	U	ug/L	1	1.0	0.33	5/24/2019 16:47	J
0.18	U	ug/L	1	3.0	0.18	5/24/2019 16:47	J
0.21	U	ug/L	1	1.0	0.21	5/24/2019 16:47	J
	Analy 0.54 0.22 0.20 0.30 0.14 0.18 0.91 0.18 0.23 0.66 0.22 0.43 0.71 0.47 4.1 1.1 0.16 0.17 0.46 0.44 0.29 0.67 0.36 0.21 0.33 0.18	Analytical Me 0.54 U 0.22 U 0.20 U 0.30 U 0.14 U 0.18 U 0.91 U 0.18 U 0.23 U 0.66 U 0.22 U 0.43 U 0.71 U 0.47 U 4.1 I 1.1 U 0.16 U 0.17 U 0.46 U 0.44 U 0.29 U 0.67 U 0.36 U 0.21 U 0.33 U 0.18 U	Analytical Method: SW-8 0.54 U ug/L 0.22 U ug/L 0.20 U ug/L 0.30 U ug/L 0.14 U ug/L 0.18 U ug/L 0.91 U ug/L 0.18 U ug/L 0.18 U ug/L 0.19 U ug/L 0.10 U ug/L 0.10 U ug/L 0.11 U ug/L 0.12 U ug/L 0.13 U ug/L 0.14 U ug/L 0.15 U ug/L 0.16 U ug/L 0.17 U ug/L 0.16 U ug/L 0.17 U ug/L 0.18 U ug/L 0.19 U ug/L 0.29 U ug/L 0.29 U ug/L 0.36 U ug/L 0.31 U ug/L 0.32 U ug/L 0.33 U ug/L 0.33 U ug/L 0.33 U ug/L 0.33 U ug/L	0.22 U ug/L 1 0.20 U ug/L 1 0.30 U ug/L 1 0.14 U ug/L 1 0.18 U ug/L 1 0.91 U ug/L 1 0.18 U ug/L 1 0.18 U ug/L 1 0.19 U ug/L 1 0.19 U ug/L 1 0.23 U ug/L 1 0.66 U ug/L 1 0.47 U ug/L 1 0.47 U ug/L 1 0.47 U ug/L 1 0.47 U ug/L 1 0.40 U ug/L 1 0.10 U ug/L 1 0.11 U ug/L 1 0.12 U ug/L 1 0.41 U ug/L 1 0.42 U ug/L 1 0.43 U ug/L 1 0.44 U ug/L 1 0.46 U ug/L 1 0.46 U ug/L 1 0.47 U ug/L 1 0.48 U ug/L 1 0.49 U ug/L 1 0.40 U ug/L 1 0.41 U ug/L 1 0.42 U ug/L 1 0.44 U ug/L 1 0.45 U ug/L 1 0.56 U ug/L 1 0.57 U ug/L 1 0.58 U ug/L 1 0.59 U ug/L 1 0.50 U ug/L 1 0.51 U ug/L 1 0.52 U ug/L 1 0.53 U ug/L 1	Analytical Method: SW-846 8260B 0.54 U ug/L 1 1.0 0.22 U ug/L 1 1.0 0.20 U ug/L 1 1.0 0.30 U ug/L 1 1.0 0.14 U ug/L 1 1.0 0.18 U ug/L 1 3.0 0.91 U ug/L 1 3.0 0.91 U ug/L 1 3.0 0.18 U ug/L 1 3.0 0.23 U ug/L 1 3.0 0.66 U ug/L 1 3.0 0.66 U ug/L 1 5.0 0.43 U ug/L 1 5.0 0.71 U ug/L 1 5.0 0.47 U ug/L 1 5.0 0.16 U ug/L 1 1.0	Analytical Method: SW-846 8260B 0.54 U ug/L 1 1.0 0.54 0.22 U ug/L 1 1.0 0.22 0.20 U ug/L 1 1.0 0.20 0.30 U ug/L 1 1.0 0.30 0.14 U ug/L 1 1.0 0.14 0.18 U ug/L 1 3.0 0.18 0.91 U ug/L 1 3.0 0.18 0.91 U ug/L 1 3.0 0.18 0.91 U ug/L 1 3.0 0.18 0.23 U ug/L 1 3.0 0.23 0.66 U ug/L 1 3.0 0.22 0.43 U ug/L 1 5.0 0.43 0.71 U ug/L 1 5.0 0.71 0.47 U ug/L 1 5.0 0.47 4.1 I ug/L 1 1.0	Name

Report ID: 878563 - 812022 Page 12 of 103

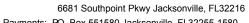
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272004 Matrix: Water

19135-MW-2B Date Collected: 05/15/19 09:08 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		,
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 16:47	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/24/2019 16:47	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/24/2019 16:47	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/24/2019 16:47	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/24/2019 16:47	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 16:47	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/24/2019 16:47	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 16:47	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/24/2019 16:47	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/24/2019 16:47	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/24/2019 16:47	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/24/2019 16:47	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/24/2019 16:47	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/24/2019 16:47	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/24/2019 16:47	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/24/2019 16:47	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/24/2019 16:47	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/24/2019 16:47	J
1,2-Dichloroethane-d4 (S)	107		%	1	70-128		5/24/2019 16:47	
Toluene-d8 (S)	108		%	1	77-119		5/24/2019 16:47	
Bromofluorobenzene (S)	116		%	1	86-123		5/24/2019 16:47	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	330		mg/L	2	10	1.0	5/16/2019 20:21	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	5/16/2019 20:21	J
<u> </u>					1.0	0.10	0/10/2010 20:21	
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	thod: EPA	350.1				
Ammonia (N)	5.4		mg/L	10	0.10	0.080	5/20/2019 16:16	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	900		mg/L	1	10	10	5/20/2019 12:17	J

Report ID: 878563 - 812022 Page 13 of 103

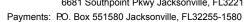
ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

VOLATILES

Date Received: 05/16/19 08:45 Lab ID: J1906272005 Matrix: Water

19135-MW-3A Date Collected: 05/15/19 10:18 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted				
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
METALS										
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A						
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010						
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 14:56	J		
Barium	64		ug/L	1	4.0	1.0	5/28/2019 14:56	J		
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 14:56	J		
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 14:56	J		
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:56	J		
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:56	J		
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:56	J		
Iron	5700		ug/L	1	400	100	5/28/2019 14:56	J		
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 14:56	J		
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 14:56	J		
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:56	J		
Silver	10	U	ug/L	1	40	10	5/28/2019 14:56	J		
Sodium	26		mg/L	1	1.4	0.35	5/28/2019 14:56	J		
Vanadium	7.5	٧	ug/L	1	4.0	1.0	5/28/2019 14:56	J		
Zinc	50	U	ug/L	1	200	50	5/28/2019 14:56	J		
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A						
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020						
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:51	J		
Thallium	0.057	Ü	ug/L	1	0.20	0.057		J		
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A						
Analysis, Water	Anal	ytical Me	ethod: SW-	846 7470A						
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:35	J		
SEMIVOLATILES										
Analysis Desc: SW 8011 Analysis,	Prer	aration I	Method: SV	V-846 8011						
Water	Preparation Method: SW-846 8011 Analytical Method: SW-846 8011									
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 14:50	J		
Ethylene Dibromide (EDB)	0.0065	Ü	ug/L	1	0.021	0.0065	5/31/2019 14:50	J		
Tetrachloro-m-xylene (S)	98	J	ug/∟ %	1	64-150	0.0000	5/31/2019 14:50	Ü		
				•	31.100		2.02010 11.00			

Report ID: 878563 - 812022 Page 14 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272005 Matrix: Water

19135-MW-3A Date Collected: 05/15/19 10:18 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SW	/-846 5030B				
	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/24/2019 17:23	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/24/2019 17:23	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/24/2019 17:23	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/24/2019 17:23	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/24/2019 17:23	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/24/2019 17:23	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/24/2019 17:23	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/24/2019 17:23	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/24/2019 17:23	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/24/2019 17:23	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/24/2019 17:23	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/24/2019 17:23	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/24/2019 17:23	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/24/2019 17:23	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/24/2019 17:23	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/24/2019 17:23	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/24/2019 17:23	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/24/2019 17:23	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/24/2019 17:23	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/24/2019 17:23	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/24/2019 17:23	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/24/2019 17:23	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/24/2019 17:23	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/24/2019 17:23	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 17:23	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/24/2019 17:23	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/24/2019 17:23	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 17:23	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/24/2019 17:23	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/24/2019 17:23	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	5.0	0.16	5/24/2019 17:23	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/24/2019 17:23	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 17:23	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/24/2019 17:23	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 17:23	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/24/2019 17:23	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/24/2019 17:23	J

Report ID: 878563 - 812022 Page 15 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272005 Matrix: Water

19135-MW-3A Date Collected: 05/15/19 10:18 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/24/2019 17:23	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/24/2019 17:23	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/24/2019 17:23	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/24/2019 17:23	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/24/2019 17:23	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/24/2019 17:23	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/24/2019 17:23	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/24/2019 17:23	J
1,2-Dichloroethane-d4 (S)	108		%	1	70-128		5/24/2019 17:23	
Toluene-d8 (S)	102		%	1	77-119		5/24/2019 17:23	
Bromofluorobenzene (S)	116		%	1	86-123		5/24/2019 17:23	

WET CHEMISTRY

Analysis Desc: IC,E300.0,Water	Analy	tical M	ethod: EPA	300.0				
Chloride	30		mg/L	5	25	2.5	5/16/2019 22:09	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	5/16/2019 22:09	J
Analysis Desc: Ammonia,E350.1,Water	Analytical Method: EPA 350.1							
Ammonia (N)	9.3		mg/L	10	0.10	0.080	5/20/2019 16:17	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Analy	tical Me	ethod: SM 2	540 C				
Total Dissolved Solids	180		mg/L	1	10	10	5/21/2019 15:05	J

Date Received: 05/16/19 08:45 Water Lab ID: J1906272006 Matrix:

Date Collected: 05/15/19 09:56 Sample ID: 19135-MW-3B

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical M	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 15:00	J
Barium	36		ug/L	1	4.0	1.0	5/28/2019 15:00	J
Beryllium	1.8	ı	ug/L	1	2.0	0.50	5/28/2019 15:00	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:00	J

Report ID: 878563 - 812022 Page 16 of 103

CERTIFICATE OF ANALYSIS

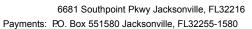
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272006 Matrix: Water

19135-MW-3B Date Collected: 05/15/19 09:56 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:00	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:00	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:00	J
Iron	1200		ug/L	1	400	100	5/28/2019 15:00	J
Lead	3.2	ı	ug/L	1	12	3.0	5/28/2019 15:00	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 15:00	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:00	J
Silver	10	U	ug/L	1	40	10	5/28/2019 15:00	J
Sodium	94		mg/L	1	1.4	0.35	5/28/2019 15:00	J
Vanadium	13	V	ug/L	1	4.0	1.0	5/28/2019 15:00	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 15:00	J
Analysis Desc: SW846 6020B Analysis,Total	Prep	paration I	Method: SV	V-846 3010A				
Allalysis, lotal	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:55	J
Thallium	0.077	Ī	ug/L	1	0.20	0.057	5/22/2019 21:55	J
Analysis Desc: SW846 7470A Analysis,Water	•			V-846 7470A				
· · · · · · · · · · · · · · · · · · ·	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:38	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	paration I	Method: SV	V-846 8011				
Water	Ana	lytical Me	ethod: SW-	846 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 14:19	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 14:19	J
Tetrachloro-m-xylene (S)	96		%	1	64-150		5/31/2019 14:19	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 13:35	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 13:35	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 13:35	J
1,1,2-Trichloroethane	0.30	Ū	ug/L	1	1.0	0.30	5/28/2019 13:35	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 13:35	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 13:35	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 13:35	J

Report ID: 878563 - 812022 Page 17 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272006 Matrix: Water

Sample ID: 19135-MW-3B Date Collected: 05/15/19 09:56

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 13:35	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 13:35	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 13:35	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 13:35	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 13:35	
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 13:35	
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 13:35	
Acetone	3.6	- 1	ug/L	1	5.0	2.1	5/28/2019 13:35	
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 13:35	
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 13:35	
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 13:35	
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 13:35	
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 13:35	
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 13:35	
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 13:35	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 13:35	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 13:35	
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 13:35	,
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 13:35	
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 13:35	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 13:35	
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 13:35	
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 13:35	
odomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 13:35	
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 13:35	
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 13:35	
etrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 13:35	
Toluene Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 13:35	
richloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 13:35	
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 13:35	
/inyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 13:35	,
/inyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 13:35	,
(ylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 13:35	,
sis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 13:35	,
sis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 13:35	,
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 13:35	,
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 13:35	,
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 13:35	
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/28/2019 13:35	
Toluene-d8 (S)	96		%	1	77-119		5/28/2019 13:35	

Report ID: 878563 - 812022 Page 18 of 103

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272006 Matrix: Water

19135-MW-3B Date Collected: 05/15/19 09:56 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	107		%	1	86-123		5/28/2019 13:35	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	160		mg/L	5	25	2.5	5/16/2019 21:47	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	5/16/2019 21:47	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	4.6		mg/L	10	0.10	0.080	5/20/2019 16:18	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1300		mg/L	1	10	10	5/21/2019 15:05	J

Date Received: 05/16/19 08:45 Lab ID: J1906272007 Matrix: Water

Date Collected: 05/15/19 11:36 Sample ID: 19135-MW-4A


Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Water	Ana	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 15:04	J
Barium	55		ug/L	1	4.0	1.0	5/28/2019 15:04	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:04	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:04	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:04	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:04	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:04	J
Iron	4600		ug/L	1	400	100	5/28/2019 15:04	J
Lead	7.8	ı	ug/L	1	12	3.0	5/28/2019 15:04	J
Nickel	8.2	ı	ug/L	1	24	6.0	5/28/2019 15:04	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:04	J
Silver	10	U	ug/L	1	40	10	5/28/2019 15:04	J
Sodium	39		mg/L	1	1.4	0.35	5/28/2019 15:04	J
Vanadium	5.4	V	ug/L	1	4.0	1.0	5/28/2019 15:04	J

Report ID: 878563 - 812022 Page 19 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272007 Matrix: Water

19135-MW-4A Date Collected: 05/15/19 11:36 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Zinc	50	U	ug/L	1	200	50	5/28/2019 15:04	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:58	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 21:58	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:41	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water	Anal	ytical Me	ethod: SW-8	346 8011				
1,2-Dibromo-3-Chloropropane	0.0062	U	ug/L	1	0.021	0.0062	5/31/2019 17:25	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 17:25	J
Tetrachloro-m-xylene (S)	71		%	1	64-150		5/31/2019 17:25	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SW	V-846 5030B				
	Anal	ytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 14:05	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 14:05	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 14:05	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 14:05	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 14:05	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 14:05	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 14:05	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 14:05	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 14:05	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 14:05	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 14:05	J
2-Butanone (MEK)	0.43	Ü	ug/L	1	5.0	0.43	5/28/2019 14:05	J
2-Hexanone	0.71	Ü	ug/L	1	5.0	0.71	5/28/2019 14:05	J
4-Methyl-2-pentanone (MIBK)	0.47	Ü	ug/L	1	1.0	0.47	5/28/2019 14:05	J
Acetone	2.2	Ĭ	ug/L	1	5.0	2.1	5/28/2019 14:05	J
Acrylonitrile	1.1	Ü	ug/L	1	10	1.1	5/28/2019 14:05	J
Benzene	0.16	Ü	ug/L	1	1.0	0.16	5/28/2019 14:05	J

Report ID: 878563 - 812022 Page 20 of 103

CERTIFICATE OF ANALYSIS

Advanced Environmental Laboratories, Inc.

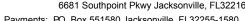
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272007 Matrix: Water

19135-MW-4A Date Collected: 05/15/19 11:36 Sample ID:


Sample Description: Location:

Sample Description.				Lucation.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 14:05	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 14:05	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 14:05	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 14:05	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 14:05	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 14:05	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 14:05	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 14:05	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 14:05	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 14:05	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 14:05	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 14:05	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 14:05	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 14:05	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 14:05	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 14:05	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 14:05	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 14:05	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 14:05	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 14:05	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 14:05	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 14:05	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 14:05	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 14:05	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 14:05	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 14:05	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 14:05	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 14:05	J
1,2-Dichloroethane-d4 (S)	93		%	1	70-128		5/28/2019 14:05	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 14:05	
Bromofluorobenzene (S)	108		%	1	86-123		5/28/2019 14:05	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	63		mg/L	5	25	2.5	5/17/2019 00:18	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	5/17/2019 00:18	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	8.6		mg/L	20	0.20	0.16	5/20/2019 16:20	G

Report ID: 878563 - 812022 Page 21 of 103

CERTIFICATE OF ANALYSIS

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272007 Matrix: Water

19135-MW-4A Date Collected: 05/15/19 11:36 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	700		mg/L	1	10	10	5/21/2019 15:05	J

Lab ID: J1906272008 Date Received: 05/16/19 08:45 Matrix: Water

Date Collected: 05/15/19 11:10 Sample ID: 19135-MW-4B

Sample Description: Location:

_					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Water	Anal	vtical Me	ethod: SW-	846 6010				
Aragnia		•		4	40	0.0	5/28/2019 15:07	
Arsenic	9.0	U	ug/L	1		9.0		J
Barium	40		ug/L	1	4.0	1.0	5/28/2019 15:07	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:07	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:07	J
Chromium	3.2	<u>!</u>	ug/L	1	8.0	2.0	5/28/2019 15:07	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:07	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:07	J
Iron	100	U	ug/L	1	400	100	5/28/2019 15:07	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 15:07	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 15:07	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:07	J
Silver	10	U	ug/L	1	40	10	5/28/2019 15:07	J
Sodium	92		mg/L	1	1.4	0.35	5/28/2019 15:07	J
Vanadium	22	V	ug/L	1	4.0	1.0	5/28/2019 15:07	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 15:07	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.20	ı	ug/L	1	0.70	0.11	5/22/2019 22:02	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 22:02	J
Analysis Desc: SW846 7470A Analysis,Water	·			V-846 7470A 846 7470A				

Report ID: 878563 - 812022 Page 22 of 103

CERTIFICATE OF ANALYSIS

Adjusted

MDL

Analyzed

0.29 5/28/2019 14:35

0.33 5/28/2019 14:35

0.18 5/28/2019 14:35

0.21 5/28/2019 14:35

5/28/2019 14:35

5/28/2019 14:35

5/28/2019 14:35

0.67

0.36

0.21

J

Lab

Adjusted

PQL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon Disulfide

Carbon Tetrachloride

Date Received: 05/16/19 08:45 Lab ID: J1906272008 Matrix: Water

Units

DF

Qual

19135-MW-4B Date Collected: 05/15/19 11:10 Sample ID:

Sample Description: Location:

Results

0.29

0.67

0.36

0.21

0.33

0.18

0.21

U

U

U

U

U

U

U

ug/L

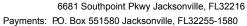
ug/L

ug/L

ug/L

ug/L

ug/L


ug/L

Tarameters	results	Quai	Office	ы	I QL	IVIDL	7 that y 20 a	Lub
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:44	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	/-846 8011				
Water	Anal	ytical Me	ethod: SW-8	346 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 16:25	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 16:25	J
Tetrachloro-m-xylene (S)	89		%	1	64-150		5/31/2019 16:25	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	/-846 5030B				
	Anal	ytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 14:35	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 14:35	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 14:35	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 14:35	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 14:35	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 14:35	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 14:35	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 14:35	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 14:35	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 14:35	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 14:35	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 14:35	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 14:35	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 14:35	J
Acetone	3.1	ı	ug/L	1	5.0	2.1	5/28/2019 14:35	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 14:35	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 14:35	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 14:35	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 14:35	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 14:35	J
5 "				_				

Report ID: 878563 - 812022 Page 23 of 103

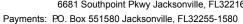
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272008 Matrix: Water

19135-MW-4B Date Collected: 05/15/19 11:10 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 14:35	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 14:35	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 14:35	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 14:35	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 14:35	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 14:35	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 14:35	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 14:35	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 14:35	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 14:35	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 14:35	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 14:35	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 14:35	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 14:35	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 14:35	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 14:35	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 14:35	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 14:35	J
1,2-Dichloroethane-d4 (S)	94		%	1	70-128		5/28/2019 14:35	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 14:35	
Bromofluorobenzene (S)	107		%	1	86-123		5/28/2019 14:35	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	160		mg/L	5	25	2.5	5/16/2019 23:56	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	5/16/2019 23:56	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	13		mg/L	20	0.20	0.16	5/20/2019 16:21	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	1300		mg/L	1	10	10	5/21/2019 15:05	J

Report ID: 878563 - 812022 Page 24 of 103

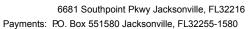
ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

VOLATILES

Date Received: 05/16/19 08:45 Lab ID: J1906272009 Matrix: Water

19135-MW-5A Date Collected: 05/15/19 12:54 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 15:11	J
Barium	2.9	I	ug/L	1	4.0	1.0	5/28/2019 15:11	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:11	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:11	J
Chromium	2.5	I	ug/L	1	8.0	2.0	5/28/2019 15:11	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:11	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:11	J
Iron	170	I	ug/L	1	400	100	5/28/2019 15:11	J
Lead	14		ug/L	1	12	3.0	5/28/2019 15:11	J
Nickel	11	I	ug/L	1	24	6.0	5/28/2019 15:11	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:11	J
Silver	10	U	ug/L	1	40	10	5/28/2019 15:11	J
Sodium	11		mg/L	1	1.4	0.35	5/28/2019 15:11	J
Vanadium	3.5	I,V	ug/L	1	4.0	1.0	5/28/2019 15:11	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 15:11	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 22:07	J
Thallium	0.057	Ü	ug/L ug/L	1	0.20	0.057	5/22/2019 22:07	J
mamam	0.037	Ū	ug/L	•	0.20	0.007	3/22/2013 22:01	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:47	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water	Anal	ytical Me	thod: SW-	346 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 00:36	J
Ethylene Dibromide (EDB)	0.0065	Ü	ug/L	1	0.021	0.0065	5/31/2019 00:36	J
Tetrachloro-m-xylene (S)	96	-	%	1	64-150	2.0000	5/31/2019 00:36	-
	30		.•	-	330			

Report ID: 878563 - 812022 Page 25 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272009 Matrix: Water

19135-MW-5A Date Collected: 05/15/19 12:54 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: 8260B Analysis, Water	Prep	paration N	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 15:04	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 15:04	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 15:04	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 15:04	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 15:04	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 15:04	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 15:04	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 15:04	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 15:04	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 15:04	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 15:04	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 15:04	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 15:04	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 15:04	J
Acetone	4.2	I	ug/L	1	5.0	2.1	5/28/2019 15:04	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 15:04	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 15:04	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 15:04	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 15:04	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 15:04	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 15:04	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 15:04	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 15:04	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 15:04	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 15:04	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 15:04	J
Chloromethane	2.5		ug/L	1	1.0	0.21	5/28/2019 15:04	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 15:04	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 15:04	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 15:04	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 15:04	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 15:04	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 15:04	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 15:04	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 15:04	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 15:04	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 15:04	J

Report ID: 878563 - 812022 Page 26 of 103

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272009 Matrix: Water

19135-MW-5A Date Collected: 05/15/19 12:54 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 15:04	
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 15:04	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 15:04	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 15:04	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 15:04	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 15:04	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 15:04	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 15:04	J
1,2-Dichloroethane-d4 (S)	90		%	1	70-128		5/28/2019 15:04	
Toluene-d8 (S)	99		%	1	77-119		5/28/2019 15:04	
Bromofluorobenzene (S)	109		%	1	86-123		5/28/2019 15:04	

WET CHEMISTRY

WEICHEWISIKI							
Analysis Desc: IC,E300.0,Water	Analytica	I Method: EPA 3	0.00				
Chloride	16	mg/L	1	5.0	0.50	5/17/2019 01:24	J
Nitrate (as N)	0.050 l	J mg/L	1	0.50	0.050	5/17/2019 01:24	J
Analysis Desc: Ammonia,E350.1,Water	Analytica	I Method: EPA 3	50.1				
Ammonia (N)	2.8	mg/L	25	0.25	0.20	5/20/2019 16:22	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Analytica	I Method: SM 25	540 C				
Total Dissolved Solids	230	mg/L	1	10	10	5/21/2019 15:05	J

Date Received: 05/16/19 08:45 Water Lab ID: J1906272010 Matrix:

Date Collected: 05/15/19 12:32 Sample ID: 19135-MW-5B

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical M	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 15:15	J
Barium	50		ug/L	1	4.0	1.0	5/28/2019 15:15	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:15	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:15	J

Report ID: 878563 - 812022 Page 27 of 103

CERTIFICATE OF ANALYSIS

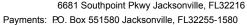
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272010 Matrix: Water

19135-MW-5B Date Collected: 05/15/19 12:32 Sample ID:


Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:15	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:15	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:15	J
Iron	100	U	ug/L	1	400	100	5/28/2019 15:15	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 15:15	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 15:15	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:15	J
Silver	10	U	ug/L	1	40	10	5/28/2019 15:15	J
Sodium	86		mg/L	1	1.4	0.35	5/28/2019 15:15	J
Vanadium	8.5	V	ug/L	1	4.0	1.0	5/28/2019 15:15	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 15:15	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.18	ı	ug/L	1	0.70	0.11	5/22/2019 22:33	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 22:33	J
Analysis Desc: SW846 7470A	Pre	paration I	Method: SV	V-846 7470A				
Analysis,Water	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:51	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prei	paration I	Method: SV	V-846 8011				
Water			ethod: SW-8					
1,2-Dibromo-3-Chloropropane	0.0064	U	ug/L	1	0.021	0.0064	5/31/2019 00:06	J
Ethylene Dibromide (EDB)	0.0066	Ū	ug/L	1	0.021	0.0066	5/31/2019 00:06	J
Tetrachloro-m-xylene (S)	70	_	%	1	64-150		5/31/2019 00:06	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Pre	paration I	Method: SV	V-846 5030B				
	·		ethod: SW-8					
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/24/2019 20:41	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22		J
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.20	5/24/2019 20:41	J
1,1,2-Trichloroethane	0.20	Ü	ug/L ug/L	1	1.0	0.20	5/24/2019 20:41	J
1,1-Dichloroethane	0.30	Ü	ug/L ug/L	1	1.0	0.30	5/24/2019 20:41	J
1,1-Dichloroethylene	0.14	Ü	ug/L ug/L	1	3.0	0.14	5/24/2019 20:41	J
1,2,3-Trichloropropane	0.18	U	ug/L ug/L	1	3.0 1.0	0.16		J
1,2,3-THORIOTOPTOPATIE	0.91	U	ug/L	1	1.0	0.91	3/24/2019 20:41	J

Report ID: 878563 - 812022 Page 28 of 103

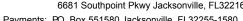
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272010 Matrix: Water

Sample ID: 19135-MW-5B Date Collected: 05/15/19 12:32


Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/24/2019 20:41	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/24/2019 20:41	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/24/2019 20:41	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/24/2019 20:41	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/24/2019 20:41	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/24/2019 20:41	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/24/2019 20:41	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/24/2019 20:41	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/24/2019 20:41	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/24/2019 20:41	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/24/2019 20:41	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/24/2019 20:41	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/24/2019 20:41	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/24/2019 20:41	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/24/2019 20:41	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/24/2019 20:41	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/24/2019 20:41	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 20:41	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/24/2019 20:41	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/24/2019 20:41	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 20:41	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/24/2019 20:41	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/24/2019 20:41	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/24/2019 20:41	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/24/2019 20:41	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 20:41	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/24/2019 20:41	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 20:41	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/24/2019 20:41	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/24/2019 20:41	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/24/2019 20:41	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/24/2019 20:41	J
Xylene (Total)	0.53	Ū	ug/L	1	3.0	0.53	5/24/2019 20:41	J
cis-1,2-Dichloroethylene	0.24	Ū	ug/L	1	3.0	0.24	5/24/2019 20:41	J
cis-1,3-Dichloropropene	0.16	Ü	ug/L	1	1.0	0.16	5/24/2019 20:41	J
trans-1,2-Dichloroethylene	0.20	Ü	ug/L	1	3.0	0.20	5/24/2019 20:41	J
trans-1,3-Dichloropropylene	0.21	Ü	ug/L	1	5.0	0.21	5/24/2019 20:41	J
trans-1,4-Dichloro-2-butene	1.8	Ü	ug/L	1	5.0	1.8	5/24/2019 20:41	J
1,2-Dichloroethane-d4 (S)	109	•	%	1	70-128	1.0	5/24/2019 20:41	J
Toluene-d8 (S)	107		%	1	77-119		5/24/2019 20:41	

Report ID: 878563 - 812022 Page 29 of 103

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272010 Matrix: Water

19135-MW-5B Date Collected: 05/15/19 12:32 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	115		%	1	86-123		5/24/2019 20:41	,
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	140		mg/L	5	25	2.5	5/17/2019 07:51	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	5/17/2019 07:51	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	11		mg/L	20	0.20	0.16	5/20/2019 16:23	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM :	2540 C				
Total Dissolved Solids	1600		mg/L	1	10	10	5/21/2019 15:05	J

Date Received: 05/16/19 08:45 Lab ID: J1906272011 Matrix: Water

Date Collected: 05/15/19 14:10 Sample ID: 19135-MW-6A


Sample Description: Location:

Davamatava	Desults	0=1	l linita	DE	Adjusted	Adjusted	Analyzad	Lab
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: S\	V-846 3010A				
Analysis,Water	Ana	lytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 15:18	J
Barium	3.9	ı	ug/L	1	4.0	1.0	5/28/2019 15:18	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:18	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:18	J
Chromium	2.0	ı	ug/L	1	8.0	2.0	5/28/2019 15:18	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:18	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:18	J
Iron	16000		ug/L	1	400	100	5/28/2019 15:18	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 15:18	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 15:18	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:18	J
Silver	10	U	ug/L	1	40	10	5/28/2019 15:18	J
Sodium	22		mg/L	1	1.4	0.35	5/28/2019 15:18	J
Vanadium	4.9	V	ug/L	1	4.0	1.0	5/28/2019 15:18	J

Report ID: 878563 - 812022 Page 30 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272011 Matrix: Water

19135-MW-6A Date Collected: 05/15/19 14:10 Sample ID:

Sample Description: Location:

Trice So U ug/L 1 200 50 5/28/2019 15:18									
Zinc						Adjusted	Adjusted		
Analysis Desc: SW846 6020B Analysis, Total Analysis, Water 0.057 U ug/L 1 0.20 0.057 5/22/2019 22:48 Analysis Desc: SW846 7470A Analysis Desc: SW846 7470A Analysis Desc: SW846 7470A Analysis, Water Analysis, Water Analysis, Water Analysis, Water Analysis Desc: Tot Dissolved Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B Analysis, Water Analysis Desc:	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Total Analysis Total Analysis Total Analysis Total Analysis Desc: SW846 7470A Analysis Desc: Tot Dissolved Analysis Desc: SW 8011 Analysis, Analytical Method: SW-846 8011 1,2-Dibromo-3-Chloropropane 0,0062 U ug/L 1 0,021 0,0062 5/31/2019 03:10 Ethylene Dibromide (EDB) 0,0064 U ug/L 1 0,021 0,0064 5/31/2019 03:10 Ethylene Dibromide (EDB) Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0,54 U ug/L 1 1,0 0,54 5/24/2019 21:11 1,1,1-Trichloroethane 0,22 U ug/L 1 1,0 0,22 5/24/2019 21:11 1,1,1-Trichloroethane 0,24 U ug/L 1 1,0 0,25 5/24/2019 21:11 1,1,1-Trichloroethane 0,25 U ug/L 1 1,0 0,26 5/24/2019 21:11 1,1,1-Trichloroethane 0,26 U ug/L 1 1,0 0,26 5/24/2019 21:11 1,1,1-Trichloroethane 0,27 U ug/L 1 1,0 0,3 5/24/2019 21:11 1,1,2-Tietrachloroethane 0,30 U ug/L 1 1,0 0,4 5/24/2019 21:11 1,1,2-Tietrachloroethane 0,14 U ug/L 1 1,0 0,4 5/24/2019 21:11 1,2-Tichloroethane 0,14 U ug/L 1 1,0 0,4 5/24/2019 21:11 1,2-Dichloroptopane 0,18 U ug/L 1 1,0 0,9 5/24/2019 21:11 1,2-Dichloroethane 0,14 U ug/L 1 1,0 0,9 5/24/2019 21:11 1,2-Dichloroethane 0,23 U ug/L 1 1,0 0,0 6 5/24/2019 21:11 1,2-Dichloroethane 0,24 U ug/L 1 1,0 0,0 6 5/24/2019 21:11 1,2-Dichloroethane 0,23 U ug/L 1 1,0 0,0 6 5/24/2019 21:11 1,2-Dichloroethane 0,24 U ug/L 1 1,0 0,0 6 5/24/2019 21:11 1,2-Dichloroethane 0,24 U ug/L 1 1,0 0,0 6 5/24/2019 21:11 1,2-Dichloroethane 0,24 U ug/L 1 1,0 0,0 6 5/24/2019 21:11 1,2-Dichloroethane	Zinc	50	U	ug/L	1	200	50	5/28/2019 15:18	J
Analytical Method: SW-846 6020 Analytical Method: SW-846 7020 Analytical Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.00 0.01 5/24/2019 17:54 SEMIVOLATILES SEMIVOLATILES Analysis Desc: Tot Dissolved Solidis, SM2540C Total Dissolved Solidis 180 mg/L 1 10 10 5/22/2019 12:32 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analytical Method: SW-846 8010 VOLATILES Analytical Method: SW-846 5030B Analytical Method: SW-846 800B Analytical Method: SW-846 8011 Analytical Meth	Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Thallium 0.057 U ug/L 1 0.20 0.057 5/22/2019 22:48	Analysis,Total	Ana	lytical Me	ethod: SW-8	346 6020				
Analysis Desc: SW846 7470A Analysis Lesc: SW846 7470A Analysis Lesc: SW846 7470A Analysis Lesc: SW846 7470A Analysis Lesc: SW846 7470A Mercury 0.011 U ug/L 1 0.10 0.011 5/24/2019 17:54 SEMIVOLATILES Analysis Desc: Tot Dissolved Solids, SM2540C Total Dissolved Solids 180 mg/L 1 10 10 5/22/2019 12:32 Analysis Desc: SW 8011 Analysis, Water Analytical Method: SW-846 8011 1,2-Dibromo-3-Chloropropane 0.0062 U ug/L 1 0.0021 0.0062 5/31/2019 03:10 Ethylene Dibromide (EDB) 0.0064 U ug/L 1 0.021 0.0062 5/31/2019 03:10 Ethylene Dibromide (EDB) 110 % 1 64-150 5/31/2019 03:10 VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tertachloroethane 0.24 U ug/L 1 1.0 0.54 5/24/2019 21:11 1,1,2-Tirichloroethane 0.25 U ug/L 1 1.0 0.26 5/24/2019 21:11 1,1,2-Tirichloroethane 0.20 U ug/L 1 1.0 0.00 5/24/2019 21:11 1,1,2-Tirichloroethane 0.20 U ug/L 1 1.0 0.00 5/24/2019 21:11 1,1,2-Tirichloroethane 0.14 U ug/L 1 1.0 0.04 5/24/2019 21:11 1,1,2-Tirichloroethane 0.14 U ug/L 1 1.0 0.04 5/24/2019 21:11 1,1,2-Tirichloroethane 0.14 U ug/L 1 1.0 0.04 5/24/2019 21:11 1,1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.04 5/24/2019 21:11 1,2-Dichloropopane 0.18 U ug/L 1 1.0 0.09 5/24/2019 21:11 1,2-Dichloropopane 0.18 U ug/L 1 1.0 0.09 5/24/2019 21:11 1,2-Dichloropopane 0.19 U ug/L 1 1.0 0.09 5/24/2019 21:11 1,2-Dichloropopane 0.18 U ug/L 1 1.0 0.09 5/24/2019 21:11 1,2-Dichloropopane 0.19 U ug/L 1 1.0 0.06 5/24/2019 21:11 1,2-Dichloropopane 0.19 U ug/L 1 1.0 0.06 5/24/2019 21:11 1,2-Dichloropopane 0.18 U ug/L 1 1.0 0.06 5/24/2019 21:11 1,2-Dichloropopane 0.20 U ug/L 1 1.0 0.06 5/24/2019 21:11 1,2-Dichloropopane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,2-Dichloropopane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,2-Dichloropopane 0.67 U ug/L 1 1.0 0.68 5/24/2019 21:11 1,2-Dichloropopane 0.68 U ug/L 1 1.0 0.69 5/24/2019 21:11 1,2-Dichloropopane 0.69 U ug/L 1 1.0 0.60 5/24/2019 21:11 1,2-Dichloropopane 0.60 U ug/L 1 1.0 0.60 5/24/2019 21:11	Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 22:48	J
Analysis	Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 22:48	J
Mercury 0.011 U ug/L 1 0.10 0.01 5/24/2019 17:54 Mercury	Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis Desc: Tot Dissolved Solids	Analysis, Water	Ana	lytical Me	ethod: SW-8	846 7470A				
Analysis Desc: Tot Dissolved Solids 180 mg/L 1 10 5/22/2019 12:32 Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 1,2-Dibromo-3-Chloropropane 0.0062 U ug/L 1 0.021 0.0062 5/31/2019 03:10 Ethylene Dibromide (EDB) 0.0064 U ug/L 1 0.021 0.0064 5/31/2019 03:10 5/31/2019	Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:54	J
Solids SM2540C Total Dissolved Solids 180 mg/L 1 10 10 5/22/2019 12:32 2 2 2 2 2 2 2 2 2	SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis, Preparation Method: SW-846 8011 Analytical Method: SW-846 8011 1,2-Dibromo-3-Chloropropane 0.0062	Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Analytical Method: SW-846 8011 1,2-Dibromo-3-Chloropropane 0.0062 U ug/L 1 0.021 0.0062 5/31/2019 03:10 Ethylene Dibromide (EDB) 0.0064 U ug/L 1 0.021 0.0064 5/31/2019 03:10 Tetrachloro-m-xylene (S) 110 % 1 64-150 5/31/2019 03:10 VOLATILES	Total Dissolved Solids	180		mg/L	1	10	10	5/22/2019 12:32	J
Analytical Method: SW-846 8011 1,2-Dibromo-3-Chloropropane 0.0062 U ug/L 1 0.021 0.0062 5/31/2019 03:10 Ethylene Dibromide (EDB) 0.0064 U ug/L 1 0.021 0.0064 5/31/2019 03:10 Tetrachloro-m-xylene (S) 110 % 1 64-150 5/31/2019 03:10 VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/24/2019 21:11 1.0 0.22 5/24/2019 21:11 1.0 0.22 5/24/2019 21:11 1.0 0.20 5/24/2019 21:11 1.0 0.20 5/24/2019 21:11 1.1,2-Trichloroethane 0.20 U ug/L 1 1.0 0.20 5/24/2019 21:11 1.1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/24/2019 21:11 1.1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/24/2019 21:11 1.1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1.2,3-Trichloropropane 0.91 U ug/L 1 3.0 0.18 5/24/2019 21:11 1.2,2-Tichloroethane 0.23 U ug/L 1 3.0 0.18 5/24/2019 21:11 1.2,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1.2,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1.2,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1.2,2-Dichloroethane 0.23 U ug/L 1 3.0 0.22 5/24/2019 21:11 1.2,2-Dichloroethane 0.24 U ug/L 1 3.0 0.22 5/24/2019 21:11 1.2,2-Dichloroethane 0.25 U ug/L 1 3.0 0.22 5/24/2019 21:11 1.2,2-Dichloroethane 0.26 U ug/L 1 3.0 0.22 5/24/2019 21:11 1.2,2-Dichloroethane 0.27 U ug/L 1 3.0 0.22 5/24/2019 21:11 1.2,2-Dichloroethane 0.28 U ug/L 1 3.0 0.22 5/24/2019 21:11 1.2,2-Dichloroethane 0.29 U ug/L 1 5.0 0.43 5/24/2019 21:11 1.2,2-Dichloroethane 0.20 U ug/L 1 5.0 0.43 5/24/2019 21:11 1.2,2-Dichloroethane 0.21 U ug/L 1 5.0 0.43 5/24/2019 21:11 1.2,2-Dichloroethane 0.22 U ug/L 1 5.0 0.43 5/24/2019 21:11 1.2,2-Dichloroethane 0.23 U ug/L 1 5.0 0.43 5/24/2019 21:11 1.2,2-Dichloroethane		Prep	aration I	Method: SV	V-846 8011				
Ethylene Dibromide (EDB) 0.0064 U ug/L 1 0.021 0.0064 5/31/2019 03:10 Tetrachloro-m-xylene (S) 110 % 1 64-150 5/31/2019 03:10 VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/24/2019 21:11 1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 5/24/2019 21:11 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/24/2019 21:11 1,1,2-Tichloroethane 0.30 U ug/L 1 1.0 0.30 5/24/2019 21:11 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/24/2019 21:11 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/24/2019 21:11 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Trichloropropane 0.91 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.22 5/24/2019 21:11 1,2-Dichloropropane 0.19 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.19 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichlorobenzene 0.22 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11	Water	Ana	lytical Me	ethod: SW-8	346 8011				
Tetrachloro-m-xylene (S) 110 %	1,2-Dibromo-3-Chloropropane	0.0062	U	ug/L	1	0.021	0.0062	5/31/2019 03:10	J
VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/24/2019 21:11 1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 5/24/2019 21:11 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/24/2019 21:11 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/24/2019 21:11 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/24/2019 21:11 1,1-Dichloroethane 0.18 U ug/L 1 1.0 0.14 5/24/2019 21:11 1,2-3-Trichloropropane 0.91 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.18 U ug/L 1 0.0 0.91 5/24/2019 21:11 1,2-Dichloroethane 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloropenzene 0.18 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropenzene 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 3.0 0.25 5/24/2019 21:11 1,2-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone	Ethylene Dibromide (EDB)	0.0064	U	ug/L	1	0.021	0.0064	5/31/2019 03:10	J
Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 8260B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/24/2019 21:11 1.1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 5/24/2019 21:11 1.1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/24/2019 21:11 1.1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/24/2019 21:11 1.1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/24/2019 21:11 1.1,1-Dichloroethane 0.18 U ug/L 1 3.0 0.14 5/24/2019 21:11 1.2,3-Trichloropropane 0.91 U ug/L 1 3.0 0.18 5/24/2019 21:11 1.2,3-Trichloropropane 0.91 U ug/L 1 3.0 0.18 5/24/2019 21:11 1.2-Dichloroethane 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1.2-Dichloroethane 0.23 U ug/L 1 3.0 0.18 5/24/2019 21:11 1.2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1.2-Dichloropropane 0.66 U ug/L 1 3.0 0.23 5/24/2019 21:11 1.2-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 1.2-Dichlorobenzene 0.22 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 5.0 0.71 5/24/2019 21:11	Tetrachloro-m-xylene (S)	110		%	1	64-150		5/31/2019 03:10	
Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,22 U ug/L 1 1,0 0.22 5/24/2019 21:11 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,3-Trichloropropane 1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroe	VOLATILES								
1,1,1,2-Tetrachloroethane 1,1,1,1-Trichloroethane 1,22 U ug/L 1 1,0 0.54 5/24/2019 21:11 1,1,2-Tetrachloroethane 1,0 0.22 5/24/2019 21:11 1,1,2-Tetrachloroethane 1,0 0.20 5/24/2019 21:11 1,1,2-Trichloroethane 1,0 0.20 5/24/2019 21:11 1,1,2-Trichloroethane 1,0 0.30 U ug/L 1 1,0 0.30 5/24/2019 21:11 1,1-Dichloroethane 1,1 U ug/L 1 1,1-Dichloroethane 1,1 U ug/L 1 1,1-Dichloroethylene 1,1,2-Trichloroptylene 1,1 U ug/L 1 1,1-Dichloroethylene 1,2,3-Trichloropropane 1,2,3-Trichloroptylene 1,2-Dichlorobenzene 1,1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptylene 1,2-Dichloroptylene 1,2-Dichloroptylene 1,2-Dichloroptylene 1,2-Dichloroptylene 1,2-Dichloroptylene 1,2-Dichloroptylene 1,2-Dichloroethane 1,2-Dichloroptylene 1,2	Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 5/24/2019 21:11 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/24/2019 21:11 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/24/2019 21:11 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/24/2019 21:11 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.71 5/24/2019 21:11		Ana	lytical Me	ethod: SW-8	846 8260B				
1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/24/2019 21:11 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/24/2019 21:11 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/24/2019 21:11 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/24/2019 21:11	J
1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethylene 1,1,1-Dichloroethylene 1,1,2-Trichloropropane 1,1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,1-Dichloroethylene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane 1,5-Dichloropropane 1,5	1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/24/2019 21:11	J
1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/24/2019 21:11 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/24/2019 21:11	J
1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/24/2019 21:11	J
1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 5/24/2019 21:11 1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/24/2019 21:11	J
1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/24/2019 21:11	J
1,2-Dichlorobenzene 0.18 U ug/L 1 3.0 0.18 5/24/2019 21:11 1,2-Dichloroethane 0.23 U ug/L 1 3.0 0.23 5/24/2019 21:11 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/24/2019 21:11	J
1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	· ·	0.18	U	_	1	3.0	0.18	5/24/2019 21:11	J
1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 5/24/2019 21:11 1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11	1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/24/2019 21:11	J
1,4-Dichlorobenzene 0.22 U ug/L 1 3.0 0.22 5/24/2019 21:11 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 5/24/2019 21:11 2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11		0.66		•	1				J
2-Butanone (MEK)	• •	0.22	U	_	1	3.0	0.22		J
2-Hexanone 0.71 U ug/L 1 5.0 0.71 5/24/2019 21:11		-	_	•					J
The state of the s	2-Hexanone			•					Ĵ
		-		•					J

Report ID: 878563 - 812022 Page 31 of 103

CERTIFICATE OF ANALYSIS

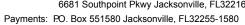
ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906272011 Date Received: 05/16/19 08:45 Matrix: Water

Sample ID: 19135-MW-6A Date Collected: 05/15/19 14:10

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Acetone	2.1	U	ug/L	1	5.0	2.1	5/24/2019 21:11	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/24/2019 21:11	J
Benzene	3.0		ug/L	1	1.0	0.16	5/24/2019 21:11	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/24/2019 21:11	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/24/2019 21:11	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/24/2019 21:11	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/24/2019 21:11	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/24/2019 21:11	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/24/2019 21:11	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/24/2019 21:11	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 21:11	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/24/2019 21:11	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/24/2019 21:11	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 21:11	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/24/2019 21:11	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/24/2019 21:11	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/24/2019 21:11	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/24/2019 21:11	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 21:11	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/24/2019 21:11	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 21:11	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/24/2019 21:11	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/24/2019 21:11	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/24/2019 21:11	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/24/2019 21:11	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/24/2019 21:11	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/24/2019 21:11	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/24/2019 21:11	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/24/2019 21:11	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/24/2019 21:11	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/24/2019 21:11	J
1,2-Dichloroethane-d4 (S)	111		%	1	70-128		5/24/2019 21:11	
Toluene-d8 (S)	105		%	1	77-119		5/24/2019 21:11	
Bromofluorobenzene (S)	110		%	1	86-123		5/24/2019 21:11	
VOLATILES								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				

Analysis Desc: IC,E300.0,Water	Ana	lytical M	ethod: EPA 3	300.0				
Chloride	54		mg/L	1	5.0	0.50	5/17/2019 03:33	J
Nitrate (as N)	0.050	U	ma/L	1	0.50	0.050	5/17/2019 03:33	J

Report ID: 878563 - 812022 Page 32 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906272011 Date Received: 05/16/19 08:45 Matrix: Water

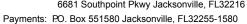
Date Collected: 05/15/19 14:10 Sample ID: 19135-MW-6A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	5.0		mg/L	10	0.10	0.080	5/20/2019 16:24	G

Date Received: 05/16/19 08:45 Lab ID: J1906272012 Matrix: Water

Date Collected: 05/15/19 13:46 Sample ID: 19135-MW-6B


Sample Description: Location:

					Adjusted	Adjusted				
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
METALS										
Analysis Desc: SW846 6010B	Prep	aration I	/lethod: SV	V-846 3010A						
Analysis, Water	Anal	Analytical Method: SW-846 6010								
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 15:22	J		
Barium	47		ug/L	1	4.0	1.0	5/28/2019 15:22	J		
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:22	J		
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:22	J		
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:22	J		
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:22	J		
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:22	J		
Iron	1300		ug/L	1	400	100	5/28/2019 15:22	J		
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 15:22	J		
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 15:22	J		
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:22	J		
Silver	10	U	ug/L	1	40	10	5/28/2019 15:22	J		
Sodium	12		mg/L	1	1.4	0.35	5/28/2019 15:22	J		
Vanadium	2.7	I,V	ug/L	1	4.0	1.0	5/28/2019 15:22	J		
Zinc	50	U	ug/L	1	200	50	5/28/2019 15:22	J		
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	V-846 3010A						
Analysis,Total	Anal	ytical Me	thod: SW-8	346 6020						
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 22:52	J		
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 22:52	J		
Analysis Desc: SW846 7470A	Prep	aration I	/lethod: SV	V-846 7470A						
Analysis, Water	Analytical Method: SW-846 7470A									
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 17:57	J		

Report ID: 878563 - 812022 Page 33 of 103

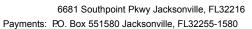
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272012 Matrix: Water

19135-MW-6B Date Collected: 05/15/19 13:46 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	oaration I	Method: SV	V-846 8011				
Water	Δna	lytical Me	ethod: SW-	846 8011				
4 O Dibassas O Oblassassas		•			0.004	0.0000	F/04/0040 04:00	
1,2-Dibromo-3-Chloropropane	0.0062	U	ug/L	1	0.021	0.0062	5/31/2019 01:36	J
Ethylene Dibromide (EDB)	0.0064	U	ug/L	1	0.021	0.0064	5/31/2019 01:36	J
Tetrachloro-m-xylene (S)	106		%	1	64-150		5/31/2019 01:36	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	oaration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/24/2019 21:47	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/24/2019 21:47	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/24/2019 21:47	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/24/2019 21:47	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/24/2019 21:47	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/24/2019 21:47	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/24/2019 21:47	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/24/2019 21:47	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/24/2019 21:47	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/24/2019 21:47	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/24/2019 21:47	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/24/2019 21:47	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/24/2019 21:47	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/24/2019 21:47	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/24/2019 21:47	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/24/2019 21:47	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/24/2019 21:47	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/24/2019 21:47	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/24/2019 21:47	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/24/2019 21:47	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/24/2019 21:47	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/24/2019 21:47	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/24/2019 21:47	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/24/2019 21:47	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 21:47	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/24/2019 21:47	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/24/2019 21:47	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/24/2019 21:47	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/24/2019 21:47	J

Report ID: 878563 - 812022 Page 34 of 103

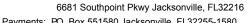
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272012 Matrix: Water

19135-MW-6B Date Collected: 05/15/19 13:46 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/24/2019 21:47	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/24/2019 21:47	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/24/2019 21:47	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 21:47	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/24/2019 21:47	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/24/2019 21:47	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/24/2019 21:47	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/24/2019 21:47	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/24/2019 21:47	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/24/2019 21:47	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/24/2019 21:47	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/24/2019 21:47	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/24/2019 21:47	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/24/2019 21:47	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/24/2019 21:47	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/24/2019 21:47	J
1,2-Dichloroethane-d4 (S)	110		%	1	70-128		5/24/2019 21:47	
Toluene-d8 (S)	106		%	1	77-119		5/24/2019 21:47	
Bromofluorobenzene (S)	112		%	1	86-123		5/24/2019 21:47	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Analytical Method: EPA 300.0							
Chloride	38		mg/L	1	5.0	0.50	5/17/2019 02:29	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 02:29	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	thod: EPA	350.1				
Ammonia (N)	0.21		mg/L	1	0.010	0.0080	5/20/2019 15:05	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Analytical Method: SM 2540 C							
Total Dissolved Solids	85		mg/L	1	10	10	5/21/2019 15:05	J

Report ID: 878563 - 812022 Page 35 of 103

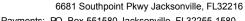
ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

VOLATILES

Date Received: 05/16/19 08:45 Lab ID: J1906272013 Matrix: Water

19135-MW-16AR Date Collected: 05/15/19 14:03 Sample ID:


Sample Description: Location:

Results	Qual	Units	DF	DC:			
		Office	DΓ	PQL	MDL	Analyzed	Lab
Prep	aration I	Method: SV	V-846 3010A				
Anal	ytical Me	ethod: SW-8	346 6010				
9.0	U	ug/L	1	40	9.0	5/28/2019 15:26	J
51		ug/L	1	4.0	1.0	5/28/2019 15:26	J
0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:26	J
1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:26	J
3.1	- 1	ug/L	1	8.0	2.0	5/28/2019 15:26	J
2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:26	J
4.0	U	ug/L	1	16	4.0	5/28/2019 15:26	J
890		ug/L	1	400	100	5/28/2019 15:26	J
3.7	I	ug/L	1	12	3.0	5/28/2019 15:26	J
6.0	U	ug/L	1	24	6.0	5/28/2019 15:26	J
40	U	ug/L	1	160	40	5/28/2019 15:26	J
10	U	ug/L	1	40	10	5/28/2019 15:26	J
210		mg/L	1	1.4	0.35	5/28/2019 15:26	J
18	V	ug/L	1	4.0	1.0	5/28/2019 15:26	J
50	U	ug/L	1	200	50	5/28/2019 15:26	J
Prep	aration I	Method: SV	V-846 3010A				
Analytical Method: SW-846 6020							
	-			0.70	0 11	5/22/2019 22:56	J
_		•			****		J
0.037	Ū	ug/L	•	0.20	0.007	3/22/2013 22.30	J
Prep	aration I	Method: SV	V-846 7470A				
Analytical Method: SW-846 7470A							
0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:00	J
Prep	aration I	Method: SV	V-846 8011				
Anal	ytical Me	ethod: SW-8	346 8011				
0.0064	U	ua/L	1	0.021	0.0064	5/31/2019 02:06	J
0.0066	Ü		1	0.021	0.0066	5/31/2019 02:06	J
	•	-			2.0000		•
	Anal 9.0 51 0.50 1.0 3.1 2.0 4.0 890 3.7 6.0 40 10 210 18 50 Prep Anal 0.27 0.057 Prep Anal 0.011 Prep Anal	Analytical Me 9.0 U 51 0.50 U 1.0 U 3.1 I 2.0 U 4.0 U 890 3.7 I 6.0 U 40 U 10 U 210 18 V 50 U Preparation N Analytical Me 0.011 U Preparation N Analytical Me 0.011 U Preparation N Analytical Me 0.0064 U 0.0066 U	Analytical Method: SW-4 9.0 U ug/L 51 ug/L 0.50 U ug/L 1.0 U ug/L 3.1 I ug/L 2.0 U ug/L 4.0 U ug/L 890 ug/L 3.7 I ug/L 6.0 U ug/L 40 U ug/L 10 U ug/L 210 mg/L 18 V ug/L 50 U ug/L Preparation Method: SW-6 0.27 I ug/L 0.057 U ug/L Preparation Method: SW-6 Analytical Method: SW-6 0.011 U ug/L Preparation Method: SW-6 0.011 U ug/L O.0064 U ug/L 0.0066 U ug/L	51	## Analytical Method: SW-846 6010 9.0	Analytical Method: SW-846 6010 9.0	### Analytical Method: SW-846 6010 9.0 U ug/L 1 40 9.0 5/28/2019 15:26 51 ug/L 1 4.0 1.0 5/28/2019 15:26 0.50 U ug/L 1 2.0 0.50 5/28/2019 15:26 1.0 U ug/L 1 4.0 1.0 5/28/2019 15:26 3.1 I ug/L 1 8.0 2.0 5/28/2019 15:26 2.0 U ug/L 1 8.0 2.0 5/28/2019 15:26 4.0 U ug/L 1 16 4.0 5/28/2019 15:26 4.0 U ug/L 1 16 4.0 5/28/2019 15:26 890 ug/L 1 400 100 5/28/2019 15:26 3.7 I ug/L 1 12 3.0 5/28/2019 15:26 6.0 U ug/L 1 24 6.0 5/28/2019 15:26 6.0 U ug/L 1 10 5/28/2019 15:26 4.0 U ug/L 1 10 5/28/2019 15:26 10 U ug/L 1 10 16 4.0 5/28/2019 15:26 10 U ug/L 1 10 16 4.0 5/28/2019 15:26 10 U ug/L 1 40 10 5/28/2019 15:26 10 U ug/L 1 40 10 5/28/2019 15:26 10 U ug/L 1 40 10 5/28/2019 15:26 11 U ug/L 1 40 10 5/28/2019 15:26 1210 mg/L 1 4.0 1.0 5/28/2019 15:26 18 V ug/L 1 4.0 1.0 5/28/2019 15:26 18 V ug/L 1 4.0 1.0 5/28/2019 15:26 Preparation Method: SW-846 3010A Analytical Method: SW-846 6020 0.27 I ug/L 1 0.70 0.11 5/22/2019 22:56 0.057 U ug/L 1 0.20 0.057 5/22/2019 22:56 Preparation Method: SW-846 7470A Analytical Method: SW-846 7470A Analytical Method: SW-846 8011 Analytical Method: SW-846 8011 Analytical Method: SW-846 8011 O.0064 U ug/L 1 0.021 0.0064 5/31/2019 02:06 0.0066 U ug/L 1 0.0021 0.0066 5/31/2019 02:06

Report ID: 878563 - 812022 Page 36 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272013 Matrix: Water

19135-MW-16AR Date Collected: 05/15/19 14:03 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Anal	ytical Me	thod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 15:34	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 15:34	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 15:34	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 15:34	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 15:34	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 15:34	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 15:34	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 15:34	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 15:34	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 15:34	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 15:34	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 15:34	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 15:34	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 15:34	J
Acetone	4.9	- 1	ug/L	1	5.0	2.1	5/28/2019 15:34	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 15:34	J
Benzene	1.6		ug/L	1	1.0	0.16	5/28/2019 15:34	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 15:34	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 15:34	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 15:34	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 15:34	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 15:34	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 15:34	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 15:34	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 15:34	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 15:34	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 15:34	J
Dibromochloromethane	0.33	Ū	ug/L	1	1.0	0.33	5/28/2019 15:34	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 15:34	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 15:34	J
Iodomethane (Methyl Iodide)	0.16	Ū	ug/L	1	1.0	0.16	5/28/2019 15:34	J
Methylene Chloride	2.5	Ü	ug/L	1	5.0	2.5	5/28/2019 15:34	J
Styrene	0.23	Ü	ug/L	1	1.0	0.23	5/28/2019 15:34	J
Tetrachloroethylene (PCE)	0.36	Ü	ug/L	1	1.0	0.36	5/28/2019 15:34	J
Toluene	0.23	Ü	ug/L	1	1.0	0.23	5/28/2019 15:34	J
Trichloroethene	0.29	Ü	ug/L	1	1.0	0.29	5/28/2019 15:34	J
Trichlorofluoromethane	0.32	Ü	ug/L	1	1.0	0.32	5/28/2019 15:34	J

Report ID: 878563 - 812022 Page 37 of 103

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272013 Matrix: Water

19135-MW-16AR Date Collected: 05/15/19 14:03 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 15:34	
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 15:34	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 15:34	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 15:34	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 15:34	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 15:34	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 15:34	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 15:34	J
1,2-Dichloroethane-d4 (S)	92		%	1	70-128		5/28/2019 15:34	
Toluene-d8 (S)	96		%	1	77-119		5/28/2019 15:34	
Bromofluorobenzene (S)	107		%	1	86-123		5/28/2019 15:34	

WET CHEMISTRY

WEICHEWISIKI							
Analysis Desc: IC,E300.0,Water	Analytic	al Method: EPA 3	0.00				
Chloride	460	mg/L	5	25	2.5	5/17/2019 03:11	J
Nitrate (as N)	0.25	U mg/L	5	2.5	0.25	5/17/2019 03:11	J
Analysis Desc: Ammonia,E350.1,Water	Analytic	al Method: EPA 3	50.1				
Ammonia (N)	4.8	mg/L	10	0.10	0.080	5/20/2019 15:08	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Analytic	al Method: SM 25	540 C				
Total Dissolved Solids	1100	mg/L	1	10	10	5/22/2019 12:32	J

Date Received: 05/16/19 08:45 Water Lab ID: J1906272014 Matrix:

Date Collected: 05/15/19 14:18 Sample ID: 19135-MW-16BR

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical M	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 15:29	J
Barium	31		ug/L	1	4.0	1.0	5/28/2019 15:29	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 15:29	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 15:29	J

Report ID: 878563 - 812022 Page 38 of 103

CERTIFICATE OF ANALYSIS

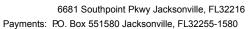
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272014 Matrix: Water

19135-MW-16BR Date Collected: 05/15/19 14:18 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:29	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 15:29	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 15:29	J
Iron	1800		ug/L	1	400	100	5/28/2019 15:29	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 15:29	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 15:29	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 15:29	J
Silver	10	U	ug/L	1	40		5/28/2019 15:29	J
Sodium	8.1		mg/L	1	1.4	0.35	5/28/2019 15:29	J
Vanadium	1.6	I,V	ug/L	1	4.0	1.0	5/28/2019 15:29	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 15:29	J
Analysis Desc: SW846 6020B	Prep	paration N	Method: SW	/-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 23:00	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 23:00	J
Analysis Desc: SW846 7470A Analysis,Water				/-846 7470A				
	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:10	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	oaration N	Method: SV	/-846 8011				
Water	Ana	lytical Me	ethod: SW-8	346 8011				
1,2-Dibromo-3-Chloropropane	0.0064	U	ug/L	1	0.021	0.0064	5/31/2019 03:43	J
Ethylene Dibromide (EDB)	0.0066	Ū	ug/L	1	0.021	0.0066	5/31/2019 03:43	J
Tetrachloro-m-xylene (S)	107		%	1	64-150		5/31/2019 03:43	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SW	/-846 5030B				
·			ethod: SW-8					
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 16:04	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 16:04	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 16:04	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 16:04	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 16:04	J
1,1 Diomorodulario								
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 16:04	J

Report ID: 878563 - 812022 Page 39 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272014 Matrix: Water

Sample ID: 19135-MW-16BR Date Collected: 05/15/19 14:18

Sample Description: Location:

Sample Description:				Location:				
_					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 16:04	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 16:04	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 16:04	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 16:04	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 16:04	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 16:04	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 16:04	J
Acetone	2.5	ı	ug/L	1	5.0	2.1	5/28/2019 16:04	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 16:04	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 16:04	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 16:04	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 16:04	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 16:04	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 16:04	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 16:04	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 16:04	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 16:04	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 16:04	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 16:04	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 16:04	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 16:04	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 16:04	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 16:04	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 16:04	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 16:04	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 16:04	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 16:04	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 16:04	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 16:04	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 16:04	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 16:04	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 16:04	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 16:04	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 16:04	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 16:04	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 16:04	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 16:04	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 16:04	J
1,2-Dichloroethane-d4 (S)	89	-	%	1	70-128		5/28/2019 16:04	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 16:04	

Report ID: 878563 - 812022 Page 40 of 103

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272014 Matrix: Water

19135-MW-16BR Date Collected: 05/15/19 14:18 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	103		%	1	86-123		5/28/2019 16:04	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride Nitrate (as N)	28 0.050	U	mg/L mg/L	1 1	5.0 0.50	0.50 0.050	5/17/2019 02:50 5/17/2019 02:50	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.29		mg/L	1	0.010	0.0080	5/20/2019 15:10	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	73		mg/L	1	10	10	5/22/2019 12:32	J

Date Received: 05/16/19 08:45 Lab ID: J1906272015 Matrix: Water

Date Collected: 05/15/19 12:26 19135-MW-17AR Sample ID:

Sample Description: Location:

_					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 12:27	J
Barium	65		ug/L	1	4.0	1.0	5/24/2019 12:27	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 12:27	J
Cadmium	1.7	- 1	ug/L	1	4.0	1.0	5/24/2019 12:27	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:27	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:27	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 12:27	J
Iron	640		ug/L	1	400	100	5/24/2019 12:27	J
Lead	3.7	- 1	ug/L	1	12	3.0	5/24/2019 12:27	J
Nickel	9.2	I	ug/L	1	24	6.0	5/24/2019 12:27	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 12:27	J
Silver	10	U	ug/L	1	40	10	5/24/2019 12:27	J
Sodium	75		mg/L	1	1.4	0.35	5/24/2019 12:27	J
Vanadium	7.7	V	ug/L	1	4.0	1.0	5/28/2019 12:18	J

Report ID: 878563 - 812022 Page 41 of 103

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272015 Matrix: Water

19135-MW-17AR Date Collected: 05/15/19 12:26 Sample ID:

Sample Description: Location:

					Aujusteu	Aujusteu		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Zinc	50	U	ug/L	1	200	50	5/24/2019 12:27	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.35	ı	ug/L	1	0.70	0.11	5/22/2019 23:04	J
Thallium	0.069	I	ug/L	1	0.20	0.057	5/22/2019 23:04	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:13	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water	Ana	lytical Me	ethod: SW-	846 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 17:56	J
Ethylene Dibromide (EDB)	0.0065	Ū	ug/L	1	0.021	0.0065	5/31/2019 17:56	J
Tetrachloro-m-xylene (S)	93		%	1	64-150		5/31/2019 17:56	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Dror	aration I	Method: SV	V-846 5030B				
Alialysis Desc. 02000 Alialysis, Water	·							
	Anal	•	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 16:33	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0		5/28/2019 16:33	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 16:33	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 16:33	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 16:33	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 16:33	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 16:33	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 16:33	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 16:33	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 16:33	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 16:33	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0		5/28/2019 16:33	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 16:33	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 16:33	J
Acetone	5.2		ug/L	1	5.0	2.1	5/28/2019 16:33	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 16:33	J
Benzene	0.16	Ū	ug/L	1	1.0	0.16	5/28/2019 16:33	J
			-					

Report ID: 878563 - 812022 Page 42 of 103

CERTIFICATE OF ANALYSIS

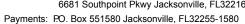
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272015 Matrix: Water

19135-MW-17AR Date Collected: 05/15/19 12:26 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 16:33	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 16:33	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 16:33	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 16:33	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 16:33	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 16:33	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 16:33	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 16:33	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 16:33	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 16:33	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 16:33	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 16:33	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 16:33	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 16:33	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 16:33	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 16:33	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 16:33	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 16:33	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 16:33	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 16:33	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 16:33	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 16:33	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 16:33	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 16:33	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 16:33	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 16:33	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 16:33	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 16:33	J
1,2-Dichloroethane-d4 (S)	87		%	1	70-128		5/28/2019 16:33	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 16:33	
Bromofluorobenzene (S)	106		%	1	86-123		5/28/2019 16:33	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	170		mg/L	2	10	1.0	5/17/2019 08:12	J
Nitrate (as N)	7.1		mg/L	2	1.0	0.10	5/17/2019 08:12	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	thod: EPA	350.1				
Ammonia (N)	2.3		mg/L	5	0.050	0.040	5/20/2019 16:34	G

Report ID: 878563 - 812022 Page 43 of 103

CERTIFICATE OF ANALYSIS

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272015 Matrix: Water

19135-MW-17AR Date Collected: 05/15/19 12:26 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	680		mg/L	1	10	10	5/21/2019 15:05	J

Lab ID: J1906272016 Date Received: 05/16/19 08:45 Matrix: Water

Date Collected: 05/15/19 13:18 Sample ID: 19135-MW-17BR

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 12:52	J
Barium	18		ug/L	1	4.0	1.0	5/24/2019 12:52	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 12:52	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 12:52	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:52	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:52	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 12:52	J
Iron	430		ug/L	1	400	100	5/24/2019 12:52	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 12:52	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 12:52	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 12:52	J
Silver	10	U	ug/L	1	40	10	5/24/2019 12:52	J
Sodium	15		mg/L	1	1.4	0.35	5/24/2019 12:52	J
Vanadium	3.0	I,V	ug/L	1	4.0	1.0	5/28/2019 12:21	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 12:52	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 23:19	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 23:19	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 7470A				

Report ID: 878563 - 812022 Page 44 of 103

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

1.0

1.0

1.0

1.0

1.0

0.36 5/28/2019 17:03

0.21 5/28/2019 17:03

0.33 5/28/2019 17:03

0.18 5/28/2019 17:03

0.21 5/28/2019 17:03

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Carbon Tetrachloride

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Date Received: 05/16/19 08:45 Lab ID: J1906272016 Matrix: Water

19135-MW-17BR Date Collected: 05/15/19 13:18 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:17	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SW	/-846 8011				
Water	Anal	lytical Me	ethod: SW-8	346 8011				
1.2 Dibrama 2 Chlaranranana	0.0063	•			0.021	0.0063	5/31/2019 01:06	
1,2-Dibromo-3-Chloropropane Ethylene Dibromide (EDB)	0.0065	U U	ug/L ug/L	1 1	0.021	0.0065	5/31/2019 01:06	J J
Tetrachloro-m-xylene (S)	90	U	ug/L %	1	64-150	0.0003	5/31/2019 01:06	J
Tetractiloro-III-xylerie (3)	90		/0	•	04-130		3/31/2019 01.00	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SW	/-846 5030B				
	Anal	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 17:03	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 17:03	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 17:03	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 17:03	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 17:03	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 17:03	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 17:03	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 17:03	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 17:03	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 17:03	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22		J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 17:03	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 17:03	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 17:03	J
Acetone	6.1		ug/L	1	5.0	2.1	5/28/2019 17:03	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 17:03	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 17:03	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 17:03	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 17:03	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 17:03	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 17:03	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 17:03	J

Report ID: 878563 - 812022 Page 45 of 103

0.36

0.21

0.33

0.18

0.21

U

U

U

U

U

ug/L

ug/L


ug/L

ug/L

ug/L

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272016 Matrix: Water

19135-MW-17BR Date Collected: 05/15/19 13:18 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 17:03	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 17:03	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 17:03	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 17:03	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 17:03	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 17:03	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 17:03	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 17:03	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 17:03	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 17:03	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 17:03	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 17:03	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 17:03	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 17:03	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 17:03	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 17:03	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 17:03	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 17:03	J
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		5/28/2019 17:03	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 17:03	
Bromofluorobenzene (S)	111		%	1	86-123		5/28/2019 17:03	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	18		mg/L	1	5.0	0.50	5/17/2019 01:46	J
Nitrate (as N)	0.050	U,J4	mg/L	1	0.50	0.050	5/17/2019 01:46	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	thod: EPA	350.1				
Ammonia (N)	0.24		mg/L	1	0.010	0.0080	5/20/2019 16:35	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM 2	2540 C				
Total Dissolved Solids	82		mg/L	1	10	10	5/21/2019 15:05	J

Report ID: 878563 - 812022 Page 46 of 103

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272017 Matrix: Water

19135-MW-27A Date Collected: 05/15/19 07:39 Sample ID:


Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lal
METALS								
Analysis Desc: SW846 6010B	Prep	paration N	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	thod: SW-	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 12:55	J
Barium	12		ug/L	1	4.0	1.0	5/24/2019 12:55	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 12:55	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 12:55	J
Chromium	3.6	I	ug/L	1	8.0	2.0	5/24/2019 12:55	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:55	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 12:55	J
ron	1100		ug/L	1	400	100	5/24/2019 12:55	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 12:55	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 12:55	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 12:55	J
Silver	10	U	ug/L	1	40	10	5/24/2019 12:55	J
Sodium	15		mg/L	1	1.4	0.35	5/24/2019 12:55	J
/anadium	12	V	ug/L	1	4.0	1.0	5/28/2019 12:36	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 12:55	J
Analysis Desc: SW846 6020B	Prep	aration N	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	346 6020				
Antimony	0.11	- 1	ug/L	1	0.70	0.11	5/22/2019 23:23	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057		J
Applysis Dece: \$14946 74704	Dror	aration N		U 046 7470A				
Analysis Desc: SW846 7470A Analysis,Water	Prep	paration r	vietnoa: Sv	V-846 7470A				
-traiyoio, vvatei	Ana	lytical Me	thod: SW-	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:20	J
SEMIVOLATILES								
Analysis Desc: Tot Dissolved	Ana	lytical Me	ethod: SM 2	2540 C				
Solids,SM2540C								
Total Dissolved Solids	120		mg/L	1	10	10	5/21/2019 15:05	J
Analysis Desc: SW 8011 Analysis,	Prep	aration M	Method: SV	V-846 8011				
Water	Ana	lytical Me	ethod: SW-	346 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 09:31	J
Ethylene Dibromide (EDB)	0.0065	Ü	ug/L	1	0.021	0.0065	5/31/2019 09:31	J
, ,		-						

Report ID: 878563 - 812022 Page 47 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272017 Matrix: Water

19135-MW-27A Date Collected: 05/15/19 07:39 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Pre	paration N	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 17:33	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 17:33	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 17:33	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 17:33	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 17:33	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 17:33	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 17:33	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 17:33	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 17:33	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 17:33	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 17:33	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 17:33	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 17:33	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 17:33	J
Acetone	5.3		ug/L	1	5.0	2.1	5/28/2019 17:33	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 17:33	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 17:33	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 17:33	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 17:33	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 17:33	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 17:33	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 17:33	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 17:33	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 17:33	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 17:33	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 17:33	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 17:33	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 17:33	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 17:33	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 17:33	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 17:33	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 17:33	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 17:33	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 17:33	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 17:33	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 17:33	J

Report ID: 878563 - 812022 Page 48 of 103

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272017 Matrix: Water

19135-MW-27A Date Collected: 05/15/19 07:39 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 17:33	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 17:33	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 17:33	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 17:33	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 17:33	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 17:33	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 17:33	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 17:33	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 17:33	J
1,2-Dichloroethane-d4 (S)	90		%	1	70-128		5/28/2019 17:33	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 17:33	
Bromofluorobenzene (S)	107		%	1	86-123		5/28/2019 17:33	

WET CHEMISTRY

Analysis Desc: IC,E300.0,Water	Analyti	cal Me	ethod: EPA	300.0				
Chloride	34		mg/L	1	5.0	0.50	5/16/2019 17:50	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/16/2019 17:50	J
Analysis Desc: Ammonia,E350.1,Water	Analyti	cal Me	ethod: EPA 3	350.1				
Ammonia (N)	5.5		mg/L	10	0.10	0.080	5/20/2019 16:36	G

Date Received: 05/16/19 08:45 Lab ID: J1906272018 Matrix: Water

19135-MW-27B Date Collected: 05/15/19 08:28 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical M	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 12:59	J
Barium	18		ug/L	1	4.0	1.0	5/24/2019 12:59	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 12:59	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 12:59	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:59	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:59	J

Report ID: 878563 - 812022 Page 49 of 103

CERTIFICATE OF ANALYSIS

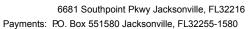
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272018 Matrix: Water

19135-MW-27B Date Collected: 05/15/19 08:28 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 12:59	J
Iron	390	- 1	ug/L	1	400	100	5/24/2019 12:59	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 12:59	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 12:59	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 12:59	J
Silver	10	U	ug/L	1	40	10	5/24/2019 12:59	J
Sodium	24		mg/L	1	1.4	0.35	5/24/2019 12:59	J
Vanadium	3.7	I,V	ug/L	1	4.0	1.0	5/28/2019 12:40	J
Zinc	50	Ü	ug/L	1	200	50	5/24/2019 12:59	J
Analysis Desc: SW846 6020B Analysis,Total				/-846 3010A				
. , ,	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 23:28	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 23:28	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW	/-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:23	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SW	/-846 8011				
Water	Anal	ytical Me	ethod: SW-8	346 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 11:41	J
Ethylene Dibromide (EDB)	0.0065	Ü	ug/L	1	0.021	0.0065		J
Tetrachloro-m-xylene (S)	89	•	%	1	64-150	0.0000	5/31/2019 11:41	ŭ
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Pren	aration N	Method: SW	/-846 5030B				
			ethod: SW-8					
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 18:02	J
1,1,1-Trichloroethane	0.34	U	ug/L ug/L	1	1.0	0.34	5/28/2019 18:02	J
1,1,2.2-Tetrachloroethane	0.22	U	ug/L ug/L	1	1.0	0.22	5/28/2019 18:02	J
1,1,2,2-Tetrachioroethane	0.20	U	ug/L ug/L	1	1.0	0.20	5/28/2019 18:02	J
• •				1				
1,1-Dichloroethane	0.14	U	ug/L		1.0	0.14	5/28/2019 18:02	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 18:02	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 18:02	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 18:02	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 18:02	J

Report ID: 878563 - 812022 Page 50 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272018 Matrix: Water

19135-MW-27B Date Collected: 05/15/19 08:28 Sample ID:

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 18:02	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 18:02	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 18:02	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 18:02	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 18:02	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/28/2019 18:02	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 18:02	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 18:02	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 18:02	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 18:02	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 18:02	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 18:02	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 18:02	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 18:02	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 18:02	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 18:02	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 18:02	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 18:02	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 18:02	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 18:02	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 18:02	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 18:02	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 18:02	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 18:02	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 18:02	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 18:02	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 18:02	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 18:02	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 18:02	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 18:02	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 18:02	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 18:02	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 18:02	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 18:02	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 18:02	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 18:02	J
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		5/28/2019 18:02	
Toluene-d8 (S)	98		%	1	77-119		5/28/2019 18:02	
Bromofluorobenzene (S)	110		%	1	86-123		5/28/2019 18:02	

Report ID: 878563 - 812022 Page 51 of 103

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272018 Matrix: Water

19135-MW-27B Date Collected: 05/15/19 08:28 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	TCGGIIG	Quai	Office		1 QL	IVIDE	7 11 141 7 2 0 4	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	44		mg/L	1	5.0	0.50	5/16/2019 19:38	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/16/2019 19:38	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	0.08		mg/L	1	0.010	0.0080	5/20/2019 16:37	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	420		mg/L	1	10	10	5/21/2019 15:05	J

Lab ID: J1906272019 Date Received: 05/16/19 08:45 Matrix: Water


Date Collected: 05/15/19 09:15 Sample ID: 19135-MW-28A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	ytical Me	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:02	J
Barium	35		ug/L	1	4.0	1.0	5/24/2019 13:02	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 13:02	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:02	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:02	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:02	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:02	J
Iron	2100		ug/L	1	400	100	5/24/2019 13:02	J
Lead	5.5	1	ug/L	1	12	3.0	5/24/2019 13:02	J
Nickel	8.3	ı	ug/L	1	24	6.0	5/24/2019 13:02	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:02	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:02	J
Sodium	43		mg/L	1	1.4	0.35	5/24/2019 13:02	J
Vanadium	4.7	٧	ug/L	1	4.0	1.0	5/28/2019 12:43	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:02	J

Report ID: 878563 - 812022 Page 52 of 103

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272019 Matrix: Water

19135-MW-28A Date Collected: 05/15/19 09:15 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 23:31	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 23:31	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:26	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water			ethod: SW-8					
4.2 Dibrara 2 Oblaranca					0.004	0.0000	E/24/2040 42:4E	
1,2-Dibromo-3-Chloropropane	0.0063 0.0065	U U	ug/L	1 1	0.021 0.021	0.0063 0.0065	5/31/2019 13:15 5/31/2019 13:15	J J
Ethylene Dibromide (EDB)		U	ug/L %	1	64-150	0.0005		J
Tetrachloro-m-xylene (S)	112		%	1	04-150		5/31/2019 13:15	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
	Anal	ytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 18:32	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 18:32	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 18:32	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 18:32	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 18:32	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 18:32	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 18:32	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 18:32	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 18:32	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 18:32	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 18:32	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 18:32	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 18:32	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 18:32	J
Acetone	4.3	1	ug/L	1	5.0	2.1	5/28/2019 18:32	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 18:32	J
Benzene	0.16	Ū	ug/L	1	1.0	0.16	5/28/2019 18:32	J
Bromochloromethane	0.17	Ū	ug/L	1	1.0	0.17	5/28/2019 18:32	J
Bromodichloromethane	0.46	Ū	ug/L	1	1.0	0.46	5/28/2019 18:32	J

Report ID: 878563 - 812022 Page 53 of 103

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272019 Matrix: Water

19135-MW-28A Date Collected: 05/15/19 09:15 Sample ID:

Sample Description: Location:

Sample Description.				Lucation.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 18:32	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 18:32	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 18:32	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 18:32	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 18:32	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 18:32	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 18:32	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 18:32	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 18:32	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 18:32	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 18:32	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 18:32	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 18:32	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 18:32	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 18:32	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 18:32	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 18:32	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 18:32	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 18:32	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 18:32	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 18:32	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 18:32	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 18:32	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 18:32	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 18:32	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 18:32	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/28/2019 18:32	
Toluene-d8 (S)	94		%	1	77-119		5/28/2019 18:32	
Bromofluorobenzene (S)	110		%	1	86-123		5/28/2019 18:32	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	180		mg/L	1	5.0	0.50	5/16/2019 20:43	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/16/2019 20:43	J
Analysis Desc: Ammonia,E350.1,Water	Ana	ilytical Me	ethod: EPA	350.1				
Ammonia (N)	6.3		mg/L	10	0.10	0.080	5/20/2019 16:38	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	ılytical Me	ethod: SM 2	2540 C				

Report ID: 878563 - 812022 Page 54 of 103

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272019 Matrix: Water

19135-MW-28A Date Collected: 05/15/19 09:15 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Total Dissolved Solids	130		mg/L	1	10	10	5/21/2019 15:05	

Lab ID: J1906272020 Date Received: 05/16/19 08:45 Matrix: Water

19135-MW-28B Sample ID: Date Collected: 05/15/19 09:50

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	Method: S\	N-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	-846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:06	J
Barium	40		ug/L	1	4.0	1.0	5/24/2019 13:06	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 13:06	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:06	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:06	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:06	J
Copper	4.7	ı	ug/L	1	16	4.0	5/24/2019 13:06	J
Iron	1200		ug/L	1	400	100	5/24/2019 13:06	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 13:06	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:06	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:06	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:06	J
Sodium	17		mg/L	1	1.4	0.35	5/24/2019 13:06	J
Vanadium	3.5	I,V	ug/L	1	4.0	1.0	5/28/2019 12:58	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:06	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: S\	N-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	-846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 23:35	J
Thallium	0.057	Ū	ug/L	1	0.20	0.057	5/22/2019 23:35	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: S\	N-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-	-846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:36	J

Report ID: 878563 - 812022 Page 55 of 103

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

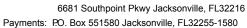
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272020 Matrix: Water

19135-MW-28B Date Collected: 05/15/19 09:50 Sample ID:


Sample Description: Location:

					Aujusteu	Aujusteu		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	paration I	Method: SW	V-846 8011				
Water	Ana	lytical Me	ethod: SW-8	346 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 13:49	J
Ethylene Dibromide (EDB)	0.0065	Ü	ug/L	1	0.021	0.0065	5/31/2019 13:49	J
Tetrachloro-m-xylene (S)	77	_	%	1	64-150		5/31/2019 13:49	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Pre	paration N	Method: SV	V-846 5030B				
	·		ethod: SW-8					
4.4.4.2 Tetreschlausethere		•			1.0	0.54	E/00/0040 40:00	
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 19:02	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 19:02	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 19:02	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 19:02	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 19:02	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 19:02	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 19:02	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 19:02	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 19:02	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 19:02	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 19:02	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 19:02	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 19:02	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 19:02	J
Acetone	4.3	ı	ug/L	1	5.0	2.1	5/28/2019 19:02	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 19:02	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 19:02	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 19:02	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 19:02	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 19:02	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 19:02	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 19:02	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 19:02	J
Chlorobenzene	0.21	Ū	ug/L	1	1.0	0.21	5/28/2019 19:02	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 19:02	J
Chloroform	0.18	Ū	ug/L	1	1.0	0.18	5/28/2019 19:02	J
Chloromethane	3.2	-	ug/L	1	1.0	0.21	5/28/2019 19:02	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 19:02	J
Dibromomethane	0.26	Ü	ug/L	1	1.0	0.26	5/28/2019 19:02	J
2.2.3	0.20	-	- 'S' -	•	1.0	0.20	5.25.25.15.15.02	J

Report ID: 878563 - 812022 Page 56 of 103

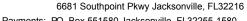
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272020 Matrix: Water

Sample ID: 19135-MW-28B Date Collected: 05/15/19 09:50


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 19:02	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 19:02	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 19:02	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 19:02	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 19:02	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 19:02	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 19:02	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 19:02	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 19:02	J
Vinyl Chloride	0.20	U,J4	ug/L	1	1.0	0.20	5/28/2019 19:02	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 19:02	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 19:02	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 19:02	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 19:02	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 19:02	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 19:02	J
1,2-Dichloroethane-d4 (S)	87		%	1	70-128		5/28/2019 19:02	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 19:02	
Bromofluorobenzene (S)	106		%	1	86-123		5/28/2019 19:02	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	48	J4	mg/L	1	5.0	0.50	5/16/2019 21:04	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/16/2019 21:04	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.22		mg/L	1	0.010	0.0080	5/20/2019 16:39	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	1400		mg/L	1	10	10	5/21/2019 15:05	J

Report ID: 878563 - 812022 Page 57 of 103

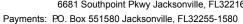
ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

VOLATILES

Date Received: 05/16/19 08:45 Lab ID: J1906272021 Matrix: Water

19135-MW-29A Date Collected: 05/15/19 10:40 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:09	J
Barium	34		ug/L	1	4.0	1.0	5/24/2019 13:09	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 13:09	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:09	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:09	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:09	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:09	J
Iron	2000		ug/L	1	400	100	5/24/2019 13:09	J
Lead	4.4	I	ug/L	1	12	3.0	5/24/2019 13:09	J
Nickel	8.9	I	ug/L	1	24	6.0	5/24/2019 13:09	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:09	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:09	J
Sodium	14		mg/L	1	1.4	0.35	5/24/2019 13:09	J
Vanadium	14	٧	ug/L	1	4.0	1.0	5/28/2019 13:02	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:09	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.28		ug/L	1	0.70	0.11	5/22/2019 23:39	J
Thallium	0.082	i	ug/L	1	0.20	0.057	5/22/2019 23:39	J
					0.20	0.007	0,22,2010 20.00	
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 18:58	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water	Anal	ytical Me	ethod: SW-	846 8011				
1,2-Dibromo-3-Chloropropane	0.0062	U	ug/L	1	0.021	0.0062	5/31/2019 15:23	J
Ethylene Dibromide (EDB)	0.0064	Ü	ug/L	1	0.021	0.0064	5/31/2019 15:23	J
Tetrachloro-m-xylene (S)	0	J4	%	1	64-150		5/31/2019 15:23	
(-,	•			-			: :	

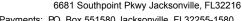
Report ID: 878563 - 812022 Page 58 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272021 Matrix: Water


19135-MW-29A Date Collected: 05/15/19 10:40 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SW	/-846 5030B				
	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 19:31	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 19:31	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 19:31	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 19:31	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 19:31	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 19:31	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 19:31	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 19:31	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 19:31	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 19:31	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 19:31	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 19:31	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 19:31	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 19:31	J
Acetone	3.8	ı	ug/L	1	5.0	2.1	5/28/2019 19:31	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 19:31	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 19:31	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 19:31	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 19:31	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 19:31	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 19:31	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 19:31	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 19:31	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 19:31	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 19:31	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 19:31	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 19:31	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 19:31	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 19:31	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 19:31	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 19:31	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 19:31	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 19:31	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 19:31	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 19:31	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 19:31	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 19:31	J

Report ID: 878563 - 812022 Page 59 of 103

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272021 Matrix: Water

19135-MW-29A Date Collected: 05/15/19 10:40 Sample ID:

Sample Description: Location:

2					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 19:31	
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 19:31	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 19:31	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 19:31	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 19:31	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 19:31	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 19:31	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 19:31	J
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		5/28/2019 19:31	
Toluene-d8 (S)	98		%	1	77-119		5/28/2019 19:31	
Bromofluorobenzene (S)	106		%	1	86-123		5/28/2019 19:31	

WET CHEMISTRY

WEI OHEIMOTH							
Analysis Desc: IC,E300.0,Water	Analytic	al Method: EPA 3	0.00				
Chloride	22	mg/L	1	5.0	0.50	5/16/2019 22:30	J
Nitrate (as N)	1.4	mg/L	1	0.50	0.050	5/16/2019 22:30	J
Analysis Desc: Ammonia,E350.1,Water	Analytic	al Method: EPA 3	50.1				
Ammonia (N)	0.12	mg/L	1	0.010	0.0080	5/20/2019 15:18	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Analytic	al Method: SM 25	540 C				
Total Dissolved Solids	150	ma/L	1	10	10	5/21/2019 15:05	J

Date Received: 05/16/19 08:45 Water Lab ID: J1906272022 Matrix:

Date Collected: 05/15/19 11:08 Sample ID: 19135-MW-29B

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water	•		Method: SW-ethod: SW-8	7-846 3010A 346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:13	J
Barium	71		ug/L	1	4.0	1.0	5/24/2019 13:13	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 13:13	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:13	J

Report ID: 878563 - 812022 Page 60 of 103

CERTIFICATE OF ANALYSIS

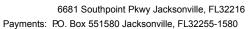
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272022 Matrix: Water

19135-MW-29B Date Collected: 05/15/19 11:08 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:13	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:13	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:13	J
Iron	2000		ug/L	1	400	100	5/24/2019 13:13	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 13:13	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:13	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:13	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:13	J
Sodium	17		mg/L	1	1.4	0.35	5/24/2019 13:13	J
Vanadium	3.5	I,V	ug/L	1	4.0	1.0	5/28/2019 13:06	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:13	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 23:44	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057	5/22/2019 23:44	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	N-846 7470A				
Analysis, Water	Anal	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:02	J
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water	Anal	lytical Me	ethod: SW-	846 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 15:54	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 15:54	J
Tetrachloro-m-xylene (S)	106		%	1	64-150		5/31/2019 15:54	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
	·			846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 20:01	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0		5/28/2019 20:01	J
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.20	5/28/2019 20:01	J
1,1,2-Trichloroethane	0.30	Ü	ug/L	1	1.0	0.30	5/28/2019 20:01	J
1,1-Dichloroethane	0.14	Ü	ug/L	1	1.0	0.14	5/28/2019 20:01	J
1,1-Dichloroethylene	0.18	Ü	ug/L	1	1.0	0.14	5/28/2019 20:01	J
1,2,3-Trichloropropane	0.10	Ü	ug/L	1	1.0	0.10	5/28/2019 20:01	J
1,2,0 111011010p10pario	0.01	•	~g, =	•	1.0	0.01	5,25,2010 20.01	U

Report ID: 878563 - 812022 Page 61 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272022 Matrix: Water

Sample ID: 19135-MW-29B Date Collected: 05/15/19 11:08

Sample Description: Location:

Sample Description:				Location:				
Davamatava	Desults	Ouel	l limite.	DE	Adjusted	Adjusted	Analyzod	Lab
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 20:01	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 20:01	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 20:01	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 20:01	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 20:01	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 20:01	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 20:01	J
Acetone	3.5	I	ug/L	1	5.0	2.1	5/28/2019 20:01	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 20:01	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 20:01	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 20:01	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 20:01	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 20:01	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 20:01	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 20:01	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 20:01	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 20:01	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 20:01	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 20:01	J
Chloromethane	2.3		ug/L	1	1.0	0.21	5/28/2019 20:01	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 20:01	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 20:01	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 20:01	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 20:01	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 20:01	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 20:01	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 20:01	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 20:01	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 20:01	J
Trichlorofluoromethane	0.32	Ū	ug/L	1	1.0	0.32	5/28/2019 20:01	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 20:01	J
Vinyl Chloride	0.20	Ū	ug/L	1	1.0	0.20	5/28/2019 20:01	J
Xylene (Total)	0.53	Ū	ug/L	1	2.0	0.53	5/28/2019 20:01	J
cis-1,2-Dichloroethylene	0.24	Ū	ug/L	1	1.0	0.24	5/28/2019 20:01	J
cis-1,3-Dichloropropene	0.16	Ü	ug/L	1	1.0	0.16	5/28/2019 20:01	J
trans-1,2-Dichloroethylene	0.20	Ü	ug/L	1	1.0	0.20	5/28/2019 20:01	J
trans-1,3-Dichloropropylene	0.21	Ü	ug/L	1	1.0	0.21	5/28/2019 20:01	J
trans-1,4-Dichloro-2-butene	1.8	Ü	ug/L	1	10	1.8	5/28/2019 20:01	J
1,2-Dichloroethane-d4 (S)	87	Ŭ	%	1	70-128	1.0	5/28/2019 20:01	J
Toluene-d8 (S)	96		%	1	77-119		5/28/2019 20:01	

Report ID: 878563 - 812022 Page 62 of 103

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272022 Matrix: Water

19135-MW-29B Date Collected: 05/15/19 11:08 Sample ID:

Sample Description: Location:

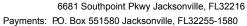
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	107		%	1	86-123		5/28/2019 20:01	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	27		mg/L	1	5.0	0.50	5/16/2019 22:52	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/16/2019 22:52	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.14		mg/L	1	0.010	0.0080	5/20/2019 15:27	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	1400		mg/L	1	10	10	5/21/2019 15:05	J

Date Received: 05/16/19 08:45 Lab ID: J1906272023 Matrix: Water

Date Collected: 05/15/19 00:00 19135-TripBlank-2 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: S	N-846 8011				
Water	Anal	ytical Me	ethod: SW-	-846 8011				
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 07:54	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 07:54	J
Tetrachloro-m-xylene (S)	110		%	1	64-150		5/31/2019 07:54	


VOLATILES

Analysis Desc: 8260B Analysis, Water	Prepa	Preparation Method: SW-846 5030B								
Analytical Method: SW-846 8260B										
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 20:30	J		
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 20:30	J		
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 20:30	J		
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 20:30	J		
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 20:30	J		
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 20:30	J		

Report ID: 878563 - 812022 Page 63 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272023 Matrix: Water

Sample ID: 19135-TripBlank-2 Date Collected: 05/15/19 00:00

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 20:30	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 20:30	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 20:30	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 20:30	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 20:30	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 20:30	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 20:30	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 20:30	J
Acetone	2.7	- 1	ug/L	1	5.0	2.1	5/28/2019 20:30	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 20:30	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 20:30	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 20:30	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 20:30	J
Bromoform	0.44	Ū	ug/L	1	1.0	0.44	5/28/2019 20:30	J
Bromomethane	0.29	Ū	ug/L	1	1.0	0.29	5/28/2019 20:30	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 20:30	J
Carbon Tetrachloride	0.36	Ū	ug/L	1	1.0	0.36	5/28/2019 20:30	J
Chlorobenzene	0.21	Ū	ug/L	1	1.0	0.21	5/28/2019 20:30	J
Chloroethane	0.33	Ū	ug/L	1	1.0	0.33	5/28/2019 20:30	J
Chloroform	0.18	Ü	ug/L	1	1.0	0.18	5/28/2019 20:30	J
Chloromethane	0.21	Ū	ug/L	1	1.0	0.21	5/28/2019 20:30	J
Dibromochloromethane	0.33	Ū	ug/L	1	1.0	0.33	5/28/2019 20:30	J
Dibromomethane	0.26	Ū	ug/L	1	1.0	0.26	5/28/2019 20:30	J
Ethylbenzene	0.24	Ü	ug/L	1	1.0	0.24	5/28/2019 20:30	J
Iodomethane (Methyl Iodide)	0.16	Ü	ug/L	1	1.0	0.16	5/28/2019 20:30	J
Methylene Chloride	2.5	Ü	ug/L	1	5.0	2.5	5/28/2019 20:30	J
Styrene	0.23	Ü	ug/L	1	1.0	0.23	5/28/2019 20:30	J
Tetrachloroethylene (PCE)	0.36	Ü	ug/L	1	1.0	0.36	5/28/2019 20:30	J
Toluene	0.23	Ü	ug/L	1	1.0	0.23	5/28/2019 20:30	J
Trichloroethene	0.29	Ü	ug/L	1	1.0	0.29	5/28/2019 20:30	J
Trichlorofluoromethane	0.32	Ü	ug/L	1	1.0	0.32	5/28/2019 20:30	J
Vinyl Acetate	0.19	Ü	ug/L	1	1.0	0.19	5/28/2019 20:30	J
Vinyl Chloride	0.20	Ü	ug/L	1	1.0	0.20	5/28/2019 20:30	J
Xylene (Total)	0.53	Ü	ug/L	1	2.0	0.53	5/28/2019 20:30	J
cis-1,2-Dichloroethylene	0.24	Ü	ug/L	1	1.0	0.24	5/28/2019 20:30	J
cis-1,3-Dichloropropene	0.16	Ü	ug/L	1	1.0	0.16	5/28/2019 20:30	J
trans-1,2-Dichloroethylene	0.20	Ü	ug/L	1	1.0	0.10	5/28/2019 20:30	J
trans-1,3-Dichloropropylene	0.20	Ü	ug/L ug/L	1	1.0	0.20	5/28/2019 20:30	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L ug/L	1	1.0	1.8	5/28/2019 20:30	J
1,2-Dichloroethane-d4 (S)	89	U	ug/∟ %	1	70-128	1.0	5/28/2019 20:30	J
1,2-DICHIOIOEUIAHE-04 (5)	09		70	ı	/U-128		5/20/20 19 20.30	

Report ID: 878563 - 812022 Page 64 of 103

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272023 Matrix: Water

19135-TripBlank-2 Date Collected: 05/15/19 00:00 Sample ID:

Sample Description: Location:

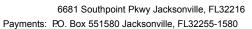
Advanced Environmental Laboratories, Inc.

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Toluene-d8 (S)	98		%	1	77-119		5/28/2019 20:30	
Bromofluorobenzene (S)	107		%	1	86-123		5/28/2019 20:30	1

Lab ID: J1906272024 Date Received: 05/16/19 08:45 Matrix: Water

19135-TripBlank-3 Date Collected: 05/15/19 00:00 Sample ID:

Sample Description: Location:


Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
SEMIVOLATILES										
Analysis Desc: SW 8011 Analysis,	Prep	aration	Method: SV	V-846 8011						
Water	Analytical Method: SW-846 8011									
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 08:24	J		
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 08:24	J		
Tetrachloro-m-xylene (S)	111		%	1	64-150		5/31/2019 08:24			

VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prepa	aration	Method: S'	W-846 5030B				
	Analy	tical M	ethod: SW	-846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 21:00	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 21:00	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 21:00	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 21:00	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 21:00	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 21:00	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 21:00	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 21:00	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 21:00	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 21:00	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 21:00	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 21:00	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 21:00	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 21:00	J
Acetone	3.8	ı	ug/L	1	5.0	2.1	5/28/2019 21:00	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 21:00	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 21:00	J

Report ID: 878563 - 812022 Page 65 of 103

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272024 Matrix: Water

19135-TripBlank-3 Date Collected: 05/15/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 21:00	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 21:00	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 21:00	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 21:00	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 21:00	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 21:00	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 21:00	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 21:00	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 21:00	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 21:00	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 21:00	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 21:00	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 21:00	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 21:00	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 21:00	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 21:00	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 21:00	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 21:00	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 21:00	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 21:00	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 21:00	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 21:00	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 21:00	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 21:00	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 21:00	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 21:00	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 21:00	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 21:00	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/28/2019 21:00	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 21:00	
Bromofluorobenzene (S)	108		%	1	86-123		5/28/2019 21:00	

Report ID: 878563 - 812022 Page 66 of 103

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272025 Matrix: Water

19135-TripBlank-4 Date Collected: 05/15/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lal
SEMIVOLATILES								
Analysis Desc: SW 8011 Analysis,	Pre	paration I	Method: SV	V-846 8011				
Water	Δna	lytical Me	ethod: SW-	846 8011				
		•						
1,2-Dibromo-3-Chloropropane	0.0063	U	ug/L	1	0.021	0.0063	5/31/2019 08:58	J
Ethylene Dibromide (EDB)	0.0065	U	ug/L	1	0.021	0.0065	5/31/2019 08:58	J
Tetrachloro-m-xylene (S)	98		%	1	64-150		5/31/2019 08:58	
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prej	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/28/2019 21:30	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/28/2019 21:30	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/28/2019 21:30	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/28/2019 21:30	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/28/2019 21:30	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 21:30	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/28/2019 21:30	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/28/2019 21:30	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/28/2019 21:30	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/28/2019 21:30	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/28/2019 21:30	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/28/2019 21:30	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/28/2019 21:30	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/28/2019 21:30	J
Acetone	5.6		ug/L	1	5.0	2.1	5/28/2019 21:30	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/28/2019 21:30	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 21:30	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/28/2019 21:30	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/28/2019 21:30	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/28/2019 21:30	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/28/2019 21:30	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/28/2019 21:30	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/28/2019 21:30	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 21:30	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 21:30	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/28/2019 21:30	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/28/2019 21:30	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/28/2019 21:30	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/28/2019 21:30	J

Report ID: 878563 - 812022 Page 67 of 103

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/16/19 08:45 Lab ID: J1906272025 Matrix: Water

Sample ID: 19135-TripBlank-4 Date Collected: 05/15/19 00:00

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 21:30	
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/28/2019 21:30	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/28/2019 21:30	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 21:30	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/28/2019 21:30	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/28/2019 21:30	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/28/2019 21:30	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/28/2019 21:30	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/28/2019 21:30	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/28/2019 21:30	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/28/2019 21:30	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/28/2019 21:30	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/28/2019 21:30	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/28/2019 21:30	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/28/2019 21:30	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/28/2019 21:30	J
1,2-Dichloroethane-d4 (S)	87		%	1	70-128		5/28/2019 21:30	
Toluene-d8 (S)	97		%	1	77-119		5/28/2019 21:30	
Bromofluorobenzene (S)	111		%	1	86-123		5/28/2019 21:30	

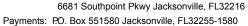
Report ID: 878563 - 812022 Page 68 of 103

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Method Blank Contamination
- J4 **Estimated Result**

LAB QUALIFIERS

- G DOH Certification #E82001(AEL-G)(FL NELAC Certification)
- DOH Certification #E82574(AEL-JAX)(FL NELAC Certification) J

Report ID: 878563 - 812022 Page 69 of 103

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/4976 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Prepared:

J1906272001, J1906272002, J1906272017, J1906272018 Associated Lab Samples:

METHOD BLANK: 3097919

Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY Chloride mg/L 0.50 0.50 U 0.050 U Nitrate (as N) mg/L 0.050

LABORATORY CONTROL SAMPLE & LCSD: 3097920 3097921

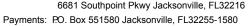
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec °		% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY Chloride Nitrate (as N)	mg/L mg/L	20 2	22 1.9	22 1.8	109 93	109 92	90-110 90-110	0 1	10 10	

MATRIX SPIKE SAMPLE: 3098615 Original: J1906270001

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Chloride	mg/L	13	20	34	103	90-110	
Nitrate (as N)	mg/L	0.05	2	1.8	89	90-110	

QC Batch: WCAj/4981 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Prepared:


J1906272003, J1906272004, J1906272005, J1906272006, J1906272007, J1906272008, J1906272009, J1906272010, Associated Lab Samples:

METHOD BLANK: 3098625

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
WET CHEMISTRY				
Chloride	mg/L	0.50	0.50 U	
Nitrate (as N)	mg/L	0.050	0.050 U	

Report ID: 878563 - 812022 Page 70 of 103


QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL	SAMPLE & LCSD:	3098626	309862	3098627					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
WET CHEMISTRY									
Chloride	mg/L	20	22	22	110	110	90-110	0	10
Nitrate (as N)	mg/L	2	1.8	1.8	92	91	90-110	1	10
MATRIX SPIKE SAMPLE:	3098628		Orig	inal: J19	0627201	6			
		Original		Spike		MS	MS	%	Rec
Parameter	Units	Result		Conc.	R	esult	% Rec		imits Qualifiers
WET CHEMISTRY									
Chloride	mg/L	18		20		38	96	90	-110
Nitrate (as N)	mg/L	0.009		2		1.8	88	90)-110
MATRIX SPIKE SAMPLE:	3098629		Orig	inal: J19	0627202	20			
		Original		Spike		MS	MS	0/2	Rec
Parameter	Units	Result		Conc.	Re	esult	% Rec		imits Qualifiers
WET CHEMISTRY									
Chloride	mg/L	48		20		65	86	90	-110
Nitrate (as N)	mg/L	0		2		1.8	91	90	-110
QC Batch: WC	Aj/5009		Ar	nalysis Me	ethod:	SN	Л 2540 C		
	2540 C			epared:			0 .0 0		
Associated Lab Samples:	J1906272001, J1	906272002,		•	0627200)4			
METHOD BLANK: 310049	91								
		Blan	ık R	eporting					
Parameter	Units	Resu	ılt	Limit (Qualifiers	3			
WET CHEMISTRY									
Total Dissolved Solids	mg/L	1	0	10 L					

Report ID: 878563 - 812022 Page 71 of 103

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL ((F/K/A OAK HAMM
--------------------------------------	-----------------

١	CONTROL	CVMDI E.	3100402

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Total Dissolved Solids	ma/L	300	310	105	85-115	

SAMPLE DUPLICATE: 3100493 Original: J1906268001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers	
WET CHEMISTRY Total Dissolved Solid	s mg/L	54	59	9	10	
QC Batch:	DGMj/3421		Analysis Metho	od:	SW-846 6020	
QC Batch Method:	SW-846 3010A		Prepared:		05/21/2019 03:30	

Associated Lab Samples: J1906272001, J1906272002, J1906272003, J1906272004, J1906272005, J1906272006, J1906272007, J1906272008,

METHOD BLANK: 3101158

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Antimony	ug/L	0.11	0.11 U	
Thallium	ug/L	0.057	0.057 U	

LABORATORY CONTROL SAMPLE: 3101159

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Antimony	ug/L	50	53	105	80-120
Thallium	ug/L	50	49	98	80-120

MATRIX SPIKE & MATR	ICATE: 3101160		3101161		Original: J1906329008						
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
METALS Antimony	ug/L	0.023	50	51	52	103	104	75-125	2	20	

Report ID: 878563 - 812022 Page 72 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3101160 3101161 Original: J1906329008

Original Spike MS MSD MS MSD % Rec Max Result Result % Rec % Rec Limit RPD RPD Qualifiers Parameter Units Conc. Result

Thallium ug/L 0.019 50 47 48 95 97 75-125 2 20

 QC Batch:
 DGMj/3422
 Analysis Method:
 SW-846 6020

 QC Batch Method:
 SW-846 3010A
 Prepared:
 05/21/2019 03:30

Associated Lab Samples: J1906272010, J1906272011, J1906272012, J1906272013, J1906272014, J1906272015, J1906272016, J1906272017,

METHOD BLANK: 3101162

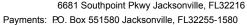
LABORATORY CONTROL SAMPLE: 3101163

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **METALS** Antimony ug/L 50 56 112 80-120 Thallium ug/L 50 52 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3101164 3101165 Original: J1906272010

Spike MSD MSD MS Original MS % Rec Max Limit RPD RPD Qualifiers Result % Rec % Rec Parameter Units Conc. Result Result **METALS** 50 107 Antimony ug/L 0.18 54 54 107 75-125 0 20 0.038 50 52 20 Thallium ug/L 53 106 105 75-125 1

QC Batch: WCAg/6516 Analysis Method: EPA 350.1


QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1906272001

Report ID: 878563 - 812022 Page 73 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

METHOD BLANK: 31	01582										
Parameter	Units		Blank Result	Reporting Limit	Qualifiers						
WET CHEMISTRY Ammonia (N)	mg/L		0.0080	0.0080	U						
LABORATORY CONT	ROL SAMPLE:	3101583									
_			Spike	LCS		cs	% Rec				
Parameter	Units	(Conc.	Result	% R	lec	Limits C	(ualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.5	0.52	1	04	90-110				
LABORATORY CONT	ROL SAMPLE:	3101584									
Parameter	Units		Spike Conc.	LCS Result	L(% R	CS lec	% Rec Limits C	ualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.2	0.19		97	90-110				
MATRIX SPIKE & MA	TRIX SPIKE DUF	PLICATE: 31	01585	31015	586	Orig	inal: J1900	6176002			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
WET CHEMISTRY Ammonia (N)	mg/L	16	8	22	22	80	79	90-110	0	10	
QC Batch:	WCAg/6517			Analysis M	ethod:	EPA	350.1				
QC Batch Method:	EPA 350.1			Prepared:							
Associated Lab Samp	les: J1906272	2002, J190627	72003, J190)6272004, J1	906272005	, J190627	2006, J190	6272007,	J1906	62720	08, J19062720
METHOD BLANK: 31	01591										
Parameter	Units		Blank Result	Reporting Limit	Qualifiers						
WET CHEMISTRY Ammonia (N)	mg/L		0.0080	0.0080	11						

Report ID: 878563 - 812022 Page 74 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

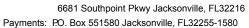
Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM LABORATORY CONTROL SAMPLE: 3101592 Spike LCS LCS % Rec Units Result % Rec Limits Qualifiers Parameter Conc. WET CHEMISTRY 0.5 0.53 106 90-110 Ammonia (N) mg/L LABORATORY CONTROL SAMPLE: 3101593 Spike LCS LCS % Rec Units Parameter Conc. Result % Rec Limits Qualifiers WET CHEMISTRY Ammonia (N) 0.2 0.19 90-110 mg/L 96 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3101594 3101595 Original: J1906272002 Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers WET CHEMISTRY Ammonia (N) 8.2 8 16 16 100 98 90-110 10 mg/L QC Batch: WCAg/6518 Analysis Method: EPA 350.1 QC Batch Method: EPA 350.1 Prepared: J1906272012, J1906272013, J1906272014, J1906272015, J1906272016, J1906272017, J1906272018, J1906272019, Associated Lab Samples: METHOD BLANK: 3101601 Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY 0.0080 0.0080 U Ammonia (N) mg/L LABORATORY CONTROL SAMPLE: 3101602 Spike LCS LCS % Rec Limits Qualifiers Parameter Units Conc. Result % Rec WET CHEMISTRY

Report ID: 878563 - 812022 Page 75 of 103

106

90-110

0.53


0.5

mg/L

Ammonia (N)

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

LABORATORY CONTROL	SAMPLE.	3101603

		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers

WET CHEMISTRY

Ammonia (N) mg/L 0.2 0.20 102 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3101604 3101605 Original: J1906272012

		Original	Spike	MS	MSD	MS	MSD	% Rec	Max	
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit RP	D RPD Qualifiers	
WET CHEMISTRY										

Ammonia (N) 0.21 0.64 0.63 107 mg/L 0.4 104 90-110 10

Analysis Method: QC Batch: WCAg/6519 EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1906272022

METHOD BLANK: 3101606

Blank	Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

0.0080 0.0080 U Ammonia (N) mg/L

LABORATORY CONTROL SAMPLE: 3101607

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Ammonia (N)	mg/L	0.5	0.54	108	90-110	

LABORATORY CONTROL SAMPLE: 3101608

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY						
Ammonia (N)	mg/L	0.2	0.21	104	90-110	

Report ID: 878563 - 812022 Page 76 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

WET CHEMISTRY Total Dissolved Solids

QC Batch Method:

Associated Lab Samples:

QC Batch:

mg/L

WCAj/5025

SM 2540 C

120

J1906272011, J1906272013, J1906272014

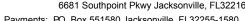
MATRIX SPIKE & MATRIX	K SPIKE DUPLI	ICATE: 3101	609	31016	610	Origi	nal: J1906	6272022			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
WET CHEMISTRY Ammonia (N)	mg/L	0.14	0.4	0.55	0.54	103	100	90-110	3	10	
QC Batch: WC	Aj/5014			Analysis M	lethod:	SM 2	540 C				
QC Batch Method: SM	2540 C			Prepared:							
Associated Lab Samples:	J190627200	05, J1906272	006, J190	6272007, J1	906272008	, J190627	2009, J190	6272010,	J1906	32720	12, J1906272015,
METHOD BLANK: 310207	77										
			Blank	Reporting							
Parameter	Units		Result		Qualifiers						
WET CHEMISTRY Total Dissolved Solids	mg/L		10	10	U						
LABORATORY CONTROL	SAMPLE: 3°	102078									
Parameter	Units	•	oike onc.	LCS Result	L0 % R		% Rec Limits C	ualifiers			
WET CHEMISTRY Total Dissolved Solids	mg/L	;	300	340	1	15	85-115				
SAMPLE DUPLICATE: 3	102080			Original: J1	906272017						
Parameter	Units	Orig Re	inal sult	DUP Result	RF	PD	Max RPD C	ualifiers			

Report ID: 878563 - 812022 Page 77 of 103

110

Prepared:

Analysis Method:


10

10

SM 2540 C

CERTIFICATE OF ANALYSIS

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

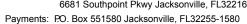
QUALITY CONTROL DATA

Markardar:	14006272		VNIDEILI		OAK HAMM	
vvorkorder.	J190b///	リヒロロ	ANIJEILI	(F/K/A	UAK HAIVIIVI	

Workorder: J190627	2 J.E.D LANDFILL (F/K/	A OAK HAMM			
METHOD BLANK: 3	103402				
Parameter	Units	Blank Result	Reporting Limit Qualit	iers	
WET CHEMISTRY Total Dissolved Solid	s mg/L	10	10 U		
LABORATORY CON	TROL SAMPLE: 3103	403			
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY Total Dissolved Solid	s mg/L	300	330	112	85-115
SAMPLE DUPLICAT	E: 3103404		Original: J190627	2011	
Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
WET CHEMISTRY Total Dissolved Solid	s mg/L	180	170	5	10
QC Batch:	DGMj/3436		Analysis Method		SW-846 6010
QC Batch Method:	SW-846 3010A		Prepared:		05/23/2019 03:30

METHOD BLANK: 3103529

Associated Lab Samples:


WETTOB BEJ WITE 010	0020		
Danamatan	l leite	Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Arsenic	ug/L	9.0	9.0 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Copper	ug/L	4.0	4.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U

J1906272001, J1906272002, J1906272003, J1906272004, J1906272005, J1906272006, J1906272007, J1906272008,

Report ID: 878563 - 812022 Page 78 of 103

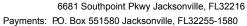
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Vanadium	ug/L	1.2	1.0 I	
Zinc	ug/L	50	50 U	

LABORATORY CONTROL SAMPLE: 3103530


Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
METALS						
Silver	ug/L	200	190	97	80-120	
Arsenic	ug/L	200	200	100	80-120	
Barium	ug/L	20	20	102	80-120	
Beryllium	ug/L	10	9.7	97	80-120	
Cadmium	ug/L	20	20	101	80-120	
Cobalt	ug/L	40	41	103	80-120	
Chromium	ug/L	40	38	96	80-120	
Copper	ug/L	80	75	94	80-120	
Iron	ug/L	2000	1900	94	80-120	
Sodium	mg/L	7	7.5	108	80-120	
Nickel	ug/L	120	120	101	80-120	
Lead	ug/L	60	60	100	80-120	
Selenium	ug/L	800	800	100	80-120	
Vanadium	ug/L	20	20	101	80-120	
Zinc	ug/L	1000	1000	100	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3103531			3103532		Original: J1906329012					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers
METALS										
Silver	ug/L	0	200	200	190	99	97	75-125	2	20
Arsenic	ug/L	2.8	200	200	200	101	102	75-125	1	20
Barium	ug/L	14	20	35	34	106	104	75-125	1	20
Beryllium	ug/L	0.1	10	10	9.9	101	99	75-125	2	20
Cadmium	ug/L	0	20	20	20	103	101	75-125	2	20
Cobalt	ug/L	0.3	40	42	42	106	104	75-125	2	20
Chromium	ug/L	0	40	39	39	98	99	75-125	1	20
Copper	ug/L	0	80	77	76	97	95	75-125	2	20
Iron	ug/L	1500	2000	3500	3500	100	98	75-125	1	20
Sodium	mg/L	7.6	7	15	15	111	108	75-125	1	20

Report ID: 878563 - 812022 Page 79 of 103

CERTIFICATE OF ANALYSIS

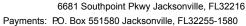
QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3103531				3103532		Original: J1906329012					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD C	Qualifiers
Nickel	ug/L	2.4	120	130	130	112	105	75-125	6	20	
Lead	ug/L	2.5	60	66	64	110	107	75-125	2	20	
Selenium	ug/L	0	800	820	810	103	101	75-125	2	20	
Vanadium	ug/L	1.1	20	22	22	107	103	75-125	4	20	
Zinc	ug/L	3.6	1000	1000	1000	104	102	75-125	2	20	

QC Batch: DGMj/3437 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A 05/23/2019 03:30 Prepared:

Associated Lab Samples: J1906272015, J1906272016, J1906272017, J1906272018, J1906272019, J1906272020, J1906272021, J1906272022


METHOD BLANK: 3103534

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
METALS				
Silver	ug/L	10	10 U	
Arsenic	ug/L	9.0	9.0 U	
Barium	ug/L	1.0	1.0 U	
Beryllium	ug/L	0.50	0.50 U	
Cadmium	ug/L	1.0	1.0 U	
Cobalt	ug/L	2.0	2.0 U	
Chromium	ug/L	2.0	2.0 U	
Copper	ug/L	4.0	4.0 U	
Iron	ug/L	100	100 U	
Sodium	mg/L	0.35	0.35 U	
Nickel	ug/L	6.0	6.0 U	
Lead	ug/L	3.0	3.0 U	
Selenium	ug/L	40	40 U	
Zinc	ug/L	50	50 U	
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
METALS				
Vanadium	ug/L	2.2	1.0 I	

Report ID: 878563 - 812022 Page 80 of 103

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3103535

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	190	94	80-120
Arsenic	ug/L	200	180	89	80-120
Barium	ug/L	20	19	94	80-120
Beryllium	ug/L	10	8.7	87	80-120
Cadmium	ug/L	20	19	94	80-120
Cobalt	ug/L	40	38	94	80-120
hromium	ug/L	40	36	90	80-120
opper	ug/L	80	75	94	80-120
on	ug/L	2000	1800	89	80-120
odium	mg/L	7	6.8	97	80-120
Nickel	ug/L	120	110	94	80-120
Lead	ug/L	60	57	95	80-120
Selenium	ug/L	800	730	91	80-120
/anadium	ug/L	20	20	101	80-120
inc	ug/L	1000	910	91	80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE			E: 3103536		3103537		Original: J1906272015				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
METALS											
Silver	ug/L	0	200	190	190	93	95	75-125	1	20	
Arsenic	ug/L	0	200	190	190	94	95	75-125	1	20	
Barium	ug/L	65	20	82	84	89	97	75-125	2	20	
Beryllium	ug/L	0	10	9.3	9.5	93	95	75-125	2	20	
Cadmium	ug/L	1.7	20	20	21	93	95	75-125	1	20	
Cobalt	ug/L	0.7	40	38	38	94	95	75-125	1	20	
Chromium	ug/L	1	40	38	40	94	100	75-125	6	20	
Copper	ug/L	2	80	72	75	90	94	75-125	4	20	
Iron	ug/L	640	2000	2500	2500	93	95	75-125	2	20	
Sodium	mg/L	75	7	80	82	79	102	75-125	2	20	
Nickel	ug/L	9.2	120	120	120	93	95	75-125	2	20	
Lead	ug/L	3.7	60	58	57	90	89	75-125	1	20	
Selenium	ug/L	0	800	750	760	94	95	75-125	1	20	
Vanadium	ug/L	7.7	20	25	25	86	88	75-125	2	20	
Zinc	ug/L	10	1000	950	960	95	96	75-125	2	20	

QC Batch: DGMj/3454 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 05/24/2019 12:45

Report ID: 878563 - 812022 Page 81 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Associated Lab Samples: J1906272001, J1906272002

METHOD BLANK: 3106506

Blank Reporting

Parameter Units Limit Qualifiers Result

METALS

Mercury

Mercury ug/L 0.011 0.011 U

ug/L

LABORATORY CONTROL SAMPLE: 3106507

Spike LCS LCS % Rec Parameter Units Conc. % Rec Limits Qualifiers Result

METALS 2 95 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3106508 3106509 Original: J1906329001

MSD Original Spike MS MS MSD % Rec Max Limit RPD RPD Qualifiers Parameter Units Result Conc. Result Result % Rec % Rec **METALS** 2 Mercury ug/L 0.013 1.4 1.4 69 71 80-120 3 20

1.9

DGMj/3455 SW-846 7470A QC Batch: Analysis Method:

QC Batch Method: SW-846 7470A Prepared: 05/24/2019 12:45

Associated Lab Samples: J1906272003, J1906272004, J1906272005, J1906272006, J1906272007, J1906272008, J1906272009, J1906272010,

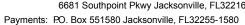
METHOD BLANK: 3106516

Blank Reporting Parameter Units Result Limit Qualifiers

METALS Mercury

0.011 U ug/L 0.011

LABORATORY CONTROL SAMPLE: 3106517


LCS LCS % Rec Spike Units Conc. Result % Rec Limits Qualifiers Parameter

METALS

Report ID: 878563 - 812022 Page 82 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

W	orkorder:	J1906272 J	.E.D LA	.NDFILL ((F/K/A OAK HA	MM
---	-----------	------------	---------	-----------	---------------	----

LABORATORY	CONTROL	SAMPLE:	3106517

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Mercury	ug/L	2	1.9	97	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3106518			518	3106519		Original: J1906272003					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers	
METALS Mercury	ug/L	0	2	2.0	2.1	100	105	80-120	5	20	

QC Batch:	DGMj/3456	Analysis Method:	SW-846 7470A
QC Batch Method:	SW-846 7470A	Prepared:	05/24/2019 12:45

Associated Lab Samples: J1906272020, J1906272021, J1906272022

ug/L

METHOD BLANK: 3106520

METALS

Mercury

Parameter	Units	Blank F Result	Reporting Limit Qualifiers
METALS Mercury	ug/L	0.011	0.011 U

LABORATORY CONTROL SAMPLE: 3106521

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec		% Rec Limits Q	ualifiers		
METALS Mercury	ug/L	2	2.0	99		80-120			
MATRIX SPIKE & MATR	IX SPIKE DUPL	ICATE: 3106522	2 3106	5523	Origir	nal: J1906	272020		
Parameter	Units	J	Spike MS Conc. Result	MSD Result %	MS Rec	MSD % Rec	% Rec Limit RPD	Max RPD Qualifiers	

Report ID: 878563 - 812022 Page 83 of 103

2.1

104

105

80-120

20

2.1

2

0.0037

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

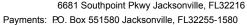
Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: MSVj/3625 Analysis Method: SW-846 8260B SW-846 5030B QC Batch Method: Prepared: 05/24/2019 10:13

J1906272001, J1906272002, J1906272003, J1906272004, J1906272005, J1906272006, J1906272007, J1906272008, Associated Lab Samples:


METHOD BLANK: 3107510

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
Iodomethane (Methyl Iodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
2-Butanone (MEK)	ug/L	0.43	0.43 U	
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	
Benzene	ug/L	0.16	0.16 U	
Dibromomethane	ug/L	0.26	0.26 U	
1,2-Dichloropropane	ug/L	0.66	0.66 U	
Trichloroethene	ug/L	0.29	0.29 U	
Bromodichloromethane	ug/L	0.46	0.46 U	
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U	
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U	
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U	
1,1,2-Trichloroethane	ug/L	0.30	0.30 U	
Toluene	ug/L	0.23	0.23 U	
2-Hexanone	ug/L	0.71	0.71 U	
Dibromochloromethane	ug/L	0.33	0.33 U	
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U	
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U	
Chlorobenzene	ug/L	0.21	0.21 U	
Ethylbenzene	ug/L	0.24	0.24 U	

Report ID: 878563 - 812022 Page 84 of 103

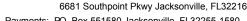
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

METH	OD.	BLANK	∵ 31	07510

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Bromoform	ug/L	0.44	0.44 U
Styrene	ug/L	0.23	0.23 U
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U
1,2,3-Trichloropropane	ug/L	0.91	0.91 U
1,4-Dichlorobenzene	ug/L	0.22	0.22 U
1,2-Dichlorobenzene	ug/L	0.18	0.18 U
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U
Xylene (Total)	ug/L	0.53	0.53 U
1,2-Dichloroethane-d4 (S)	%	106	70-128
Toluene-d8 (S)	%	106	77-119
Bromofluorobenzene (S)	%	112	86-123


LABORATORY CONTROL SAMPLE & LCSD:	3107511	3107512
ENDOINTION CONTINUE OF WILL BE BEOOD.	0101011	0107012

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
VOLATILES									
Chloromethane	ug/L	20	18	16	90	79		14	
Vinyl Chloride	ug/L	20	20	16	99	81	70-130	19	20
Bromomethane	ug/L	20	20	10	102	52		65	
Chloroethane	ug/L	20	20	17	98	86		14	
Trichlorofluoromethane	ug/L	20	19	17	95	87		10	
Acetone	ug/L	20	14	16	71	79		10	
1,1-Dichloroethylene	ug/L	20	20	18	100	89	70-130	12	20
Iodomethane (Methyl Iodide)	ug/L	20	15	13	73	63		14	
Acrylonitrile	ug/L	20	16	15	78	75		3	
Methylene Chloride	ug/L	20	20	21	99	103		4	
Carbon Disulfide	ug/L	20	19	18	96	88		8	
trans-1,2-Dichloroethylene	ug/L	20	19	17	97	87		11	
1,1-Dichloroethane	ug/L	20	20	17	98	85		14	
Vinyl Acetate	ug/L	20	17	31	83	155		61	
2-Butanone (MEK)	ug/L	20	15	18	74	88		17	
cis-1,2-Dichloroethylene	ug/L	20	19	17	97	87	70-130	11	20
Bromochloromethane	ug/L	20	21	19	107	97		10	
Chloroform	ug/L	20	20	17	98	87	70-130	12	20
1,2-Dichloroethane	ug/L	20	20	17	98	85		14	
1,1,1-Trichloroethane	ug/L	20	19	16	95	82		14	
Carbon Tetrachloride	ug/L	20	20	18	99	88		12	
Benzene	ug/L	20	19	18	97	89	70-130	9	20
Dibromomethane	ug/L	20	18	16	89	81		10	
1,2-Dichloropropane	ug/L	20	20	18	98	89		10	
Trichloroethene	ug/L	20	19	16	94	81	70-130	14	20

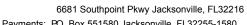
Report ID: 878563 - 812022 Page 85 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3107511		3107512	2					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Bromodichloromethane	ug/L	20	20	18	98	89		10		
cis-1,3-Dichloropropene	ug/L	20	18	15	89	77		14		
4-Methyl-2-pentanone (MIBK)	ug/L	20	14	16	72	78		9		
trans-1,3-Dichloropropylene	ug/L	20	17	15	85	77		11		
1,1,2-Trichloroethane	ug/L	20	18	16	90	79		13		
Toluene	ug/L	20	19	18	97	88	70-130	10	20	
2-Hexanone	ug/L	20	15	18	74	89		18		
Dibromochloromethane	ug/L	20	19	18	95	89		7		
Tetrachloroethylene (PCE)	ug/L	20	19	17	95	86	70-130	10	20	
1,1,1,2-Tetrachloroethane	ug/L	20	20	18	103	89		15		
Chlorobenzene	ug/L	20	20	18	98	91	70-130	8	20	
Ethylbenzene	ug/L	20	21	18	104	92	70-130	13	20	
Bromoform	ug/L	20	17	17	85	83		3		
Styrene	ug/L	20	19	17	96	86		11		
1,1,2,2-Tetrachloroethane	ug/L	20	18	17	88	86		2		
1,2,3-Trichloropropane	ug/L	20	16	16	81	80		2		
1,4-Dichlorobenzene	ug/L	20	21	19	104	95		8		
1,2-Dichlorobenzene	ug/L	20	22	20	108	99	70-130	9	20	
Xylene (Total)	ug/L	60	62	56	104	93	70-130	11	20	
1,2-Dichloroethane-d4 (S)	%				112	114	70-128	2		
Toluene-d8 (S)	%				105	105	77-119	0		
Bromofluorobenzene (S)	%				105	107	86-123	2		


MATRIX SPIKE SAMPLE: 3107513 Original: J1906272012

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Chloromethane	ug/L	0	20	12	59	
Vinyl Chloride	ug/L	0	20	15	73	70-130
Bromomethane	ug/L	0	20	6.2	31	
Chloroethane	ug/L	0	20	16	78	
Trichlorofluoromethane	ug/L	0	20	19	93	
Acetone	ug/L	0	20	19	94	
1,1-Dichloroethylene	ug/L	0	20	20	99	70-130
lodomethane (Methyl	ug/L	0	20	8.7	43	
lodide)						
Acrylonitrile	ug/L	0	20	20	98	
Methylene Chloride	ug/L	0	20	20	98	
Carbon Disulfide	ug/L	0	20	20	99	
trans-1,2-Dichloroethylene	ug/L	0	20	20	98	

Report ID: 878563 - 812022 Page 86 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

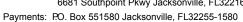
Bromofluorobenzene (S)

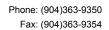
MATRIX SPIKE SAMPLE: 31	107513		Original: J190	06272012		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
1,1-Dichloroethane	ug/L	0	20	22	109	
Vinyl Acetate	ug/L	0	20	21	107	
2-Butanone (MEK)	ug/L	0	20	20	102	
cis-1,2-Dichloroethylene	ug/L	0	20	21	105	70-130
Bromochloromethane	ug/L	0	20	25	123	
Chloroform	ug/L	0	20	21	106	70-130
1,2-Dichloroethane	ug/L	0	20	21	105	
1,1,1-Trichloroethane	ug/L	0	20	20	100	
Carbon Tetrachloride	ug/L	0	20	21	105	
Benzene	ug/L	0	20	22	111	70-130
Dibromomethane	ug/L	0	20	22	109	
1,2-Dichloropropane	ug/L	0	20	22	111	
Trichloroethene	ug/L	0	20	20	102	70-130
Bromodichloromethane	ug/L	0	20	20	101	
cis-1,3-Dichloropropene	ug/L	0	20	16	78	
4-Methyl-2-pentanone (MIBK)	ug/L	0	20	19	97	
trans-1,3-Dichloropropylene	ug/L	0	20	16	80	
1,1,2-Trichloroethane	ug/L	0	20	21	107	
Toluene	ug/L	0	20	22	109	70-130
2-Hexanone	ug/L	0	20	19	97	
Dibromochloromethane	ug/L	0	20	21	104	
Tetrachloroethylene (PCE)	ug/L	0	20	20	99	70-130
1,1,1,2-Tetrachloroethane	ug/L	0	20	22	109	
Chlorobenzene	ug/L	0	20	22	109	70-130
Ethylbenzene	ug/L	0	20	21	107	70-130
Bromoform	ug/L	0	20	19	95	
Styrene	ug/L	0	20	19	93	
1,1,2,2-Tetrachloroethane	ug/L	0	20	22	108	
1,2,3-Trichloropropane	ug/L	0	20	18	90	
1,4-Dichlorobenzene	ug/L	0	20	20	100	
1,2-Dichlorobenzene	ug/L	0	20	21	106	70-130
Xylene (Total)	ug/L	0	60	64	106	70-130
1,2-Dichloroethane-d4 (S)	%	110			88	70-128
Toluene-d8 (S)	%	106			98	77-119
_ ` '	• .					

QC Batch: MSVj/3631 Analysis Method: SW-846 8260B QC Batch Method: SW-846 5030B Prepared: 05/28/2019 11:06

112

 ${\tt J1906272013, J1906272014, J1906272015, J1906272016, J1906272017, J1906272018, J1906272019, J1906272020, J1906272019, J1906272019,$ Associated Lab Samples:


99

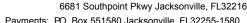

86-123

Report ID: 878563 - 812022 Page 87 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM


ME	TH	OD	RΙ	ANK.	310	08512

METHOD BLANK: 3108512				
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
lodomethane (Methyl lodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L ug/L	0.14	0.20 U	
Vinyl Acetate	ug/L ug/L	0.14	0.14 U 0.19 U	
2-Butanone (MEK)		0.19	0.19 U 0.43 U	
, ,	ug/L			
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	
Benzene	ug/L	0.16	0.16 U	
Dibromomethane	ug/L	0.26	0.26 U	
1,2-Dichloropropane	ug/L	0.66	0.66 U	
Trichloroethene	ug/L	0.29	0.29 U	
Bromodichloromethane	ug/L	0.46	0.46 U	
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U	
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U	
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U	
1,1,2-Trichloroethane	ug/L	0.30	0.30 U	
Toluene	ug/L	0.23	0.23 U	
2-Hexanone	ug/L	0.71	0.71 U	
Dibromochloromethane	ug/L	0.33	0.33 U	
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U	
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U	
Chlorobenzene	ug/L	0.21	0.21 U	
Ethylbenzene	ug/L	0.24	0.24 U	
Bromoform	ug/L	0.44	0.44 U	
Styrene	ug/L	0.23	0.23 U	
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U	
1,2,3-Trichloropropane	ug/L	0.91	0.91 U	
1,4-Dichlorobenzene	ug/L	0.22	0.22 U	
1,2-Dichlorobenzene	ug/L	0.18	0.18 U	
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U	

Report ID: 878563 - 812022 Page 88 of 103

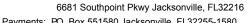
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

METH	OD BI	ANK.	3108512	
	obb	AININ.	3100312	

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Xylene (Total)	ug/L	0.53	0.53 U
1,2-Dichloroethane-d4 (S)	%	88	70-128
Toluene-d8 (S)	%	98	77-119
Bromofluorobenzene (S)	%	107	86-123


LABORATORY CONTROL SAMPLE & LCSD:	3108513	3108514

Parameter	Units	Spike Conc.	LCS Result	LCSD Pasult	LCS % Rec	LCSD	% Rec Limit	RPD	Max RPD Qualifiers
	Office		resuit	resuit	70 TCC	70 TCC	Lillit	ПП	TO Qualificis
VOLATILES	,,	00	4-		00	40		- 4	
Chloromethane	ug/L	20	17	9.9	86	49		54	
Vinyl Chloride	ug/L	20	18	12	91	58	70-130	45	20
Bromomethane	ug/L	20	19	3.6	95	18		135	
Chloroethane	ug/L	20	17	14	83	69		19	
Trichlorofluoromethane	ug/L	20	20	16	100	82		19	
Acetone	ug/L	20	17	15	85	76		12	
1,1-Dichloroethylene	ug/L	20	22	18	108	88	70-130	21	20
Iodomethane (Methyl Iodide)	ug/L	20	30	3.4	148	17		158	
Acrylonitrile	ug/L	20	21	17	104	87		18	
Methylene Chloride	ug/L	20	25	20	125	98		24	
Carbon Disulfide	ug/L	20	23	17	113	87		26	
trans-1,2-Dichloroethylene	ug/L	20	22	17	108	84		25	
1,1-Dichloroethane	ug/L	20	22	18	111	89		22	
Vinyl Acetate	ug/L	20	26	29	128	144		12	
2-Butanone (MEK)	ug/L	20	23	21	114	104		9	
cis-1,2-Dichloroethylene	ug/L	20	23	18	117	92	70-130	23	20
Bromochloromethane	ug/L	20	24	20	121	102		17	
Chloroform	ug/L	20	22	17	108	85	70-130	23	20
1,2-Dichloroethane	ug/L	20	21	17	106	84		23	
1,1,1-Trichloroethane	ug/L	20	21	16	103	81		23	
Carbon Tetrachloride	ug/L	20	22	17	111	87		24	
Benzene	ug/L	20	23	18	115	92	70-130	23	20
Dibromomethane	ug/L	20	23	18	115	89		26	
1,2-Dichloropropane	ug/L	20	23	18	113	91		21	
Trichloroethene	ug/L	20	22	17	108	84	70-130	25	20
Bromodichloromethane	ug/L	20	21	16	106	81		26	
cis-1,3-Dichloropropene	ug/L	20	25	18	124	92		30	
4-Methyl-2-pentanone (MIBK)	ug/L	20	21	18	104	92		13	
trans-1,3-Dichloropropylene	ug/L	20	25	18	125	92		30	
1,1,2-Trichloroethane	ug/L	20	22	17	108	85		24	
Toluene	ug/L	20	22	18	110	89	70-130	21	20
2-Hexanone	ug/L ug/L	20	21	18	104	91	10-100	13	20
Z-I ICAGIIOTIC	ug/L	20	۲ ا	10	104	91		13	

Report ID: 878563 - 812022 Page 89 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SA	MPLE & LCSD:	3108513		310851	4				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Dibromochloromethane	ug/L	20	21	16	105	81		25	
Tetrachloroethylene (PCE)	ug/L	20	22	18	111	89	70-130	22	20
1,1,1,2-Tetrachloroethane	ug/L	20	22	18	111	89		22	
Chlorobenzene	ug/L	20	22	18	112	89	70-130	22	20
Ethylbenzene	ug/L	20	22	18	110	88	70-130	22	20
Bromoform	ug/L	20	19	15	96	76		23	
Styrene	ug/L	20	21	17	105	87		19	
1,1,2,2-Tetrachloroethane	ug/L	20	22	17	108	86		22	
1,2,3-Trichloropropane	ug/L	20	22	17	108	85		23	
1,4-Dichlorobenzene	ug/L	20	23	17	115	86		29	
1,2-Dichlorobenzene	ug/L	20	23	18	113	91	70-130	22	20
Xylene (Total)	ug/L	60	66	53	111	89	70-130	22	20
1,2-Dichloroethane-d4 (S)	%				87	86	70-128	1	
Toluene-d8 (S)	%				97	98	77-119	1	
Bromofluorobenzene (S)	%				97	100	86-123	3	

MATRIX SPIKE SAMPLE: 3108515 Original: J1906272020

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Chloromethane	ug/L	3.2	20	10	34		
Vinyl Chloride	ug/L	0	20	12	58	70-130	
Bromomethane	ug/L	0	20	5.8	29		
Chloroethane	ug/L	0	20	12	59		
Trichlorofluoromethane	ug/L	0	20	14	72		
Acetone	ug/L	4.3	20	15	51		
1,1-Dichloroethylene	ug/L	0	20	15	76	70-130	
lodomethane (Methyl lodide)	ug/L	0	20	5.0	25		
Acrylonitrile	ug/L	0	20	16	80		
Methylene Chloride	ug/L	0	20	18	92		
Carbon Disulfide	ug/L	0	20	16	82		
trans-1,2-Dichloroethylene	ug/L	0	20	15	75		
1,1-Dichloroethane	ug/L	0	20	16	80		
Vinyl Acetate	ug/L	0	20	26	128		
2-Butanone (MEK)	ug/L	0	20	19	95		
cis-1,2-Dichloroethylene	ug/L	0	20	17	86	70-130	
Bromochloromethane	ug/L	0	20	17	85		
Chloroform	ug/L	0	20	15	77	70-130	
1,2-Dichloroethane	ug/L	0	20	15	76		

Report ID: 878563 - 812022 Page 90 of 103

CERTIFICATE OF ANALYSIS

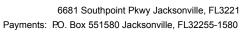
QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 3108515			Original: J190	6272020			
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
1,1,1-Trichloroethane	ug/L	0	20	15	73		
Carbon Tetrachloride	ug/L	0	20	16	78		
Benzene	ug/L	0	20	17	84	70-130	
Dibromomethane	ug/L	0	20	16	81		
1,2-Dichloropropane	ug/L	0	20	16	81		
Trichloroethene	ug/L	0	20	15	74	70-130	
Bromodichloromethane	ug/L	0	20	15	75		
cis-1,3-Dichloropropene	ug/L	0	20	16	81		
4-Methyl-2-pentanone (MIBK)	ug/L	0	20	17	83		
trans-1,3-Dichloropropylene	ug/L	0	20	16	82		
1,1,2-Trichloroethane	ug/L	0	20	15	77		
Toluene	ug/L	0	20	16	78	70-130	
2-Hexanone	ug/L	0	20	16	82		
Dibromochloromethane	ug/L	0	20	15	75		
Tetrachloroethylene (PCE)	ug/L	0	20	16	78	70-130	
1,1,1,2-Tetrachloroethane	ug/L	0	20	15	77		
Chlorobenzene	ug/L	0	20	16	79	70-130	
Ethylbenzene	ug/L	0	20	15	76	70-130	
Bromoform	ug/L	0	20	13	67		
Styrene	ug/L	0	20	15	75		
1,1,2,2-Tetrachloroethane	ug/L	0	20	16	78		
1,2,3-Trichloropropane	ug/L	0	20	15	75		
1,4-Dichlorobenzene	ug/L	0	20	15	77		
1,2-Dichlorobenzene	ug/L	0	20	16	80	70-130	
Xylene (Total)	ug/L	0	60	47	78	70-130	
1,2-Dichloroethane-d4 (S)	%	87			89	70-128	
Toluene-d8 (S)	%	97			96	77-119	
Bromofluorobenzene (S)	%	106			98	86-123	

QC Batch: EXTj/3477 Analysis Method: SW-846 8011 SW-846 8011 QC Batch Method: Prepared: 05/29/2019 12:00

Associated Lab Samples: J1906272019, J1906272010, J1906272011, J1906272012, J1906272013, J1906272014, J1906272016

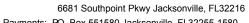

METHOD BLANK: 3109406

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
SEMIVOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.0062	0.0062 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.0060	0.0060 U	
Tetrachloro-m-xylene (S)	%	97	64-150	

Report ID: 878563 - 812022 Page 91 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA


Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SA	AMPLE & LCSD:	3109407		310940	80				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
SEMIVOLATILES									
Ethylene Dibromide (EDB)	ug/L	0.25	0.19	0.21	76	83	70-130	9	30
1,2-Dibromo-3-Chloropropane Tetrachloro-m-xylene (S)	e ug/L %	0.25	0.18	0.19	73 92	75 96	70-130 64-150	3 5	30
retractiloto-m-xylene (3)	70				92	90	04-130	3	
MATRIX SPIKE SAMPLE: 31	09410		Ori	ginal: A19	040820	04			
		Original		Spike		MS	MS		Rec
Parameter	Units	Result		Conc.	R	esult	% Rec	L	imits Qualifiers
SEMIVOLATILES									
Ethylene Dibromide (EDB)	ug/L	0		0.26		0.22	85		-130
1,2-Dibromo-3- Chloropropane	ug/L	0		0.26		0.21	81	70	-130
Tetrachloro-m-xylene (S)	%	44					26	64	-150 J4
50.5									
QC Batch Method: SW-846 Associated Lab Samples:	3 8011	906272002,	F	analysis Me Prepared: 72003, J19		05	V-846 8011 /28/2019 17:3 5272005, J190		J1906272007, J1906272
QC Batch Method: SW-846	5 8011 J1906272001, J1	Blan	F J19062 k F	Prepared: 72003, J19 Reporting	0627200	05 04, J190	/28/2019 17:3		J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples:	3 8011	-	F J19062 k F	Prepared: 72003, J19 Reporting		05 04, J190	/28/2019 17:3		J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES	5 8011 J1906272001, J19 Units	Blan Resu	F J19062 k F llt	Prepared: 72003, J19 Reporting Limit C	0627200 Qualifiers	05 04, J190	/28/2019 17:3		J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB)	5 8011 J1906272001, J19 Units ug/L	Blan Resu	F J19062 k F ilt	Prepared: 72003, J19 Reporting Limit 0	0627200 Qualifiers	05 04, J190	/28/2019 17:3		J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane	0 8011 J1906272001, J19 Units ug/L e ug/L	Blan Resu 0.006 0.006	F J19062 k F llt 2	Prepared: 72003, J19 Reporting Limit 0	0627200 Qualifiers	05 04, J190	/28/2019 17:3		J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB)	5 8011 J1906272001, J19 Units ug/L	Blan Resu	F J19062 k F llt 2	Prepared: 72003, J19 Reporting Limit 0	0627200 Qualifiers	05 04, J190	/28/2019 17:3		J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane	0 8011 J1906272001, J19 Units ug/L e ug/L %	Blan Resu 0.006 0.006	F J19062 k F llt 2	Prepared: 72003, J19 Reporting Limit 0	0627200 Qualifiers	05 04, J190	/28/2019 17:3		J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane Tetrachloro-m-xylene (S)	0 8011 J1906272001, J19 Units ug/L e ug/L %	Blan Resu 0.006 0.006 10	F J19062 k F llt 2	Prepared: 72003, J19 Reporting Limit C 0.0062 L 0.0060 L 64-150 310958	Qualifiers J J D8	05 04, J1900 s	/28/2019 17:3	06272006,	J1906272007, J1906272
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane Tetrachloro-m-xylene (S)	0 8011 J1906272001, J19 Units ug/L e ug/L %	Blan Resu 0.006 0.006 10 3109597	F J19062	Prepared: 72003, J19 Reporting Limit C 0.0062 L 0.0060 L 64-150 310958	0627200 Qualifiers J J	05 04, J1900 s	/28/2019 17:3		
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane Tetrachloro-m-xylene (S)	Units Units Ug/L ug/L MMPLE & LCSD:	Blan Resu 0.006 0.006 10 3109597 Spike	k Filt 2 0 1 LCS	Prepared: 72003, J19 Reporting Limit C 0.0062 L 0.0060 L 64-150 310958	Qualifiers J J D8	05 04, J1900 s	/28/2019 17:3 6272005, J190 % Rec	06272006,	Max
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane Tetrachloro-m-xylene (S) LABORATORY CONTROL SA Parameter SEMIVOLATILES Ethylene Dibromide (EDB)	Units Units	Blan Resu 0.006 0.006 10 3109597 Spike Conc.	k Filt 2 0 1 LCS Result 0.21	Prepared: 72003, J19 Reporting Limit C 0.0062 L 0.0060 L 64-150 310958 LCSD Result	Qualifiers J J P8 LCS % Rec	05 04, J1900 s LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
QC Batch Method: SW-846 Associated Lab Samples: METHOD BLANK: 3109596 Parameter SEMIVOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane Tetrachloro-m-xylene (S) LABORATORY CONTROL SA Parameter SEMIVOLATILES	Units Units Units Units Units Units Units Units Units	8lan Resu 0.006 0.006 10 3109597 Spike Conc.	k Fullt 2 0 1 LCS Result	Prepared: 72003, J19 Reporting Limit C 0.0062 L 0.0060 L 64-150 310958 LCSD Result	Qualifiers J J 28 LCS % Rec	05 04, J1900 s LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers

Report ID: 878563 - 812022 Page 92 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 3109600			Original: A1904082002					
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers		
SEMIVOLATILES								
Ethylene Dibromide (EDB)	ug/L	0	0.26	0.23	89	70-130		
1,2-Dibromo-3- Chloropropane	ug/L	0	0.26	0.22	87	70-130		
Tetrachloro-m-xylene (S)	%	86			92	64-150		

QUALITY CONTROL DATA QUALIFIERS

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

QUALITY CONTROL PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. ı
- **Estimated Result** J4
- ٧ Method Blank Contamination

Report ID: 878563 - 812022 Page 93 of 103

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

∟ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
11906272001	19135-MW-1A			EPA 300.0	WCAj/4976
J1906272002	19135-MW-1B			EPA 300.0	WCAj/4976
J1906272017	19135-MW-27A			EPA 300.0	WCAj/4976
11906272018	19135-MW-27B			EPA 300.0	WCAj/4976
J1906272003	19135-MW-2A			EPA 300.0	WCAj/4981
11906272004	19135-MW-2B			EPA 300.0	WCAj/4981
1906272005	19135-MW-3A			EPA 300.0	WCAj/4981
1906272006	19135-MW-3B			EPA 300.0	WCAj/4981
1906272007	19135-MW-4A			EPA 300.0	WCAj/4981
11906272008	19135-MW-4B			EPA 300.0	WCAj/4981
1906272009	19135-MW-5A			EPA 300.0	WCAj/4981
1906272010	19135-MW-5B			EPA 300.0	WCAj/4981
1906272011	19135-MW-6A			EPA 300.0	WCAj/4981
1906272012	19135-MW-6B			EPA 300.0	WCAj/4981
1906272013	19135-MW-16AR			EPA 300.0	WCAj/4981
1906272014	19135-MW-16BR			EPA 300.0	WCAj/4981
1906272015	19135-MW-17AR			EPA 300.0	WCAj/4981
1906272016	19135-MW-17BR			EPA 300.0	WCAj/4981
1906272019	19135-MW-28A			EPA 300.0	WCAj/4981
1906272020	19135-MW-28B			EPA 300.0	WCAj/4981
1906272021	19135-MW-29A			EPA 300.0	WCAj/4981
11906272022	19135-MW-29B			EPA 300.0	WCAj/4981
11906272001	19135-MW-1A			SM 2540 C	WCAj/5009
11906272002	19135-MW-1B			SM 2540 C	WCAj/5009
J1906272003	19135-MW-2A			SM 2540 C	WCAj/5009
1906272004	19135-MW-2B			SM 2540 C	WCAj/5009
J1906272001	19135-MW-1A	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
11906272002	19135-MW-1B	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906272003	19135-MW-2A	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906272004	19135-MW-2B	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906272005	19135-MW-3A	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886

Report ID: 878563 - 812022 Page 94 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

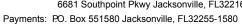
Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

_ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906272006	19135-MW-3B	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
J1906272007	19135-MW-4A	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
J1906272008	19135-MW-4B	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
J1906272009	19135-MW-5A	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
J1906272010	19135-MW-5B	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
J1906272011	19135-MW-6A	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
11906272012	19135-MW-6B	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
J1906272013	19135-MW-16AR	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
J1906272014	19135-MW-16BR	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
J1906272015	19135-MW-17AR	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
J1906272016	19135-MW-17BR	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
J1906272017	19135-MW-27A	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
11906272018	19135-MW-27B	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
1906272019	19135-MW-28A	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
1906272020	19135-MW-28B	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
11906272021	19135-MW-29A	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
11906272022	19135-MW-29B	SW-846 3010A	DGMj/3422	SW-846 6020	ICMj/1887
J1906272001	19135-MW-1A			EPA 350.1	WCAg/651
J1906272002	19135-MW-1B			EPA 350.1	WCAg/651
11906272003	19135-MW-2A			EPA 350.1	WCAg/651
11906272004	19135-MW-2B			EPA 350.1	WCAg/651
11906272005	19135-MW-3A			EPA 350.1	WCAg/651
11906272006	19135-MW-3B			EPA 350.1	WCAg/651
11906272007	19135-MW-4A			EPA 350.1	WCAg/651
1906272008	19135-MW-4B			EPA 350.1	WCAg/651
1906272009	19135-MW-5A			EPA 350.1	WCAg/651
1906272010	19135-MW-5B			EPA 350.1	WCAg/651
J1906272011	19135-MW-6A			EPA 350.1	WCAg/651
J1906272012	19135-MW-6B			EPA 350.1	WCAg/651

Report ID: 878563 - 812022 Page 95 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906272013	19135-MW-16AR			EPA 350.1	WCAg/6518
J1906272014	19135-MW-16BR			EPA 350.1	WCAg/6518
J1906272015	19135-MW-17AR			EPA 350.1	WCAg/6518
J1906272016	19135-MW-17BR			EPA 350.1	WCAg/6518
J1906272017	19135-MW-27A			EPA 350.1	WCAg/6518
J1906272018	19135-MW-27B			EPA 350.1	WCAg/6518
J1906272019	19135-MW-28A			EPA 350.1	WCAg/6518
J1906272020	19135-MW-28B			EPA 350.1	WCAg/6518
J1906272021	19135-MW-29A			EPA 350.1	WCAg/6518
J1906272022	19135-MW-29B			EPA 350.1	WCAg/6519
J1906272005	19135-MW-3A			SM 2540 C	WCAj/5014
11906272006	19135-MW-3B			SM 2540 C	WCAj/5014
1906272007	19135-MW-4A			SM 2540 C	WCAj/5014
11906272008	19135-MW-4B			SM 2540 C	WCAj/5014
11906272009	19135-MW-5A			SM 2540 C	WCAj/5014
J1906272010	19135-MW-5B			SM 2540 C	WCAj/5014
J1906272012	19135-MW-6B			SM 2540 C	WCAj/5014
J1906272015	19135-MW-17AR			SM 2540 C	WCAj/5014
J1906272016	19135-MW-17BR			SM 2540 C	WCAj/5014
J1906272017	19135-MW-27A			SM 2540 C	WCAj/5014
J1906272018	19135-MW-27B			SM 2540 C	WCAj/5014
J1906272019	19135-MW-28A			SM 2540 C	WCAj/5014
J1906272020	19135-MW-28B			SM 2540 C	WCAj/5014
J1906272021	19135-MW-29A			SM 2540 C	WCAj/5014
11906272022	19135-MW-29B			SM 2540 C	WCAj/5014
J1906272011	19135-MW-6A			SM 2540 C	WCAj/5025
J1906272013	19135-MW-16AR			SM 2540 C	WCAj/5025
J1906272014	19135-MW-16BR			SM 2540 C	WCAj/5025
J1906272001	19135-MW-1A	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982

Report ID: 878563 - 812022 Page 96 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Report ID: 878563 - 812022

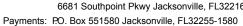
ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch		
1906272002	19135-MW-1B	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272003	19135-MW-2A	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272004	19135-MW-2B	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272005	19135-MW-3A	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272006	19135-MW-3B	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272007	19135-MW-4A	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272008	19135-MW-4B	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272009	19135-MW-5A	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272010	19135-MW-5B	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272011	19135-MW-6A	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272012	19135-MW-6B	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272013	19135-MW-16AR	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272014	19135-MW-16BR	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982		
1906272015	19135-MW-17AR	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981		
1906272016	19135-MW-17BR	SW-846 3010A	DGMj/3437	SW-846 6010	, ICPj/1981		
1906272017	19135-MW-27A	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981		
1906272018	19135-MW-27B	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981		
1906272019	19135-MW-28A	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981		
1906272020	19135-MW-28B	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981		
1906272021	19135-MW-29A	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981		
1906272022	19135-MW-29B	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981		
1906272001	19135-MW-1A	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526		
1906272002	19135-MW-1B	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526		
1906272003	19135-MW-2A	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
1906272004	19135-MW-2B	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/152		
1906272005	19135-MW-3A	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/152		
906272006	19135-MW-3B	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/152		
906272007	19135-MW-4A	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/152		
906272008	19135-MW-4B	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/152		
1906272009	19135-MW-5A	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/152		
1906272010	19135-MW-5B	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/152		

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Page 97 of 103

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch		
J1906272011	19135-MW-6A	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272012	19135-MW-6B	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272013	19135-MW-16AR	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272014	19135-MW-16BR	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272015	19135-MW-17AR	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272016	19135-MW-17BR	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272017	19135-MW-27A	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272018	19135-MW-27B	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272019	19135-MW-28A	SW-846 7470A	DGMj/3455	SW-846 7470A	CVAj/1527		
J1906272020	19135-MW-28B	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528		
J1906272021	19135-MW-29A	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528		
J1906272022	19135-MW-29B	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528		
J1906272001	19135-MW-1A	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272002	19135-MW-1B	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272003	19135-MW-2A	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272004	19135-MW-2B	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272005	19135-MW-3A	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272006	19135-MW-3B	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272007	19135-MW-4A	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272008	19135-MW-4B	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272009	19135-MW-5A	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272010	19135-MW-5B	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272011	19135-MW-6A	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272012	19135-MW-6B	SW-846 5030B	MSVj/3625	SW-846 8260B	MSVj/362		
J1906272013	19135-MW-16AR	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/363		
J1906272014	19135-MW-16BR	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/363		
11906272015	19135-MW-17AR	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/363		
J1906272016	19135-MW-17BR	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/363		
J1906272017	19135-MW-27A	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/363		
J1906272018	19135-MW-27B	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/363		
J1906272019	19135-MW-28A	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/363		

Report ID: 878563 - 812022 Page 98 of 103

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1906272 J.E.D LANDFILL (F/K/A OAK HAMM

_ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906272020	19135-MW-28B	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/3632
J1906272021	19135-MW-29A	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/3632
J1906272022	19135-MW-29B	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/3632
11906272023	19135-TripBlank-2	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/3632
11906272024	19135-TripBlank-3	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/3632
J1906272025	19135-TripBlank-4	SW-846 5030B	MSVj/3631	SW-846 8260B	MSVj/3632
11906272009	19135-MW-5A	SW-846 8011	EXTj/3477	SW-846 8011	GCSj/2755
11906272010	19135-MW-5B	SW-846 8011	EXTj/3477	SW-846 8011	GCSj/2755
1906272011	19135-MW-6A	SW-846 8011	EXTj/3477	SW-846 8011	GCSj/2755
1906272012	19135-MW-6B	SW-846 8011	EXTj/3477	SW-846 8011	GCSj/2755
1906272013	19135-MW-16AR	SW-846 8011	EXTj/3477	SW-846 8011	GCSj/2755
1906272014	19135-MW-16BR	SW-846 8011	EXTj/3477	SW-846 8011	GCSj/2755
1906272016	19135-MW-17BR	SW-846 8011	EXTj/3477	SW-846 8011	GCSj/2755
1906272001	19135-MW-1A	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272002	19135-MW-1B	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272003	19135-MW-2A	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272004	19135-MW-2B	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272005	19135-MW-3A	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272006	19135-MW-3B	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272007	19135-MW-4A	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272008	19135-MW-4B	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272015	19135-MW-17AR	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272017	19135-MW-27A	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272018	19135-MW-27B	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272019	19135-MW-28A	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272020	19135-MW-28B	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272021	19135-MW-29A	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272022	19135-MW-29B	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272023	19135-TripBlank-2	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272024	19135-TripBlank-3	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767
1906272025	19135-TripBlank-4	SW-846 8011	EXTj/3478	SW-846 8011	GCSj/2767

Report ID: 878563 - 812022 Page 99 of 103

CERTIFICATE OF ANALYSIS

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016	
Coincovillat stations of the control	. 1
Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608	• 3
Jacksonville: 6681 Southpoint Pkwy. + Jacksonville, FL	322
Miramar: 10200 USA Today Way, Miramar, FL 33025 • 95	4.8
Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL	32
☐ Tampa: 9610 Princess Palm Ave • Tampa Et 33619 • 813	20

Client Name: Was	ste Connections, Inc.	Project I					K/A	BOTTLE SIZE & TYPE		20	= 0	T_ 0	- 1	Í	î î	1 1
Address: 5135	Madison Avenue	P.O. Number/F						BOT SIZE 8	40 ml. Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic			1	出
Tampa, F	lorida 33619	Project Location	in:						-	-	u) L	SA III	-		1	₩
FAX: Contact: Sampled By: No: 1 Stupley	X: Project Name and Address: JED SWDF					ANALYSIS REQUIRED	App I VOAS+EDB/DBCP	App I Metals+Fe,Hg,Na	CI/NO3/TDS	3/TDS				ABORATORY I.D. NUMBER		
Оре		The second second				Profile: 3	31172	AL	P -	tals	9	m		1		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Page_ / _ of _ 3		■ ADaP	■ ADaPT □ EQuIS					A	AP	App	CI	NH3				6
SAMPLE ID \$	SAMPLE DESCRIPTION	2.7	irab omp	DATE	TIME	MATRIX	NO. COUNT	PRESER- VATION	HCL	HNO3	Ice	H2SO4				3
19135-MW-1A		- (1	5/15/1	90740	GW	6		3	1	1	1				001
19135-MW-1B					0801				MI	1	1-	1				002
19135-144-21			-		0852				Top							003
19135-19W-218		7		1	0908					71						004
19135-MV-3A					1018											
19135-144-313					0956					-1-1						005
19135-MW-41					1136						+			-		004
14135-MW-48					1110	-								-	-	007
19135-MW-54					1354			1 1			1					008
19135- AV-5B		(-	Shela	7 1332	611	4		3	1	-	1			+	009
	er SW = surface water GW = grou					GW As air St	G O=soil S	L = clude	100	Processor and	lon Cad	- L	U-dian a			010
	No Temp taken from sample		_	m blank		for measurin			Where	required,	pH check	ked	Temperati	ire when rece	eived((in degrees celcius M: 3A S: 1V
Relinquished by: 1 2 5 2 Fedlex	Date Time	72	F	eived by:		Date 5/15/19	Time /Coo		FO (Whe	R DRII	VKINC ormation n	_	R USE:	PWS ID.	ion nion	W. W. W.

1	Relinquished by:	Date	Time	Received by:	Date	Time	
1	ww	5/15/19	1600	EJEX	5/15/09	1600	
2	Fedex	5-16-19	8:45	Be as	51619	804	
3			1 1			-	
4							

FOR DRINKING WATER USE:					
(When PWS Information not otherwise supplied)	PWS ID.				
Contact Person:		Phone:			
Supplier of Water:					
Site-Address:					

₫	
2019 2:05:21	
2019	
June 03,	0074
nday,	707

Altamonte Springs: 528 S. Northlake Blvd., Ste. 101

Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 3260

Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL

Miramar: 10200 USA Today Way, Miramar, FL 33025 • 9

Tallahassee: 1288 Cedar Center Drive, Tallahassee, Fl

Tampa: 9610 Princess Palm Ave. • Tampa, FL 33619 • 8

Project Name: J.E.D LANDFILL (F/K/A ... #

*	J	1	9	0	6	2	7	2	*

Client Name: Waste Connections, I				ISPOSA		NA	E ST	- 4	70	20	۱ ه چ	11	1	1 1	- 1	1/10/1
Address: 5135 Madison Avenue		mber/Projec					BOTTLE SIZE & TYP	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic					띪
Tampa, Florida 33619	Project	Location:						1			NE					NUMBER
Phone: 8/3-468-6/41	FDEP	Facility	No: 8954	4			ANALYSIS REQUIRED	6								N S
FAX:	Project I	Name and A	ddress 7	ED Sh	DF		ğ) BC	Z			- 1		1 1		o i
Contact: Kirk Wills			15	01 Oma:	Vay.		8	N	T	SC				1 1		>
Sampled By: No. 1 Stopley + Daniel Monti	1		5/	Cloud .	FL		Sis	量	4	CI/NO3/TDS				1 1		l R
Turn Around Time: STANDARD RUSH		cial Inst	truction	s: Jax F	Profile: 3	1172	AL	As-	o l	ğ	m			1 1		IAT
Page_2 of 3	B 4	DaPT	DaPT DEQuIS					App I VOAs+EDB/DBCP	App I Metals+Fe,Hg,Na	S	NH3			1 1		ABORATORY I.D
SAMPLE ID SAMPLE DESCRIP	TION	Grab		IPLING	MATRIX	NO.	PRESER- VATION	HCL	HNO3	lce	H2SO4					- PE
	, (4.)	Comp	DATE	TIME	765 (175%)	COUNT	PRE	lige	11100	100	112304			4	- 541	
19135-AL-GA		G	5/15/19	1410	GW	6		3	1	1	1					611
19135-MW-GB				1346				1	1	1	70				-	012
19135-MW-16AR		-		1403				171							7	013
19135-AW-165R				1418		10/1		5 1							-	014
19135-19W-1718				1236			100									015
19135-AU-17 BR			10	1318		12									-	- 1
19135-MW-27A			\Box	0739										17	===	010
19135-1916-171B				0828					7							018
19135-MW-58A		1	1	0915		J		1	J	1						019
19135-MV-28B		G	slisti	9 0950	GW	1		3	1	1	1	-				020
Matrix Code: WW = wastewater SW = surface water C	W = ground wate	er DW = c	The state of the s		A = air Si	0 = soil S	L = sludg		Preservat	tion Cod	e: 1=ice	H=(HCI) S:	= (H2SO4) N	I = (HNO3) :	T = (Sodium T	
Received on Ice Yes No Temp taken from		Temp fro	m blank					Where	required, j	pH chec	ked	Temperatu	re when rece	ived 7	(in degre	ees celcius)
	Time	Res	ceived by:	pevice naed	Date	Time	unique k				Sed) J: 9/		LT-2 T: 10	DA A: 3A	M 3A S:	10
1 2 15 15/14/16			IE.		5/15/14	10.00	1				of otherwise		PWS ID:			
2 Frdex 5-16-19 8		3-6		2	5-16-19		1	Co	ntaci Pers	son:			Pho	one:		

5-16-19 8:45

Contact Person. Supplier of Water. Site-Address:

31100-10
Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016 • Altamonte Springs, FL 32701 • 407.937.1594 • Fax 407.937.1597
☐ Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608 • 352.377.2349 • Fax 352.395,6639
Jacksonville: 6681 Southpoint Pkwy Jacksonville, FL 32216 - 904,363,9350 - Fax 904,363,9354
Miramar: 10200 USA Today Way, Miramar, FL 33025 • 954,889,2288 • Fax 954,889,2281
Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL 32301 • 850.219.6274 • Fax 850.219.6275
Tampa: 9610 Princess Palm Ave. • Tampa, FL 33619 • B13,630,9616 • Fax 813,630,4327

Client Name:	Waste Connections, Inc.	Project Name: J.E.D LANDFILL (F/K/A OAK HAMMOCK DISPOSAL)				BOTTLE SIZE & TYPE	134	d o	= 0	40	1 -						
Address;	5135 Madison Avenue	P.O. Number/Project Number:				BO	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic						H	
Tampa, Florida 33619		Project Location					1	-	47.2	14.2						NUMBE	
		FDEP Facility No: 89544 Project Name and Address: JED SWDF				꼺	App I VOAS+EDB/DBCP	App I Metals+Fe,Hg,Na	CI/NO3/TDS							2	
						8										Ö.	
		1501 Omni Way. St Cloud, FL					R				B/C						
							SIS				ED						S.
Turn Around Time: 🔀	STANDARD RUSH	Special In			_	31172	7	- +5	- 8	8				- 1			ATC
Page3 of3		Special Instructions: Jax Profile: 31172 ADaPT □ EQuIS				ANALYSIS REQUIRED	App	App	CIN	NH3					70	ABORATORY	
SAMPLE ID	SAMPLE DESCRIPTION	1 3-3	Grab SAMPI		PLING MATRIX	NO.	PRESER. VATION	HCL	HNO3	loe	H2SO4						T B
20022		Co	np DAT	TIME	1	COUNT	PRE	HOL	HINOS	ice	112304		-			-	
19135-MW-39A		6	slist	1 1040	GW	6		3	1	1	y .						021
19135-AW-2913		6	5/15	19 1108	GW	6		3	1	1	1						022
19135- Tr, Blo	16-2 Incack, with 14.15,2 24.38.44.48 16-3 Incack with 54.58,0	A,26, -	-	-	DI 4.0	3		3									023
19135- Trip Blo.	16-3 Turnelly with SA. 58, C	A, CG -	9 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	J	3		3							T		024
19135- Trip Blo	AL-4 IN CAR 17BR, 17AR 20 Sob, 27A, 17B, 1CA	R R	٠	I S	Dr 11,0	3		3									025
															7		
			1												+		
												=					
Matrix Code: WW	= wastewater SW = surface water GW = gro	ound water DW	= drinking w	iter O = oil	A = air S	O = soil S	L = slude	ge	Preserva	tion Cor	le: I = ice	H=(HCI)	S = /H2S	O4) N = /H/	VO3) T-	(Sodium Th	incultate's
	Yes No ATemp taken from sample		from blank				_	Where						n received	4	(in degree	

Relinquished by

DCN: AD-051 Form last revised 08/18/2014

	(Keiniquiatied by)	Date	Time	Received by:	Date	Tim
1	2015	5/15/19	1600	FEDEX	Slister	140
2	Tradex	51619	8:45	300 Q	5-16-14	82
3			-		2	
4						
						-

	Date	Time	FOR DRINKING WATER USE:			
	Stistes	(600	(When PWS Information not otherwise supplied) PWS ID			
Q	5-16-14	8245	Contact Person:	Phone :_		
->	45.50		Supplier of Water:			
			Site-Address;			

Monday, June 03, 2019 2:05:21 PM Page 102 of 103

Client: Waste

Date/Time Rcvd: 5	Nacle Car	With Committee or an artist of the committee of the committee or an artist of the committee	Project nan g-In request numb	ie: J-E.D	010	indt	ill	
Received by:	BA				Carlo	-12		
Cooler/Shipping I			Completed b	y:B	H			
		A	-			1		
Courier: AEL Cooler Rev	EUR DIOLO DI BIDI	Streak A FedEx	□ AES □ ASAP □	Other (descr	ibe):	- X		
The brone I Box	U Other (describe)			100				
Cooler temperature, I	dentify the cooler ar	id document the tem	perature blank or ic	e water mone	0.000			
Cooler ID	0		1	Water meas	uremer	IT.		
Temp (°C)	-400			1		1 15		
Total Company of the Company	Sample Bottle	☐ Sample Bottle	Ho I a					
Temp taken from	☐ Cooler ☐ IR gun-S/N 9333779	☐ Cooler	☐ Sample Bottle ☐ Cooler	☐ Sample Bott ☐ Cooler	le		le Bottle	
Temp measured	☐ Thermometer (enter	☐ IR gun S/N 9333779 ☐ Thermometer (enter	☐ IR gun S/N 9333779	IR gun S/N 9	333779	□ Cooler □ IR gun S/N 9333		
with	ID):	ID):	☐ Thermometer (enter ID);	☐ Thermometer ID):	(enter	☐ Thermometer		
ther Information:				1000		ID):		
ny discrepancies shou	ld be explained in the	e "Commente" costi	au tura					
	1, 3, 0, 10, 40	o comments secti	on below.					
to Warfall a war		CHECKLIST			Lamo	1 110	-	
1. Were custody sea	als on shipping contain	ner(s) intact?			YES	NO	NA	
3. Were custody par	pers properly included	with samples?				-	-	
4. Did all bottles are	pers properly filled ou	t (ink, signed, match la	abels)?		1		-	
5. Were all bottle la	ive in good condition	(unbroken)?			1			
6. Did the sample la	bels agree with the ch	#, date, signed, analy	sis, preservatives)?		1			
7. Were correct bott	les used for the tests in	ain of custody?			1			
8. Were proper same	ole preservation techn	iques indicated on the	2.7	0.1	1.	1 2		
	cived within holding t	Imac?	label?		/	-		
10. Were all VOA via	Is free of the presence	of air bulling			/	1	17	
III. Have all Soil VO	Vials and Encores h	enn planted to c	10 T 10 I		1	1		
The second secon	accordinate with well	ICE/ IT TAIN I Should	within 48 hours of co	llection?		I == 1	-	
					-			
14. Where pH preserv	ation is required are	america II - 1 1	ad abd act of 1977					
			nd any anomalies recor checked by laboratory	ded by	12			
15. Was sufficient sam	ple volume provided	to perform all tests?	checked by laboratory	analysts.	-			
10. II for pacteriologic	cal testing were conta	more out It It I I TO	2 (See OA officer if -				- 1	
	THE PROPERTY OF THE PARTY OF TH	M.F.I. / H. Iffier than Das	teriological)	nswer is no)		- 1	2000000	
The state of the s	DUCKE INTO THE PSECRATA	CT 453			1			
19. When necessary to	split samples into oth	er bottles, is it noted in	the comments?	-				
nments: (Note all sa	mula(e) and over-	van de discons			-	- 2		
nments: (Note all sai	mpre(s) and container	(s)" with a "No" check	klist response in this co	omment section	n)			
r bubbles	~ Lemm or	less -oc		tals lie	1	1	CTAIN .	
me of the	ue sample		1	1	1 10	as 1	oose	
			TO CLO				1.6	
	1 1 1	-	st (not n	nuch)			3	
rip Blanks	labeled	2, 6, 10.	Labeled	2.3/	and	4	9	

Project No.: J1906272

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: Samples were extracted prior to the hold date and were subsequently analyzed as soon as

possible post extraction. All method guidelines were met. No further corrective action was

required.

III. Method

Analysis: SW-846 8011

Preparation: SW-846 8011

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Surrogates: The control criteria for Tetrachloro-m-xylene in J1906272017, 002, and 021 are not

applicable. As recorded in the extraction logbook, the samples formed emulsions in the solvent layer during the extraction. The emulsions were such that centrifuging was required to separate the solvent from the water layer. Such emulsions are known to negatively affect surrogate yields. The affected surrogates were qualified to indicate

matrix interference.

D. Spikes: All acceptance criteria were met.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906272

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 6010
Preparation: SW-846 3010A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: The Method Blank (MB) contained low levels of Vanadium above the Method Detection

Limit (MDL). In accordance with AEL QA policy, all sample results found in the Method Blank are flagged with a V qualifier to indicate the data is estimated. All sample results are below the

Florida GCTL for this analyte. No further corrective action was required.

C. Duplicates: All acceptance criteria were met.

D. Spikes: All acceptance criteria were met.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906272

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B

Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.
 B. Blanks: All acceptance criteria were met.
 C. Surrogates: All acceptance criteria were met.

D. Spikes: The relative percent difference (RPD) for several analytes between the Laboratory Control

Sample (LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in 3108513 in comparison with 3108514. Spike recoveries in the LCS and LCSD were within acceptable limits, indicating the

analytical batch was in control. No further corrective action was required.

The spike recovery of Vinyl Chloride for the Laboratory Control Sample Duplicate (LCSD) was outside control criterion. The LCSD was analyzed only to allow for RPD determination. All client sampes were analyzed following ap assing CCV and LCS. No corrective action

necessary.

The matrix spike (MS) recovery of Vinyl Chloride for J1906272020 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in

this matrix. The affected sample is J4 qualified to indicate matrix interference.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906272

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 300.0

Preparation: None

IV. Preparation

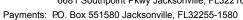
Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.


D. Spikes: The matrix spike (MS) recoveries of Chloride and/or Nitrate for J1906272016 and

J1906272020 were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in

this matrix. The affected sample is qualified to indicate matrix interference.

E. Serial Diluion:

F. Samples:

June 6, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

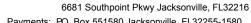
RE: Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, May 17, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 878849 - 802056 Page 1 of 73

SAMPLE SUMMARY

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected	Date Received
J1906329001	19136-MW-7A	Water	5/16/2019 08:32	5/17/2019 08:35
J1906329002	19136-MW-7B	Water	5/16/2019 08:14	5/17/2019 08:35
J1906329003	19136-MW-8A	Water	5/16/2019 09:44	5/17/2019 08:35
J1906329004	19136-MW-8B	Water	5/16/2019 09:22	5/17/2019 08:35
J1906329005	19136-MW-9A	Water	5/16/2019 11:00	5/17/2019 08:35
J1906329006	19136-MW-9B	Water	5/16/2019 10:38	5/17/2019 08:35
J1906329007	19136-MW-12A	Water	5/16/2019 13:55	5/17/2019 08:35
J1906329008	19136-MW-12B	Water	5/16/2019 13:37	5/17/2019 08:35
J1906329009	19136-MW-13A	Water	5/16/2019 11:55	5/17/2019 08:35
J1906329010	19136-MW-13B	Water	5/16/2019 12:30	5/17/2019 08:35
J1906329011	19136-MW-22AR	Water	5/16/2019 12:32	5/17/2019 08:35
J1906329012	19136-MW-22BR	Water	5/16/2019 12:10	5/17/2019 08:35
J1906329013	19136-MW-24A	Water	5/16/2019 14:08	5/17/2019 08:35
J1906329014	19136-MW-24B	Water	5/16/2019 13:46	5/17/2019 08:35
J1906329015	19136-Dup-1	Water	5/16/2019 00:01	5/17/2019 08:35
J1906329016	19136-TripBlank-5	Water	5/16/2019 00:00	5/17/2019 08:35
J1906329017	19136-TripBlank-6	Water	5/16/2019 00:00	5/17/2019 08:35

Report ID: 878849 - 802056 Page 2 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329001 Matrix: Water

19136-MW-7A Date Collected: 05/16/19 08:32 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	/lethod: SV	V-846 3010A				
Analysis, Water	Ana	ytical Me	thod: SW-	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 11:14	J
Barium	19		ug/L	1	4.0	1.0	5/24/2019 11:14	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 11:14	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 11:14	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:14	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:14	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 11:14	J
Iron	20000		ug/L	1	400	100	5/24/2019 11:14	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 11:14	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 11:14	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 11:14	J
Silver	10	U	ug/L	1	40	10	5/24/2019 11:14	J
Sodium	18		mg/L	1	1.4	0.35	5/24/2019 11:14	J
Vanadium	1.9	I,V	ug/L	1	4.0	1.0	5/28/2019 11:15	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 11:14	J
Analysis Desc: SW846 6020B	Prep	aration I	/lethod: SV	V-846 3010A				
Analysis,Total	Ana	ytical Me	thod: SW-	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:47	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 19:47	J
Analysis Desc: SW846 7470A	Prep	aration N	/lethod: SV	V-846 7470A				
Analysis, Water	Ana	vtical Me	thod: SW-	846 7470A				
Mercury	0.013	, 1,J4	ug/L	1	0.10	0.011	5/24/2019 15:41	J
•		•	Ū					
VOLATILES	Dron	aration N	Asthad: CV	V 946 E030D				
Analysis Desc: 8260B Analysis, Water				V-846 5030B				
	Ana	ytical Me	thod: SW-	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 16:11	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 16:11	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 16:11	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 16:11	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 16:11	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 16:11	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 16:11	J

Report ID: 878849 - 802056 Page 3 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329001 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-7A Date Collected: 05/16/19 08:32

Sample Description: Location:

Campio Bocomption.				2000				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 16:11	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 16:11	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 16:11	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 16:11	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 16:11	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 16:11	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 16:11	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/29/2019 16:11	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 16:11	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 16:11	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 16:11	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 16:11	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 16:11	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 16:11	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 16:11	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 16:11	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 16:11	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 16:11	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 16:11	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 16:11	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 16:11	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 16:11	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 16:11	J
lodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 16:11	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 16:11	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 16:11	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 16:11	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 16:11	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 16:11	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 16:11	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 16:11	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 16:11	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 16:11	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 16:11	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 16:11	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 16:11	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 16:11	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 16:11	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/29/2019 16:11	
Toluene-d8 (S)	97		%	1	77-119		5/29/2019 16:11	

Report ID: 878849 - 802056 Page 4 of 73

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329001 Matrix: Water

19136-MW-7A Date Collected: 05/16/19 08:32 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted				
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
Bromofluorobenzene (S)	113		%	1	86-123		5/29/2019 16:11			
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B						
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)						
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 16:11	J		
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 16:11	J		
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		5/29/2019 16:11			
Toluene-d8 (S)	101		%	1	80-121		5/29/2019 16:11			
Bromofluorobenzene (S)	99		%	1	80-129		5/29/2019 16:11			
WET CHEMISTRY										
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0						
Chloride	76		mg/L	1	5.0	0.50	5/17/2019 15:55	J		
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 15:55	J		
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1						
Ammonia (N)	13		mg/L	25	0.25	0.20	5/23/2019 14:58	G		
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C						
Total Dissolved Solids	140		mg/L	1	10	10	5/22/2019 12:32	J		
Lab ID: J1906329002				Date Received:	05/17/19 08:35	Matrix:	Water			
0 I ID 40400 INM ED				Data Callagtad.	05/40/40 00:44					

Date Collected: 05/16/19 08:14 19136-MW-7B Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis, Water	Prep	aration I	Method: SV	V-846 3010A				
Analysis, water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 11:38	J
Barium	32		ug/L	1	4.0	1.0	5/24/2019 11:38	J
Beryllium	0.80	- 1	ug/L	1	2.0	0.50	5/24/2019 11:38	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 11:38	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:38	J

Report ID: 878849 - 802056 Page 5 of 73

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

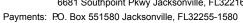
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329002 Matrix: Water

19136-MW-7B Date Collected: 05/16/19 08:14 Sample ID:


Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	3.5	ı	ug/L	1	8.0	2.0	5/24/2019 11:38	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 11:38	J
Iron	22000		ug/L	1	400	100	5/24/2019 11:38	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 11:38	J
Nickel	6.5	I	ug/L	1	24	6.0	5/24/2019 11:38	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 11:38	J
Silver	10	U	ug/L	1	40	10	5/24/2019 11:38	J
Sodium	19		mg/L	1	1.4	0.35	5/24/2019 11:38	J
Vanadium	4.4	V	ug/L	1	4.0	1.0	5/28/2019 11:19	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 11:38	J
Analysis Desc: SW846 6020B Analysis,Total	·		Method: SV ethod: SW-	V-846 3010A 846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:51	J
Thallium	0.082	i	ug/L ug/L	1	0.70	0.11		J
manum	0.002	•	ug/L	•	0.20	0.037	3/22/2019 19.51	J
Analysis Desc: SW846 7470A Analysis,Water				V-846 7470A 846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 15:57	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 16:47	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 16:47	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 16:47	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 16:47	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 16:47	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 16:47	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 16:47	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 16:47	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 16:47	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 16:47	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 16:47	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 16:47	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 16:47	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 16:47	J
Acetone	2.5	I	ug/L	1	5.0	2.1	5/29/2019 16:47	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 16:47	J

Report ID: 878849 - 802056 Page 6 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329002 Date Received: 05/17/19 08:35 Matrix: Water

Date Collected: 05/16/19 08:14 Sample ID: 19136-MW-7B

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 16:47	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 16:47	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 16:47	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 16:47	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 16:47	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 16:47	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 16:47	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 16:47	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 16:47	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 16:47	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 16:47	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 16:47	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 16:47	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 16:47	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 16:47	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 16:47	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 16:47	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 16:47	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 16:47	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 16:47	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 16:47	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 16:47	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 16:47	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 16:47	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 16:47	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 16:47	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 16:47	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 16:47	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 16:47	J
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		5/29/2019 16:47	
Toluene-d8 (S)	98		%	1	77-119		5/29/2019 16:47	
Bromofluorobenzene (S)	110		%	1	86-123		5/29/2019 16:47	
Analysis Desc: 8260B SIM Analysis,	Prei	paration I	Method: S\	V-846 5030B				
Water	·	'		846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 16:47	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 16:47	J
1,2-Dichloroethane-d4 (S)	83		%	1	77-125		5/29/2019 16:47	
Toluene-d8 (S)	102		%	1	80-121		5/29/2019 16:47	
Bromofluorobenzene (S)	96		%	1	80-129		5/29/2019 16:47	

Water	Analy	ytical M	ethod: SW-8	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 16:47	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 16:47	J
1,2-Dichloroethane-d4 (S)	83		%	1	77-125		5/29/2019 16:47	
Toluene-d8 (S)	102		%	1	80-121		5/29/2019 16:47	
Bromofluorobenzene (S)	96		%	1	80-129		5/29/2019 16:47	

Report ID: 878849 - 802056 Page 7 of 73

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329002 Matrix: Water

19136-MW-7B Date Collected: 05/16/19 08:14 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	Results	Quai	UTILIS	DI	FQL	IVIDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	39		mg/L	1	5.0	0.50	5/17/2019 16:16	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 16:16	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	2.6		mg/L	5	0.050	0.040	5/23/2019 14:59	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	460		mg/L	1	10	10	5/22/2019 12:32	J

Lab ID: J1906329003 Date Received: 05/17/19 08:35 Matrix: Water

Date Collected: 05/16/19 09:44 Sample ID: 19136-MW-8A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	Results	Quai	UTIILS	Di	FQL	IVIDL	Analyzeu	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 11:42	J
Barium	27		ug/L	1	4.0	1.0	5/24/2019 11:42	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 11:42	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 11:42	J
Chromium	2.7	ı	ug/L	1	8.0	2.0	5/24/2019 11:42	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:42	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 11:42	J
Iron	2800		ug/L	1	400	100	5/24/2019 11:42	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 11:42	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 11:42	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 11:42	J
Silver	10	U	ug/L	1	40	10	5/24/2019 11:42	J
Sodium	4.6		mg/L	1	1.4	0.35	5/24/2019 11:42	J
Vanadium	8.2	V	ug/L	1	4.0	1.0	5/28/2019 11:23	J
Zinc	50	U	ua/L	1	200	50	5/24/2019 11:42	J

Report ID: 878849 - 802056 Page 8 of 73

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329003 Matrix: Water

19136-MW-8A Date Collected: 05/16/19 09:44 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prepa	aration N	Method: S	W-846 3010A				
Analysis, Total	Analy	tical Me	thod: SW	/-846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:54	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 19:54	J
Analysis Desc: SW846 7470A Analysis, Water	•			W-846 7470A				
•	Analy	tical Me	thod: SW	/-846 7470A				
Mercury	0.011	I	ug/L	1	0.10	0.011	5/24/2019 16:01	J

VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prepa	aration I	Method: S\	V-846 5030B				
	Analy	tical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 17:28	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 17:28	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 17:28	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 17:28	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 17:28	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 17:28	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 17:28	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 17:28	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 17:28	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 17:28	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 17:28	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 17:28	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 17:28	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 17:28	J
Acetone	2.2	ı	ug/L	1	5.0	2.1	5/29/2019 17:28	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 17:28	J
Benzene	1.5		ug/L	1	1.0	0.16	5/29/2019 17:28	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 17:28	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 17:28	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 17:28	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 17:28	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 17:28	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 17:28	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 17:28	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 17:28	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 17:28	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 17:28	J

Report ID: 878849 - 802056 Page 9 of 73

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329003 Matrix: Water

Sample ID: 19136-MW-8A Date Collected: 05/16/19 09:44

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lal
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 17:28	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 17:28	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 17:28	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 17:28	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 17:28	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 17:28	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 17:28	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 17:28	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 17:28	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 17:28	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 17:28	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 17:28	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 17:28	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 17:28	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 17:28	J
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 17:28	J
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 17:28	J
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 17:28	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/29/2019 17:28	
Toluene-d8 (S)	100		%	1	77-119		5/29/2019 17:28	
Bromofluorobenzene (S)	111		%	1	86-123		5/29/2019 17:28	
Analysis Desc: 8260B SIM Analysis,	Pre	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	846 8260B (SIM))			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 17:28	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	5/29/2019 17:28	J
1,2-Dichloroethane-d4 (S)	85	·	%	1	77-125	0.020	5/29/2019 17:28	Ŭ
Foluene-d8 (S)	105		%	1	80-121		5/29/2019 17:28	
Bromofluorobenzene (S)	97		%	1	80-129		5/29/2019 17:28	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	5.9	ı	mg/L	5	25	2.5	5/17/2019 16:58	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	5/17/2019 16:58	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lvtical Me	ethod: EPA	350.1				
Ammonia (N)	1.7	.,	mg/L	10	0.10	0.080	5/23/2019 14:10	G
Analysis Desc: Tot Dissolved Solids,SM2540C		lytical Me	ethod: SM 2		3.10	3.330	2.20.20.00.1110	

Report ID: 878849 - 802056 Page 10 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329003 Matrix: Water

19136-MW-8A Date Collected: 05/16/19 09:44 Sample ID:

Sample Description: Location:

Total Dissolved Solids	1200		mg/L	1	10	10	5/22/2019 12:32	
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

Lab ID: J1906329004 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-8B Date Collected: 05/16/19 09:22

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 11:45	J
Barium	42		ug/L	1	4.0	1.0	5/24/2019 11:45	J
Beryllium	0.70	ı	ug/L	1	2.0	0.50	5/24/2019 11:45	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 11:45	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:45	J
Cobalt	8.5		ug/L	1	8.0	2.0	5/24/2019 11:45	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 11:45	J
Iron	46000		ug/L	1	400	100	5/24/2019 11:45	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 11:45	J
Nickel	7.3	ı	ug/L	1	24	6.0	5/24/2019 11:45	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 11:45	J
Silver	10	U	ug/L	1	40	10	5/24/2019 11:45	J
Sodium	33		mg/L	1	1.4	0.35	5/24/2019 11:45	J
Vanadium	6.4	V	ug/L	1	4.0	1.0	5/28/2019 11:26	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 11:45	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	lytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 19:59	J
Thallium	0.097	I	ug/L	1	0.20	0.057	5/22/2019 19:59	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.016	ı	ug/L	1	0.10	0.011	5/24/2019 16:04	J

Report ID: 878849 - 802056 Page 11 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329004 Matrix: Water

19136-MW-8B Date Collected: 05/16/19 09:22 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 17:57	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 17:57	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 17:57	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 17:57	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 17:57	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 17:57	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 17:57	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 17:57	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 17:57	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 17:57	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 17:57	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 17:57	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 17:57	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 17:57	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/29/2019 17:57	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 17:57	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 17:57	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 17:57	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 17:57	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 17:57	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 17:57	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 17:57	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 17:57	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 17:57	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 17:57	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 17:57	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 17:57	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 17:57	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 17:57	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 17:57	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 17:57	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 17:57	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 17:57	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 17:57	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 17:57	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 17:57	J

Report ID: 878849 - 802056 Page 12 of 73

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329004 Matrix: Water

Sample ID: 19136-MW-8B Date Collected: 05/16/19 09:22

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 17:57	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 17:57	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 17:57	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 17:57	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 17:57	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 17:57	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 17:57	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 17:57	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 17:57	J
1,2-Dichloroethane-d4 (S)	86		%	1	70-128		5/29/2019 17:57	
Toluene-d8 (S)	99		%	1	77-119		5/29/2019 17:57	
Bromofluorobenzene (S)	112		%	1	86-123		5/29/2019 17:57	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 17:57	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 17:57	J
1,2-Dichloroethane-d4 (S)	82		%	1	77-125		5/29/2019 17:57	
Toluene-d8 (S)	104		%	1	80-121		5/29/2019 17:57	
Bromofluorobenzene (S)	98		%	1	80-129		5/29/2019 17:57	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	11		mg/L	1	5.0	0.50	5/17/2019 16:37	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 16:37	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	1.3		mg/L	5	0.050	0.040	5/23/2019 14:11	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM :	2540 C				
Total Dissolved Solids	1100		mg/L	1	10	10	5/22/2019 12:32	J

Report ID: 878849 - 802056 Page 13 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329005 Matrix: Water

19136-MW-9A Date Collected: 05/16/19 11:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis,Water	Ana	vtical Me	thod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 11:49	J
Barium	9.0 6.5	U	ug/L ug/L	1	4.0	1.0	5/24/2019 11:49	J
Beryllium	0.50	U	ug/L ug/L	1	2.0	0.50	5/24/2019 11:49	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	5/24/2019 11:49	J
Chromium	2.4	Ī	ug/L	1	8.0	2.0	5/24/2019 11:49	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:49	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 11:49	J
Iron	490		ug/L	1	400	100	5/24/2019 11:49	J
Lead	5.3	- 1	ug/L	1	12	3.0	5/24/2019 11:49	J
Nickel	6.7	I	ug/L	1	24	6.0	5/24/2019 11:49	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 11:49	J
Silver	10	U	ug/L	1	40	10	5/24/2019 11:49	J
Sodium	22		mg/L	1	1.4	0.35	5/24/2019 11:49	J
Vanadium	6.9	V	ug/L	1	4.0	1.0	5/28/2019 11:30	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 11:49	J
Analysis Desc: SW846 6020B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis,Total	Ana	ytical Me	thod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 20:03	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 20:03	J
Analysis Desc: SW846 7470A	Prer	aration N	/lethod: SV	V-846 7470A				
Analysis,Water	·							
		-		846 7470A				
Mercury	0.027	I	ug/L	1	0.10	0.011	5/24/2019 16:14	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	/lethod: SV	V-846 5030B				
	Ana	ytical Me	thod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 18:34	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 18:34	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 18:34	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 18:34	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 18:34	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 18:34	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 18:34	J

Report ID: 878849 - 802056 Page 14 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329005 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-9A Date Collected: 05/16/19 11:00

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 18:34	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 18:34	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 18:34	J
1,4-Dichlorobenzene	1.5		ug/L	1	1.0	0.22	5/29/2019 18:34	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 18:34	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 18:34	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 18:34	J
Acetone	8.4		ug/L	1	5.0	2.1	5/29/2019 18:34	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 18:34	J
Benzene	9.9		ug/L	1	1.0	0.16	5/29/2019 18:34	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 18:34	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 18:34	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 18:34	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 18:34	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 18:34	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 18:34	J
Chlorobenzene	0.35	ı	ug/L	1	1.0	0.21	5/29/2019 18:34	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 18:34	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 18:34	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 18:34	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 18:34	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 18:34	J
Ethylbenzene	0.89	ı	ug/L	1	1.0	0.24	5/29/2019 18:34	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 18:34	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 18:34	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 18:34	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 18:34	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 18:34	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 18:34	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 18:34	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 18:34	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 18:34	J
Xylene (Total)	1.0	ı	ug/L	1	2.0	0.53	5/29/2019 18:34	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 18:34	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 18:34	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 18:34	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 18:34	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 18:34	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/29/2019 18:34	
Toluene-d8 (S)	98		%	1	77-119		5/29/2019 18:34	

Report ID: 878849 - 802056 Page 15 of 73

Phone: (904)363-9350 Fax: (904)363-9354

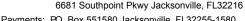
ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329005 Matrix: Water

19136-MW-9A Date Collected: 05/16/19 11:00 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	112		%	1	86-123		5/29/2019 18:34	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 18:34	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020		J
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		5/29/2019 18:34	
Toluene-d8 (S)	102		%	1	80-121		5/29/2019 18:34	
Bromofluorobenzene (S)	98		%	1	80-129		5/29/2019 18:34	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	19		mg/L	1	5.0	0.50	5/17/2019 18:22	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 18:22	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	3.7		mg/L	20	0.20	0.16	5/23/2019 14:12	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	210		mg/L	1	10	10	5/22/2019 12:32	J
Lab ID: J1906329006				Date Received:	05/17/19 08:35	Matrix:	Water	
Sample ID: 19136-MW-9B				Date Collected:	05/16/19 10:38			
Jampie ID. 13130-18188-35				Date Collected.	30, 10, 13 10.30			
Sample Description:				Location:				
					Adjusted	Adjusted		
							A II	1 -1-

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	lytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 11:52	J
Barium	47		ug/L	1	4.0	1.0	5/24/2019 11:52	J
Beryllium	0.70	- 1	ug/L	1	2.0	0.50	5/24/2019 11:52	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 11:52	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:52	J

Report ID: 878849 - 802056 Page 16 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329006 Matrix: Water

19136-MW-9B Date Collected: 05/16/19 10:38 Sample ID:

Sample Description: Location:

P P								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	2.3	ı	ug/L	1	8.0	2.0	5/24/2019 11:52	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 11:52	J
Iron	9000		ug/L	1	400	100	5/24/2019 11:52	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 11:52	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 11:52	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 11:52	J
Silver	10	U	ug/L	1	40	10	5/24/2019 11:52	J
Sodium	38		mg/L	1	1.4	0.35	5/24/2019 11:52	J
Vanadium	6.7	V	ug/L	1	4.0	1.0	5/28/2019 11:34	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 11:52	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	thod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 20:06	J
Thallium	0.082	1	ug/L	1	0.20	0.057	5/22/2019 20:06	J
Analysis Desc: SW846 7470A	Prer	naration N	Method: SV	V-846 7470A				
Analysis,Water	·			846 7470A				
Moround	0.011	U			0.10	0.011	E/24/2010 16:17	
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:17	J
VOLATILES								
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	400		mg/L	1	10	10	5/22/2019 16:45	J
					10	10	5/22/2019 10.45	J
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 19:03	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 19:03	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 19:03	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 19:03	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 19:03	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 19:03	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 19:03	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 19:03	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 19:03	J
			/1	4	1.0	0.66	5/29/2019 19:03	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.00	3/29/2019 19.03	·
1,2-Dichloropropane 1,4-Dichlorobenzene	0.66 0.22	U	ug/L ug/L	1	1.0	0.22		J

Report ID: 878849 - 802056 Page 17 of 73

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329006 Matrix: Water

19136-MW-9B Date Collected: 05/16/19 10:38 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 19:03	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 19:03	J
Acetone	4.4	ı	ug/L	1	5.0	2.1	5/29/2019 19:03	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 19:03	J
Benzene	0.42	ı	ug/L	1	1.0	0.16	5/29/2019 19:03	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 19:03	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 19:03	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 19:03	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 19:03	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 19:03	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 19:03	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 19:03	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 19:03	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 19:03	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 19:03	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 19:03	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 19:03	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 19:03	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 19:03	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 19:03	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 19:03	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 19:03	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 19:03	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 19:03	J
Trichlorofluoromethane	0.32	Ū	ug/L	1	1.0	0.32	5/29/2019 19:03	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 19:03	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 19:03	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 19:03	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 19:03	J
cis-1,3-Dichloropropene	0.16	Ū	ug/L	1	1.0	0.16	5/29/2019 19:03	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 19:03	J
trans-1,3-Dichloropropylene	0.21	Ū	ug/L	1	1.0	0.21	5/29/2019 19:03	J
trans-1,4-Dichloro-2-butene	1.8	Ū	ug/L	1	10	1.8	5/29/2019 19:03	J
1,2-Dichloroethane-d4 (S)	89	-	%	1	70-128		5/29/2019 19:03	-
Toluene-d8 (S)	98		%	1	77-119		5/29/2019 19:03	
Bromofluorobenzene (S)	112		%	1	86-123		5/29/2019 19:03	
Analysis Desc: 8260B SIM Analysis,	Pre	paration M	Method: SV	V-846 5030B				
Water	Ana	lytical Me	thod: SW-	846 8260B (SIM	1)			

0.11 U 0.20 0.11 5/29/2019 19:03 1,2-Dibromo-3-Chloropropane ug/L 1

Report ID: 878849 - 802056 Page 18 of 73

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329006 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-9B Date Collected: 05/16/19 10:38

Sample Description: Location:

RegLmt

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 19:03	J
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		5/29/2019 19:03	
Toluene-d8 (S)	102		%	1	80-121		5/29/2019 19:03	
Bromofluorobenzene (S)	98		%	1	80-129		5/29/2019 19:03	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	110		mg/L	1	5.0	0.50	5/17/2019 17:19	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 17:19	J
Analysis Desc: Ammonia,E350.1,Water	Analytical Method: EPA 350.1							
Ammonia (N)	1.2		mg/L	5	0.050	0.040	5/23/2019 15:09	G

Lab ID: J1906329007 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-12A Date Collected: 05/16/19 13:55

Sample Description: Location:

RegLmt

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	resuits	Quai	Office		I QL	IVIDE	7 tildiy2ed	
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: S\	N-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Vanadium	8.4	٧	ug/L	1	4.0	1.0	5/28/2019 11:37	J
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 11:56	J
Barium	110		ug/L	1	4.0	1.0	5/24/2019 11:56	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 11:56	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 11:56	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:56	J
Cobalt	3.0	ı	ug/L	1	8.0	2.0	5/24/2019 11:56	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 11:56	J
Iron	6900		ug/L	1	400	100	5/24/2019 11:56	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 11:56	J
Nickel	7.0	ı	ug/L	1	24	6.0	5/24/2019 11:56	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 11:56	J
Silver	10	U	ug/L	1	40	10	5/24/2019 11:56	J

Report ID: 878849 - 802056 Page 19 of 73

CERTIFICATE OF ANALYSIS

without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329007 Matrix: Water

19136-MW-12A Date Collected: 05/16/19 13:55 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Sodium	100		mg/L	1	1.4	0.35	5/24/2019 11:56	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 11:56	J
Analysis Desc: SW846 6020B	Pre	paration N	Method: SW	/-846 3010A				
Analysis, Total	Ana	lvtical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 20:10	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057	5/22/2019 20:10	J
VOL 4711 FO			Ū					
VOLATILES Analysis Desc: 8260B Analysis, Water	Pro	paration N	Anthod: SM	/-846 5030B				
Alialysis Desc. 6200B Alialysis, Water	•							
	Ana	lytical Me	ethod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 19:40	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 19:40	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 19:40	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 19:40	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 19:40	J
1,1-Dichloroethylene	0.18	U,J4	ug/L	1	1.0	0.18	5/29/2019 19:40	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 19:40	J
1,2-Dichlorobenzene	0.18	U,J4	ug/L	1	1.0	0.18	5/29/2019 19:40	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 19:40	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 19:40	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 19:40	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 19:40	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 19:40	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 19:40	J
Acetone	3.5	ı	ug/L	1	5.0	2.1	5/29/2019 19:40	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 19:40	J
Benzene	5.0	J4	ug/L	1	1.0	0.16	5/29/2019 19:40	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 19:40	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 19:40	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 19:40	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 19:40	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 19:40	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 19:40	J
Chlorobenzene	0.21	U,J4	ug/L	1	1.0	0.21	5/29/2019 19:40	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 19:40	J
Chloroform	0.18	U,J4	ug/L	1	1.0	0.18	5/29/2019 19:40	J
Chloromethane	0.21	Ū	ug/L	1	1.0	0.21	5/29/2019 19:40	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 19:40	J

Report ID: 878849 - 802056 Page 20 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Water Lab ID: J1906329007 Matrix:

Date Collected: 05/16/19 13:55 Sample ID: 19136-MW-12A

Sample Description: Location:

F F								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 19:40	J
Ethylbenzene	0.24	U,J4	ug/L	1	1.0	0.24	5/29/2019 19:40	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 19:40	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 19:40	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 19:40	J
Tetrachloroethylene (PCE)	0.36	U,J4	ug/L	1	1.0	0.36	5/29/2019 19:40	J
Toluene	0.23	U,J4	ug/L	1	1.0	0.23	5/29/2019 19:40	J
Trichloroethene	0.29	U,J4	ug/L	1	1.0	0.29	5/29/2019 19:40	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 19:40	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 19:40	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 19:40	J
Xylene (Total)	0.53	U,J4	ug/L	1	2.0	0.53	5/29/2019 19:40	J
cis-1,2-Dichloroethylene	0.24	U,J4	ug/L	1	1.0	0.24	5/29/2019 19:40	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 19:40	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 19:40	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 19:40	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 19:40	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/29/2019 19:40	
Toluene-d8 (S)	98		%	1	77-119		5/29/2019 19:40	
Bromofluorobenzene (S)	114		%	1	86-123		5/29/2019 19:40	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	346 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 19:40	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 19:40	J
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		5/29/2019 19:40	
Toluene-d8 (S)	103		%	1	80-121		5/29/2019 19:40	
Bromofluorobenzene (S)	99		%	1	80-129		5/29/2019 19:40	
VOLATILES								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	16		mg/L	1	5.0	0.50	5/17/2019 21:32	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 21:32	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	3.4		mg/L	5	0.050	0.040	5/23/2019 15:00	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	390		mg/L	1	10	10	5/22/2019 16:45	J

Report ID: 878849 - 802056 Page 21 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Thallium

Date Received: 05/17/19 08:35 Lab ID: J1906329007 Matrix: Water

19136-MW-12A Date Collected: 05/16/19 13:55 Sample ID:

Sample Description: Location:

Sample Des	cription.				Location.						
						Adjusted	Adjusted				
Parameters		Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
	sc: SW846 7470A	Prep	aration I	Method: S	W-846 7470A						
Analysis,Wa	ter	Anal	ytical Me	ethod: SW	/-846 7470A						
Mercury		0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:20	J		
Lab ID:	J1906329008				Date Received:	05/17/19 08:35	Matrix:	Water			
Sample ID:	19136-MW-12B				Date Collected:	05/16/19 13:37					
Sample Des	crintion:				Location:						
- Campic Bes	onpuon.				Location.	Adjusted	Adjusted				
Parameters		Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
METALS											
	sc: SW846 6010B	Prep	aration I	Method: S	W-846 3010A						
Analysis,Wa	ter	Analytical Method: SW-846 6010									
Arsenic		9.0	U	ug/L	1	40	9.0	5/24/2019 11:59	J		
Barium		18		ug/L	1	4.0	1.0	5/24/2019 11:59	J		
Beryllium		0.50	U	ug/L	1	2.0	0.50	5/24/2019 11:59	J		
Cadmium		1.0	U	ug/L	1	4.0	1.0	5/24/2019 11:59	J		
Chromium		2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:59	J		
Cobalt		2.0	U	ug/L	1	8.0	2.0	5/24/2019 11:59	J		
Copper		4.0	U	ug/L	1	16	4.0	5/24/2019 11:59	J		
Iron		550		ug/L	1	400	100	5/24/2019 11:59	J		
Lead		3.2	I	ug/L	1	12	3.0	5/24/2019 11:59	J		
Nickel		6.0	U	ug/L	1	24	6.0	5/24/2019 11:59	J		
Selenium		40	U	ug/L	1	160	40	5/24/2019 11:59	J		
Silver		10	U	ug/L	1	40	10	5/24/2019 11:59	J		
Sodium		7.8		mg/L	1	1.4	0.35	5/24/2019 11:59	J		
Vanadium		3.6	I,V	ug/L	1	4.0	1.0	5/28/2019 11:41	J		
Zinc		50	U	ug/L	1	200	50	5/24/2019 11:59	J		
	sc: SW846 6020B	Prep	aration I	Method: S	W-846 3010A						
Analysis,Tota	41	Anal	ytical Me	ethod: SW	/-846 6020						
Antimony		0.11	U	ug/L	1	0.70	0.11	5/22/2019 20:36	J		

Report ID: 878849 - 802056 Page 22 of 73

0.20

0.057 5/22/2019 20:36

ug/L

0.057

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

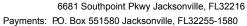
Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329008 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-12B Date Collected: 05/16/19 13:37

Sample Description: Location:

RegLmt


Analysis Desc: SW846 7470A Analysis,Water	·		Method: SV	V-846 7470A				
	Anal							
Mercury		ytical Me	ethod: SW-8	846 7470A				
/	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:23	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Anal	ytical Me	ethod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 20:09	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 20:09	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 20:09	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 20:09	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 20:09	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 20:09	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 20:09	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 20:09	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 20:09	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 20:09	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 20:09	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 20:09	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 20:09	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 20:09	J
Acetone	3.1	I	ug/L	1	5.0	2.1	5/29/2019 20:09	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 20:09	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 20:09	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 20:09	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 20:09	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 20:09	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 20:09	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 20:09	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 20:09	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 20:09	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 20:09	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 20:09	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 20:09	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 20:09	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 20:09	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 20:09	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 20:09	J

Report ID: 878849 - 802056 Page 23 of 73

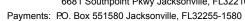
CERTIFICATE OF ANALYSIS

without the written consent of Advanced Environmental Laboratories, Inc.

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329008 Matrix: Water


19136-MW-12B Date Collected: 05/16/19 13:37 Sample ID:

Sample Description: Location:

Campio Bocomption.				Location				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 20:09	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 20:09	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 20:09	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 20:09	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 20:09	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 20:09	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 20:09	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 20:09	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 20:09	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 20:09	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 20:09	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 20:09	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 20:09	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 20:09	J
1,2-Dichloroethane-d4 (S)	90		%	1	70-128		5/29/2019 20:09	
Toluene-d8 (S)	100		%	1	77-119		5/29/2019 20:09	
Bromofluorobenzene (S)	116		%	1	86-123		5/29/2019 20:09	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SW	/-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 20:09	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 20:09	J
1,2-Dichloroethane-d4 (S)	86		%	1	77-125		5/29/2019 20:09	
Toluene-d8 (S)	104		%	1	80-121		5/29/2019 20:09	
Bromofluorobenzene (S)	101		%	1	80-129		5/29/2019 20:09	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	17		mg/L	1	5.0	0.50	5/17/2019 20:29	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 20:29	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.05		mg/L	1	0.010	0.0080	5/23/2019 14:26	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	61		mg/L	1	10	10	5/22/2019 16:45	J

Report ID: 878849 - 802056 Page 24 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329009 Matrix: Water

19136-MW-13A Date Collected: 05/16/19 11:55 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	Method: SV	V-846 3010A				
Analysis,Water	Ana	lvtical Me	ethod: SW-	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 12:10	J
Barium	290	Ū	ug/L ug/L	1	4.0	1.0	5/24/2019 12:10	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 12:10	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	5/24/2019 12:10	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:10	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:10	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 12:10	J
Iron	26000		ug/L	1	400	100	5/24/2019 12:10	J
Lead	3.5	I	ug/L	1	12	3.0	5/24/2019 12:10	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 12:10	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 12:10	J
Silver	10	U	ug/L	1	40	10	5/24/2019 12:10	J
Sodium	350		mg/L	1	1.4	0.35	5/24/2019 12:10	J
Vanadium	13	V	ug/L	1	4.0	1.0	5/28/2019 12:07	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 12:10	J
Analysis Desc: SW846 6020B	Prep	paration N	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 20:55	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 20:55	J
Analysis Desc: SW846 7470A	Prer	paration N	Method: SV	V-846 7470A				
Analysis, Water	·							
		-	ethod: SW-					
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:27	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 20:46	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	5/29/2019 20:46	Ĵ
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 20:46	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 20:46	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 20:46	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 20:46	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 20:46	J

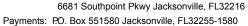
Report ID: 878849 - 802056 Page 25 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329009 Matrix: Water


Sample ID: 19136-MW-13A Date Collected: 05/16/19 11:55

Sample Description: Location:

Sample Description:				Location:				
_					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 20:46	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 20:46	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 20:46	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 20:46	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 20:46	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 20:46	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 20:46	J
Acetone	3.4	ı	ug/L	1	5.0	2.1	5/29/2019 20:46	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 20:46	J
Benzene	7.3		ug/L	1	1.0	0.16	5/29/2019 20:46	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 20:46	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 20:46	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 20:46	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 20:46	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 20:46	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 20:46	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 20:46	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 20:46	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 20:46	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 20:46	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 20:46	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 20:46	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 20:46	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 20:46	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 20:46	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 20:46	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 20:46	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 20:46	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 20:46	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 20:46	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 20:46	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 20:46	J
Xylene (Total)	1.2	1	ug/L	1	2.0	0.53	5/29/2019 20:46	J
cis-1,2-Dichloroethylene	0.63	1	ug/L	1	1.0	0.24	5/29/2019 20:46	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 20:46	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 20:46	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 20:46	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 20:46	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		5/29/2019 20:46	
Toluene-d8 (S)	100		%	1	77-119		5/29/2019 20:46	

Report ID: 878849 - 802056 Page 26 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329009 Matrix: Water

19136-MW-13A Date Collected: 05/16/19 11:55 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	114		%	1	86-123		5/29/2019 20:46	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Ana	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 20:46	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 20:46	J
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		5/29/2019 20:46	
Toluene-d8 (S)	104		%	1	80-121		5/29/2019 20:46	
Bromofluorobenzene (S)	99		%	1	80-129		5/29/2019 20:46	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	ytical Me	ethod: EPA	A 300.0				
Chloride	1200		mg/L	20	100	10	5/17/2019 18:43	J
Nitrate (as N)	1.0	U	mg/L	20	10	1.0	5/17/2019 18:43	J
Analysis Desc: Ammonia,E350.1,Water	Ana	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	9.2		mg/L	10	0.10	0.080	5/23/2019 15:13	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1600		mg/L	1	10	10	5/22/2019 16:45	J
				Data Danakt-	05/47/40 00:05	N.A. Amiron	Matan	
Lab ID: J1906329010				Date Received:	05/17/19 08:35	Matrix:	Water	
Sample ID: 19136-MW-13B				Date Collected:	05/16/19 12:30			

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration l	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 12:13	J
Barium	13		ug/L	1	4.0	1.0	5/24/2019 12:13	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 12:13	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 12:13	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:13	J

Report ID: 878849 - 802056 Page 27 of 73

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

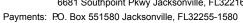
ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329010 Matrix: Water

19136-MW-13B Date Collected: 05/16/19 12:30 Sample ID:

Sample Description: Location:


Advanced Environmental Laboratories, Inc.

					Aujusteu	Aujusteu		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 12:13	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 12:13	J
Iron	1100		ug/L	1	400	100	5/24/2019 12:13	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 12:13	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 12:13	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 12:13	J
Silver	10	U	ug/L	1	40	10	5/24/2019 12:13	J
Sodium	12		mg/L	1	1.4	0.35	5/24/2019 12:13	J
Vanadium	2.8	I,V	ug/L	1	4.0	1.0	5/28/2019 12:10	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 12:13	J
Analysis Desc: SW846 6020B Analysis,Total				V-846 3010A				
	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 20:59	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 20:59	J
Analysis Desc: SW846 7470A Analysis, Water	Prep	aration I	Method: SV	V-846 7470A				
7 thatyoio, vator	Ana	lytical Me	ethod: SW-	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:30	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 21:15	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 21:15	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 21:15	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 21:15	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 21:15	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 21:15	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 21:15	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 21:15	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 21:15	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 21:15	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 21:15	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 21:15	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 21:15	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 21:15	J
Acetone	5.7		ug/L	1	5.0	2.1	5/29/2019 21:15	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 21:15	J

Report ID: 878849 - 802056 Page 28 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329010 Date Received: 05/17/19 08:35 Matrix: Water

Date Collected: 05/16/19 12:30 Sample ID: 19136-MW-13B

Sample Description: Location:

Campic Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 21:15	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 21:15	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 21:15	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 21:15	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 21:15	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 21:15	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 21:15	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 21:15	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 21:15	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 21:15	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 21:15	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 21:15	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 21:15	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 21:15	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 21:15	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 21:15	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 21:15	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 21:15	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 21:15	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 21:15	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 21:15	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 21:15	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 21:15	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 21:15	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 21:15	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 21:15	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 21:15	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 21:15	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 21:15	J
1,2-Dichloroethane-d4 (S)	92		%	1	70-128		5/29/2019 21:15	
Toluene-d8 (S)	99		%	1	77-119		5/29/2019 21:15	
Bromofluorobenzene (S)	113		%	1	86-123		5/29/2019 21:15	
Analysis Desc: 8260B SIM Analysis,	Prep	paration N	Method: SV	V-846 5030B				
Water	Ana	lytical Me	thod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 21:15	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	5/29/2019 21:15	J
1,2-Dichloroethane-d4 (S)	88	-	%	1	77-125		5/29/2019 21:15	-
Toluene-d8 (S)	103		%	1	80-121		5/29/2019 21:15	
` '	99		%					

Report ID: 878849 - 802056 Page 29 of 73

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329010 Matrix: Water

19136-MW-13B Date Collected: 05/16/19 12:30 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EP	A 300.0				
Chloride	29		mg/L	1	5.0	0.50	5/17/2019 19:46	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 19:46	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EP/	A 350.1				
Ammonia (N)	0.11		mg/L	1	0.010	0.0080	5/23/2019 15:14	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	76		mg/L	1	10	10	5/22/2019 16:45	J

Lab ID: J1906329011 Date Received: 05/17/19 08:35 Matrix: Water

Date Collected: 05/16/19 12:32 Sample ID: 19136-MW-22AR

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS	recento	Quui					7	
Analysis Desc: SW846 6010B	Dror	aration I	Method: SM	V-846 3010A				
Analysis, Water	·							
,a., 6.6,	Ana	lytical Me	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 12:17	J
Barium	55		ug/L	1	4.0	1.0	5/24/2019 12:17	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 12:17	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 12:17	J
Chromium	2.2	ı	ug/L	1	8.0	2.0	5/24/2019 12:17	J
Cobalt	2.3	ı	ug/L	1	8.0	2.0	5/24/2019 12:17	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 12:17	J
Iron	13000		ug/L	1	400	100	5/24/2019 12:17	J
Lead	3.0	U	ug/L	1	12	3.0	5/24/2019 12:17	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 12:17	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 12:17	J
Silver	10	U	ug/L	1	40	10	5/24/2019 12:17	J
Sodium	14		mg/L	1	1.4	0.35	5/24/2019 12:17	J
Vanadium	6.1	V	ug/L	1	4.0	1.0	5/28/2019 12:14	J
Zinc	50	U	ua/L	1	200	50	5/24/2019 12:17	J

Report ID: 878849 - 802056 Page 30 of 73

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329011 Matrix: Water

19136-MW-22AR Date Collected: 05/16/19 12:32 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total				W-846 3010A -846 6020				
Antimony Thallium	0.11 0.057	U U	ug/L ug/L	1 1	0.70 0.20	0.11 0.057	5/22/2019 21:02 5/22/2019 21:02	J J
Analysis Desc: SW846 7470A Analysis,Water	·			W-846 7470A -846 7470A				
Mercury VOLATILES	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:33	J
	_							

VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prepa	aration	Method: SV	V-846 5030B				
	Analy	tical Mo	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 21:52	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 21:52	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 21:52	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 21:52	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 21:52	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 21:52	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 21:52	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 21:52	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 21:52	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 21:52	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 21:52	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 21:52	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 21:52	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 21:52	J
Acetone	2.9	ı	ug/L	1	5.0	2.1	5/29/2019 21:52	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 21:52	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 21:52	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 21:52	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 21:52	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 21:52	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 21:52	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 21:52	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 21:52	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 21:52	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 21:52	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 21:52	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 21:52	J

Report ID: 878849 - 802056 Page 31 of 73

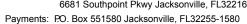
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329011 Matrix: Water

19136-MW-22AR Date Collected: 05/16/19 12:32 Sample ID:


Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 21:52	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 21:52	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 21:52	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 21:52	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 21:52	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 21:52	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 21:52	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 21:52	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 21:52	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 21:52	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 21:52	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 21:52	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 21:52	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 21:52	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 21:52	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 21:52	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 21:52	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 21:52	J
1,2-Dichloroethane-d4 (S)	93		%	1	70-128		5/29/2019 21:52	
Toluene-d8 (S)	98		%	1	77-119		5/29/2019 21:52	
Bromofluorobenzene (S)	113		%	1	86-123		5/29/2019 21:52	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 21:52	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.20	0.020	5/29/2019 21:52	J
1,2-Dichloroethane-d4 (S)	89	U	wg/L	1	77-125	0.020	5/29/2019 21:52	J
Toluene-d8 (S)	102		%	1	80-121		5/29/2019 21:52	
Bromofluorobenzene (S)	99		%	1	80-129		5/29/2019 21:52	
• •				-			000	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	29		mg/L	1	5.0	0.50	5/17/2019 20:08	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 20:08	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	9.8		mg/L	20	0.20	0.16	5/23/2019 15:15	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				

Report ID: 878849 - 802056 Page 32 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329011 Matrix: Water

19136-MW-22AR Date Collected: 05/16/19 12:32 Sample ID:

Sample Description: Location:

Total Dissolved Solids	540		mg/L	1	10	10	5/22/2019 16:45	
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

Lab ID: J1906329012 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-22BR Date Collected: 05/16/19 12:10

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 14:02	J
Barium	14		ug/L	1	4.0	1.0	5/28/2019 14:02	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 14:02	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 14:02	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:02	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:02	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:02	J
Iron	1500		ug/L	1	400	100	5/28/2019 14:02	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 14:02	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 14:02	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:02	J
Silver	10	U	ug/L	1	40	10	5/28/2019 14:02	J
Sodium	7.6		mg/L	1	1.4	0.35	5/28/2019 14:02	J
Vanadium	1.1	I,V	ug/L	1	4.0	1.0	5/28/2019 14:02	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 14:02	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:07	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 21:07	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:36	J

Report ID: 878849 - 802056 Page 33 of 73

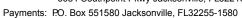
CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329012 Matrix: Water


Sample ID: 19136-MW-22BR Date Collected: 05/16/19 12:10

Sample Description: Location:

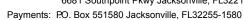
Campio Bocomption:								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
OLATILES								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	19		mg/L	1	5.0	0.50	5/17/2019 19:04	
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 19:04	,
Analysis Desc: 8260B Analysis, Water	Prep	paration N	/lethod: SW	/-846 5030B				
	Ana	lytical Me	thod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 22:21	
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 22:21	
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 22:21	
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 22:21	
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 22:21	
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 22:21	
,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 22:21	
,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 22:21	
,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 22:21	
,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 22:21	
,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 22:21	
-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 22:21	
-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 22:21	
-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 22:21	
cetone	2.1	U	ug/L	1	5.0	2.1	5/29/2019 22:21	
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 22:21	
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 22:21	
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 22:21	
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 22:21	
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 22:21	
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 22:21	
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 22:21	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 22:21	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 22:21	
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 22:21	
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 22:21	
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 22:21	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 22:21	
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 22:21	
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 22:21	,
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 22:21	,
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 22:21	

Report ID: 878849 - 802056 Page 34 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329012 Matrix: Water


Sample ID: 19136-MW-22BR Date Collected: 05/16/19 12:10

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 22:21	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 22:21	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 22:21	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 22:21	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 22:21	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 22:21	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 22:21	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 22:21	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 22:21	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 22:21	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 22:21	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 22:21	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 22:21	J
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		5/29/2019 22:21	
Toluene-d8 (S)	98		%	1	77-119		5/29/2019 22:21	
Bromofluorobenzene (S)	115		%	1	86-123		5/29/2019 22:21	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 22:21	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	5/29/2019 22:21	J
1,2-Dichloroethane-d4 (S)	84		%	1	77-125		5/29/2019 22:21	
Toluene-d8 (S)	102		%	1	80-121		5/29/2019 22:21	
Bromofluorobenzene (S)	100		%	1	80-129		5/29/2019 22:21	
WET CHEMISTRY								
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.37		mg/L	1	0.010	0.0080	5/23/2019 15:16	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	64		mg/L	1	10	10	5/22/2019 16:45	J

Report ID: 878849 - 802056 Page 35 of 73

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329013 Matrix: Water

19136-MW-24A Date Collected: 05/16/19 14:08 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 14:22	J
Barium	27	Ū	ug/L ug/L	1	4.0	1.0	5/28/2019 14:22	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 14:22	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	5/28/2019 14:22	J
Chromium	2.0	Ū	ug/L	1	8.0	2.0	5/28/2019 14:22	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:22	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:22	J
Iron	680		ug/L	1	400	100	5/28/2019 14:22	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 14:22	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 14:22	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:22	J
Silver	10	U	ug/L	1	40	10	5/28/2019 14:22	J
Sodium	20		mg/L	1	1.4	0.35	5/28/2019 14:22	J
Vanadium	3.8	I,V	ug/L	1	4.0	1.0	5/28/2019 14:22	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 14:22	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	lytical Me	ethod: SW-	846 6020				
Antimony	0.18	- 1	ug/L	1	0.70	0.11	5/22/2019 21:11	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 21:11	J
Analysis Desc: SW846 7470A	Prer	naration N	Method: SV	V-846 7470A				
Analysis,Water	·							
		-		846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:40	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 22:58	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	5/29/2019 22:58	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 22:58	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 22:58	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 22:58	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 22:58	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 22:58	J

Report ID: 878849 - 802056 Page 36 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329013 Date Received: 05/17/19 08:35 Matrix: Water

Sample ID: 19136-MW-24A Date Collected: 05/16/19 14:08

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 22:58	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 22:58	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 22:58	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 22:58	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 22:58	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 22:58	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 22:58	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/29/2019 22:58	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 22:58	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 22:58	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 22:58	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 22:58	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 22:58	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 22:58	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 22:58	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 22:58	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 22:58	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 22:58	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 22:58	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 22:58	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 22:58	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 22:58	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 22:58	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 22:58	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 22:58	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 22:58	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 22:58	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 22:58	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 22:58	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 22:58	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 22:58	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 22:58	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 22:58	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 22:58	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 22:58	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 22:58	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 22:58	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 22:58	J
1,2-Dichloroethane-d4 (S)	91		%	1	70-128		5/29/2019 22:58	
Toluene-d8 (S)	97		%	1	77-119		5/29/2019 22:58	

Report ID: 878849 - 802056 Page 37 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329013 Matrix: Water

19136-MW-24A Date Collected: 05/16/19 14:08 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	113		%	1	86-123		5/29/2019 22:58	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Ana	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 22:58	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 22:58	J
1,2-Dichloroethane-d4 (S)	87		%	1	77-125		5/29/2019 22:58	
Toluene-d8 (S)	101		%	1	80-121		5/29/2019 22:58	
Bromofluorobenzene (S)	99		%	1	80-129		5/29/2019 22:58	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	ytical Me	ethod: EPA	300.0				
Chloride	300		mg/L	2	10	1.0	5/22/2019 09:44	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 21:11	J
Analysis Desc: Ammonia,E350.1,Water	Ana	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	0.06		mg/L	1	0.010	0.0080	5/23/2019 14:32	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	100		mg/L	1	10	10	5/22/2019 16:45	J
Lab ID: J1906329014				Date Received:	05/17/19 08:35	Matrix:	Water	
0 1 10 40400 1014 040				Data Callantadi	05/40/40 40:40			

19136-MW-24B Date Collected: 05/16/19 13:46 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water	•		Method: SW-8ethod: SW-8	V-846 3010A 346 6010				
Arsenic Barium Beryllium Cadmium Chromium	9.0 10 0.50 1.0 2.0	U U U	ug/L ug/L ug/L ug/L ug/L	1 1 1 1	40 4.0 2.0 4.0 8.0	9.0 1.0 0.50 1.0 2.0	5/28/2019 14:26 5/28/2019 14:26 5/28/2019 14:26 5/28/2019 14:26 5/28/2019 14:26	J J J

Report ID: 878849 - 802056 Page 38 of 73

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

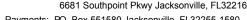
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329014 Matrix: Water

19136-MW-24B Date Collected: 05/16/19 13:46 Sample ID:


Sample Description: Location:

 								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:26	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:26	J
Iron	480		ug/L	1	400	100	5/28/2019 14:26	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 14:26	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 14:26	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:26	J
Silver	10	U	ug/L	1	40	10	5/28/2019 14:26	J
Sodium	6.2		mg/L	1	1.4	0.35	5/28/2019 14:26	J
Vanadium	2.1	I,V	ug/L	1	4.0	1.0	5/28/2019 14:26	J
Zinc	50	U	ug/L	1	200	50	5/28/2019 14:26	J
Analysis Desc: SW846 6020B	Pre	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:15	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 21:15	J
Analysis Desc: SW846 7470A	Prei	paration I	Method: SV	V-846 7470A				
Analysis, Water			ethod: SW-					
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:43	J
VOLATILES			J					
Analysis Desc: 8260B Analysis, Water	Pre	paration I	Method: SV	V-846 5030B				
	·	'	ethod: SW-					
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/30/2019 03:40	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	5/30/2019 03:40	J
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.20	5/30/2019 03:40	J
1,1,2-Trichloroethane	0.30	Ü	ug/L	1	1.0	0.30	5/30/2019 03:40	J
1,1-Dichloroethane	0.14	Ü	ug/L	1	1.0	0.14	5/30/2019 03:40	J
1,1-Dichloroethylene	0.18	Ü	ug/L	1	1.0	0.18	5/30/2019 03:40	J
1,2,3-Trichloropropane	0.91	Ü	ug/L	1	1.0	0.91	5/30/2019 03:40	J
1,2-Dichlorobenzene	0.18	Ü	ug/L	1	1.0	0.18	5/30/2019 03:40	J
1,2-Dichloroethane	0.23	Ü	ug/L	1	1.0	0.23	5/30/2019 03:40	J
1,2-Dichloropropane	0.66	Ü	ug/L	1	1.0	0.66	5/30/2019 03:40	J
1,4-Dichlorobenzene	0.00	Ü	ug/L	1	1.0	0.00	5/30/2019 03:40	J
2-Butanone (MEK)	0.22	Ü	ug/L ug/L	1	5.0	0.22	5/30/2019 03:40	J
2-Butanone (MER)	0.43	U	ug/L ug/L	1	5.0	0.43	5/30/2019 03:40	J
	0.71	U		1	1.0	0.71	5/30/2019 03:40	J
4-Methyl-2-pentanone (MIBK)			ug/L					
Acetone	2.1	U	ug/L	1	5.0	2.1	5/30/2019 03:40	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/30/2019 03:40	J

Report ID: 878849 - 802056 Page 39 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906329014 Date Received: 05/17/19 08:35 Matrix: Water

Date Collected: 05/16/19 13:46 Sample ID: 19136-MW-24B


Sample Description: Location:

Campic Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	5/30/2019 03:40	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/30/2019 03:40	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/30/2019 03:40	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/30/2019 03:40	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/30/2019 03:40	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/30/2019 03:40	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/30/2019 03:40	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/30/2019 03:40	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/30/2019 03:40	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/30/2019 03:40	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/30/2019 03:40	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/30/2019 03:40	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/30/2019 03:40	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/30/2019 03:40	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/30/2019 03:40	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/30/2019 03:40	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/30/2019 03:40	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/30/2019 03:40	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/30/2019 03:40	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/30/2019 03:40	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/30/2019 03:40	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/30/2019 03:40	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/30/2019 03:40	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/30/2019 03:40	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/30/2019 03:40	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/30/2019 03:40	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/30/2019 03:40	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/30/2019 03:40	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/30/2019 03:40	J
1,2-Dichloroethane-d4 (S)	95		%	1	70-128		5/30/2019 03:40	
Toluene-d8 (S)	100		%	1	77-119		5/30/2019 03:40	
Bromofluorobenzene (S)	119		%	1	86-123		5/30/2019 03:40	
Analysis Desc: 8260B SIM Analysis,	Pre	paration M	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/30/2019 03:40	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	5/30/2019 03:40	J
1,2-Dichloroethane-d4 (S)	92	-	%	1	77-125		5/30/2019 03:40	-
Toluene-d8 (S)	104		%	1	80-121		5/30/2019 03:40	
(-)								

Report ID: 878849 - 802056 Page 40 of 73

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329014 Matrix: Water

19136-MW-24B Date Collected: 05/16/19 13:46 Sample ID:

Sample Description: Location:

B	D 11	0 1		55	Adjusted	Adjusted	A	1 - 1-
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab ——
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	35		mg/L	1	5.0	0.50	5/17/2019 20:50	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/17/2019 20:50	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	0.08		mg/L	1	0.010	0.0080	5/23/2019 14:33	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	66		mg/L	1	10	10	5/22/2019 16:45	J

Lab ID: J1906329015 Date Received: 05/17/19 08:35 Matrix: Water

Date Collected: 05/16/19 00:01 Sample ID: 19136-Dup-1

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	resuits	Quai	Office	Di	I QL	IVIDL	Analyzed	
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Water	Ana	lytical Me	ethod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/28/2019 14:29	J
Barium	270		ug/L	1	4.0	1.0	5/28/2019 14:29	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/28/2019 14:29	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 14:29	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:29	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/28/2019 14:29	J
Copper	4.0	U	ug/L	1	16	4.0	5/28/2019 14:29	J
Iron	22000		ug/L	1	400	100	5/28/2019 14:29	J
Lead	5.2	ı	ug/L	1	12	3.0	5/28/2019 14:29	J
Nickel	6.0	U	ug/L	1	24	6.0	5/28/2019 14:29	J
Selenium	40	U	ug/L	1	160	40	5/28/2019 14:29	J
Silver	10	U	ug/L	1	40	10	5/28/2019 14:29	J
Sodium	380		mg/L	2	2.8	0.70	5/29/2019 09:06	J
Vanadium	10	V	ug/L	1	4.0	1.0	5/28/2019 14:29	J
Zinc	50	U	ua/L	1	200	50	5/28/2019 14:29	J

Report ID: 878849 - 802056 Page 41 of 73

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329015 Matrix: Water

19136-Dup-1 Date Collected: 05/16/19 00:01 Sample ID:

Sample Description: Location:

_					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prep	aration I	Method: S\	N-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/22/2019 21:19	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/22/2019 21:19	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: S\	N-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 16:52	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: S\	N-846 5030B				
	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 14:35	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 14:35	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 14:35	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 14:35	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 14:35	J

	Analy	tical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 14:35	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 14:35	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 14:35	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 14:35	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 14:35	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 14:35	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 14:35	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 14:35	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 14:35	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 14:35	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 14:35	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 14:35	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 14:35	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 14:35	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/29/2019 14:35	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 14:35	J
Benzene	7.2		ug/L	1	1.0	0.16	5/29/2019 14:35	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 14:35	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 14:35	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 14:35	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 14:35	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 14:35	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 14:35	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 14:35	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 14:35	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 14:35	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 14:35	J

Report ID: 878849 - 802056 Page 42 of 73

CERTIFICATE OF ANALYSIS

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329015 Matrix: Water

Sample ID: 19136-Dup-1 Date Collected: 05/16/19 00:01

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 14:35	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 14:35	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 14:35	J
lodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 14:35	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 14:35	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 14:35	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 14:35	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 14:35	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 14:35	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 14:35	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 14:35	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 14:35	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 14:35	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 14:35	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 14:35	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 14:35	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 14:35	J
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 14:35	J
1,2-Dichloroethane-d4 (S)	86		%	1	70-128		5/29/2019 14:35	
Toluene-d8 (S)	100		%	1	77-119		5/29/2019 14:35	
Bromofluorobenzene (S)	114		%	1	86-123		5/29/2019 14:35	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 14:35	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.20	0.020	5/29/2019 14:35	J
1,2-Dichloroethane-d4 (S)	82	U	ug/∟ %	1	77-125	0.020	5/29/2019 14:35	J
Toluene-d8 (S)	104		%	1	80-121		5/29/2019 14:35	
Bromofluorobenzene (S)	99		%	1	80-129		5/29/2019 14:35	
. ,								
WET CHEMISTRY			" I EDA	0000				
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	1200		mg/L	20	100	10	5/17/2019 15:34	J
Nitrate (as N)	1.0	U	mg/L	20	10	1.0	5/17/2019 15:34	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	9.2		mg/L	10	0.10	0.080	5/23/2019 15:18	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				

Report ID: 878849 - 802056 Page 43 of 73

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329015 Matrix: Water

19136-Dup-1 Date Collected: 05/16/19 00:01 Sample ID:

Sample Description: Location:

Total Dissolved Solids	1700		mg/L	1	10	10	5/22/2019 16:45	
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

Lab ID: J1906329016 Date Received: 05/17/19 08:35 Matrix: Water

19136-TripBlank-5 Sample ID: Date Collected: 05/16/19 00:00

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SV	V-846 5030B				
	Ana	ytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 15:05	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 15:05	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 15:05	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 15:05	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 15:05	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 15:05	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 15:05	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 15:05	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 15:05	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 15:05	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 15:05	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 15:05	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 15:05	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 15:05	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/29/2019 15:05	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 15:05	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 15:05	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 15:05	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 15:05	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 15:05	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 15:05	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 15:05	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 15:05	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 15:05	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 15:05	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 15:05	J

Report ID: 878849 - 802056 Page 44 of 73

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329016 Matrix: Water

19136-TripBlank-5 Date Collected: 05/16/19 00:00 Sample ID:


Sample Description: Location:

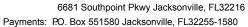
dampic Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 15:05	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 15:05	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 15:05	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 15:05	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 15:05	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 15:05	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 15:05	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 15:05	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 15:05	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 15:05	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/29/2019 15:05	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/29/2019 15:05	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	5/29/2019 15:05	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	5/29/2019 15:05	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 15:05	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 15:05	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	5/29/2019 15:05	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 15:05	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	5/29/2019 15:05	J
1,2-Dichloroethane-d4 (S)	86		%	1	70-128		5/29/2019 15:05	
Toluene-d8 (S)	100		%	1	77-119		5/29/2019 15:05	
Bromofluorobenzene (S)	112		%	1	86-123		5/29/2019 15:05	
Analysis Desc: 8260B SIM Analysis,	Pre	oaration N	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/29/2019 15:05	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/29/2019 15:05	J
1,2-Dichloroethane-d4 (S)	82		%	1	77-125		5/29/2019 15:05	
Toluene-d8 (S)	105		%	1	80-121		5/29/2019 15:05	
Bromofluorobenzene (S)	98		%	1	80-129		5/29/2019 15:05	

Report ID: 878849 - 802056 Page 45 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329017 Matrix: Water


19136-TripBlank-6 Date Collected: 05/16/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Pre	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/29/2019 15:41	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/29/2019 15:41	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/29/2019 15:41	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/29/2019 15:41	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/29/2019 15:41	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 15:41	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/29/2019 15:41	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	5/29/2019 15:41	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	5/29/2019 15:41	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/29/2019 15:41	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	5/29/2019 15:41	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/29/2019 15:41	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/29/2019 15:41	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	5/29/2019 15:41	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/29/2019 15:41	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	5/29/2019 15:41	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/29/2019 15:41	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/29/2019 15:41	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/29/2019 15:41	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	5/29/2019 15:41	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/29/2019 15:41	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/29/2019 15:41	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	5/29/2019 15:41	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	5/29/2019 15:41	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 15:41	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	5/29/2019 15:41	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/29/2019 15:41	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/29/2019 15:41	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/29/2019 15:41	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/29/2019 15:41	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	5/29/2019 15:41	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/29/2019 15:41	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 15:41	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	5/29/2019 15:41	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/29/2019 15:41	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	5/29/2019 15:41	J

Report ID: 878849 - 802056 Page 46 of 73

ANALYTICAL RESULTS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/17/19 08:35 Lab ID: J1906329017 Matrix: Water

Sample ID: 19136-TripBlank-6 Date Collected: 05/16/19 00:00

Sample Description: Location:

				Adjusted	Adjusted		
Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
0.32	U	ug/L	1	1.0	0.32	5/29/2019 15:41	J
0.19	U	ug/L	1	1.0	0.19	5/29/2019 15:41	J
0.20	U	ug/L	1	1.0	0.20	5/29/2019 15:41	J
0.53	U	ug/L	1	2.0	0.53	5/29/2019 15:41	J
0.24	U	ug/L	1	1.0	0.24	5/29/2019 15:41	J
0.16	U	ug/L	1	1.0	0.16	5/29/2019 15:41	J
0.20	U	ug/L	1	1.0	0.20	5/29/2019 15:41	J
0.21	U	ug/L	1	1.0	0.21	5/29/2019 15:41	J
1.8	U	ug/L	1	10	1.8	5/29/2019 15:41	J
89		%	1	70-128		5/29/2019 15:41	
98		%	1	77-119		5/29/2019 15:41	
113		%	1	86-123		5/29/2019 15:41	
Prep	aration N	Method: SV	V-846 5030B				
Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
0.11	U	ug/L	1	0.20	0.11	5/29/2019 15:41	J
0.020	U	ug/L	1	0.10	0.020	5/29/2019 15:41	J
85		%	1	77-125		5/29/2019 15:41	
103		%	1	80-121		5/29/2019 15:41	
99		%	1	80-129		5/29/2019 15:41	
	0.32 0.19 0.20 0.53 0.24 0.16 0.20 0.21 1.8 89 98 113 Prep Anal 0.11 0.020 85 103	0.32 U 0.19 U 0.20 U 0.53 U 0.16 U 0.20 U 0.21 U 1.8 U 89 98 113 Preparation N Analytical Me 0.11 U 0.020 U 85 103	0.32 U ug/L 0.19 U ug/L 0.20 U ug/L 0.53 U ug/L 0.24 U ug/L 0.16 U ug/L 0.20 U ug/L 0.21 U ug/L 1.8 U ug/L 1.8 U ug/L 89 % 98 % 113 % Preparation Method: SW-Analytical Method: SW-0.11 U ug/L 0.020 U ug/L 0.11 U ug/L 0.020 U ug/L 85 % 103 %	0.32 U ug/L 1 0.19 U ug/L 1 0.20 U ug/L 1 0.53 U ug/L 1 0.24 U ug/L 1 0.16 U ug/L 1 0.20 U ug/L 1 0.21 U ug/L 1 1.8 U ug/L 1 1.8 U ug/L 1 1.98 % 1 113 % 1 Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM) 0.11 U ug/L 1 0.020 U ug/L 1 1.85 % 1 103 % 1	Results Qual Units DF PQL 0.32 U ug/L 1 1.0 0.19 U ug/L 1 1.0 0.20 U ug/L 1 1.0 0.53 U ug/L 1 2.0 0.24 U ug/L 1 1.0 0.16 U ug/L 1 1.0 0.20 U ug/L 1 1.0 0.21 U ug/L 1 1.0 0.21 U ug/L 1 1.0 1.8 U ug/L 1 1.0 89 % 1 77-128 98 % 1 77-119 113 % 1 86-123 Preparation Method: SW-846 8260B (SIM) 0.11 U ug/L 1 0.20 0.020 U ug/L 1 0.10 85 % <	Results Qual Units DF PQL MDL 0.32 U ug/L 1 1.0 0.32 0.19 U ug/L 1 1.0 0.19 0.20 U ug/L 1 1.0 0.20 0.53 U ug/L 1 2.0 0.53 0.24 U ug/L 1 1.0 0.24 0.16 U ug/L 1 1.0 0.16 0.20 U ug/L 1 1.0 0.20 0.21 U ug/L 1 1.0 0.21 1.8 U ug/L 1 10 1.8 89 % 1 77-119 113 % 1 77-119 113 % 1 86-123 86-123 0.11 0.20 0.11 0.020 U ug/L 1 0.20 0.11 0.020 0.11 0.020	Results Qual Units DF PQL MDL Analyzed 0.32 U ug/L 1 1.0 0.32 5/29/2019 15:41 0.19 U ug/L 1 1.0 0.19 5/29/2019 15:41 0.20 U ug/L 1 1.0 0.20 5/29/2019 15:41 0.53 U ug/L 1 2.0 0.53 5/29/2019 15:41 0.24 U ug/L 1 1.0 0.24 5/29/2019 15:41 0.16 U ug/L 1 1.0 0.16 5/29/2019 15:41 0.20 U ug/L 1 1.0 0.20 5/29/2019 15:41 1.8 U ug/L 1 1.0 0.21 5/29/2019 15:41 1.8 U ug/L 1 70-128 5/29/2019 15:41 1.98 % 1 77-119 5/29/2019 15:41 1.13 % 1 86-123 5/29/2019 15:41 Preparation Method: SW-846 5030B Analytical Method: SW-846 5030B

Report ID: 878849 - 802056 Page 47 of 73

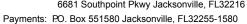
Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Method Blank Contamination
- J4 **Estimated Result**

LAB QUALIFIERS

- G DOH Certification #E82001(AEL-G)(FL NELAC Certification)
- DOH Certification #E82574(AEL-JAX)(FL NELAC Certification) J

Report ID: 878849 - 802056 Page 48 of 73

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/4985 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Prepared:

J1906329001, J1906329002, J1906329003, J1906329004, J1906329006, J1906329015 Associated Lab Samples:

METHOD BLANK: 3099609

Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY Chloride 0.50 0.50 U mg/L 0.050 U Nitrate (as N) mg/L 0.050

3099611 LABORATORY CONTROL SAMPLE & LCSD: 3099610

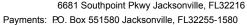
Spike LCS **LCSD** LCS LCSD % Rec Max **RPD RPD Qualifiers** Parameter Units Conc. Result Result % Rec % Rec Limit WET CHEMISTRY Chloride mg/L 20 22 22 110 110 90-110 0 10 2 2.2 10 Nitrate (as N) mg/L 2.1 109 103 90-110 6

Original: J1906316006 MATRIX SPIKE SAMPLE: 3099649

Original MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers WET CHEMISTRY Chloride mg/L 170 20 190 60 90-110 Nitrate (as N) mg/L 0 2 2.3 117 90-110

QC Batch: WCAj/4990 Analysis Method: EPA 300.0

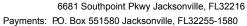
QC Batch Method: EPA 300.0 Prepared:


J1906329005, J1906329007, J1906329008, J1906329009, J1906329010, J1906329011, J1906329012, J1906329013, Associated Lab Samples:

METHOD BLANK: 3099865

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY Chloride 0.50 0.50 U mg/L Nitrate (as N) 0.050 0.050 U mg/L

Report ID: 878849 - 802056 Page 49 of 73


QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CON	ITROL SAMPLE & LCSD:	3099866		30998	67				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSE		RPD	Max RPD Qualifiers
WET CHEMISTRY									
Chloride	mg/L	20	22	22		108		1	10
Nitrate (as N)	mg/L	2	2.2	2.2	108	110	90-110	2	10
MATRIX SPIKE SAM	MPLE: 3099868		Orig	inal: J19	063290	12			
		Original		Spike		MS	MS	%	Rec
Parameter	Units	Result		Conc.	R	esult	% Rec	L	imits Qualifiers
WET CHEMISTRY									
Chloride	mg/L	19		20		38	93		-110
Nitrate (as N)	mg/L	0		2		2.0	100	90)-110
MATRIX SPIKE SAM	MPLE: 3101100		Orig	inal: J19	063590	01			
		Original		Spike		MS	MS	%	Rec
Parameter	Units	Result		Conc.	R	esult	% Rec		imits Qualifiers
WET CHEMISTRY									
Chloride	mg/L	12		20		31	97	90	-110
Nitrate (as N)	mg/L	0.006		2		2.1	103	90	-110
QC Batch:	DGMj/3420		Aı	nalysis Me	ethod:	9	SW-846 6020		
QC Batch Method:	SW-846 3010A			epared:			05/21/2019 03:30	1	
Associated Lab Sam		006330003		•	กครรอก				11006320007
Associated Lab Sam	1900329001, 015	900329002	3190032	9003, 318	003290	04, 319	00329003, 31900	3329000,	31900329007
METHOD BLANK: 3	101153								
_		Blar		eporting	_				
Parameter	Units	Resu	lt	Limit (Qualifier	s			
METALS									
Antimony	ug/L	0.1	1	0.11 \	1				

Report ID: 878849 - 802056 Page 50 of 73

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3101154

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
METALS						
Antimony	ug/L	50	51	103	80-120	
Thallium	ug/L	50	55	111	80-120	

MATRIX SPIKE & MATRIX S	ICATE: 3101155		3101156		Origir	Original: J1906176001					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit I	RPD	Max RPD Qualifiers	
METALS Antimony Thallium	ug/L ug/L	0.21 0.026	50 50	52 56	53 50	104 112	107 100	75-125 75-125	2 12	20 20	

QC Batch: DGMj/3421 Analysis Method: SW-846 6020 QC Batch Method: SW-846 3010A Prepared: 05/21/2019 03:30

J1906329008, J1906329009, J1906329010, J1906329011, J1906329012, J1906329013, J1906329014, J1906329015 Associated Lab Samples:

METHOD BLANK: 3101158

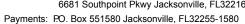
Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Antimony	ug/L	0.11	0.11 U	
Thallium	ug/L	0.057	0.057 U	

LABORATORY CONTROL SAMPLE: 3101159

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
ntimony	ug/L	50	53	105	80-120
Thallium	ug/L	50	49	98	80-120

Report ID: 878849 - 802056 Page 51 of 73

QUALITY CONTROL DATA


Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

	IX SPIKE DUPLI	CATE: 310116)	310110	61	Or	iginal: J190	6329008		
Parameter	Units	-	Spike Conc.	MS Result	MSD Result	MS % Red		% Rec Limit	RPD	Max RPD Qualifiers
METALS										
Antimony Thallium	ug/L ug/L	0.023 0.019	50 50	51 47	52 48	103 95		75-125 75-125	2	
Triallum	ug/L	0.019	30	47	40	9.) 91	75-125	2	20
QC Batch: W	CAj/5024		А	nalysis Me	ethod:	EPA	A 300.0			
QC Batch Method: EF	PA 300.0		Р	repared:						
Associated Lab Samples	s: J190632901	3								
METHOD BLANK: 3103	172						_			
D ,		Bla		Reporting	0 115					
Parameter	Units	Res	ult	Limit	Qualifiers					
WET CHEMISTRY Chloride	mg/L	0.	50	0.50	U					
LABORATORY CONTRO	OL SAMPLE & LO	CSD: 3103173		31031	74					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Ma RP	ax D Qualifiers
WET CHEMISTRY		Conc.	Result	Result	% Rec	% Rec	Limit		RP	D Qualifiers
	Units mg/L				% Rec			RPD 2	RP	
WET CHEMISTRY	mg/L	Conc.	Result 19	Result	% Rec 93	% Rec 95	Limit		RP	D Qualifiers
WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE	mg/L E: 3104343	Conc. 20 Origina	Result 19 Original	Result 19 ginal: J19 Spike	% Rec 93	% Rec 95 1 MS	90-110 MS	2 %	RP 1	D Qualifiers
WET CHEMISTRY Chloride	mg/L	Conc.	Result 19 Original	Result 19 ginal: J19	% Rec 93	% Rec 95	90-110	2 %	RP 1	D Qualifiers
WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE Parameter WET CHEMISTRY	mg/L E: 3104343 Units	Conc. 20 Origina Resul	Result 19 Original	Result 19 ginal: J19 Spike Conc.	% Rec 93	% Rec 95 1 MS	90-110 MS % Rec	2 % L	RP 1 Rec imits (D Qualifiers
WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE Parameter	mg/L E: 3104343	Conc. 20 Origina	Result 19 Original	Result 19 ginal: J19 Spike	% Rec 93	% Rec 95 1 MS	90-110 MS	2 % L	RP 1	D Qualifiers
WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE Parameter WET CHEMISTRY	mg/L E: 3104343 Units mg/L	Conc. 20 Origina Resul	Result 19 Original	Result 19 ginal: J19 Spike Conc.	93 00654600 Re	95 1 MS sult	90-110 MS % Rec	2 % L	RP 1 Rec imits (D Qualifiers
WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE Parameter WET CHEMISTRY Chloride	mg/L E: 3104343 Units mg/L	Conc. 20 Origina Resul	Result 19 Original Action of the Control of the C	Result 19 ginal: J19 Spike Conc.	93 00654600 Re	95 1 MS sult	90-110 MS % Rec	2 % L	RP 1 Rec imits (D Qualifiers
WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE Parameter WET CHEMISTRY Chloride	mg/L E: 3104343 Units mg/L	Conc. 20 Origina Resul	Result 19 Original Control of the	Result 19 ginal: J19 Spike Conc. 20 ginal: J19	93 0654600 Re	95 1 MS esult 37	90-110 MS % Rec	2 % L: 90	RP 1 Rec imits (D Qualifiers
WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE Parameter WET CHEMISTRY Chloride MATRIX SPIKE SAMPLE	mg/L E: 3104343 Units mg/L E: 3104915	Conc. 20 Origina Resul 19	Result 19 Original to the control of the control	Result 19 ginal: J19 Spike Conc. 20 ginal: J19 Spike	93 0654600 Re	95 1 MS esult 37 2 MS	Limit 90-110 MS % Rec 90 MS	2 % L: 90 %	RP 1 Rec imits (D Qualifiers 0 Qualifiers

Report ID: 878849 - 802056 Page 52 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/5025 Analysis Method: SM 2540 C

SM 2540 C QC Batch Method: Prepared:

J1906329001, J1906329002, J1906329003, J1906329004, J1906329005 Associated Lab Samples:

METHOD BLANK: 3103402

Blank Reporting Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Dissolved Solids 10 10 U mg/L

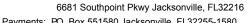
LABORATORY CONTROL SAMPLE: 3103403

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers WET CHEMISTRY **Total Dissolved Solids** 300 330 112 85-115 mg/L

SAMPLE DUPLICATE: 3103404 Original: J1906272011

Original DUP Max Result **RPD RPD Qualifiers** Parameter Units Result WET CHEMISTRY **Total Dissolved Solids** mg/L 180 170 5 10 QC Batch: DGMj/3435 Analysis Method: SW-846 6010 SW-846 3010A QC Batch Method: Prepared: 05/23/2019 03:30

J1906329001, J1906329002, J1906329003, J1906329004, J1906329005, J1906329006, J1906329007, J1906329008, Associated Lab Samples:


METHOD BLANK: 3103525

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Silver	ug/L	10	10 U	
Arsenic	ug/L	9.0	9.0 U	
Barium	ug/L	1.0	1.0 U	
Beryllium	ug/L	0.50	0.50 U	
Cadmium	ug/L	1.0	1.0 U	
Cobalt	ug/L	2.0	2.0 U	
Chromium	ug/L	2.0	2.0 U	

Report ID: 878849 - 802056 Page 53 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD B	LANK: 3	103525
----------	---------	--------

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Copper	ug/L	4.0	4.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Zinc	ug/L	50	50 U
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Vanadium	ug/L	1.4	1.0 I

LABORATORY CONTROL SAMPLE: 3103526

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
			. 100011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
METALS						
Silver	ug/L	200	200	98	80-120	
Arsenic	ug/L	200	190	95	80-120	
Barium	ug/L	20	20	101	80-120	
Beryllium	ug/L	10	9.5	95	80-120	
Cadmium	ug/L	20	20	98	80-120	
Cobalt	ug/L	40	41	102	80-120	
Chromium	ug/L	40	40	99	80-120	
Copper	ug/L	80	80	100	80-120	
Iron	ug/L	2000	1900	94	80-120	
Sodium	mg/L	7	7.1	102	80-120	
Nickel	ug/L	120	120	100	80-120	
Lead	ug/L	60	60	100	80-120	
Selenium	ug/L	800	780	97	80-120	
Vanadium	ug/L	20	20	98	80-120	
Zinc	ug/L	1000	980	98	80-120	


MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3103527 3103528 Original: J1906329001

		Original	Spike	MS	MSD	MS	MSD	% Rec	Max
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit RPE	RPD Qualifiers

METALS

Report ID: 878849 - 802056 Page 54 of 73

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MATR	IX SPIKE DUPL	ICATE: 3103	3527	3103	528	Origin	nal: J1906	6329001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Silver	ug/L	0	200	200	200	102	100	75-125	2	20	_
Arsenic	ug/L	0	200	190	200	97	98	75-125	1	20	
Barium	ug/L	19	20	40	40	105	104	75-125	0	20	
Beryllium	ug/L	0	10	9.9	9.7	99	97	75-125	2	20	
Cadmium	ug/L	0	20	19	19	96	97	75-125	1	20	
Cobalt	ug/L	1.8	40	43	42	108	106	75-125	2	20	
Chromium	ug/L	0.4	40	42	40	105	101	75-125	4	20	
Copper	ug/L	0	80	82	77	102	96	75-125	6	20	
Iron	ug/L	20000	2000	23000	22000	137	113	75-125	2	20	
Sodium	mg/L	18	7	26	26	109	102	75-125	2	20	
Nickel	ug/L	0.2	120	120	120	104	103	75-125	0	20	
Lead	ug/L	0.4	60	61	61	102	102	75-125	0	20	
Selenium	ug/L	0	800	750	740	94	93	75-125	1	20	
Vanadium	ug/L	1.9	20	22	23	103	107	75-125	4	20	
Zinc	ug/L	6.1	1000	1000	1000	101	100	75-125	1	20	

QC Batch: DGMj/3436 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A 05/23/2019 03:30 Prepared:

Associated Lab Samples: J1906329012, J1906329013, J1906329014, J1906329015

METHOD BLANK: 3103529

Parameter	Units	Blank Result	Reporting Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Arsenic	ug/L	9.0	9.0 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Copper	ug/L	4.0	4.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Vanadium	ug/L	1.2	1.0 I
Zinc	ug/L	50	50 U

Report ID: 878849 - 802056 Page 55 of 73

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Advanced Environmental Laboratories, Inc.

LABORATORY CONTROL SAMPLE: 3103530

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	190	97	80-120
Arsenic	ug/L	200	200	100	80-120
Barium	ug/L	20	20	102	80-120
Beryllium	ug/L	10	9.7	97	80-120
Cadmium	ug/L	20	20	101	80-120
Cobalt	ug/L	40	41	103	80-120
Chromium	ug/L	40	38	96	80-120
Copper	ug/L	80	75	94	80-120
Iron	ug/L	2000	1900	94	80-120
Sodium	mg/L	7	7.5	108	80-120
Nickel	ug/L	120	120	101	80-120
Lead	ug/L	60	60	100	80-120
Selenium	ug/L	800	800	100	80-120
Vanadium	ug/L	20	20	101	80-120
Zinc	ug/L	1000	1000	100	80-120

MATRIX SPIKE & MATRIX	3103	532	Origi	nal: J1906	329012					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
METALS										
Silver	ug/L	0	200	200	190	99	97	75-125	2	20
Arsenic	ug/L	2.8	200	200	200	101	102	75-125	1	20
Barium	ug/L	14	20	35	34	106	104	75-125	1	20
Beryllium	ug/L	0.1	10	10	9.9	101	99	75-125	2	20
Cadmium	ug/L	0	20	20	20	103	101	75-125	2	20
Cobalt	ug/L	0.3	40	42	42	106	104	75-125	2	20
Chromium	ug/L	0	40	39	39	98	99	75-125	1	20
Copper	ug/L	0	80	77	76	97	95	75-125	2	20
Iron	ug/L	1500	2000	3500	3500	100	98	75-125	1	20
Sodium	mg/L	7.6	7	15	15	111	108	75-125	1	20
Nickel	ug/L	2.4	120	130	130	112	105	75-125	6	20
Lead	ug/L	2.5	60	66	64	110	107	75-125	2	20
Selenium	ug/L	0	800	820	810	103	101	75-125	2	20
Vanadium	ug/L	1.1	20	22	22	107	103	75-125	4	20
Zinc	ug/L	3.6	1000	1000	1000	104	102	75-125	2	20

Report ID: 878849 - 802056 Page 56 of 73

Max

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/5032 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

J1906329006, J1906329007, J1906329008, J1906329009, J1906329010, J1906329011, J1906329012, J1906329013, Associated Lab Samples:

METHOD BLANK: 3104463

Blank Reporting

Limit Qualifiers Parameter Units Result

WET CHEMISTRY

Total Dissolved Solids 10 10 U mg/L

LABORATORY CONTROL SAMPLE: 3104464

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY

Total Dissolved Solids 300 310 104 85-115 mg/L

SAMPLE DUPLICATE: 3104465 Original: J1906329006

RPD Result **RPD Qualifiers** Parameter Units Result

WET CHEMISTRY

400 **Total Dissolved Solids** mg/L 380 3 10 QC Batch: WCAg/6571 Analysis Method: EPA 350.1

Original

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1906329001, J1906329002, J1906329003, J1906329004, J1906329005

METHOD BLANK: 3105410

Blank Reporting Parameter Units Limit Qualifiers Result WET CHEMISTRY mg/L 0.0080 0.0080 U Ammonia (N)

DUP

Report ID: 878849 - 802056 Page 57 of 73

QUALITY CONTROL DATA

LABORATORY CONTRO	OL SAMPLE:	3105411									
			Spike	LCS	LCS		% Rec				
Parameter	Units		Conc.	Result	% Re	С	Limits C	Qualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.5	0.47	9:	5	90-110				
LABORATORY CONTRO	OL SAMPLE:	3105412									
Parameter	Units		Spike Conc.	LCS Result	LCS % Re		% Rec Limits 0	Qualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.2	0.19	94	4	90-110				
MATRIX SPIKE & MATR	IX SPIKE DUPI	LICATE: 310)5413	31054	14	Orig	inal: J190	6123003			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
WET CHEMISTRY Ammonia (N)	mg/L	0	0.4	0.41	0.40	104	101	90-110	3	10	
QC Batch: W	'CAg/6572			Analysis Me	ethod:	EPA:	350.1				
QC Batch Method: El	PA 350.1			Prepared:							
Associated Lab Samples	s: J19063290	006, J190632	9007, J190	6329008, J19	06329009,	J190632	9010, J190	6329011,	J1906	3290	12, J1906329013
METHOD BLANK: 3105	416										
Parameter	Units		Blank Result	Reporting Limit (Qualifiers						
WET CHEMISTRY Ammonia (N)	mg/L		0.0080	0.0080	J						
LABORATORY CONTRO	OL SAMPLE:	3105417									
Parameter	Units		Spike Conc.	LCS Result	LCS % Re		% Rec Limits 0	Qualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.5	0.47	93		90-110	<u> </u>			

Report ID: 878849 - 802056 Page 58 of 73

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

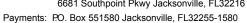
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3106508

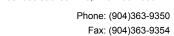
Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

LABORATORY CO	NTROL SAMPLE:	3105418									
Parameter	Units		oike onc.	LCS Result	LC % Ro		% Rec Limits Q	ualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.2	0.18	,	90	90-110				
MATRIX SPIKE & N	MATRIX SPIKE DUP	LICATE: 3105	5419	31054	120	Orig	inal: J1906	329006			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY Ammonia (N)	mg/L	1.2	2	3.4	3.3	106	104	90-110	1	10	
QC Batch:	DGMj/3454			Analysis M	ethod:	SW-8	46 7470A				
QC Batch Method: Associated Lab Sar	SW-846 7470A nples: J1906329	001, J1906329	002, J190	Prepared: 06329003, J1	906329004,		/2019 12:4 9005, J190		J1906	6329007, J190632	2900
METHOD BLANK: ;	3106506										
Parameter	Units		Blank Result	Reporting Limit	Qualifiers						
METALS Mercury	ug/L		0.011	0.011	U						
LABORATORY COI	NTROL SAMPLE:	3106507									
		•	oike	LCS Result	LC % Ro		% Rec Limits C	ualifiers			
Parameter	Units	Co	onc.	result	,,,,						

Original Spike MS MSD MSD MS % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers **METALS** 0.013 2 Mercury ug/L 1.4 1.4 69 71 80-120 3 20


3106509


Original: J1906329001

Report ID: 878849 - 802056 Page 59 of 73

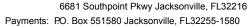
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: MSVj/3639 Analysis Method: SW-846 8260B SW-846 5030B QC Batch Method: 05/29/2019 10:12 Prepared:

J1906329001, J1906329002, J1906329003, J1906329004, J1906329005, J1906329006, J1906329007, J1906329008, Associated Lab Samples:


METHOD BLANK: 3109810

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
lodomethane (Methyl lodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
2-Butanone (MEK)	ug/L	0.43	0.43 U	
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	
Benzene	ug/L	0.16	0.16 U	
Dibromomethane	ug/L	0.26	0.26 U	
1,2-Dichloropropane	ug/L	0.66	0.66 U	
Trichloroethene	ug/L	0.29	0.29 U	
Bromodichloromethane	ug/L	0.46	0.46 U	
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U	
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U	
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U	
1,1,2-Trichloroethane	ug/L	0.30	0.30 U	
Toluene	ug/L	0.23	0.23 U	
2-Hexanone	ug/L	0.71	0.71 U	
Dibromochloromethane	ug/L	0.33	0.33 U	
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U	
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U	
Chlorobenzene	ug/L	0.21	0.21 U	
Ethylbenzene	ug/L	0.24	0.24 U	
=	-			

Report ID: 878849 - 802056 Page 60 of 73

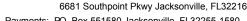
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

٨	/FTI	HOD	RI	ANK.	31	09810	١

Parameter	Units	Blank Result	Reporting Limit Qualifiers
	Office	1/G5uit	Littiit Qualifiers
Bromoform	ug/L	0.44	0.44 U
Styrene	ug/L	0.23	0.23 U
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U
1,2,3-Trichloropropane	ug/L	0.91	0.91 U
1,4-Dichlorobenzene	ug/L	0.22	0.22 U
1,2-Dichlorobenzene	ug/L	0.18	0.18 U
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U
Xylene (Total)	ug/L	0.53	0.53 U
1,2-Dichloroethane-d4 (S)	%	89	70-128
Toluene-d8 (S)	%	97	77-119
Bromofluorobenzene (S)	%	110	86-123


LABORATORY CONTROL SAMPLE & LCSD:	3109811	3109812
ENDOINTION CONTINUE OF WILL BE BEOOD.	0100011	0100012

		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max
Parameter	Units	Conc.	Result	Result 9			Limit	RPD	RPD Qualifiers
VOLATILES									
Chloromethane	ug/L	20	15	15	74	73		1	
Vinyl Chloride	ug/L	20	17	17	84	85	70-130	1	20
Bromomethane	ug/L	20	9.4	7.8	47	39		17	
Chloroethane	ug/L	20	17	18	87	91		5	
Trichlorofluoromethane	ug/L	20	21	22	105	109		4	
Acetone	ug/L	20	16	18	78	92		16	
1,1-Dichloroethylene	ug/L	20	22	23	109	113	70-130	3	20
lodomethane (Methyl lodide)	ug/L	20	8.0	8.8	40	44		9	
Acrylonitrile	ug/L	20	21	22	105	108		3	
Methylene Chloride	ug/L	20	25	29	127	144		12	
Carbon Disulfide	ug/L	20	23	22	113	111		1	
trans-1,2-Dichloroethylene	ug/L	20	22	23	112	116		4	
1,1-Dichloroethane	ug/L	20	23	24	113	119		5	
Vinyl Acetate	ug/L	20	26	18	128	90		35	
2-Butanone (MEK)	ug/L	20	22	23	110	113		3	
cis-1,2-Dichloroethylene	ug/L	20	24	24	120	122	70-130	2	20
Bromochloromethane	ug/L	20	24	27	122	136		10	
Chloroform	ug/L	20	22	22	109	112	70-130	3	20
1,2-Dichloroethane	ug/L	20	21	22	107	113		5	
1,1,1-Trichloroethane	ug/L	20	21	21	104	106		2	
Carbon Tetrachloride	ug/L	20	22	23	110	114		3	
Benzene	ug/L	20	23	23	115	117	70-130	1	20
Dibromomethane	ug/L	20	22	24	110	118		7	
1,2-Dichloropropane	ug/L	20	22	24	112	118		5	
Trichloroethene	ug/L	20	22	24	111	118	70-130	6	20

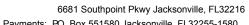
Report ID: 878849 - 802056 Page 61 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAM	MPLE & LCSD:	3109811		310981	2				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD	% Rec Limit	RPD	Max RPD Qualifiers
- arameter	Office	COIIC.	rtesuit	ixesuit	70 IXEC	70 TVCC	LIIIII	INI D	Tri D Qualifiers
Bromodichloromethane	ug/L	20	21	22	107	111		4	
cis-1,3-Dichloropropene	ug/L	20	25	24	124	119		5	
4-Methyl-2-pentanone (MIBK)	ug/L	20	20	22	102	111		8	
trans-1,3-Dichloropropylene	ug/L	20	25	24	125	119		5	
1,1,2-Trichloroethane	ug/L	20	22	23	112	113		1	
Toluene	ug/L	20	22	21	111	105	70-130	5	20
2-Hexanone	ug/L	20	19	20	95	102		7	
Dibromochloromethane	ug/L	20	21	19	104	97		7	
Tetrachloroethylene (PCE)	ug/L	20	22	20	112	101	70-130	11	20
1,1,1,2-Tetrachloroethane	ug/L	20	22	21	109	103		6	
Chlorobenzene	ug/L	20	22	21	110	106	70-130	4	20
Ethylbenzene	ug/L	20	22	21	109	104	70-130	5	20
Bromoform	ug/L	20	19	18	93	91		3	
Styrene	ug/L	20	21	20	106	100		6	
1,1,2,2-Tetrachloroethane	ug/L	20	21	19	105	96		9	
1,2,3-Trichloropropane	ug/L	20	21	21	105	103		1	
1,4-Dichlorobenzene	ug/L	20	22	20	111	102		8	
1,2-Dichlorobenzene	ug/L	20	22	20	109	102	70-130	7	20
Xylene (Total)	ug/L	60	66	63	110	105	70-130	5	20
1,2-Dichloroethane-d4 (S)	%				88	104	70-128	16	
Toluene-d8 (S)	%				99	99	77-119	0	
Bromofluorobenzene (S)	%				103	103	86-123	0	


MATRIX SPIKE SAMPLE: 3109813 Original: J1906329007

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Chloromethane	ug/L	0	20	21	105	
Vinyl Chloride	ug/L	0	20	26	130	70-130
Bromomethane	ug/L	0	20	13	67	
Chloroethane	ug/L	0	20	27	137	
Trichlorofluoromethane	ug/L	0	20	32	162	
Acetone	ug/L	3.5	20	29	128	
1,1-Dichloroethylene	ug/L	0	20	33	166	70-130
lodomethane (Methyl lodide)	ug/L	0	20	9.8	49	
Acrylonitrile	ug/L	0	20	31	156	
Methylene Chloride	ug/L	0	20	36	180	
Carbon Disulfide	ug/L	0	20	32	162	
trans-1 2-Dichloroethylene	ua/l	0	20	33	165	

Report ID: 878849 - 802056 Page 62 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

1,2-Dichloroethane-d4 (S)

Bromofluorobenzene (S)

Toluene-d8 (S)

%

%

%

MATRIX SPIKE SAMPLE: 3	109813		Original: J190	6329007			
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
1,1-Dichloroethane	ug/L	0	20	36	178		
Vinyl Acetate	ug/L	0	20	42	209		
2-Butanone (MEK)	ug/L	0	20	35	175		
cis-1,2-Dichloroethylene	ug/L	0	20	35	177	70-130	
Bromochloromethane	ug/L	0	20	41	207		
Chloroform	ug/L	0	20	34	171	70-130	
1,2-Dichloroethane	ug/L	0	20	35	173		
1,1,1-Trichloroethane	ug/L	0	20	32	161		
Carbon Tetrachloride	ug/L	0	20	35	174		
Benzene	ug/L	5	20	41	181	70-130	
Dibromomethane	ug/L	0	20	36	181		
1,2-Dichloropropane	ug/L	0	20	36	182		
Trichloroethene	ug/L	0	20	33	163	70-130	
Bromodichloromethane	ug/L	0	20	35	173		
cis-1,3-Dichloropropene	ug/L	0	20	28	142		
4-Methyl-2-pentanone (MIBK)	ug/L	0	20	33	165		
trans-1,3-Dichloropropylene	ug/L	0	20	29	143		
1,1,2-Trichloroethane	ug/L	0	20	35	177		
Toluene	ug/L	0	20	33	166	70-130	
2-Hexanone	ug/L	0	20	33	164		
Dibromochloromethane	ug/L	0	20	33	163		
Tetrachloroethylene (PCE)	ug/L	0	20	31	154	70-130	
1,1,1,2-Tetrachloroethane	ug/L	0	20	35	175		
Chlorobenzene	ug/L	0	20	33	167	70-130	
Ethylbenzene	ug/L	0	20	33	164	70-130	
Bromoform	ug/L	0	20	29	147		
Styrene	ug/L	0	20	31	154		
1,1,2,2-Tetrachloroethane	ug/L	0	20	33	166		
1,2,3-Trichloropropane	ug/L	0	20	30	148		
1,4-Dichlorobenzene	ug/L	0	20	31	154		
1,2-Dichlorobenzene	ug/L	0	20	32	162	70-130	
Xylene (Total)	ug/L	0	60	99	164	70-130	

QC Batch: MSVj/3641 Analysis Method: SW-846 8260B (SIM) QC Batch Method: SW-846 5030B Prepared: 05/29/2019 10:12

89

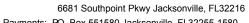
98

114

Associated Lab Samples:

97

99


70-128

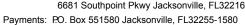
77-119

86-123

Report ID: 878849 - 802056 Page 63 of 73

QUALITY CONTROL DATA

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM


Parameter	Units	Bla Res		Reporting Limit (Qualifiers	6				
VOLATILES										
Ethylene Dibromide (EDB)	ug/L	0.0	20	0.020 l	J					
1,2-Dibromo-3-Chloropropane	ug/L	0	.11	0.11 l	J					
1,2-Dichloroethane-d4 (S)	%		85	77-125						
Toluene-d8 (S)	%	1	01	80-121						
Bromofluorobenzene (S)	% 85 77-125 % 101 80-121 % 96 80-129									
LABORATORY CONTROL SAM	IPLE & LCSD	3109818	.	31098 ⁻	9					
	IPLE & LCSE Units	: 3109818 Spike Conc.	LCS Result	LCSD		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
LABORATORY CONTROL SAM		Spike	LCS	LCSD	LCS			RPD		
LABORATORY CONTROL SAM Parameter VOLATILES		Spike	LCS	LCSD	LCS			RPD		
LABORATORY CONTROL SAM Parameter VOLATILES Ethylene Dibromide (EDB)	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	% Rec	Limit		RPD Qualifiers	
LABORATORY CONTROL SAM Parameter VOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane	Units ug/L	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	% Rec 96	70-130	14	RPD Qualifiers	
LABORATORY CONTROL SAM	Units ug/L ug/L	Spike Conc.	LCS Result	LCSD Result	LCS % Rec 111 138	% Rec 96 136	70-130 70-130	14 1	RPD Qualifiers	

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Ethylene Dibromide (EDB)	ug/L	0	8.0	0.73	91	70-130
1,2-Dibromo-3- Chloropropane	ug/L	0	0.8	1.2	148	70-130
1,2-Dichloroethane-d4 (S)	%	83			88	77-125
Toluene-d8 (S)	%	102			105	80-121
Bromofluorobenzene (S)	%	96			100	80-129

Report ID: 878849 - 802056 Page 64 of 73

QUALITY CONTROL DATA QUALIFIERS

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

QUALITY CONTROL PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Estimated Result J4
- ٧ Method Blank Contamination

Report ID: 878849 - 802056 Page 65 of 73

QUALITY CONTROL DATA CROSS REFERENCE TABLE

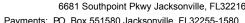
Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

∟ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
11906329001	19136-MW-7A			EPA 300.0	WCAj/4985
1906329002	19136-MW-7B			EPA 300.0	WCAj/4985
1906329003	19136-MW-8A			EPA 300.0	WCAj/4985
1906329004	19136-MW-8B			EPA 300.0	WCAj/4985
1906329006	19136-MW-9B			EPA 300.0	WCAj/4985
1906329015	19136-Dup-1			EPA 300.0	WCAj/4985
1906329005	19136-MW-9A			EPA 300.0	WCAj/4990
1906329007	19136-MW-12A			EPA 300.0	WCAj/4990
1906329008	19136-MW-12B			EPA 300.0	WCAj/4990
1906329009	19136-MW-13A			EPA 300.0	WCAj/4990
1906329010	19136-MW-13B			EPA 300.0	WCAj/4990
1906329011	19136-MW-22AR			EPA 300.0	WCAj/4990
1906329012	19136-MW-22BR			EPA 300.0	WCAj/4990
1906329013	19136-MW-24A			EPA 300.0	WCAj/4990
1906329014	19136-MW-24B			EPA 300.0	WCAj/4990
11906329001	19136-MW-7A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
1906329002	19136-MW-7B	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
1906329003	19136-MW-8A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
1906329004	19136-MW-8B	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
1906329005	19136-MW-9A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
1906329006	19136-MW-9B	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
1906329007	19136-MW-12A	SW-846 3010A	DGMj/3420	SW-846 6020	ICMj/1885
1906329008	19136-MW-12B	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906329009	19136-MW-13A	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906329010	19136-MW-13B	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906329011	19136-MW-22AR	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906329012	19136-MW-22BR	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906329013	19136-MW-24A	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906329014	19136-MW-24B	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886
1906329015	19136-Dup-1	SW-846 3010A	DGMj/3421	SW-846 6020	ICMj/1886

Report ID: 878849 - 802056 Page 66 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

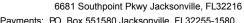

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

_ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
1906329013	19136-MW-24A			EPA 300.0	WCAj/5024
J1906329001	19136-MW-7A			SM 2540 C	WCAj/5025
11906329002	19136-MW-7B			SM 2540 C	WCAj/5025
11906329003	19136-MW-8A			SM 2540 C	WCAj/5025
11906329004	19136-MW-8B			SM 2540 C	WCAj/5025
11906329005	19136-MW-9A			SM 2540 C	WCAj/5025
11906329001	19136-MW-7A	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
1906329002	19136-MW-7B	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
1906329003	19136-MW-8A	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
1906329004	19136-MW-8B	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
11906329005	19136-MW-9A	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
1906329006	19136-MW-9B	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
1906329007	19136-MW-12A	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
11906329008	19136-MW-12B	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
1906329009	19136-MW-13A	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
11906329010	19136-MW-13B	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
11906329011	19136-MW-22AR	SW-846 3010A	DGMj/3435	SW-846 6010	ICPj/1979
J1906329012	19136-MW-22BR	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982
11906329013	19136-MW-24A	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982
11906329014	19136-MW-24B	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982
11906329015	19136-Dup-1	SW-846 3010A	DGMj/3436	SW-846 6010	ICPj/1982
11906329006	19136-MW-9B			SM 2540 C	WCAj/5032
11906329007	19136-MW-12A			SM 2540 C	WCAj/5032
11906329008	19136-MW-12B			SM 2540 C	WCAj/5032
1906329009	19136-MW-13A			SM 2540 C	WCAj/5032
1906329010	19136-MW-13B			SM 2540 C	WCAj/5032
1906329011	19136-MW-22AR			SM 2540 C	WCAj/5032
11906329012	19136-MW-22BR			SM 2540 C	WCAj/5032
11906329013	19136-MW-24A			SM 2540 C	WCAj/5032

Report ID: 878849 - 802056 Page 67 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

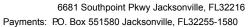

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906329014	19136-MW-24B			SM 2540 C	WCAj/5032
J1906329015	19136-Dup-1			SM 2540 C	WCAj/5032
J1906329001	19136-MW-7A			EPA 350.1	WCAg/657
J1906329002	19136-MW-7B			EPA 350.1	WCAg/657
J1906329003	19136-MW-8A			EPA 350.1	WCAg/657
J1906329004	19136-MW-8B			EPA 350.1	WCAg/657
J1906329005	19136-MW-9A			EPA 350.1	WCAg/657
J1906329006	19136-MW-9B			EPA 350.1	WCAg/6572
J1906329007	19136-MW-12A			EPA 350.1	WCAg/6572
J1906329008	19136-MW-12B			EPA 350.1	WCAg/6572
J1906329009	19136-MW-13A			EPA 350.1	WCAg/6572
J1906329010	19136-MW-13B			EPA 350.1	WCAg/6572
J1906329011	19136-MW-22AR			EPA 350.1	WCAg/6572
J1906329012	19136-MW-22BR			EPA 350.1	WCAg/657
J1906329013	19136-MW-24A			EPA 350.1	WCAg/6572
J1906329014	19136-MW-24B			EPA 350.1	WCAg/6572
J1906329015	19136-Dup-1			EPA 350.1	WCAg/6572
J1906329001	19136-MW-7A	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329002	19136-MW-7B	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329003	19136-MW-8A	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329004	19136-MW-8B	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329005	19136-MW-9A	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329006	19136-MW-9B	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329007	19136-MW-12A	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329008	19136-MW-12B	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329009	19136-MW-13A	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329010	19136-MW-13B	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329011	19136-MW-22AR	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329012	19136-MW-22BR	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329013	19136-MW-24A	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329014	19136-MW-24B	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526

Report ID: 878849 - 802056 Page 68 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906329015	19136-Dup-1	SW-846 7470A	DGMj/3454	SW-846 7470A	CVAj/1526
J1906329001	19136-MW-7A	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329002	19136-MW-7B	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329003	19136-MW-8A	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329004	19136-MW-8B	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329005	19136-MW-9A	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329006	19136-MW-9B	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329007	19136-MW-12A	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329008	19136-MW-12B	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329009	19136-MW-13A	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329010	19136-MW-13B	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329011	19136-MW-22AR	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329012	19136-MW-22BR	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329013	19136-MW-24A	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/364
J1906329014	19136-MW-24B	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/364
J1906329015	19136-Dup-1	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/364
J1906329016	19136-TripBlank-5	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329017	19136-TripBlank-6	SW-846 5030B	MSVj/3639	SW-846 8260B	MSVj/3640
J1906329001	19136-MW-7A	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329002	19136-MW-7B	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329003	19136-MW-8A	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329004	19136-MW-8B	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329005	19136-MW-9A	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329006	19136-MW-9B	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364
J1906329007	19136-MW-12A	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364
J1906329008	19136-MW-12B	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364
J1906329009	19136-MW-13A	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364
J1906329010	19136-MW-13B	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329011	19136-MW-22AR	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364
J1906329012	19136-MW-22BR	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364
J1906329013	19136-MW-24A	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364
J1906329014	19136-MW-24B	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/364

Report ID: 878849 - 802056 Page 69 of 73

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1906329 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906329015	19136-Dup-1	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329016	19136-TripBlank-5	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642
J1906329017	19136-TripBlank-6	SW-846 5030B	MSVj/3641	SW-846 8260B (SIM)	MSVj/3642

Report ID: 878849 - 802056 Page 70 of 73

Altamonte Springs: 528 S. Northlake Blvd., Ste. 101
Gainesville: 4965 SW 41st Blvd. · Gainesville, FL 3260
Jacksonville: 6681 Southpoint Pkwy Jacksonville, F
Miramar: 10200 USA Today Way, Miramar, FL 33025 -
Tallahassee: 1288 Cedar Center Drive, Tallahassee, F
Tampa: 9610 Princess Palm Ave + Tampa El 33610 - 8

Client Name: Waste Connections, Inc		Project Name: J.E.D LANDFILL (F/K/A DAK HAMMOCK DISPOSAL)				K/A	BOTTLE SIZE & TYPE		7 0	40	ا د د ا	î	1	1 1	161	
Address: 5135 Madison Avenue	100	nber/Projec					BO	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic					NUMBER
Tampa, Florida 33619	Project L	ocation:					REQUIRED	-								Z
				ne and Address: J.F.D. SWDF 1501 Omri W-7 St. Cloud, FC				EDB/DBCP	App I Metals+Fe,Hg,Na	EDS		I				
Turn Around Time: STANDARD RUSH Page 1 of 2	Special Instructions: Jax Profile: 31172					31172	ANALYSIS	App I VOAs+E	App I Wetals+F	CI/NO3/TDS	NH3					LABORATORY I.D.
SAMPLE ID SAMPLE DESCRIPTI	ON					PRESER.	HCL	HNO3	Ice	H2SO4					IA	
19136-MV-7A		6	5/16/19	6832	GW	6		3	1	1	t				Tieri	001
19136-AW-7B				0814		(1		1	1					002
14136-Mr.8A				0944												003
19136-AW-8B				0932						18		- 1				004
19136-MU-9A				1100							HELL					005
19136-MV.9B				1038							ήEΙΕ	1117				006
19136-MW-DA		1		1355				The			JAL					007
19136-MW-UB				1337	Mil									- 1		008
19136-AW-13A		1	1	1155	1	J			J	J	1	TE			EIE	009
1913C-MU-13B		G	5/16/19	1)30	GU	6		3	-1	9	1	HB.				00
Matrix Code: WW = wastewater SW = surface water GW	= ground wate	r DW = d	frinking wat	er O = oil	A = air S	O = soil S	L = sludg	e i	Preserval	ion Cod	e: I = ice H	(HCI) S =	(H2SO4) N	= (HNO3) T	= (Sodium Thi	
Received on Ice XYes No XII Temp taken from s DCN: AD-051 Form last revised 08/18/2014	ample [Temp fro		Device used	for measurin	ng Temp by		Where	required,	pH check	ced T	emperature	when recei	ived 4	(in degree M: 3A S: 1\	s celcius)
Relinquished by: Date Tim 2	>	Fed Se	ceived by:	Q	Date SIK/19	Time		FO (Whe	R DRII	VKING ormation n	WATER of otherwise sup	USE:	vs ID:	one	2.77	= 1

Supplier of Water. Site-Address:

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016 • A	lt.
Gainesville: 4985 SW 41st Blvd Gainesville, FL 32808 - 39	5:
	1
Miramar: 10200 USA Today Way, Miramar, FL 33025 - 954.8	8
Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL 32	3
Tampa: 9610 Princess Palm Ave - Tampa El 33810 - 813 83	ir

Supplier of Water Site-Address

Client Name: Waste Connections, In			ne: J.E.D		FILL (F/F L)	K/A	BOTTLE SIZE & TYPE		글으	ic it	al o	139			1	1	1~
Address: 5135 Madison Avenue	P.O. Nun	P.O. Number/Project Number:					BO	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic		1		. 7.1		NUMBER
Tampa, Florida 33619	Project L	Project Location:									E			-			Z Z
Phone: 8/3- 468-6141	FDEP	FDEP Facility No; 89544 Project Name and Address: JEO SWOF					E E	G.	ō	CI/NO3/TDS			V.				≥ N
FAX:	Project N						ğ	DB	App I Metals+Fe,Hg,Na								O.
Contact: Kirk Wills		1505				2	ANALYSIS REQUIRED App I VOAs+EDB/DBCP									≥	
Sampled By: Neil Stoples + Boon, Abbott							SIS	草	+0	3/T							Ö
Turn Around Time: STANDARD RUSH	Spec	ial Inst	ructions	: Jax F	Profile: 3	1172	AL	P I	ta p	9	m						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Page > of 2	■ A	DaPT	☐ EQuIS				AN	AP	Ap	C	NH3			14	10.1		ABORATORY I.D
SAMPLE ID SAMPLE DESCRIP	TION	Grab	SAM	PLING	MATRIX	NO.	PRESER- VATION	HCL	ниоз	loe	H2SO4						- A
	1-5-77	Comp	DATE	TIME		COUNT	PR.		ioe mitos	100	112004					10.00	har II
19136-A4-22AR		6	Shelen	1232	GW	8		3	t	t	ı			1-1			011
19136-AW-128 R		1	1	1210	1	1		1	1	1	1						012
19136-AW-24/A				1408												1=1	0(3
1913C-MW-J4B		1	1	1346	1	11/20			J	J	1						014
19136-Dup-1		6	5/16/19	0001	GW	6			1	ı	4.1						015
19136. Trip Blak-5 I-rolling ill 74,78	, 8A. 8B, 12A	1	-	1	DE NO	3		U			-					I III	016
19136-Trip Block-5 Incolor 14 74,78 19136-Trip Block-6 Decoder 11 9A. 35AR. 25BR. 3	98,12A,120, 4A JVB.	1	ų , i	10.	DI HOO	3		3	-					LE.	/*		017
						7											
Matrix Code: WW = wastewater SW = surface water G	W = ground water	DW = d	rinking wate	r 0 = oil	A≔air S0	O = soil S	L = sludg	e	Preservat	ion Cod	le: I=ice	H=(HCI) S = (H2	2SO4) N	= (HNO3)	T = (Sodii	um Thiosulfate)
Received on Ice Ayes No Atemp taken from DCN: AD-051 Form last revised 08/18/2014	n sample	Temp fro		evice used	for measurin	g Temp by		Where				_		hen receiv			degrees celcius) S: 1V
	Time	10,000	ceived by:		Date	Time		FO	R DRIN	KINC	ot otherwise	R US	E:				
177			Cl	2	5/16/19			1 3	ntact Pers		o, verei mat	заррнец	1440		ine :		

Thursday, May 30, 2019 4:31:21 PM Page 72 of 73

	waste cont		Project nam	e: J.E.D L	anatill
Date/Time Rcvd:	5-17-14 8	1:35 Log	g-In request numbe	r: 119063	29
Received by:	BA		Completed b		
Cooler/Shipping I	nformation:	r '.	w -		4
Courier: 🗆 AEL 🗆 CI	ient 🗆 UPS 🗆 Blue	Streak TedEx I	DAES DASAP D	Other (describe):	
ype: Cooler □ Box	Other (describe)	the second second second			
31	- Caron (accounte)				
ooler temperature: I	the second secon		nperature blank or ice	e water measuremer	rit
	the second secon		nperature blank or ice	e water measuremer	rit
ooler temperature: I	the second secon		perature blank ör ice	e water measuremer	rit
ooler temperature: I	dentify the cooler an		□ Sample Bottle	□ Sample Bottle	□ Sample Bottle

Any discrepancies should be explained in the "Comments" section below.

CHECKLIST	YES	NO	NA
Were custody seals on shipping container(s) intact?	1250	110	IVA
Were custody papers properly included with samples?	1		-
 Were custody papers properly filled out (ink, signed, match labels)? 	1		
4. Did all bottles arrive in good condition (unbroken)?	1	-	
5. Were all bottle labels complete (sample #, date, signed, analysis, preservatives)?			
b. Did the sample labels agree with the chain of custody?	1		-
7. Were correct bottles used for the tests indicated?	1	-	
Were proper sample preservation techniques indicated on the label?	/	-	
Were samples received within holding times?	1		-
Were all VOA vials free of the presence of air bubbles?		_	
1. Have all Soil VOA Vials and Encores been placed in a freezer within 48 hours of collection?	1	-	
2. Were samples in direct contact with wet ice? If "No." check one: D NO ICE D BI LIE ICE			
5. Was the cooler temperature less than 6°C?		-	10
4. Where pH preservation is required, are sample pHs checked and any anomalies recorded by Sample control? Are all <2 or >10? Note: VOA samples are checked by laboratory analysts	1		
3. was sufficient sample volume provided to perform all tests?	/		-
6. If for Bacteriological testing, were containers supplied by AEL2 (Sec OA officer if answer is no)	-	-	
7. Were all sample containers provided by AEL? (Other than Bacteriological)			No.
8. Were samples accepted into the laboratory?	/	-	
9. When necessary to split samples into other bottles, is it noted in the comments?	1	·	

Comments: (Note all sample(s) and containe	(s)"	with a	"No"	checklist response in this comment section)
--	------	--------	------	---

DCN: AD-D048 Eff date 2/3/10, Last rev 9/6/16

3

Project No.: J1906329

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 7470A Preparation: SW-846 7470A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.
 B. Blanks: All acceptance criteria were met.
 C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike (MS) recoveries of Mercury for J1906329001 were outside control

criteria. Recoveries in the Laboratory Control Sample (LCS) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. The affected sample is qualified to indicate matrix interference.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906329

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 6010
Preparation: SW-846 3010A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: The Method Blank (MB) contained low levels of Vanadium above the Method Detection

Limit (MDL). In accordance with AEL QA policy, all sample results found in the Method Blank are

flagged with a V qualifier to indicate the data is estimated. All sample results are below

Florida GCTL for this analyte. No further corrective action was required.

C. Duplicates: All acceptance criteria were met.
 D. Spikes: All acceptance criteria were met.
 E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906329

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B

Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Surrogates: All acceptance criteria were met.

D. Spikes: The upper control criterion was exceeded for several analytes in the matrix spike analysis for

J1906329007. The error associated with elevated recovery equates to a high bias.

The quality of the data is not significantly affected. The sample was J4 qualified accordingly

and no further corrective action was required.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1906329

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B (SIM)

Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: The upper control criterion was exceeded for 1,2-Dibromo-3-Chloropropane in Continuing

Calibration Verification (CCV) standards for analytical batch 3642, indicating increased sensitivity. The client samples reported in this batch did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is

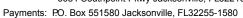
not affected. No further corrective action was required.

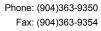
B. Blanks: All acceptance criteria were met.

C. Surrogates: All acceptance criteria were met.

D. Spikes: The spike recovery of 1,2-Dibromo-3-Chloropropane for the Laboratory Control Sample

(LCS) and Duplicate (LCSD) were outside the upper control criterion. The analyte in question was not detected in the associated client samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No


further corrective action was required.


The upper control criterion was exceeded for 1,2-Dibromo-3-Chloropropane in the matrix spike for J1906329002. The analyte in question was not detected in the associated client samples. The error associated with elevated recovery equates to a high bias. The quality of

the data is not affected. No further corrective action was required.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

June 6, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

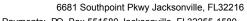
RE: Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Saturday, May 18, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 878927 - 813010 Page 1 of 42

SAMPLE SUMMARY

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected	Date Received
14000370004	19137-MW-10A	Water	5/17/2019 11:00	5/18/2019 10:05
J1906370001				
J1906370002	19137-MW-10B	Water	5/17/2019 10:30	5/18/2019 10:05
J1906370003	19137-MW-11A	Water	5/17/2019 09:00	5/18/2019 10:05
J1906370004	19137-MW-11B	Water	5/17/2019 08:35	5/18/2019 10:05
J1906370005	19137-CW-2A	Water	5/17/2019 09:17	5/18/2019 10:05
J1906370006	19137-CW-3A	Water	5/17/2019 08:30	5/18/2019 10:05
J1906370007	19137-DUP-2	Water	5/17/2019 00:01	5/18/2019 10:05
J1906370008	19137-EQ-2	Water	5/17/2019 10:00	5/18/2019 10:05
J1906370009	19137-TripBlank-7	Water	5/17/2019 00:00	5/18/2019 10:05

Report ID: 878927 - 813010 Page 2 of 42

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370001 Matrix: Water

19137-MW-10A Date Collected: 05/17/19 11:00 Sample ID:

Sample Description: Location:

RegLmt

METALS Analysis Desc: SW846 6010B Analytical Method: SW-846 3010A Analysis, Water Analytical Method: SW-846 3010A Analysis, Water 9.0 U ug/L 1 40 9.0 5'24/2019 13:20 J Beryllium 63 ug/L 1 4.0 1.0 5/24/2019 13:20 J Beryllium 0.50 U ug/L 1 4.0 1.0 5/24/2019 13:20 J Beryllium 0.50 U ug/L 1 4.0 1.0 5/24/2019 13:20 J Chromium 1.0 U ug/L 1 8.0 2.0 5'24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5'24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5'24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5'24/2019 13:20 J Chromium 17000 ug/L 1 8.0 2.0 5'24/2019 13:20 J Iron 17000 ug/L 1 40 10 5'24/2019 13:20 J Iron 17000 ug/L 1 40 10 5'24/2019 13:20 J Iron 17000 ug/L 1 40 10 5'24/2019 13:20 J Iron 17000 ug/L 1 1 2 3 5'24/2019 13:20 J Iron 17000 ug/L 1 1 40 10 5'24/2019 13:20 J Iron 17000 ug/L 1 1 40 10 5'24/2019 13:20 J Selenium 40 U ug/L 1 160 45 5'24/2019 13:20 J Selenium 40 U ug/L 1 1 60 45 5'24/2019 13:20 J Sodium 26 mg/L 1 40 15 5'24/2019 13:20 J Sodium 26 mg/L 1 40 15 5'24/2019 13:20 J Sodium 26 mg/L 1 40 15 5'24/2019 13:20 J Sodium 3.2 I/V ug/L 1 40 15 5'24/2019 13:20 J Sodium 3.2 I/V ug/L 1 40 10 5'24/2019 13:20 J Analysis Desc: SW846 6020B Analytical Method: SW-846 6020 Analytical Method: SW-846 6020 Analytical Method: SW-846 6020 Analytical Method: SW-846 5030B Analytical Method						Adjusted	Adjusted		
Analysis Desc: SW846 6010B Analytical Method: SW-846 6010 Arsenic 9.0 U ug/L 1 40 9.0 5/24/2019 13:20 J Barium 63 ug/L 1 4.0 1.0 5/24/2019 13:20 J Beryllium 0.50 U ug/L 1 4.0 1.0 5/24/2019 13:20 J Beryllium 1.0 U ug/L 1 4.0 1.0 5/24/2019 13:20 J Chromium 1.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 18.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 18.0 2.0 5/24/2019 13:20 J Iron 17000 ug/L 1 18.0 40 5/24/2019 13:20 J Iron 17000 ug/L 1 19 40 40 40 5/24/2019 13:20 J Iron 17000 ug/L 1 19 40 40 5/24/2019 13:20 J Iron 17000 ug/L 1 19 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 180 5/24/2019 13:20 J Selenium 40 U ug/L 1 180 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 40 10 5/24/2019 13:20 J Selenium 26 mg/L 1 40 10 5/24/2019 13:20 J Sodium 26 mg/L 1 40 10 5/24/2019 13:20 J Sodium 26 mg/L 1 40 10 5/24/2019 13:20 J Zinc 50 U ug/L 1 20 5 5/24/2019 13:20 J Zinc 50 U ug/L 1 20 0.057 5/24/2019 13:20 J Zhahayisi Desc: SW846 6020B Analytical Method: SW-846 8010A Analysis Desc: SW846 7470A Analysis Desc: SW846	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Water Analytical Method: SW-846 6010 Arsenic 9.0 U ug/L 1 40 9,0 5/24/2019 13:20 J Barium 63 ug/L 1 20,050 5/24/2019 13:20 J 5/24/2019 13:20 J 6/24/2019 13:20 J	METALS								
Analytical Method: SW-846 6010 Analytical Method: SW-846 6010 Analysis Desc: SW846 7470A Analysical Method: SW-846 8260B Analytical Method: SW-846	Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Arsenic 9.0 U ug/L 1 40 9.0 5/24/2019 13:20 J Barium 63 ug/L 1 4.0 1.0 5/24/2019 13:20 J Barium 63 ug/L 1 4.0 1.0 5/24/2019 13:20 J Beryllium 0.50 U ug/L 1 2.0 0.50 5/24/2019 13:20 J Cadmium 1.0 U ug/L 1 4.0 1.0 5/24/2019 13:20 J Cadmium 1.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Copper 4.0 U ug/L 1 16 4.0 5/24/2019 13:20 J Copper 4.0 U ug/L 1 16 4.0 5/24/2019 13:20 J Lead 7.4 I ug/L 1 16 4.0 5/24/2019 13:20 J Lead 7.4 I ug/L 1 16 4.0 5/24/2019 13:20 J Lead 7.4 I ug/L 1 12 3.0 5/28/2019 13:13 J Nickel 6.1 I ug/L 1 12 3.0 5/28/2019 13:23 J Selenium 40 U ug/L 1 160 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 160 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 160 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 160 40 5/24/2019 13:20 J Selenium 2.6 mg/L 1 40 10 5/24/2019 13:20 J Selenium 2.2 I,V ug/L 1 40 10 5/24/2019 13:20 J Sodium 2.2 I,V ug/L 1 40 10 5/24/2019 13:20 J Analysis Desc: SW846 6020B Analysis, Mater 50 U ug/L 1 0,00 50 5/24/2019 13:20 J Analysis Desc: SW846 6020B Analysis, Water Analytical Method: SW-846 3010A Analytical Method: SW-846 7470A Analysis Desc: SW846 7470A Analytical Method: SW-846 7470A Analysis Desc: SW846 7470A Analytical Method: SW-846 7470A Analysis Desc: SW846 7470A Analytical Method: SW-846 6260B Analysis, Water Preparation Method: SW-846 5260B Analysis, Water Preparation Method: SW-846 5260B Analysis, Water Preparation Method: SW-846 5260B Analysis Desc: SW846 7470A Analytical Method: SW-846 5260B Analysis Desc: SW846 7470A Analytical Method: SW-846 5260B Analysis Desc: SW846 7470A Analytical Method: SW-846 5260B Analytical Met	Analysis,Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium 63 u g/L 1 4.0 1.0 5/24/2019 13:20 J Beryllium 0.50 U u g/L 1 2.0 0.50 5/24/2019 13:20 J Cadmium 1.0 U u g/L 1 4.0 1.0 5/24/2019 13:20 J Chromium 2.0 U u g/L 1 8.0 2.0 5/24/2019 13:20 J Cobalt 2.0 U u g/L 1 8.0 2.0 5/24/2019 13:20 J Copper 4.0 U u g/L 1 16 4.0 5/24/2019 13:20 J Iron 17000 u g/L 1 400 100 5/24/2019 13:20 J Lead 7.4 I u g/L 1 12 40.0 5/24/2019 13:20 J Selenium 40 U u g/L 1 160 40 5/24/2019 13:20 J Selenium 40 U u g/L 1 160 40 5/24/2019 13:20 J So	Arsenic		-			40	9.0	5/24/2019 13:20	J
Beryllium	Barium		•						
Cadmium 1.0 U ug/L 1 4.0 1.0 5/24/2019 13:20 J Chromium 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Copper 4.0 U ug/L 1 16 4.0 5/24/2019 13:20 J Iron 17000 ug/L 1 40 10 5/24/2019 13:20 J Iron 17000 ug/L 1 40 10 5/24/2019 13:20 J Iron 7.4 I ug/L 1 2 6.0 5/24/2019 13:20 J Icad 6.1 I ug/L 1 24 6.0 5/24/2019 13:20 J Silver 10 U ug/L 1 4.0 10 5/24/2019 13:20 J Solium 26 mg/L 1 1.4 0.35 5/24/2019 13:20 J Analysis Desc: SW846 6020B Preparation Method: SW-846 3010A Analysis D	Beryllium	0.50	U		1	2.0			
Cobalt 2.0 U ug/L 1 8.0 2.0 5/24/2019 13:20 J Copper 4.0 U ug/L 1 16 4.0 5/24/2019 13:20 J Iron 17000 ug/L 1 400 100 5/24/2019 13:20 J Lead 7.4 I ug/L 1 122 3.0 5/28/2019 13:13 J Nickel 6.1 I ug/L 1 160 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 40 10 5/24/2019 13:20 J Silver 10 U ug/L 1 40 10 5/24/2019 13:20 J Scleinium 26 mg/L 1 40 10 5/24/2019 13:20 J Scleinium 3.2 I,V ug/L 1 1 40 35/24/2019 13:20 J Scleinium 3.2 I,V ug/L 1	Cadmium	1.0	U	_	1	4.0	1.0	5/24/2019 13:20	J
Copper 4.0 U ug/L 1 16 4.0 5/24/2019 13:20 J Iron 17000 ug/L 1 400 100 5/24/2019 13:20 J Lead 7.4 I ug/L 1 12 3.0 5/28/2019 13:20 J Nickel 6.1 I ug/L 1 24 6.0 5/24/2019 13:20 J Selenium 40 U ug/L 1 160 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 40 10 5/24/2019 13:20 J Sodium 26 mg/L 1 4.0 10 5/24/2019 13:20 J Sodium 3.2 I,V ug/L 1 4.0 1.0 5/24/2019 13:20 J Vanadium 3.2 I,V ug/L 1 4.0 1.0 5/24/2019 13:20 J Analysis Desc: SW846 6020B Analytical Method: SW-846 3010A 4	Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 13:13	J
17000	Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:20	J
Lead 7.4 I ug/L 1 12 3.0 5/28/2019 13:13 J Nickel 6.1 I ug/L 1 24 6.0 5/24/2019 13:20 J Selenium 40 U ug/L 1 160 40 5/24/2019 13:20 J Selenium 40 U ug/L 1 40 10 5/24/2019 13:20 J Selenium 10 U ug/L 1 40 10 5/24/2019 13:20 J Sodium 26 mg/L 1 14 0.35 5/24/2019 13:20 J Sodium 26 mg/L 1 4.0 1.0 5/28/2019 13:20 J Sodium 3.2 I,V ug/L 1 4.0 1.0 5/28/2019 13:20 J Vanadium 3.2 I,V ug/L 1 4.0 1.0 5/28/2019 13:20 J Vanadium 3.2 I,V ug/L 1 4.0 1.0 5/28/2019 13:20 J Sodium 50 U ug/L 1 U Ug/L U Ug/L 1 U Ug/L U Ug/	Copper	4.0	U	•	1	16	4.0		J
Nicke 6.1	Iron	17000			1		100		J
Selenium	Lead			_					
Silver		_							
Sodium 26 mg/L 1				_					
Vanadium 3.2 I,V ug/L 1 4.0 1.0 5/28/2019 13:13 J Zinc 50 U ug/L 1 200 50 5/24/2019 13:20 J			U	•	="				
Zinc 50 U ug/L 1 200 50 5/24/2019 13:20 J Analysis Desc: SW846 6020B				•		***			
Analysis Desc: SW846 6020B Analysis, Total Analytical Method: SW-846 6020 Antimony 0.11 U ug/L 1 0.70 0.11 5/30/2019 15:12 J Thallium 0.057 U ug/L 1 0.20 0.057 5/30/2019 15:12 J Analysis Desc: SW846 7470A Analysis, Water Analytical Method: SW-846 7470A Analytical Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.10 0.011 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.20 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J		-	,	-					
Analysis, Total Analytical Method: SW-846 6020 Antimony O.11 U ug/L 1 0.70 0.11 5/30/2019 15:12 J Thallium O.057 U ug/L 1 0.20 0.057 5/30/2019 15:12 J Analysis Desc: SW846 7470A Analysis, Water Analytical Method: SW-846 7470A Mercury O.011 U ug/L 1 0.10 0.01 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane 0.15 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane 0.18 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene	ZINC	50	U	ug/L	1	200	50	5/24/2019 13:20	J
Analytical Method: SW-846 6020 Antimony O.11 U ug/L 1 0.70 0.11 5/30/2019 15:12 J Thallium O.057 U ug/L 1 0.20 0.057 5/30/2019 15:12 J Analysis Desc: SW846 7470A Analysis, Water Analytical Method: SW-846 7470A Mercury O.011 U ug/L 1 0.10 0.01 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane O.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane O.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2-Tetrachloroethane O.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane O.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,1-Dichloroethane O.14 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane O.14 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane O.14 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane O.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethane O.15 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene O.18 U ug/L 1 1.0 0.14 5/31/2019 10:24 J	Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Thallium 0.057 U ug/L 1 0.20 0.057 5/30/2019 15:12 J Analysis Desc: SW846 7470A Analysis, Water Preparation Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.10 0.01 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.054 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.18 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	Analysis, Iotal	Ana	lytical Me	ethod: SW-	846 6020				
Analysis Desc: SW846 7470A Analysis,Water Analytical Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.10 0.01 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	Antimony	0.11	U	ug/L	1	0.70	0.11	5/30/2019 15:12	J
Analysis, Water Analytical Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.10 0.01 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	Thallium	0.057	U	ug/L	1	0.20	0.057	5/30/2019 15:12	J
Analysis, Water Analytical Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.10 0.01 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	Analysis Desc: SW846 7470A	Pre	paration I	Method: SV	V-846 7470A				
Mercury 0.011 U ug/L 1 0.10 0.01 5/24/2019 19:05 J VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	Analysis, Water								
VOLATILES Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J			•						
Analysis Desc: 8260B Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1.0 0.22 5/31/2019 10:24 J 1.0 0.22 5/31/2019 10:24 J 1.0 0.22 5/31/2019 10:24 J 1.0 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1.0 0.20 5/31/2019 10:24 J 1.0 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1.0 0.30 6/31/2019 10:24 J 1.0	Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:05	J
Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	VOLATILES								
Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	Analysis Desc: 8260B Analysis. Water	Prei	paration I	Method: SV	V-846 5030B				
1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 5/31/2019 10:24 J 1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J									
1,1,1-Trichloroethane 0.22 "U ug/L 1 1.0 0.22 5/31/2019 10:24 J 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	1 1 1 2 Tetraphlereethans		•			1.0	0.54	E/24/2010 10:24	
1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 5/31/2019 10:24 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J	• • •								
1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 5/31/2019 10:24 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J		_		_					
1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 5/31/2019 10:24 J 1,1-Dichloroethylene 0.18 U ug/L 1 3.0 0.18 5/31/2019 10:24 J				_					
1,1-Dichloroethylene				_					
	· ·	_	_	•					
	1,2,3-Trichloropropane			ug/L					

Report ID: 878927 - 813010 Page 3 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906370001 Date Received: 05/18/19 10:05 Matrix: Water

Sample ID: 19137-MW-10A Date Collected: 05/17/19 11:00

Sample Description: Location:

Campio Bocomption.				2004				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/31/2019 10:24	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/31/2019 10:24	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/31/2019 10:24	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/31/2019 10:24	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/31/2019 10:24	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/31/2019 10:24	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/31/2019 10:24	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/31/2019 10:24	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/31/2019 10:24	J
Benzene	4.3		ug/L	1	1.0	0.16	5/31/2019 10:24	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/31/2019 10:24	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/31/2019 10:24	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/31/2019 10:24	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/31/2019 10:24	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/31/2019 10:24	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/31/2019 10:24	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/31/2019 10:24	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/31/2019 10:24	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/31/2019 10:24	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/31/2019 10:24	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/31/2019 10:24	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/31/2019 10:24	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/31/2019 10:24	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/31/2019 10:24	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/31/2019 10:24	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/31/2019 10:24	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/31/2019 10:24	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/31/2019 10:24	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/31/2019 10:24	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/31/2019 10:24	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/31/2019 10:24	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/31/2019 10:24	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/31/2019 10:24	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/31/2019 10:24	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/31/2019 10:24	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/31/2019 10:24	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/31/2019 10:24	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/31/2019 10:24	J
1,2-Dichloroethane-d4 (S)	113		%	1	70-128		5/31/2019 10:24	
Toluene-d8 (S)	105		%	1	77-119		5/31/2019 10:24	

Report ID: 878927 - 813010 Page 4 of 42

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

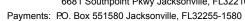
Date Received: 05/18/19 10:05 Lab ID: J1906370001 Matrix: Water

19137-MW-10A Date Collected: 05/17/19 11:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	115		%	1	86-123		5/31/2019 10:24	
Analysis Desc: 8260B SIM Analysis, Water	·			W-846 5030B				
	Ana	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane Ethylene Dibromide (EDB) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	0.11 0.020 94 110	U	ug/L ug/L % %	1 1 1 1	0.20 0.10 77-125 80-121	0.11 0.020	5/31/2019 10:24 5/31/2019 10:24 5/31/2019 10:24 5/31/2019 10:24	J J
Bromofluorobenzene (S) WET CHEMISTRY	119		%	1	80-129		5/31/2019 10:24	
Analysis Desc: IC,E300.0,Water	Ana	ytical Me	ethod: EPA	A 300.0				
Chloride Nitrate (as N)	24 0.10	U	mg/L mg/L	2 2	10 1.0	1.0 0.10	5/18/2019 14:11 5/18/2019 14:11	J
Analysis Desc: Ammonia,E350.1,Water	Ana	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	22		mg/L	50	0.50	0.40	5/28/2019 15:34	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	640		mg/L	1	10	10	5/22/2019 16:45	J
Lab ID: J1906370002				Date Received:	05/18/19 10:05	Matrix:	Water	

19137-MW-10B Date Collected: 05/17/19 10:30 Sample ID:


Sample Description: Location:

Campio 2 coompacin				2000				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water	•		Method: SVethod: SW-8	V-846 3010A 346 6010				
Arsenic Barium	9.0 38	U	ug/L ug/L	1	40 4.0	9.0 1.0	5/24/2019 13:23 5/24/2019 13:23	J
Beryllium	2.0		ug/L	1	2.0	0.50	5/24/2019 13:23	J
Cadmium Chromium	1.0 2.0	U	ug/L ug/L	1 1	4.0 8.0	1.0 2.0	5/24/2019 13:23 5/28/2019 13:17	J J

Report ID: 878927 - 813010 Page 5 of 42

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

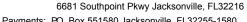
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370002 Matrix: Water

19137-MW-10B Date Collected: 05/17/19 10:30 Sample ID:


Sample Description: Location:

					Aujusteu	Aujusteu		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	7.0	ı	ug/L	1	8.0	2.0	5/24/2019 13:23	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:23	J
Iron	12000		ug/L	1	400	100	5/24/2019 13:23	J
Lead	4.7	ı	ug/L	1	12	3.0	5/28/2019 13:17	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:23	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:23	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:23	J
Sodium	17		mg/L	1	1.4	0.35	5/24/2019 13:23	J
Vanadium	4.7	V	ug/L	1	4.0	1.0	5/28/2019 13:17	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:23	J
Analysis Desc: SW846 6020B Analysis,Total				V-846 3010A				
7a., y o. o, , o ta.	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/30/2019 15:34	J
Thallium	0.067	1	ug/L	1	0.20	0.057	5/30/2019 15:34	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:08	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/31/2019 09:55	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/31/2019 09:55	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/31/2019 09:55	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/31/2019 09:55	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/31/2019 09:55	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/31/2019 09:55	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/31/2019 09:55	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/31/2019 09:55	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/31/2019 09:55	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/31/2019 09:55	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/31/2019 09:55	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43		J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/31/2019 09:55	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/31/2019 09:55	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/31/2019 09:55	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/31/2019 09:55	J

Report ID: 878927 - 813010 Page 6 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906370002 Date Received: 05/18/19 10:05 Matrix: Water

Date Collected: 05/17/19 10:30 Sample ID: 19137-MW-10B


Sample Description: Location:

Campic Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	7.6		ug/L	1	1.0	0.16	5/31/2019 09:55	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/31/2019 09:55	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/31/2019 09:55	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/31/2019 09:55	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/31/2019 09:55	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/31/2019 09:55	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/31/2019 09:55	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/31/2019 09:55	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/31/2019 09:55	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/31/2019 09:55	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/31/2019 09:55	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/31/2019 09:55	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/31/2019 09:55	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/31/2019 09:55	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/31/2019 09:55	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	5/31/2019 09:55	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/31/2019 09:55	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/31/2019 09:55	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/31/2019 09:55	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/31/2019 09:55	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/31/2019 09:55	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/31/2019 09:55	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/31/2019 09:55	J
Xylene (Total)	1.2	ı	ug/L	1	3.0	0.53	5/31/2019 09:55	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/31/2019 09:55	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/31/2019 09:55	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/31/2019 09:55	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/31/2019 09:55	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/31/2019 09:55	J
1,2-Dichloroethane-d4 (S)	115		%	1	70-128		5/31/2019 09:55	
Toluene-d8 (S)	106		%	1	77-119		5/31/2019 09:55	
Bromofluorobenzene (S)	117		%	1	86-123		5/31/2019 09:55	
Analysis Desc: 8260B SIM Analysis,	Prep	paration M	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/31/2019 09:55	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	5/31/2019 09:55	J
1,2-Dichloroethane-d4 (S)	94	-	%	1	77-125		5/31/2019 09:55	
Toluene-d8 (S)	111		%	1	80-121		5/31/2019 09:55	
(-)	123		%	-	· - ·			

Report ID: 878927 - 813010 Page 7 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370002 Matrix: Water

19137-MW-10B Date Collected: 05/17/19 10:30 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	18		mg/L	2	10	1.0	5/18/2019 14:33	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	5/18/2019 14:33	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	8.7		mg/L	20	0.20	0.16	5/28/2019 15:38	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	920		mg/L	1	10	10	5/22/2019 16:45	J

Lab ID: J1906370003 Date Received: 05/18/19 10:05 Matrix: Water

Date Collected: 05/17/19 09:00 Sample ID: 19137-MW-11A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS	recuito	Quai			. 42		7	
Analysis Desc: SW846 6010B	Prer	naration I	Method: SV	V-846 3010A				
Analysis, Water	·							
• •	Anal	lytical Me	ethod: SW-	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:34	J
Barium	22		ug/L	1	4.0	1.0	5/24/2019 13:34	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 13:34	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:34	J
Chromium	3.2	ı	ug/L	1	8.0	2.0	5/28/2019 13:28	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:34	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:34	J
Iron	8100		ug/L	1	400	100	5/24/2019 13:34	J
Lead	7.9	ı	ug/L	1	12	3.0	5/28/2019 13:28	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:34	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:34	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:34	J
Sodium	14		mg/L	1	1.4	0.35	5/24/2019 13:34	J
Vanadium	6.8	V	ug/L	1	4.0	1.0	5/28/2019 13:28	J
Zinc	50	U	ua/L	1	200	50	5/24/2019 13:34	J

Report ID: 878927 - 813010 Page 8 of 42

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Adjusted

0.67 5/31/2019 12:01

0.36 5/31/2019 12:01

0.18 5/31/2019 12:01

0.21 5/31/2019 12:01

5/31/2019 12:01

5/31/2019 12:01

0.21

0.33

1.0

3.0

3.0

1.0

3.0

1.0

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Carbon Disulfide

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon Tetrachloride

Date Received: 05/18/19 10:05 Lab ID: J1906370003 Matrix: Water

19137-MW-11A Date Collected: 05/17/19 09:00 Sample ID:

Sample Description: Location:

Advanced Environmental Laboratories, Inc.

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prep	aration I	Method: S	N-846 3010A				
Analysis,Total	Anal	vtical Me	ethod: SW-	-846 6020				
Antimony	0.14	ı	ug/L	1	0.70	0.11	5/30/2019 15:38	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057	5/30/2019 15:38	J
Analysis Desc: SW846 7470A	Dron	aration N	Method: SI	N-846 7470A				
Analysis, Water								
• -	Anal	ytical Me	ethod: SW-	-846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:11	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: S	N-846 5030B				
	Anal	ytical Me	ethod: SW-	-846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U,Q	ug/L	1	1.0	0.54	5/31/2019 12:01	J
1,1,1-Trichloroethane	0.22	U,Q	ug/L	1	1.0	0.22	5/31/2019 12:01	J
1,1,2,2-Tetrachloroethane	0.20	U,Q	ug/L	1	1.0	0.20	5/31/2019 12:01	J
1,1,2-Trichloroethane	0.30	U,Q	ug/L	1	1.0	0.30	5/31/2019 12:01	J
1,1-Dichloroethane	0.14	U,Q	ug/L	1	1.0	0.14	5/31/2019 12:01	J
1,1-Dichloroethylene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 12:01	J
1,2,3-Trichloropropane	0.91	U,Q	ug/L	1	1.0	0.91	5/31/2019 12:01	J
1,2-Dichlorobenzene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 12:01	J
1,2-Dichloroethane	0.23	U,Q	ug/L	1	3.0	0.23	5/31/2019 12:01	J
1,2-Dichloropropane	0.66	U,Q	ug/L	1	1.0	0.66	5/31/2019 12:01	J
1,4-Dichlorobenzene	0.22	U,Q	ug/L	1	3.0	0.22	5/31/2019 12:01	J
2-Butanone (MEK)	0.43	U,Q	ug/L	1	5.0	0.43	5/31/2019 12:01	J
2-Hexanone	0.71	U,Q	ug/L	1	5.0	0.71	5/31/2019 12:01	J
4-Methyl-2-pentanone (MIBK)	0.47	U,Q	ug/L	1	5.0	0.47	5/31/2019 12:01	J
Acetone	2.1	U,Q	ug/L	1	5.0	2.1	5/31/2019 12:01	J
Acrylonitrile	1.1	U,Q	ug/L	1	5.0	1.1	5/31/2019 12:01	J
Benzene	1.8	Q	ug/L	1	1.0	0.16	5/31/2019 12:01	J
Bromochloromethane	0.17	U,Q	ug/L	1	1.0	0.17	5/31/2019 12:01	J
Bromodichloromethane	0.46	U,Q	ug/L	1	1.0	0.46	5/31/2019 12:01	J
Bromoform	0.44	U,Q	ug/L	1	5.0	0.44	5/31/2019 12:01	J
Bromomethane	0.29	U,Q	ug/L	1	1.0	0.29	5/31/2019 12:01	J

Report ID: 878927 - 813010 Page 9 of 42

0.67

0.36

0.21

0.33

0.18

0.21

U,Q

U,Q

U,Q

U,Q

U,Q

U,Q

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370003 Matrix: Water

Sample ID: 19137-MW-11A Date Collected: 05/17/19 09:00

Sample Description: Location:

Advanced Environmental Laboratories, Inc.

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 12:01	J
Dibromomethane	0.26	U,Q	ug/L	1	1.0	0.26	5/31/2019 12:01	J
Ethylbenzene	0.24	U,Q	ug/L	1	1.0	0.24	5/31/2019 12:01	J
lodomethane (Methyl lodide)	0.16	U,Q	ug/L	1	5.0	0.16	5/31/2019 12:01	J
Methylene Chloride	2.5	U,Q	ug/L	1	5.0	2.5	5/31/2019 12:01	J
Styrene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 12:01	J
Tetrachloroethylene (PCE)	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 12:01	J
Toluene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 12:01	J
Trichloroethene	0.29	U,Q	ug/L	1	3.0	0.29	5/31/2019 12:01	J
Trichlorofluoromethane	0.32	U,Q	ug/L	1	1.0	0.32	5/31/2019 12:01	J
Vinyl Acetate	0.19	U,Q	ug/L	1	1.0	0.19	5/31/2019 12:01	J
Vinyl Chloride	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 12:01	J
Xylene (Total)	0.53	U,Q	ug/L	1	3.0	0.53	5/31/2019 12:01	J
cis-1,2-Dichloroethylene	0.24	U,Q	ug/L	1	3.0	0.24	5/31/2019 12:01	J
cis-1,3-Dichloropropene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 12:01	J
trans-1,2-Dichloroethylene	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 12:01	J
trans-1,3-Dichloropropylene	0.21	U,Q	ug/L	1	5.0	0.21	5/31/2019 12:01	J
trans-1,4-Dichloro-2-butene	1.8	U,Q	ug/L	1	5.0	1.8	5/31/2019 12:01	J
1,2-Dichloroethane-d4 (S)	112	Q	%	1	70-128		5/31/2019 12:01	
Toluene-d8 (S)	105	Q	%	1	77-119		5/31/2019 12:01	
Bromofluorobenzene (S)	118	Q	%	1	86-123		5/31/2019 12:01	
Analysis Desc: 8260B SIM Analysis,	Prep	paration M	lethod: S	N-846 5030B				
Water	Ana	lytical Me	thod: SW-	846 8260B (SIM))			
1,2-Dibromo-3-Chloropropane	0.11	U,Q,J4	ua/l	1	0.20	0.11	5/31/2019 12:01	J
Ethylene Dibromide (EDB)	0.020	U,Q	ug/L	1	0.10	0.020	5/31/2019 12:01	J
1,2-Dichloroethane-d4 (S)	92	0,4	%	1	77-125	0.020	5/31/2019 12:01	U
Toluene-d8 (S)	110		%	1	80-121		5/31/2019 12:01	
Bromofluorobenzene (S)	124		%	1	80-129		5/31/2019 12:01	
WET CHEMISTRY								
	۸	l. 4: N.A	4b a d. CDA	200.0				
Analysis Desc: IC,E300.0,Water	Ana	iyticai ivie	thod: EPA	300.0				
Chloride	18		mg/L	1	5.0	0.50	5/18/2019 14:54	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/18/2019 14:54	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	thod: EPA	350.1				
Ammonia (N)	4.1		mg/L	10	0.10	0.080	5/28/2019 15:39	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				

Report ID: 878927 - 813010 Page 10 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370003 Matrix: Water

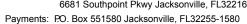
19137-MW-11A Date Collected: 05/17/19 09:00 Sample ID:

Sample Description: Location:

Total Dissolved Solids	380		mg/L	1	10	10	5/22/2019 16:45	J
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

J1906370004 Date Received: 05/18/19 10:05 Matrix: Water Lab ID:

Sample ID: 19137-MW-11B Date Collected: 05/17/19 08:35


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Water	Ana	lytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:37	J
Barium	17		ug/L	1	4.0	1.0	5/24/2019 13:37	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	5/24/2019 13:37	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:37	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 13:32	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:37	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:37	J
Iron	360	- 1	ug/L	1	400	100	5/24/2019 13:37	J
Lead	4.4	- 1	ug/L	1	12	3.0	5/28/2019 13:32	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:37	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:37	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:37	J
Sodium	16		mg/L	1	1.4	0.35	5/24/2019 13:37	J
Vanadium	2.3	I,V	ug/L	1	4.0	1.0	5/28/2019 13:32	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:37	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/30/2019 15:43	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/30/2019 15:43	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:14	J

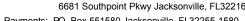
Report ID: 878927 - 813010 Page 11 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370004 Matrix: Water


19137-MW-11B Date Collected: 05/17/19 08:35 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	oaration N	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U,Q	ug/L	1	1.0	0.54	5/31/2019 12:30	J
1,1,1-Trichloroethane	0.22	Ú,Q	ug/L	1	1.0	0.22	5/31/2019 12:30	J
1,1,2,2-Tetrachloroethane	0.20	U,Q	ug/L	1	1.0	0.20	5/31/2019 12:30	J
1,1,2-Trichloroethane	0.30	U,Q	ug/L	1	1.0	0.30	5/31/2019 12:30	J
1,1-Dichloroethane	0.14	U,Q	ug/L	1	1.0	0.14	5/31/2019 12:30	J
1,1-Dichloroethylene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 12:30	J
1,2,3-Trichloropropane	0.91	U,Q	ug/L	1	1.0	0.91	5/31/2019 12:30	J
1,2-Dichlorobenzene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 12:30	J
1,2-Dichloroethane	0.23	U,Q	ug/L	1	3.0	0.23	5/31/2019 12:30	J
1,2-Dichloropropane	0.66	U,Q	ug/L	1	1.0	0.66	5/31/2019 12:30	J
1,4-Dichlorobenzene	0.22	U,Q	ug/L	1	3.0	0.22	5/31/2019 12:30	J
2-Butanone (MEK)	0.43	U,Q	ug/L	1	5.0	0.43	5/31/2019 12:30	J
2-Hexanone	0.71	U,Q	ug/L	1	5.0	0.71	5/31/2019 12:30	J
4-Methyl-2-pentanone (MIBK)	0.47	U,Q	ug/L	1	5.0	0.47	5/31/2019 12:30	J
Acetone	2.1	U,Q	ug/L	1	5.0	2.1	5/31/2019 12:30	J
Acrylonitrile	1.1	U,Q	ug/L	1	5.0	1.1	5/31/2019 12:30	J
Benzene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 12:30	J
Bromochloromethane	0.17	U,Q	ug/L	1	1.0	0.17	5/31/2019 12:30	J
Bromodichloromethane	0.46	U,Q	ug/L	1	1.0	0.46	5/31/2019 12:30	J
Bromoform	0.44	U,Q	ug/L	1	5.0	0.44	5/31/2019 12:30	J
Bromomethane	0.29	U,Q	ug/L	1	1.0	0.29	5/31/2019 12:30	J
Carbon Disulfide	0.67	U,Q	ug/L	1	1.0	0.67	5/31/2019 12:30	J
Carbon Tetrachloride	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 12:30	J
Chlorobenzene	0.21	U,Q	ug/L	1	3.0	0.21	5/31/2019 12:30	J
Chloroethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 12:30	J
Chloroform	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 12:30	J
Chloromethane	0.21	U,Q	ug/L	1	1.0	0.21	5/31/2019 12:30	J
Dibromochloromethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 12:30	J
Dibromomethane	0.26	U,Q	ug/L	1	1.0	0.26	5/31/2019 12:30	J
Ethylbenzene	0.24	U,Q	ug/L	1	1.0	0.24	5/31/2019 12:30	J
Iodomethane (Methyl Iodide)	0.16	U,Q	ug/L	1	5.0	0.16	5/31/2019 12:30	J
Methylene Chloride	2.5	U,Q	ug/L	1	5.0	2.5	5/31/2019 12:30	J
Styrene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 12:30	J
Tetrachloroethylene (PCE)	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 12:30	J
Toluene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 12:30	J
Trichloroethene	0.29	U,Q	ug/L	1	3.0	0.29	5/31/2019 12:30	J

Report ID: 878927 - 813010 Page 12 of 42

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370004 Matrix: Water

19137-MW-11B Date Collected: 05/17/19 08:35 Sample ID:

Sample Description: Location:

Campic Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U,Q	ug/L	1	1.0	0.32	5/31/2019 12:30	J
Vinyl Acetate	0.19	U,Q	ug/L	1	1.0	0.19	5/31/2019 12:30	J
Vinyl Chloride	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 12:30	J
Xylene (Total)	0.53	U,Q	ug/L	1	3.0	0.53	5/31/2019 12:30	J
cis-1,2-Dichloroethylene	0.24	U,Q	ug/L	1	3.0	0.24	5/31/2019 12:30	J
cis-1,3-Dichloropropene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 12:30	J
trans-1,2-Dichloroethylene	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 12:30	J
trans-1,3-Dichloropropylene	0.21	U,Q	ug/L	1	5.0	0.21	5/31/2019 12:30	J
trans-1,4-Dichloro-2-butene	1.8	U,Q	ug/L	1	5.0	1.8	5/31/2019 12:30	J
1,2-Dichloroethane-d4 (S)	115	Q	%	1	70-128		5/31/2019 12:30	
Toluene-d8 (S)	104	Q	%	1	77-119		5/31/2019 12:30	
Bromofluorobenzene (S)	114	Q	%	1	86-123		5/31/2019 12:30	
Analysis Desc: 8260B SIM Analysis,	Prep	oaration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U,Q	ug/L	1	0.20	0.11	5/31/2019 12:30	J
Ethylene Dibromide (EDB)	0.020	U,Q	ug/L	1	0.10	0.020	5/31/2019 12:30	J
1,2-Dichloroethane-d4 (S)	95		%	1	77-125		5/31/2019 12:30	
Toluene-d8 (S)	109		%	1	80-121		5/31/2019 12:30	
Bromofluorobenzene (S)	119		%	1	80-129		5/31/2019 12:30	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	29		mg/L	1	5.0	0.50	5/18/2019 15:15	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/18/2019 15:15	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.04		mg/L	1	0.010	0.0080	5/28/2019 15:37	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	82		mg/L	1	10	10	5/22/2019 16:45	J

Report ID: 878927 - 813010 Page 13 of 42

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370005 Matrix: Water

19137-CW-2A Date Collected: 05/17/19 09:17 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis, Water	Ana	vtical Me	thod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:41	J
Barium	70	U	ug/L ug/L	1	4.0	1.0	5/24/2019 13:41	J
Beryllium	0.50	U	ug/L ug/L	1	2.0	0.50	5/24/2019 13:41	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	5/24/2019 13:41	J
Chromium	4.5	Ī	ug/L	1	8.0	2.0	5/28/2019 13:36	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:41	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:41	J
Iron	180	ı	ug/L	1	400	100	5/24/2019 13:41	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 13:36	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:41	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:41	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:41	J
Sodium	180		mg/L	1	1.4	0.35	5/24/2019 13:41	J
Vanadium	23	V	ug/L	1	4.0	1.0	5/28/2019 13:36	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:41	J
Analysis Desc: SW846 6020B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis,Total	Ana	ytical Me	thod: SW-	846 6020				
Antimony	0.18	1	ug/L	1	0.70	0.11	5/30/2019 15:47	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/30/2019 15:47	J
Analysis Desc: SW846 7470A	Prer	aration N	Method: SV	V-846 7470A				
Analysis, Water	·			846 7470A				
Moroupy	0.011	U		1	0.10	0.011	5/24/2019 19:18	J
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19.16	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	/lethod: SV	V-846 5030B				
	Ana	ytical Me	thod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U,Q	ug/L	1	1.0	0.54	5/31/2019 13:07	J
1,1,1-Trichloroethane	0.22	U,Q	ug/L	1	1.0	0.22	5/31/2019 13:07	J
1,1,2,2-Tetrachloroethane	0.20	U,Q	ug/L	1	1.0	0.20	5/31/2019 13:07	J
1,1,2-Trichloroethane	0.30	U,Q	ug/L	1	1.0	0.30	5/31/2019 13:07	J
1,1-Dichloroethane	0.14	U,Q	ug/L	1	1.0	0.14	5/31/2019 13:07	J
1,1-Dichloroethylene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 13:07	J
1,2,3-Trichloropropane	0.91	U,Q	ug/L	1	1.0	0.91	5/31/2019 13:07	J

Report ID: 878927 - 813010 Page 14 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906370005 Date Received: 05/18/19 10:05 Matrix: Water

Sample ID: 19137-CW-2A Date Collected: 05/17/19 09:17

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 13:07	J
1,2-Dichloroethane	0.23	U,Q	ug/L	1	3.0	0.23	5/31/2019 13:07	J
1,2-Dichloropropane	0.66	U,Q	ug/L	1	1.0	0.66	5/31/2019 13:07	J
1,4-Dichlorobenzene	0.22	U,Q	ug/L	1	3.0	0.22	5/31/2019 13:07	J
2-Butanone (MEK)	0.43	U,Q	ug/L	1	5.0	0.43	5/31/2019 13:07	J
2-Hexanone	0.71	U,Q	ug/L	1	5.0	0.71	5/31/2019 13:07	J
4-Methyl-2-pentanone (MIBK)	0.47	U,Q	ug/L	1	5.0	0.47	5/31/2019 13:07	J
Acetone	2.1	U,Q	ug/L	1	5.0	2.1	5/31/2019 13:07	J
Acrylonitrile	1.1	U,Q	ug/L	1	5.0	1.1	5/31/2019 13:07	J
Benzene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 13:07	J
Bromochloromethane	0.17	U,Q	ug/L	1	1.0	0.17	5/31/2019 13:07	J
Bromodichloromethane	0.46	U,Q	ug/L	1	1.0	0.46	5/31/2019 13:07	J
Bromoform	0.44	U,Q	ug/L	1	5.0	0.44	5/31/2019 13:07	J
Bromomethane	0.29	U,Q	ug/L	1	1.0	0.29	5/31/2019 13:07	J
Carbon Disulfide	0.67	U,Q	ug/L	1	1.0	0.67	5/31/2019 13:07	J
Carbon Tetrachloride	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 13:07	J
Chlorobenzene	0.21	U,Q	ug/L	1	3.0	0.21	5/31/2019 13:07	J
Chloroethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 13:07	J
Chloroform	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 13:07	J
Chloromethane	0.21	Ú,Q	ug/L	1	1.0	0.21	5/31/2019 13:07	J
Dibromochloromethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 13:07	J
Dibromomethane	0.26	U,Q	ug/L	1	1.0	0.26	5/31/2019 13:07	J
Ethylbenzene	0.24	U,Q	ug/L	1	1.0	0.24	5/31/2019 13:07	J
Iodomethane (Methyl Iodide)	0.16	U,Q	ug/L	1	5.0	0.16	5/31/2019 13:07	J
Methylene Chloride	2.5	Ú,Q	ug/L	1	5.0	2.5	5/31/2019 13:07	J
Styrene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 13:07	J
Tetrachloroethylene (PCE)	0.36	Ú,Q	ug/L	1	3.0	0.36	5/31/2019 13:07	J
Toluene	0.23	Ú,Q	ug/L	1	1.0	0.23	5/31/2019 13:07	J
Trichloroethene	0.29	Ú,Q	ug/L	1	3.0	0.29	5/31/2019 13:07	J
Trichlorofluoromethane	0.32	Ú,Q	ug/L	1	1.0	0.32	5/31/2019 13:07	J
Vinyl Acetate	0.19	Ú,Q	ug/L	1	1.0	0.19	5/31/2019 13:07	J
Vinyl Chloride	0.20	Ú,Q	ug/L	1	3.0	0.20	5/31/2019 13:07	J
Xylene (Total)	0.53	U,Q	ug/L	1	3.0	0.53	5/31/2019 13:07	J
cis-1,2-Dichloroethylene	0.24	Ú,Q	ug/L	1	3.0	0.24	5/31/2019 13:07	J
cis-1,3-Dichloropropene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 13:07	J
trans-1,2-Dichloroethylene	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 13:07	J
trans-1,3-Dichloropropylene	0.21	U,Q	ug/L	1	5.0	0.21	5/31/2019 13:07	J
trans-1,4-Dichloro-2-butene	1.8	U,Q	ug/L	1	5.0	1.8	5/31/2019 13:07	J
1,2-Dichloroethane-d4 (S)	112	Q	%	1	70-128	0	5/31/2019 13:07	•
Toluene-d8 (S)	105	Q	%	1	77-119		5/31/2019 13:07	

Report ID: 878927 - 813010 Page 15 of 42

ANALYTICAL RESULTS

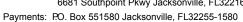
Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370005 Matrix: Water

19137-CW-2A Date Collected: 05/17/19 09:17 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	113	Q	%	1	86-123		5/31/2019 13:07	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U,Q	ug/L	1	0.20	0.11	5/31/2019 13:07	J
Ethylene Dibromide (EDB)	0.020	U,Q	ug/L	1	0.10	0.020	5/31/2019 13:07	J
1,2-Dichloroethane-d4 (S)	92		%	1	77-125		5/31/2019 13:07	
Toluene-d8 (S)	110		%	1	80-121		5/31/2019 13:07	
Bromofluorobenzene (S)	119		%	1	80-129		5/31/2019 13:07	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	320		mg/L	10	50	5.0	5/18/2019 15:57	J
Nitrate (as N)	0.50	U	mg/L	10	5.0	0.50	5/18/2019 15:57	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	18		mg/L	20	0.20	0.16	5/28/2019 14:27	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1300		mg/L	1	10	10	5/22/2019 16:45	J
				Data Danak	05/40/40 40:05	NA - Andrew	Matai	
Lab ID: J1906370006				Date Received:	05/18/19 10:05	Matrix:	Water	
Sample ID: 19137-CW-3A				Date Collected:	05/17/19 08:30			


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration l	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:44	J
Barium	51		ug/L	1	4.0	1.0	5/24/2019 13:44	J
Beryllium	1.0	I	ug/L	1	2.0	0.50	5/24/2019 13:44	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:44	J
Chromium	14		ug/L	1	8.0	2.0	5/28/2019 13:39	J

Report ID: 878927 - 813010 Page 16 of 42

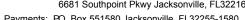
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370006 Matrix: Water

19137-CW-3A Date Collected: 05/17/19 08:30 Sample ID:


Sample Description: Location:

 								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Cobalt	2.0	U	ug/L	1	8.0	2.0	5/24/2019 13:44	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:44	J
Iron	4900		ug/L	1	400	100	5/24/2019 13:44	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 13:39	J
Nickel	7.8	ı	ug/L	1	24	6.0	5/24/2019 13:44	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:44	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:44	J
Sodium	310		mg/L	1	1.4	0.35	5/24/2019 13:44	J
Vanadium	33	V	ug/L	1	4.0	1.0	5/28/2019 13:39	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:44	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SW	/-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.26	ı	ug/L	1	0.70	0.11	5/30/2019 15:51	J
Thallium	0.057	U	ug/L	1	0.20	0.057	5/30/2019 15:51	J
Analysis Desc: SW846 7470A	Dror	paration N		/-846 7470A				
Analysis, Water	·							
	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:27	J
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	/-846 5030B				
	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U,Q	ug/L	1	1.0	0.54	5/31/2019 13:36	J
1,1,1-Trichloroethane	0.22	U,Q	ug/L	1	1.0	0.22	5/31/2019 13:36	J
1,1,2,2-Tetrachloroethane	0.20	U,Q	ug/L	1	1.0	0.20	5/31/2019 13:36	J
1,1,2-Trichloroethane	0.30	U,Q	ug/L	1	1.0	0.30	5/31/2019 13:36	J
1,1-Dichloroethane	0.14	U,Q	ug/L	1	1.0	0.14	5/31/2019 13:36	J
1,1-Dichloroethylene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 13:36	J
1,2,3-Trichloropropane	0.91	U,Q	ug/L	1	1.0	0.91	5/31/2019 13:36	J
1,2-Dichlorobenzene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 13:36	J
1,2-Dichloroethane	0.23	U,Q	ug/L	1	3.0	0.23	5/31/2019 13:36	J
1,2-Dichloropropane	0.66	U,Q	ug/L	1	1.0	0.66	5/31/2019 13:36	J
1,4-Dichlorobenzene	0.22	U,Q	ug/L	1	3.0	0.22	5/31/2019 13:36	J
			ug/L	1	5.0	0.43	5/31/2019 13:36	J
	0.43	U,Q	ug/L	•				
2-Butanone (MEK)	0.43 0.71	U,Q U,Q	ug/L ug/L	1	5.0	0.71	5/31/2019 13:36	J
2-Butanone (MEK) 2-Hexanone			_		5.0 5.0	0.71 0.47	5/31/2019 13:36 5/31/2019 13:36	J J
2-Butanone (MEK) 2-Hexanone 4-Methyl-2-pentanone (MIBK) Acetone	0.71	U,Q	ug/L	1				

Report ID: 878927 - 813010 Page 17 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1906370006 Date Received: 05/18/19 10:05 Matrix: Water

Date Collected: 05/17/19 08:30 Sample ID: 19137-CW-3A

Sample Description: Location:

Campic Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 13:36	J
Bromochloromethane	0.17	U,Q	ug/L	1	1.0	0.17	5/31/2019 13:36	J
Bromodichloromethane	0.46	U,Q	ug/L	1	1.0	0.46	5/31/2019 13:36	J
Bromoform	0.44	U,Q	ug/L	1	5.0	0.44	5/31/2019 13:36	J
Bromomethane	0.29	U,Q	ug/L	1	1.0	0.29	5/31/2019 13:36	J
Carbon Disulfide	0.67	U,Q	ug/L	1	1.0	0.67	5/31/2019 13:36	J
Carbon Tetrachloride	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 13:36	J
Chlorobenzene	0.21	U,Q	ug/L	1	3.0	0.21	5/31/2019 13:36	J
Chloroethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 13:36	J
Chloroform	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 13:36	J
Chloromethane	0.21	U,Q	ug/L	1	1.0	0.21	5/31/2019 13:36	J
Dibromochloromethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 13:36	J
Dibromomethane	0.26	U,Q	ug/L	1	1.0	0.26	5/31/2019 13:36	J
Ethylbenzene	0.24	U,Q	ug/L	1	1.0	0.24	5/31/2019 13:36	J
Iodomethane (Methyl Iodide)	0.16	U,Q	ug/L	1	5.0	0.16	5/31/2019 13:36	J
Methylene Chloride	2.5	U,Q	ug/L	1	5.0	2.5	5/31/2019 13:36	J
Styrene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 13:36	J
Tetrachloroethylene (PCE)	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 13:36	J
Toluene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 13:36	J
Trichloroethene	0.29	U,Q	ug/L	1	3.0	0.29	5/31/2019 13:36	J
Trichlorofluoromethane	0.32	U,Q	ug/L	1	1.0	0.32	5/31/2019 13:36	J
Vinyl Acetate	0.19	U,Q	ug/L	1	1.0	0.19	5/31/2019 13:36	J
Vinyl Chloride	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 13:36	J
Xylene (Total)	0.53	U,Q	ug/L	1	3.0	0.53	5/31/2019 13:36	J
cis-1,2-Dichloroethylene	0.24	U,Q	ug/L	1	3.0	0.24	5/31/2019 13:36	J
cis-1,3-Dichloropropene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 13:36	J
trans-1,2-Dichloroethylene	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 13:36	J
trans-1,3-Dichloropropylene	0.21	U,Q	ug/L	1	5.0	0.21	5/31/2019 13:36	J
trans-1,4-Dichloro-2-butene	1.8	U,Q	ug/L	1	5.0	1.8	5/31/2019 13:36	J
1,2-Dichloroethane-d4 (S)	117	Q	%	1	70-128		5/31/2019 13:36	
Toluene-d8 (S)	106	Q	%	1	77-119		5/31/2019 13:36	
Bromofluorobenzene (S)	115	Q	%	1	86-123		5/31/2019 13:36	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U,Q	ug/L	1	0.20	0.11	5/31/2019 13:36	J
Ethylene Dibromide (EDB)	0.020	U,Q	ug/L	1	0.10	0.020	5/31/2019 13:36	J
1,2-Dichloroethane-d4 (S)	97	-,-	%	1	77-125		5/31/2019 13:36	-
Toluene-d8 (S)	111		%	1	80-121		5/31/2019 13:36	

Report ID: 878927 - 813010 Page 18 of 42

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370006 Matrix: Water

19137-CW-3A Date Collected: 05/17/19 08:30 Sample ID:

Sample Description: Location:

B	D "	0 1		55	Adjusted	Adjusted	A := = l. :== = = l	1 -1-
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab ——
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	580		mg/L	20	100	10	5/18/2019 16:18	J
Nitrate (as N)	1.0	U	mg/L	20	10	1.0	5/18/2019 16:18	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	14		mg/L	20	0.20	0.16	5/28/2019 14:28	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1600		mg/L	1	10	10	5/22/2019 16:45	J

Lab ID: J1906370007 Date Received: 05/18/19 10:05 Matrix: Water

Date Collected: 05/17/19 00:01 Sample ID: 19137-DUP-2

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	Results	Quai	Offics	Di	FQL	IVIDL	Analyzeu	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:48	J
Barium	38		ug/L	1	4.0	1.0	5/24/2019 13:48	J
Beryllium	2.1		ug/L	1	2.0	0.50	5/24/2019 13:48	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	5/24/2019 13:48	J
Chromium	2.0	U	ug/L	1	8.0	2.0	5/28/2019 13:43	J
Cobalt	6.7	ı	ug/L	1	8.0	2.0	5/24/2019 13:48	J
Copper	4.0	U	ug/L	1	16	4.0	5/24/2019 13:48	J
Iron	12000		ug/L	1	400	100	5/24/2019 13:48	J
Lead	4.6	ı	ug/L	1	12	3.0	5/28/2019 13:43	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:48	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:48	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:48	J
Sodium	17		mg/L	1	1.4	0.35	5/24/2019 13:48	J
Vanadium	4.9	V	ug/L	1	4.0	1.0	5/28/2019 13:43	J
Zinc	50	U	ua/L	1	200	50	5/24/2019 13:48	J

Report ID: 878927 - 813010 Page 19 of 42

Adjusted

MDL

Analyzed

0.46 5/31/2019 14:13

0.44

0.29

0.67

0.36

0.21

0.33

0.18

5/31/2019 14:13

5/31/2019 14:13

5/31/2019 14:13

5/31/2019 14:13

5/31/2019 14:13

5/31/2019 14:13

5/31/2019 14:13

0.21 5/31/2019 14:13

J

J

J

Lab

Adjusted

PQL

1.0

5.0

1.0

1.0

3.0

3.0

1.0

3.0

1.0

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Bromodichloromethane

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon Disulfide

Carbon Tetrachloride

Date Received: 05/18/19 10:05 Lab ID: J1906370007 Matrix: Water

Units

DF

Qual

19137-DUP-2 Date Collected: 05/17/19 00:01 Sample ID:

Sample Description: Location:

Results

i arameters	resuits	Quai	Office	Di	I QL	IVIDL	7 trialy 200	
Analysis Desc: SW846 6020B	Prep	aration N	Method: SW	/-846 3010A				
Analysis,Total	Anal	lytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/30/2019 16:05	,
Thallium	0.066	I	ug/L	1	0.20	0.057	5/30/2019 16:05	·
Analysis Desc: SW846 7470A	Prep	aration M	Method: SW	/-846 7470A				
Analysis, Water	Anal	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:31	·
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration N	Method: SW	/-846 5030B				
	Anal	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U,Q	ug/L	1	1.0	0.54	5/31/2019 14:13	
1,1,1-Trichloroethane	0.22	U,Q	ug/L	1	1.0	0.22	5/31/2019 14:13	
1,1,2,2-Tetrachloroethane	0.20	U,Q	ug/L	1	1.0	0.20	5/31/2019 14:13	
1,1,2-Trichloroethane	0.30	U,Q	ug/L	1	1.0	0.30	5/31/2019 14:13	,
1,1-Dichloroethane	0.14	U,Q	ug/L	1	1.0	0.14	5/31/2019 14:13	,
1,1-Dichloroethylene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 14:13	,
1,2,3-Trichloropropane	0.91	U,Q	ug/L	1	1.0	0.91	5/31/2019 14:13	,
1,2-Dichlorobenzene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 14:13	
1,2-Dichloroethane	0.23	U,Q	ug/L	1	3.0	0.23	5/31/2019 14:13	
1,2-Dichloropropane	0.66	U,Q	ug/L	1	1.0	0.66	5/31/2019 14:13	,
1,4-Dichlorobenzene	0.22	U,Q	ug/L	1	3.0	0.22	5/31/2019 14:13	
2-Butanone (MEK)	0.43	U,Q	ug/L	1	5.0	0.43	5/31/2019 14:13	
2-Hexanone	0.71	U,Q	ug/L	1	5.0	0.71	5/31/2019 14:13	,
4-Methyl-2-pentanone (MIBK)	0.47	U,Q	ug/L	1	5.0	0.47	5/31/2019 14:13	,
Acetone	2.1	Ú,Q	ug/L	1	5.0	2.1	5/31/2019 14:13	,
Acrylonitrile	1.1	Ú,Q	ug/L	1	5.0	1.1	5/31/2019 14:13	
Benzene	7.2	Q	ug/L	1	1.0	0.16	5/31/2019 14:13	,
Bromochloromethane	0.17	U,Q	ug/L	1	1.0	0.17	5/31/2019 14:13	,

Report ID: 878927 - 813010 Page 20 of 42

U,Q

U,Q

U,Q

U,Q

U,Q

U,Q

U,Q

U,Q

U,Q

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

0.46

0.44

0.29

0.67

0.36

0.21

0.33

0.18

0.21

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370007 Matrix: Water

Sample ID: 19137-DUP-2 Date Collected: 05/17/19 00:01

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 14:13	J
Dibromomethane	0.26	U,Q	ug/L	1	1.0	0.26	5/31/2019 14:13	J
Ethylbenzene	0.24	U,Q	ug/L	1	1.0	0.24	5/31/2019 14:13	J
lodomethane (Methyl lodide)	0.16	U,Q	ug/L	1	5.0	0.16	5/31/2019 14:13	J
Methylene Chloride	2.5	U,Q	ug/L	1	5.0	2.5	5/31/2019 14:13	J
Styrene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 14:13	J
Tetrachloroethylene (PCE)	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 14:13	J
Toluene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 14:13	J
Trichloroethene	0.29	U,Q	ug/L	1	3.0	0.29	5/31/2019 14:13	J
Trichlorofluoromethane	0.32	U,Q	ug/L	1	1.0	0.32	5/31/2019 14:13	J
Vinyl Acetate	0.19	U,Q	ug/L	1	1.0	0.19	5/31/2019 14:13	J
Vinyl Chloride	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 14:13	J
Xylene (Total)	1.2	I,Q	ug/L	1	3.0	0.53	5/31/2019 14:13	J
cis-1,2-Dichloroethylene	0.24	U,Q	ug/L	1	3.0	0.24	5/31/2019 14:13	J
cis-1,3-Dichloropropene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 14:13	J
trans-1,2-Dichloroethylene	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 14:13	J
trans-1,3-Dichloropropylene	0.21	U,Q	ug/L	1	5.0	0.21	5/31/2019 14:13	J
trans-1,4-Dichloro-2-butene	1.8	U,Q	ug/L	1	5.0	1.8	5/31/2019 14:13	J
1,2-Dichloroethane-d4 (S)	110	Q	%	1	70-128		5/31/2019 14:13	
Toluene-d8 (S)	104	Q	%	1	77-119		5/31/2019 14:13	
Bromofluorobenzene (S)	113	Q	%	1	86-123		5/31/2019 14:13	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water				346 8260B (SIM	1)			
1,2-Dibromo-3-Chloropropane	0.11	U,Q	ug/L	1	0.20	0.11	5/31/2019 14:13	J
Ethylene Dibromide (EDB)	0.020	U,Q	ug/L	1	0.10	0.020	5/31/2019 14:13	J
1,2-Dichloroethane-d4 (S)	91	٥,٩	%	1	77-125	0.020	5/31/2019 14:13	Ū
Toluene-d8 (S)	109		%	1	80-121		5/31/2019 14:13	
Bromofluorobenzene (S)	118		%	1	80-129		5/31/2019 14:13	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	18		mg/L	2	10	1.0	5/18/2019 16:39	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	5/18/2019 16:39	J
,					1.0	0.10	3/10/2013 10:33	ŭ
Analysis Desc: Ammonia,E350.1,Water		lytical Me	ethod: EPA					
Ammonia (N)	9.6		mg/L	10	0.10	0.080	5/28/2019 14:29	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				

Report ID: 878927 - 813010 Page 21 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370007 Matrix: Water

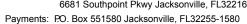
19137-DUP-2 Date Collected: 05/17/19 00:01 Sample ID:

Sample Description: Location:

Total Dissolved Solids	950		mg/L	1	10	10	5/22/2019 16:45	
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

Lab ID: J1906370008 Date Received: 05/18/19 10:05 Matrix: Water

Sample ID: 19137-EQ-2 Date Collected: 05/17/19 10:00


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis,Water	Anal	vtical Me	thod: SW-8	346 6010				
Arsenic	9.0	U	ug/L	1	40	9.0	5/24/2019 13:51	J
Barium	1.0	Ü	ug/L	1	4.0	1.0	5/24/2019 13:51	J
Beryllium	0.50	Ü	ug/L	1	2.0	0.50	5/24/2019 13:51	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	5/24/2019 13:51	J
Chromium	2.0	Ü	ug/L	1	8.0	2.0	5/28/2019 13:47	J
Cobalt	2.0	Ü	ug/L	1	8.0	2.0	5/24/2019 13:51	J
Copper	4.0	Ū	ug/L	1	16	4.0	5/24/2019 13:51	J
Iron	100	Ū	ug/L	1	400	100	5/24/2019 13:51	J
Lead	3.0	U	ug/L	1	12	3.0	5/28/2019 13:47	J
Nickel	6.0	U	ug/L	1	24	6.0	5/24/2019 13:51	J
Selenium	40	U	ug/L	1	160	40	5/24/2019 13:51	J
Silver	10	U	ug/L	1	40	10	5/24/2019 13:51	J
Sodium	0.35	U	mg/L	1	1.4	0.35	5/24/2019 13:51	J
Vanadium	1.0	U	ug/L	1	4.0	1.0	5/28/2019 13:47	J
Zinc	50	U	ug/L	1	200	50	5/24/2019 13:51	J
Analysis Desc: SW846 6020B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis, Total	Anal	vtical Me	thod: SW-8	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	5/30/2019 16:09	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057	5/30/2019 16:09	J
				-	3.20	0.007	2.20.20.0	
Analysis Desc: SW846 7470A	Prep	aration N	Nethod: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	thod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	5/24/2019 19:34	J

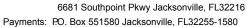
Report ID: 878927 - 813010 Page 22 of 42

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370008 Matrix: Water


19137-EQ-2 Date Collected: 05/17/19 10:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	5/31/2019 09:18	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	5/31/2019 09:18	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	5/31/2019 09:18	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	5/31/2019 09:18	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	5/31/2019 09:18	J
1,1-Dichloroethylene	0.18	U	ug/L	1	3.0	0.18	5/31/2019 09:18	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	5/31/2019 09:18	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	3.0	0.18	5/31/2019 09:18	J
1,2-Dichloroethane	0.23	U	ug/L	1	3.0	0.23	5/31/2019 09:18	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	5/31/2019 09:18	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	3.0	0.22	5/31/2019 09:18	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	5/31/2019 09:18	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	5/31/2019 09:18	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	5.0	0.47	5/31/2019 09:18	J
Acetone	2.1	U	ug/L	1	5.0	2.1	5/31/2019 09:18	J
Acrylonitrile	1.1	U	ug/L	1	5.0	1.1	5/31/2019 09:18	J
Benzene	0.16	U	ug/L	1	1.0	0.16	5/31/2019 09:18	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	5/31/2019 09:18	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	5/31/2019 09:18	J
Bromoform	0.44	U	ug/L	1	5.0	0.44	5/31/2019 09:18	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	5/31/2019 09:18	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	5/31/2019 09:18	J
Carbon Tetrachloride	0.36	U	ug/L	1	3.0	0.36	5/31/2019 09:18	J
Chlorobenzene	0.21	U	ug/L	1	3.0	0.21	5/31/2019 09:18	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	5/31/2019 09:18	J
Chloroform	0.18	U	ug/L	1	3.0	0.18	5/31/2019 09:18	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	5/31/2019 09:18	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	5/31/2019 09:18	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	5/31/2019 09:18	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	5/31/2019 09:18	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	5.0	0.16	5/31/2019 09:18	J
Methylene Chloride	7.8		ug/L	1	5.0	2.5	5/31/2019 09:18	J
Styrene	0.23	U	ug/L	1	1.0	0.23	5/31/2019 09:18	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	3.0	0.36	5/31/2019 09:18	J
Toluene	0.23	U	ug/L	1	1.0	0.23	5/31/2019 09:18	J
Trichloroethene	0.29	U	ug/L	1	3.0	0.29	5/31/2019 09:18	J

Report ID: 878927 - 813010 Page 23 of 42

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370008 Matrix: Water

Sample ID: 19137-EQ-2 Date Collected: 05/17/19 10:00


Sample Description: Location:

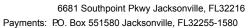
campio Bocomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	5/31/2019 09:18	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	5/31/2019 09:18	J
Vinyl Chloride	0.20	U	ug/L	1	3.0	0.20	5/31/2019 09:18	J
Xylene (Total)	0.53	U	ug/L	1	3.0	0.53	5/31/2019 09:18	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	3.0	0.24	5/31/2019 09:18	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	5/31/2019 09:18	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	3.0	0.20	5/31/2019 09:18	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	5.0	0.21	5/31/2019 09:18	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	5.0	1.8	5/31/2019 09:18	J
1,2-Dichloroethane-d4 (S)	115		%	1	70-128		5/31/2019 09:18	
Toluene-d8 (S)	105		%	1	77-119		5/31/2019 09:18	
Bromofluorobenzene (S)	114		%	1	86-123		5/31/2019 09:18	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	5/31/2019 09:18	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	5/31/2019 09:18	J
1,2-Dichloroethane-d4 (S)	95		%	1	77-125		5/31/2019 09:18	
Toluene-d8 (S)	110		%	1	80-121		5/31/2019 09:18	
Bromofluorobenzene (S)	120		%	1	80-129		5/31/2019 09:18	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	0.50	U	mg/L	1	5.0	0.50	5/18/2019 17:00	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	5/18/2019 17:00	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.0080	U	mg/L	1	0.010	0.0080	5/28/2019 14:31	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	10	U	mg/L	1	10	10	5/22/2019 16:45	J

Report ID: 878927 - 813010 Page 24 of 42

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370009 Matrix: Water


19137-TripBlank-7 Date Collected: 05/17/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	oaration N	Method: SV	V-846 5030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U,Q	ug/L	1	1.0	0.54	5/31/2019 14:43	J
1,1,1-Trichloroethane	0.22	Ú,Q	ug/L	1	1.0	0.22	5/31/2019 14:43	J
1,1,2,2-Tetrachloroethane	0.20	U,Q	ug/L	1	1.0	0.20	5/31/2019 14:43	J
1,1,2-Trichloroethane	0.30	U,Q	ug/L	1	1.0	0.30	5/31/2019 14:43	J
1,1-Dichloroethane	0.14	U,Q	ug/L	1	1.0	0.14	5/31/2019 14:43	J
1,1-Dichloroethylene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 14:43	J
1,2,3-Trichloropropane	0.91	U,Q	ug/L	1	1.0	0.91	5/31/2019 14:43	J
1,2-Dichlorobenzene	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 14:43	J
1,2-Dichloroethane	0.23	U,Q	ug/L	1	3.0	0.23	5/31/2019 14:43	J
1,2-Dichloropropane	0.66	U,Q	ug/L	1	1.0	0.66	5/31/2019 14:43	J
1,4-Dichlorobenzene	0.22	U,Q	ug/L	1	3.0	0.22	5/31/2019 14:43	J
2-Butanone (MEK)	0.43	U,Q	ug/L	1	5.0	0.43	5/31/2019 14:43	J
2-Hexanone	0.71	U,Q	ug/L	1	5.0	0.71	5/31/2019 14:43	J
4-Methyl-2-pentanone (MIBK)	0.47	U,Q	ug/L	1	5.0	0.47	5/31/2019 14:43	J
Acetone	2.1	U,Q	ug/L	1	5.0	2.1	5/31/2019 14:43	J
Acrylonitrile	1.1	U,Q	ug/L	1	5.0	1.1	5/31/2019 14:43	J
Benzene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 14:43	J
Bromochloromethane	0.17	U,Q	ug/L	1	1.0	0.17	5/31/2019 14:43	J
Bromodichloromethane	0.46	U,Q	ug/L	1	1.0	0.46	5/31/2019 14:43	J
Bromoform	0.44	U,Q	ug/L	1	5.0	0.44	5/31/2019 14:43	J
Bromomethane	0.29	U,Q	ug/L	1	1.0	0.29	5/31/2019 14:43	J
Carbon Disulfide	0.67	U,Q	ug/L	1	1.0	0.67	5/31/2019 14:43	J
Carbon Tetrachloride	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 14:43	J
Chlorobenzene	0.21	U,Q	ug/L	1	3.0	0.21	5/31/2019 14:43	J
Chloroethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 14:43	J
Chloroform	0.18	U,Q	ug/L	1	3.0	0.18	5/31/2019 14:43	J
Chloromethane	0.21	U,Q	ug/L	1	1.0	0.21	5/31/2019 14:43	J
Dibromochloromethane	0.33	U,Q	ug/L	1	1.0	0.33	5/31/2019 14:43	J
Dibromomethane	0.26	U,Q	ug/L	1	1.0	0.26	5/31/2019 14:43	J
Ethylbenzene	0.24	U,Q	ug/L	1	1.0	0.24	5/31/2019 14:43	J
Iodomethane (Methyl Iodide)	0.16	U,Q	ug/L	1	5.0	0.16	5/31/2019 14:43	J
Methylene Chloride	2.5	U,Q	ug/L	1	5.0	2.5	5/31/2019 14:43	J
Styrene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 14:43	J
Tetrachloroethylene (PCE)	0.36	U,Q	ug/L	1	3.0	0.36	5/31/2019 14:43	J
Toluene	0.23	U,Q	ug/L	1	1.0	0.23	5/31/2019 14:43	J
Trichloroethene	0.29	U,Q	ug/L	1	3.0	0.29	5/31/2019 14:43	J

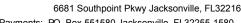
Report ID: 878927 - 813010 Page 25 of 42

ANALYTICAL RESULTS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 05/18/19 10:05 Lab ID: J1906370009 Matrix: Water

Sample ID: 19137-TripBlank-7 Date Collected: 05/17/19 00:00


Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U,Q	ug/L	1	1.0	0.32	5/31/2019 14:43	J
Vinyl Acetate	0.19	U,Q	ug/L	1	1.0	0.19	5/31/2019 14:43	J
Vinyl Chloride	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 14:43	J
Xylene (Total)	0.53	U,Q	ug/L	1	3.0	0.53	5/31/2019 14:43	J
cis-1,2-Dichloroethylene	0.24	U,Q	ug/L	1	3.0	0.24	5/31/2019 14:43	J
cis-1,3-Dichloropropene	0.16	U,Q	ug/L	1	1.0	0.16	5/31/2019 14:43	J
trans-1,2-Dichloroethylene	0.20	U,Q	ug/L	1	3.0	0.20	5/31/2019 14:43	J
trans-1,3-Dichloropropylene	0.21	U,Q	ug/L	1	5.0	0.21	5/31/2019 14:43	J
trans-1,4-Dichloro-2-butene	1.8	U,Q	ug/L	1	5.0	1.8	5/31/2019 14:43	J
1,2-Dichloroethane-d4 (S)	110	Q	%	1	70-128		5/31/2019 14:43	
Toluene-d8 (S)	107	Q	%	1	77-119		5/31/2019 14:43	
Bromofluorobenzene (S)	110	Q	%	1	86-123		5/31/2019 14:43	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Anal	ytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U,Q	ug/L	1	0.20	0.11	5/31/2019 14:43	J
Ethylene Dibromide (EDB)	0.020	U,Q	ug/L	1	0.10	0.020	5/31/2019 14:43	J
1,2-Dichloroethane-d4 (S)	91		%	1	77-125		5/31/2019 14:43	
Toluene-d8 (S)	112		%	1	80-121		5/31/2019 14:43	
Bromofluorobenzene (S)	116		%	1	80-129		5/31/2019 14:43	
, ,								

Report ID: 878927 - 813010 Page 26 of 42

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Q Missed Hold Time
- Method Blank Contamination
- **Estimated Result** J4

LAB QUALIFIERS

- G DOH Certification #E82001(AEL-G)(FL NELAC Certification)
- J DOH Certification #E82574(AEL-JAX)(FL NELAC Certification)

Report ID: 878927 - 813010 Page 27 of 42

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/5010 Analysis Method: EPA 300.0

EPA 300.0 QC Batch Method: Prepared:

J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008 Associated Lab Samples:

METHOD BLANK: 3101111

_		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
WET CHEMISTRY				
Chloride	mg/L	0.50	0.50 U	
Nitrate (as N)	mg/L	0.050	0.050 U	

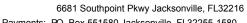
LABORATORY CONTROL SA	AMPLE & LCSD:	3101112		3101113	3					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY Chloride Nitrate (as N)	mg/L mg/L	20 2	22 2.2	22 2.1	109 110	109 107	90-110 90-110	0 3	10 10	

MATRIX SPIKE SAMPLE: 3	101114	Original:	J1906370004

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY							
Chloride	mg/L	29	20	49	97	90-110	
Nitrate (as N)	mg/L	0	2	2.2	108	90-110	

QC Batch: DGMj/3437 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 05/23/2019 03:30

Associated Lab Samples: J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008


METHOD BLANK: 3103534

Parameter	Units	Blank Result	Reporting Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Arsenic	ug/L	9.0	9.0 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U

Report ID: 878927 - 813010 Page 28 of 42

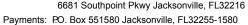
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

M	ETH	HOD	BLAN	IK:	3103534

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Copper	ug/L	4.0	4.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Zinc	ug/L	50	50 U
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Vanadium	ug/L	2.2	1.0 I


LABORATORY CONTROL SAMPLE: 3103535

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
	Office		resuit	70 1100	Elimito Qualificio
METALS					
Silver	ug/L	200	190	94	80-120
Arsenic	ug/L	200	180	89	80-120
Barium	ug/L	20	19	94	80-120
Beryllium	ug/L	10	8.7	87	80-120
Cadmium	ug/L	20	19	94	80-120
Cobalt	ug/L	40	38	94	80-120
Chromium	ug/L	40	36	90	80-120
Copper	ug/L	80	75	94	80-120
Iron	ug/L	2000	1800	89	80-120
Sodium	mg/L	7	6.8	97	80-120
Nickel	ug/L	120	110	94	80-120
Lead	ug/L	60	57	95	80-120
Selenium	ug/L	800	730	91	80-120
Vanadium	ug/L	20	20	101	80-120
Zinc	ug/L	1000	910	91	80-120

Report ID: 878927 - 813010 Page 29 of 42

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

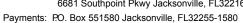
MATRIX SPIKE & MATRI	X SPIKE DUPL	ICATE: 3103	536	3103	537	Origir	nal: J1906	6272015			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
METALS											_
Silver	ug/L	0	200	190	190	93	95	75-125	1	20	
Arsenic	ug/L	0	200	190	190	94	95	75-125	1	20	
Barium	ug/L	65	20	82	84	89	97	75-125	2	20	
Beryllium	ug/L	0	10	9.3	9.5	93	95	75-125	2	20	
Cadmium	ug/L	1.7	20	20	21	93	95	75-125	1	20	
Cobalt	ug/L	0.7	40	38	38	94	95	75-125	1	20	
Chromium	ug/L	1	40	38	40	94	100	75-125	6	20	
Copper	ug/L	2	80	72	75	90	94	75-125	4	20	
Iron	ug/L	640	2000	2500	2500	93	95	75-125	2	20	
Sodium	mg/L	75	7	80	82	79	102	75-125	2	20	
Nickel	ug/L	9.2	120	120	120	93	95	75-125	2	20	
Lead	ug/L	3.7	60	58	57	90	89	75-125	1	20	
Selenium	ug/L	0	800	750	760	94	95	75-125	1	20	
Vanadium	ug/L	7.7	20	25	25	86	88	75-125	2	20	
Zinc	ug/L	10	1000	950	960	95	96	75-125	2	20	

QC Batch: WCAj/5032 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008 Associated Lab Samples:

METHOD BLANK: 3104463


		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
WET CHEMISTRY				
Total Dissolved Solids	mg/L	10	10 U	

LABORATORY CONTROL SAMPLE: 3104464

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Total Dissolved Solids	mg/L	300	310	104	85-115	

Report ID: 878927 - 813010 Page 30 of 42

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

SAMPLE DUPLICATE: 3104465 Original: J1906329006

Original DUP Max Units Result Result **RPD RPD Qualifiers** Parameter

WET CHEMISTRY

Total Dissolved Solids 400 380 3 10 mg/L QC Batch: DGMj/3456 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 05/24/2019 12:45

J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008 Associated Lab Samples:

METHOD BLANK: 3106520

Blank Reporting Parameter Units Limit Qualifiers Result

METALS

Mercury ug/L 0.011 0.011 U

LABORATORY CONTROL SAMPLE: 3106521

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **METALS** ug/L 2 80-120 Mercury 2.0 99

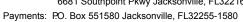
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3106522 3106523 Original: J1906272020

Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers **METALS** 0.0037 2 Mercury ug/L 2.1 2.1 104 105 80-120 20

DGMj/3459 Analysis Method: QC Batch: SW-846 6020 QC Batch Method: SW-846 3010A Prepared: 05/29/2019 03:30

Associated Lab Samples: J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008

METHOD BLANK: 3108170


Reporting Blank

Units Result Limit Qualifiers Parameter

METALS

Report ID: 878927 - 813010 Page 31 of 42

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM	
--	--

METHOD BLANK: 31	08170
------------------	-------

Parameter	Units	Blank Re Result	eporting Limit Qualifiers
Antimony	ug/L	0.11	0.11 U
Thallium	ug/L	0.057	0.057 U

LABORATORY CONTROL SAMPLE: 3108171

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
METALS Antimony Thallium	ug/L ug/L	50 50	46 43	93 86	80-120 80-120	

MATRIX SPIKE & MATRIX	ICATE: 3108	3172	3108173		Original: J1906370001						
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit F	RPD	Max RPD Qualifiers	
METALS Antimony Thallium	ug/L ug/L	0.035 0.016	50 50	49 46	50 47	99 92	99 94	75-125 75-125	1 2	20 20	

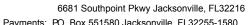
QC Batch: WCAg/6600 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008

METHOD BLANK: 3108183

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY 0.0080 0.0080 U Ammonia (N) mg/L


LABORATORY CONTROL SAMPLE: 3108184

LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY

Report ID: 878927 - 813010 Page 32 of 42

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3108184

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Ammonia (N)	mg/L	0.5	0.51	102	90-110	

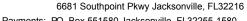
LABORATORY CONTROL SAMPLE: 3108186

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Ammonia (N)	mg/L	0.2	0.20	98	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3108187 3108188 Original: J1906370001 Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers WET CHEMISTRY Ammonia (N) mg/L 22 20 41 41 96 96 90-110 0 10

QC Batch: MSVj/3659 Analysis Method: SW-846 8260B QC Batch Method: SW-846 5030B Prepared: 05/31/2019 08:43

Associated Lab Samples: J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008,


METHOD BLANK: 3112243

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
Iodomethane (Methyl Iodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
-	-			

Report ID: 878927 - 813010 Page 33 of 42

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3112243

VOLATILES Chloromethane

Vinyl Chloride

ug/L

ug/L

20

20

16

17

Parameter	Units	Blank Result	Reporting Limit Qualifiers			
2-Butanone (MEK)	ug/L	0.43	0.43 U			
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U			
Bromochloromethane	ug/L	0.17	0.17 U			
Chloroform	ug/L	0.18	0.18 U			
1,2-Dichloroethane	ug/L	0.23	0.23 U			
1,1,1-Trichloroethane	ug/L	0.22	0.22 U			
Carbon Tetrachloride	ug/L	0.36	0.36 U			
Benzene	ug/L	0.16	0.16 U			
Dibromomethane	ug/L	0.26	0.26 U			
1,2-Dichloropropane	ug/L	0.66	0.66 U			
Trichloroethene	ug/L	0.29	0.29 U			
Bromodichloromethane	ug/L	0.46	0.46 U			
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U			
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U			
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U			
1,1,2-Trichloroethane	ug/L	0.30	0.30 U			
Toluene	ug/L	0.23	0.23 U			
2-Hexanone	ug/L	0.71	0.71 U			
Dibromochloromethane	ug/L	0.33	0.33 U			
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U			
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U			
Chlorobenzene	ug/L	0.21	0.21 U			
Ethylbenzene	ug/L	0.24	0.24 U			
Bromoform	ug/L	0.44	0.44 U			
Styrene	ug/L	0.23	0.23 U			
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U			
1,2,3-Trichloropropane	ug/L	0.91	0.91 U			
1,4-Dichlorobenzene	ug/L	0.22	0.22 U			
1,2-Dichlorobenzene	ug/L ug/L	0.18	0.18 U			
trans-1,4-Dichloro-2-butene	ug/L ug/L	1.8	1.8 U			
Xylene (Total)	ug/L ug/L	0.53	0.53 U			
1,2-Dichloroethane-d4 (S)	wg/L	115	70-128			
Toluene-d8 (S)	% %	104	70-128 77-119			
Bromofluorobenzene (S)	% %	114	86-123			
Bromondobenzene (3)	70	114	00-123			
LABORATORY CONTROL SAM	MPLE & LCSD:	3112244	3112245			
Parameter	Units	Spike LCS Conc. Result	LCSD LCS LCSD Result % Rec % Rec	% Rec Limit	RPD	Max RPD Qualifiers

Report ID: 878927 - 813010 Page 34 of 42

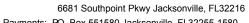
18

17

82

86

89


85

70-130

20

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAM	MPLE & LCSD:	3112244		311224	5				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Bromomethane	ug/L	20	21	16	105	78		30	
Chloroethane	ug/L	20	19	17	95	85		12	
Trichlorofluoromethane	ug/L	20	19	15	95	73		27	
Acetone	ug/L	20	17	17	83	83		0	
1,1-Dichloroethylene	ug/L	20	20	14	100	72	70-130	32	20
Iodomethane (Methyl Iodide)	ug/L	20	15	13	76	66	70 100	14	20
Acrylonitrile	ug/L	20	14	15	72	77		7	
Methylene Chloride	ug/L	20	21	20	104	102		2	
Carbon Disulfide	ug/L	20	17	19	87	97		10	
trans-1,2-Dichloroethylene	ug/L	20	20	14	99	72		32	
1,1-Dichloroethane	ug/L ug/L	20	20	15	100	75		28	
Vinyl Acetate	ug/L ug/L	20	7.5	14	38	73 71		62	
2-Butanone (MEK)	ug/L ug/L	20	7.5 15	15	36 77	7 i 76		2	
• ,		20	18	14	92	70 72	70-130	24	20
cis-1,2-Dichloroethylene Bromochloromethane	ug/L	20	19	19	94	94	70-130	1	20
Chloroform	ug/L	20	18	19	9 4 89	9 4 85	70-130	5	20
1,2-Dichloroethane	ug/L	20	20	17	101	66	70-130	42	20
	ug/L			15		76		42 26	
1,1,1-Trichloroethane	ug/L	20	20		99				
Carbon Tetrachloride	ug/L	20	19	18	96	88	70.400	9	20
Benzene	ug/L	20	19	19	94	95	70-130	1	20
Dibromomethane	ug/L	20	18	16	88	81		8	
1,2-Dichloropropane	ug/L	20	20	16	99	78 70	70.400	25	00
Trichloroethene	ug/L	20	22	16	108	79	70-130	31	20
Bromodichloromethane	ug/L	20	18	18	90	90		0	
cis-1,3-Dichloropropene	ug/L	20	16	18	82	92		12	
4-Methyl-2-pentanone (MIBK)	ug/L	20	14	13	72	67		7	
trans-1,3-Dichloropropylene	ug/L	20	16	18	79	89		12	
1,1,2-Trichloroethane	ug/L	20	17	16	86	81		6	
Toluene	ug/L	20	20	17	101	86	70-130	16	20
2-Hexanone	ug/L	20	17	15	85	76		11	
Dibromochloromethane	ug/L	20	20	20	102	100		2	
Tetrachloroethylene (PCE)	ug/L	20	20	21	102	105	70-130	2	20
1,1,1,2-Tetrachloroethane	ug/L	20	20	20	102	98		4	
Chlorobenzene	ug/L	20	20	20	103	101	70-130	2	20
Ethylbenzene	ug/L	20	22	18	109	88	70-130	22	20
Bromoform	ug/L	20	18	21	91	105		14	
Styrene	ug/L	20	20	18	101	90		11	
1,1,2,2-Tetrachloroethane	ug/L	20	14	18	71	90		24	
1,2,3-Trichloropropane	ug/L	20	17	19	84	93		10	
1,4-Dichlorobenzene	ug/L	20	21	21	107	105		2	
1,2-Dichlorobenzene	ug/L	20	23	21	115	105	70-130	10	20
Xylene (Total)	ug/L	60	66	53	109	88	70-130	22	20
1,2-Dichloroethane-d4 (S)	%				110	77	70-128	35	
Toluene-d8 (S)	%				108	98	77-119	10	

Report ID: 878927 - 813010 Page 35 of 42

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD: 3112244 3112245

Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limit RPD RPD

Parameter Units Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers

Bromofluorobenzene (S) % 110 90 86-123 20

 QC Batch:
 MSVj/3661
 Analysis Method:
 SW-846 8260B (SIM)

 QC Batch Method:
 SW-846 5030B
 Prepared:
 05/31/2019 07:00

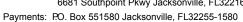
Associated Lab Samples: J1906370001, J1906370002, J1906370003, J1906370004, J1906370005, J1906370006, J1906370007, J1906370008,

METHOD BLANK: 3112251

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.020	0.020 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.11	0.11 U	
1,2-Dichloroethane-d4 (S)	%	100	77-125	
Toluene-d8 (S)	%	109	80-121	
Bromofluorobenzene (S)	%	117	80-129	

LABORATORY	CONTROL	SAMPLE & LCSD:	3112252	3112253

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
VOLATILES									
Ethylene Dibromide (EDB)	ug/L	0.8	0.79	0.90	99	113	70-130	13	30
1,2-Dibromo-3-Chloropropane	ug/L	0.8	0.79	0.74	99	93	70-130	7	30
1,2-Dichloroethane-d4 (S)	%				96	106	77-125	10	
Toluene-d8 (S)	%				113	101	80-121	11	
Bromofluorobenzene (S)	%				118	106	80-129	11	


MATRIX SPIKE SAMPLE: 3112254 Original: J1906370003

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Ethylene Dibromide (EDB)	ug/L	0	0.8	0.76	95	70-130	
1,2-Dibromo-3- Chloropropane	ug/L	0	0.8	1.2	144	70-130	
1,2-Dichloroethane-d4 (S)	%	92			106	77-125	

Report ID: 878927 - 813010 Page 36 of 42

CERTIFICATE OF ANALYSIS

80-129

110

Phone: (904)363-9350

Fax: (904)363-9354

QUALITY CONTROL DATA

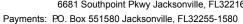
Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMP		Original: J190	06370003				
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
Toluene-d8 (S)	%	110			103	80-121	

124

QUALITY CONTROL DATA QUALIFIERS

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

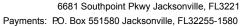

QUALITY CONTROL PARAMETER QUALIFIERS

Bromofluorobenzene (S)

- The compound was analyzed for but not detected.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. Τ
- Method Blank Contamination

Report ID: 878927 - 813010 Page 37 of 42

QUALITY CONTROL DATA CROSS REFERENCE TABLE

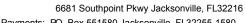

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906370001	19137-MW-10A			EPA 300.0	WCAj/5010
J1906370002	19137-MW-10B			EPA 300.0	WCAj/5010
J1906370003	19137-MW-11A			EPA 300.0	WCAj/5010
J1906370004	19137-MW-11B			EPA 300.0	WCAj/5010
J1906370005	19137-CW-2A			EPA 300.0	WCAj/5010
J1906370006	19137-CW-3A			EPA 300.0	WCAj/5010
J1906370007	19137-DUP-2			EPA 300.0	WCAj/5010
J1906370008	19137-EQ-2			EPA 300.0	WCAj/5010
J1906370001	19137-MW-10A	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370002	19137-MW-10B	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370003	19137-MW-11A	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370004	19137-MW-11B	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370005	19137-CW-2A	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370006	19137-CW-3A	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370007	19137-DUP-2	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370008	19137-EQ-2	SW-846 3010A	DGMj/3437	SW-846 6010	ICPj/1981
J1906370001	19137-MW-10A			SM 2540 C	WCAj/5032
J1906370002	19137-MW-10B			SM 2540 C	WCAj/5032
J1906370003	19137-MW-11A			SM 2540 C	WCAj/5032
J1906370004	19137-MW-11B			SM 2540 C	WCAj/5032
J1906370005	19137-CW-2A			SM 2540 C	WCAj/5032
J1906370006	19137-CW-3A			SM 2540 C	WCAj/5032
J1906370007	19137-DUP-2			SM 2540 C	WCAj/5032
J1906370008	19137-EQ-2			SM 2540 C	WCAj/5032
J1906370001	19137-MW-10A	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528
J1906370002	19137-MW-10B	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528
J1906370003	19137-MW-11A	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528
J1906370004	19137-MW-11B	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528
J1906370005	19137-CW-2A	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528
J1906370006	19137-CW-3A	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528
J1906370007	19137-DUP-2	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528

Report ID: 878927 - 813010 Page 38 of 42

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906370008	19137-EQ-2	SW-846 7470A	DGMj/3456	SW-846 7470A	CVAj/1528
J1906370001	19137-MW-10A	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
J1906370002	19137-MW-10B	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
J1906370003	19137-MW-11A	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
J1906370004	19137-MW-11B	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
J1906370005	19137-CW-2A	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
11906370006	19137-CW-3A	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
J1906370007	19137-DUP-2	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
J1906370008	19137-EQ-2	SW-846 3010A	DGMj/3459	SW-846 6020	ICMj/1906
J1906370001	19137-MW-10A			EPA 350.1	WCAg/660
J1906370002	19137-MW-10B			EPA 350.1	WCAg/660
1906370003	19137-MW-11A			EPA 350.1	WCAg/660
1906370004	19137-MW-11B			EPA 350.1	WCAg/660
11906370005	19137-CW-2A			EPA 350.1	WCAg/660
11906370006	19137-CW-3A			EPA 350.1	WCAg/660
1906370007	19137-DUP-2			EPA 350.1	WCAg/660
11906370008	19137-EQ-2			EPA 350.1	WCAg/660
11906370001	19137-MW-10A	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
11906370002	19137-MW-10B	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
1906370003	19137-MW-11A	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
11906370004	19137-MW-11B	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
1906370005	19137-CW-2A	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
1906370006	19137-CW-3A	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
1906370007	19137-DUP-2	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
1906370008	19137-EQ-2	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
1906370009	19137-TripBlank-7	SW-846 5030B	MSVj/3659	SW-846 8260B	MSVj/3660
11906370001	19137-MW-10A	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662
J1906370002	19137-MW-10B	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662
J1906370003	19137-MW-11A	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662

Report ID: 878927 - 813010 Page 39 of 42

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350

Fax: (904)363-9354

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1906370 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1906370004	19137-MW-11B	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662
J1906370005	19137-CW-2A	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662
J1906370006	19137-CW-3A	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662
J1906370007	19137-DUP-2	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662
J1906370008	19137-EQ-2	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662
J1906370009	19137-TripBlank-7	SW-846 5030B	MSVj/3661	SW-846 8260B (SIM)	MSVj/3662

Report ID: 878927 - 813010 Page 40 of 42

FECTER

5-18-19 10:05

Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL. Miramar: 10200 USA Today Way, Miramar, FL 33025 • 98 Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL 32304	* J 1 9 0 6 3 7 0 *
Tampa: 9610 Princess Palm Ave. • Tampa, FL 33619 • 813,630.9	9616 + Fax 813,630,4327

Client Name:	Waste Connections, Inc.		Project Name: J.E.D LANDFILL (F/K/A OAK HAMMOCK DISPOSAL)					BOTTLE SIZE & TYPE		1.0			10 - Fax	013,030,	4521		71	1.
Address:	5135 Madison Avenue	P.O. Num	ber/Projec	t Number				BO.	40 mL Vials	500 ml. Plastic	500 mL Plastic	250 mL Plastic						1 111
Та	mpa, Florida 33619	Project Lo	cation					-						-	1		-11-2	NUMBER
Phone: 81	3-468-6141	FDEP F	acility	No: 89544				J. H.	0	a								3
FAX:		Project Na	Project Name and Address: JED SwDF						B B	App I Metals+Fe,Hg,Na								Ö.
Contact:	Kirk Wills		1501 Omni Way						B/B		CI/NO3/TDS							
Sampled By: Ne: 1	Stupley & Booke Abbott		St Cloud, FL						H H	Ť.								1 8
	STANDARD RUSH	Speci	pecial Instructions: Jax Profile: 31172					ANALYSIS REQUIRED	App I VOAS+EDB/DBCP	- cals	9	8						\X
Page(of	■ AD	ADaPT D EQuIS					A	A P	App	S	NH3						-ABORATORY
SAMPLE ID	SAMPLE DESCRIPTION	h .	Grab Comp	199.5-1	PLING	MATRIX	NO. COUNT	PRESER- VATION	HCL	HNO3	Ice	H2SO4						LA
19137-MU-10A			G	5/17/19	11:00	GW	6		3	1	1	1				7		100
E1137-MW-10B				1	10:30		-1			1	1	1						တည
19137-MW-11A					09:00									1				003
19139-MW-11B					08:35		IV.							1-1				004
19137- CW- JA				E7 E	09.17										-	7		075
19137-CW-3A					08:30	1												000
19137- Rp-2				J	0001	GU	J			J	1	J			-		1 2.7	007
19137-EQ-2			6	5/17/19	10:00	DI 150	6			1	1	τ						800
19137-11:p8/m	7		÷	-	-	DEHO	3		3	1-1				T				009
	wastewater SW = surface water GW = gr		DW = 0	frinking wate	er O = oil	A = air S	O = sail S	L = sludg	je i	Preservat	tion Cod	e: l=ice	H=(HCI) S = (H2	SO4) N=	= (HNO3) T	= (Sodium	Thiosulfate)
	Yes No Temp taken from sampl ast revised 08/18/2014	e 🔲	Temp fro		evice used	for measurin	ng Temp by		Where	required, p	pH check	red	Tempe	erature wh	nen receive	red_Y		ees celcius)
	uished by; Date Time			ceived by:		Date	Time		FO	R DRIN	KING	WAT	R US	E:		52 541		
1 / hs Mr	5/12/19 1300		Fel	5		5/12/19	1300		(Whe	n PWS Info	nmation n	of otherwise	supplied	PWS	ID:			

5-18-19

10:05

Contact Person: Supplier of Water. Site-Address:

Received by:ooler/Shipping purier: □ AEL □ Cope: © Cooler □ Boo	lient □ UPS □ Blue	e Streak ⊠ FedEx I	Completed b				
ourier: 🗆 AEL 🗆 C	lient □ UPS □ Blue	≳Streak (X FedEx I	* / - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
purier: □ AEL □ C pe: ᡚ Cooler □ Bo	ient DUPS DBlue	Streak KedEx					1
pe: Cooler D Box	(☐ Other (describe)	A COULTY !	TARR TIARAD TI	Other Marie			
pe. A Coolei Li Box	LI Uller (describe)		JACO DI MOMP DI	Other (descri	be):	_	
				1 3			
oler temperature:	dentify the cooler ar	d document the tem	perature blank or ice	e water mean	Tropos		
			The second of th	Trater meas	uremer	n.	
Cooler ID						1	
Temp (°C)	-40						
Temp taken from	☐ Sample Bottle	☐ Sample Bottle	☐ Sample Bottle	☐ Sample Bott	le	TI Commit	D. W.
*	☐ Cooler ☐ IR gun·S/N 9333779	Cooler -	☐ Cooler	☐ Cooler .		☐ Sample ☐ Cooler	
Temp measured	☐ Thermometer (enter	☐ IR gun S/N 9333779 ☐ Thermometer (enter	☐ IR gun S/N 9333779 ☐ Thermometer (enter	☐ IR gun S/N 9	333779	- 🗆 IR gun	S/N 9333
with	ID):	ID):	ID):	☐ Thermometer ID):	r (enter	ID):	ometer (er
		CHECKY rom					
her Information	Ild be explained in th		3.4.4				
-		CHECKLIST		7	YES	NO	274
Were custody se Were custody ps	als on shipping contai	ner(s) intact?	100		1	NO	NA
Were custody pa Were custody pa	pers properly included	d with samples?			1		
Were custody pa Did all bottles as	pers properly filled or	it (ink, signed, match I	abels)?		1		
4. Did all bottles at	rive in good condition	(unbroken)2					
5 Were all bottle to	shall be 1 to 1	(dilotoken)?					
Were all bottle l:	abels complete (sample	e#, date signed analy	sis, preservatives)?	-:	1		
 Were all bottle la Did the sample la 	abels complete (sample abels agree with the ch	e #, date, signed, analy	sis, preservatives)?				-
 Were all bottle is Did the sample is Were correct bot 	abels complete (sample abels agree with the cl tles used for the tests i	e#, date, signed, analy ain of custody? indicated?	100	A ³⁰			4 ^K
Were all bottle is Did the sample is Were correct bot Were proper sam	abels complete (sample abels agree with the ch tles used for the tests in the preservation technique.	e#, date, signed, analy ain of custody? ndicated?	100	- A*			**
Were all bottle is Did the sample is Were correct bot Were proper sam Were samples re	abels complete (sample abels agree with the chartles used for the tests in the preservation technology ceived within holding	e #, date, signed, analy ain of custody? ndicated? iques indicated on the times?	100	A.F.	1		, p*
Were all bottle is Did the sample is Were correct bot Were proper sam Were samples re Were all VOA vi	abels complete (sample abels agree with the chartles used for the tests in the preservation technologies within holding als free of the presence	e #, date, signed, analy ain of custody? ndicated? siques indicated on the times? e of air bubbles?	Jabel?		1		75
Were all bottle is Did the sample is Were correct bot Were proper sam Were samples re Were all VOA vi Have all Soil VO	abels complete (sample abels agree with the chartes used for the tests in the used for the tests in the preservation technologies within holding als free of the presence A Vials and Encores I	e #, date, signed, analy ain of custody? ndicated? iques indicated on the times? e of air bubbles?	Jabel?	Decemb	1		**
5. Were all bottle is 6. Did the sample is 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in	abels complete (sample abels agree with the chatles used for the tests in aple preservation technically also be a ceived within holding als free of the presence. A Vials and Encores to direct contact with we	e #, date, signed, analy nain of custody? ndicated? niques indicated on the times? e of air bubbles? peen placed in a freeze tice? If "No" check	Jabel?	Decemb	1		, , , , ,
5. Were all bottle is 6. Did the sample is 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te	abels complete (sample abels agree with the chartes used for the tests in aple preservation technically also free of the presence A Vials and Encores to direct contact with we	e #, date, signed, analy nain of custody? ndicated? niques indicated on the times? e of air bubbles? peen placed in a freeze t ice? If "No," check of	Jabel? r within 48 hours of co one: □ NO ICE □ BLU	llection? JE ICE	11111		, ,*
5. Were all bottle is 6. Did the sample is 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser	abels complete (sample abels agree with the charles used for the tests in the preservation technologies within holding als free of the presence. A Vials and Encores to direct contact with we comperature less than 6° vation is required, are	e #, date, signed, analy ain of custody? ndicated? iques indicated on the times? e of air bubbles? peen placed in a freeze t ice? If "No," check of C?	label? r within 48 hours of coone: □ NO ICE □ BLU	illection? JE ICE	11111		, , , ,
Were all bottle is Did the sample is Were correct bot Were proper sam Were samples re Were all VOA vi Have all Soil VO Were samples in Was the cooler te Where pH preser Sample control?	abels complete (sample abels agree with the charles used for the tests in the used for the tests in the preservation technical technical ceived within holding als free of the presence A Vials and Encores to direct contact with we imperature less than 6° vation is required, are Are all <2 or >10? N	e #, date, signed, analy ain of custody? ndicated? iques indicated on the times? e of air bubbles? been placed in a freeze t ice? If "No," check of C? sample pHs checked a fote: VOA samples are	label? r within 48 hours of coone: □ NO ICE □ BLU	illection? JE ICE	11111		, , , ,
Were all bottle is Did the sample is Were correct bot Were proper sam Were samples re Were all VOA vi Have all Soil VO Were samples in Were pH preser Sample control? Was sufficient sam	abels complete (sample abels agree with the charles used for the tests in the preservation technically also free of the presence of the presen	e #, date, signed, analy an of custody? ndicated? iques indicated on the times? e of air bubbles? been placed in a freeze t ice? If "No," check of C? sample pHs checked a lote: VOA samples are	Iabel? r within 48 hours of coone: □ NO ICE □ BLU nd any anomalies reco	ellection? JE ICE rded by analysts.	111111		,,,,
5. Were all bottle is 6. Did the sample is 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control? 15. Was sufficient sai 16. If for Bacteriolog	abels complete (sample abels agree with the chatles used for the tests in the preservation technology als free of the presence A Vials and Encores but direct contact with we comperature less than 6° vation is required, are Are all <2 or >10? Numple volume provided ical testing, were contact of the presence of the pre	e #, date, signed, analytatin of custody? mdicated? mdicated? miques indicated on the times? e of air bubbles? make tice? If "No," check of the checked a lote: VOA samples are to perform all tests? miners supplied by AEI	r within 48 hours of coone: NO ICE BLU nd any anomalies reco	ellection? JE ICE rded by analysts.			1
5. Were all bottle is 6. Did the sample is 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control? 15. Was sufficient sai 16. If for Bacteriolog 17. Were all sample of	abels complete (sample abels agree with the chatles used for the tests in the preservation technical preservation technical preservation technical preservation technical preservation to the presence A Vials and Encores the direct contact with we emperature less than 6° vation is required, are Are all <2 or >10? Number volume provided ical testing, were containers provided by	e #, date, signed, analytain of custody? pdicated? pdicated? piques indicated on the times? e of air bubbles? peen placed in a freeze tice? If "No," check of the complex o	r within 48 hours of coone: NO ICE BLU nd any anomalies reco	ellection? JE ICE rded by analysts.			
5. Were all bottle is 6. Did the sample is 7. Were correct bot 8. Were proper sam 9. Were samples re 10. Were all VOA vi 11. Have all Soil VO 12. Were samples in 13. Was the cooler te 14. Where pH preser Sample control? 15. Was sufficient sam 16. If for Bacteriolog 17. Were all sample con 18. Were samples acc	abels complete (sample abels agree with the chatles used for the tests in the preservation technology als free of the presence A Vials and Encores but direct contact with we comperature less than 6° vation is required, are Are all <2 or >10? Numple volume provided ical testing, were contact of the presence of the pre	e #, date, signed, analytain of custody? pdicated? pdicated? piques indicated on the times? e of air bubbles? peen placed in a freeze tice? If "No," check of the complex o	label? r within 48 hours of coone: □ NO ICE □ BLU nd any anomalies reco checked by laboratory L? (See QA officer if a	ellection? JE ICE rded by analysts.			

DCN: AD-D048 Eff date 2/3/10, Last rev 9/6/16

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1906370

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 6010
Preparation: SW-846 3010A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: The Method Blank (MB) contained low levels of Vanadium above the Method Detection

Limit (MDL). In accordance with AEL QA policy, all sample results found in the Method Blank are flagged with a V qualifier to indicate the data is estimated. All sample results are below the

Florida GCTL for this analyte. No further corrective action was required.

C. Duplicates: All acceptance criteria were met.

D. Spikes: All acceptance criteria were met.E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1906370

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: The analysis of J1906370003, -004, -005, -006, -007, and -009 was initially performed past

the recommended holding time. An internal laboratory failure occurred which resulted in the missed holding time. Efforts were made to analyze the sample as soon as the error

was identified. The data is qualified to indicate the holding time violation.

III. Method

Analysis: SW-846 8260B Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.
 B. Blanks: All acceptance criteria were met.
 C. Surrogates: All acceptance criteria were met.

D. Spikes: The relative percent difference (RPD) for several analytes between the Laboratory Control

Sample (LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in 3112244 in comparison with 3112245. Spike recoveries in the LCS and LCSD were within acceptable limits, indicating the

analytical batch was in control. No further corrective action was required.

The matrix spike (MS) recoveries of several analytes for J1906370008 were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. The affected sample is

qualified to indicate matrix interference.

E. Internal Standard: All acceptance criteria were met.

F. Samples: J1906635012 was analyzed at dilution due to high target analyte levels. The lowest

possible dilution was performed to allow the analyte value to be within the calibration curves highest level and to prevent possible carry over in the following sample analyses.

J1906635003 was reanalyzed at dilution due to high target analyte levels. The lowest possible dilution was performed to allow the analyte value to be within the calibration curves highest level and to prevent possible carry over in the following sample analyses.

G. Other:

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1906370

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: The analysis of J1906370003, -004, -005, -006, -007, and -009 was initially performed past

the recommended holding time. An internal laboratory failure occurred which resulted in the missed holding time. Efforts were made to analyze the sample as soon as the error

was identified. The data is qualified to indicate the holding time violation.

III. Method

Analysis: SW-846 8260B (SIM)

Preparation: SW-846 5030B

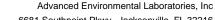
IV. Preparation

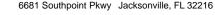
Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.


C. Surrogates: All acceptance criteria were met.


D. Spikes: All acceptance criteria were met.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

Phone: (904)363-9350 Fax: (904)363-9354

December 1H, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

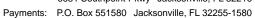
RE: Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, November 20, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

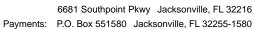
Sincerely,


Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 919794 - 1838587 Page 1 of 78


SAMPLE SUMMARY

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected Date Received
J1915228001	19323-CW-1A	Water	11/19/2019 08:54 11/20/2019 09:50
J1915228002	19323-MW-16AR	Water	11/19/2019 14:56 11/20/2019 09:50
J1915228003	19323-MW-16BR	Water	11/19/2019 15:30 11/20/2019 09:50
J1915228004	19323-MW-17AR	Water	11/19/2019 13:22 11/20/2019 09:50
J1915228005	19323-MW-17BR	Water	11/19/2019 14:00 11/20/2019 09:50
J1915228006	19323-MW-22AR	Water	11/19/2019 13:26 11/20/2019 09:50
J1915228007	19323-MW-22BR	Water	11/19/2019 13:08 11/20/2019 09:50
J1915228008	19323-MW-23A	Water	11/19/2019 14:56 11/20/2019 09:50
J1915228009	19323-MW-23B	Water	11/19/2019 14:12 11/20/2019 09:50
J1915228010	19323-MW-27A	Water	11/19/2019 08:45 11/20/2019 09:50
J1915228011	19323-MW-27B	Water	11/19/2019 09:28 11/20/2019 09:50
J1915228012	19323-MW-28A	Water	11/19/2019 10:30 11/20/2019 09:50
J1915228013	19323-MW-28B	Water	11/19/2019 11:20 11/20/2019 09:50
J1915228014	19323-MW-29A	Water	11/19/2019 12:00 11/20/2019 09:50
J1915228015	19323-MW-29B	Water	11/19/2019 12:38 11/20/2019 09:50
J1915228016	19323-MW-30A	Water	11/19/2019 11:46 11/20/2019 09:50
J1915228017	19323-MW-30B	Water	11/19/2019 12:02 11/20/2019 09:50
J1915228018	19323-Trip Blank-1	Water	11/19/2019 00:00 11/20/2019 09:50
J1915228019	19323-Trip Blank-2	Water	11/19/2019 00:00 11/20/2019 09:50

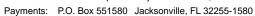
Report ID: 919794 - 1838587 Page 2 of 78

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228001 Matrix: Water

19323-CW-1A Date Collected: 11/19/19 08:54 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	thod: SW-8	846 6010				
Barium	54	,	ug/L	1	4.0	1.0	11/26/2019 22:54	J
Beryllium	0.50	U	ug/L ug/L	1	2.0	_	11/26/2019 22:54	J
Cadmium	1.0	Ü	ug/L ug/L	1	4.0		11/26/2019 22:54	J
Chromium	5.8	i	ug/L ug/L	1	8.0		11/26/2019 22:54	J
Cobalt	2.0	Ü	ug/L ug/L	1	8.0	2.0	11/26/2019 22:54	J
Copper	4.0	Ü	ug/L	1	16	4.0	12/3/2019 16:04	J
Iron	8000	J	ug/L	1	400	100	11/26/2019 22:54	J
Lead	3.0	U	ug/L	1	12		11/26/2019 22:54	J
Nickel	6.0	Ü	ug/L	1	24		11/26/2019 22:54	J
Selenium	40	Ü	ug/L	1	160		11/26/2019 22:54	J
Silver	10	Ü	ug/L	1	40		11/26/2019 22:54	J
Sodium	24	•	mg/L	1	1.4	0.35	11/26/2019 22:54	J
Zinc	50	U	ug/L	1	200		11/26/2019 22:54	J
Analysis Desc: SW846 6020B	Prep	paration N	/lethod: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	thod: SW-8	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 22:26	J
Arsenic	150		ug/L	5	5.0	0.39	12/10/2019 13:37	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 22:26	J
Vanadium	4.3		ug/L	1	2.0	0.71	12/3/2019 22:26	J
Analysis Desc: SW846 7470A	Dror	aration N		V-846 7470A				
Analysis, Water	Fiel	Darallon r	vietriou. Sv	V-040 /4/UA				
, many 5.5, , , at 5.	Ana	lytical Me	thod: SW-8	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 13:29	J
VOL 4711 FO								
VOLATILES	A		4h a d. CDA	200.0				
Analysis Desc: IC,E300.0,Water	Ana	iyticai ivie	thod: EPA	300.0				
Chloride	35	J4	mg/L	1	5.0	0.50	11/20/2019 20:52	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/20/2019 20:52	J
Analysis Desc: 8260B VOCs Analysis,	Prer	paration N	/lethod: SV	V-846 5030B				
Water	•							
	Ana	iytical Me	thod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/26/2019 21:34	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/26/2019 21:34	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/26/2019 21:34	J

Report ID: 919794 - 1838587 Page 3 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228001 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-CW-1A Date Collected: 11/19/19 08:54

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/26/2019 21:34	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/26/2019 21:34	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 21:34	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/26/2019 21:34	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 21:34	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/26/2019 21:34	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/26/2019 21:34	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/26/2019 21:34	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/26/2019 21:34	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/26/2019 21:34	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/26/2019 21:34	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/26/2019 21:34	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/26/2019 21:34	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 21:34	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/26/2019 21:34	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/26/2019 21:34	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/26/2019 21:34	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/26/2019 21:34	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/26/2019 21:34	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/26/2019 21:34	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 21:34	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 21:34	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/26/2019 21:34	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/26/2019 21:34	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 21:34	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/26/2019 21:34	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 21:34	J
lodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/26/2019 21:34	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/26/2019 21:34	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 21:34	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/26/2019 21:34	
Toluene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 21:34	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/26/2019 21:34	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/26/2019 21:34	J
/inyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/26/2019 21:34	J
/inyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/26/2019 21:34	
Kylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/26/2019 21:34	
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 21:34	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 21:34	
trans-1,2-Dichloroethylene	0.20	Ū	ug/L	1	1.0	0.20	11/26/2019 21:34	

Report ID: 919794 - 1838587 Page 4 of 78

nents: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (904)363-9350

Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228001 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-CW-1A Date Collected: 11/19/19 08:54

Sample Description: Location:

ampie Description.				Location.				
					Adjusted	Adjusted		
arameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
ans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 21:34	J
ans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/26/2019 21:34	J
2-Dichloroethane-d4 (S)	106		%	1	70-128		11/26/2019 21:34	
oluene-d8 (S)	90		%	1	77-119		11/26/2019 21:34	
romofluorobenzene (S)	105		%	1	86-123		11/26/2019 21:34	
nalysis Desc: 8260B SIM Analysis,	Prep	aration N	Method: SV	N-846 5030B				
/ater	Anal	ytical Me	thod: SW-	846 8260B (SIM)				
2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 21:34	J
thylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/26/2019 21:34	J
2-Dichloroethane-d4 (S)	100		%	1	77-125		11/26/2019 21:34	
oluene-d8 (S)	91		%	1	80-121		11/26/2019 21:34	
romofluorobenzene (S)	104		%	1	80-129		11/26/2019 21:34	
ET CHEMISTRY								
nalysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EPA	350.1				
mmonia (N)	1.3		mg/L	5	0.050	0.040	11/26/2019 13:11	G
nalysis Desc: Tot Dissolved olids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
otal Dissolved Solids	340		mg/L	1	10	10	11/24/2019 09:00	J

Lab ID: J1915228002 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-16AR Date Collected: 11/19/19 14:56

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	/-846 3010A				
Analysis, Water	Anal	ytical M	ethod: SW-8	346 6010				
Barium	34		ug/L	1	4.0	1.0	11/26/2019 22:58	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 22:58	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 22:58	J
Chromium	3.1	- 1	ug/L	1	8.0	2.0	11/26/2019 22:58	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 22:58	J

Report ID: 919794 - 1838587 Page 5 of 78

CERTIFICATE OF ANALYSIS

Adjusted

PQL

10

1.1 11/26/2019 22:04

Adjusted

MDL

Analyzed

Lab

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Acrylonitrile

Lab ID: J1915228002 Date Received: 11/20/19 09:50 Matrix: Water

Units

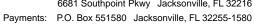
DF

Qual

Sample ID: 19323-MW-16AR Date Collected: 11/19/19 14:56

Sample Description: Location:

Results


Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:07	J
Iron	560		ug/L	1	400	100	11/26/2019 22:58	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 22:58	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 22:58	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 22:58	J
Silver	10	U	ug/L	1	40	10	11/26/2019 22:58	J
Sodium	140		mg/L	1	1.4	0.35	11/26/2019 22:58	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 22:58	J
Analysis Desc: SW846 6020B	Prepa	aration	Method: SW	/-846 3010A				
Analysis, Total	Analy	rtical M	ethod: SW-8	346 6020				
Antimony	0.21	1	ug/L	1	0.70	0.11	12/3/2019 22:54	J
Arsenic	1.9		ug/L	1	1.0	0.077	12/10/2019 13:41	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 22:54	J
Vanadium	13	_	ug/L	1	2.0	0.71	12/3/2019 22:54	J
Analysis Desc: SW846 7470A	Prepa	aration	Method: SW	/-846 7470A				
Analysis, Water	•		ethod: SW-8					
Magazina	•				0.40	0.044	44/04/0040 40 40	
Mercury	0.011	ı	ug/L	1	0.10	0.011	11/21/2019 13:46	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SW	/-846 5030B				
Water	Analy	rtical M	ethod: SW-8	46 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/26/2019 22:04	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/26/2019 22:04	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/26/2019 22:04	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/26/2019 22:04	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/26/2019 22:04	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 22:04	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/26/2019 22:04	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 22:04	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/26/2019 22:04	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/26/2019 22:04	J
1,4-Dichlorobenzene	0.22	Ū	ug/L	1	1.0	0.22	11/26/2019 22:04	J
2-Butanone (MEK)	0.43	Ū	ug/L	1	5.0	0.43	11/26/2019 22:04	J
2-Hexanone	0.71	Ū	ug/L	1	5.0	0.71	11/26/2019 22:04	J
4-Methyl-2-pentanone (MIBK)	0.47	Ū	ug/L	1	1.0	0.47	11/26/2019 22:04	J
Acetone	2.1	Ū	ug/L	1	5.0	2.1	11/26/2019 22:04	J
ACCIONE	4.1	U	ug/L		5.0	۷.۱	11/20/2013 22.04	J

Report ID: 919794 - 1838587 Page 6 of 78

ug/L

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228002 Date Received: 11/20/19 09:50 Matrix: Water

Date Collected: 11/19/19 14:56 Sample ID: 19323-MW-16AR

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	1.3		ug/L	1	1.0	0.16	11/26/2019 22:04	J
Bromochloromethane	0.17	U	ug/L	1	1.0		11/26/2019 22:04	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/26/2019 22:04	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/26/2019 22:04	J
Bromomethane	0.29	U	ug/L	1	1.0		11/26/2019 22:04	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/26/2019 22:04	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/26/2019 22:04	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 22:04	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 22:04	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/26/2019 22:04	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/26/2019 22:04	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 22:04	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/26/2019 22:04	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 22:04	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/26/2019 22:04	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/26/2019 22:04	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 22:04	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/26/2019 22:04	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 22:04	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/26/2019 22:04	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/26/2019 22:04	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/26/2019 22:04	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/26/2019 22:04	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/26/2019 22:04	J
cis-1,2-Dichloroethylene	0.43	ı	ug/L	1	1.0	0.24	11/26/2019 22:04	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 22:04	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/26/2019 22:04	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 22:04	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/26/2019 22:04	J
1,2-Dichloroethane-d4 (S)	105		%	1	70-128		11/26/2019 22:04	
Toluene-d8 (S)	88		%	1	77-119		11/26/2019 22:04	
Bromofluorobenzene (S)	103		%	1	86-123		11/26/2019 22:04	
Analysis Desc: 8260B SIM Analysis,	Pre	paration I	Method: S\	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 22:04	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/26/2019 22:04	J
1,2-Dichloroethane-d4 (S)	100		%	1	77-125		11/26/2019 22:04	
Toluene-d8 (S)	90		%	1	80-121		11/26/2019 22:04	
Bromofluorobenzene (S)	102		%	1	80-129		11/26/2019 22:04	

water	Analy	ytical M	ethod: SW-8	346 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 22:04	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/26/2019 22:04	J
1,2-Dichloroethane-d4 (S)	100		%	1	77-125		11/26/2019 22:04	
Toluene-d8 (S)	90		%	1	80-121		11/26/2019 22:04	
Bromofluorobenzene (S)	102		%	1	80-129		11/26/2019 22:04	

Report ID: 919794 - 1838587 Page 7 of 78

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228002 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-16AR Date Collected: 11/19/19 14:56

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EPA	300.0				
Chloride	210		mg/L	2	10	1.0	11/20/2019 21:38	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	11/20/2019 21:38	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	4.8		mg/L	10	0.10	0.080	11/26/2019 16:14	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	760		mg/L	1	10	10	11/24/2019 09:00	J

Lab ID: J1915228003 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-16BR Date Collected: 11/19/19 15:30

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	346 6010				
Barium	38		ug/L	1	4.0	1.0	11/26/2019 23:03	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:03	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:03	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:03	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:03	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:11	J
Iron	2500		ug/L	1	400	100	11/26/2019 23:03	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:03	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:03	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:03	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:03	J
Sodium	7.6		mg/L	1	1.4	0.35	11/26/2019 23:03	J
Zinc	50	U	ua/L	1	200	50	11/26/2019 23:03	J

Report ID: 919794 - 1838587 Page 8 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228003 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-16BR Date Collected: 11/19/19 15:30

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	·		Method: SVethod: SW-	V-846 3010A 846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 22:58	J
Arsenic	0.40	- 1	ug/L	1	1.0	0.077	12/10/2019 13:45	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 22:58	J
Vanadium	0.71	U	ug/L	1	2.0	0.71	12/3/2019 22:58	J
Analysis Desc: SW846 7470A Analysis,Water	•			N-846 7470A 846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 13:49	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1 1 1 2 Totrophloroothono	0.54			4	1.0	0.54	11/26/2010 22:40	
1,1,1,2-Tetrachloroethane		U	ug/L	1			11/26/2019 22:40	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/26/2019 22:40	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/26/2019 22:40	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/26/2019 22:40	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/26/2019 22:40	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 22:40	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/26/2019 22:40	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 22:40	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/26/2019 22:40	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/26/2019 22:40	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/26/2019 22:40	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/26/2019 22:40	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/26/2019 22:40	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/26/2019 22:40	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/26/2019 22:40	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/26/2019 22:40	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 22:40	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/26/2019 22:40	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/26/2019 22:40	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/26/2019 22:40	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/26/2019 22:40	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/26/2019 22:40	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/26/2019 22:40	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 22:40	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 22:40	J

Report ID: 919794 - 1838587 Page 9 of 78

CERTIFICATE OF ANALYSIS

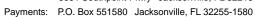
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228003 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-16BR Date Collected: 11/19/19 15:30


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/26/2019 22:40	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/26/2019 22:40	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 22:40	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/26/2019 22:40	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 22:40	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/26/2019 22:40	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/26/2019 22:40	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 22:40	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/26/2019 22:40	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 22:40	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/26/2019 22:40	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/26/2019 22:40	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/26/2019 22:40	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/26/2019 22:40	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/26/2019 22:40	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 22:40	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 22:40	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/26/2019 22:40	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 22:40	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/26/2019 22:40	J
1,2-Dichloroethane-d4 (S)	104		%	1	70-128		11/26/2019 22:40	
Toluene-d8 (S)	89		%	1	77-119		11/26/2019 22:40	
Bromofluorobenzene (S)	106		%	1	86-123		11/26/2019 22:40	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SW	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B (SIM	1)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 22:40	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/26/2019 22:40	J
1,2-Dichloroethane-d4 (S)	98		%	1	77-125		11/26/2019 22:40	
Toluene-d8 (S)	91		%	1	80-121		11/26/2019 22:40	
Bromofluorobenzene (S)	105		%	1	80-129		11/26/2019 22:40	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	25		mg/L	1	5.0	0.50	11/20/2019 22:01	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/20/2019 22:01	J
` ,					3.50	0.000	, _ 5, _ 5 1 5 _ 2 2 . 0 1	
Analysis Desc: Ammonia,E350.1,Water		iyticai ivie	ethod: EPA					
Ammonia (N)	0.30		mg/L	5	0.050	0.040	11/26/2019 16:15	G

Report ID: 919794 - 1838587 Page 10 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

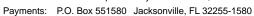
Lab ID: J1915228003 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-16BR Date Collected: 11/19/19 15:30

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	76		mg/L	1	10	10	11/24/2019 09:00	J

Lab ID: J1915228004 Date Received: 11/20/19 09:50 Matrix: Water


Sample ID: 19323-MW-17AR Date Collected: 11/19/19 13:22

Sample Description: Location:

				2004				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Parameters	Results	Quai	Units	DΓ	PQL	IVIDL	Analyzeu	Lau
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	59		ug/L	1	4.0	1.0	11/26/2019 23:07	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:07	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:07	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:07	J
Cobalt	2.4	- 1	ug/L	1	8.0	2.0	11/26/2019 23:07	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:14	J
Iron	14000		ug/L	1	400	100	11/26/2019 23:07	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:07	J
Nickel	7.6	I	ug/L	1	24	6.0	11/26/2019 23:07	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:07	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:07	J
Sodium	71		mg/L	1	1.4	0.35	11/26/2019 23:07	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:07	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.34	I	ug/L	1	0.70	0.11	12/3/2019 23:02	J
Arsenic	1.2		ug/L	1	1.0	0.077	12/10/2019 13:49	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:02	J
Vanadium	5.8		ug/L	1	2.0	0.71	12/3/2019 23:02	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	vtical Me	ethod: SW-	846 7470A				
	Aliai	, aoui m		0.10.1-1.07				

Report ID: 919794 - 1838587 Page 11 of 78

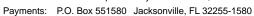
ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228004 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-17AR Date Collected: 11/19/19 13:22

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/21/2019 13:52	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: SV	V-846 5030B		
Water	Analy	rtical Me	ethod: SW-	846 8260B		
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0 0	54 11/26/2019 23:10 J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0 0	22 11/26/2019 23:10 J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0 0	20 11/26/2019 23:10 J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0 0	30 11/26/2019 23:10 J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0 0	14 11/26/2019 23:10 J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0 0	18 11/26/2019 23:10 J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0 0	91 11/26/2019 23:10 J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0 0	18 11/26/2019 23:10 J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0 0	23 11/26/2019 23:10 J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0 0	66 11/26/2019 23:10 J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0 0	22 11/26/2019 23:10 J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0 0	43 11/26/2019 23:10 J
2-Hexanone	0.71	U	ug/L	1	5.0 0	71 11/26/2019 23:10 J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0 0	47 11/26/2019 23:10 J
Acetone	2.1	U	ug/L	1	5.0	2.1 11/26/2019 23:10 J
Acrylonitrile	1.1	U	ug/L	1	10	1.1 11/26/2019 23:10 J
Benzene	0.16	U	ug/L	1	1.0 0	16 11/26/2019 23:10 J
Bromochloromethane	0.17	U	ug/L	1	1.0 0	17 11/26/2019 23:10 J
Bromodichloromethane	0.46	U	ug/L	1	1.0 0	46 11/26/2019 23:10 J
Bromoform	0.44	U	ug/L	1	1.0 0	44 11/26/2019 23:10 J
Bromomethane	0.29	U	ug/L	1	1.0 0	29 11/26/2019 23:10 J
Carbon Disulfide	0.67	U	ug/L	1	1.0 0	67 11/26/2019 23:10 J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0 0	36 11/26/2019 23:10 J
Chlorobenzene	0.21	U	ug/L	1	1.0 0	21 11/26/2019 23:10 J
Chloroethane	0.33	U	ug/L	1	1.0 0	33 11/26/2019 23:10 J
Chloroform	0.18	U	ug/L	1	1.0 0	18 11/26/2019 23:10 J
Chloromethane	0.21	U	ug/L	1	1.0 0	21 11/26/2019 23:10 J
Dibromochloromethane	0.33	U	ug/L	1	1.0 0	33 11/26/2019 23:10 J
Dibromomethane	0.26	U	ug/L	1	1.0 0	26 11/26/2019 23:10 J
Ethylbenzene	0.24	U	ug/L	1	1.0 0	24 11/26/2019 23:10 J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0 0	16 11/26/2019 23:10 J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5 11/26/2019 23:10 J
Styrene	0.23	U	ug/L	1	1.0 0	23 11/26/2019 23:10 J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0 0	36 11/26/2019 23:10 J

Report ID: 919794 - 1838587 Page 12 of 78

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228004 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-17AR Date Collected: 11/19/19 13:22

Sample Description: Location:

Campio 2 coompaioni								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 23:10	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/26/2019 23:10	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/26/2019 23:10	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/26/2019 23:10	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/26/2019 23:10	J
Xylene (Total)	0.53	U	ug/L	1	2.0		11/26/2019 23:10	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0		11/26/2019 23:10	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 23:10	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/26/2019 23:10	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 23:10	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/26/2019 23:10	J
1,2-Dichloroethane-d4 (S)	104		%	1	70-128		11/26/2019 23:10	
Toluene-d8 (S)	89		%	1	77-119		11/26/2019 23:10	
Bromofluorobenzene (S)	104		%	1	86-123		11/26/2019 23:10	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	346 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 23:10	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	11/26/2019 23:10	J
1,2-Dichloroethane-d4 (S)	99		%	1	77-125		11/26/2019 23:10	
Toluene-d8 (S)	90		%	1	80-121		11/26/2019 23:10	
Bromofluorobenzene (S)	102		%	1	80-129		11/26/2019 23:10	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	110		mq/L	1	5.0	0.50	11/20/2019 22:24	J
Nitrate (as N)	0.73		mg/L	1	0.50		11/20/2019 22:24	J
, ,					0.00	0.000	11/20/2010 22:24	
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	3.7		mg/L	5	0.050	0.040	11/26/2019 13:14	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	620		mg/L	1	10	10	11/24/2019 09:00	J

Report ID: 919794 - 1838587 Page 13 of 78

6681 Southpoint Pkwy Jacksonville, FL 32216 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

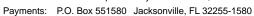
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228005 Matrix: Water

19323-MW-17BR Date Collected: 11/19/19 14:00 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium	18		ug/L	1	4.0	1.0	11/26/2019 23:21	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:21	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:21	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:21	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:21	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:17	J
Iron	560		ug/L	1	400	100	11/26/2019 23:21	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:21	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:21	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:21	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:21	J
Sodium	15		mg/L	1	1.4	0.35	11/26/2019 23:21	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:21	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 23:07	J
Arsenic	0.63	Ĭ	ug/L	1	1.0	_	12/10/2019 13:53	
Thallium	0.057	Ü	ug/L	1	0.20	0.057	12/3/2019 23:07	J
Vanadium	1.1	Ĭ	ug/L	1	2.0	0.71	12/3/2019 23:07	J
Analysis Desc: SW846 7470A	Dror	paration N		V-846 7470A				
Analysis, Water	•							
,	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 13:55	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water				846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/26/2019 23:46	J
1,1,1-Trichloroethane	0.34	Ü	ug/L ug/L	1	1.0		11/26/2019 23:46	J
1,1,2,2-Tetrachloroethane	0.22	Ü	ug/L ug/L	1	1.0	_	11/26/2019 23:46	J
1,1,2-Trichloroethane	0.20	U	ug/L ug/L	1	1.0			J
1,1-Dichloroethane	0.30	Ü	ug/L ug/L	1	1.0		11/26/2019 23:46	J
1,1-Dichloroethylene	0.14	Ü	ug/L ug/L	1	1.0		11/26/2019 23:46	J
1,2,3-Trichloropropane	0.10	Ü	ug/L ug/L	1	1.0		11/26/2019 23:46	
1,2,0 111011010101000110	0.51	•	ug, ∟	•	1.0	0.51	11/20/2010 20:40	3

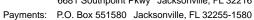
Report ID: 919794 - 1838587 Page 14 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228005 Date Received: 11/20/19 09:50 Matrix: Water


Sample ID: 19323-MW-17BR Date Collected: 11/19/19 14:00

Sample Description: Location:

Sample Description:				Location:				
Davasastava	Daguita	01	Unita	DF	Adjusted PQL	Adjusted	Analyzed	Lab
Parameters	Results	Qual	Units			MDL	<u> </u>	
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 23:46	
1,2-Dichloroethane	0.23	U	ug/L	1	1.0		11/26/2019 23:46	
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/26/2019 23:46	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/26/2019 23:46	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/26/2019 23:46	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/26/2019 23:46	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/26/2019 23:46	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/26/2019 23:46	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/26/2019 23:46	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 23:46	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/26/2019 23:46	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/26/2019 23:46	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/26/2019 23:46	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/26/2019 23:46	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/26/2019 23:46	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/26/2019 23:46	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 23:46	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 23:46	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/26/2019 23:46	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/26/2019 23:46	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 23:46	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/26/2019 23:46	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 23:46	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/26/2019 23:46	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/26/2019 23:46	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 23:46	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/26/2019 23:46	
Toluene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 23:46	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/26/2019 23:46	
Trichlorofluoromethane	0.32	Ū	ug/L	1	1.0	0.32	11/26/2019 23:46	
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/26/2019 23:46	J
Vinyl Chloride	0.20	Ū	ug/L	1	1.0	0.20	11/26/2019 23:46	
Xylene (Total)	0.53	Ü	ug/L	1	2.0		11/26/2019 23:46	
cis-1,2-Dichloroethylene	0.47	Ĭ	ug/L	1	1.0		11/26/2019 23:46	
cis-1,3-Dichloropropene	0.16	Ü	ug/L	1	1.0		11/26/2019 23:46	
trans-1,2-Dichloroethylene	0.20	Ü	ug/L	1	1.0		11/26/2019 23:46	
trans-1,3-Dichloropropylene	0.21	Ü	ug/L	1	1.0	0.21	11/26/2019 23:46	
trans-1,4-Dichloro-2-butene	1.8	Ü	ug/L ug/L	1	1.0		11/26/2019 23:46	
1,2-Dichloroethane-d4 (S)	103	0	wg/L	1	70-128	1.0	11/26/2019 23:46	
Toluene-d8 (S)	90		%	1	70-120 77-119		11/26/2019 23:46	

Report ID: 919794 - 1838587 Page 15 of 78

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228005 Matrix: Water

19323-MW-17BR Date Collected: 11/19/19 14:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	102		%	1	86-123		11/26/2019 23:46	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 23:46	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/26/2019 23:46	J
1,2-Dichloroethane-d4 (S)	98		%	1	77-125		11/26/2019 23:46	
Toluene-d8 (S)	91		%	1	80-121		11/26/2019 23:46	
Bromofluorobenzene (S)	102		%	1	80-129		11/26/2019 23:46	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	13		mg/L	1	5.0	0.50	11/20/2019 22:48	J
Nitrate (as N)	0.076	I	mg/L	1	0.50	0.050	11/20/2019 22:48	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	0.18		mg/L	5	0.050	0.040	11/26/2019 13:15	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	81		mg/L	1	10	10	11/24/2019 09:00	J
Lab ID: J1915228006				Date Received:	11/20/19 09:50	Matrix:	Water	

19323-MW-22AR Date Collected: 11/19/19 13:26 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water			Method: SV ethod: SW-	V-846 3010A 846 6010				
Barium	68		ug/L	1	4.0	1.0	11/26/2019 23:25	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:25	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:25	J
Chromium	2.7	I	ug/L	1	8.0	2.0	11/26/2019 23:25	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:25	J

Report ID: 919794 - 1838587 Page 16 of 78

CERTIFICATE OF ANALYSIS

Adjusted

PQL

5.0

10

2.1 11/27/2019 00:16

1.1 11/27/2019 00:16

Adjusted

MDL

Analyzed

Lab

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Acetone

Acrylonitrile

Lab ID: J1915228006 Date Received: 11/20/19 09:50 Matrix: Water

Units

DF

Qual

Sample ID: 19323-MW-22AR Date Collected: 11/19/19 13:26

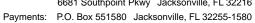
Sample Description: Location:

Results

Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:21	J
Iron	20000		ug/L	1	400	100	11/26/2019 23:25	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:25	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:25	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:25	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:25	J
Sodium	32		mg/L	1	1.4	0.35	11/26/2019 23:25	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:25	J
Analysis Desc: SW846 6020B	Prepa	aration	Method: SV	V-846 3010A				
Analysis, Total	Analy	tical M	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 23:11	J
Arsenic	2.3		ug/L	1	1.0	0.077		J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:11	J
Vanadium	3.1		ug/L	1	2.0	0.71	12/3/2019 23:11	J
Analysis Desc: SW846 7470A	Prepa	aration	Method: SV	V-846 7470A				
Analysis,Water	Analy	tical M	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 13:59	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/27/2019 00:16	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/27/2019 00:16	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/27/2019 00:16	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/27/2019 00:16	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/27/2019 00:16	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 00:16	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/27/2019 00:16	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 00:16	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/27/2019 00:16	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/27/2019 00:16	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/27/2019 00:16	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/27/2019 00:16	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/27/2019 00:16	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/27/2019 00:16	J
				_		_		

Report ID: 919794 - 1838587 Page 17 of 78

ug/L


ug/L

U

2.1

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228006 Date Received: 11/20/19 09:50 Matrix: Water

Date Collected: 11/19/19 13:26 Sample ID: 19323-MW-22AR

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 00:16	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/27/2019 00:16	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/27/2019 00:16	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/27/2019 00:16	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/27/2019 00:16	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/27/2019 00:16	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/27/2019 00:16	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 00:16	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 00:16	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/27/2019 00:16	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/27/2019 00:16	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 00:16	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/27/2019 00:16	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 00:16	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/27/2019 00:16	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/27/2019 00:16	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 00:16	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/27/2019 00:16	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 00:16	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/27/2019 00:16	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/27/2019 00:16	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/27/2019 00:16	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/27/2019 00:16	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/27/2019 00:16	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 00:16	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 00:16	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/27/2019 00:16	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 00:16	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/27/2019 00:16	J
1,2-Dichloroethane-d4 (S)	105		%	1	70-128		11/27/2019 00:16	
Toluene-d8 (S)	89		%	1	77-119		11/27/2019 00:16	
Bromofluorobenzene (S)	103		%	1	86-123		11/27/2019 00:16	
Analysis Desc: 8260B SIM Analysis,	Prei	paration I	Method: S\	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/27/2019 00:16	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/27/2019 00:16	J
1,2-Dichloroethane-d4 (S)	100		%	1	77-125		11/27/2019 00:16	
Toluene-d8 (S)	90		%	1	80-121		11/27/2019 00:16	
Bromofluorobenzene (S)	102		%	1	80-129		11/27/2019 00:16	

·				0.00002			
Water	Analy	tical M	ethod: SW-8	846 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11 11/27/2019 00:	6 J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020 11/27/2019 00:	6 J
1,2-Dichloroethane-d4 (S)	100		%	1	77-125	11/27/2019 00:	6
Toluene-d8 (S)	90		%	1	80-121	11/27/2019 00:	6
Bromofluorobenzene (S)	102		%	1	80-129	11/27/2019 00:	6

Report ID: 919794 - 1838587 Page 18 of 78

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (904)363-9350

Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228006 Matrix: Water

19323-MW-22AR Date Collected: 11/19/19 13:26 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EP	A 300.0				
Chloride	77		mg/L	1	5.0	0.50	11/20/2019 23:11	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/20/2019 23:11	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EP/	A 350.1				
Ammonia (N)	3.3		mg/L	5	0.050	0.040	11/26/2019 13:16	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	610		mg/L	1	10	10	11/24/2019 09:00	J

Lab ID: J1915228007 Date Received: 11/20/19 09:50 Matrix: Water

Date Collected: 11/19/19 13:08 Sample ID: 19323-MW-22BR

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
- arameters	Nesuits	Quai	Office		I QL	IVIDE	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium	14		ug/L	1	4.0	1.0	11/26/2019 23:30	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:30	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:30	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:30	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:30	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:24	J
Iron	1100		ug/L	1	400	100	11/26/2019 23:30	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:30	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:30	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:30	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:30	J
Sodium	6.9		mg/L	1	1.4	0.35	11/26/2019 23:30	J
Zinc.	50	U	ua/L	1	200	50	11/26/2019 23:30	J

Report ID: 919794 - 1838587 Page 19 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228007 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-22BR Date Collected: 11/19/19 13:08

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	·		Method: SV ethod: SW-	V-846 3010A 846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 23:26	J
Arsenic	0.27	- 1	ug/L	1	1.0	0.077	12/10/2019 14:01	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:26	J
Vanadium	0.97	I	ug/L	1	2.0	0.71	12/3/2019 23:26	J
Analysis Desc: SW846 7470A Analysis,Water	·			V-846 7470A 846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:02	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U		1	1.0	0.54	11/27/2019 00:53	J
• • •			ug/L	1			11/27/2019 00:53	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22		J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/27/2019 00:53	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/27/2019 00:53	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/27/2019 00:53	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 00:53	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/27/2019 00:53	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 00:53	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/27/2019 00:53	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/27/2019 00:53	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/27/2019 00:53	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/27/2019 00:53	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/27/2019 00:53	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/27/2019 00:53	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/27/2019 00:53	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/27/2019 00:53	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 00:53	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/27/2019 00:53	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/27/2019 00:53	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/27/2019 00:53	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/27/2019 00:53	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/27/2019 00:53	J
Carbon Tetrachloride	0.36	Ü	ug/L	1	1.0	0.36	11/27/2019 00:53	J
Chlorobenzene	0.21	Ū	ug/L	1	1.0	0.21	11/27/2019 00:53	J
Chloroethane	0.33	Ü	ug/L	1	1.0	0.33	11/27/2019 00:53	J
		_	~ J' —	•		0.00	,	•

Report ID: 919794 - 1838587 Page 20 of 78

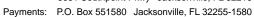
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228007 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-22BR Date Collected: 11/19/19 13:08


Sample Description: Location:

Sample Description:				Location:				
Demonstra	Darrita	01	11-26-	D.F.	Adjusted	Adjusted	Analyzad	Lab
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab ——
Chloroform	0.18	U	ug/L	1	1.0		11/27/2019 00:53	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/27/2019 00:53	J
Dibromochloromethane	0.33	U	ug/L	1	1.0		11/27/2019 00:53	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/27/2019 00:53	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 00:53	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/27/2019 00:53	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/27/2019 00:53	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 00:53	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0		11/27/2019 00:53	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 00:53	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/27/2019 00:53	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/27/2019 00:53	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/27/2019 00:53	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/27/2019 00:53	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/27/2019 00:53	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 00:53	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 00:53	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/27/2019 00:53	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 00:53	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/27/2019 00:53	J
1,2-Dichloroethane-d4 (S)	103		%	1	70-128		11/27/2019 00:53	
Toluene-d8 (S)	88		%	1	77-119		11/27/2019 00:53	
Bromofluorobenzene (S)	101		%	1	86-123		11/27/2019 00:53	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/27/2019 00:53	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/27/2019 00:53	J
1,2-Dichloroethane-d4 (S)	98		%	1	77-125		11/27/2019 00:53	
Toluene-d8 (S)	89		%	1	80-121		11/27/2019 00:53	
Bromofluorobenzene (S)	101		%	1	80-129		11/27/2019 00:53	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	14		mg/L	1	5.0	0.50	11/20/2019 23:34	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/20/2019 23:34	J
,				-	3.53	5.000		-
Analysis Desc: Ammonia,E350.1,Water		•	ethod: EPA					
Ammonia (N)	0.18	J4	mg/L	5	0.050	0.040	11/26/2019 13:26	G

Report ID: 919794 - 1838587 Page 21 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228007 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-22BR Date Collected: 11/19/19 13:08

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	58		mg/L	1	10	10	11/25/2019 14:30	J

Lab ID: J1915228008 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-23A Date Collected: 11/19/19 14:56

Sample Description: Location:

Campio 2 coonplicin								
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	results	Quai	Office		1 &L	IVIDE	7 tilaly20a	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Analytical Method: SW-846 6010							
Barium	32		ug/L	1	4.0	1.0	11/26/2019 23:34	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:34	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:34	J
Chromium	24		ug/L	1	8.0	2.0	11/26/2019 23:34	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:34	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:35	J
Iron	360	ı	ug/L	1	400	100	11/26/2019 23:34	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:34	J
Nickel	18	- 1	ug/L	1	24	6.0	11/26/2019 23:34	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:34	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:34	J
Sodium	500		mg/L	1	1.4	0.35	11/26/2019 23:34	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:34	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	3.5		ug/L	1	0.70	0.11	12/3/2019 23:31	J
Arsenic	6.2		ug/L	1	1.0	0.077	12/10/2019 14:05	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:31	J
Vanadium	15		ug/L	1	2.0	0.71	12/3/2019 23:31	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-	846 7470A				

Report ID: 919794 - 1838587 Page 22 of 78

Phone: (904)363-9350 Fax: (904)363-9354

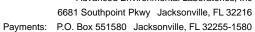
ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228008 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-23A Date Collected: 11/19/19 14:56

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/21/2019 14:05	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SW	/-846 5030B						
Water	Analytical Method: SW-846 8260B									
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0 0	.54 11/27/2019 01:22 J				
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0 0	.22 11/27/2019 01:22 J				
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0 0	.20 11/27/2019 01:22 J				
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0 0	.30 11/27/2019 01:22 J				
1,1-Dichloroethane	0.14	U	ug/L	1	1.0 0	.14 11/27/2019 01:22 J				
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0 0	.18 11/27/2019 01:22 J				
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0 0	.91 11/27/2019 01:22 J				
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0 0	.18 11/27/2019 01:22 J				
1,2-Dichloroethane	0.23	U	ug/L	1	1.0 0	.23 11/27/2019 01:22 J				
1,2-Dichloropropane	0.66	U	ug/L	1	1.0 0	.66 11/27/2019 01:22 J				
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0 0	.22 11/27/2019 01:22 J				
2-Butanone (MEK)	63		ug/L	1	5.0 0	.43 11/27/2019 01:22 J				
2-Hexanone	0.71	U	ug/L	1	5.0 0	.71 11/27/2019 01:22 J				
4-Methyl-2-pentanone (MIBK)	5.8		ug/L	1	1.0 0	.47 11/27/2019 01:22 J				
Acetone	290		ug/L	3	15	6.2 12/2/2019 10:01 J				
Acrylonitrile	1.1	U	ug/L	1	10	1.1 11/27/2019 01:22 J				
Benzene	0.16	U	ug/L	1	1.0 0	.16 11/27/2019 01:22 J				
Bromochloromethane	0.17	U	ug/L	1	1.0 0	.17 11/27/2019 01:22 J				
Bromodichloromethane	0.46	U	ug/L	1		.46 11/27/2019 01:22 J				
Bromoform	0.44	U	ug/L	1	1.0 0	.44 11/27/2019 01:22 J				
Bromomethane	0.29	U	ug/L	1	1.0 0	.29 11/27/2019 01:22 J				
Carbon Disulfide	2.3		ug/L	1	1.0 0	.67 11/27/2019 01:22 J				
Carbon Tetrachloride	0.36	U	ug/L	1	1.0 0	.36 11/27/2019 01:22 J				
Chlorobenzene	0.21	U	ug/L	1		.21 11/27/2019 01:22 J				
Chloroethane	0.33	U	ug/L	1		.33 11/27/2019 01:22 J				
Chloroform	0.18	U	ug/L	1		.18 11/27/2019 01:22 J				
Chloromethane	0.21	U	ug/L	1		.21 11/27/2019 01:22 J				
Dibromochloromethane	0.33	U	ug/L	1	1.0 0	.33 11/27/2019 01:22 J				
Dibromomethane	0.26	U	ug/L	1		.26 11/27/2019 01:22 J				
Ethylbenzene	0.24	U	ug/L	1		.24 11/27/2019 01:22 J				
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1		.16 11/27/2019 01:22 J				
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5 11/27/2019 01:22 J				
Styrene	0.23	U	ug/L	1		.23 11/27/2019 01:22 J				
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0 0	36 11/27/2019 01:22 J				

Report ID: 919794 - 1838587 Page 23 of 78

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228008 Matrix: Water

19323-MW-23A Date Collected: 11/19/19 14:56 Sample ID:

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	2.2		ug/L	1	1.0	0.23	11/27/2019 01:22	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/27/2019 01:22	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/27/2019 01:22	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/27/2019 01:22	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/27/2019 01:22	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/27/2019 01:22	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 01:22	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 01:22	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0		11/27/2019 01:22	-
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 01:22	
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/27/2019 01:22	
1,2-Dichloroethane-d4 (S)	106		%	1	70-128		11/27/2019 01:22	
Toluene-d8 (S)	89		%	1	77-119		11/27/2019 01:22	
Bromofluorobenzene (S)	102		%	1	86-123		11/27/2019 01:22	
Analysis Desc: 8260B SIM Analysis,	Pre	oaration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/27/2019 01:22	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	11/27/2019 01:22	J
1,2-Dichloroethane-d4 (S)	101		%	1	77-125		11/27/2019 01:22	
Toluene-d8 (S)	90		%	1	80-121		11/27/2019 01:22	
Bromofluorobenzene (S)	101		%	1	80-129		11/27/2019 01:22	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	870		mg/L	20	100	10	11/20/2019 23:57	J
Nitrate (as N)	1.0	U	mg/L	20	10	1.0	11/20/2019 23:57	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	42		mg/L	100	1.0	0.80	11/26/2019 16:16	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	1900		mg/L	1	10	10	11/25/2019 14:30	J
			-					

Report ID: 919794 - 1838587 Page 24 of 78

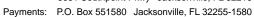
Phone: (904)363-9350 Fax: (904)363-9354

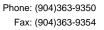
ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228009 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-23B Date Collected: 11/19/19 14:12


Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	ethod: SW-	846 6010				
Barium	65	,	ug/L	1	4.0	1.0	11/26/2019 23:39	J
Beryllium	0.50	1	ug/L	1	2.0	0.50		J
Cadmium	1.0	Ü	ug/L	1	4.0		11/26/2019 23:39	J
Chromium	2.0	Ü	ug/L	1	8.0	2.0	11/26/2019 23:39	J
Cobalt	2.0	Ū	ug/L	1	8.0		11/26/2019 23:39	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:38	J
Iron	1000		ug/L	1	400	100	11/26/2019 23:39	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:39	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:39	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:39	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:39	J
Sodium	170		mg/L	1	1.4	0.35	11/26/2019 23:39	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:39	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
nalysis,Total			ethod: SW-					
A							4.0/0/004.000	
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 23:36	J
Arsenic Thallium	0.98	l U	ug/L	1	1.0		12/10/2019 14:26	J
Vanadium	0.057 12	U	ug/L ug/L	1 1	0.20 2.0	0.057 0.71	12/3/2019 23:36 12/3/2019 23:36	J J
variadium	12		ug/L	1	2.0	0.71	12/3/2019 23.30	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: S\	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:08	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prer	naration I	Method: SI	V-846 5030B				
Water								
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0		11/27/2019 01:59	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0		11/27/2019 01:59	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0		11/27/2019 01:59	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0		11/27/2019 01:59	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0		11/27/2019 01:59	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0		11/27/2019 01:59	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/27/2019 01:59	J

Report ID: 919794 - 1838587 Page 25 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228009 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-23B Date Collected: 11/19/19 14:12

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 01:59	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/27/2019 01:59	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/27/2019 01:59	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/27/2019 01:59	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/27/2019 01:59	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/27/2019 01:59	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/27/2019 01:59	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/27/2019 01:59	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/27/2019 01:59	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 01:59	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/27/2019 01:59	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/27/2019 01:59	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/27/2019 01:59	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/27/2019 01:59	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/27/2019 01:59	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/27/2019 01:59	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 01:59	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 01:59	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/27/2019 01:59	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/27/2019 01:59	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 01:59	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/27/2019 01:59	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 01:59	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/27/2019 01:59	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/27/2019 01:59	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 01:59	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/27/2019 01:59	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 01:59	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/27/2019 01:59	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/27/2019 01:59	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/27/2019 01:59	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/27/2019 01:59	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/27/2019 01:59	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 01:59	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 01:59	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/27/2019 01:59	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 01:59	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/27/2019 01:59	J
1,2-Dichloroethane-d4 (S)	106		%	1	70-128		11/27/2019 01:59	
Toluene-d8 (S)	88		%	1	77-119		11/27/2019 01:59	

Report ID: 919794 - 1838587 Page 26 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228009 Matrix: Water

19323-MW-23B Date Collected: 11/19/19 14:12 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	105		%	1	86-123		11/27/2019 01:59	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/27/2019 01:59	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020		J
1,2-Dichloroethane-d4 (S)	101		%	1	77-125		11/27/2019 01:59	
Toluene-d8 (S)	89		%	1	80-121		11/27/2019 01:59	
Bromofluorobenzene (S)	105		%	1	80-129		11/27/2019 01:59	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	250		mg/L	2	10	1.0	11/21/2019 04:10	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	11/21/2019 04:10	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	13		mg/L	25	0.25	0.20	11/26/2019 16:17	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	740		mg/L	1	10	10	11/25/2019 14:30	J
Lab ID: J1915228010				Date Received:	11/20/19 09:50	Matrix:	Water	
Sample ID: 19323-MW-27A				Date Collected:	11/19/19 08:45			

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water	•		Method: SV ethod: SW-	V-846 3010A 846 6010				
Barium	23		ug/L	1	4.0	1.0	11/26/2019 23:44	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:44	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:44	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:44	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:44	J

Report ID: 919794 - 1838587 Page 27 of 78

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

1.0

1.0

5.0

5.0

1.0

5.0

10

0.66 11/27/2019 02:28

0.22 11/27/2019 02:28

0.43 11/27/2019 02:28

0.71 11/27/2019 02:28

0.47 11/27/2019 02:28

2.1 11/27/2019 02:28

1.1 11/27/2019 02:28

J

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

1,2-Dichloropropane

1,4-Dichlorobenzene

4-Methyl-2-pentanone (MIBK)

2-Butanone (MEK)

2-Hexanone

Acrylonitrile

Acetone

Date Received: 11/20/19 09:50 Lab ID: J1915228010 Matrix: Water

Date Collected: 11/19/19 08:45 Sample ID: 19323-MW-27A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:42	J
Iron	470		ug/L	1	400	100	11/26/2019 23:44	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:44	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:44	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:44	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:44	J
Sodium	14		mg/L	1	1.4	0.35	11/26/2019 23:44	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:44	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	0.43	ı	ug/L	1	0.70	0.11	12/3/2019 23:40	J
Arsenic	1.2		ug/L	1	1.0	0.077	12/10/2019 14:30	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:40	J
Vanadium	9.1		ug/L	1	2.0	0.71	12/3/2019 23:40	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:12	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Anal	ytical Me	ethod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/27/2019 02:28	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/27/2019 02:28	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/27/2019 02:28	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/27/2019 02:28	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/27/2019 02:28	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 02:28	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/27/2019 02:28	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 02:28	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/27/2019 02:28	J

Report ID: 919794 - 1838587 Page 28 of 78

1

1

1

1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

U

U

U

U

U

U

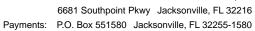
U

0.66

0.22

0.43

0.71


0.47

2.1

1.1

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228010 Date Received: 11/20/19 09:50 Matrix: Water

Date Collected: 11/19/19 08:45 Sample ID: 19323-MW-27A

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 02:28	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/27/2019 02:28	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/27/2019 02:28	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/27/2019 02:28	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/27/2019 02:28	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/27/2019 02:28	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/27/2019 02:28	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 02:28	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 02:28	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/27/2019 02:28	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/27/2019 02:28	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 02:28	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/27/2019 02:28	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 02:28	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/27/2019 02:28	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/27/2019 02:28	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 02:28	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/27/2019 02:28	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 02:28	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/27/2019 02:28	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/27/2019 02:28	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/27/2019 02:28	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/27/2019 02:28	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/27/2019 02:28	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 02:28	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 02:28	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/27/2019 02:28	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 02:28	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/27/2019 02:28	J
1,2-Dichloroethane-d4 (S)	104		%	1	70-128		11/27/2019 02:28	
Toluene-d8 (S)	87		%	1	77-119		11/27/2019 02:28	
Bromofluorobenzene (S)	103		%	1	86-123		11/27/2019 02:28	
Analysis Desc: 8260B SIM Analysis,	Prei	oaration I	Method: S\	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/27/2019 02:28	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/27/2019 02:28	J
1,2-Dichloroethane-d4 (S)	99		%	1	77-125		11/27/2019 02:28	
Toluene-d8 (S)	88		%	1	80-121		11/27/2019 02:28	
Bromofluorobenzene (S)	102		%	1	80-129		11/27/2019 02:28	

Anal	ytical M	ethod: SW-8	346 8260B (SIM)		
0.11	U	ug/L	1	0.20	0.11 11/27/2019 02:28 J
0.020	U	ug/L	1	0.10	0.020 11/27/2019 02:28 J
99		%	1	77-125	11/27/2019 02:28
88		%	1	80-121	11/27/2019 02:28
102		%	1	80-129	11/27/2019 02:28
	0.11 0.020 99 88	0.11 U 0.020 U 99 88	0.11 U ug/L 0.020 U ug/L 99 % 88 %	0.020 U ug/L 1 99 % 1 88 % 1	0.11 U ug/L 1 0.20 0.020 U ug/L 1 0.10 99 % 1 77-125 88 % 1 80-121

Report ID: 919794 - 1838587 Page 29 of 78

CERTIFICATE OF ANALYSIS

6681 Southpoint Pkwy Jacksonville, FL 32216 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228010 Matrix: Water

19323-MW-27A Date Collected: 11/19/19 08:45 Sample ID:

Sample Description: Location:

Davamatava	Dagulta	0	l laita	DE	Adjusted	Adjusted	Analyzad	Lab
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	26		mg/L	1	5.0	0.50	11/21/2019 04:33	J
Nitrate (as N)	0.73		mg/L	1	0.50	0.050	11/21/2019 04:33	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	4.0		mg/L	5	0.050	0.040	11/26/2019 16:18	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	130		mg/L	1	10	10	11/25/2019 14:30	J

Lab ID: J1915228011 Date Received: 11/20/19 09:50 Matrix: Water

Date Collected: 11/19/19 09:28 Sample ID: 19323-MW-27B

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium	17		ug/L	1	4.0	1.0	11/26/2019 23:48	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:48	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:48	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:48	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:48	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:45	J
Iron	470		ug/L	1	400	100	11/26/2019 23:48	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:48	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:48	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:48	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:48	J
Sodium	25		mg/L	1	1.4	0.35	11/26/2019 23:48	J
Zinc	50	U	ua/L	1	200	50	11/26/2019 23:48	J

Report ID: 919794 - 1838587 Page 30 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228011 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-27B Date Collected: 11/19/19 09:28

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	'		Method: SV ethod: SW-	V-846 3010A 846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 23:45	J
Arsenic	0.67	- 1	ug/L	1	1.0	0.077	12/10/2019 14:35	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:45	J
Vanadium	1.4	I	ug/L	1	2.0	0.71	12/3/2019 23:45	J
Analysis Desc: SW846 7470A Analysis,Water	'			V-846 7470A 846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:15	J

VOLATILES

VOLATILES									
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: S	W-846 5030B					
Water	Analy	tical Me	ethod: SW	-846 8260B					
	•								
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/27/2019 03:05	J	
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/27/2019 03:05	J	
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/27/2019 03:05	J	
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/27/2019 03:05	J	
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/27/2019 03:05	J	
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 03:05	J	
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/27/2019 03:05	J	
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/27/2019 03:05	J	
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/27/2019 03:05	J	
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/27/2019 03:05	J	
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/27/2019 03:05	J	
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/27/2019 03:05	J	
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/27/2019 03:05	J	
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/27/2019 03:05	J	
Acetone	2.1	U	ug/L	1	5.0	2.1	11/27/2019 03:05	J	
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/27/2019 03:05	J	
Benzene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 03:05	J	
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/27/2019 03:05	J	
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/27/2019 03:05	J	
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/27/2019 03:05	J	
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/27/2019 03:05	J	
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/27/2019 03:05	J	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/27/2019 03:05	J	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 03:05	J	
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 03:05	J	

Report ID: 919794 - 1838587 Page 31 of 78

CERTIFICATE OF ANALYSIS

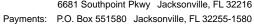
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228011 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-27B Date Collected: 11/19/19 09:28


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/27/2019 03:05	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/27/2019 03:05	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/27/2019 03:05	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/27/2019 03:05	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 03:05	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/27/2019 03:05	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/27/2019 03:05	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 03:05	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/27/2019 03:05	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 03:05	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/27/2019 03:05	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/27/2019 03:05	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/27/2019 03:05	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/27/2019 03:05	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/27/2019 03:05	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 03:05	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 03:05	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/27/2019 03:05	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 03:05	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/27/2019 03:05	J
1,2-Dichloroethane-d4 (S)	98		%	1	70-128		11/27/2019 03:05	
Toluene-d8 (S)	89		%	1	77-119		11/27/2019 03:05	
Bromofluorobenzene (S)	103		%	1	86-123		11/27/2019 03:05	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/27/2019 03:05	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10		11/27/2019 03:05	J
1,2-Dichloroethane-d4 (S)	93	_	%	1	77-125	***=*	11/27/2019 03:05	-
Toluene-d8 (S)	91		%	1	80-121		11/27/2019 03:05	
Bromofluorobenzene (S)	103		%	1	80-129		11/27/2019 03:05	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	33		mg/L	1	5.0	0.50	11/21/2019 01:06	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/21/2019 01:06	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	thod: EPA	350.1				
Ammonia (N)	0.11		mg/L	5	0.050	0.040	11/26/2019 13:33	G

Report ID: 919794 - 1838587 Page 32 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228011 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-27B Date Collected: 11/19/19 09:28

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	100		mg/L	1	10	10	11/25/2019 14:30	J

Lab ID: J1915228012 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-28A Date Collected: 11/19/19 10:30

Sample Description: Location:

Sample Description.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	346 6010				
Barium	120		ug/L	1	4.0	1.0	11/26/2019 23:53	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:53	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 23:53	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:53	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:53	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:49	J
Iron	6700		ug/L	1	400	100	11/26/2019 23:53	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:53	J
Nickel	6.4	I	ug/L	1	24	6.0	11/26/2019 23:53	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:53	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:53	J
Sodium	160		mg/L	1	1.4	0.35	11/26/2019 23:53	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:53	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 23:49	J
Arsenic	1.4		ug/L	1	1.0	0.077	12/10/2019 14:39	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:49	J
Vanadium	0.72	I	ug/L	1	2.0	0.71	12/3/2019 23:49	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	346 7470A				

Report ID: 919794 - 1838587 Page 33 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228012 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-28A Date Collected: 11/19/19 10:30

Sample Description: Location:

Mercury	0.011	U	ua/L	1	0.10	0.011	11/21/2019 14:2	4 J
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: SV	V-846 5030B		
Water	Analy	rtical Me	ethod: SW-	846 8260B		
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0 0	.54 11/27/2019 03:35 J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0 0	.22 11/27/2019 03:35 J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0 0	.20 11/27/2019 03:35 J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0 0	.30 11/27/2019 03:35 J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0 0	.14 11/27/2019 03:35 J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0 0	.18 11/27/2019 03:35 J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0 0	.91 11/27/2019 03:35 J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0 0	.18 11/27/2019 03:35 J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0 0	.23 11/27/2019 03:35 J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0 0	.66 11/27/2019 03:35 J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0 0	.22 11/27/2019 03:35 J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0 0	.43 11/27/2019 03:35 J
2-Hexanone	0.71	U	ug/L	1	5.0 0	.71 11/27/2019 03:35 J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0 0	.47 11/27/2019 03:35 J
Acetone	2.1	U	ug/L	1	5.0	2.1 11/27/2019 03:35 J
Acrylonitrile	1.1	U	ug/L	1	10	1.1 11/27/2019 03:35 J
Benzene	0.16	U	ug/L	1	1.0 0	.16 11/27/2019 03:35 J
Bromochloromethane	0.17	U	ug/L	1	1.0 0	.17 11/27/2019 03:35 J
Bromodichloromethane	0.46	U	ug/L	1	1.0 0	.46 11/27/2019 03:35 J
Bromoform	0.44	U	ug/L	1	1.0 0	.44 11/27/2019 03:35 J
Bromomethane	0.29	U	ug/L	1	1.0 0	.29 11/27/2019 03:35 J
Carbon Disulfide	0.67	U	ug/L	1	1.0 0	.67 11/27/2019 03:35 J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0 0	.36 11/27/2019 03:35 J
Chlorobenzene	0.21	U	ug/L	1	1.0 0	.21 11/27/2019 03:35 J
Chloroethane	0.33	U	ug/L	1	1.0 0	.33 11/27/2019 03:35 J
Chloroform	0.18	U	ug/L	1	1.0 0	.18 11/27/2019 03:35 J
Chloromethane	0.21	U	ug/L	1	1.0 0	.21 11/27/2019 03:35 J
Dibromochloromethane	0.33	U	ug/L	1	1.0 0	.33 11/27/2019 03:35 J
Dibromomethane	0.26	U	ug/L	1	1.0 0	.26 11/27/2019 03:35 J
Ethylbenzene	0.24	U	ug/L	1	1.0 0	.24 11/27/2019 03:35 J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1		.16 11/27/2019 03:35 J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5 11/27/2019 03:35 J
Styrene	0.23	U	ug/L	1		.23 11/27/2019 03:35 J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0 0	.36 11/27/2019 03:35 J

Report ID: 919794 - 1838587 Page 34 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228012 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-28A Date Collected: 11/19/19 10:30

Sample Description: Location:

Campio 2 coompaioni								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	11/27/2019 03:35	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/27/2019 03:35	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/27/2019 03:35	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/27/2019 03:35	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/27/2019 03:35	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/27/2019 03:35	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/27/2019 03:35	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/27/2019 03:35	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/27/2019 03:35	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/27/2019 03:35	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/27/2019 03:35	J
1,2-Dichloroethane-d4 (S)	103		%	1	70-128		11/27/2019 03:35	
Toluene-d8 (S)	87		%	1	77-119		11/27/2019 03:35	
Bromofluorobenzene (S)	103		%	1	86-123		11/27/2019 03:35	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SW	/-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/27/2019 03:35	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/27/2019 03:35	J
1,2-Dichloroethane-d4 (S)	98		%	1	77-125		11/27/2019 03:35	
Toluene-d8 (S)	89		%	1	80-121		11/27/2019 03:35	
Bromofluorobenzene (S)	102		%	1	80-129		11/27/2019 03:35	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	430		mg/L	5	25	2.5	11/26/2019 18:53	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	11/21/2019 01:52	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	14		mg/L	25	0.25	0.20	11/26/2019 16:28	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	540 C				
Total Dissolved Solids	720		mg/L	1	10	10	11/25/2019 14:30	J

Report ID: 919794 - 1838587 Page 35 of 78

6681 Southpoint Pkwy Jacksonville, FL 32216 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

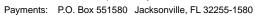
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228013 Matrix: Water

19323-MW-28B Date Collected: 11/19/19 11:20 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium	41		ug/L	1	4.0	1.0	11/26/2019 23:57	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 23:57	J
Cadmium	1.0	Ū	ug/L	1	4.0		11/26/2019 23:57	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:57	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 23:57	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 16:52	J
Iron	1200		ug/L	1	400	100	11/26/2019 23:57	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 23:57	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 23:57	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 23:57	J
Silver	10	U	ug/L	1	40	10	11/26/2019 23:57	J
Sodium	17		mg/L	1	1.4	0.35	11/26/2019 23:57	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 23:57	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/3/2019 23:53	J
Arsenic	0.80	Ĭ	ug/L	1	1.0	_	12/10/2019 14:43	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/3/2019 23:53	J
Vanadium	2.0	1	ug/L	1	2.0	0.71	12/3/2019 23:53	J
Analysis Desc: SW846 7470A	Prer	naration I	Method: SV	V-846 7470A				
Analysis, Water	·							
		•		846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:28	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prer	aration I	Method: SV	V-846 5030B				
Water								
		•		846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0		11/28/2019 06:59	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0		11/28/2019 06:59	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0		11/28/2019 06:59	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0		11/28/2019 06:59	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0		11/28/2019 06:59	J
1,1-Dichloroethylene	0.18 0.91	U U	ug/L	1 1	1.0 1.0	0.18	11/28/2019 06:59	J J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/28/2019 06:59	J

Report ID: 919794 - 1838587 Page 36 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228013 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-28B Date Collected: 11/19/19 11:20

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 06:59	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/28/2019 06:59	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/28/2019 06:59	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/28/2019 06:59	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/28/2019 06:59	·
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/28/2019 06:59	
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/28/2019 06:59	
Acetone	2.1	U	ug/L	1	5.0	2.1	11/28/2019 06:59	
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/28/2019 06:59	
Benzene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 06:59	
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/28/2019 06:59	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/28/2019 06:59	
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/28/2019 06:59	
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 10:31	
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/28/2019 06:59	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/28/2019 06:59	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 06:59	
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 06:59	
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/28/2019 06:59	
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/28/2019 06:59	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 06:59	
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/28/2019 06:59	
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 06:59	
odomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/28/2019 06:59	
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/28/2019 06:59	
Styrene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 06:59	
etrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/28/2019 06:59	
Toluene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 06:59	
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 06:59	
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 06:59	
/inyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 10:31	
/inyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 06:59	
(ylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/28/2019 06:59	
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 06:59	
sis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 06:59	
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/28/2019 06:59	
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 06:59	
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/28/2019 06:59	
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		11/28/2019 06:59	
Toluene-d8 (S)	86		%	1	77-119		11/28/2019 06:59	

Report ID: 919794 - 1838587 Page 37 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

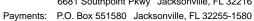
Lab ID: J1915228013 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-28B Date Collected: 11/19/19 11:20

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	102		%	1	86-123		11/28/2019 06:59	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Ana	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 06:59	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/28/2019 06:59	J
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		11/28/2019 06:59	
Toluene-d8 (S)	87		%	1	80-121		11/28/2019 06:59	
Bromofluorobenzene (S)	101		%	1	80-129		11/28/2019 06:59	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	ytical Me	ethod: EPA	A 300.0				
Chloride	37		mg/L	1	5.0	0.50	11/21/2019 02:15	J
Nitrate (as N)	0.069	ı	mg/L	1	0.50	0.050	11/21/2019 02:15	J
Analysis Desc: Ammonia,E350.1,Water	Ana	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	0.10		mg/L	5	0.050	0.040	11/26/2019 16:29	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	110		mg/L	1	10	10	11/25/2019 14:30	J
Lab ID 1404F000044				Data Dansiyadı	11/20/10 00:50	Motrice	Water	
Lab ID: J1915228014				Date Received:	11/20/19 09:50	Matrix:	vvalei	
Cample ID. 40000 MIM 00 A				Data Callagrad:	11/10/10 12:00			

Sample ID: 19323-MW-29A Date Collected: 11/19/19 12:00


Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B Analysis,Water	•		Method: SV ethod: SW-	V-846 3010A 846 6010				
Barium	52		ug/L	1	4.0	1.0	12/3/2019 14:33	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 14:33	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 14:33	J
Chromium	2.0	I	ug/L	1	8.0	2.0	12/3/2019 14:33	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 14:33	J

Report ID: 919794 - 1838587 Page 38 of 78

CERTIFICATE OF ANALYSIS

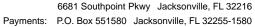
ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228014 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-29A Date Collected: 11/19/19 12:00

Sample Description: Location:


-					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:33	J
Iron	2200		ug/L	1	400	100	12/3/2019 14:33	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 14:33	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 14:33	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 14:33	J
Silver	10	U	ug/L	1	40	10	12/3/2019 14:33	J
Sodium	15		mg/L	1	1.4	0.35	12/3/2019 14:33	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 14:33	J
Analysis Desc: SW846 6020B	Prep	aration N	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.27	- 1	ug/L	1	0.70	0.11	12/3/2019 23:57	J
Arsenic	0.82	1	ug/L	1	1.0	0.077	12/10/2019 14:47	J
Thallium	0.060	1	ug/L	1	0.20	0.057	12/3/2019 23:57	J
Vanadium	10		ug/L	1	2.0	0.71	12/3/2019 23:57	J
Analysis Desc: SW846 7470A	Prep	aration N	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	thod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:31	J
VOLATILES								

VOLATILLO								
Analysis Desc: 8260B VOCs Analysis, Water	Prepa	aration	Method: S\	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/28/2019 07:29	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/28/2019 07:29	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/28/2019 07:29	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/28/2019 07:29	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/28/2019 07:29	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 07:29	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/28/2019 07:29	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 07:29	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/28/2019 07:29	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/28/2019 07:29	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/28/2019 07:29	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/28/2019 07:29	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/28/2019 07:29	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/28/2019 07:29	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/28/2019 07:29	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/28/2019 07:29	J

Report ID: 919794 - 1838587 Page 39 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228014 Date Received: 11/20/19 09:50 Matrix: Water

Date Collected: 11/19/19 12:00 Sample ID: 19323-MW-29A

Sample Description: Location:

Campic Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 07:29	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/28/2019 07:29	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/28/2019 07:29	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/28/2019 07:29	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 11:07	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/28/2019 07:29	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/28/2019 07:29	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 07:29	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 07:29	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/28/2019 07:29	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/28/2019 07:29	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 07:29	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/28/2019 07:29	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 07:29	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/28/2019 07:29	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/28/2019 07:29	J
Styrene	0.23	U	ug/L	1	1.0		11/28/2019 07:29	
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/28/2019 07:29	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 07:29	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 07:29	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 07:29	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 11:07	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 07:29	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/28/2019 07:29	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 07:29	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 07:29	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/28/2019 07:29	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 07:29	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/28/2019 07:29	J
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		11/28/2019 07:29	
Toluene-d8 (S)	87		%	1	77-119		11/28/2019 07:29	
Bromofluorobenzene (S)	101		%	1	86-123		11/28/2019 07:29	
Analysis Desc: 8260B SIM Analysis,	Prep	paration M	Method: SV	V-846 5030B				
Water	Ana	lytical Me	thod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 07:29	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	_	11/28/2019 07:29	
1,2-Dichloroethane-d4 (S)	84	-	%	1	77-125	0.020	11/28/2019 07:29	
Toluene-d8 (S)	89							
	Ca Ca		%	1	80-121		11/28/2019 07:29	

Report ID: 919794 - 1838587 Page 40 of 78

CERTIFICATE OF ANALYSIS

6681 Southpoint Pkwy Jacksonville, FL 32216 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

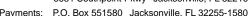
Date Received: 11/20/19 09:50 Lab ID: J1915228014 Matrix: Water

19323-MW-29A Date Collected: 11/19/19 12:00 Sample ID:

Sample Description: Location:

Davamatava	Daguita	0	l laita	DE	Adjusted	Adjusted	Analyzad	Lab
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	18		mg/L	1	5.0	0.50	11/21/2019 02:38	J
Nitrate (as N)	4.6		mg/L	1	0.50	0.050	11/21/2019 02:38	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	0.17		mg/L	5	0.050	0.040	11/26/2019 13:36	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	220		mg/L	1	10	10	11/25/2019 14:30	J

Lab ID: J1915228015 Date Received: 11/20/19 09:50 Matrix: Water


Date Collected: 11/19/19 12:38 Sample ID: 19323-MW-29B

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	98		ug/L	1	4.0	1.0	12/3/2019 14:37	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 14:37	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 14:37	J
Chromium	2.0	U	ug/L	1	8.0	2.0	12/3/2019 14:37	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 14:37	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:37	J
Iron	2900		ug/L	1	400	100	12/3/2019 14:37	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 14:37	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 14:37	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 14:37	J
Silver	10	U	ug/L	1	40	10	12/3/2019 14:37	J
Sodium	18		mg/L	1	1.4	0.35	12/3/2019 14:37	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 14:37	J

Report ID: 919794 - 1838587 Page 41 of 78

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (904)363-9350

Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228015 Matrix: Water

19323-MW-29B Date Collected: 11/19/19 12:38 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	'		Method: SV ethod: SW-	V-846 3010A 846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 00:02	J
Arsenic	0.65	- 1	ug/L	1	1.0	0.077	12/10/2019 14:51	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 00:02	J
Vanadium	2.2		ug/L	1	2.0	0.71	12/4/2019 00:02	J
Analysis Desc: SW846 7470A Analysis,Water	'			V-846 7470A 846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:34	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/28/2019 07:59	J
1,1,1-Trichloroethane	0.34		_	1	1.0	0.34	11/28/2019 07:59	J
• •	-	U	ug/L	1		-		J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/28/2019 07:59	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/28/2019 07:59	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/28/2019 07:59	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 07:59	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/28/2019 07:59	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 07:59	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/28/2019 07:59	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/28/2019 07:59	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/28/2019 07:59	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/28/2019 07:59	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/28/2019 07:59	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/28/2019 07:59	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/28/2019 07:59	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/28/2019 07:59	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 07:59	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/28/2019 07:59	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/28/2019 07:59	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/28/2019 07:59	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 11:37	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/28/2019 07:59	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/28/2019 07:59	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 07:59	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 07:59	J

Report ID: 919794 - 1838587 Page 42 of 78

CERTIFICATE OF ANALYSIS

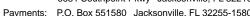
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228015 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-29B Date Collected: 11/19/19 12:38


Sample Description: Location:

Campio Bocomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/28/2019 07:59	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/28/2019 07:59	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 07:59	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/28/2019 07:59	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 07:59	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	11/28/2019 07:59	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/28/2019 07:59	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 07:59	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/28/2019 07:59	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 07:59	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 07:59	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 07:59	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 11:37	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 07:59	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/28/2019 07:59	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 07:59	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 07:59	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/28/2019 07:59	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 07:59	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/28/2019 07:59	J
1,2-Dichloroethane-d4 (S)	90		%	1	70-128		11/28/2019 07:59	
Toluene-d8 (S)	85		%	1	77-119		11/28/2019 07:59	
Bromofluorobenzene (S)	105		%	1	86-123		11/28/2019 07:59	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 07:59	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/28/2019 07:59	J
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		11/28/2019 07:59	
Toluene-d8 (S)	87		%	1	80-121		11/28/2019 07:59	
Bromofluorobenzene (S)	104		%	1	80-129		11/28/2019 07:59	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	31		mg/L	1	5.0	0.50	11/21/2019 03:01	J
Nitrate (as N)	0.051	1	mg/L	1	0.50		11/21/2019 03:01	J
Analysis Desc: Ammonia,E350.1,Water			ethod: EPA			2.230	,	
Ammonia (N)	0.05	ı	mg/L	5	0.050	0.040	11/26/2019 13:37	G

Report ID: 919794 - 1838587 Page 43 of 78

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (904)363-9350

Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228015 Matrix: Water

19323-MW-29B Date Collected: 11/19/19 12:38 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	160		mg/L	1	10	10	11/25/2019 14:30	J

Lab ID: J1915228016 Date Received: 11/20/19 09:50 Matrix: Water

Date Collected: 11/19/19 11:46 Sample ID: 19323-MW-30A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	N-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	82		ug/L	1	4.0	1.0	12/3/2019 14:40	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 14:40	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 14:40	J
Chromium	2.0	U	ug/L	1	8.0	2.0	12/3/2019 14:40	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 14:40	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:40	J
Iron	1600		ug/L	1	400	100	12/3/2019 14:40	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 14:40	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 14:40	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 14:40	J
Silver	10	U	ug/L	1	40	10	12/3/2019 14:40	J
Sodium	27		mg/L	1	1.4	0.35	12/3/2019 14:40	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 14:40	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	N-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.15	- 1	ug/L	1	0.70	0.11	12/4/2019 00:06	J
Arsenic	0.55	1	ug/L	1	1.0	0.077	12/10/2019 14:55	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 00:06	J
Vanadium	2.0	- 1	ug/L	1	2.0	0.71	12/4/2019 00:06	J
Analysis Desc: SW846 7470A Analysis,Water	· ·			N-846 7470A 846 7470A				

Report ID: 919794 - 1838587 Page 44 of 78

Phone: (904)363-9350 Fax: (904)363-9354

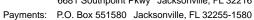
ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228016 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-30A Date Collected: 11/19/19 11:46

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/21/2019 14:37	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SW	/-846 5030B		
Water	Analy	rtical Me	ethod: SW-8	846 8260B		
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54 11/28/2019 08:29 J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0).22 11/28/2019 08:29 J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20 11/28/2019 08:29 J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30 11/28/2019 08:29 J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0).14 11/28/2019 08:29 J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0).18 11/28/2019 08:29 J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0).91 11/28/2019 08:29 J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0).18 11/28/2019 08:29 J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0).23 11/28/2019 08:29 J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0).66 11/28/2019 08:29 J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0).22 11/28/2019 08:29 J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43 11/28/2019 08:29 J
2-Hexanone	0.71	U	ug/L	1	5.0).71 11/28/2019 08:29 J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0).47 11/28/2019 08:29 J
Acetone	2.1	U	ug/L	1	5.0	2.1 11/28/2019 08:29 J
Acrylonitrile	1.1	U	ug/L	1	10	1.1 11/28/2019 08:29 J
Benzene	0.16	U	ug/L	1	1.0).16 11/28/2019 08:29 J
Bromochloromethane	0.17	U	ug/L	1	1.0).17 11/28/2019 08:29 J
Bromodichloromethane	0.46	U	ug/L	1		0.46 11/28/2019 08:29 J
Bromoform	0.44	U	ug/L	1	1.0	0.44 11/28/2019 08:29 J
Bromomethane	0.29	U	ug/L	1	1.0	.29 12/2/2019 12:13 J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67 11/28/2019 08:29 J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0).36 11/28/2019 08:29 J
Chlorobenzene	0.21	U	ug/L	1	1.0).21 11/28/2019 08:29 J
Chloroethane	0.33	U	ug/L	1	1.0).33 11/28/2019 08:29 J
Chloroform	0.18	U	ug/L	1	1.0).18 11/28/2019 08:29 J
Chloromethane	0.21	U	ug/L	1	1.0).21 11/28/2019 08:29 J
Dibromochloromethane	0.33	U	ug/L	1	1.0).33 11/28/2019 08:29 J
Dibromomethane	0.26	U	ug/L	1		0.26 11/28/2019 08:29 J
Ethylbenzene	0.24	U	ug/L	1		0.24 11/28/2019 08:29 J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1).16 11/28/2019 08:29 J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5 11/28/2019 08:29 J
Styrene	0.23	U	ug/L	1		0.23 11/28/2019 08:29 J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36 11/28/2019 08:29 J

Report ID: 919794 - 1838587 Page 45 of 78

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228016 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-30A Date Collected: 11/19/19 11:46

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 08:29	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 08:29	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 08:29	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 12:13	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 08:29	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/28/2019 08:29	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 08:29	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 08:29	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/28/2019 08:29	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 08:29	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/28/2019 08:29	J
1,2-Dichloroethane-d4 (S)	85		%	1	70-128		11/28/2019 08:29	
Toluene-d8 (S)	86		%	1	77-119		11/28/2019 08:29	
Bromofluorobenzene (S)	101		%	1	86-123		11/28/2019 08:29	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 08:29	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/28/2019 08:29	J
1,2-Dichloroethane-d4 (S)	81		%	1	77-125		11/28/2019 08:29	
Toluene-d8 (S)	87		%	1	80-121		11/28/2019 08:29	
Bromofluorobenzene (S)	100		%	1	80-129		11/28/2019 08:29	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	33		mg/L	1	5.0	0.50	11/21/2019 03:24	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/21/2019 03:24	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	1.00		mg/L	5	0.050	0.040	11/26/2019 13:39	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM :	2540 C				
Total Dissolved Solids	200		mg/L	1	10	10	11/25/2019 14:30	J

Report ID: 919794 - 1838587 Page 46 of 78

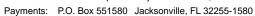
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228017 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-MW-30B Date Collected: 11/19/19 12:02


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	ethod: SW-	846 6010				
Barium	14	,	ug/L	1	4.0	1.0	12/3/2019 14:44	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 14:44	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	12/3/2019 14:44	J
Chromium	2.0	Ü	ug/L	1	8.0	2.0	12/3/2019 14:44	J
Cobalt	2.0	Ū	ug/L	1	8.0	2.0	12/3/2019 14:44	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:44	J
Iron	1600		ug/L	1	400	100	12/3/2019 14:44	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 14:44	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 14:44	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 14:44	J
Silver	10	U	ug/L	1	40	10	12/3/2019 14:44	J
Sodium	7.7		mg/L	1	1.4	0.35	12/3/2019 14:44	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 14:44	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total			ethod: SW-					
A								
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 00:22	J
Arsenic Thallium	0.73	 	ug/L	1	1.0		12/10/2019 14:59	J
Vanadium	0.057 0.93	U	ug/L ug/L	1 1	0.20 2.0	0.057 0.71	12/4/2019 00:22 12/4/2019 00:22	J J
variadium	0.93		ug/L	1	2.0	0.71	12/4/2019 00.22	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/21/2019 14:41	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prer	naration I	Method: SV	V-846 5030B				
Water								
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0		11/28/2019 08:59	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0		11/28/2019 08:59	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0		11/28/2019 08:59	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0		11/28/2019 08:59	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0		11/28/2019 08:59	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0		11/28/2019 08:59	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/28/2019 08:59	J

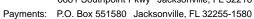
Report ID: 919794 - 1838587 Page 47 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228017 Date Received: 11/20/19 09:50 Matrix: Water


Sample ID: 19323-MW-30B Date Collected: 11/19/19 12:02

Sample Description: Location:

Sample Description:				Location:				
Davasastava	Daguita	01	Unita	DF	Adjusted PQL	Adjusted	Analyzed	Lok
Parameters	Results	Qual	Units			MDL	<u> </u>	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0		11/28/2019 08:59	
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/28/2019 08:59	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/28/2019 08:59	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/28/2019 08:59	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/28/2019 08:59	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/28/2019 08:59	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/28/2019 08:59	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/28/2019 08:59	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/28/2019 08:59	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 08:59	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/28/2019 08:59	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/28/2019 08:59	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/28/2019 08:59	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 12:43	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/28/2019 08:59	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/28/2019 08:59	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 08:59	J
Chloroethane	0.33	U	ug/L	1	1.0		11/28/2019 08:59	
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/28/2019 08:59	J
Chloromethane	0.21	Ū	ug/L	1	1.0		11/28/2019 08:59	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 08:59	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/28/2019 08:59	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 08:59	J
Iodomethane (Methyl Iodide)	0.16	Ū	ug/L	1	1.0	0.16	11/28/2019 08:59	
Methylene Chloride	2.5	Ü	ug/L	1	5.0	2.5	11/28/2019 08:59	
Styrene	0.23	Ū	ug/L	1	1.0	0.23	11/28/2019 08:59	J
Tetrachloroethylene (PCE)	0.36	Ū	ug/L	1	1.0		11/28/2019 08:59	
Toluene	0.23	Ü	ug/L	1	1.0		11/28/2019 08:59	
Trichloroethene	0.29	Ü	ug/L	1	1.0	0.29	11/28/2019 08:59	
Trichlorofluoromethane	0.32	Ü	ug/L	1	1.0		11/28/2019 08:59	
Vinyl Acetate	0.19	Ü	ug/L	1	1.0	0.19	12/2/2019 12:43	J
Vinyl Chloride	0.20	Ü	ug/L	1	1.0	0.20	11/28/2019 08:59	_
Xylene (Total)	0.53	Ü	ug/L	1	2.0			
cis-1,2-Dichloroethylene	0.24	Ü	ug/L	1	1.0		11/28/2019 08:59	
cis-1,3-Dichloropropene	0.16	Ü	ug/L	1	1.0		11/28/2019 08:59	
trans-1,2-Dichloroethylene	0.10	Ü	ug/L ug/L	1	1.0		11/28/2019 08:59	
trans-1,3-Dichloropropylene	0.21	Ü	ug/L ug/L	1	1.0	0.21	11/28/2019 08:59	
trans-1,4-Dichloro-2-butene	1.8	U	ug/L ug/L	1	1.0		11/28/2019 08:59	
1,2-Dichloroethane-d4 (S)	88	J	wg/L %	1	70-128	1.0	11/28/2019 08:59	
Toluene-d8 (S)	87		% %	1	70-128 77-119		11/28/2019 08:59	

Report ID: 919794 - 1838587 Page 48 of 78

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228017 Matrix: Water

19323-MW-30B Date Collected: 11/19/19 12:02 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	104		%	1	86-123		11/28/2019 08:59	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane Ethylene Dibromide (EDB) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) Bromofluorobenzene (S)	0.11 0.020 84 89 103	U	ug/L ug/L % % %	1 1 1 1	0.20 0.10 77-125 80-121 80-129	0.11 0.020	11/28/2019 08:59 11/28/2019 08:59 11/28/2019 08:59 11/28/2019 08:59 11/28/2019 08:59	J J
WET CHEMISTRY Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EP/	A 300.0				
Chloride Nitrate (as N)	22 0.050	U	mg/L mg/L	1 1	5.0 0.50	0.50 0.050	11/21/2019 03:47 11/21/2019 03:47	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EP/	A 350.1				
Ammonia (N)	0.07		mg/L	5	0.050	0.040	11/26/2019 13:48	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	63		mg/L	1	10	10	11/25/2019 14:30	J
Lab ID: J1915228018 Sample ID: 19323-Trip Blank-1				Date Received: Date Collected:	11/20/19 09:50 11/19/19 00:00	Matrix:	Water	


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration	Method: SW	/-846 5030B				
Water	Anal	ytical Mo	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/26/2019 20:28	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/26/2019 20:28	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/26/2019 20:28	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/26/2019 20:28	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/26/2019 20:28	J

Report ID: 919794 - 1838587 Page 49 of 78

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228018 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-Trip Blank-1 Date Collected: 11/19/19 00:00

Sample Description: Location:

Campio Bocomption:								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 20:28	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/26/2019 20:28	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 20:28	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/26/2019 20:28	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/26/2019 20:28	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/26/2019 20:28	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/26/2019 20:28	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/26/2019 20:28	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/26/2019 20:28	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/26/2019 20:28	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/26/2019 20:28	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 20:28	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/26/2019 20:28	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/26/2019 20:28	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/26/2019 20:28	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/26/2019 20:28	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/26/2019 20:28	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/26/2019 20:28	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 20:28	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 20:28	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/26/2019 20:28	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/26/2019 20:28	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 20:28	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/26/2019 20:28	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 20:28	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/26/2019 20:28	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/26/2019 20:28	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 20:28	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/26/2019 20:28	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 20:28	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/26/2019 20:28	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/26/2019 20:28	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/26/2019 20:28	J
Vinyl Chloride	0.20	Ū	ug/L	1	1.0		11/26/2019 20:28	J
Xylene (Total)	0.53	Ü	ug/L	1	2.0	0.53	11/26/2019 20:28	J
cis-1,2-Dichloroethylene	0.24	Ū	ug/L	1	1.0		11/26/2019 20:28	J
cis-1,3-Dichloropropene	0.16	Ü	ug/L	1	1.0	0.16	11/26/2019 20:28	J
trans-1,2-Dichloroethylene	0.20	Ü	ug/L	1	1.0	0.20	11/26/2019 20:28	J
trans-1,3-Dichloropropylene	0.21	Ü	ug/L	1	1.0	0.21	11/26/2019 20:28	J
trans-1,4-Dichloro-2-butene	1.8	Ü	ug/L	1	10	1.8	11/26/2019 20:28	J

Report ID: 919794 - 1838587 Page 50 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228018 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-Trip Blank-1 Date Collected: 11/19/19 00:00

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichloroethane-d4 (S)	102		%	1	70-128		11/26/2019 20:28	
Toluene-d8 (S)	91		%	1	77-119		11/26/2019 20:28	
Bromofluorobenzene (S)	106		%	1	86-123		11/26/2019 20:28	
Analysis Desc: 8260B SIM Analysis,	Prep	aration l	Method: SV	V-846 5030B				
Water	Anal	ytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 20:28	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/26/2019 20:28	J
1,2-Dichloroethane-d4 (S)	97		%	1	77-125		11/26/2019 20:28	
Toluene-d8 (S)	93		%	1	80-121		11/26/2019 20:28	
Bromofluorobenzene (S)	105		%	1	80-129		11/26/2019 20:28	
Bromofluorobenzene (S)	105		%	1	80-129		11/26/2019 20:28	

Lab ID: J1915228019 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-Trip Blank-2 Date Collected: 11/19/19 00:00

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/26/2019 20:58	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/26/2019 20:58	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/26/2019 20:58	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/26/2019 20:58	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/26/2019 20:58	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 20:58	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/26/2019 20:58	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/26/2019 20:58	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/26/2019 20:58	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/26/2019 20:58	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/26/2019 20:58	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/26/2019 20:58	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/26/2019 20:58	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/26/2019 20:58	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/26/2019 20:58	J

Report ID: 919794 - 1838587 Page 51 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/20/19 09:50 Lab ID: J1915228019 Matrix: Water

19323-Trip Blank-2 Date Collected: 11/19/19 00:00 Sample ID:

Sample Description: Location:

Gampio Bosomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/26/2019 20:58	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 20:58	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/26/2019 20:58	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/26/2019 20:58	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/26/2019 20:58	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	11/26/2019 20:58	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/26/2019 20:58	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/26/2019 20:58	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 20:58	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 20:58	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/26/2019 20:58	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/26/2019 20:58	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/26/2019 20:58	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/26/2019 20:58	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 20:58	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/26/2019 20:58	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/26/2019 20:58	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 20:58	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/26/2019 20:58	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/26/2019 20:58	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/26/2019 20:58	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/26/2019 20:58	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	11/26/2019 20:58	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/26/2019 20:58	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/26/2019 20:58	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/26/2019 20:58	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/26/2019 20:58	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/26/2019 20:58	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/26/2019 20:58	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/26/2019 20:58	J
1,2-Dichloroethane-d4 (S)	101		%	1	70-128		11/26/2019 20:58	
Toluene-d8 (S)	91		%	1	77-119		11/26/2019 20:58	
Bromofluorobenzene (S)	106		%	1	86-123		11/26/2019 20:58	
Analysis Desc: 8260B SIM Analysis, Water				V-846 5030B				
				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/26/2019 20:58	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/26/2019 20:58	J
1,2-Dichloroethane-d4 (S)	96		%	1	77-125		11/26/2019 20:58	
Toluene-d8 (S)	93		%	1	80-121		11/26/2019 20:58	

Toluene-d8 (S) 80-121 11/26/2019 20:58

Report ID: 919794 - 1838587 Page 52 of 78

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915228019 Date Received: 11/20/19 09:50 Matrix: Water

Sample ID: 19323-Trip Blank-2 Date Collected: 11/19/19 00:00

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	105		%	1	80-129	1	1/26/2019 20:5	

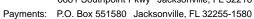
Report ID: 919794 - 1838587 Page 53 of 78

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J4 Estimated Result

LAB QUALIFIERS

- G DOH Certification #E82001(AEL-G)(FL NELAC Certification)
- J DOH Certification #E82574(AEL-JAX)(FL NELAC Certification)

Report ID: 919794 - 1838587 Page 54 of 78

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/6782 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Prepared:

J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006, J1915228007, J1915228008, Associated Lab Samples:

METHOD BLANK: 3296379

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
WET CHEMISTRY				
Chloride	mg/L	0.50	0.50 U	
Nitrate (as N)	ma/L	0.050	0.050 U	

LABORATORY CONTROL	SAMPLE & LCSD:	3296380		329638	31					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY										

WET CHEMISTRY									
Chloride	mg/L	20	20	20	98	99	90-110	1	10
Nitrate (as N)	mg/L	2	2.0	2.0	99	99	90-110	1	10

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY						
Chloride	mg/L	35	20	52	84	90-110
Nitrate (as N)	mg/L	0	2	1.9	94	90-110

MATRIX SPIKE SAMPLE: 3296383 Original: J1915228011

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY						
Chloride	mg/L	33	20	52	92	90-110
Nitrate (as N)	mg/L	0.034	2	1.9	94	90-110

QC Batch: DGMj/4291 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 11/21/2019 10:25

J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006, J1915228007, J1915228008, Associated Lab Samples:

Report ID: 919794 - 1838587 Page 55 of 78

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3297652

Blank Reporting Limit Qualifiers Parameter Units Result

METALS

ug/L 0.011 0.011 U Mercury

LABORATORY CONTROL SAMPLE: 3297653

Spike LCS LCS % Rec Parameter Units Conc. % Rec Limits Qualifiers Result **METALS** Mercury ug/L 2 2.0 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3297654 3297655 Original: J1915228001

MS MSD MS MSD Original Spike % Rec Max Limit RPD RPD Qualifiers Result % Rec Parameter Units Conc. Result Result % Rec **METALS** 0 2 1.8 80-120 0 20 Mercury ug/L 1.8 91 91

QC Batch: WCAj/6816 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

Associated Lab Samples: J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006

METHOD BLANK: 3300193

Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY **Total Dissolved Solids** 10 U 10 mg/L

LABORATORY CONTROL SAMPLE: 3300194

LCS LCS Spike % Rec Parameter Units Conc. % Rec Limits Qualifiers Result WET CHEMISTRY **Total Dissolved Solids** mg/L 300 310 104 85-115

Report ID: 919794 - 1838587 Page 56 of 78

CERTIFICATE OF ANALYSIS

6681 Southpoint Pkwy Jacksonville, FL 32216 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

> Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

SAMPLE DUPLICATE: 3300195 Original: J1915189001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifie
WET CHEMISTRY Total Dissolved Solid	s mg/L	420	410	2	10
QC Batch: DGMj/4304		Analysis Meth	od:	SW-846 6010	
QC Batch Method: SW-846 3010A		Prepared:		11/25/2019 10:30	

J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006, J1915228007, J1915228008, J19152008, J19152008, J191520080008, J191520008, J191520008, J191520008, J191520008, J191520008, J191520008, J191520008, J1915200008, J1915200008, J19150000000Associated Lab Samples:

METHOD BLANK: 3300334

		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Zinc	ug/L	50	50 U
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Copper	ug/L	4.0	4.0 U

LABORATORY CONTROL SAMPLE: 3300335

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
METALS						
Silver	ug/L	200	210	105	80-120	
Barium	ug/L	20	21	107	80-120	
Beryllium	ug/L	10	10	101	80-120	
Cadmium	ug/L	20	21	104	80-120	

Report ID: 919794 - 1838587 Page 57 of 78

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3300335

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
Cobalt	ug/L	40	42	106	80-120
Chromium	ug/L	40	41	102	80-120
Copper	ug/L	80	96	120	80-120
Iron	ug/L	2000	2000	102	80-120
Sodium	mg/L	7	7.0	100	80-120
Nickel	ug/L	120	130	107	80-120
Lead	ug/L	60	62	104	80-120
Selenium	ug/L	800	810	101	80-120
Zinc	ug/L	1000	1100	107	80-120

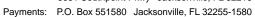
MATRIX SPIKE & MAT	RIX SPIKE DUPL	ICATE: 3300)336	3300	337	Origi	nal: J191	5390002		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers
METALS										
Silver	ug/L	0	200	210	210	105	104	75-125	1	20
Barium	ug/L	51	20	74	74	112	113	75-125	0	20
Beryllium	ug/L	0	10	10	10	103	103	75-125	0	20
Cadmium	ug/L	0	20	20	20	100	99	75-125	1	20
Cobalt	ug/L	0	40	41	41	103	103	75-125	0	20
Chromium	ug/L	0	40	41	40	102	99	75-125	3	20
Copper	ug/L	19	80	99	98	100	100	75-125	0	20
Iron	ug/L	2400	2000	4500	4500	104	103	75-125	1	20
Sodium	mg/L	5	7	12	12	105	105	75-125	0	20
Nickel	ug/L	1.6	120	130	130	107	106	75-125	0	20
Lead	ug/L	0	60	60	62	100	103	75-125	3	20
Selenium	ug/L	0	800	810	820	101	102	75-125	1	20
Zinc	ug/L	11	1000	1100	1100	109	109	75-125	0	20

 QC Batch:
 DGMj/4305
 Analysis Method:
 SW-846 6010

 QC Batch Method:
 SW-846 3010A
 Prepared:
 11/25/2019 10:30

Associated Lab Samples: J1915228014, J1915228015, J1915228016, J1915228017

METHOD BLANK: 3300338


Parameter Units Blank Reporting
Result Limit Qualifiers

METALS
Silver ug/L 10 10 U

Report ID: 919794 - 1838587 Page 58 of 78

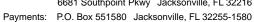
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

ľ	MET	ГΗ	\square	RI	ANK.	3300338	

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Zinc	ug/L	50	50 U
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Copper	ug/L	4.0	4.0 U


LABORATORY CONTROL SAMPLE: 3300339

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	200	102	80-120
Barium	ug/L	20	21	104	80-120
Beryllium	ug/L	10	10	101	80-120
Cadmium	ug/L	20	20	102	80-120
Cobalt	ug/L	40	41	102	80-120
Chromium	ug/L	40	41	102	80-120
opper	ug/L	80	82	103	80-120
on	ug/L	2000	2100	104	80-120
odium	mg/L	7	6.5	93	80-120
ickel	ug/L	120	120	101	80-120
ead	ug/L	60	60	101	80-120
elenium	ug/L	800	790	99	80-120
Zinc	ug/L	1000	1000	102	80-120

Report ID: 919794 - 1838587 Page 59 of 78

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MATRI	X SPIKE DUPL	ICATE: 3300)340	3300	341	Origii	nal: J1915	5228014		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
METALS										
Silver	ug/L	0.6	200	200	200	99	98	75-125	2	20
Barium	ug/L	52	20	70	68	90	82	75-125	2	20
Beryllium	ug/L	0	10	10	9.9	100	99	75-125	1	20
Cadmium	ug/L	0	20	20	19	98	97	75-125	2	20
Cobalt	ug/L	0	40	40	40	100	99	75-125	1	20
Chromium	ug/L	2	40	41	41	97	97	75-125	0	20
Copper	ug/L	0.7	80	80	79	100	99	75-125	1	20
Iron	ug/L	2200	2000	4200	4100	99	96	75-125	2	20
Sodium	mg/L	15	7	21	21	88	81	75-125	3	20
Nickel	ug/L	3.2	120	120	120	103	102	75-125	1	20
Lead	ug/L	2.2	60	61	59	101	99	75-125	2	20
Selenium	ug/L	0	800	790	780	98	97	75-125	1	20
Zinc	ug/L	6.3	1000	1000	1000	102	101	75-125	1	20

QC Batch: WCAj/6822 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

Associated Lab Samples: J1915228007, J1915228008, J1915228009, J1915228010, J1915228011, J1915228012, J1915228013, J1915228014,

METHOD BLANK: 3300595

		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
WET CHEMISTRY			
Total Dissolved Solids	mg/L	10	10 U

LABORATORY CONTROL SAMPLE: 3300596

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Total Dissolved Solids	mg/L	300	310	104	85-115	

Report ID: 919794 - 1838587 Page 60 of 78

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

SAMPLE DUPLICATE: 3300597 Original: J1915228007

Original DUP Max Parameter Units Result Result **RPD RPD Qualifiers** WET CHEMISTRY **Total Dissolved Solids** mg/L 58 55 5 10

QC Batch: DGMj/4312 Analysis Method: SW-846 6020 SW-846 3010A QC Batch Method: Prepared: 11/26/2019 03:30

Associated Lab Samples: J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006, J1915228007, J1915228008,

METHOD BLANK: 3301164

Units	Result	Limit Qualifiers	
		Limit Qualifiers	
ug/L	0.71	0.71 U	
ug/L	0.077	0.077 U	
ug/L	0.11	0.11 U	
ug/L	0.057	0.057 U	
	ug/L ug/L	ug/L 0.077 ug/L 0.11	ug/L 0.077 0.077 U ug/L 0.11 0.11 U

LABORATORY CONTROL SAMPLE: 3301165

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
METALS						
Vanadium	ug/L	50	48	96	80-120	
Arsenic	ug/L	50	50	100	80-120	
Antimony	ug/L	50	48	95	80-120	
Thallium	ug/L	50	47	94	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3301166 3301167 Original: J1915228001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
METALS										
Vanadium	ug/L	4.8	50	53	53	97	97	75-125	0	20
Arsenic	ug/L	150	50	190	190	89	83	75-125	2	20
Antimony	ug/L	0	50	51	51	101	102	75-125	1	20
Thallium	ug/L	0.036	50	49	49	98	98	75-125	0	20

Report ID: 919794 - 1838587 Page 61 of 78

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAg/8890 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006 Associated Lab Samples:

METHOD BLANK: 3301944

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Ammonia (N) 0.0080 0.0080 U mg/L

LABORATORY CONTROL SAMPLE: 3301945

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY 0.5 0.52 105 90-110 Ammonia (N) mg/L

LABORATORY CONTROL SAMPLE: 3301946

LCS LCS % Rec Spike

Parameter Units % Rec Limits Qualifiers Conc. Result

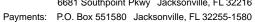
WET CHEMISTRY

Ammonia (N) 0.2 0.21 106 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3301947 3301948 Original: J1915176002

Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers WET CHEMISTRY

Ammonia (N) 0.01 2 1.8 1.8 91 91 90-110 0 10 mg/L


QC Batch: WCAg/8891 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

J1915228007, J1915228008, J1915228009, J1915228010, J1915228011, J1915228012, J1915228013, J1915228014, Associated Lab Samples:

Report ID: 919794 - 1838587 Page 62 of 78

QUALITY CONTROL DATA

Workorder: J1915228 J.E.	D LANDFILL (F/	K/A OAK H	AMM								
METHOD BLANK: 330195	52										
Parameter	Units		Blank Result	Reporting Limit Qualifiers							
WET CHEMISTRY Ammonia (N)	mg/L		.0080	0.0080 U							
LABORATORY CONTROL	SAMPLE: 330)1953									
Parameter	Units		oike onc.	LCS Result	L(% R	CS lec	% Rec Limits C	Qualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.5	0.52	1	05	90-110				
LABORATORY CONTROL	SAMPLE: 330)1954									
Parameter	Units		oike onc.	LCS Result	L0 % R	CS lec	% Rec Limits C	Qualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.2	0.22	1	10	90-110				
MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 3301	955	33019	56	Origi	nal: J191	5228007			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD	Qualifiers
WET CHEMISTRY Ammonia (N)	mg/L	0.18	2	2.0	2.0	89	90	90-110	1	10	
	Ag/8892 . 350.1 J1915228017	,		Analysis Me	ethod:	EPA 3	350.1				
METHOD BLANK: 330196	61										
Parameter	Units		Blank Result	Reporting Limit	Qualifiers						
WET CHEMISTRY Ammonia (N)	mg/L	0	.080	0.0080	U						

Report ID: 919794 - 1838587 Page 63 of 78

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

LABORATORY CONTR	OL SAMPLE: 330	01962								
Parameter	Units	Spil Con		LCS Result		LCS Rec	% Rec Limits 0	Qualifiers		
WET CHEMISTRY Ammonia (N)	mg/L	0	.5	0.52		104	90-110			
LABORATORY CONTR	OL SAMPLE: 330)1963								
Parameter	Units	Spil Con		LCS Result		LCS Rec	% Rec Limits 0	Qualifiers		
WET CHEMISTRY Ammonia (N)	mg/L	0	.2	0.21		103	90-110			
MATRIX SPIKE & MATI	RIX SPIKE DUPLIC	:ATE: 33019	64	33019	65	Or	iginal: J191	5228017		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Red		% Rec Limit	RPD	Max RPD Qualifiers
WET CHEMISTRY Ammonia (N)	mg/L	0.07	2	1.9	2.0	93	3 96	90-110	3	10
	VCAj/6841 PA 300.0 s: J1915228012	<u>.</u>		Analysis Me Prepared:	ethod:	EP/	A 300.0			
METHOD BLANK: 3302	2070									
Parameter	Units		lank esult	Reporting Limit	Qualifier	5				
WET CHEMISTRY Chloride	mg/L	(0.50	0.50	U					
LABORATORY CONTR	OL SAMPLE & LCS	SD: 330207	'1	33020	72					
Parameter	Units	Spike Conc.	LC: Resu		LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	c O Qualifiers
WET CHEMISTRY Chloride	mg/L	20	1:			98	90-110	1	1()

Report ID: 919794 - 1838587 Page 64 of 78

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

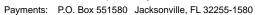
QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE	E: 3302073					
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY Chloride	mg/L	15	20	34	97	90-110
MATRIX SPIKE SAMPLE	E: 3302658		Original: J191	5510001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY Chloride	mg/L	57	20	76	95	90-110

QC Batch: MSVj/4667 Analysis Method: SW-846 8260B SW-846 5030B Prepared: QC Batch Method: 11/26/2019 18:45

J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006, J1915228007, J1915228008, Associated Lab Samples:


METHOD BLANK: 3303317

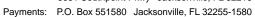
Parameter	Units	Blank Result	Reporting Limit Qualifiers	
VOLATILES				
Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
lodomethane (Methyl lodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
2-Butanone (MEK)	ug/L	0.43	0.43 U	
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	
Benzene	ug/L	0.16	0.16 U	

Report ID: 919794 - 1838587 Page 65 of 78

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

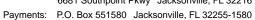
Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

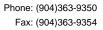

METHOD BLANK: 3303317			
Parameter	Units	Blank Result	Reporting Limit Qualifiers
Dibromomethane	ug/L	0.26	0.26 U
1,2-Dichloropropane	ug/L	0.66	0.66 U
Trichloroethene	ug/L	0.29	0.29 U
Bromodichloromethane	ug/L	0.46	0.46 U
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U
1,1,2-Trichloroethane	ug/L	0.30	0.30 U
Toluene	ug/L	0.23	0.23 U
2-Hexanone	ug/L	0.71	0.71 U
Dibromochloromethane	ug/L	0.33	0.33 U
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U
Chlorobenzene	ug/L	0.21	0.21 U
Ethylbenzene	ug/L	0.24	0.24 U
Bromoform	ug/L	0.44	0.44 U
Styrene	ug/L	0.23	0.23 U
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U
1,2,3-Trichloropropane	ug/L	0.91	0.91 U
1,4-Dichlorobenzene	ug/L	0.22	0.22 U
1,2-Dichlorobenzene	ug/L	0.18	0.18 U
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U
Xylene (Total)	ug/L	0.53	0.53 U
1,2-Dichloroethane-d4 (S)	%	102	70-128
Toluene-d8 (S)	%	89	77-119
Bromofluorobenzene (S)	%	103	86-123

LABORATORY CONTROL SAMPLE & LCSD:		3303318	3303318		3303319							
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers			
VOLATILES										_		
Chloromethane	ug/L	20	24	18	120	91		28				
Vinyl Chloride	ug/L	20	21	19	105	94	70-130	11	20			
Bromomethane	ug/L	20	23	8.5	117	43		93				
Chloroethane	ug/L	20	21	19	104	97		7				
Trichlorofluoromethane	ug/L	20	21	19	105	94		11				
Acetone	ug/L	20	42	23	208	115		58				
1,1-Dichloroethylene	ug/L	20	22	19	112	94	70-130	17	20			
Iodomethane (Methyl Iodide)	ug/L	20	27	14	134	70		62				
Acrylonitrile	ug/L	20	31	22	154	111		32				
Methylene Chloride	ug/L	20	31	24	155	118		27				

Report ID: 919794 - 1838587 Page 66 of 78

CERTIFICATE OF ANALYSIS


QUALITY CONTROL DATA


Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAM	MPLE & LCSD:	3303318		330331	9				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Carbon Disulfide	ug/L	20	22	20	109	99		10	
trans-1,2-Dichloroethylene	ug/L	20	22	18	112	92		19	
1,1-Dichloroethane	ug/L	20	23	19	113	96		16	
Vinyl Acetate	ug/L	20	35	8.5	177	42		123	
2-Butanone (MEK)	ug/L	20	30	23	148	113		27	
cis-1,2-Dichloroethylene	ug/L	20	23	18	114	91	70-130	22	20
Bromochloromethane	ug/L	20	24	19	118	97		20	
Chloroform	ug/L	20	22	18	112	92	70-130	20	20
1,2-Dichloroethane	ug/L	20	25	20	124	100		22	
1,1,1-Trichloroethane	ug/L	20	22	17	112	86		26	
Carbon Tetrachloride	ug/L	20	22	18	112	91		21	
Benzene	ug/L	20	23	19	116	96	70-130	19	20
Dibromomethane	ug/L	20	26	21	129	105		21	
1,2-Dichloropropane	ug/L	20	23	20	116	99		16	
Trichloroethene	ug/L	20	23	23	117	114	70-130	2	20
Bromodichloromethane	ug/L	20	22	18	112	89		22	
cis-1,3-Dichloropropene	ug/L	20	24	19	119	94		24	
4-Methyl-2-pentanone (MIBK)	ug/L	20	36	25	181	124		38	
trans-1,3-Dichloropropylene	ug/L	20	26	19	128	95		30	
1,1,2-Trichloroethane	ug/L	20	26	22	133	112		17	
Toluene	ug/L	20	20	16	100	82	70-130	20	20
2-Hexanone	ug/L	20	33	22	167	108		43	
Dibromochloromethane	ug/L	20	22	17	109	86		24	
Tetrachloroethylene (PCE)	ug/L	20	19	17	97	84	70-130	14	20
1,1,1,2-Tetrachloroethane	ug/L	20	20	17	102	83		20	
Chlorobenzene	ug/L	20	20	16	100	82	70-130	19	20
Ethylbenzene	ug/L	20	20	17	102	83	70-130	20	20
Bromoform	ug/L	20	24	19	121	93		26	
Styrene	ug/L	20	20	16	102	79		25	
1,1,2,2-Tetrachloroethane	ug/L	20	27	16	137	80		53	
1,2,3-Trichloropropane	ug/L	20	24	25	119	127		7	
1,4-Dichlorobenzene	ug/L	20	17	15	87	77		13	
1,2-Dichlorobenzene	ug/L	20	18	17	92	83	70-130	10	20
Xylene (Total)	ug/L	60	61	50	102	83	70-130	21	20
1,2-Dichloroethane-d4 (S)	%			20	101	85	70-128	18	-
Toluene-d8 (S)	%				90	87	77-119	3	
Bromofluorobenzene (S)	%				96	99	86-123	4	

Report ID: 919794 - 1838587 Page 67 of 78


QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 33	803320		Original: J191	5228003		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Chloromethane	ug/L	0	20	18	92	
Vinyl Chloride	ug/L	0	20	18	92	70-130
Bromomethane	ug/L	0	20	5.6	28	
Chloroethane	ug/L	0	20	17	86	
Trichlorofluoromethane	ug/L	0	20	19	96	
Acetone	ug/L	0	20	28	141	
1,1-Dichloroethylene	ug/L	0	20	20	102	70-130
Iodomethane (Methyl Iodide)	ug/L	0	20	28	140	
Acrylonitrile	ug/L	0	20	28	138	
Methylene Chloride	ug/L	0	20	20	100	
Carbon Disulfide	ug/L	0	20	20	101	
trans-1,2-Dichloroethylene	ug/L	0	20	21	105	
1,1-Dichloroethane	ug/L	0	20	22	108	
Vinyl Acetate	ug/L	0	20	41	206	
2-Butanone (MEK)	ug/L	0	20	27	133	
cis-1,2-Dichloroethylene	ug/L	0	20	20	102	70-130
Bromochloromethane	ug/L	0	20	22	112	
Chloroform	ug/L	0	20	21	106	70-130
1,2-Dichloroethane	ug/L	0	20	24	120	
1,1,1-Trichloroethane	ug/L	0	20	21	103	
Carbon Tetrachloride	ug/L	0	20	20	102	
Benzene	ug/L	0	20	21	106	70-130
Dibromomethane	ug/L	0	20	25	125	
1,2-Dichloropropane	ug/L	0	20	21	107	
Trichloroethene	ug/L	0	20	20	100	70-130
Bromodichloromethane	ug/L	0	20	21	107	
cis-1,3-Dichloropropene	ug/L	0	20	20	102	
4-Methyl-2-pentanone (MIBK)	ug/L	0	20	32	160	
trans-1,3-Dichloropropylene	ug/L	0	20	21	107	
1,1,2-Trichloroethane	ug/L	0	20	26	129	
Toluene	ug/L	0	20	18	90	70-130
2-Hexanone	ug/L	0	20	27	137	
Dibromochloromethane	ug/L	0	20	20	98	
Tetrachloroethylene (PCE)	ug/L	0	20	17	86	70-130
1,1,1,2-Tetrachloroethane	ug/L	0	20	18	89	
Chlorobenzene	ug/L	0	20	18	89	70-130
Ethylbenzene	ug/L	0	20	18	91	70-130
Bromoform	ug/L	0	20	21	104	
Styrene	ug/L	0	20	18	88	
1,1,2,2-Tetrachloroethane	ug/L	0	20	26	129	
1,2,3-Trichloropropane	ug/L	0	20	20	101	

Report ID: 919794 - 1838587 Page 68 of 78

QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 3303320 Original: J1915228003

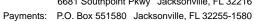
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
1,4-Dichlorobenzene	ug/L	0	20	16	80	
1,2-Dichlorobenzene	ug/L	0	20	17	86	70-130
Xylene (Total)	ug/L	0	60	55	91	70-130
1,2-Dichloroethane-d4 (S)	%	104			103	70-128
Toluene-d8 (S)	%	89			88	77-119
Bromofluorobenzene (S)	%	106			97	86-123

 QC Batch:
 MSVj/4669
 Analysis Method:
 SW-846 8260B (SIM)

 QC Batch Method:
 SW-846 5030B
 Prepared:
 11/26/2019 18:45

Associated Lab Samples: J1915228001, J1915228002, J1915228003, J1915228004, J1915228005, J1915228006, J1915228007, J1915228008,

METHOD BLANK: 3303329


Parameter	Units	Blank Result	Reporting Limit Qualifiers	
VOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.020	0.020 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.11	0.11 U	
1,2-Dichloroethane-d4 (S)	%	97	77-125	
Toluene-d8 (S)	%	90	80-121	
Bromofluorobenzene (S)	%	103	80-129	

LABORATORY CONTROL SAM	MPLE & LCSD:	3303330)	330333	31					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
VOLATILES										
Ethylene Dibromide (EDB)	ug/L	0.8	0.84	0.87	105	109	70-130	4	30	
1,2-Dibromo-3-Chloropropane	ug/L	0.8	0.83	0.77	104	96	70-130	8	30	
1,2-Dichloroethane-d4 (S)	%				99	97	77-125	2		
Toluene-d8 (S)	%				90	89	80-121	2		
Bromofluorobenzene (S)	%				101	106	80-129	5		

Report ID: 919794 - 1838587 Page 69 of 78

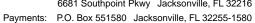
QUALITY CONTROL DATA

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 3	303332		Original: J191				
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Ethylene Dibromide (EDB)	ug/L	0	0.8	0.83	104	70-130	
1,2-Dibromo-3- Chloropropane	ug/L	0	0.8	0.84	105	70-130	
1,2-Dichloroethane-d4 (S)	%	100			100	77-125	
Toluene-d8 (S)	%	90			88	80-121	
Bromofluorobenzene (S)	%	102			102	80-129	

Report ID: 919794 - 1838587 Page 70 of 78

QUALITY CONTROL DATA CROSS REFERENCE TABLE

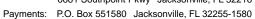

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915228001	19323-CW-1A			EPA 300.0	WCAj/6782
J1915228002	19323-MW-16AR			EPA 300.0	WCAj/6782
J1915228003	19323-MW-16BR			EPA 300.0	WCAj/6782
J1915228004	19323-MW-17AR			EPA 300.0	WCAj/6782
J1915228005	19323-MW-17BR			EPA 300.0	WCAj/6782
J1915228006	19323-MW-22AR			EPA 300.0	WCAj/6782
J1915228007	19323-MW-22BR			EPA 300.0	WCAj/6782
11915228008	19323-MW-23A			EPA 300.0	WCAj/6782
11915228009	19323-MW-23B			EPA 300.0	WCAj/6782
11915228010	19323-MW-27A			EPA 300.0	WCAj/6782
l1915228011	19323-MW-27B			EPA 300.0	WCAj/6782
11915228012	19323-MW-28A			EPA 300.0	WCAj/6782
11915228013	19323-MW-28B			EPA 300.0	WCAj/6782
1915228014	19323-MW-29A			EPA 300.0	WCAj/6782
1915228015	19323-MW-29B			EPA 300.0	WCAj/6782
1915228016	19323-MW-30A			EPA 300.0	WCAj/6782
1915228017	19323-MW-30B			EPA 300.0	WCAj/6782
11915228001	19323-CW-1A	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
11915228002	19323-MW-16AR	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228003	19323-MW-16BR	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228004	19323-MW-17AR	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
11915228005	19323-MW-17BR	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
11915228006	19323-MW-22AR	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
11915228007	19323-MW-22BR	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
11915228008	19323-MW-23A	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
11915228009	19323-MW-23B	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228010	19323-MW-27A	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228011	19323-MW-27B	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228012	19323-MW-28A	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228013	19323-MW-28B	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228014	19323-MW-29A	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228015	19323-MW-29B	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
1915228016	19323-MW-30A	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728

Report ID: 919794 - 1838587 Page 71 of 78

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

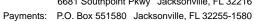

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

_ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
1915228017	19323-MW-30B	SW-846 7470A	DGMj/4291	SW-846 7470A	CVAj/1728
J1915228001	19323-CW-1A			SM 2540 C	WCAj/6816
11915228002	19323-MW-16AR			SM 2540 C	WCAj/6816
11915228003	19323-MW-16BR			SM 2540 C	WCAj/6816
1915228004	19323-MW-17AR			SM 2540 C	WCAj/6816
11915228005	19323-MW-17BR			SM 2540 C	WCAj/6816
11915228006	19323-MW-22AR			SM 2540 C	WCAj/6816
J1915228001	19323-CW-1A	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
11915228002	19323-MW-16AR	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228003	19323-MW-16BR	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228004	19323-MW-17AR	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228005	19323-MW-17BR	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228006	19323-MW-22AR	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228007	19323-MW-22BR	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228008	19323-MW-23A	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228009	19323-MW-23B	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228010	19323-MW-27A	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228011	19323-MW-27B	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228012	19323-MW-28A	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
1915228013	19323-MW-28B	SW-846 3010A	DGMj/4304	SW-846 6010	ICPj/2390
11915228014	19323-MW-29A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915228015	19323-MW-29B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
1915228016	19323-MW-30A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
1915228017	19323-MW-30B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915228007	19323-MW-22BR			SM 2540 C	WCAj/6822
1915228008	19323-MW-23A			SM 2540 C	WCAj/6822
1915228009	19323-MW-23B			SM 2540 C	WCAj/6822
1915228010	19323-MW-27A			SM 2540 C	WCAj/6822
1915228011	19323-MW-27B			SM 2540 C	WCAj/6822

Report ID: 919794 - 1838587 Page 72 of 78

CERTIFICATE OF ANALYSIS

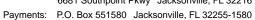
QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

_ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915228012	19323-MW-28A			SM 2540 C	WCAj/6822
11915228013	19323-MW-28B			SM 2540 C	WCAj/6822
J1915228014	19323-MW-29A			SM 2540 C	WCAj/6822
J1915228015	19323-MW-29B			SM 2540 C	WCAj/6822
J1915228016	19323-MW-30A			SM 2540 C	WCAj/6822
J1915228017	19323-MW-30B			SM 2540 C	WCAj/6822
J1915228001	19323-CW-1A	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228002	19323-MW-16AR	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228003	19323-MW-16BR	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228004	19323-MW-17AR	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228005	19323-MW-17BR	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228006	19323-MW-22AR	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228007	19323-MW-22BR	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228008	19323-MW-23A	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228009	19323-MW-23B	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228010	19323-MW-27A	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228011	19323-MW-27B	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228012	19323-MW-28A	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228013	19323-MW-28B	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228014	19323-MW-29A	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
11915228015	19323-MW-29B	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228016	19323-MW-30A	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228017	19323-MW-30B	SW-846 3010A	DGMj/4312	SW-846 6020	ICMj/2188
J1915228001	19323-CW-1A			EPA 350.1	WCAg/889
J1915228002	19323-MW-16AR			EPA 350.1	WCAg/889
11915228003	19323-MW-16BR			EPA 350.1	WCAg/889
11915228004	19323-MW-17AR			EPA 350.1	WCAg/889
11915228005	19323-MW-17BR			EPA 350.1	WCAg/889
1915228006	19323-MW-22AR			EPA 350.1	WCAg/889
J1915228007	19323-MW-22BR			EPA 350.1	WCAg/889
J1915228008	19323-MW-23A			EPA 350.1	WCAg/889

Report ID: 919794 - 1838587 Page 73 of 78

CERTIFICATE OF ANALYSIS


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915228009	19323-MW-23B			EPA 350.1	WCAg/8891
J1915228010	19323-MW-27A			EPA 350.1	WCAg/8891
J1915228011	19323-MW-27B			EPA 350.1	WCAg/8891
J1915228012	19323-MW-28A			EPA 350.1	WCAg/8891
11915228013	19323-MW-28B			EPA 350.1	WCAg/8891
11915228014	19323-MW-29A			EPA 350.1	WCAg/8891
11915228015	19323-MW-29B			EPA 350.1	WCAg/8891
11915228016	19323-MW-30A			EPA 350.1	WCAg/8891
J1915228017	19323-MW-30B			EPA 350.1	WCAg/8892
J1915228012	19323-MW-28A			EPA 300.0	WCAj/6841
J1915228001	19323-CW-1A	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
11915228002	19323-MW-16AR	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228003	19323-MW-16BR	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228004	19323-MW-17AR	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
11915228005	19323-MW-17BR	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228006	19323-MW-22AR	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228007	19323-MW-22BR	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228008	19323-MW-23A	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228009	19323-MW-23B	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228010	19323-MW-27A	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
11915228011	19323-MW-27B	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228012	19323-MW-28A	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228013	19323-MW-28B	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228014	19323-MW-29A	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228015	19323-MW-29B	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228016	19323-MW-30A	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
11915228017	19323-MW-30B	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228018	19323-Trip Blank-1	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668
1915228019	19323-Trip Blank-2	SW-846 5030B	MSVj/4667	SW-846 8260B	MSVj/4668

Report ID: 919794 - 1838587 Page 74 of 78

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1915228 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915228001	19323-CW-1A	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228002	19323-MW-16AR	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228003	19323-MW-16BR	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228004	19323-MW-17AR	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228005	19323-MW-17BR	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228006	19323-MW-22AR	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228007	19323-MW-22BR	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228008	19323-MW-23A	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228009	19323-MW-23B	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228010	19323-MW-27A	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228011	19323-MW-27B	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228012	19323-MW-28A	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228013	19323-MW-28B	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228014	19323-MW-29A	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228015	19323-MW-29B	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228016	19323-MW-30A	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228017	19323-MW-30B	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228018	19323-Trip Blank-1	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670
J1915228019	19323-Trip Blank-2	SW-846 5030B	MSVj/4669	SW-846 8260B (SIM)	MSVj/4670

Report ID: 919794 - 1838587 Page 75 of 78

Address:

Contact:

FAX:

Hent Name:	Waste Connections, Inc.			ne: J.E.D OCK DI:	LANDE	ILL (F/	9610 Princ	BOTTLE SIZE & TYPE				l	1	Ť	ì	r r	T
Address:	5135 Madison Avenue	P.O. Num	ber/Project	Number,				80. SIZE	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic	- 1	-10-2			NUMBER
	ampa, Florida 33619	Project Lo						ED	-								- S
Phone: 8/	3-468-6141		A	No: 89544	0 5/1	00			8 E	Na B							
Contact:	Kirk Wills	Projectiva	ame and Ac	voless: 2 C	Omn.	hey		REC	3/Di	,Hg	S						1 =
sampled By: No.	1 Styles + Puniel Montiel			150, 52	Chod,	FL		ANALYSIS REQUIRED	App I VOAs+EDB/DBCP	App I Metals+Fe,Hg,Na	CI/NO3/TDS		11				1 %
urn Around Time: 🛚	STANDARD RUSH		_	ructions			31172	ALY	As+	o l tals	203	m					SAT
Page/_	of	AI	DaPT	□ EQuIS				AN	App	App Mei	CIV	NH3					LABORATORY I.D.
SAMPLE ID	SAMPLE DESCRIPTION		Grab Comp	SAMI	PLING	MATRIX	NO. COUNT	PRESER- VATION	HCL	ниоз	lce	H2SO4					Š
19333-cW-	IA		G	11/19/19		GW	6		3	1	L	1					00
193)3-MW-	16 AR				1456					Ì	j	1					602
193)3-MU-	ICBR				1530												003
93)3-MW:	ITAR				1322												00
9333-mid-	17BR				1400												004
9333-MU-	124R				132C												000
9313-MW-	2) BR				1308												no.
9323-MW-					1456				1								009
9323-1967-	23 g				1412		1		J		V						009
93)3-MW-	27A		G	11/19/19			G		3	T	1	1		7			010
	= wastewater SW = surface water GW = gro	construction					0	L = abolt	-				H=(HCI) \$				

Site-Address:

2018	
7,	
December 1	
Wednesday,	

Page 76 of 78

Waste Connections, Inc.

Kirk Wills

SAMPLE DESCRIPTION

Matrix Code: WW = wastewater SW = surface water GW = ground water DW = drinking water

Temp taken from sample

5135 Madison Avenue

Tampa, Florida 33619

813-468-6141

Sampled By: Neil Studen + Daniel Mantiel

Turn Around Time: STANDARD RUSH

284

176

29B 30.4

Yes No

DCN: AD-051 Form last revised 08/18/2014

of 1

Client Name:

Address:

Phone:

FAX:

Contact:

Page_

SAMPLE ID

19323-MW-

193.33-MW-

19303-MW.

19333-MIV.

19-103

Received on Ice

19323-MW- 303

19333-TOBBALE-1 19333-Trp Black -1

193)3-AW-17B

19333-MW- 38B

es, Inc.			Jacksor Mirama Tallaha: Tampa:	r: 10200 U ssee: 128 9610 Princ	SA Toda 88 Cedar sess Pain	y Way, Mir Center Dri	amar, FL ive, Tallah	33025 + assee. I		* J	1 9	1 5 2	2 2 8	*	
DAK HAMM	OCK DIS		FILL (F/K/A		BOTTLE SIZE & TYPE	7	mL tic	분유	E 2		i	ī	T.	i	~
P.O. Number/Project	Number:					40 mL Vials	500 mL Plastic	500 mL Plastic	250 ml Plastic						H
roject Location: FDEP Facility No: 89544 roject Name and Address: JED SWDF 1501 Own, Way Si-Claud, FL		SIS REQUIRED	App I VOAS+EDB/DBCP	App I Metals+Fe,Hg,Na	3/TDS									ABORATORY I.D. NUMBER	
	pecial Instructions: Jax Profile: 31172 ■ ADaPT □ EQuIS		1172	ANALYSIS	App I VOAs	App I Metal	CI/NO3/TDS	NH3						SORAT	
Grab Comp	SAME	PLING TIME	MATRIX	NO. COUNT	PRESER- VATION	HCL	HNO3	Ice	H2SO4						3
G	11/19/19	0928	GW	6		3	1	X	1						011
		1030													012
		1120						H			24				013
		1200													014
		1238													013
J	V	1146		J		V	V	1	J						016
6	11/19/19	1202	GW	6		3	1	1_	1						007
-	ī	b	w	35		3									018
116	9	1	W	3		3	-1								019
d water DW = d	rinking water	O = oil	A=air S	O = soil S	L = sludo	ie	Preserva	tion Cod	le: l=ice	H=(HC) S = (H	2SO4) N	= (HNO3) T = (Soc	lium Thiosulfate
Temp fro	m blank		or measuring			Where	required,	pH chec	ked	Temp	erature w	hen rece	ived	11	degrees celciu
	eived by:		Date	Time		FO	R DRII	VKINC	WATE	ER US	E:		71.01	W. 5M	5.17
Folk.	×	,	11/19/19	1730			n PWS Info		ol otherwise	e supplied) PWS	ID			_

	Relinquished by:	Date	Time	Received by:	Date	Time
1	Lun	11/19/19	1730	FelEx	11/19/19	1730
2	Fedex	11-20-19	9:50	Beal	1(-2019	9:5
3						1 -00
4	/					

			 4.11	
FOR DRINKING WATER USE				
(When PWS Information not otherwise supplied)	PWS ID			-
Contact Person:		Phone :		
Supplier of Water:				
Site-Address:				

Client: 📈	ASTE CONNE	CTIONS	Project name	e; J.E.D. L	ANDE	u (F	/V/A
Date/Time Rcvd:	11.20.19 /09	750 Log	g-In request numbe	the second second second second		_	141
Received by:						0	
The state of the s	er comment		Completed by	y: KE			
ooler/Shipping I	nformation;	-+			-		
ourier: 🗆 AEI. 🗇 Cli	ient DUPS D Blue	Street WEDDEN	TARE TARAB T	Other Idensily	de		
		3.	T VEO EL VOYL E	Other (describ	e)		
pe: 🗸 Cooler 🗆 Box	☐ Other (describe)			-			
ooler temperature: I	dentify the cooler an	nd document the tem	noerature blank or ico	e water measu	rement		
			T T T T T T T T T T T T T T T T T T T	T TOLON MODEL	Temen		
Cooler ID		100					
Temp (°C)	4						
	Sample Bottle	☐ Sample Bottle	☐ Sample Bottle	☐ Sample Bottle	-	☐ Sample	Pottle
Temp taken from	☐ Conler	□ Cooler	□ Cooler	□ Cooler .		□ Cooler	
Temp measured	IR gun S/N 9333779 Thermometer (enter	☐ IR gun S/N 9333779 ☐ Thermometer (enter	☐ IR gun S/N 9333779 ☐ Thermometer (enter	☐ IR gun S/N 93	33779	☐ IR gun	
with	☐ Thermometer ID):	(enter	☐ Therme	meter (e			
y discrepancies shou		CHECKLIST			Lamo	Luc	1
Were custody se	eals on shipping conta				YES	NO	NA
	apers properly include				7.5	-	X
	apers properly filled o		Jahels)?		1	-	
	rrive in good condition		taboto).		1		
5. Were all bottle l	labels complete (samp	le #, date, signed, anal	lysis, preservatives)?	-	1	T 18	
6. Did the sample	labels agree with the c	hain of custody?				X	
	ttles used for the tests				L-	1.1	
	nple preservation tech		e label?		V		
	eccived within holding				1		
	rials free of the presen				1	14	
11. Have all Soil VO	OA Vials and Encores	been placed in a freez	er within 48 hours of o	collection?		+ =	X
			one: 🗆 NO ICE 🗆 BI	LUE ICE	~	-	
	emperature less than 6				V		
Sample control	evation is required, are	e sample pHs checked	and any anomalies rec	corded by	0.0		
	ample volume provide		re checked by laborato	ry analysis.	1	1	
			ELO (Sea O A officer i	Commission to and	1		1

Comments: (Note all sample(s) and container (s)" with a "No" checklist response in this comment section)

17. Were all sample containers provided by AEL? (Other than Bacteriological)

19. When necessary to split samples into other bottles, is it noted in the comments?

SAMPLE:	19323 - N	IW- HAR	LABELED	AS: 1937	23-MW-Z	TAR.
COLLECTION	PATE	AND TIME	AGREED	MITH	Coc.	2

DCN: AD-D048 Eff date 2/3/10, Last rev 9/6/16

18. Were samples accepted into the laboratory?

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1915228

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: The upper control criterion was exceeded for several target analytes in Continuing

Calibration Verification (CCV) standards for analytical batch 4668, indicating increased sensitivity. The client samples reported in this batch did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is

not affected. No further corrective action was required.

The Continuing Calibration Verification 2 (CCV2) standards were below the method acceptance of 80-120% for Bromomethane and Vinyl Acetate. The associated client samples were reanalyzed following a passing CCV. No futher corrective action necessary.

B. Blanks: All acceptance criteria were met.

C. Surrogates: All acceptance criteria were met.

D. Spikes: The spike recovery of Methyl tert-butyl Ether (MTBE) for the Laboratory Control Sample

(LCS) was outside the upper control criterion. The analyte in question was not a target in the associated client samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was

required.

The relative percent difference (RPD) for Methyl tert-butyl Ether (MTBE) between the Laboratory Control Sample (LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in LCS 3303318 in

comparison with LCSD 3303319. The analyte in question was not a target in the assocaited

client samples. No further corrective action was required.

The relative percent difference (RPD) for several analytes between the Laboratory Control Sample (LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in LCS 3303318 in comparison with LCSD 3303319. Spike recoveries in the LCS and LCSD were within acceptable limits, indicating the analytical batch was in control. No further corrective action was required.

E. Internal Standard: All acceptance criteria were met.

F. Samples: J1915228008 was reanalyzed due to detections in the sample that do not match historical data.

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

The reanalysis was performed from another vial and the detections were confirmed.

J1915228008 was reanalyzed at dilution due to high target analyte levels. The lowest possible dilution was performed to allow the analyte value to be within the calibration curves highest level and to prevent possible carry over in the following sample analyses.

G. Other:

Project No.: J1915228

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 350.1

Preparation: None

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike recovery of NH3 for J1915228007 was outside control criteria. Recoveries

in the Laboratory Control Sample (LCS), Matrix Spike Duplicate (MSD) and %RPD were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further corrective action was required.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1915228

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 300.0

Preparation: None

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

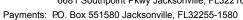
A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike (MS) recovery of Chloride for J1915228001 was outside control criteria.

Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample


Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. The affected sample is

qualified accordingly.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

December 13, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

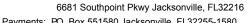
RE: Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, November 21, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 920167 - 1839526 Page 1 of 93

SAMPLE SUMMARY

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected	Date Received
J1915320001	19324-MW-1A	Water	11/20/2019 08:58	11/21/2019 08:45
J1915320002	19324-MW-1B	Water	11/20/2019 08:38	11/21/2019 08:45
J1915320003	19324-MW-2A	Water	11/20/2019 10:14	11/21/2019 08:45
J1915320004	19324-MW-2B	Water	11/20/2019 09:44	11/21/2019 08:45
J1915320005	19324-MW-3A	Water	11/20/2019 11:42	11/21/2019 08:45
J1915320006	19324-MW-3B	Water	11/20/2019 11:14	11/21/2019 08:45
J1915320007	19324-MW-4A	Water	11/20/2019 13:06	11/21/2019 08:45
J1915320008	19324-MW-4B	Water	11/20/2019 12:42	11/21/2019 08:45
J1915320009	19324-MW-5A	Water	11/20/2019 14:36	11/21/2019 08:45
J1915320010	19324-MW-5B	Water	11/20/2019 14:14	11/21/2019 08:45
J1915320011	19324-MW-9A	Water	11/20/2019 14:10	11/21/2019 08:45
J1915320012	19324-MW-9B	Water	11/20/2019 15:04	11/21/2019 08:45
J1915320013	19324-MW-11A	Water	11/20/2019 11:58	11/21/2019 08:45
J1915320014	19324-MW-11B	Water	11/20/2019 13:20	11/21/2019 08:45
J1915320015	19324-MW-12A	Water	11/20/2019 10:32	11/21/2019 08:45
J1915320016	19324-MW-12B	Water	11/20/2019 11:14	11/21/2019 08:45
J1915320017	19324-MW-13A	Water	11/20/2019 08:58	11/21/2019 08:45
J1915320018	19324-MW-13B	Water	11/20/2019 09:36	11/21/2019 08:45
J1915320019	19324-Dup-1	Water	11/20/2019 00:01	11/21/2019 08:45
J1915320020	19324-EQ-1	Water	11/19/2019 15:40	11/21/2019 08:45
J1915320021	19324-Trip Blank-3	Water	11/19/2019 00:00	11/21/2019 08:45
J1915320022	19324-Trip Blank-4	Water	11/19/2019 00:00	11/21/2019 08:45
J1915320023	19324-Trip Blank-5	Water	11/19/2019 00:00	11/21/2019 08:45

Report ID: 920167 - 1839526 Page 2 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320001 Matrix: Water

19324-MW-1A Date Collected: 11/20/19 08:58 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	ethod: SW-	846 6010				
Barium	39	,	ug/L	1	4.0	1.0	12/3/2019 14:54	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 14:54	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	12/3/2019 14:54	J
Chromium	5.1	Ī	ug/L	1	8.0	2.0	12/3/2019 14:54	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 14:54	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:54	J
Iron	6600		ug/L	1	400	100	12/3/2019 14:54	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 14:54	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 14:54	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 14:54	J
Silver	10	U	ug/L	1	40	10	12/3/2019 14:54	J
Sodium	240		mg/L	1	1.4	0.35	12/3/2019 14:54	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 14:54	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Total			ethod: SW-					
A E		-			0.70	0.44	40/4/0040 00:07	
Antimony Arsenic	0.15 1.7	I	ug/L ug/L	1 1	0.70 1.0	0.11	12/4/2019 00:37 12/10/2019 13:33	J J
Thallium	0.057	U	ug/L ug/L	1	0.20	0.077	12/4/2019 00:37	J
Vanadium	12	U	ug/L ug/L	1	2.0	0.037	12/4/2019 00:37	J
			_		2.0	0.71	12/4/2010 00:01	
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:10	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Dror	naration I	Method: SN	V-846 5030B				
Water								
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0		11/28/2019 09:28	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0		11/28/2019 09:28	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0		11/28/2019 09:28	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0		11/28/2019 09:28	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0		11/28/2019 09:28	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 09:28	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/28/2019 09:28	J

Report ID: 920167 - 1839526 Page 3 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320001 Matrix: Water

19324-MW-1A Date Collected: 11/20/19 08:58 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 09:28	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/28/2019 09:28	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/28/2019 09:28	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/28/2019 09:28	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/28/2019 09:28	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/28/2019 09:28	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/28/2019 09:28	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/28/2019 09:28	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/28/2019 09:28	J
Benzene	2.3		ug/L	1	1.0	0.16	11/28/2019 09:28	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/28/2019 09:28	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/28/2019 09:28	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/28/2019 09:28	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 13:20	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/28/2019 09:28	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/28/2019 09:28	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 09:28	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 09:28	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/28/2019 09:28	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/28/2019 09:28	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 09:28	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/28/2019 09:28	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 09:28	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	11/28/2019 09:28	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/28/2019 09:28	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 09:28	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/28/2019 09:28	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 09:28	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 09:28	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 09:28	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 13:20	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 09:28	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/28/2019 09:28	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 09:28	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 09:28	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/28/2019 09:28	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 09:28	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/28/2019 09:28	J
1,2-Dichloroethane-d4 (S)	90		%	1	70-128		11/28/2019 09:28	
Toluene-d8 (S)	85		%	1	77-119		11/28/2019 09:28	

Report ID: 920167 - 1839526 Page 4 of 93

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320001 Matrix: Water

19324-MW-1A Date Collected: 11/20/19 08:58 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	102		%	1	86-123		11/28/2019 09:28	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: S	W-846 5030B				
Water	Ana	lytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 09:28	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/28/2019 09:28	
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		11/28/2019 09:28	
Toluene-d8 (S)	86		%	1	80-121		11/28/2019 09:28	
Bromofluorobenzene (S)	102		%	1	80-129		11/28/2019 09:28	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EP/	A 300.0				
Chloride	410		mg/L	5	25	2.5	11/21/2019 22:58	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	11/21/2019 22:58	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EP/	A 350.1				
Ammonia (N)	4.8		mg/L	5	0.050	0.040	11/26/2019 14:22	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	970		mg/L	1	10	10	11/26/2019 16:00	J
Lab ID: J1915320002				Date Received:	11/21/19 08:45	Matrix:	Water	
Sample ID: 19324-MW-1B				Date Collected:	11/20/19 08:38			

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	results	Quui	OTIILO		1 0,1	WIDE	7 11 10 1 1 2 2 2	
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	40		ug/L	1	4.0	1.0	12/3/2019 14:58	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 14:58	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 14:58	J
Chromium	2.2	- 1	ug/L	1	8.0	2.0	12/3/2019 14:58	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 14:58	J

Report ID: 920167 - 1839526 Page 5 of 93

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Adjusted

MDL

Analyzed

Lab

Adjusted

PQL

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Date Received: 11/21/19 08:45 Lab ID: J1915320002 Matrix: Water

Units

DF

Qual

19324-MW-1B Date Collected: 11/20/19 08:38 Sample ID:

Sample Description: Location:

Results

							· ·	
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:58	J
Iron	5300		ug/L	1	400	100	12/3/2019 14:58	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 14:58	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 14:58	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 14:58	J
Silver	10	U	ug/L	1	40	10	12/3/2019 14:58	J
Sodium	64		mg/L	1	1.4	0.35	12/3/2019 14:58	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 14:58	J
Analysis Desc: SW846 6020B	Prepa	aration	Method: SV	V-846 3010A				
Analysis,Total	Analy	ytical M	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:05	J
Arsenic	1.2		ug/L	1	1.0	0.077	12/10/2019 11:54	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:05	J
Vanadium	4.7		ug/L	1	2.0	0.71	12/4/2019 01:05	J
Analysis Desc: SW846 7470A	Prepa	aration	Method: SV	V-846 7470A				
Analysis, Water	Analy	ytical M	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:23	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	ytical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/28/2019 09:58	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	11/28/2019 09:58	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	11/28/2019 09:58	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	11/28/2019 09:58	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	11/28/2019 09:58	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 09:58	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	11/28/2019 09:58	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 09:58	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0		11/28/2019 09:58	J
1,2-Dichloropropane	0.66	Ü	ug/L	1	1.0		11/28/2019 09:58	J
1,4-Dichlorobenzene	0.22	Ü	ug/L	1	1.0		11/28/2019 09:58	J
2-Butanone (MEK)	0.43	Ü	ug/L	1	5.0		11/28/2019 09:58	J
2-Hexanone	0.71	Ü	ug/L	1	5.0		11/28/2019 09:58	J
4-Methyl-2-pentanone (MIBK)	0.47	Ü	ug/L	1	1.0		11/28/2019 09:58	J
Acetone	2.1	Ü	ug/L ug/L	1	5.0	2.1	11/28/2019 09:58	J
Acrylonitrile	1.1	U	ug/L ug/L	1	10		11/28/2019 09:58	J
Acrylonicile	1.1	U	ug/L	ı	10	1.1	11/20/2019 09.50	J

Report ID: 920167 - 1839526 Page 6 of 93

CERTIFICATE OF ANALYSIS

Payments: PO. Box 551580 Jacksonville, FL32255-1580

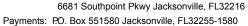
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915320002 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 08:38 Sample ID: 19324-MW-1B


Sample Description: Location:

Benzene						Adjusted	Adjusted		
Bromochloromethane	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromoform	Benzene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 09:58	J
Bromoform	Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/28/2019 09:58	J
Bromomethane	Bromodichloromethane	0.46	U	ug/L	1	1.0			J
Carbon Disulfide 0.67 U ug/L 1 1.0 0.67 11/28/2019 09:58 J Carbon Tetrachloride 0.36 U ug/L 1 1.0 0.61 11/28/2019 09:58 J Chlorochane 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J Chlorochane 0.33 U ug/L 1 1.0 0.33 11/28/2019 09:58 J Chloromethane 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J Dibromomethane 0.26 U ug/L 1 1.0 0.21 11/28/2019 09:58 J Dibromomethane 0.26 U ug/L 1 1.0 0.24 11/28/2019 09:58 J Ethylbenzene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J Wethylene Choride 2.5 U ug/L 1 1.0 0.23 11/28/2019 09:58 <th< td=""><td>Bromoform</td><td>0.44</td><td>U</td><td>ug/L</td><td>1</td><td>1.0</td><td>0.44</td><td>11/28/2019 09:58</td><td>J</td></th<>	Bromoform	0.44	U	ug/L	1	1.0	0.44	11/28/2019 09:58	J
Carbon Tetrachloride 0.36 b. U ug/L 1 1 1.00 0.36 11/28/2019 09:58 J. Chlorobenzene 0.21 U ug/L 1 1.00 0.21 11/28/2019 09:58 J. 11/28/2019 09:58 J. Chloroform 0.33 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Chloroform 0.18 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Chloroform 0.18 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Chloromethane 0.21 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethane 0.23 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethane 0.26 U ug/L 1 1.00 0.26 11/28/2019 09:58 J. Dibromochloromethane 0.26 U ug/L 1 1.00 0.26 11/28/2019 09:58 J. Dibromochloromethane 0.24 U ug/L 1 1.00 0.26 11/28/2019 09:58 J. Dibromochloromethane 0.24 U ug/L 1 1.00 0.26 11/28/2019 09:58 J. Dibromochloromethane 0.24 U ug/L 1 1.00 0.26 11/28/2019 09:58 J. Dibromochloromethane 0.23 U ug/L 1 1.00 0.25 11/28/2019 09:58 J. Dibromochloromethylene (PCE) 0.36 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethylene (PCE) 0.36 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethane 0.23 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethane 0.23 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethane 0.29 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethane 0.29 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethylene 0.29 U ug/L 1 1.00 0.33 11/28/2019 09:58 J. Dibromochloromethylene <td>Bromomethane</td> <td>0.29</td> <td>U</td> <td>ug/L</td> <td>1</td> <td>1.0</td> <td>0.29</td> <td>12/2/2019 13:49</td> <td>J</td>	Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 13:49	J
Chlorobenzene	Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/28/2019 09:58	J
Chloroethane	Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/28/2019 09:58	J
Chloroform	Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 09:58	J
Chloromethane 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J Dibromochloromethane 0.26 U ug/L 1 1.0 0.26 I1/28/2019 09:58 J Ethylbenzene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J Ethylbenzene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J Iodomethane (Methyl lodide) 0.16 U ug/L 1 1.0 0.24 11/28/2019 09:58 J Methylene Chloride 2.5 U ug/L 1 1.0 0.23 11/28/2019 09:58 J Styrene 0.23 U ug/L 1 1.0 0.23 11/28/2019 09:58 J Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.23 11/28/2019 09:58 J Trichloroethylene (PCE) 0.36 U ug/L 1 1.0 0.29 11/	Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 09:58	J
Dibromochloromethane 0.33	Chloroform	0.18	U	ug/L	1	1.0	0.18	11/28/2019 09:58	J
Dibromomethane 0.26	Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/28/2019 09:58	J
Ethylbenzene 0.24	Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 09:58	J
Dodomethane (Methyl Iodide)	Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/28/2019 09:58	J
Methylene Chloride 2.5	Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 09:58	J
Styrene 0.23 U ug/L 1 1.0 0.23 11/28/2019 09:58 J	Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/28/2019 09:58	J
Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 11/28/2019 09:58 J Toluene 0.23 U ug/L 1 1.0 0.23 11/28/2019 09:58 J Trichloroethene 0.29 U ug/L 1 1.0 0.29 11/28/2019 09:58 J Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.29 11/28/2019 09:58 J Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 11/28/2019 09:58 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.32 11/28/2019 09:58 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.00 11/28/2019 09:58 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.0 0.0 11/28/2019 09:58 J Vinyl Chloride 0.24 U ug/L 1 1.0 0.0 0.53 11/28/2019 09:58 J Vinyl Chloroethylene 0.24 U ug/L 1 1.0 0.0 0.24 11/28/2019 09:58 J Vinyl Chloropropene 0.16 U ug/L 1 1.0 0.0 0.24 11/28/2019 09:58 J Vinyl Chloroethylene 0.24 U ug/L 1 1.0 0.0 0.24 11/28/2019 09:58 J Vinyl Chloropropene 0.16 U ug/L 1 1.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.16 U ug/L 1 1.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.21 U ug/L 1 1.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.21 U ug/L 1 1.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.21 U ug/L 1 1.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.21 U ug/L 1 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.21 U ug/L 1 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.21 U ug/L 1 0.0 0.0 11/28/2019 09:58 J Vinyl Chloropropene 0.22 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.23 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.24 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.25 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.26 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.27 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.28 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.29 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.20 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.20 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.20 U ug/L 1 0.0 0.0 0.1 11/28/2019 09:58 J Vinyl Chloropropene 0.20 U ug/L 1 0.0 0.0 0.1 11/28	Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/28/2019 09:58	J
Toluene 0.23 U ug/L 1 1.0 0.23 11/28/2019 09:58 J Trichloroethene 0.29 U ug/L 1 1.0 0.29 11/28/2019 09:58 J Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.29 11/28/2019 09:58 J Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 11/28/2019 09:58 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.10 11/28/2019 13:49 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J Xylene (Total) 0.53 U ug/L 1 2.0 0.53 11/28/2019 09:58 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.20 11/28/2019 09:58 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.24 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1.0 0.21 11/28/2019 09:58 J 1.2-Dichloroethylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J 1.2-Dichloroethylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 91 % 1 70-128 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 91 % 1 77-119 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 84 % 1 77-119 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 103 % 1 86-123 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 T 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.11 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103 % 1 0.20 0.20 11/28/2019 09:58 J 1.2-Dichloroethane-d4 (S) 103	Styrene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 09:58	J
Trichloroethene	Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/28/2019 09:58	J
Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 11/28/2019 09:58 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 13:49 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J Xylene (Total) 0.53 U ug/L 1 1.0 0.20 11/28/2019 09:58 J Xjene (Total) 0.53 U ug/L 1 1.0 0.24 11/28/2019 09:58 J Cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J trans-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1 0 1.1 11/28/2019 09:58 J Tolluene-d8 (S) 84	Toluene	0.23	U	ug/L	1	1.0			J
Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 13:49 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J Xylene (Total) 0.53 U ug/L 1 2.0 0.53 11/28/2019 09:58 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J trans-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.21 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,2-Dichloroethane-d4 (S) 91 % 1 70-128 11/28	Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 09:58	J
Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 13:49 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J Xylene (Total) 0.53 U ug/L 1 2.0 0.53 11/28/2019 09:58 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J trans-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.10 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,3-Dichloropropalene 0.21 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 91 % 1 77-119 11/28/2019 0	Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 09:58	J
Xylene (Total) 0.53 U ug/L 1 2.0 0.53 11/28/2019 09:58 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 91 % 1 70-128 11/28/2019 09:58 T Tolluene-d8 (S) 84 % 1 77-119 11/28/2019 09:58 T Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Water Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L <td< td=""><td>Vinyl Acetate</td><td>0.19</td><td>U</td><td>_</td><td>1</td><td>1.0</td><td>0.19</td><td>12/2/2019 13:49</td><td>J</td></td<>	Vinyl Acetate	0.19	U	_	1	1.0	0.19	12/2/2019 13:49	J
Xylene (Total) 0.53 U ug/L 1 2.0 0.53 11/28/2019 09:58 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 91 % 1 70-128 11/28/2019 09:58 T Bromofluorobenzene (S) 103 % 1 86-123 11/28/2019 09:58 T Analysis Desc: 8260B SIM Analysis, Water Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11	Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 09:58	J
cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 11/28/2019 09:58 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 11/28/2019 09:58 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 91 % 1 70-128 11/28/2019 09:58 J Toluene-d8 (S) 84 % 1 77-119 11/28/2019 09:58 J Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B J J 1 0.20 0.11 11/28/2019 09:58 J 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 11/28/2019 09:58 J Ethylene Dibromide (EDB) 0.020 U<	Xylene (Total)	0.53	U		1	2.0	0.53	11/28/2019 09:58	J
cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 11/28/2019 09:58 J trans-1,2-Dichloroethylene trans-1,2-Dichloropropylene 0.20 U ug/L 1 1.0 0.20 11/28/2019 09:58 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 0.1 1.8 11/28/2019 09:58 J trans-1,4-Dichloroethane-d4 (S) 1 70-128 11/28/2019 09:58 J trans-1,3-Dichloroethane-d4 (S) 1 77-119 11/28/2019 09:58 J trans-1,3-Dichloroethane-d4 (S) 1 86-123 11/28/2019 09:58 J trans-1,3-Dichloroethane-d4 (S) 1 0.20 0.11 11/28/2019 09:58 J t	cis-1,2-Dichloroethylene	0.24	U	_	1	1.0	0.24	11/28/2019 09:58	J
trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J 1/28/2019 09:58 J 1/2	cis-1,3-Dichloropropene	0.16	U		1	1.0	0.16	11/28/2019 09:58	J
trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 11/28/2019 09:58 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J 1/28/2019 09:58 J 1/2	trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/28/2019 09:58	J
trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 91 % 1 70-128 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 11/28/2019 09:58 1 11/28/2019 09:58 1 11/28/2019 09:58 1 11/28/2019 09:58 1 11/28/2019 09:58 1 1 11/28/2019 09:58 1 1 11/28/2019 09:58 1	trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 09:58	J
1,2-Dichloroethane-d4 (S) 91 % 1 70-128 11/28/2019 09:58 Toluene-d8 (S) 84 % 1 77-119 11/28/2019 09:58 Bromofluorobenzene (S) 103 % 1 86-123 11/28/2019 09:58 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Water Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 11/28/2019 09:58 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	trans-1,4-Dichloro-2-butene	1.8	U	_	1	10	1.8	11/28/2019 09:58	J
Toluene-d8 (S) 84 % 1 77-119 11/28/2019 09:58 Bromofluorobenzene (S) 103 % 1 86-123 11/28/2019 09:58 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 11/28/2019 09:58 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 T Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	1,2-Dichloroethane-d4 (S)	91			1	70-128		11/28/2019 09:58	
Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 11/28/2019 09:58 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 Toluene-d8 (S) 885 % 1 80-121 11/28/2019 09:58	Toluene-d8 (S)	84			1	77-119			
Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 11/28/2019 09:58 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	Bromofluorobenzene (S)	103		%	1	86-123		11/28/2019 09:58	
Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 11/28/2019 09:58 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	Analysis Desc: 8260B SIM Analysis,	Prep	aration M	Method: SV	V-846 5030B				
Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM))			
Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 11/28/2019 09:58 J 1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 09:58	J
1,2-Dichloroethane-d4 (S) 87 % 1 77-125 11/28/2019 09:58 Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	Ethylene Dibromide (EDB)	0.020	U		1	0.10	0.020	11/28/2019 09:58	J
Toluene-d8 (S) 85 % 1 80-121 11/28/2019 09:58	1,2-Dichloroethane-d4 (S)	87			1	77-125		11/28/2019 09:58	
Bromofluorobenzene (S) 103 % 1 80-129 11/28/2019 09:58	Toluene-d8 (S)	85		%	1	80-121		11/28/2019 09:58	
	Bromofluorobenzene (S)	103		%	1	80-129		11/28/2019 09:58	

Report ID: 920167 - 1839526 Page 7 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320002 Matrix: Water

19324-MW-1B Date Collected: 11/20/19 08:38 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	90	J4	mg/L	1	5.0	0.50	11/21/2019 23:21	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/21/2019 23:21	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	7.9		mg/L	25	0.25	0.20	11/26/2019 16:38	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	440		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320003 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 10:14 Sample ID: 19324-MW-2A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	72		ug/L	1	4.0	1.0	12/3/2019 15:01	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 15:01	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:01	J
Chromium	2.5	ı	ug/L	1	8.0	2.0	12/3/2019 15:01	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:01	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:01	J
Iron	14000		ug/L	1	400	100	12/3/2019 15:01	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:01	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:01	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:01	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:01	J
Sodium	72		mg/L	1	1.4	0.35	12/3/2019 15:01	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:01	J

Report ID: 920167 - 1839526 Page 8 of 93

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320003 Matrix: Water

19324-MW-2A Date Collected: 11/20/19 10:14 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prep	aration I	Method: S	W-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW	-846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:09	J
Arsenic	0.83	- 1	ug/L	1	1.0	0.077	12/10/2019 11:58	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:09	J
Vanadium	7.3		ug/L	1	2.0	0.71	12/4/2019 01:09	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: S	W-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW	-846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:27	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	11/28/2019 10:28	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	11/28/2019 10:28	ı
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.20	11/28/2019 10:28	ı
1,1,2-Trichloroethane	0.20	U	ug/L ug/L	1	1.0	0.20	11/28/2019 10:28	J
1.1-Dichloroethane	0.30	U	ug/L ug/L	1	1.0	0.30	11/28/2019 10:28	J
1,1-Dichloroethylene	0.14	U	_	1	1.0	0.14	11/28/2019 10:28	J
	0.16	U	ug/L	1	1.0	0.10	11/28/2019 10:28	J
1,2,3-Trichloropropane		_	ug/L	1				J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	11/28/2019 10:28	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	11/28/2019 10:28	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	11/28/2019 10:28	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	11/28/2019 10:28	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	11/28/2019 10:28	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	11/28/2019 10:28	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	11/28/2019 10:28	J
Acetone	2.1	U	ug/L	1	5.0	2.1	11/28/2019 10:28	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	11/28/2019 10:28	J
Benzene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 10:28	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	11/28/2019 10:28	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	11/28/2019 10:28	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	11/28/2019 10:28	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 14:26	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	11/28/2019 10:28	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	11/28/2019 10:28	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 10:28	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 10:28	J

Report ID: 920167 - 1839526 Page 9 of 93

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

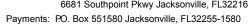
ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320003 Matrix: Water

19324-MW-2A Date Collected: 11/20/19 10:14 Sample ID:

Sample Description: Location:


Advanced Environmental Laboratories, Inc.

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	11/28/2019 10:28	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	11/28/2019 10:28	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	11/28/2019 10:28	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	11/28/2019 10:28	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 10:28	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	11/28/2019 10:28	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	11/28/2019 10:28	J
Styrene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 10:28	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	11/28/2019 10:28	J
Toluene	0.23	U	ug/L	1	1.0	0.23	11/28/2019 10:28	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 10:28	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 10:28	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 14:26	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 10:28	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	11/28/2019 10:28	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	11/28/2019 10:28	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	11/28/2019 10:28	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	11/28/2019 10:28	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 10:28	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/28/2019 10:28	J
1,2-Dichloroethane-d4 (S)	91		%	1	70-128		11/28/2019 10:28	
Toluene-d8 (S)	84		%	1	77-119		11/28/2019 10:28	
Bromofluorobenzene (S)	105		%	1	86-123		11/28/2019 10:28	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SW	/-846 5030B				
Water	Ana	lytical Me	thod: SW-8	346 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 10:28	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	11/28/2019 10:28	J
1,2-Dichloroethane-d4 (S)	86		%	1	77-125		11/28/2019 10:28	
Toluene-d8 (S)	85		%	1	80-121		11/28/2019 10:28	
Bromofluorobenzene (S)	104		%	1	80-129		11/28/2019 10:28	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	thod: EPA	300.0				
Chloride	150		mg/L	1	5.0	0.50	11/22/2019 00:07	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/22/2019 00:07	J
, ,					3.00	2.230		
Analysis Desc: Ammonia,E350.1,Water		iyilda ivle	ethod: EPA					
Ammonia (N)	7.0		mg/L	25	0.25	0.20	11/26/2019 16:39	G

Report ID: 920167 - 1839526 Page 10 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320003 Matrix: Water

19324-MW-2A Date Collected: 11/20/19 10:14 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	560		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320004 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 09:44 Sample ID: 19324-MW-2B

Sample Description: Location:

Sample Description.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SW	V-846 3010A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	346 6010				
Barium	43		ug/L	1	4.0	1.0	12/3/2019 15:04	J
Beryllium	1.0	ı	ug/L	1	2.0	0.50	12/3/2019 15:04	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:04	J
Chromium	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:04	J
Cobalt	6.6	ı	ug/L	1	8.0	2.0	12/3/2019 15:04	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:04	J
Iron	24000		ug/L	1	400	100	12/3/2019 15:04	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:04	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:04	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:04	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:04	J
Sodium	150		mg/L	1	1.4	0.35	12/3/2019 15:04	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:04	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	0.12	- 1	ug/L	1	0.70	0.11	12/4/2019 01:25	J
Arsenic	1.2		ug/L	1	1.0	0.077	12/10/2019 12:02	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:25	J
Vanadium	15		ug/L	1	2.0	0.71	12/4/2019 01:25	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	346 7470A				

Report ID: 920167 - 1839526 Page 11 of 93

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

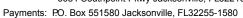
ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320004 Matrix: Water

19324-MW-2B Date Collected: 11/20/19 09:44 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/26/2019 15:30	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: SV	V-846 5030B		
Water	Analy	tical Me	ethod: SW-	846 8260B		
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54 11/28/2019 10:58 J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22 11/28/2019 10:58 J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20 11/28/2019 10:58 J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30 11/28/2019 10:58 J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14 11/28/2019 10:58 J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18 11/28/2019 10:58 J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91 11/28/2019 10:58 J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18 11/28/2019 10:58 J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23 11/28/2019 10:58 J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66 11/28/2019 10:58 J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22 11/28/2019 10:58 J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43 11/28/2019 10:58 J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71 11/28/2019 10:58 J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47 11/28/2019 10:58 J
Acetone	2.1	U	ug/L	1	5.0	2.1 11/28/2019 10:58 J
Acrylonitrile	1.1	U	ug/L	1	10	1.1 11/28/2019 10:58 J
Benzene	0.16	U	ug/L	1	1.0	0.16 11/28/2019 10:58 J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17 11/28/2019 10:58 J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46 11/28/2019 10:58 J
Bromoform	0.44	U	ug/L	1	1.0	0.44 11/28/2019 10:58 J
Bromomethane	0.29	U	ug/L	1	1.0	0.29 12/2/2019 14:55 J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67 11/28/2019 10:58 J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36 11/28/2019 10:58 J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21 11/28/2019 10:58 J
Chloroethane	0.33	U	ug/L	1	1.0	0.33 11/28/2019 10:58 J
Chloroform	0.18	U	ug/L	1	1.0	0.18 11/28/2019 10:58 J
Chloromethane	0.21	U	ug/L	1	1.0	0.21 11/28/2019 10:58 J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33 11/28/2019 10:58 J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26 11/28/2019 10:58 J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24 11/28/2019 10:58 J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16 11/28/2019 10:58 J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5 11/28/2019 10:58 J
Styrene	0.23	U	ug/L	1	1.0	0.23 11/28/2019 10:58 J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36 11/28/2019 10:58 J

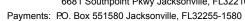
Report ID: 920167 - 1839526 Page 12 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320004 Matrix: Water

19324-MW-2B Date Collected: 11/20/19 09:44 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.99	ı	ug/L	1	1.0	0.23	11/28/2019 10:58	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	11/28/2019 10:58	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	11/28/2019 10:58	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 14:55	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	11/28/2019 10:58	J
Xylene (Total)	0.53	U	ug/L	1	2.0		11/28/2019 10:58	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0		11/28/2019 10:58	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0		11/28/2019 10:58	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0		11/28/2019 10:58	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	11/28/2019 10:58	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	11/28/2019 10:58	J
1,2-Dichloroethane-d4 (S)	92		%	1	70-128		11/28/2019 10:58	
Toluene-d8 (S)	85		%	1	77-119		11/28/2019 10:58	
Bromofluorobenzene (S)	102		%	1	86-123		11/28/2019 10:58	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SW	/-846 5030B				
Water	Anal	lytical Me	ethod: SW-8	346 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	11/28/2019 10:58	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	11/28/2019 10:58	J
1,2-Dichloroethane-d4 (S)	88		%	1	77-125		11/28/2019 10:58	
Toluene-d8 (S)	86		%	1	80-121		11/28/2019 10:58	
Bromofluorobenzene (S)	102		%	1	80-129		11/28/2019 10:58	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	lytical Me	ethod: EPA	300.0				
Chloride	260		mg/L	2	10	1.0	11/22/2019 00:30	J
Nitrate (as N)	0.10	U	mg/L	2	1.0		11/22/2019 00:30	J
Analysis Desc: Ammonia,E350.1,Water	Anal	lytical Me	ethod: EPA	350 1				
Ammonia (N)	4.4	y aodi m	mg/L	5	0.050	0.040	11/26/2019 16:43	G
Ammonia (N)	4.4		illy/L	3	0.050	0.040	11/20/2019 10.43	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	840		mg/L	1	10	10	11/26/2019 16:00	J

Report ID: 920167 - 1839526 Page 13 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320005 Matrix: Water

19324-MW-3A Date Collected: 11/20/19 11:42 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium	54	•	ug/L	1	4.0	1.0	12/3/2019 15:15	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 15:15	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:15	J
Chromium	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:15	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:15	J
Copper	4.0	I	ug/L	1	16	4.0	12/3/2019 15:15	J
Iron	3600		ug/L	1	400	100	12/3/2019 15:15	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:15	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:15	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:15	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:15	J
Sodium	25		mg/L	1	1.4	0.35	12/3/2019 15:15	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:15	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:29	J
Arsenic	0.48	i	ug/L	1	1.0		12/10/2019 12:06	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057	12/4/2019 01:29	J
Vanadium	2.7	_	ug/L	1	2.0	0.71	12/4/2019 01:29	J
Analysis Doss: SW946 74704	Dros	aration I	_	N 946 7470A				
Analysis Desc: SW846 7470A Analysis, Water	Piel	Daration i	vietrioa. Sv	V-846 7470A				
7 (3.1) 0.10, 1.10.10.1	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:33	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prer	naration I	Method: SV	V-846 5030B				
Water								
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 18:14	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 18:14	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 18:14	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 18:14	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 18:14	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 18:14	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 18:14	J

Report ID: 920167 - 1839526 Page 14 of 93

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320005 Matrix: Water

Sample ID: 19324-MW-3A Date Collected: 11/20/19 11:42

Sample Description: Location:

Advanced Environmental Laboratories, Inc.

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 18:14	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 18:14	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 18:14	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 18:14	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 18:14	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 18:14	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 18:14	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/2/2019 18:14	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 18:14	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 18:14	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 18:14	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 18:14	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 18:14	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 18:14	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 18:14	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 18:14	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 18:14	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 18:14	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 18:14	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 18:14	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 18:14	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 18:14	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 18:14	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 18:14	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 18:14	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 18:14	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 18:14	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 18:14	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 18:14	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 18:14	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 18:14	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 18:14	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 18:14	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 18:14	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 18:14	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 18:14	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 18:14	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 18:14	J
1,2-Dichloroethane-d4 (S)	97		%	1	70-128		12/2/2019 18:14	
Toluene-d8 (S)	84		%	1	77-119		12/2/2019 18:14	

Report ID: 920167 - 1839526 Page 15 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320005 Matrix: Water

19324-MW-3A Date Collected: 11/20/19 11:42 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	104		%	1	86-123		12/2/2019 18:14	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: S	W-846 5030B				
Water	Ana	lytical Me	ethod: SW	/-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 18:14	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/2/2019 18:14	J
1,2-Dichloroethane-d4 (S)	93		%	1	77-125		12/2/2019 18:14	
Toluene-d8 (S)	84		%	1	80-121		12/2/2019 18:14	
Bromofluorobenzene (S)	104		%	1	80-129		12/2/2019 18:14	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EP/	A 300.0				
Chloride	38		mg/L	2	10	1.0	11/22/2019 00:53	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	11/22/2019 00:53	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EP	A 350.1				
Ammonia (N)	8.0		mg/L	25	0.25	0.20	11/26/2019 16:52	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1200		mg/L	1	10	10	11/26/2019 16:00	J
				Data Danai II	44/04/40 00:45	N. A. Andrew	Matai	
Lab ID: J1915320006				Date Received:	11/21/19 08:45	Matrix:	Water	
Sample ID: 19324-MW-3B				Date Collected:	11/20/19 11:14			

Sample ID: 19324-MW-3B Date Collected: 11/20/19 11:14

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
	Results	Quai	UTIILS	DΓ	FQL	IVIDL	Analyzeu	
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	40		ug/L	1	4.0	1.0	12/3/2019 15:18	J
Beryllium	2.2		ug/L	1	2.0	0.50	12/3/2019 15:18	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:18	J
Chromium	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:18	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:18	J

Report ID: 920167 - 1839526 Page 16 of 93

CERTIFICATE OF ANALYSIS

Adjusted

MDL

Analyzed

Lab

Adjusted

PQL

10

1.1 12/2/2019 18:50

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Acrylonitrile

Date Received: 11/21/19 08:45 Lab ID: J1915320006 Matrix: Water

Units

DF

Qual

19324-MW-3B Date Collected: 11/20/19 11:14 Sample ID:

Sample Description: Location:

Results

Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:18	J
Iron	1700		ug/L	1	400	100	12/3/2019 15:18	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:18	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:18	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:18	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:18	J
Sodium	95		mg/L	1	1.4	0.35	12/3/2019 15:18	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:18	J
Analysis Desc: SW846 6020B	Prepa	aration	Method: SV	V-846 3010A				
Analysis, Total	Analy	∕tical M	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:33	J
Arsenic	0.79	- 1	ug/L	1	1.0	0.077	12/10/2019 12:10	J
Thallium	0.060	- 1	ug/L	1	0.20	0.057	12/4/2019 01:33	J
Vanadium	9.3		ug/L	1	2.0	0.71	12/4/2019 01:33	J
Analysis Desc: SW846 7470A	Prep	aration	Method: SV	V-846 7470A				
Analysis, Water	·		ethod: SW-					
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:43	J
VOLATILES			•					
Analysis Desc: 8260B VOCs Analysis,	Pren	aration	Method: SV	V-846 5030B				
Water	·							
	Analy	∕tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 18:50	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 18:50	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 18:50	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 18:50	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 18:50	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 18:50	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 18:50	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 18:50	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 18:50	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 18:50	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 18:50	J
2-Butanone (MEK)	0.43	Ū	ug/L	1	5.0	0.43	12/2/2019 18:50	J
2-Hexanone	0.71	Ū	ug/L	1	5.0	0.71	12/2/2019 18:50	J
4-Methyl-2-pentanone (MIBK)	0.47	Ū	ug/L	1	1.0	0.47	12/2/2019 18:50	J
Acetone	2.1	Ü	ug/L	1	5.0	2.1	12/2/2019 18:50	J
A					4.0		10/0/0010 10.00	,

Report ID: 920167 - 1839526 Page 17 of 93

ug/L

CERTIFICATE OF ANALYSIS

Advanced Environmental Laboratories, Inc.

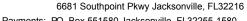
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915320006 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 11:14 Sample ID: 19324-MW-3B


Sample Description: Location:

Cample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 18:50	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 18:50	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 18:50	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 18:50	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 18:50	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 18:50	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 18:50	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 18:50	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 18:50	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 18:50	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 18:50	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 18:50	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 18:50	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 18:50	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 18:50	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 18:50	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 18:50	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 18:50	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 18:50	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 18:50	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 18:50	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 18:50	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 18:50	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 18:50	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 18:50	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 18:50	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 18:50	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 18:50	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 18:50	J
1,2-Dichloroethane-d4 (S)	92		%	1	70-128		12/2/2019 18:50	
Toluene-d8 (S)	85		%	1	77-119		12/2/2019 18:50	
Bromofluorobenzene (S)	106		%	1	86-123		12/2/2019 18:50	
Analysis Desc: 8260B SIM Analysis,	Prep	oaration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	thod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 18:50	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	12/2/2019 18:50	J
1,2-Dichloroethane-d4 (S)	88	•	%	1	77-125	5.020	12/2/2019 18:50	Ü
Toluene-d8 (S)	85		%	1	80-121		12/2/2019 18:50	

Report ID: 920167 - 1839526 Page 18 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320006 Matrix: Water

19324-MW-3B Date Collected: 11/20/19 11:14 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	130		mg/L	5	25	2.5	11/22/2019 01:16	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	11/22/2019 01:16	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	4.8		mg/L	10	0.10	0.080	11/26/2019 16:53	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1500		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320007 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 13:06 Sample ID: 19324-MW-4A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	346 6010				
Barium	55		ug/L	1	4.0	1.0	12/3/2019 15:22	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 15:22	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:22	J
Chromium	2.0	- 1	ug/L	1	8.0	2.0	12/3/2019 15:22	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:22	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:22	J
Iron	3900		ug/L	1	400	100	12/3/2019 15:22	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:22	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:22	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:22	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:22	J
Sodium	49		mg/L	1	1.4	0.35	12/3/2019 15:22	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:22	J

Report ID: 920167 - 1839526 Page 19 of 93

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320007 Matrix: Water

19324-MW-4A Date Collected: 11/20/19 13:06 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	·			W-846 3010A -846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:37	J
Arsenic	1.6		ug/L	1	1.0	0.077	12/10/2019 12:14	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:37	J
Vanadium	2.0	I	ug/L	1	2.0	0.71	12/4/2019 01:37	J
Analysis Desc: SW846 7470A Analysis,Water	•			W-846 7470A -846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:46	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 19:20	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 19:20	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 19:20	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 19:20	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 19:20	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 19:20	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 19:20	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 19:20	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 19:20	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 19:20	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 19:20	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 19:20	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 19:20	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 19:20	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/2/2019 19:20	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 19:20	J
Benzene	0.86	I	ug/L	1	1.0	0.16	12/2/2019 19:20	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 19:20	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 19:20	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 19:20	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 19:20	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 19:20	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 19:20	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 19:20	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 19:20	J

Report ID: 920167 - 1839526 Page 20 of 93

CERTIFICATE OF ANALYSIS

Advanced Environmental Laboratories, Inc.

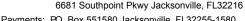
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320007 Matrix: Water

19324-MW-4A Date Collected: 11/20/19 13:06 Sample ID:


Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 19:20	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 19:20	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 19:20	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 19:20	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 19:20	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 19:20	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 19:20	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 19:20	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 19:20	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 19:20	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 19:20	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 19:20	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 19:20	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 19:20	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 19:20	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 19:20	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 19:20	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 19:20	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 19:20	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 19:20	J
1,2-Dichloroethane-d4 (S)	95		%	1	70-128		12/2/2019 19:20	
Toluene-d8 (S)	85		%	1	77-119		12/2/2019 19:20	
Bromofluorobenzene (S)	105		%	1	86-123		12/2/2019 19:20	
Analysis Desc: 8260B SIM Analysis,	Pre	paration N	Method: SW	/-846 5030B				
Water				346 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 19:20	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	12/2/2019 19:20	J
1,2-Dichloroethane-d4 (S)	90	•	%	1	77-125	0.020	12/2/2019 19:20	·
Toluene-d8 (S)	85		%	1	80-121		12/2/2019 19:20	
Bromofluorobenzene (S)	104		%	1	80-129		12/2/2019 19:20	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	90		mg/L	2	10	1.0	11/22/2019 01:40	J
Nitrate (as N)	0.10	U	mg/L	2	1.0		11/22/2019 01:40	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	10		mg/L	25	0.25	0.20	11/26/2019 16:55	G

Report ID: 920167 - 1839526 Page 21 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320007 Matrix: Water

19324-MW-4A Date Collected: 11/20/19 13:06 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	900		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320008 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 12:42 Sample ID: 19324-MW-4B

Sample Description: Location:

Sample Description.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	346 6010				
Barium	53		ug/L	1	4.0	1.0	12/3/2019 15:25	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 15:25	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:25	J
Chromium	3.2	- 1	ug/L	1	8.0	2.0	12/3/2019 15:25	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:25	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:25	J
Iron	100	U	ug/L	1	400	100	12/3/2019 15:25	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:25	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:25	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:25	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:25	J
Sodium	140		mg/L	1	1.4	0.35	12/3/2019 15:25	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:25	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	1.6		ug/L	1	0.70	0.11	12/4/2019 01:42	J
Arsenic	3.4		ug/L	1	1.0	0.077	12/10/2019 12:18	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:42	J
Vanadium	11		ug/L	1	2.0	0.71	12/4/2019 01:42	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	346 7470A				

Report ID: 920167 - 1839526 Page 22 of 93

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320008 Matrix: Water

19324-MW-4B Date Collected: 11/20/19 12:42 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/26/2019 15:49	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: SV	V-846 5030B				
Water	Analy	tical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 19:56	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 19:56	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 19:56	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 19:56	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 19:56	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 19:56	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 19:56	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 19:56	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 19:56	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 19:56	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 19:56	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 19:56	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 19:56	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 19:56	J
Acetone	5.4		ug/L	1	5.0	2.1	12/2/2019 19:56	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 19:56	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 19:56	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 19:56	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 19:56	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 19:56	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 19:56	J
Carbon Disulfide	1.0		ug/L	1	1.0	0.67	12/2/2019 19:56	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 19:56	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 19:56	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 19:56	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 19:56	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 19:56	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 19:56	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 19:56	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 19:56	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 19:56	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 19:56	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 19:56	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 19:56	J

Report ID: 920167 - 1839526 Page 23 of 93

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320008 Matrix: Water

Sample ID: 19324-MW-4B Date Collected: 11/20/19 12:42

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 19:56	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 19:56	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 19:56	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 19:56	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 19:56	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 19:56	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 19:56	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 19:56	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 19:56	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 19:56	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 19:56	J
1,2-Dichloroethane-d4 (S)	96		%	1	70-128		12/2/2019 19:56	
Toluene-d8 (S)	84		%	1	77-119		12/2/2019 19:56	
Bromofluorobenzene (S)	104		%	1	86-123		12/2/2019 19:56	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 19:56	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/2/2019 19:56	J
1,2-Dichloroethane-d4 (S)	91		%	1	77-125		12/2/2019 19:56	
Toluene-d8 (S)	85		%	1	80-121		12/2/2019 19:56	
Bromofluorobenzene (S)	103		%	1	80-129		12/2/2019 19:56	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	490		mg/L	10	50	5.0	11/22/2019 02:03	J
Nitrate (as N)	0.50	U	mg/L	10	5.0		11/22/2019 02:03	
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	12		mg/L	25	0.25	0.20	11/26/2019 16:56	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	1700		mg/L	1	10	10	11/26/2019 16:00	J
			-					

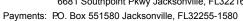
Report ID: 920167 - 1839526 Page 24 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320009 Matrix: Water

19324-MW-5A Date Collected: 11/20/19 14:36 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	thod: SW-	846 6010				
Barium	12	•	ug/L	1	4.0	1.0	12/3/2019 15:29	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 15:29	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	12/3/2019 15:29	J
Chromium	3.2	i	ug/L	1	8.0	2.0	12/3/2019 15:29	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:29	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:29	J
Iron	470		ug/L	1	400	100	12/3/2019 15:29	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:29	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:29	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:29	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:29	J
Sodium	77		mg/L	1	1.4	0.35	12/3/2019 15:29	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:29	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:47	J
Arsenic	0.88	Ĭ	ug/L	1	1.0		12/10/2019 12:22	
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:47	J
Vanadium	0.93	ı	ug/L	1	2.0	0.71	12/4/2019 01:47	J
Analysis Desc: SW846 7470A	Pre	paration N	Method: SV	V-846 7470A				
Analysis, Water				846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:52	J
•	• • • • • • • • • • • • • • • • • • • •		g/ —	•	00	0.0	00 .0 .0.0_	·
VOLATILES	Б		4 (1 1 0)	W 0 40 F000D				
Analysis Desc: 8260B VOCs Analysis, Water	Prep	paration I	viethod: Sv	V-846 5030B				
vvaici	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 20:26	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 20:26	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 20:26	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 20:26	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 20:26	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 20:26	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 20:26	J

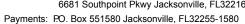
Report ID: 920167 - 1839526 Page 25 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320009 Matrix: Water


19324-MW-5A Date Collected: 11/20/19 14:36 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 20:26	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 20:26	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 20:26	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 20:26	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 20:26	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 20:26	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 20:26	J
Acetone	6.9		ug/L	1	5.0	2.1	12/2/2019 20:26	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 20:26	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 20:26	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 20:26	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 20:26	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 20:26	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 20:26	J
Carbon Disulfide	0.95	ı	ug/L	1	1.0	0.67	12/2/2019 20:26	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 20:26	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 20:26	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 20:26	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 20:26	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 20:26	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 20:26	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 20:26	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 20:26	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 20:26	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 20:26	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 20:26	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 20:26	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 20:26	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 20:26	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 20:26	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 20:26	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 20:26	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 20:26	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 20:26	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 20:26	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 20:26	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 20:26	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 20:26	J
1,2-Dichloroethane-d4 (S)	99		%	1	70-128		12/2/2019 20:26	
Toluene-d8 (S)	84		%	1	77-119		12/2/2019 20:26	

Report ID: 920167 - 1839526 Page 26 of 93

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320009 Matrix: Water

19324-MW-5A Date Collected: 11/20/19 14:36 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted				
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab		
Bromofluorobenzene (S)	104		%	1	86-123		12/2/2019 20:26			
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B						
Water	Anal	Analytical Method: SW-846 8260B (SIM)								
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 20:26	J		
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/2/2019 20:26	J		
1,2-Dichloroethane-d4 (S)	94		%	1	77-125		12/2/2019 20:26			
Toluene-d8 (S)	83		%	1	80-121		12/2/2019 20:26			
Bromofluorobenzene (S)	103		%	1	80-129		12/2/2019 20:26			
WET CHEMISTRY										
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EP/	A 300.0						
Chloride	130		mg/L	1	5.0	0.50	11/22/2019 03:12	J		
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/22/2019 03:12	J		
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EP/	A 350.1						
Ammonia (N)	4.6		mg/L	5	0.050	0.040	11/26/2019 16:57	G		
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C						
Total Dissolved Solids	610		mg/L	1	10	10	11/26/2019 16:00	J		
Lab ID: J1915320010				Date Received:	11/21/19 08:45	Matrix:	Water			
						watti.	vvacoi			
Sample ID: 19324-MW-5B				Date Collected:	11/20/19 14:14					

Date Collected: 11/20/19 14:14

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	46		ug/L	1	4.0	1.0	12/3/2019 15:32	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 15:32	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:32	J
Chromium	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:32	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:32	J

Report ID: 920167 - 1839526 Page 27 of 93

CERTIFICATE OF ANALYSIS

Adjusted

PQL

Adjusted

MDL

Analyzed

Lab

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Date Received: 11/21/19 08:45 Lab ID: J1915320010 Matrix: Water

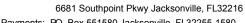
Units

DF

Qual

19324-MW-5B Date Collected: 11/20/19 14:14 Sample ID:

Sample Description: Location:


Results

Copper									
Lead	Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:32	J
Nicke 6.0	Iron	120	- 1		1	400	100	12/3/2019 15:32	J
Selenium 40 U ug/L 1 160 40 12/3/2019 15:32 J Solver 10 U ug/L 1 40 0 12/3/2019 15:32 J Zolnc 50 U ug/L 1 40 0.50 12/3/2019 15:32 J Analysis Desc: SW846 6020B Preparation-Method: SW-846 3010A Analysis, Total Analytical Method: SW-846 6020B Analytical Method: SW-846 7470A Analytical Method: SW-846 5030B Analytical Method: SW-846 5030B Analytical Method: SW-846 5030B Analytical Method: SW-846 5030B Analytical Method: SW-	Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:32	J
Silver	Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:32	J
Sodium So mg/L 1	Selenium	40	U	ug/L	1	160	40	12/3/2019 15:32	J
Zinc 50 U ug/L 1 200 50 12/3/2019 15:32 J Analysis Desc: SW846 6020B Analysis, Total Preparation Method: SW-846 6020 SW-846 7470 SW-846 SW-8	Silver	10	U	ug/L	1	40	10	12/3/2019 15:32	J
Analysis Desc: SW846 6020B	Sodium	82		mg/L	1	1.4	0.35	12/3/2019 15:32	J
Analysis, Total Analysis, Water Analysis, Water Analysis, Water Analysis, Water Analysis Desc: SW846 7470A Analysis, Water Analysis Desc: SW846 7470A Mercury 0.011 U ug/L 1 0.00 0.01 11/26/2019 15.56 J VOLATILES Analysis Desc: 8260B VOCs Analysis, Preparation Method: SW-846 5030B Water Analysis Desc: 8260B VOCs Analysis, Preparation Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1-Tichloroethane 0.22 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,1,2-Tichloroethane 0.30 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,1-Dichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1,2-Tichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1,2-Tichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1,2-Tichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1,2-Tichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1,2-Tichloroethane 0.31 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1,2-Dichloroethane 0.32 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.33 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.24 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.25 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloroethane 0.26 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloroethane 0.27 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloroethane 0.28 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloroethane 0.29 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloroethane 0.20 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloroethane 0.21 U ug/L 1 1.0 0.047 12/2/2019 21:03 J 1,2-Dichloroethane	Zinc	50	U	ug/L	1	200	50	12/3/2019 15:32	J
Antimony 0.11 U ug/L 1 0.070 0.11 12/4/2019 01:51 J Arsenic 0.74 I ug/L 1 1.0 0.077 12/10/2019 12:38 J Thallium 0.057 U ug/L 1 0.20 0.057 12/4/2019 01:51 J Vanadium 0.057 U ug/L 1 0.20 0.057 12/4/2019 01:51 J Vanadium 0.057 U ug/L 1 0.20 0.071 12/4/2019 01:51 J Vanadium 0.058 U ug/L 1 0.00 0.071 12/4/2019 01:51 J Vanadium 0.058 U ug/L 1 0.00 0.071 12/4/2019 01:51 J Vanadium 0.00 0.071 12/4/2019 01:51 J Vanadium 0.00 0.071 U ug/L 1 0.00 0.071 12/4/2019 01:51 J Vanalysis Desc: SW846 7470A Analysis, Water Analytical Method: SW-846 7470A U 0.010 0.011 11/26/2019 15:56 J VOLATILES Analysis Desc: 8260B VOCs Analysis, Water Analytical Method: SW-846 5030B Vater Analytical Method: SW-846 8260B U 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1.1,1-Trichloroethane 0.54 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1.1,2-Tetrachloroethane 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1.1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1.1,2-Tetrichloroethane 0.30 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1.1,2-Tetrichloroethane 0.30 U ug/L 1 1.0 0.02 12/2/2019 21:03 J 1.1,2-Tichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1.1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1.1,2-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1.2,2-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1.2,2-Dichloroethane 0.23 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1.2,2-Dichloroethane 0.23 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1.2,2-Dichloroethane 0.22 U ug/L 1 1.0 0.86 12/2/2019 21:03 J 1.2,2-Dichloroethane 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1.2-Dichloroethane 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1.2-Dichloroethane 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1.2-Dichloroethane 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1.2-Dichloroethane 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1.2-Dichloroethane 0.22 U ug/L 1 1.0 0.06 12/2/2019 21:03 J 1.2-Dichloroethane 0.23 U ug/L 1 1.0 0.06 12/2/2019 21:03 J 1.2-Dichloroethane 0.24 U ug/L 1 1.0 0.07 12/2/2019 21:03 J 1.2-Dichloroethane 0.25 U ug/L 1 1.0 0.07 12/2/2019 21:03 J 1.2	Analysis Desc: SW846 6020B	Prepa	aration	Method: SV	V-846 3010A				
Arsenic 0.74 I ug/L 1 0.00 0.077 12/10/2019 12:38 J Thallium 0.057 U ug/L 1 0.20 0.057 12/4/2019 01:51 J Vanadium 4.0 ug/L 1 2.0 0.71 12/4/2019 01:51 J Analysis Desc: SW846 7470A Mercury D.011 U ug/L 1 0.10 0.01 11/26/2019 15:56 J VOLATILES Analysis Desc: 8260B VOCs Analysis, Water Preparation Method: SW-846 5030B Water Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.22 12/2/2019 21:03 J	Analysis,Total	Analy	ytical M	ethod: SW-	346 6020				
Thallium 0.057 V ug/L 1 0.20 0.057 V 12/4/2019 01:51 J 24.00 J Vanadium J Vanadium 0.057 V ug/L 1 0.00 0.07 V 12/4/2019 01:51 J 24.00 J Vanadium J Vanadium 0.01 V 12/4/2019 01:51 J 24.00 J Vanadium D Vanadium D V ULATIUES V U ug/L 1 0.01 V 0.01 V 11/26/2019 15:56 J 24.00 J V V ULATIUES V V ULATIUES D V V V V V V V V V V V V V V V V V V V	Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:51	J
Vanadium 4.0 ug/L 1 2.0 0.71 12/4/2019 01:51 J Analysis Desc: SW846 7470A Analysis, Water Preparation Method: SW-846 7470A Bernalysis Water Analysis Desc: 8260B VOCs Analysis, Water D.010 0.011 11/26/2019 15:56 J VOLATILES Analysis Desc: 8260B VOCs Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,2-Tetrachloroethane 0.30 U ug/L 1 1.0 0.04 12/2/2019 21:03 J 1,1-Dichloroethane	Arsenic	0.74	- 1	ug/L	1	1.0	0.077	12/10/2019 12:38	J
Analysis Desc: SW846 7470A Analysis, Water Analysical Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.10 0.01 11/26/2019 15:56 J VOLATILES Analysis Desc: 8260B VOCs Analysis, Water Analytical Method: SW-846 5030B Analytical Method: SW-846 5030B Analytical Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1,2-Trichloroethane 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,1,2-Trichloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethylene 0.18 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,2-Trichloropropane 0.91 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloropropane 0.19 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.23 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.24 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloropenzene 0.25 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.26 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.27 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.28 U ug/L 1 1.0 0.64 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.29 U ug/L 1 1.0 0.04 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.20 U ug/L 1 1.0 0.04 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.21 U ug/L 1 1.0 0.47 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.71 U ug/L 1 1.0 0.47 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.71 U ug/L 1 1.0 0.47 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.71 U ug/L 1 1.0 0.47 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.71 U ug/L 1 1.0 0.47 12/2/2019 21:03 J	Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:51	J
Analysis, Water Analytical Method: SW-846 7470A Mercury 0.011 U ug/L 1 0.10 0.011 11/26/2019 15:56 J VOLATILES Analysis Desc: 8260B VOCs Analysis, Water Preparation Method: SW-846 5030B Volume National Method: SW-846 8260B Volume National Method: SW-846 826	Vanadium	4.0		ug/L	1	2.0	0.71	12/4/2019 01:51	J
Mercury 0.011 U ug/L 1 0.10 0.01 11/26/2019 15:56 J VOLATILES Analysis Desc: 8260B VOCs Analysis, Water Analytical Method: SW-846 5030B 1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,2-Tichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethylene 0.18 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,2-Dichloropropane 0.91 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloroethane 0.24 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,2-Dichloroethane 0.66 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloroethane 0.66 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloroethane 0.66 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,2-Dichloroethane 0.66 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,2-Dichloroethane 0.66 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,2-Dichloroethane 0.22 U ug/L 1 1.0 0.047 12/2/2019 21:03 J 1,2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 1,4-Dichloroethane 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 1,4-Exanone 0.71 U ug/L 1 1.0 0.47 12/2/2019 21:03 J 1,4-Exanone 0.71 U ug/L 1 1.0 0.47 12/2/2019 21:03 J 1,4-Exanone 0.71 U ug/L 1 1.0 0.47 12/2/2019 21:03 J		Prepa	aration	Method: SV	V-846 7470A				
VOLATILES Analysis Desc: 8260B VOCs Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1-Dichloroethane 0.18 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1	Analysis, Water	Analy	ytical M	ethod: SW-	346 7470A				
Analysis Desc: 8260B VOCs Analysis, Water Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,1,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-S-Trichloropropane 0.91 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloropropane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloropenae 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Dichloropenae 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 5.0 0.47 12/2/2019 21:03 J Acetone	Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:56	J
National Part	VOLATILES								
Analytical Method: SW-846 8260B 1,1,1,2-Tetrachloroethane 0.54 U ug/L 1 1.0 0.54 12/2/2019 21:03 J 1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,2-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloropropane 0.91 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J	Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
1,1,1-Trichloroethane 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloropthane 0.23 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloropthane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.22 U <	Water	Analy	ytical M	ethod: SW-	846 8260B				
1,1,2,2-Tetrachloroethane 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J 1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-3-Trichloropropane 0.91 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloropethane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexan	1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 21:03	J
1,1,2-Trichloroethane 0.30 U ug/L 1 1.0 0.30 12/2/2019 21:03 J 1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.91 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L	1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 21:03	J
1,1-Dichloroethane 0.14 U ug/L 1 1.0 0.14 12/2/2019 21:03 J 1,1-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L	1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 21:03	J
1,1-Dichloroethylene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 21:03	J
1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 21:03	J
1,2,3-Trichloropropane 0.91 U ug/L 1 1.0 0.91 12/2/2019 21:03 J 1,2-Dichlorobenzene 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J 1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 21:03	J
1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	1,2,3-Trichloropropane	0.91	U		1	1.0	0.91	12/2/2019 21:03	J
1,2-Dichloroethane 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J 1,2-Dichloropropane 0.66 U ug/L 1 1.0 0.66 12/2/2019 21:03 J 1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 21:03	J
1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	1,2-Dichloroethane	0.23	U	_	1	1.0	0.23	12/2/2019 21:03	J
1,4-Dichlorobenzene 0.22 U ug/L 1 1.0 0.22 12/2/2019 21:03 J 2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	1,2-Dichloropropane	0.66	U		1	1.0	0.66	12/2/2019 21:03	J
2-Butanone (MEK) 0.43 U ug/L 1 5.0 0.43 12/2/2019 21:03 J 2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J		0.22	U		1	1.0	0.22	12/2/2019 21:03	J
2-Hexanone 0.71 U ug/L 1 5.0 0.71 12/2/2019 21:03 J 4-Methyl-2-pentanone (MIBK) 0.47 U ug/L 1 1.0 0.47 12/2/2019 21:03 J Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	•	0.43	U	•	1	5.0	0.43	12/2/2019 21:03	J
4-Methyl-2-pentanone (MIBK)		0.71	U	_	1	5.0	0.71	12/2/2019 21:03	J
Acetone 2.1 U ug/L 1 5.0 2.1 12/2/2019 21:03 J	4-Methyl-2-pentanone (MIBK)	0.47	U	•	1	1.0	0.47	12/2/2019 21:03	
· · · · · · · · · · · · · · · · · · ·		2.1		_	1		2.1		
	Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 21:03	J

Report ID: 920167 - 1839526 Page 28 of 93

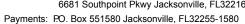
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915320010 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 14:14 Sample ID: 19324-MW-5B


Sample Description: Location:

Parameters						Adjusted	Adjusted		
Bromochloromethane	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofichloromethane	Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 21:03	J
Bromofem	Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 21:03	J
Brommethane	Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 21:03	J
Carbon Disulfide 0.67 U ug/L 1 1.0 0.67 12/2/2019 21:03 J Carbon Tetrachloride 0.36 U ug/L 1 1.0 0.21 12/2/2019 21:03 J Chlorocherane 0.21 U ug/L 1 1.0 0.33 12/2/2019 21:03 J Chlorocherane 0.33 U ug/L 1 1.0 0.33 12/2/2019 21:03 J Chloromethane 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J Dibromochloromethane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Dibromomethane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Ethylbenzene 0.26 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Bethylene Choride 2.5 U ug/L 1 1.0 0.23 12/2/2019 21:03 <t< td=""><td>Bromoform</td><td>0.44</td><td>U</td><td>ug/L</td><td>1</td><td>1.0</td><td>0.44</td><td>12/2/2019 21:03</td><td>J</td></t<>	Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 21:03	J
Carbon Tetrachloride 0.36 U ug/L 1 1.0 0.36 12/2/2019 21:03 J Chlorobenzene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J Chloroform 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J Chloromethane 0.21 U ug/L 1 1.0 0.18 12/2/2019 21:03 J Dibromochloromethane 0.23 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Dibromochlane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Dibromochlane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Dibromochlane 0.24 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Dibromochlane 0.24 U ug/L 1 1.0 0.2 12/2/2019 21:03 J	Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 21:03	J
Chlorobenzene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J Chloroethane 0.33 U ug/L 1 1.0 0.33 12/2/2019 21:03 J Chloromethane 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J Dibromochloromethane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Dibromochloromethane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Ethylbenzene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Idodomethane (Methyl lodide) 0.16 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Styrene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Styrene 0.23 U ug/L 1 1.0 0.2 12/2/2019 21:03 J </td <td>Carbon Disulfide</td> <td>0.67</td> <td>U</td> <td>ug/L</td> <td>1</td> <td>1.0</td> <td>0.67</td> <td>12/2/2019 21:03</td> <td>J</td>	Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 21:03	J
Chloroethane	Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 21:03	J
Chloroform 0.18 U ug/L 1 1.0 0.18 12/2/2019 21:03 J Chloromethane 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J Dibromcomethane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Ethylbenzene 0.24 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Ethylbenzene 0.24 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Idodomethane (Methyl lodide) 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03 J Methylene Chloride 2.5 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Styrene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Ticthacrofreptine (PCE) 0.36 U ug/L 1 1.0 0.23 12/2/2019 21:03 <	Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 21:03	J
Chloromethane 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J Dibromochloromethane 0.36 U ug/L 1 1.0 0.33 12/2/2019 21:03 J Ethylbenzene 0.26 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Ethylbenzene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Iodomethane (Methyl lodide) 0.16 U ug/L 1 1.0 0.6 12/2/2019 21:03 J Methylene Chloride 2.5 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Styrene 0.23 U ug/L 1 1.0 0.36 12/2/2019 21:03 J Tolkoroethylene (PCE) 0.36 U ug/L 1 1.0 0.33 12/2/2019 21:03 J Tirchloroethylene (PCE) 0.36 U ug/L 1 1.0 0.32 12/2/2019 21:03<	Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 21:03	J
Dibromochloromethane 0.33 U ug/L 1 1.0 0.33 12/2/2019 21:03 J Dibromomethane 0.26 U ug/L 1 1.0 0.26 12/2/2019 21:03 J Ethylbenzene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Idodomethane (Methyl lodide) 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03 J Methylene Chloride 2.5 U ug/L 1 5.0 2.5 12/2/2019 21:03 J Styrene 0.23 U ug/L 1 1.0 0.36 12/2/2019 21:03 J Toluene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Ticklorothene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Ticklorothene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J <td>Chloroform</td> <td>0.18</td> <td>U</td> <td>ug/L</td> <td>1</td> <td>1.0</td> <td>0.18</td> <td>12/2/2019 21:03</td> <td>J</td>	Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 21:03	J
Dibromomethane 0.26	Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 21:03	J
Ethylbenzene 0.24	Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 21:03	J
Dodomethane (Methyl Iodide)	Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 21:03	J
Methylene Chloride 2.5 U ug/L 1 5.0 2.5 12/2/2019 21:03 J Styrene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Toluene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Trichloroethylene 0.29 U ug/L 1 1.0 0.29 12/2/2019 21:03 J Trichlorofhuoromethane 0.32 U ug/L 1 1.0 0.29 12/2/2019 21:03 J Trichlorofhuoromethane 0.32 U ug/L 1 1.0 0.32 12/2/2019 21:03 J Trichlorofhuoromethane 0.32 U ug/L 1 1.0 0.32 12/2/2019 21:03 J Trichlorofhuoroethylene 0.19 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Trichlorofhuoroethylene 0.20 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Trichloroethylene 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03 J Trichloroethylene	Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 21:03	J
Styrene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/2/2019 21:03 J Toluene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/2/2019 21:03 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Vinyl Chloride 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J <	lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 21:03	J
Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/2/2019 21:03 J Toluene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/2/2019 21:03 J Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.22 12/2/2019 21:03 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/2/2019 21:03 J xis-1,2-Dichloroethylene 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03	Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 21:03	J
Toluene 0.23 U ug/L 1 1.0 0.23 12/2/2019 21:03 J Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/2/2019 21:03 J Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.29 12/2/2019 21:03 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/2/2019 21:03 J xis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 <td>Styrene</td> <td>0.23</td> <td>U</td> <td>ug/L</td> <td>1</td> <td>1.0</td> <td>0.23</td> <td>12/2/2019 21:03</td> <td>J</td>	Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 21:03	J
Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/2/2019 21:03 J Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/2/2019 21:03 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/2/2019 21:03 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,2-Dichloropropoplene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J 1,2-Dichloroethylene 0.21 U ug/L 1 1.0 0.21	Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 21:03	J
Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/2/2019 21:03 J Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 1.0 0.53 12/2/2019 21:03 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J trans-1,3-Dichloroptoppene 0.16 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,3-Dichloroptoplene 0.21 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,4-Dichloroc-2-butene 1.8 U ug/L 1 10 1.8 12/2/2019 21:03 J 1,2-Dichlorocthane-d8 (S) 84 % 1 77-128 12/2/2019 21:03	Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 21:03	J
Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/2/2019 21:03 J Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/2/2019 21:03 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.21 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J trans-1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:0	Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 21:03	J
Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/2/2019 21:03 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.24 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,3-Dichloroptopylene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:03 J Bromofluorobenzene (S) 103 % 1 86-123 12/2/2019 21:03 J	Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 21:03	J
Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/2/2019 21:03 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:03 J Tolluene-d8 (S) 84 % 1 77-119 12/2/2019 21:03 J Mater Analytical Method: SW-846 5030B SW-846 5030B J 12/2/2019 21:03 J 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019	Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 21:03	J
Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/2/2019 21:03 J cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:03 J Tolluene-d8 (S) 84 % 1 77-119 12/2/2019 21:03 J Mater Analytical Method: SW-846 5030B SW-846 5030B J 12/2/2019 21:03 J 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019	Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 21:03	J
cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/2/2019 21:03 J cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/2/2019 21:03 J trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:03 J Toluene-d8 (S) 84 % 1 77-119 12/2/2019 21:03 J Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B SW-846 5030B SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020	Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 21:03	J
trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/2/2019 21:03 J trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/2/2019 21:03 J trans-1,3-Dichloropropylene 1.8 U ug/L 1 1.0 0.21 12/2/2019 21:03 J trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:03 J 2 J 1 1 0.20 0.11 12/2/2019 21:03 J 2	cis-1,2-Dichloroethylene	0.24	U	_	1	1.0	0.24	12/2/2019 21:03	J
trans-1,3-Dichloropropylene	cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 21:03	J
trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:03 1 Toluene-d8 (S) 84 % 1 77-119 12/2/2019 21:03 1 Bromofluorobenzene (S) 103 % 1 86-123 12/2/2019 21:03 1 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Herbitage Sim Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S)	trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 21:03	J
1,2-Dichloroethane-d4 (S) 96 % 1 70-128 12/2/2019 21:03 Toluene-d8 (S) 84 % 1 77-119 12/2/2019 21:03 Bromofluorobenzene (S) 103 % 1 86-123 12/2/2019 21:03 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S)	trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 21:03	J
Toluene-d8 (S) 84 % 1 77-119 12/2/2019 21:03 Bromofluorobenzene (S) 103 % 1 86-123 12/2/2019 21:03 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03	trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 21:03	J
Toluene-d8 (S) 84 % 1 77-119 12/2/2019 21:03 Bromofluorobenzene (S) 103 % 1 86-123 12/2/2019 21:03 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03	1,2-Dichloroethane-d4 (S)	96		%	1	70-128		12/2/2019 21:03	
Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03		84		%	1	77-119		12/2/2019 21:03	
Water Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03	Bromofluorobenzene (S)	103		%	1	86-123		12/2/2019 21:03	
Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/2/2019 21:03 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03	Analysis Desc: 8260B SIM Analysis,	Prep	paration M	Method: SV	V-846 5030B				
Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 1 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03	Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/2/2019 21:03 J 1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 1 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03	1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 21:03	J
1,2-Dichloroethane-d4 (S) 92 % 1 77-125 12/2/2019 21:03 Toluene-d8 (S) 84 % 1 80-121 12/2/2019 21:03		0.020	U	ug/L	1	0.10	0.020	12/2/2019 21:03	J
	1,2-Dichloroethane-d4 (S)	92			1	77-125		12/2/2019 21:03	
Bromofluorobenzene (S) 102 % 1 80-129 12/2/2019 21:03	Toluene-d8 (S)	84		%	1	80-121		12/2/2019 21:03	
	Bromofluorobenzene (S)	102		%	1	80-129		12/2/2019 21:03	

Report ID: 920167 - 1839526 Page 29 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320010 Matrix: Water

19324-MW-5B Date Collected: 11/20/19 14:14 Sample ID:

Sample Description: Location:

	5 "			5-	Adjusted	Adjusted	A I I	1 -1-
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab ——
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	540		mg/L	20	100	10	11/22/2019 03:35	J
Nitrate (as N)	1.0	U	mg/L	20	10	1.0	11/22/2019 03:35	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	8.2		mg/L	25	0.25	0.20	11/26/2019 16:58	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1300		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320011 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 14:10 Sample ID: 19324-MW-9A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	7.1		ug/L	1	4.0	1.0	12/3/2019 15:35	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	12/3/2019 15:35	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	12/3/2019 15:35	J
Chromium	3.9	ı	ug/L	1	8.0	2.0	12/3/2019 15:35	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	12/3/2019 15:35	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:35	J
Iron	610		ug/L	1	400	100	12/3/2019 15:35	J
Lead	3.0	U	ug/L	1	12	3.0	12/3/2019 15:35	J
Nickel	6.0	U	ug/L	1	24	6.0	12/3/2019 15:35	J
Selenium	40	U	ug/L	1	160	40	12/3/2019 15:35	J
Silver	10	U	ug/L	1	40	10	12/3/2019 15:35	J
Sodium	17		mg/L	1	1.4	0.35	12/3/2019 15:35	J
Zinc	50	U	ug/L	1	200	50	12/3/2019 15:35	J

Report ID: 920167 - 1839526 Page 30 of 93

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320011 Matrix: Water

19324-MW-9A Date Collected: 11/20/19 14:10 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B	Prep	aration N	Method: S	W-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW	-846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:55	J
Arsenic	1.4		ug/L	1	1.0	0.077	12/10/2019 12:42	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:55	J
Vanadium	3.4		ug/L	1	2.0	0.71	12/4/2019 01:55	J
Analysis Desc: SW846 7470A Analysis,Water			Method: Sethod: SW					
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 15:59	J

VOLATILES

VOLATILES	_							
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 21:32	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 21:32	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 21:32	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 21:32	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 21:32	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 21:32	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 21:32	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 21:32	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 21:32	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 21:32	J
1,4-Dichlorobenzene	1.8		ug/L	1	1.0	0.22	12/2/2019 21:32	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 21:32	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 21:32	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 21:32	J
Acetone	6.6		ug/L	1	5.0	2.1	12/2/2019 21:32	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 21:32	J
Benzene	11		ug/L	1	1.0	0.16	12/2/2019 21:32	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 21:32	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 21:32	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 21:32	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 21:32	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 21:32	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 21:32	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 21:32	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 21:32	J

Report ID: 920167 - 1839526 Page 31 of 93

CERTIFICATE OF ANALYSIS

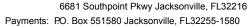
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320011 Matrix: Water

19324-MW-9A Date Collected: 11/20/19 14:10 Sample ID:


Sample Description: Location:

campio Bocomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 21:32	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 21:32	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 21:32	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 21:32	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 21:32	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 21:32	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 21:32	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 21:32	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 21:32	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 21:32	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 21:32	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 21:32	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 21:32	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 21:32	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 21:32	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 21:32	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 21:32	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 21:32	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 21:32	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 21:32	J
1,2-Dichloroethane-d4 (S)	96		%	1	70-128		12/2/2019 21:32	
Toluene-d8 (S)	85		%	1	77-119		12/2/2019 21:32	
Bromofluorobenzene (S)	102		%	1	86-123		12/2/2019 21:32	
Analysis Desc: 8260B SIM Analysis,	Pre	paration I	Method: SV	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 21:32	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	12/2/2019 21:32	J
1,2-Dichloroethane-d4 (S)	91	•	%	1	77-125	0.020	12/2/2019 21:32	ŭ
Toluene-d8 (S)	85		%	1	80-121		12/2/2019 21:32	
Bromofluorobenzene (S)	102		%	1	80-129		12/2/2019 21:32	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	18		mg/L	1	5.0	0.50	11/22/2019 03:58	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/22/2019 03:58	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	4.7		mg/L	5	0.050	0.040	11/26/2019 16:59	G
	•••		9/ =	•	3.500	0.010	0,_010 10.00	_

Report ID: 920167 - 1839526 Page 32 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320011 Matrix: Water

19324-MW-9A Date Collected: 11/20/19 14:10 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	180		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320012 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 15:04 Sample ID: 19324-MW-9B

Sample Description: Location:

Sample Description.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SW	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	346 6010				
Barium	48		ug/L	1	4.0	1.0	11/26/2019 21:32	J
Beryllium	0.80	- 1	ug/L	1	2.0	0.50	11/26/2019 21:32	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 21:32	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 21:32	J
Cobalt	3.0	ı	ug/L	1	8.0	2.0	11/26/2019 21:32	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:39	J
Iron	7800		ug/L	1	400	100	11/26/2019 21:32	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 21:32	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 21:32	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 21:32	J
Silver	10	U	ug/L	1	40	10	11/26/2019 21:32	J
Sodium	38		mg/L	1	1.4	0.35	11/26/2019 21:32	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 21:32	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-8	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 01:59	J
Arsenic	0.49	1	ug/L	1	1.0	0.077	12/10/2019 12:46	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 01:59	J
Vanadium	3.2		ug/L	1	2.0	0.71	12/4/2019 01:59	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	346 7470A				

Report ID: 920167 - 1839526 Page 33 of 93

Phone: (904)363-9350 Fax: (904)363-9354

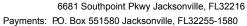
ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320012 Matrix: Water

19324-MW-9B Date Collected: 11/20/19 15:04 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/26/2019 16:02	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 00:38	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 00:38	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 00:38	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 00:38	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 00:38	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 00:38	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 00:38	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 00:38	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 00:38	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 00:38	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 00:38	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 00:38	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 00:38	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 00:38	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 00:38	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 00:38	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 00:38	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 00:38	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 00:38	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 00:38	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 00:38	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 00:38	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 00:38	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 00:38	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 00:38	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 00:38	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 00:38	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 00:38	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 00:38	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 00:38	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 00:38	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 00:38	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 00:38	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 00:38	J

Report ID: 920167 - 1839526 Page 34 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320012 Matrix: Water

Sample ID: 19324-MW-9B Date Collected: 11/20/19 15:04

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 00:38	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 00:38	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 00:38	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 00:38	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 00:38	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 00:38	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 00:38	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 00:38	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 00:38	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 00:38	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 00:38	J
1,2-Dichloroethane-d4 (S)	85		%	1	70-128		12/3/2019 00:38	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 00:38	
Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 00:38	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 00:38	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 00:38	J
1,2-Dichloroethane-d4 (S)	81		%	1	77-125		12/3/2019 00:38	
Toluene-d8 (S)	86		%	1	80-121		12/3/2019 00:38	
Bromofluorobenzene (S)	101		%	1	80-129		12/3/2019 00:38	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	68	J4	mg/L	1	5.0	0.50	11/22/2019 04:21	J
Nitrate (as N)	0.050	U,J4	mg/L	1	0.50		11/22/2019 04:21	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	1.3		mg/L	5	0.050	0.040	11/26/2019 14:47	G
` ,		l. 41 1 8 4	•					
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	iytical Me	ethod: SM	2540 C				
Total Dissolved Solids	340		mg/L	1	10	10	11/26/2019 16:00	J

Report ID: 920167 - 1839526 Page 35 of 93

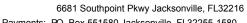
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320013 Matrix: Water

19324-MW-11A Date Collected: 11/20/19 11:58 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	ethod: SW-	846 6010				
Barium	31	,	ug/L	1	4.0	1.0	11/26/2019 21:37	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 21:37	J
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	11/26/2019 21:37	J
Chromium	2.0	Ü	ug/L	1	8.0	2.0	11/26/2019 21:37	J
Cobalt	2.0	Ū	ug/L	1	8.0	2.0	11/26/2019 21:37	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:42	J
Iron	11000		ug/L	1	400	100	11/26/2019 21:37	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 21:37	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 21:37	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 21:37	J
Silver	10	U	ug/L	1	40	10	11/26/2019 21:37	J
Sodium	18		mg/L	1	1.4	0.35	11/26/2019 21:37	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 21:37	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total			ethod: SW-					
A #		-			0.70	0.44	10/1/00/10 00 00	
Antimony	0.11 2.1	U	ug/L	1	0.70 1.0	0.11	12/4/2019 02:03	J
Arsenic Thallium	2.1 0.057	U	ug/L	1 1	0.20		12/10/2019 12:49 12/4/2019 02:03	J
Vanadium	3.9	U	ug/L	1	2.0	0.057 0.71	12/4/2019 02:03	J J
variadium			ug/L	-	2.0	0.71	12/4/2019 02.03	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	thod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 16:05	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Pror	aration I	Mothod: SN	V-846 5030B				
Water	Fiel	Jaration i	vietriou. Sv	V-040 3030B				
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 01:08	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 01:08	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 01:08	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 01:08	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 01:08	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 01:08	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 01:08	J

Report ID: 920167 - 1839526 Page 36 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320013 Matrix: Water

Sample ID: 19324-MW-11A Date Collected: 11/20/19 11:58

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 01:08	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 01:08	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 01:08	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 01:08	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 01:08	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 01:08	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 01:08	
Acetone	4.6	ı	ug/L	1	5.0	2.1	12/3/2019 01:08	
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 01:08	
Benzene	2.5		ug/L	1	1.0	0.16	12/3/2019 01:08	
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 01:08	
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 01:08	
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 01:08	
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 01:08	
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 01:08	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 01:08	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 01:08	
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 01:08	,
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 01:08	
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 01:08	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 01:08	
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 01:08	
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 01:08	
odomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 01:08	
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 01:08	
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 01:08	
etrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 01:08	
Toluene Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 01:08	
richloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 01:08	
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 01:08	
/inyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 01:08	
/inyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 01:08	
(Ylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 01:08	
sis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 01:08	
is-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 01:08	
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 01:08	
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 01:08	
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 01:08	
1,2-Dichloroethane-d4 (S)	86		%	1	70-128		12/3/2019 01:08	
Toluene-d8 (S)	85		%	1	77-119		12/3/2019 01:08	

Report ID: 920167 - 1839526 Page 37 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320013 Matrix: Water

19324-MW-11A Date Collected: 11/20/19 11:58 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	101		%	1	86-123		12/3/2019 01:08	
Analysis Desc: 8260B SIM Analysis, Water	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane Ethylene Dibromide (EDB) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) Bromofluorobenzene (S)	0.11 0.020 83 85 101	U	ug/L ug/L % %	1 1 1 1	0.20 0.10 77-125 80-121 80-129	0.11 0.020	12/3/2019 01:08 12/3/2019 01:08 12/3/2019 01:08 12/3/2019 01:08 12/3/2019 01:08	J J
WET CHEMISTRY Analysis Desc: IC,E300.0,Water	_	ytical Me	ethod: EPA	•	00 120		12/6/2010 01:00	
Chloride Nitrate (as N)	14 0.050	U	mg/L mg/L	1 1	5.0 0.50	0.50 0.050	11/22/2019 05:07 11/22/2019 05:07	J J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	4.5		mg/L	5	0.050	0.040	11/26/2019 14:57	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	320		mg/L	1	10	10	11/26/2019 16:00	J
Lab ID: J1915320014				Date Received:	11/21/19 08:45	Matrix:	Water	

19324-MW-11B Date Collected: 11/20/19 13:20 Sample ID:

Sample Description: Location:

Devenuetore	Daguita	Ougl	Lleite	DE	Adjusted	Adjusted	Analyzad	Lab
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	17		ug/L	1	4.0	1.0	11/26/2019 21:41	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 21:41	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 21:41	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 21:41	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 21:41	J

Report ID: 920167 - 1839526 Page 38 of 93

CERTIFICATE OF ANALYSIS

Adjusted

PQL

Adjusted

MDL

Analyzed

Lab

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Date Received: 11/21/19 08:45 Lab ID: J1915320014 Matrix: Water

Units

DF

Qual

19324-MW-11B Date Collected: 11/20/19 13:20 Sample ID:

Sample Description: Location:

Results

Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:53	J
Iron	460		ug/L	1	400	100	11/26/2019 21:41	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 21:41	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 21:41	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 21:41	J
Silver	10	U	ug/L	1	40	10	11/26/2019 21:41	J
Sodium	16		mg/L	1	1.4	0.35	11/26/2019 21:41	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 21:41	J
Analysis Desc: SW846 6020B	Prepa	aration	Method: SV	V-846 3010A				
Analysis, Total	Analy	tical M	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 02:19	J
Arsenic	0.69	1	ug/L	1	1.0	0.077	12/10/2019 12:53	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 02:19	J
Vanadium	1.2	I	ug/L	1	2.0	0.71	12/4/2019 02:19	J
Analysis Desc: SW846 7470A	Prepa	aration	Method: SV	V-846 7470A				
Analysis, Water	Analy	tical M	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 16:09	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 01:39	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 01:39	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 01:39	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 01:39	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 01:39	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 01:39	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 01:39	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 01:39	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 01:39	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 01:39	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 01:39	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 01:39	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 01:39	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 01:39	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 01:39	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 01:39	J

Report ID: 920167 - 1839526 Page 39 of 93

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915320014 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 13:20 Sample ID: 19324-MW-11B

Sample Description: Location:

Cample Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 01:39	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 01:39	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 01:39	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 01:39	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 01:39	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 01:39	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 01:39	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 01:39	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 01:39	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 01:39	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 01:39	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 01:39	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 01:39	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 01:39	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 01:39	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 01:39	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 01:39	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 01:39	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 01:39	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 01:39	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 01:39	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 01:39	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 01:39	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 01:39	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 01:39	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 01:39	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 01:39	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 01:39	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 01:39	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		12/3/2019 01:39	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 01:39	
Bromofluorobenzene (S)	101		%	1	86-123		12/3/2019 01:39	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 01:39	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/3/2019 01:39	J
1,2-Dichloroethane-d4 (S)	84	-	%	1	77-125		12/3/2019 01:39	_
Toluene-d8 (S)	84		%	1	80-121		12/3/2019 01:39	

Report ID: 920167 - 1839526 Page 40 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320014 Matrix: Water

19324-MW-11B Date Collected: 11/20/19 13:20 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	25		mg/L	1	5.0	0.50	11/22/2019 05:30	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/22/2019 05:30	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	0.040	U	mg/L	5	0.050	0.040	11/26/2019 15:00	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	72		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320015 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 10:32 Sample ID: 19324-MW-12A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	240		ug/L	1	4.0	1.0	11/26/2019 21:46	J
Beryllium	0.50	ı	ug/L	1	2.0	0.50	11/26/2019 21:46	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 21:46	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 21:46	J
Cobalt	4.7	1	ug/L	1	8.0	2.0	11/26/2019 21:46	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 15:57	J
Iron	12000		ug/L	1	400	100	11/26/2019 21:46	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 21:46	J
Nickel	9.8	ı	ug/L	1	24	6.0	11/26/2019 21:46	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 21:46	J
Silver	10	U	ug/L	1	40	10	11/26/2019 21:46	J
Sodium	270		mg/L	1	1.4	0.35	11/26/2019 21:46	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 21:46	J

Report ID: 920167 - 1839526 Page 41 of 93

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320015 Matrix: Water

19324-MW-12A Date Collected: 11/20/19 10:32 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	·			N-846 3010A -846 6020				
Antimony	0.21	ı	ug/L	1	0.70	0.11	12/4/2019 02:24	J
Arsenic	1.7		ug/L	1	1.0	0.077	12/10/2019 12:57	J
Thallium	0.077	- 1	ug/L	1	0.20	0.057	12/4/2019 02:24	J
Vanadium	7.4		ug/L	1	2.0	0.71	12/4/2019 02:24	J
Analysis Desc: SW846 7470A Analysis,Water	•			N-846 7470A -846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 16:12	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration	Method: SV	V-846 5030B				
Water	Anal	ytical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 02:10	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 02:10	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 02:10	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 02:10	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 02:10	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 02:10	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 02:10	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 02:10	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 02:10	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 02:10	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 02:10	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 02:10	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 02:10	J
4-Methyl-2-pentanone (MIBK)	1.5		ug/L	1	1.0	0.47	12/3/2019 02:10	J
Acetone	4.6	ı	ug/L	1	5.0	2.1	12/3/2019 02:10	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 02:10	J
Benzene	5.7		ug/L	1	1.0	0.16	12/3/2019 02:10	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 02:10	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 02:10	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 02:10	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 02:10	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 02:10	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 02:10	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 02:10	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 02:10	J

Report ID: 920167 - 1839526 Page 42 of 93

CERTIFICATE OF ANALYSIS

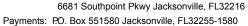
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320015 Matrix: Water

19324-MW-12A Date Collected: 11/20/19 10:32 Sample ID:


Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 02:10	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 02:10	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 02:10	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 02:10	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 02:10	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 02:10	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 02:10	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 02:10	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 02:10	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 02:10	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 02:10	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 02:10	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 02:10	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 02:10	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 02:10	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 02:10	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 02:10	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 02:10	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 02:10	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 02:10	J
1,2-Dichloroethane-d4 (S)	87		%	1	70-128		12/3/2019 02:10	
Toluene-d8 (S)	83		%	1	77-119		12/3/2019 02:10	
Bromofluorobenzene (S)	101		%	1	86-123		12/3/2019 02:10	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Anal	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 02:10	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 02:10	J
1,2-Dichloroethane-d4 (S)	83		%	1	77-125		12/3/2019 02:10	
Toluene-d8 (S)	82		%	1	80-121		12/3/2019 02:10	
Bromofluorobenzene (S)	100		%	1	80-129		12/3/2019 02:10	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	lytical Me	ethod: EPA	300.0				
Chloride	500		ma/l	5	25	2.5	11/22/2019 05:53	J
	0.25	U	mg/L mg/L	5 5	25 2.5		11/22/2019 05:53	
Nitrate (as N)					2.5	0.25	11/22/2018 05.53	J
Analysis Desc: Ammonia,E350.1,Water	Anal	lytical Me	ethod: EPA	350.1				
Ammonia (N)	7.7		mg/L	25	0.25	0.20	11/26/2019 17:00	G

Report ID: 920167 - 1839526 Page 43 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320015 Matrix: Water

19324-MW-12A Date Collected: 11/20/19 10:32 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	890		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320016 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 11:14 Sample ID: 19324-MW-12B

Sample Description: Location:

oumpie Bescription.				Location.					
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab	
METALS									
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A					
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010					
Barium	20		ug/L	1	4.0	1.0	11/26/2019 17:32	J	
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 17:32	J	
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 17:32	J	
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 17:32	J	
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 17:32	J	
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:41	J	
Iron	660		ug/L	1	400	100	11/26/2019 17:32	J	
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 17:32	J	
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 17:32	J	
Selenium	40	U	ug/L	1	160	40	11/26/2019 17:32	J	
Silver	10	U	ug/L	1	40	10	11/26/2019 17:32	J	
Sodium	7.3		mg/L	1	1.4	0.35	11/26/2019 17:32	J	
Zinc	50	U	ug/L	1	200	50	11/26/2019 17:32	J	
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A					
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020					
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 02:28	J	
Arsenic	0.22	1	ug/L	1	1.0	0.077	12/10/2019 13:02	J	
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 02:28	J	
Vanadium	0.91	ı	ug/L	1	2.0	0.71	12/4/2019 02:28	J	
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A					
Analysis, Water	Analytical Method: SW-846 7470A								
	Aliai	y lical ivie	Juliou. GVV-	0-10 / - / 0 / 0					

Report ID: 920167 - 1839526 Page 44 of 93

Phone: (904)363-9350 Fax: (904)363-9354

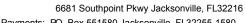
ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320016 Matrix: Water

19324-MW-12B Date Collected: 11/20/19 11:14 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/26/2019 16:22	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: SV	V-846 5030B				
Water	Analy	tical Me	ethod: SW-	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 02:42	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 02:42	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 02:42	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 02:42	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 02:42	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 02:42	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 02:42	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 02:42	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 02:42	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 02:42	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 02:42	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 02:42	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 02:42	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 02:42	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 02:42	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 02:42	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 02:42	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 02:42	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 02:42	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 02:42	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 02:42	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 02:42	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 02:42	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 02:42	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 02:42	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 02:42	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 02:42	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 02:42	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 02:42	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 02:42	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 02:42	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 02:42	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 02:42	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 02:42	J

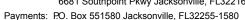
Report ID: 920167 - 1839526 Page 45 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320016 Matrix: Water

19324-MW-12B Date Collected: 11/20/19 11:14 Sample ID:


Sample Description: Location:

campie 2 coompacin								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 02:42	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 02:42	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 02:42	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 02:42	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 02:42	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 02:42	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 02:42	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 02:42	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 02:42	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 02:42	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 02:42	J
1,2-Dichloroethane-d4 (S)	89		%	1	70-128		12/3/2019 02:42	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 02:42	
Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 02:42	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	/-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B (SIM))			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 02:42	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/3/2019 02:42	J
1,2-Dichloroethane-d4 (S)	84		%	1	77-125		12/3/2019 02:42	
Toluene-d8 (S)	82		%	1	80-121		12/3/2019 02:42	
Bromofluorobenzene (S)	101		%	1	80-129		12/3/2019 02:42	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	14		mg/L	1	5.0	0.50	11/22/2019 06:16	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/22/2019 06:16	J
, ,					0.00	0.000		
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.040	U	mg/L	5	0.050	0.040	11/26/2019 17:02	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	60		mg/L	1	10	10	11/26/2019 16:00	J

Report ID: 920167 - 1839526 Page 46 of 93

Phone: (904)363-9350 Fax: (904)363-9354

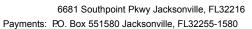
ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320017 Matrix: Water

19324-MW-13A Date Collected: 11/20/19 08:58 Sample ID:

Sample Description: Location:


Advanced Environmental Laboratories, Inc.

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	ethod: SW-	846 6010				
Barium	370	•	ug/L	1	4.0	1.0	11/26/2019 18:04	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:04	
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	11/26/2019 18:04	
Chromium	2.0	Ü	ug/L	1	8.0	2.0	11/26/2019 18:04	
Cobalt	2.0	Ū	ug/L	1	8.0	2.0	11/26/2019 18:04	
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:51	J
Iron	29000		ug/L	1	400	100	11/26/2019 18:04	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:04	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:04	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:04	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:04	
Sodium	500		mg/L	1	1.4	0.35	11/26/2019 18:04	
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:04	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Total			ethod: SW-					
Antinon		•			0.70	0.44	40/4/2040 00:22	
Antimony Arsenic	0.11 7.7	U	ug/L ug/L	1 1	0.70 1.0	0.11	12/4/2019 02:32 12/10/2019 13:06	J J
Thallium	0.057	U	ug/L ug/L	1	0.20	0.077	12/4/2019 13:00	J
Vanadium	0.03 <i>1</i> 8.4	U	ug/L ug/L	1	2.0	0.037	12/4/2019 02:32	J
			_	-	2.0	0.71	12/4/2019 02.02	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 16:25	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Pre	paration N	Method: SV	V-846 5030B				
Water	·			846 8260B				
4.4.4.2. Tatus ablamathans		•			4.0	0.54	40/0/0040 00:44	
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 03:14	J
1,1,1-Trichloroethane	0.22 0.20	U U	ug/L	1	1.0 1.0	0.22 0.20	12/3/2019 03:14	J
1,1,2,2-Tetrachloroethane		U	ug/L	1 1	1.0		12/3/2019 03:14	J J
1,1,2-Trichloroethane	0.30 0.14	U	ug/L		1.0	0.30 0.14	12/3/2019 03:14	J
1,1-Dichloroethylono	0.14 0.18	U	ug/L	1 1	1.0	0.14	12/3/2019 03:14 12/3/2019 03:14	J
1,1-Dichloroethylene 1,2,3-Trichloropropane	0.18 0.91	U	ug/L	1	1.0	0.18	12/3/2019 03:14	J
1,2,3-memoropropane	0.91	U	ug/L	ı	1.0	0.91	12/3/2019 03.14	J

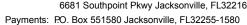
Report ID: 920167 - 1839526 Page 47 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320017 Matrix: Water


Sample ID: 19324-MW-13A Date Collected: 11/20/19 08:58

Sample Description: Location:

Campio Bocomption.				2000				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 03:14	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 03:14	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 03:14	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 03:14	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 03:14	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 03:14	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 03:14	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 03:14	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 03:14	J
Benzene	4.8		ug/L	1	1.0	0.16	12/3/2019 03:14	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 03:14	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 03:14	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 03:14	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 03:14	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 03:14	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 03:14	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 03:14	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 03:14	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 03:14	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 03:14	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 03:14	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 03:14	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 03:14	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 03:14	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 03:14	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 03:14	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 03:14	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 03:14	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 03:14	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 03:14	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 03:14	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 03:14	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 03:14	J
cis-1,2-Dichloroethylene	0.49	ı	ug/L	1	1.0	0.24	12/3/2019 03:14	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 03:14	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 03:14	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 03:14	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 03:14	J
1,2-Dichloroethane-d4 (S)	91		%	1	70-128		12/3/2019 03:14	
Toluene-d8 (S)	85		%	1	77-119		12/3/2019 03:14	

Report ID: 920167 - 1839526 Page 48 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320017 Matrix: Water

19324-MW-13A Date Collected: 11/20/19 08:58 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted			
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab	
Bromofluorobenzene (S)	101		%	1	86-123		12/3/2019 03:14		
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B					
Water	Ana	lytical Me	ethod: SW	7-846 8260B (SIM)					
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 03:14	J	
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 03:14	J	
1,2-Dichloroethane-d4 (S)	85		%	1	77-125		12/3/2019 03:14		
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 03:14		
Bromofluorobenzene (S)	101		%	1	80-129		12/3/2019 03:14		
WET CHEMISTRY									
Analysis Desc: IC,E300.0,Water	Analytical Method: EPA 300.0								
Chloride	990		mg/L	20	100	10	11/22/2019 06:39	J	
Nitrate (as N)	1.0	U	mg/L	20	10	1.0	11/22/2019 06:39	J	
Analysis Desc: Ammonia,E350.1,Water	Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1								
Ammonia (N)	11		mg/L	25	0.25	0.20	11/26/2019 17:03	G	
Analysis Desc: Tot Dissolved Solids,SM2540C	Analytical Method: SM 2540 C								
Total Dissolved Solids	1900		mg/L	1	10	10	11/26/2019 16:00	J	
Lab ID: J1915320018				Date Received:	11/21/19 08:45	Matrix:	Water		
Sample ID: 19324-MW-13B				Date Collected:	11/20/19 09:36				

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS	rtodato	Quai			. 42	11102		
Analysis Desc: SW846 6010B	Dror	aration I	Method: SV	V-846 3010A				
Analysis, Water	•		ethod: SW-					
Barium	13		ug/L	1	4.0	1.0	11/26/2019 18:09	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:09	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:09	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:09	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:09	J

Report ID: 920167 - 1839526 Page 49 of 93

CERTIFICATE OF ANALYSIS

Adjusted

PQL

Adjusted

MDL

Analyzed

Lab

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Date Received: 11/21/19 08:45 Lab ID: J1915320018 Matrix: Water

Units

DF

Qual

19324-MW-13B Date Collected: 11/20/19 09:36 Sample ID:

Sample Description: Location:

Results

Parameters	Results	Quai	Units	DF	PQL	MDL	Allalyzeu	Lau
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:55	J
Iron	1100		ug/L	1	400	100	11/26/2019 18:09	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:09	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:09	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:09	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:09	J
Sodium	10		mg/L	1	1.4	0.35	11/26/2019 18:09	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:09	J
Analysis Desc: SW846 6020B	Prep	aration N	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 02:36	J
Arsenic	0.20	ī	ug/L	1	1.0	0.077	12/10/2019 13:10	J
Thallium	0.057	Ū	ug/L	1	0.20	0.057	12/4/2019 02:36	J
Vanadium	0.71	Ü	ug/L	1	2.0	0.71	12/4/2019 02:36	J
				•		· · · ·		
Analysis Desc: SW846 7470A	Prep	aration N	Method: SV	N-846 7470A				
Analysis,Water	Anal	ytical Me	thod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 16:28	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration N	Method: SV	V-846 5030B				
Water	Anal	ytical Me	thod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 04:49	J
1,1,1-Trichloroethane	0.22	Ü	ug/L ug/L	1	1.0	0.34	12/3/2019 04:49	J
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.22	12/3/2019 04:49	J
1,1,2-Trichloroethane	0.30	Ü	ug/L ug/L	1	1.0	0.20	12/3/2019 04:49	J
1,1-Dichloroethane	0.30	U	ug/L ug/L	1	1.0	0.30	12/3/2019 04:49	J
1,1-Dichloroethylene	0.14	Ü	ug/L ug/L	1	1.0	0.14	12/3/2019 04:49	J
1,2,3-Trichloropropane	0.10	Ü	ug/L ug/L	1	1.0	0.10	12/3/2019 04:49	J
1,2-Dichlorobenzene	0.31	U	ug/L ug/L	1	1.0	0.91	12/3/2019 04:49	J
•	0.18	U	•	1	1.0	0.18	12/3/2019 04:49	J
1,2-Dichloroptopage		U	ug/L		1.0	0.23	12/3/2019 04:49	J
1,2-Dichloropropane	0.66	U	ug/L	1				
1,4-Dichlorobenzene	0.22	_	ug/L	1	1.0	0.22	12/3/2019 04:49	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 04:49	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 04:49	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 04:49	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 04:49	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 04:49	J

Report ID: 920167 - 1839526 Page 50 of 93

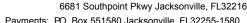
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915320018 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/20/19 09:36 Sample ID: 19324-MW-13B


Sample Description: Location:

Campic Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 04:49	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 04:49	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 04:49	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 04:49	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 04:49	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 04:49	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 04:49	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 04:49	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 04:49	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 04:49	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 04:49	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 04:49	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 04:49	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 04:49	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 04:49	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 04:49	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 04:49	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 04:49	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 04:49	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 04:49	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 04:49	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 04:49	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 04:49	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 04:49	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 04:49	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 04:49	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 04:49	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 04:49	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 04:49	J
1,2-Dichloroethane-d4 (S)	93		%	1	70-128		12/3/2019 04:49	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 04:49	
Bromofluorobenzene (S)	104		%	1	86-123		12/3/2019 04:49	
Analysis Desc: 8260B SIM Analysis,	Prep	paration M	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 04:49	J
Ethylene Dibromide (EDB)	0.020	Ü	ug/L	1	0.10	0.020	12/3/2019 04:49	J
1,2-Dichloroethane-d4 (S)	89	-	%	1	77-125		12/3/2019 04:49	-
Toluene-d8 (S)	84		%	1	80-121		12/3/2019 04:49	
 								

Report ID: 920167 - 1839526 Page 51 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

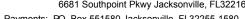
Date Received: 11/21/19 08:45 Lab ID: J1915320018 Matrix: Water

19324-MW-13B Date Collected: 11/20/19 09:36 Sample ID:

Sample Description: Location:

-	- "			5-	Adjusted	Adjusted	A I	1 -1-
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab ——
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EP/	A 300.0				
Chloride	22		mg/L	1	5.0	0.50	11/22/2019 07:02	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/22/2019 07:02	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EP/	A 350.1				
Ammonia (N)	0.040	U	mg/L	5	0.050	0.040	11/26/2019 17:12	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	77		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320019 Date Received: 11/21/19 08:45 Matrix: Water


Date Collected: 11/20/19 00:01 Sample ID: 19324-Dup-1

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	ytical Me	ethod: SW-	846 6010				
Barium	7.0		ug/L	1	4.0	1.0	11/26/2019 18:14	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:14	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:14	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:14	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:14	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:04	J
Iron	600		ug/L	1	400	100	11/26/2019 18:14	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:14	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:14	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:14	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:14	J
Sodium	19		mg/L	1	1.4	0.35	11/26/2019 18:14	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:14	J

Report ID: 920167 - 1839526 Page 52 of 93

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320019 Matrix: Water

19324-Dup-1 Date Collected: 11/20/19 00:01 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	'		Method: SV ethod: SW-	V-846 3010A 846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 02:40	J
Arsenic	1.5		ug/L	1	1.0	0.077	12/10/2019 13:14	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 02:40	J
Vanadium	3.7		ug/L	1	2.0	0.71	12/4/2019 02:40	J
Analysis Desc: SW846 7470A Analysis,Water	'			V-846 7470A 846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	11/26/2019 16:31	J

VOLATILES

VOLATILES	_							
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 05:20	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 05:20	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 05:20	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 05:20	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 05:20	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 05:20	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 05:20	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 05:20	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 05:20	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 05:20	J
1,4-Dichlorobenzene	1.5		ug/L	1	1.0	0.22	12/3/2019 05:20	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 05:20	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 05:20	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 05:20	J
Acetone	5.5		ug/L	1	5.0	2.1	12/3/2019 05:20	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 05:20	J
Benzene	8.6		ug/L	1	1.0	0.16	12/3/2019 05:20	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 05:20	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 05:20	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 05:20	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 05:20	J
Carbon Disulfide	0.70	ı	ug/L	1	1.0	0.67	12/3/2019 05:20	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 05:20	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 05:20	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 05:20	J

Report ID: 920167 - 1839526 Page 53 of 93

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

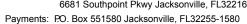
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320019 Matrix: Water

19324-Dup-1 Date Collected: 11/20/19 00:01 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 05:20	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 05:20	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 05:20	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 05:20	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 05:20	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 05:20	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 05:20	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 05:20	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 05:20	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 05:20	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 05:20	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 05:20	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 05:20	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 05:20	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 05:20	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 05:20	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 05:20	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 05:20	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 05:20	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 05:20	J
1,2-Dichloroethane-d4 (S)	94		%	1	70-128		12/3/2019 05:20	
Toluene-d8 (S)	87		%	1	77-119		12/3/2019 05:20	
Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 05:20	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SW	/-846 5030B				
Water	Anal	ytical Me	ethod: SW-8	346 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 05:20	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 05:20	J
1,2-Dichloroethane-d4 (S)	90		%	1	77-125		12/3/2019 05:20	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 05:20	
Bromofluorobenzene (S)	102		%	1	80-129		12/3/2019 05:20	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EPA	300.0				
Chloride	18		mg/L	1	5.0	0.50	11/22/2019 10:50	J
Nitrate (as N)	0.050	U,Q	mg/L	1	0.50		11/22/2019 10:50	J
Analysis Desc: Ammonia,E350.1,Water			ethod: EPA			3.330		-
		yucai ivic						
Ammonia (N)	4.6		mg/L	5	0.050	0.040	11/26/2019 15:06	G

Report ID: 920167 - 1839526 Page 54 of 93

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320019 Matrix: Water

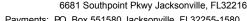
19324-Dup-1 Date Collected: 11/20/19 00:01 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	200		mg/L	1	10	10	11/26/2019 16:00	J

Lab ID: J1915320020 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/19/19 15:40 Sample ID: 19324-EQ-1


Sample Description: Location:

Sample Description.				Location.					
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab	
METALS									
Analysis Desc: SW846 6010B	Prep	aration I	Method: SW	/-846 3010A					
Analysis, Water	Anal	Analytical Method: SW-846 6010							
Barium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:18	J	
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:18	J	
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:18	J	
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:18	J	
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:18	J	
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:07	J	
Iron	100	U	ug/L	1	400	100	11/26/2019 18:18	J	
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:18	J	
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:18	J	
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:18	J	
Silver	10	U	ug/L	1	40	10	11/26/2019 18:18	J	
Sodium	0.35	U	mg/L	1	1.4	0.35	11/26/2019 18:18	J	
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:18	J	
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	/-846 3010A					
Analysis, Total	Anal	ytical Me	ethod: SW-8	346 6020					
Antimony	0.11	U	ug/L	1	0.70	0.11	12/4/2019 02:46	J	
Arsenic	0.077	U	ug/L	1	1.0	0.077	12/10/2019 13:29	J	
Thallium	0.057	U	ug/L	1	0.20	0.057	12/4/2019 02:46	J	
Vanadium	0.71	U	ug/L	1	2.0	0.71	12/4/2019 02:46	J	
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW	/-846 7470A					
Analysis, Water	Anal	vtical Ma	ethod: SW-8	246 74704					
	Allai	yucai ivie	elilou. SVV-c	940 141 UA					

Report ID: 920167 - 1839526 Page 55 of 93

CERTIFICATE OF ANALYSIS

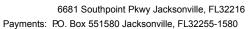
ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320020 Matrix: Water

19324-EQ-1 Date Collected: 11/19/19 15:40 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	11/26/2019 16:35	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: S\	N-846 5030B				
Water	Analy	tical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 17:44	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 17:44	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 17:44	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 17:44	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 17:44	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 17:44	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 17:44	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 17:44	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 17:44	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 17:44	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 17:44	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 17:44	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 17:44	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 17:44	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/2/2019 17:44	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 17:44	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 17:44	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 17:44	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 17:44	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 17:44	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 17:44	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 17:44	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 17:44	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 17:44	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 17:44	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 17:44	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 17:44	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 17:44	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 17:44	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 17:44	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 17:44	J
Methylene Chloride	2.6	1	ug/L	1	5.0	2.5	12/2/2019 17:44	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 17:44	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 17:44	J

Report ID: 920167 - 1839526 Page 56 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320020 Matrix: Water

Sample ID: 19324-EQ-1 Date Collected: 11/19/19 15:40

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 17:44	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 17:44	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 17:44	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 17:44	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 17:44	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 17:44	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 17:44	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 17:44	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 17:44	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 17:44	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 17:44	J
1,2-Dichloroethane-d4 (S)	95		%	1	70-128		12/2/2019 17:44	
Toluene-d8 (S)	84		%	1	77-119		12/2/2019 17:44	
Bromofluorobenzene (S)	106		%	1	86-123		12/2/2019 17:44	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 17:44	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/2/2019 17:44	J
1,2-Dichloroethane-d4 (S)	90		%	1	77-125		12/2/2019 17:44	
Toluene-d8 (S)	84		%	1	80-121		12/2/2019 17:44	
Bromofluorobenzene (S)	105		%	1	80-129		12/2/2019 17:44	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	0.50	U	mg/L	1	5.0	0.50	11/22/2019 11:13	J
Nitrate (as N)	0.056	I,Q	mg/L	1	0.50		11/22/2019 11:13	
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.040	U	mg/L	5	0.050	0.040	11/26/2019 15:07	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	10	U	mg/L	1	10	10	11/25/2019 14:30	J
			-					

Report ID: 920167 - 1839526 Page 57 of 93

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320021 Matrix: Water

19324-Trip Blank-3 Date Collected: 11/19/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prej	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 16:01	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	12/2/2019 16:01	J
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.20	12/2/2019 16:01	J
1,1,2-Trichloroethane	0.30	Ü	ug/L	1	1.0	0.30	12/2/2019 16:01	J
1,1-Dichloroethane	0.14	Ü	ug/L	1	1.0	0.14	12/2/2019 16:01	J
1,1-Dichloroethylene	0.14	Ü	ug/L	1	1.0	0.14	12/2/2019 16:01	J
1,2,3-Trichloropropane	0.10	Ü	ug/L	1	1.0	0.10	12/2/2019 16:01	J
1,2-Dichlorobenzene	0.18	Ü	ug/L	1	1.0	0.18	12/2/2019 16:01	J
1,2-Dichloroethane	0.10	Ü	ug/L ug/L	1	1.0	0.10	12/2/2019 16:01	J
1,2-Dichloropropane	0.23	Ü	ug/L ug/L	1	1.0	0.23	12/2/2019 16:01	J
1,4-Dichlorobenzene	0.22	Ü	ug/L ug/L	1	1.0	0.00	12/2/2019 16:01	J
2-Butanone (MEK)	0.22	Ü	ug/L ug/L	1	5.0	0.43	12/2/2019 16:01	J
2-Hexanone	0.43	Ü	ug/L ug/L	1	5.0	0.43	12/2/2019 16:01	J
	0.71	U	•	1	1.0	0.71	12/2/2019 16:01	
4-Methyl-2-pentanone (MIBK) Acetone	2.1	U	ug/L ug/L	1	5.0	2.1	12/2/2019 16:01	J J
	1.1	U	_		5.0 10	1.1	12/2/2019 16:01	
Acrylonitrile		_	ug/L	1				J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 16:01	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 16:01	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 16:01	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 16:01	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 16:01	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 16:01	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 16:01	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 16:01	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 16:01	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 16:01	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 16:01	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 16:01	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 16:01	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 16:01	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 16:01	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 16:01	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 16:01	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 16:01	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 16:01	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 16:01	J

Report ID: 920167 - 1839526 Page 58 of 93

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320021 Matrix: Water

19324-Trip Blank-3 Date Collected: 11/19/19 00:00 Sample ID:

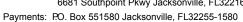
Sample Description: Location:

Advanced Environmental Laboratories, Inc.

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 16:01	
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 16:01	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 16:01	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 16:01	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 16:01	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 16:01	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 16:01	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 16:01	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 16:01	J
1,2-Dichloroethane-d4 (S)	97		%	1	70-128		12/2/2019 16:01	
Toluene-d8 (S)	85		%	1	77-119		12/2/2019 16:01	
Bromofluorobenzene (S)	106		%	1	86-123		12/2/2019 16:01	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SW	V-846 5030B				
Water	Ana	ytical Me	ethod: SW-8	846 8260B (SIM)				

Water	Analy	tical M	ethod: SW-8	346 8260B (SIN	1)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 16:01	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/2/2019 16:01	J
1,2-Dichloroethane-d4 (S)	92		%	1	77-125		12/2/2019 16:01	
Toluene-d8 (S)	84		%	1	80-121		12/2/2019 16:01	
Bromofluorobenzene (S)	106		%	1	80-129		12/2/2019 16:01	

Date Received: 11/21/19 08:45 Matrix: Water Lab ID: J1915320022


Date Collected: 11/19/19 00:00 Sample ID: 19324-Trip Blank-4

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	7-846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 16:38	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 16:38	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 16:38	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 16:38	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 16:38	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 16:38	J

Report ID: 920167 - 1839526 Page 59 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/21/19 08:45 Lab ID: J1915320022 Matrix: Water

19324-Trip Blank-4 Date Collected: 11/19/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 16:38	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 16:38	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 16:38	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 16:38	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 16:38	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 16:38	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 16:38	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 16:38	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/2/2019 16:38	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 16:38	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 16:38	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 16:38	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 16:38	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 16:38	J
Bromomethane	0.29	Ū	ug/L	1	1.0	0.29	12/2/2019 16:38	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 16:38	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 16:38	J
Chlorobenzene	0.21	Ū	ug/L	1	1.0	0.21	12/2/2019 16:38	J
Chloroethane	0.33	Ū	ug/L	1	1.0	0.33	12/2/2019 16:38	J
Chloroform	0.18	Ū	ug/L	1	1.0	0.18	12/2/2019 16:38	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 16:38	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 16:38	J
Dibromomethane	0.26	Ū	ug/L	1	1.0	0.26	12/2/2019 16:38	J
Ethylbenzene	0.24	Ū	ug/L	1	1.0	0.24	12/2/2019 16:38	J
Iodomethane (Methyl Iodide)	0.16	Ū	ug/L	1	1.0	0.16	12/2/2019 16:38	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 16:38	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 16:38	J
Tetrachloroethylene (PCE)	0.36	Ū	ug/L	1	1.0	0.36	12/2/2019 16:38	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 16:38	J
Trichloroethene	0.29	Ū	ug/L	1	1.0	0.29	12/2/2019 16:38	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 16:38	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 16:38	J
Vinyl Chloride	0.20	Ū	ug/L	1	1.0	0.20	12/2/2019 16:38	J
Xylene (Total)	0.53	Ū	ug/L	1	2.0	0.53	12/2/2019 16:38	J
cis-1,2-Dichloroethylene	0.24	Ü	ug/L	1	1.0	0.24	12/2/2019 16:38	J
cis-1,3-Dichloropropene	0.16	Ü	ug/L	1	1.0	0.16	12/2/2019 16:38	J
trans-1,2-Dichloroethylene	0.20	Ü	ug/L	1	1.0	0.20	12/2/2019 16:38	J
trans-1,3-Dichloropropylene	0.21	Ü	ug/L	1	1.0	0.21	12/2/2019 16:38	J
trans-1,4-Dichloro-2-butene	1.8	Ü	ug/L	1	10	1.8	12/2/2019 16:38	J
1,2-Dichloroethane-d4 (S)	93	•	%	1	70-128	1.0	12/2/2019 16:38	Ü

Report ID: 920167 - 1839526 Page 60 of 93

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

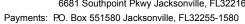
Date Received: 11/21/19 08:45 Lab ID: J1915320022 Matrix: Water

19324-Trip Blank-4 Date Collected: 11/19/19 00:00 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Toluene-d8 (S)	84		%	1	77-119		12/2/2019 16:38	
Bromofluorobenzene (S)	107		%	1	86-123		12/2/2019 16:38	
Analysis Desc: 8260B SIM Analysis, Water				V-846 5030B 846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 16:38	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/2/2019 16:38	J
1,2-Dichloroethane-d4 (S)	88		%	1	77-125		12/2/2019 16:38	
Toluene-d8 (S)	85		%	1	80-121		12/2/2019 16:38	
Bromofluorobenzene (S)	107		%	1	80-129		12/2/2019 16:38	

Date Received: 11/21/19 08:45 Water Lab ID: J1915320023 Matrix:


Date Collected: 11/19/19 00:00 Sample ID: 19324-Trip Blank-5

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/2/2019 17:08	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/2/2019 17:08	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/2/2019 17:08	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/2/2019 17:08	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/2/2019 17:08	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 17:08	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/2/2019 17:08	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/2/2019 17:08	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/2/2019 17:08	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/2/2019 17:08	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/2/2019 17:08	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/2/2019 17:08	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/2/2019 17:08	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/2/2019 17:08	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/2/2019 17:08	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/2/2019 17:08	J

Report ID: 920167 - 1839526 Page 61 of 93

ANALYTICAL RESULTS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915320023 Date Received: 11/21/19 08:45 Matrix: Water

Date Collected: 11/19/19 00:00 Sample ID: 19324-Trip Blank-5

Sample Description: Location:

Campic Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 17:08	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/2/2019 17:08	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/2/2019 17:08	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/2/2019 17:08	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/2/2019 17:08	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/2/2019 17:08	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/2/2019 17:08	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 17:08	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 17:08	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/2/2019 17:08	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/2/2019 17:08	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/2/2019 17:08	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/2/2019 17:08	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 17:08	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/2/2019 17:08	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/2/2019 17:08	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 17:08	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/2/2019 17:08	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/2/2019 17:08	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/2/2019 17:08	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/2/2019 17:08	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/2/2019 17:08	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/2/2019 17:08	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/2/2019 17:08	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/2/2019 17:08	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/2/2019 17:08	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/2/2019 17:08	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/2/2019 17:08	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/2/2019 17:08	J
1,2-Dichloroethane-d4 (S)	99		%	1	70-128		12/2/2019 17:08	
Toluene-d8 (S)	84		%	1	77-119		12/2/2019 17:08	
Bromofluorobenzene (S)	106		%	1	86-123		12/2/2019 17:08	
Analysis Desc: 8260B SIM Analysis,	Prep	paration M	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/2/2019 17:08	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/2/2019 17:08	J
1,2-Dichloroethane-d4 (S)	95	-	%	1	77-125		12/2/2019 17:08	-
Toluene-d8 (S)	84		%	1	80-121		12/2/2019 17:08	
							12/2/2013 17:00	

Report ID: 920167 - 1839526 Page 62 of 93

CERTIFICATE OF ANALYSIS

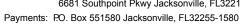
Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Q Missed Hold Time
- J4 **Estimated Result**

LAB QUALIFIERS

- G DOH Certification #E82001(AEL-G)(FL NELAC Certification)
- DOH Certification #E82574(AEL-JAX)(FL NELAC Certification) J

Report ID: 920167 - 1839526 Page 63 of 93

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/6796 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Prepared:

J1915320001, J1915320002, J1915320003, J1915320004, J1915320005, J1915320006, J1915320007, J1915320008, Associated Lab Samples:

METHOD BLANK: 3298159

Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY Chloride 0.50 0.50 U mg/L 0.050 U Nitrate (as N) mg/L 0.050

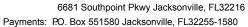
LABORATORY CONTROL SAMPLE & LCSD: 3298160 3298161

Parameter	Units	Spike Conc.	LCS Result	LCSD Result %		_CSD 6 Rec	% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY Chloride Nitrate (as N)	mg/L mg/L	20 2	20 1.9	19 1.9	98 96	95 94	90-110 90-110	3	10 10	

MATRIX SPIKE SAMPLE: 3298162 Original: J1915320002

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Chloride	mg/L	90	20	110	88	90-110	
Nitrate (as N)	mg/L	0	2	1.9	97	90-110	

MATRIX SPIKE SAMPLE: 3298163 Original: J1915320012


Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY		00	00	00	7.4	00.440
Chloride	mg/L	68	20	83	74	90-110
Nitrate (as N)	mg/L	0.026	2	1.8	88	90-110

QC Batch: Analysis Method: DGMj/4305 SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 11/25/2019 10:30

J1915320001, J1915320002, J1915320003, J1915320004, J1915320005, J1915320006, J1915320007, J1915320008, Associated Lab Samples:

Report ID: 920167 - 1839526 Page 64 of 93

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 33	00338		
Parameter	Units	Blank Result	Reporting Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U

40 U 50 U

Limit Qualifiers

Reporting

40

50 Blank

Result

METALS

Selenium

Parameter

Zinc

4.0 U Copper ug/L 4.0

ug/L

ug/L

Units

LABORATORY CONTROL SAMPLE: 3300339

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	200	102	80-120
Barium	ug/L	20	21	104	80-120
Beryllium	ug/L	10	10	101	80-120
admium	ug/L	20	20	102	80-120
obalt	ug/L	40	41	102	80-120
nromium	ug/L	40	41	102	80-120
pper	ug/L	80	82	103	80-120
1	ug/L	2000	2100	104	80-120
dium	mg/L	7	6.5	93	80-120
ckel	ug/L	120	120	101	80-120
ad	ug/L	60	60	101	80-120
elenium	ug/L	800	790	99	80-120
nc	ug/L	1000	1000	102	80-120

Report ID: 920167 - 1839526 Page 65 of 93

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA

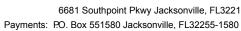
Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MAT	ICATE: 3300	340	3300	3300341		nal: J191	5228014				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers	
METALS											
Silver	ug/L	0.6	200	200	200	99	98	75-125	2	20	
Barium	ug/L	52	20	70	68	90	82	75-125	2	20	
Beryllium	ug/L	0	10	10	9.9	100	99	75-125	1	20	
Cadmium	ug/L	0	20	20	19	98	97	75-125	2	20	
Cobalt	ug/L	0	40	40	40	100	99	75-125	1	20	
Chromium	ug/L	2	40	41	41	97	97	75-125	0	20	
Copper	ug/L	0.7	80	80	79	100	99	75-125	1	20	
Iron	ug/L	2200	2000	4200	4100	99	96	75-125	2	20	
Sodium	mg/L	15	7	21	21	88	81	75-125	3	20	
Nickel	ug/L	3.2	120	120	120	103	102	75-125	1	20	
Lead	ug/L	2.2	60	61	59	101	99	75-125	2	20	
Selenium	ug/L	0	800	790	780	98	97	75-125	1	20	
Zinc	ug/L	6.3	1000	1000	1000	102	101	75-125	1	20	

 QC Batch:
 DGMj/4306
 Analysis Method:
 SW-846 6010

 QC Batch Method:
 SW-846 3010A
 Prepared:
 11/25/2019 10:30

Associated Lab Samples: J1915320016, J1915320017, J1915320018, J1915320019, J1915320020


METHOD BLANK: 3300342

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
METALS				
Silver	ug/L	10	10 U	
Barium	ug/L	1.0	1.0 U	
Beryllium	ug/L	0.50	0.50 U	
Cadmium	ug/L	1.0	1.0 U	
Cobalt	ug/L	2.0	2.0 U	
Chromium	ug/L	2.0	2.0 U	
Iron	ug/L	100	100 U	
Sodium	mg/L	0.35	0.35 U	
Nickel	ug/L	6.0	6.0 U	
Lead	ug/L	3.0	3.0 U	
Selenium	ug/L	40	40 U	
Zinc	ug/L	50	50 U	
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
METALS				
Copper	ug/L	4.0	4.0 U	

Report ID: 920167 - 1839526 Page 66 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3300343

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	200	102	80-120
Barium	ug/L	20	20	103	80-120
Beryllium	ug/L	10	9.7	97	80-120
Cadmium	ug/L	20	20	100	80-120
Cobalt	ug/L	40	41	102	80-120
Chromium	ug/L	40	40	99	80-120
Copper	ug/L	80	93	116	80-120
Iron	ug/L	2000	2000	98	80-120
Sodium	mg/L	7	6.8	97	80-120
Nickel	ug/L	120	120	104	80-120
Lead	ug/L	60	58	97	80-120
Selenium	ug/L	800	780	98	80-120
Zinc	ug/L	1000	1000	104	80-120

MATRIX SPIKE & MAT	RIX SPIKE DUPL	ICATE: 3300	344	3300	345	Origi	nal: J191	5320016		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
METALS										
Silver	ug/L	0	200	200	200	99	101	75-125	2	20
Barium	ug/L	20	20	39	40	99	101	75-125	1	20
Beryllium	ug/L	0	10	9.7	9.9	97	99	75-125	2	20
Cadmium	ug/L	0	20	20	20	98	99	75-125	1	20
Cobalt	ug/L	0.2	40	40	40	101	101	75-125	0	20
Chromium	ug/L	0	40	37	40	94	100	75-125	6	20
Copper	ug/L	0.8	80	90	92	113	115	75-125	1	20
ron	ug/L	660	2000	2600	2600	97	99	75-125	1	20
Sodium	mg/L	7.3	7	14	14	94	96	75-125	1	20
Nickel	ug/L	1.7	120	120	130	103	105	75-125	1	20
_ead	ug/L	0	60	63	63	105	104	75-125	1	20
Selenium	ug/L	0	800	770	790	97	99	75-125	2	20
Zinc	ug/L	9.3	1000	1000	1000	103	104	75-125	1	20

QC Batch: WCAj/6823 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

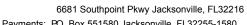
Associated Lab Samples: J1915320020

Report ID: 920167 - 1839526 Page 67 of 93

Report ID: 920167 - 1839526

Phone: (904)363-9350 Fax: (904)363-9354

QUALITY CONTROL DATA


Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM METHOD BLANK: 3300598 Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY **Total Dissolved Solids** 10 10 U mg/L LABORATORY CONTROL SAMPLE: 3300599 Spike LCS LCS % Rec Parameter Units Conc. % Rec Limits Qualifiers Result WET CHEMISTRY **Total Dissolved Solids** mg/L 300 320 105 85-115 SAMPLE DUPLICATE: 3300600 Original: J1915294013 Original DUP Max RPD Result **RPD Qualifiers** Parameter Units Result WET CHEMISTRY **Total Dissolved Solids** 540 540 1 10 mg/L QC Batch: DGMj/4315 Analysis Method: SW-846 6020 QC Batch Method: SW-846 3010A Prepared: 11/26/2019 03:30 J1915320001, J1915320002, J1915320003, J1915320004, J1915320005, J1915320006, J1915320007, J1915320008, Associated Lab Samples: METHOD BLANK: 3301201 Blank Reporting Parameter Units Result Limit Qualifiers **METALS** 0.71 U Vanadium ug/L 0.71 Arsenic ug/L 0.077 0.077 U ug/L Antimony 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301202 Spike LCS LCS % Rec Units Parameter Conc. % Rec Limits Qualifiers Result **METALS** Vanadium ug/L 50 48 97 80-120

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Page 68 of 93

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3301202

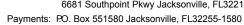
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Arsenic	ug/L	50	50	100	80-120	
Antimony	ug/L	50	48	97	80-120	
Thallium	ug/L	50	47	95	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3301203					204	Original: J1915320001					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers	
METALS											
Vanadium	ug/L	11	50	55	56	88	90	75-125	2	20	
Arsenic	ug/L	1.7	50	49	49	94	94	75-125	0	20	
Antimony	ug/L	0.075	50	51	51	101	101	75-125	0	20	
Thallium	ug/L	0.01	50	48	48	97	96	75-125	1	20	

QC Batch: DGMj/4318 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 11/26/2019 11:25

J1915320001, J1915320002, J1915320003, J1915320004, J1915320005, J1915320006, J1915320007, J1915320008, Associated Lab Samples:

METHOD BLANK: 3301815


Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Mercury	ug/L	0.011	0.011 U	

LABORATORY CONTROL SAMPLE: 3301816

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS Mercury	ug/L	2	2.0	100	80-120

Report ID: 920167 - 1839526 Page 69 of 93

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MA	ATRIX SPIKE DUPLI	CATE: 3301	817	33018	18	Origi	inal: J191	5320001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD (Qualifiers
METALS Mercury	ug/L	0	2	1.7	1.7	86	83	80-120	3	20	
QC Batch:	WCAg/8893			Analysis Me	ethod:	EPA 3	350.1				
QC Batch Method:	EPA 350.1			Prepared:							
Associated Lab Samp	oles: J191532000	01, J1915320	002								
METHOD BLANK: 33	301971										
Parameter	Units		Blank Result	Reporting	Qualifiers						
	Cinto	•									
WET CHEMICTOY											
WET CHEMISTRY Ammonia (N)	mg/L	0	.0080	0.0080	U						
			.0080	0.0080	U						
Ammonia (N)		301972					% Rec				
Ammonia (N)		301972 Sp	.0080 bike onc.	0.0080 LCS Result		CS ec	% Rec Limits C	Qualifiers			
Ammonia (N) LABORATORY CON	TROL SAMPLE: 3	301972 Sp	bike	LCS	LC			Qualifiers			
Ammonia (N) LABORATORY CON ⁻ Parameter	TROL SAMPLE: 3	301972 Sp Cc	bike	LCS	L(% R			Qualifiers			
Ammonia (N) LABORATORY CON Parameter WET CHEMISTRY	TROL SAMPLE: 3 Units mg/L	301972 Sp Cc	bike onc.	LCS Result	L(% R	ec	Limits C	Qualifiers			
Ammonia (N) LABORATORY CON Parameter WET CHEMISTRY Ammonia (N)	TROL SAMPLE: 3 Units mg/L	301972 Sp Co 301973	bike onc. 0.5	LCS Result 0.51	LC % R 1	ec 02	90-110	Qualifiers			
Ammonia (N) LABORATORY CON Parameter WET CHEMISTRY Ammonia (N)	TROL SAMPLE: 3 Units mg/L	301972 Sp Cc 301973	bike onc.	LCS Result	LC % R 1	ec 02 CS	Limits C				
Ammonia (N) LABORATORY CON Parameter WET CHEMISTRY Ammonia (N) LABORATORY CON	TROL SAMPLE: 3 Units mg/L TROL SAMPLE: 3	301972 Sp Cc 301973	oike onc. 0.5	LCS Result 0.51	L(% R 1	ec 02 CS	90-110 % Rec				
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY Ammonia (N) LABORATORY CONT	TROL SAMPLE: 3 Units mg/L TROL SAMPLE: 3	301972 Sp Cc 301973 Sp Cc	oike onc. 0.5	LCS Result 0.51	LC % R 1 LC % R	ec 02 CS	90-110 % Rec				
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY	TROL SAMPLE: 3 Units mg/L TROL SAMPLE: 3 Units	301972 Sp Cc 301973 Sp Cc	oike onc. 0.5 oike onc.	LCS Result 0.51 LCS Result	LC % R 1 LC % R	02 CS ec	90-110 % Rec Limits G				
Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY Ammonia (N) LABORATORY CONT Parameter WET CHEMISTRY	TROL SAMPLE: 3 Units mg/L TROL SAMPLE: 3 Units mg/L	301972 Sp Cc 301973 Sp Cc	oike onc. 0.5 oike onc.	LCS Result 0.51 LCS Result	L(% R 1 L(% R	02 OS ec	90-110 % Rec Limits G	ùualifiers			

Report ID: 920167 - 1839526 Page 70 of 93

15

10

85

85 90-110

0 10

15

6.8

mg/L

Ammonia (N)

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAg/8894 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1915320003, J1915320004, J1915320005, J1915320006, J1915320007, J1915320008, J1915320009, J1915320010,

METHOD BLANK: 3301982

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Ammonia (N) mg/L 0.0080 0.0080 U

LABORATORY CONTROL SAMPLE: 3301983

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY
Ammonia (N) mg/L 0.5 0.50 101 90-110

LABORATORY CONTROL SAMPLE: 3301984

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY

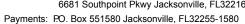
Ammonia (N) mg/L 0.2 0.22 108 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3301985 3301986 Original: J1915320003

Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers

WET CHEMISTRY

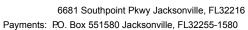
Ammonia (N) mg/L 7 10 16 16 92 92 90-110 0 10


QC Batch: WCAg/8895 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1915320013, J1915320014, J1915320015, J1915320016, J1915320017, J1915320018, J1915320019, J1915320020

Report ID: 920167 - 1839526 Page 71 of 93


QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM METHOD BLANK: 3302007 Blank Reporting Parameter Limit Qualifiers Units Result WET CHEMISTRY 0.0080 0.0080 U Ammonia (N) mg/L LABORATORY CONTROL SAMPLE: 3302008 Spike LCS LCS % Rec Parameter Units Conc. % Rec Limits Qualifiers Result WET CHEMISTRY Ammonia (N) mg/L 0.5 0.50 100 90-110 LABORATORY CONTROL SAMPLE: 3302009 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers WET CHEMISTRY 0.2 Ammonia (N) mg/L 0.21 103 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3302010 3302011 Original: J1915320013 Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers WET CHEMISTRY Ammonia (N) 90-110 mg/L 4.5 2 6.5 6.5 98 98 0 10 QC Batch: WCAj/6850 Analysis Method: SM 2540 C QC Batch Method: SM 2540 C Prepared: J1915320001, J1915320002, J1915320003, J1915320004, J1915320005, J1915320006, J1915320007, J1915320008, Associated Lab Samples: METHOD BLANK: 3302962 Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY **Total Dissolved Solids** 10 10 U mg/L

Report ID: 920167 - 1839526 Page 72 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

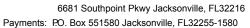
Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM LABORATORY CONTROL SAMPLE: 3302963 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers WET CHEMISTRY **Total Dissolved Solids** 300 310 104 85-115 mg/L Original: J1915294001 SAMPLE DUPLICATE: 3302964 Original DUP Max Parameter Units Result Result **RPD RPD Qualifiers** WET CHEMISTRY **Total Dissolved Solids** 150 150 10 mg/L QC Batch: WCAj/6851 Analysis Method: SM 2540 C SM 2540 C QC Batch Method: Prepared: Associated Lab Samples: J1915320018, J1915320019 METHOD BLANK: 3302971 Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY 10 U **Total Dissolved Solids** mg/L 10 LABORATORY CONTROL SAMPLE: 3302972 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers WET CHEMISTRY 300 310 102 85-115 Total Dissolved Solids mg/L SAMPLE DUPLICATE: 3302973 Original: J1915320018 Original DUP Max Result **RPD RPD Qualifiers** Parameter Units Result WET CHEMISTRY

Report ID: 920167 - 1839526 Page 73 of 93

75

3

10


77

mg/L

Total Dissolved Solids

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: MSVj/4675 Analysis Method: SW-846 8260B (SIM) SW-846 5030B QC Batch Method: Prepared: 11/26/2019 18:45

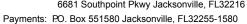
J1915320001, J1915320002, J1915320003, J1915320004 Associated Lab Samples:

METHOD BLANK: 3303348

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
VOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.020	0.020 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.11	0.11 U	
1,2-Dichloroethane-d4 (S)	%	81	77-125	
Toluene-d8 (S)	%	93	80-121	
Bromofluorobenzene (S)	%	102	80-129	

LABORATORY CONTROL SAM	3303349)	3303350							
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
VOLATILES										
Ethylene Dibromide (EDB)	ug/L	0.8	0.70	0.87	88	109	70-130	22	30	
1,2-Dibromo-3-Chloropropane	ug/L	0.8	0.74	0.77	93	96	70-130	4	30	
1,2-Dichloroethane-d4 (S)	%				81	97	77-125	17		
Toluene-d8 (S)	%				89	89	80-121	0		
Bromofluorobenzene (S)	%				100	106	80-129	5		

MATRIX SPIKE SAMPLE: 3303351 Original: J1915320001


Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Ethylene Dibromide (EDB)	ug/L	0	0.8	0.67	84	70-130	
1,2-Dibromo-3- Chloropropane	ug/L	0	0.8	0.78	98	70-130	
1,2-Dichloroethane-d4 (S)	%	85			80	77-125	
Toluene-d8 (S)	%	86			89	80-121	
Bromofluorobenzene (S)	%	102			106	80-129	

QC Batch: MSVj/4685 Analysis Method: SW-846 8260B SW-846 5030B QC Batch Method: Prepared: 11/27/2019 19:02

Associated Lab Samples: J1915320001, J1915320002, J1915320003, J1915320004

Report ID: 920167 - 1839526 Page 74 of 93

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

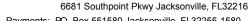
Parameter Units Blank Reporting Result Limit Qualifiers /OLATILES Chloromethane ug/L 0.21 0.21 U
OLATILES
Chloromethane ug/l 0.21 0.21 U
/inyl Chloride ug/L 0.20 0.20 U
Bromomethane ug/L 0.29 0.29 U
Chloroethane ug/L 0.33 0.33 U
richlorofluoromethane ug/L 0.32 0.32 U
cetone ug/L 2.1 2.1 U
,1-Dichloroethylene ug/L 0.18 0.18 U
odomethane (Methyl Iodide) ug/L 0.16 0.16 U
crylonitrile ug/L 1.1 1.1 U
/lethylene Chloride ug/L 2.5 2.5 U
Carbon Disulfide ug/L 0.67 0.67 U
rans-1,2-Dichloroethylene ug/L 0.20 0.20 U
,1-Dichloroethane ug/L 0.14 0.14 U
/inyl Acetate ug/L 0.19 0.19 U
-Butanone (MEK) ug/L 0.43 0.43 U
is-1,2-Dichloroethylene ug/L 0.24 0.24 U
Bromochloromethane ug/L 0.17 0.17 U
Chloroform ug/L 0.18 0.18 U
ŭ
· · · · · · · · · · · · · · · · · · ·
Renzene ug/L 0.16 0.16 U
Dibromomethane ug/L 0.26 0.26 U
,2-Dichloropropane ug/L 0.66 0.66 U
richloroethene ug/L 0.29 0.29 U
Bromodichloromethane ug/L 0.46 0.46 U
is-1,3-Dichloropropene ug/L 0.16 0.16 U
-Methyl-2-pentanone (MIBK) ug/L 0.47 0.47 U
rans-1,3-Dichloropropylene ug/L 0.21 0.21 U
,1,2-Trichloroethane ug/L 0.30 0.30 U
oluene ug/L 0.23 0.23 U
-Hexanone ug/L 0.71 0.71 U
Dibromochloromethane ug/L 0.33 0.33 U
etrachloroethylene (PCE) ug/L 0.36 0.36 U
,1,1,2-Tetrachloroethane ug/L 0.54 0.54 U
Chlorobenzene ug/L 0.21 0.21 U
thylbenzene ug/L 0.24 0.24 U
Promoform ug/L 0.44 0.44 U
Styrene ug/L 0.23 0.23 U
,1,2,2-Tetrachloroethane ug/L 0.20 0.20 U
,2,3-Trichloropropane ug/L 0.91 0.91 U
,4-Dichlorobenzene ug/L 0.22 0.22 U
,2-Dichlorobenzene ug/L 0.18 0.18 U

Report ID: 920167 - 1839526 Page 75 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM


METHOD BLANK: 3304761			
Parameter	Units	Blank Result	Reporting Limit Qualifiers
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U
Xylene (Total)	ug/L	0.53	0.53 U
1,2-Dichloroethane-d4 (S)	%	90	70-128
Toluene-d8 (S)	%	89	77-119
Bromofluorobenzene (S)	%	102	86-123

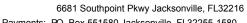
LABORATORY CONTROL SAM	MPLE & LCSD:	3304762	2	33047	63					
		Spike	LCS	LCSD		LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD Qualifiers	
VOLATILES										
Chloromethane	ug/L	20	16	18	79	91		13		
Vinyl Chloride	ug/L	20	16	19	80	94	70-130	16	20	
Bromomethane	ug/L	20	10	8.5	50	43		16		
Chloroethane	ug/L	20	17	19	85	97		14		
Trichlorofluoromethane	ug/L	20	17	19	83	94		13		
Acetone	ug/L	20	21	23	107	115		8		
1,1-Dichloroethylene	ug/L	20	17	19	87	94	70-130	8	20	
Iodomethane (Methyl Iodide)	ug/L	20	9.5	14	48	70		38		
Acrylonitrile	ug/L	20	22	22	112	111		1		
Methylene Chloride	ug/L	20	21	24	105	118		11		
Carbon Disulfide	ug/L	20	18	20	89	99		11		
trans-1,2-Dichloroethylene	ug/L	20	17	18	87	92		6		
1,1-Dichloroethane	ug/L	20	18	19	90	96		6		
Vinyl Acetate	ug/L	20	23	8.5	117	42		93		
2-Butanone (MEK)	ug/L	20	23	23	117	113		3		
cis-1,2-Dichloroethylene	ug/L	20	18	18	89	91	70-130	2	20	
Bromochloromethane	ug/L	20	19	19	95	97		1		
Chloroform	ug/L	20	17	18	87	92	70-130	5	20	
1,2-Dichloroethane	ug/L	20	19	20	97	100		3		
1,1,1-Trichloroethane	ug/L	20	17	17	87	86		2		
Carbon Tetrachloride	ug/L	20	17	18	85	91		7		
Benzene	ug/L	20	19	19	94	96	70-130	3	20	
Dibromomethane	ug/L	20	22	21	108	105		3		
1,2-Dichloropropane	ug/L	20	19	20	93	99		6		
Trichloroethene	ug/L	20	19	23	95	114	70-130	18	20	
Bromodichloromethane	ug/L	20	18	18	90	89		1		
cis-1,3-Dichloropropene	ug/L	20	19	19	95	94		1		
4-Methyl-2-pentanone (MIBK)	ug/L	20	23	25	113	124		9		
trans-1,3-Dichloropropylene	ug/L	20	20	19	101	95		6		
1,1,2-Trichloroethane	ug/L	20	22	22	111	112		1		
Toluene	ug/L	20	16	16	82	82	70-130	0	20	
	g· -		. 3			~-		•	_•	

Report ID: 920167 - 1839526 Page 76 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM


LABORATORY CONTROL SAMPLE & LCSD:		3304762		330476	3304763					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
2-Hexanone	ug/L	20	26	22	129	108		18		
Dibromochloromethane	ug/L	20	18	17	88	86		3		
Tetrachloroethylene (PCE)	ug/L	20	16	17	80	84	70-130	5	20	
1,1,1,2-Tetrachloroethane	ug/L	20	16	17	80	83		4		
Chlorobenzene	ug/L	20	16	16	81	82	70-130	2	20	
Ethylbenzene	ug/L	20	16	17	81	83	70-130	3	20	
Bromoform	ug/L	20	20	19	100	93		7		
Styrene	ug/L	20	16	16	82	79		3		
1,1,2,2-Tetrachloroethane	ug/L	20	22	16	108	80		30		
1,2,3-Trichloropropane	ug/L	20	38	25	188	127		38		
1,4-Dichlorobenzene	ug/L	20	15	15	74	77		4		
1,2-Dichlorobenzene	ug/L	20	16	17	82	83	70-130	2	20	
Xylene (Total)	ug/L	60	49	50	81	83	70-130	2	20	
1,2-Dichloroethane-d4 (S)	%				94	85	70-128	10		
Toluene-d8 (S)	%				90	87	77-119	4		
Bromofluorobenzene (S)	%				102	99	86-123	3		

MATRIX SPIKE SAMPLE: 3304764	Original: J191532000	12

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Chloromethane	ug/L	0	20	16	79		
Vinyl Chloride	ug/L	0	20	15	76	70-130	
Bromomethane	ug/L	0	20	7.2	36		
Chloroethane	ug/L	0	20	16	82		
Trichlorofluoromethane	ug/L	0	20	15	77		
Acetone	ug/L	0	20	29	145		
1,1-Dichloroethylene	ug/L	0	20	16	81	70-130	
lodomethane (Methyl lodide)	ug/L	0	20	28	139		
Acrylonitrile	ug/L	0	20	22	112		
Methylene Chloride	ug/L	0	20	16	81		
Carbon Disulfide	ug/L	0	20	17	85		
trans-1,2-Dichloroethylene	ug/L	0	20	17	84		
1,1-Dichloroethane	ug/L	0	20	18	88		
Vinyl Acetate	ug/L	0	20	29	145		
2-Butanone (MEK)	ug/L	0	20	23	116		
cis-1,2-Dichloroethylene	ug/L	0	20	16	83	70-130	
Bromochloromethane	ug/L	0	20	18	91		
Chloroform	ug/L	0	20	17	87	70-130	

Report ID: 920167 - 1839526 Page 77 of 93

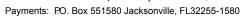
QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 33	304764		Original: J191			
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
1,2-Dichloroethane	ug/L	0	20	18	90	
1,1,1-Trichloroethane	ug/L	0	20	17	85	
Carbon Tetrachloride	ug/L	0	20	16	81	
Benzene	ug/L	0	20	18	89	70-130
Dibromomethane	ug/L	0	20	19	97	
1,2-Dichloropropane	ug/L	0	20	18	91	
Trichloroethene	ug/L	0	20	18	89	70-130
Bromodichloromethane	ug/L	0	20	17	87	
cis-1,3-Dichloropropene	ug/L	0	20	15	75	
4-Methyl-2-pentanone (MIBK)	ug/L	0	20	23	115	
rans-1,3-Dichloropropylene	ug/L	0	20	15	74	
1,1,2-Trichloroethane	ug/L	0	20	21	103	
Toluene	ug/L	0	20	15	77	70-130
2-Hexanone	ug/L	0	20	21	105	
Dibromochloromethane	ug/L	0	20	16	78	
Tetrachloroethylene (PCE)	ug/L	0	20	15	73	70-130
1,1,1,2-Tetrachloroethane	ug/L	0	20	15	77	
Chlorobenzene	ug/L	0	20	15	76	70-130
Ethylbenzene	ug/L	0	20	15	77	70-130
Bromoform	ug/L	0	20	17	84	
Styrene	ug/L	0	20	13	67	
1,1,2,2-Tetrachloroethane	ug/L	0	20	20	99	
1,2,3-Trichloropropane	ug/L	0	20	29	146	
1,4-Dichlorobenzene	ug/L	0	20	14	69	
1,2-Dichlorobenzene	ug/L	0	20	15	75	70-130
Kylene (Total)	ug/L	0	60	46	77	70-130
1,2-Dichloroethane-d4 (S)	%	91			88	70-128
Toluene-d8 (S)	%	84			87	77-119
Bromofluorobenzene (S)	%	103			98	86-123

QC Batch: MSVj/4688 Analysis Method: SW-846 8260B QC Batch Method: SW-846 5030B Prepared: 12/02/2019 07:45

J1915320005, J1915320006, J1915320007, J1915320008, J1915320009, J1915320010, J1915320011, J1915320012, Associated Lab Samples:


METHOD BLANK: 3305978

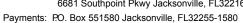
Parameter	Units	Blank Re Result	porting Limit Qualifiers
VOLATILES			
Chloromethane	ug/L	0.21	0.21 U
Vinyl Chloride	ug/L	0.20	0.20 U

Report ID: 920167 - 1839526 Page 78 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM


$NI \vdash I \vdash I$)I) RI	ΔNIK .	3305078	

METHOD BLANK: 3305978				
Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
lodomethane (Methyl lodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
2-Butanone (MEK)	ug/L	0.43	0.43 U	
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	
Benzene	ug/L	0.16	0.16 U	
Dibromomethane	ug/L	0.26	0.26 U	
1,2-Dichloropropane	ug/L	0.66	0.66 U	
Trichloroethene	ug/L	0.29	0.29 U	
Bromodichloromethane	ug/L	0.46	0.46 U	
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U	
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U	
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U	
1,1,2-Trichloroethane	ug/L	0.30	0.30 U	
Toluene	ug/L	0.23	0.23 U	
2-Hexanone	ug/L	0.71	0.71 U	
Dibromochloromethane	ug/L	0.33	0.33 U	
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U	
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U	
Chlorobenzene	ug/L	0.21	0.21 U	
Ethylbenzene	ug/L	0.24	0.24 U	
Bromoform	ug/L	0.44	0.44 U	
Styrene	•	0.23	0.44 U	
1,1,2,2-Tetrachloroethane	ug/L ug/L	0.20	0.20 U	
1,2,3-Trichloropropane	ug/L ug/L	0.20	0.20 U	
1,4-Dichlorobenzene	ug/L ug/L	0.22	0.91 U	
1,2-Dichlorobenzene		0.22	0.22 U 0.18 U	
,	ug/L			
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U	
Xylene (Total)	ug/L	0.53	0.53 U	
1,2-Dichloroethane-d4 (S)	%	92 85	70-128	
Toluene-d8 (S)	%	85	77-119	

Report ID: 920167 - 1839526 Page 79 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3305978

Blank Reporting Parameter Units Result Limit Qualifiers

Bromofluorobenzene (S) % 104 86-123

VOLATILES Chloromethane ug/L 20 20 20 99 99 99 0 0 0 0 0 0	LABORATORY CONTROL SAMPLE & LCSD:		3305979		330598	3305980				
VOLATILES Chloromethane ug/L 20 20 20 99 99 99 0 0 0 0 0 0			Spike	LCS				% Rec		Max
Chloromethane ug/L 20 20 20 99 99 09 0 0 1 20 191 20 19 20 97 98 70-130 1 20 20 20 191 20 97 98 70-130 1 20 20 20 20 191 20 97 98 70-130 1 20 20 20 20 14 24 71 119 51 20 20 20 22 20 108 102 5 20 20 20 108 102 4 4 20 20 20 20 108 102 4 4 20 20 20 20 108 102 4 4 20 20 20 20 20 108 102 4 4 20 20 20 20 20 20 20 20 20 20 20 20 20	Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD Qualifiers
Virny Chloride	VOLATILES									
Samomethane Ug/L 20	Chloromethane	ug/L	20	20	20	99	99		0	
Chloroethane Ug/L 20 22 20 108 102 4 Acetone Ug/L 20 21 20 106 102 4 Acetone Ug/L 20 21 20 106 102 4 Acetone Ug/L 20 21 20 106 102 4 Acetone Ug/L 20 21 21 20 106 102 4 Acetone Ug/L 20 21 21 21 115 107 70-130 7 20 Odomethane (Methyl lodide) Ug/L 20 21 21 21 21 21 21 21 21 21 21 21 21 21	Vinyl Chloride	ug/L	20	19	20	97	98	70-130	1	20
Trichlorofluoromethane Ug/L Acetone Ug/L 120 24 24 122 123 0 141 1,1-Dichloroethylene Ug/L 20 23 21 115 107 70-130 7 20 0domethane (Methyl lodide) Ug/L 20 21 20 144 6.6 71 33 73 34 Acrylonitrile Ug/L 20 25 25 11 124 107 15 Wethylene Chloride Ug/L 20 25 25 127 124 2 2 Carbon Disulfide Ug/L 20 23 21 114 103 10 rans-1,2-Dichloroethylene Ug/L 20 23 21 114 105 9 11,1-Dichloroethylene Ug/L 20 23 21 114 105 9 11,1-Dichloroethylene Ug/L 20 23 21 115 107 7 7 Winyl Acetate Ug/L 20 23 21 115 107 7 7 Winyl Acetate Ug/L 20 23 21 116 111 4 22-Butanone (MEK) Ug/L 20 23 22 116 111 4 24 2-Butanone (MEK) Ug/L 20 23 21 116 117 70-130 8 20 37 37 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Bromomethane	ug/L	20	14	24	71	119		51	
Acetone ug/L 20 24 24 122 123 0 0 1,1-Dichloroethylene ug/L 20 23 21 115 107 70-130 7 20 odomethane (Methyl lodide) ug/L 20 14 6.6 71 33 73 Acrylonitrile ug/L 20 25 21 124 107 15 Methylene Chloride ug/L 20 25 25 127 124 2 2 Carbon Disulfide ug/L 20 23 21 114 105 9 10 ransa-1,2-Dichloroethylene ug/L 20 23 21 114 105 9 1,1-Dichloroethylene ug/L 20 23 21 114 105 9 1,1-Dichloroethylene ug/L 20 23 21 115 107 7 7 10 10 ransa-1,2-Dichloroethylene ug/L 20 23 22 116 111 4 105 9 1,1-Dichloroethylene ug/L 20 23 22 116 111 4 105 9 1 1,1-Dichloroethylene ug/L 20 23 22 116 111 4 105 9 1 1,1-Dichloroethylene ug/L 20 23 22 116 111 4 105 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chloroethane	ug/L	20	22	20	108	102		5	
Acetone ug/L 20 24 24 122 123 0 0 1,1-Dichloroethylene ug/L 20 23 21 115 107 70-130 7 20 odomethane (Methyl lodide) ug/L 20 144 6.6 71 33 73 73 Acrylonitrile ug/L 20 25 21 124 107 15	Trichlorofluoromethane	ug/L	20	21	20	106	102		4	
Codomethane (Methyl lodide)	Acetone	-	20	24	24	122	123		0	
Acylonitrile ug/L 20 25 21 124 107 15 Methylene Chloride ug/L 20 25 25 127 124 2 Carbon Disulfide ug/L 20 23 21 114 103 10 rans-1,2-Dichloroethylene ug/L 20 23 21 114 105 9 1,1-Dichloroethane ug/L 20 23 21 115 107 7 (Vinyl Acetate ug/L 20 23 21 115 107 7 (Vinyl Acetate ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethylene ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethylene ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethylene ug/L 20 23 22 116 110 70-130 8 20 Colloroform ug/L 20 23 22 116 112 4 Colloroform ug/L 20 23 22 116 112 4 Colloroform ug/L 20 23 22 116 112 4 Colloroform ug/L 20 23 22 116 112 70-130 3 20 1,2-Dichloroethane ug/L 20 23 22 116 110 70-130 3 20 1,2-Dichloroethane ug/L 20 24 24 119 118 1 11 1,1,1-Trichloroethane ug/L 20 23 21 114 106 7 Carbon Tetrachloride ug/L 20 23 22 117 110 70-130 6 20 Colloromomethane ug/L 20 23 22 117 110 70-130 6 20 Colloromomethane ug/L 20 23 22 116 110 70-130 6 20 Colloromomethane ug/L 20 23 22 116 110 70-130 6 20 Colloromomethane ug/L 20 23 22 116 110 70-130 6 20 Colloromomethane ug/L 20 23 22 116 110 70-130 6 20 Colloromomethane ug/L 20 23 22 116 110 70-130 6 20 Colloromomethane ug/L 20 23 22 116 110 70-130 5 20 Colloromomethane ug/L 20 23 21 113 107 70-130 5 20 Colloromomethane ug/L 20 24 21 118 109 8 Colloromomethane ug/L 20 24 21 118 109 8 Colloromomethane ug/L 20 24 21 118 109 8 Colloromomethane ug/L 20 24 21 118 109 7 Colloromomethane ug/L 20 24 21 118 104 12	1,1-Dichloroethylene	ug/L	20	23	21	115	107	70-130	7	20
Acrylonitrile ug/L 20 25 21 124 107 15 Methylene Chloride ug/L 20 25 25 127 124 2 Carbon Disulfide ug/L 20 23 21 114 103 10 rans-1,2-Dichloroethylene ug/L 20 23 21 114 105 9 1,1-Dichloroethane ug/L 20 23 21 115 107 7 Vinyl Acetate ug/L 20 34 20 171 98 54 2-Butanone (MEK) ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethylene ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethylene ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethylene ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethane ug/L 20 23 22 116 112 4 Chloroform ug/L 20 23 22 116 112 4 Chloroform ug/L 20 23 22 116 112 4 Chloroform ug/L 20 23 22 116 112 70-130 8 20 1,2-Dichloroethane ug/L 20 23 22 116 110 70-130 3 20 1,2-Dichloroethane ug/L 20 24 24 119 118 1 11 1,1,1-Trichloroethane ug/L 20 23 21 114 106 7 Carbon Tetrachloride ug/L 20 23 22 117 110 70-130 6 20 Encarene ug/L 20 23 22 117 110 70-130 6 20 Elbiromomethane ug/L 20 23 22 116 110 70-130 5 20 Elbiromomethane ug/L 20 23 22 116 110 70-130 6 20 Elbiromomethane ug/L 20 23 22 116 110 70-130 6 20 Elbiromomethane ug/L 20 23 22 117 110 70-130 5 20 Elbiromomethane ug/L 20 23 22 116 110 70-130 5 20 Elbiromomethane ug/L 20 23 21 118 109 8 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 109 8 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 109 8 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 -4-Methyl-2-pentanone (MIBK) ug/L 20 24 21 118 104 12 -4-Methyl-2-pentanone (MIBK) ug/L 20 24 21 118 104 12 -4-Methyl-2-pentanone (MIBK) ug/L 20 24 21 118 104 12 -4-Methyl-2-pentanone (MIBK) ug/L 20 24 21 118 104 17 Follouene ug/L 20 24 21 119 112 7 Elbiromochloromethane ug/L 20 24 22 118 116 7 Follouene ug/L 20 24 22 119 112 7 Elbiromochloromethane ug/L 20 24 22 119 112 7 Elbiromochloromethane ug/L 20 20 17 99 87 13 13 Fetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Iodomethane (Methyl Iodide)	-	20	14	6.6	71	33		73	
Methylene Chloride ug/L 20 25 25 127 124 2 Carbon Disulfide ug/L 20 23 21 114 105 10 trans-1,2-Dichloroethylene ug/L 20 23 21 114 105 9 Vinyl Acetate ug/L 20 23 21 115 107 7 Vinyl Acetate ug/L 20 34 20 171 98 54 2-Butanone (MEK) ug/L 20 23 22 116 111 4 2-Butanone (MEK) ug/L 20 23 21 116 107 70-130 8 20 2-Butanone (MEK) ug/L 20 23 22 116 111 4 4 20 2-Butanone (MEK) ug/L 20 23 22 116 110 70-130 8 20 2-Bromodichoremethane ug/L 20 23 22 114<	Acrylonitrile		20	25	21	124	107		15	
Parament Parament	Methylene Chloride	-	20	25	25	127	124		2	
Paramented Par	Carbon Disulfide	ug/L	20	23	21	114	103		10	
1,1-Dichloroethane ug/L 20 23 21 115 107 7 Vinyl Acetate ug/L 20 34 20 171 98 54 2-Butanone (MEK) ug/L 20 23 22 116 111 4 2-Butanone (MEK) ug/L 20 23 22 116 117 4 2-Butanone (MEK) ug/L 20 23 22 116 112 4 2-Bromochloromethane ug/L 20 23 22 116 112 4 Chloroform ug/L 20 23 22 114 110 70-130 3 20 1,2-Dichloroethane ug/L 20 24 24 119 118 1	trans-1,2-Dichloroethylene	-	20	23	21	114	105		9	
Vinyl Acetate Ug/L 20 34 20 171 98 54 2-Butanone (MEK) ug/L 20 23 22 116 111 4 cis-1,2-Dichloroethylene ug/L 20 23 21 116 107 70-130 8 20 Beromochloromethane ug/L 20 23 22 116 112 4 1 4	1,1-Dichloroethane	ug/L	20	23	21	115	107		7	
2-Butanone (MEK) ug/L 20 23 22 116 111 4 20 25 23 20 20 20 20 20 20 20 20 20 20 20 20 20	Vinyl Acetate	-	20	34	20	171	98		54	
Cis-1,2-Dichloroethylene	2-Butanone (MEK)	-	20	23	22	116	111		4	
Seromochloromethane Ug/L 20 23 22 116 112 4	cis-1,2-Dichloroethylene	-	20	23	21	116	107	70-130	8	20
1,2-Dichloroethane	Bromochloromethane	-	20	23	22	116	112		4	
1,1,1-Trichloroethane ug/L 20 23 21 114 106 7 Carbon Tetrachloride ug/L 20 24 20 118 102 15 Benzene ug/L 20 23 22 117 110 70-130 6 20 Dibromomethane ug/L 20 25 23 124 115 7 1,2-Dichloropropane ug/L 20 23 22 116 110 5 Trichloroethene ug/L 20 23 21 113 107 70-130 5 20 Bromodichloromethane ug/L 20 24 22 118 109 8 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>Chloroform</td> <td>ug/L</td> <td>20</td> <td>23</td> <td>22</td> <td>114</td> <td>110</td> <td>70-130</td> <td>3</td> <td>20</td>	Chloroform	ug/L	20	23	22	114	110	70-130	3	20
1,1,1-Trichloroethane ug/L 20 23 21 114 106 7 Carbon Tetrachloride ug/L 20 24 20 118 102 15 Benzene ug/L 20 23 22 117 110 70-130 6 20 Dibromomethane ug/L 20 25 23 124 115 7 1,2-Dichloropropane ug/L 20 23 22 116 110 5 Trichloroethene ug/L 20 23 21 113 107 70-130 5 20 Bromodichloromethane ug/L 20 24 22 118 109 8 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>1,2-Dichloroethane</td> <td>ug/L</td> <td>20</td> <td>24</td> <td>24</td> <td>119</td> <td>118</td> <td></td> <td>1</td> <td></td>	1,2-Dichloroethane	ug/L	20	24	24	119	118		1	
Benzene ug/L 20 23 22 117 110 70-130 6 20 Dibromomethane ug/L 20 25 23 124 115 7 1,2-Dichloropropane ug/L 20 23 22 116 110 5 Trichloroethene ug/L 20 23 21 113 107 70-130 5 20 Bromodichloromethane ug/L 20 24 22 118 109 8 cis-1,3-Dichloropropane ug/L 20 24 21 118 104 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	1,1,1-Trichloroethane		20	23	21	114	106		7	
Benzene ug/L 20 23 22 117 110 70-130 6 20 Dibromomethane ug/L 20 25 23 124 115 7 1,2-Dichloropropane ug/L 20 23 22 116 110 5 Trichloroethene ug/L 20 23 21 113 107 70-130 5 20 Bromodichloromethane ug/L 20 24 22 118 109 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Carbon Tetrachloride	ug/L	20	24	20	118	102		15	
1,2-Dichloropropane ug/L 20 23 22 116 110 5 Trichloroethene ug/L 20 23 21 113 107 70-130 5 20 Bromodichloromethane ug/L 20 24 22 118 109 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Benzene	-	20	23	22	117	110	70-130	6	20
Trichloroethene ug/L 20 23 21 113 107 70-130 5 20 Bromodichloromethane ug/L 20 24 22 118 109 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Dibromomethane	ug/L	20	25	23	124	115		7	
Bromodichloromethane ug/L 20 24 22 118 109 8 cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	1,2-Dichloropropane	ug/L	20	23	22	116	110		5	
cis-1,3-Dichloropropene ug/L 20 24 21 118 104 12 4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Trichloroethene	ug/L	20	23	21	113	107	70-130	5	20
4-Methyl-2-pentanone (MIBK) ug/L 20 23 23 113 114 1 1 trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Bromodichloromethane	ug/L	20	24	22	118	109		8	
trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	cis-1,3-Dichloropropene	ug/L	20	24	21	118	104		12	
trans-1,3-Dichloropropylene ug/L 20 24 21 120 106 13 1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	4-Methyl-2-pentanone (MIBK)		20	23	23	113	114		1	
1,1,2-Trichloroethane ug/L 20 25 23 124 116 7 Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	trans-1,3-Dichloropropylene		20	24	21	120	106		13	
Toluene ug/L 20 20 18 98 88 70-130 11 20 2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	1,1,2-Trichloroethane		20	25	23	124	116			
2-Hexanone ug/L 20 24 22 119 112 7 Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Toluene	-	20	20	18	98	88	70-130	11	20
Dibromochloromethane ug/L 20 20 17 99 87 13 Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	2-Hexanone	-	20	24	22	119	112		7	
Tetrachloroethylene (PCE) ug/L 20 19 17 96 83 70-130 15 20	Dibromochloromethane	-	20	20	17	99	87		13	
	Tetrachloroethylene (PCE)	-	20	19	17	96	83	70-130	15	20
	1,1,1,2-Tetrachloroethane		20	20	17	100	85		17	

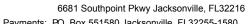
Report ID: 920167 - 1839526 Page 80 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3305979		3305980						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Chlorobenzene	ug/L	20	19	18	94	88	70-130	7	20	
Ethylbenzene	ug/L	20	20	18	99	88	70-130	12	20	
Bromoform	ug/L	20	22	19	111	93		18		
Styrene	ug/L	20	19	18	96	89		8		
1,1,2,2-Tetrachloroethane	ug/L	20	23	20	115	100		15		
1,2,3-Trichloropropane	ug/L	20	20	21	101	106		4		
1,4-Dichlorobenzene	ug/L	20	18	15	91	77		16		
1,2-Dichlorobenzene	ug/L	20	19	16	95	82	70-130	16	20	
Xylene (Total)	ug/L	60	59	53	99	88	70-130	11	20	
1,2-Dichloroethane-d4 (S)	%				85	91	70-128	8		
Toluene-d8 (S)	%				83	83	77-119	0		
Bromofluorobenzene (S)	%				99	98	86-123	1		


MATRIX SPIKE SAMPLE:	3305981	Original:	J1915320005

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Chloromethane	ug/L	0	20	16	80		
Vinyl Chloride	ug/L	0	20	16	80	70-130	
Bromomethane	ug/L	0	20	17	85		
Chloroethane	ug/L	0	20	17	85		
Trichlorofluoromethane	ug/L	0	20	17	86		
Acetone	ug/L	0	20	26	128		
1,1-Dichloroethylene	ug/L	0	20	17	87	70-130	
lodomethane (Methyl	ug/L	0	20	17	87		
lodide)							
Acrylonitrile	ug/L	0	20	24	118		
Methylene Chloride	ug/L	0	20	18	90		
Carbon Disulfide	ug/L	0	20	18	92		
trans-1,2-Dichloroethylene	ug/L	0	20	18	89		
1,1-Dichloroethane	ug/L	0	20	18	92		
Vinyl Acetate	ug/L	0	20	31	157		
2-Butanone (MEK)	ug/L	0	20	23	117		
cis-1,2-Dichloroethylene	ug/L	0	20	18	91	70-130	
Bromochloromethane	ug/L	0	20	19	95		
Chloroform	ug/L	0	20	18	91	70-130	
1,2-Dichloroethane	ug/L	0	20	19	93		
1,1,1-Trichloroethane	ug/L	0	20	18	91		
Carbon Tetrachloride	ug/L	0	20	17	85		
Benzene	ug/L	0	20	20	99	70-130	

Report ID: 920167 - 1839526 Page 81 of 93

CERTIFICATE OF ANALYSIS

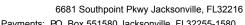
QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 3305981 Original: J1915320005

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
Dibromomethane	ug/L	0	20	20	102		
1,2-Dichloropropane	ug/L	0	20	19	93		
Trichloroethene	ug/L	0	20	18	91	70-130	
Bromodichloromethane	ug/L	0	20	18	90		
cis-1,3-Dichloropropene	ug/L	0	20	18	90		
4-Methyl-2-pentanone (MIBK)	ug/L	0	20	24	118		
trans-1,3-Dichloropropylene	ug/L	0	20	18	89		
1,1,2-Trichloroethane	ug/L	0	20	22	108		
Toluene	ug/L	0	20	16	79	70-130	
2-Hexanone	ug/L	0	20	19	97		
Dibromochloromethane	ug/L	0	20	16	80		
Tetrachloroethylene (PCE)	ug/L	0	20	15	77	70-130	
1,1,1,2-Tetrachloroethane	ug/L	0	20	16	78		
Chlorobenzene	ug/L	0	20	16	78	70-130	
Ethylbenzene	ug/L	0	20	16	79	70-130	
Bromoform	ug/L	0	20	17	84		
Styrene	ug/L	0	20	16	78		
1,1,2,2-Tetrachloroethane	ug/L	0	20	18	92		
1,2,3-Trichloropropane	ug/L	0	20	18	92		
1,4-Dichlorobenzene	ug/L	0	20	15	74		
1,2-Dichlorobenzene	ug/L	0	20	16	78	70-130	
Xylene (Total)	ug/L	0	60	48	79	70-130	
1,2-Dichloroethane-d4 (S)	%	97			82	70-128	
Toluene-d8 (S)	%	84			87	77-119	
Bromofluorobenzene (S)	%	104			103	86-123	

QC Batch: MSVj/4690 Analysis Method: SW-846 8260B (SIM) QC Batch Method: SW-846 5030B Prepared: 12/02/2019 07:45


J1915320005, J1915320006, J1915320007, J1915320008, J1915320009, J1915320010, J1915320011, J1915320012, Associated Lab Samples:

METHOD BLANK: 3305986

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
VOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.020	0.020 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.11	0.11 U	
1,2-Dichloroethane-d4 (S)	%	88	77-125	
Toluene-d8 (S)	%	85	80-121	
Bromofluorobenzene (S)	%	103	80-129	

Report ID: 920167 - 1839526 Page 82 of 93

QUALITY CONTROL DATA

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAM	IPLE & LCSD:	3305987	•	330598	88				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
VOLATILES									
Ethylene Dibromide (EDB)	ug/L	8.0	0.75	0.69	94	86	70-130	8	30
1,2-Dibromo-3-Chloropropane	ug/L	8.0	0.89	0.75	111	94	70-130	17	30
1,2-Dichloroethane-d4 (S)	%				87	89	77-125	2	
Toluene-d8 (S)	%				84	83	80-121	1	
Bromofluorobenzene (S)	%				103	101	80-129	3	

MATRIX SPIKE SAMPLE: 3305989 Original: J1915320006

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Ethylene Dibromide (EDB)	ug/L	0	8.0	0.61	76	70-130
1,2-Dibromo-3- Chloropropane	ug/L	0	0.8	0.78	98	70-130
1,2-Dichloroethane-d4 (S)	%	88			89	77-125
Toluene-d8 (S)	%	85			82	80-121
Bromofluorobenzene (S)	%	106			100	80-129

QUALITY CONTROL DATA QUALIFIERS

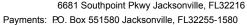
Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

QUALITY CONTROL PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- ı The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J4 **Estimated Result**

Report ID: 920167 - 1839526 Page 83 of 93

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

_ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915320001	19324-MW-1A			EPA 300.0	WCAj/6796
J1915320002	19324-MW-1B			EPA 300.0	WCAj/6796
J1915320003	19324-MW-2A			EPA 300.0	WCAj/6796
J1915320004	19324-MW-2B			EPA 300.0	WCAj/6796
J1915320005	19324-MW-3A			EPA 300.0	WCAj/6796
J1915320006	19324-MW-3B			EPA 300.0	WCAj/6796
J1915320007	19324-MW-4A			EPA 300.0	WCAj/6796
11915320008	19324-MW-4B			EPA 300.0	WCAj/6796
11915320009	19324-MW-5A			EPA 300.0	WCAj/6796
11915320010	19324-MW-5B			EPA 300.0	WCAj/6796
J1915320011	19324-MW-9A			EPA 300.0	WCAj/6796
11915320012	19324-MW-9B			EPA 300.0	WCAj/6796
11915320013	19324-MW-11A			EPA 300.0	WCAj/6796
1915320014	19324-MW-11B			EPA 300.0	WCAj/6796
1915320015	19324-MW-12A			EPA 300.0	WCAj/6796
1915320016	19324-MW-12B			EPA 300.0	WCAj/6796
1915320017	19324-MW-13A			EPA 300.0	WCAj/6796
11915320018	19324-MW-13B			EPA 300.0	WCAj/6796
11915320019	19324-Dup-1			EPA 300.0	WCAj/6796
11915320020	19324-EQ-1			EPA 300.0	WCAj/6796
J1915320001	19324-MW-1A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
J1915320002	19324-MW-1B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915320003	19324-MW-2A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
J1915320004	19324-MW-2B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
J1915320005	19324-MW-3A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915320006	19324-MW-3B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915320007	19324-MW-4A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
1915320008	19324-MW-4B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
1915320009	19324-MW-5A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915320010	19324-MW-5B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
1915320011	19324-MW-9A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915320012	19324-MW-9B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
11915320013	19324-MW-11A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389

Report ID: 920167 - 1839526 Page 84 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

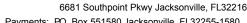
Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915320014	19324-MW-11B	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
J1915320015	19324-MW-12A	SW-846 3010A	DGMj/4305	SW-846 6010	ICPj/2389
J1915320016	19324-MW-12B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
J1915320010 J1915320017	19324-MW-13A	SW-846 3010A SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
J1915320017 J1915320018	19324-MW-13B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
		SW-846 3010A SW-846 3010A	•		-
J1915320019	19324-Dup-1	SW-846 3010A SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
J1915320020	19324-EQ-1	SW-846 30 TUA	DGMj/4306	SW-846 6010	ICPj/2388
J1915320020	19324-EQ-1			SM 2540 C	WCAj/6823
J1915320001	19324-MW-1A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320002	19324-MW-1B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320003	19324-MW-2A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
11915320004	19324-MW-2B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320005	19324-MW-3A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320006	19324-MW-3B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320007	19324-MW-4A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320008	19324-MW-4B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320009	19324-MW-5A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320010	19324-MW-5B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320011	19324-MW-9A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320012	19324-MW-9B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320013	19324-MW-11A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320014	19324-MW-11B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320015	19324-MW-12A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320016	19324-MW-12B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
11915320017	19324-MW-13A	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
1915320018	19324-MW-13B	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320019	19324-Dup-1	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320020	19324-EQ-1	SW-846 3010A	DGMj/4315	SW-846 6020	ICMj/2186
J1915320001	19324-MW-1A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732

Report ID: 920167 - 1839526 Page 85 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

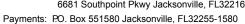

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915320002	19324-MW-1B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320003	19324-MW-2A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320004	19324-MW-2B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320005	19324-MW-3A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320006	19324-MW-3B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320007	19324-MW-4A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320008	19324-MW-4B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320009	19324-MW-5A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320010	19324-MW-5B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320011	19324-MW-9A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320012	19324-MW-9B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320013	19324-MW-11A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320014	19324-MW-11B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320015	19324-MW-12A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320016	19324-MW-12B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320017	19324-MW-13A	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320018	19324-MW-13B	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320019	19324-Dup-1	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320020	19324-EQ-1	SW-846 7470A	DGMj/4318	SW-846 7470A	CVAj/1732
J1915320001	19324-MW-1A			EPA 350.1	WCAg/8893
J1915320002	19324-MW-1B			EPA 350.1	WCAg/8893
J1915320003	19324-MW-2A			EPA 350.1	WCAg/8894
J1915320004	19324-MW-2B			EPA 350.1	WCAg/8894
J1915320005	19324-MW-3A			EPA 350.1	WCAg/8894
J1915320006	19324-MW-3B			EPA 350.1	WCAg/8894
11915320007	19324-MW-4A			EPA 350.1	WCAg/8894
11915320008	19324-MW-4B			EPA 350.1	WCAg/8894
11915320009	19324-MW-5A			EPA 350.1	WCAg/8894
11915320010	19324-MW-5B			EPA 350.1	WCAg/889
J1915320011	19324-MW-9A			EPA 350.1	WCAg/889
J1915320012	19324-MW-9B			EPA 350.1	WCAg/889

Report ID: 920167 - 1839526 Page 86 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

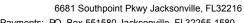

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915320013	19324-MW-11A			EPA 350.1	WCAg/8895
J1915320014	19324-MW-11B			EPA 350.1	WCAg/8895
J1915320015	19324-MW-12A			EPA 350.1	WCAg/8895
J1915320016	19324-MW-12B			EPA 350.1	WCAg/8895
J1915320017	19324-MW-13A			EPA 350.1	WCAg/8895
J1915320018	19324-MW-13B			EPA 350.1	WCAg/8895
J1915320019	19324-Dup-1			EPA 350.1	WCAg/8895
J1915320020	19324-EQ-1			EPA 350.1	WCAg/8895
J1915320001	19324-MW-1A			SM 2540 C	WCAj/6850
J1915320002	19324-MW-1B			SM 2540 C	WCAj/6850
J1915320003	19324-MW-2A			SM 2540 C	WCAj/6850
J1915320004	19324-MW-2B			SM 2540 C	WCAj/6850
J1915320005	19324-MW-3A			SM 2540 C	WCAj/6850
J1915320006	19324-MW-3B			SM 2540 C	WCAj/6850
J1915320007	19324-MW-4A			SM 2540 C	WCAj/6850
J1915320008	19324-MW-4B			SM 2540 C	WCAj/6850
J1915320009	19324-MW-5A			SM 2540 C	WCAj/6850
J1915320010	19324-MW-5B			SM 2540 C	WCAj/6850
J1915320011	19324-MW-9A			SM 2540 C	WCAj/6850
J1915320012	19324-MW-9B			SM 2540 C	WCAj/6850
J1915320013	19324-MW-11A			SM 2540 C	WCAj/6850
J1915320014	19324-MW-11B			SM 2540 C	WCAj/6850
J1915320015	19324-MW-12A			SM 2540 C	WCAj/6850
J1915320016	19324-MW-12B			SM 2540 C	WCAj/6850
J1915320017	19324-MW-13A			SM 2540 C	WCAj/6850
J1915320018	19324-MW-13B			SM 2540 C	WCAj/6851
J1915320019	19324-Dup-1			SM 2540 C	WCAj/6851
J1915320001	19324-MW-1A	SW-846 5030B	MSVj/4675	SW-846 8260B (SIM)	MSVj/4676
J1915320002	19324-MW-1B	SW-846 5030B	MSVj/4675	SW-846 8260B (SIM)	MSVj/4676
J1915320003	19324-MW-2A	SW-846 5030B	MSVj/4675	SW-846 8260B (SIM)	MSVj/4676
J1915320004	19324-MW-2B	SW-846 5030B	MSVj/4675	SW-846 8260B (SIM)	MSVj/4676

Report ID: 920167 - 1839526 Page 87 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915320001	19324-MW-1A	SW-846 5030B	MSVj/4685	SW-846 8260B	MSVj/4686
J1915320002	19324-MW-1B	SW-846 5030B	MSVj/4685	SW-846 8260B	MSVj/4686
J1915320003	19324-MW-2A	SW-846 5030B	MSVj/4685	SW-846 8260B	MSVj/4686
J1915320004	19324-MW-2B	SW-846 5030B	MSVj/4685	SW-846 8260B	MSVj/4686
J1915320005	19324-MW-3A	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320006	19324-MW-3B	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320007	19324-MW-4A	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320008	19324-MW-4B	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320009	19324-MW-5A	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320010	19324-MW-5B	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320011	19324-MW-9A	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320012	19324-MW-9B	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320013	19324-MW-11A	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320014	19324-MW-11B	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320015	19324-MW-12A	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320016	19324-MW-12B	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320017	19324-MW-13A	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320018	19324-MW-13B	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320019	19324-Dup-1	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320020	19324-EQ-1	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320021	19324-Trip Blank-3	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320022	19324-Trip Blank-4	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/468
J1915320023	19324-Trip Blank-5	SW-846 5030B	MSVj/4688	SW-846 8260B	MSVj/4689
J1915320005	19324-MW-3A	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469
J1915320006	19324-MW-3B	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469
J1915320007	19324-MW-4A	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469
J1915320008	19324-MW-4B	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469
J1915320009	19324-MW-5A	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469
J1915320010	19324-MW-5B	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469
J1915320011	19324-MW-9A	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469
J1915320012	19324-MW-9B	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/469

Report ID: 920167 - 1839526 Page 88 of 93

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1915320 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915320013	19324-MW-11A	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320014	19324-MW-11B	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320015	19324-MW-12A	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320016	19324-MW-12B	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320017	19324-MW-13A	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320018	19324-MW-13B	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320019	19324-Dup-1	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320020	19324-EQ-1	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320021	19324-Trip Blank-3	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320022	19324-Trip Blank-4	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691
J1915320023	19324-Trip Blank-5	SW-846 5030B	MSVj/4690	SW-846 8260B (SIM)	MSVj/4691

Report ID: 920167 - 1839526 Page 89 of 93

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016 · Altan
Fort Myers: 13100 Westlinks Terrace, Suite 10 • Fort Myers, FL
Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608 • 352.3
☑ Jacksonville: 6681 Southpoint Pkwy Jacksonville, FL 32216
■ Miramar: 10200 USA Today Way, Miramar, FL 33025 • 954.889;
□ Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL 32301

					Tampa:	9610 Princ	cess Pain	Ave. + Ta	mpa, FL 3	3619 • 8	313,630,96	16 · Fax 8	13.630.432	27		
Client Name: Waste Connections, Ir		ject Nam K HAMM		LAND	FILL (F/	K/A	BOTTLE SIZE & TYPE		1 7							2
Address: 5135 Madison Avenue	P.O. N	lumber/Project	Number:				BO	40 mL Vials	500 ml. Plastic	500 mL Plastic	250 mL Plastic					H
Tampa, Florida 33619	P/ojec	t Location									-				-1-1	NUMBER
Phone: 813-468,6142	FDE	FDEP Facility No: 89544							a							l ≥
FAX:	Projec	t Name and Ad	Idress: J	ED SU	NDF		REQUIRED)B(Z,							<u>G</u> .
Contact: Kirk Wills				of own			88)B/I	I	SC						- ₹
Sampled By: No. 1 Stepley + Deniel Mount	rel		5%.	Cloud,	FL		SIS	量	App I Metals+Fe,Hg,Na	3/1						l P
Turn Around Time: STANDARD RUSH	Spe	ecial Inst	ructions	: Jax F	rofile: 3	1172	ANALYSIS	As	- tal	CI/NO3/TDS	m					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Page <i>l</i> of <i>_</i> _		ADaPT D EQuIS						App I VOAs+EDB/DBCP	App	S	NH3					LABORATORY
SAMPLE ID SAMPLE DESCRIP	TION	Grab	SAM	PLING		NO.	ė z									- F
SAMPLE ID SAMPLE DESCRIP	IION	Comp DATE TIME MATRIX COUNT WES				PRESER- VATION	HCL	HNO3	Ice	H2SO4						
19304-MW-1 A		G	11/20/19	0858	GW	6		3	1	1	1					00 1
19374-MW-1B				0838		1			1	1	16					002
(4574-MW-)A				1014	10	2				11						003
19324-M-1-)B				8994												004
19334-MW-3 A				1142										=#=	-	005
19304-1914-3 B				1114						- /-						000
19334-MW-4A				1306											-	007
19314-196-413				1341							\Box					008
19374-MW-JA		1	1	1436	1	1										009
19304-AW-5B		G	Hbs/9	1414	GW	6		3	i	1	1			#		010
Matrix Code: WW = wastewater SW = surface water G	W = ground wa		And the second second second	and the same of th	the second secon		L = slude		Preservat	tion Cod	te: I = ice	H=(HCI)	S = (H2SC)4) N = (H)	103) T = (Sor	dium Thiosulfate)
Received on Ice Wes No Temp taken from		Temp from					_	Where	_	_			ature when		-1	n degrees celcius)
DCN: AD-051 Form last revised 08/18/2014				evice used	for measurin	ng Temp by								m	A: 3A M: 3A	Charles and the second
Relinquished by: Date	lme	Rec	eived by:		Date	Time					S WAT					
1 200 11/20/17 17	عد ا	Fe	IEx.		11/30/14	1750		(Whe	n PWS Info	ormation r	not otherwise	supplied)	PWS ID.			
2 FEDEX 11-21.19 OB	45 /	5/	EM	28	11-21-19	0845		Co	ntact Per	son:				Phone:_		

FOR DRINKING WATER USE		
(When PWS Information not otherwise supplied)	PWS ID.	
Contact Person:		Phone :
Supplier of Water		
Site-Address:		

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016 - Altam
Fort Myers: 13100 Westlinks Terrace, Suite 10 · Fort Myers, FL 3
Gainesville: 4965 SW 41st Blvd Gainesville, FL 32608 - 352.3.
☑ Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL 32218 •
Miramar: 10200 USA Today Way, Miramar, FL 33025 - 954,889.2
Tallahaeeee' 1200 Coder Coster Dille Tallahaara 51 20004

Supplier of Water. Site-Address:

Client Name:	Waste Connections, Inc.	Project Na OAK HAM		D LAND		K/A	BOTTLE SIZE & TYPE					10 - Fax	313.030.43	121		
Address:	5135 Madison Avenue	P.O. Number/Proje		10. 0.01.			BOT SIZE 8	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic					H H
T	ampa, Florida 33619	Project Location								W 12	AV IL					M M
Phone: \$1 FAX: Cantact:	3-468-6/41 Kirk Wills	Project Name and	Address J				REQUIRED	App I VOAs+EDB/DBCP	App / Metals+Fe,Hg,Na	S						LABORATORY I.D. NUMBER
Sampled By: Ne	:1 Shapley + Daniel		Si			Fe	6					1	8			
	STANDARD RUSH	Special Ins		1	- 148	- se	03,	1.0					ATC			
Page 2	of <u>3</u>	■ ADaPT		ANALYSIS	4 o	App	App I Metals+Fe,H CI/NO3/TDS	NH3					l l			
SAMPLE ID	SAMPLE DESCRIPTION	Gral		MPLING	MATRIX	NO. COUNT	PRESER.	HCL	HNO3	ice	H2SO4					LAB LAB
		Com	DATE	TIME		COOM	R ≥			2 2	5.75		d to		_ // _	
19324- MW-	9A	G	hisolic	1410	GW	6		3	11	1.	1					110
1934-AW-	98	1		1504		1				1						012
14324 AN.	μA			1158												013
1930Y- AW.	118	= 117		1310	1,01						TIE					014
143.14-MW-	DA			1032				- 11								015
19334-MW-	១៤			1114		H							-			016
1937 MW-	13.A			0858			-	-1						=		017
193)4-MW-	138			0936												018
19.334- Dp.		1	J	0001	CW				1	V						019
193.74-EQ-	ſ	6	ulials	0 1540	W	6		3	1	1	1					020
	= wastewater SW = surface water GW = gro		drinking wa	ter O = oil	A = air S	O = soil S	L = sludg	je	Preserva	tion Cod	e: 1= ice	H=(HCI)	S = (H2S	O4) N = (H	NO3) T = (So	dium Thiosulfate)
	Yes No Q Temp taken from sampl	e Temp f		Device used	for measuring	ng Temp by		□Where	required.	pH check	ked	Tempe	rature whe	n received_		n degrees celcius)
Reli	nquished by: Date Time		eceived by:		Date	Time		FC	R DRII	NKING	WAT	RUS	Ē;		n. on Mish	V 3: IV
1/2	11/30/19 1740	1	ed Ex	11 11	11/20/19	(7)0		TANK	an PWS INC	ormation n	ot otherwis	supplied)	PWS ID	7		

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016 - Altamonte Springs, FL 32701 - 407.937.1594 - Fax 407.937.15
Fort Myers: 13100 Westlinks Terrace, Suite 10 · Fort Myers, FL 33913 · 239.674,8130
Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608 • 352,377,2349 • Fax 352,395,6839
☐ Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL 32216 • 904,363,9350 • Fax 904,363,9354
☐ Miramar: 10200 USA Today Way, Miramar, FL 33025 • 954.889.2288 • Fax 954.889.2281
☐ Tallahassee; 1288 Cedar Center Drive, Tallahassee, FL 32301 • 850,219,6274 • Fax 850,219,6275
☐ Tampa: 9610 Princess Palm Ave. • Tampa, FL 33619 • 813.630.9616 • Fax 813.630.4327

W077 W077		Projec	t Nam	e: J.E.D	LANDI	Tampa:	9610 Prin		1 Ave. • Ta	mpa, FL 3	3619 • 8	313,630,96	16 · Fax 8	13.630.432	7		
Gilent Name:	Waste Connections, Inc.			OCK DIS			77.1	BOTTLE SIZE & TYPE	7.0	보왕	m pi	분의					or
Address:	5135 Madison Avenue	P.O. Numi	er/Project I	Number.				BC	40 mL Viais	500 mL Plastic	500 mL Plastic	250 mL Plastic					H H
T	ampa, Florida 33619	Project Lo	calion					B			-						Z
Phone: 8/	3-468-6142	FDEP F	DEP Facility No: 89544						G G	m						1 1	ž
FAX:		Project Na	roject Name and Address: JED SWDF							d,b			- 1			1 1	O.
Contact:	Kirk Wills			150	1 0m	ni way		R.	App I VOAs+EDB/DBCP	+Fe,H	CI/NO3/TDS					1 1	\(\sigma
Sampled By: Ne.	Stopley + Daniel Montrel			5+	Cloud	FL		SIS							14	1 4	1 g
Turn Around Time: Standard □ RUSH Special Instructions: Jax Profile: 31172						1172	1	As+	- 3	Õ	m					AT	
Page3	of <u>3</u>	1000		I EQuIS				ANALYSIS REQUIRED	Ap VO	App Met	C	NH3					LABORATORY I.D. NUMBER
SAMPLE ID SAMPLE DESCRIPTION			Grab	SAMPLING		MATRIX	NO.	PRESER- VATION	HCL	ниоз	lce	H2SO4					7 \$
			Comp	DATE	TIME		COUNT	A A	-127		1777	1					
19334 Top Ba	-4-3 (Insector ~ 1 (A, 18, 24,)	234)	-	J	Ţ	W	3	7	3								021
19334 Try 8	-k-3 (Inschraft (A, 18, 14,) 38.4(A.+ 12.4) (Enscolvailly 9,4,98,11, 130.138,131 unks (Inscolor: 5A, 58, Opp	1,11 B,	-	ī	ĵ	W	3		3								250
19374- TAP B	enks (Inocier: 5A, 5B, Dep	-1, £04	1-01	4	4	W	3		3								023
																	000
															-		
					-		-		-	-		-	-	-	+	+++	
	-	-					-									4	
																	-
								1 - 1									
																	- 1
									1								
Matrix Code: WW	= wastewater SW = surface water GW = gro	ound water	DW = dr	nking water	0 = oil	A = air S	0 = soil S	L = sludg	e	Preservat	ion Cod	le: I = ice	H=(HCI)	S = (H2SC	04) N = (HNO	3) T = (Sodiu	ım Thiosulfate)
Received on Ice	Yes No Temp taken from sample	e 🗇	Temp from	n blank				-		_		_			received		learne colcius

Received CN: AD-	on Ice YYes LINo 051 Form last revised 08/1	Temp take 18/2014	in from sample	Temp from blank	used for measuring	no Temp by uniqu	V□ identii
	Relinquished by:	Date	Time	Received by:	Date	Time	
1/	win	11/0/9	1730	FrJEX	11/20/19	1776	
2	TEDEX	11.21.19	0845	K/ Ellist	11.21.19	0845	- 1
3							
4						14.00	

ner (ence it's temp guil dadd) at art. d. L.	1 61-8	1. 10/1	M. SM	IVI, DM	9. IV	
FOR DRINKING WATER USE	> -					
(When PWS Information not otherwise supplied)	PWS ID					-
Contact Person:		Phone				
Supplier of Water:						
Site-Address:						

					_		_	
Client: W	LASTE CONNE	STIONS INC.	Project name	: J.E.D LAND	ae u	· (=1	hela.	
ate/Time Rcvd:	117119 /00		In regulant number	0.2.0	27.10	- (1	TH	
		42	J-In request numbe		537	20		
Received by;	KE		Completed by	E VE				
oler/Shipping I	nformation:				-3			
		And the second	and the first of the same					
uner; D AEL D GI	ient LIDPS DiBlue	Streak FedEx D	AES DASAP D	Other (describe)	-			
pe: 🗘 Cooler 🗆 Box	☐ Other (describe)	-						
alar tamparatura: l	dontify the socies	A Manager and the second	AND MORRES OF THE		_			
orer temperature, i	dentity the cooler an	d document the tem	perature blank or ice	e water measure	meni	t*	*	
Cooler ID		1		-		-		
	11					-	-	
Temp (°C)	Sample Bottle	Da Sa						
Temp taken from	Cooler Bottle	☐ Sample Bottle ☐ Cooler	☐ Sample Bottle ☐ Cooler.	☐ Sample Bottle ☐ Cooler		☐ Sample	Bottle	
Town managered	KIR gun-S/N 9333779	☐ IR gun S/N 9333779	☐ IR gun S/N 9333779	☐ IR gun S/N 9333	779	☐ Cooler ☐ IR gun 2	S/N 9333	
remp measured with	emp measured Thermometer (enter Thermometer							
ARIENT	10).	ID);	ID):	ID):		ID):		
her Information								
discrepancies shou	ld be explained in the	ne "Comments" secti	on below.					
			200, 3007-381					
		CHECKLIST			YES	NO	NA	
	als on shipping contai				Y	1 16	X	
	apers properly include			10	-		2.	
Were custody pa	apers properly filled or	ut (ink, signed, match	labels)?	1 6	/			
	rrive in good condition				/			
		e #, date, signed, analy	ysis, preservatives)?		-	1		
	abels agree with the cl				_			
	ttles used for the tests			1	1	1	1	
		niques indicated on the	e label?		/			
9. Were samples re	ceived within holding	times?			/			
	ials free of the present				/	1		
11. Have all Soil VC	OA Vials and Encores	been placed in a freeze	er within 48 hours of c				X	
12. Were samples in	direct contact with we	et ice? If "No," check	one: □ NO ICE □ BL	UE ICE .	/		1.	
	emperature less than 6							
14. Where pH presen	rvation is required, are	sample pHs checked	and any anomalies rec	orded by	-	1		
Sample control?	Are all <2 or >10? [Note: VOA samples an	e checked by laborator	y analysts.	/			
13. Was sufficient sa	imple volume provided	to perform all tests?			/			

Comments: (Note all sample(s) and container (s)" with a "No" checklist response in this comment section)

16. If for Bacteriological testing, were containers supplied by AEL? (See QA officer if answer is no)

17. Were all sample containers provided by AEL? (Other than Bacteriological)

19. When necessary to split samples into other bottles, is it noted in the comments?

SAMPLE: 19824-MW-13A - VIALS AND NUTRIENTS LABELED AS:
19324-MW-14A. DATE AND TIME MATCH COC

DCN: AD-D048 Eff date 2/3/10, Last rev 9/6/16

18. Were samples accepted into the laboratory?

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1915320

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 6010

Preparation: SW-846 3010A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: The upper control criterion was exceeded for Copper in Continuing Calibration

Verification (CCV) standards for analytical batch 2388, indicating increased sensitivity. The client samples reported in this batch did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No

further corrective action was required.

B. Blanks: All acceptance criteria were met.
C. Duplicates: All acceptance criteria were met.
D. Spikes: All acceptance criteria were met.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1915320

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B

Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: The Continuing Calibration Verification (CCV) standard was below the method acceptance

of 80-120% for the following analytes: Bromomethane and Vinyl Acetate. Associated client samples were reanalyzed following a passing CCV to confirm initial results. No further

corrective action necessary.

B. Blanks: All acceptance criteria were met.

C. Surrogates: All acceptance criteria were met.

D. Spikes: All acceptance criteria were met.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

Project No.: J1915320

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: None.

Analysis: The analysis of J1915380019 and J1915380020 were initially performed past the

recommended holding time. An internal laboratory failure occurred which resulted in the missed holding time. Efforts were made to analyze the sample as soon as the error was

identified. The data is qualified to indicate the holding time violation.

III. Method

Analysis: EPA 300.0

Preparation: None

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

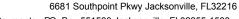
A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike (MS) recovery of Chloride for J1915320002 was outside control criteria.

Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample


Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The

affected sample was qualified accordingly.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

G. Other:

December 13, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

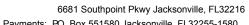
RE: Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, November 22, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

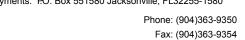

Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 920482 - 1869630 Page 1 of 83

SAMPLE SUMMARY


Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected	Date Received
J1915380001	19325-MW-6A	Water	11/21/2019 13:50	11/22/2019 09:00
J1915380002	19325-MW-6B	Water	11/21/2019 13:24	11/22/2019 09:00
J1915380003	19325-MW-7A	Water	11/21/2019 13:48	11/22/2019 09:00
J1915380004	19325-MW-7B	Water	11/21/2019 14:20	11/22/2019 09:00
J1915380005	19325-MW-8A	Water	11/21/2019 12:30	11/22/2019 09:00
J1915380006	19325-MW-8B	Water	11/21/2019 13:04	11/22/2019 09:00
J1915380007	19325-MW-10A	Water	11/21/2019 10:54	11/22/2019 09:00
J1915380008	19325-MW-10B	Water	11/21/2019 11:26	11/22/2019 09:00
J1915380009	19325-MW-24A	Water	11/21/2019 11:12	11/22/2019 09:00
J1915380010	19325-MW-24B	Water	11/21/2019 10:50	11/22/2019 09:00
J1915380011	19325-MW-25A	Water	11/21/2019 12:22	11/22/2019 09:00
J1915380012	19325-MW-25B	Water	11/21/2019 12:00	11/22/2019 09:00
J1915380013	19325-MW-31A	Water	11/21/2019 09:26	11/22/2019 09:00
J1915380014	19325-MW-31B	Water	11/21/2019 10:06	11/22/2019 09:00
J1915380015	19325-CW-2A	Water	11/21/2019 09:52	11/22/2019 09:00
J1915380016	19325-CW-3A	Water	11/21/2019 09:00	11/22/2019 09:00
J1915380017	19325-Dup-2	Water	11/21/2019 00:02	11/22/2019 09:00
J1915380018	19325-EQ-2	Water	11/21/2019 15:02	11/22/2019 09:00
J1915380019	19325-Trip Blank-6	Water	11/21/2019 00:00	11/22/2019 09:00
J1915380020	19325-Trip Blank-7	Water	11/21/2019 00:00	11/22/2019 09:00

Report ID: 920482 - 1869630 Page 2 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380001 Matrix: Water

19325-MW-6A Date Collected: 11/21/19 13:50 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lvtical Me	ethod: SW-	846 6010				
Barium	4.6	,	ug/L	1	4.0	1.0	11/26/2019 18:23	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:23	J
Cadmium	1.0	Ü	ug/L	1	4.0		11/26/2019 18:23	J
Chromium	2.0	Ü	ug/L	1	8.0	2.0	11/26/2019 18:23	J
Cobalt	2.0	Ū	ug/L	1	8.0	2.0	11/26/2019 18:23	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:11	J
Iron	18000		ug/L	1	400	100	11/26/2019 18:23	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:23	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:23	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:23	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:23	J
Sodium	25		mg/L	1	1.4		11/26/2019 18:23	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:23	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total			ethod: SW-					
A E		-			0.70	0.44	40/5/0040 00:40	
Antimony	0.11 0.49	U	ug/L	1 1	0.70 1.0	0.11 0.077	12/5/2019 23:49 12/5/2019 23:49	J J
Arsenic Thallium	0.49	U	ug/L	1	0.20	0.077	12/5/2019 23:49	J
Vanadium	3.0	U	ug/L ug/L	1	2.0	0.037	12/5/2019 23:49	J
			_	-	2.0	0.7 1	12/3/2019 23.49	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	thod: SW-	846 7470A				
Mercury	0.020	I,J4	ug/L	1	0.10	0.011	12/4/2019 16:09	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Dror	aration I	Method: SN	V-846 5030B				
Water								
	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 14:04	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 14:04	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 14:04	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 14:04	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 14:04	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 14:04	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 14:04	J

Report ID: 920482 - 1869630 Page 3 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380001 Matrix: Water

Sample ID: 19325-MW-6A Date Collected: 11/21/19 13:50

Sample Description: Location:

Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 14:04	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 14:04	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 14:04	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 14:04	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 14:04	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 14:04	
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 14:04	
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 14:04	·
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 14:04	·
Benzene	4.1		ug/L	1	1.0	0.16	12/3/2019 14:04	·
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 14:04	·
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 14:04	·
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 14:04	·
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 14:04	·
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 14:04	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 14:04	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 14:04	
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 14:04	,
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 14:04	,
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 14:04	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 14:04	
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 14:04	
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 14:04	
odomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 14:04	
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 14:04	
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 14:04	
etrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 14:04	
Toluene Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 14:04	
richloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 14:04	
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 14:04	
/inyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 14:04	
/inyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 14:04	
(ylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 14:04	,
sis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 14:04	
is-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 14:04	,
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 14:04	
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 14:04	
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 14:04	
1,2-Dichloroethane-d4 (S)	100		%	1	70-128		12/3/2019 14:04	
Toluene-d8 (S)	85		%	1	77-119		12/3/2019 14:04	

Report ID: 920482 - 1869630 Page 4 of 83

Phone: (904)363-9350 Fax: (904)363-9354

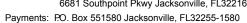
ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380001 Matrix: Water

19325-MW-6A Date Collected: 11/21/19 13:50 Sample ID:

Sample Description: Location:


					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	105		%	1	86-123		12/3/2019 14:04	
Analysis Desc: 8260B SIM Analysis,	Prepa	aration N	/lethod: S	W-846 5030B				
Water	Analy	tical Me	thod: SW	/-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane Ethylene Dibromide (EDB) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) Bromofluorobenzene (S)	0.11 0.020 95 84 104	U	ug/L ug/L % % %	1 1 1 1	0.20 0.10 77-125 80-121 80-129	0.11 0.020	12/3/2019 14:04 12/3/2019 14:04 12/3/2019 14:04 12/3/2019 14:04 12/3/2019 14:04	J
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Analy	tical Me	thod: EP	A 300.0				
Chloride Nitrate (as N)	59 0.050	U	mg/L mg/L	1 1	5.0 0.50	0.50 0.050	11/23/2019 01:24 11/23/2019 01:24	
Analysis Desc: Ammonia,E350.1,Wat	ter Analy	tical Me	thod: EP	A 350.1				
Ammonia (N)	6.7		mg/L	10	0.10	0.080	12/3/2019 18:52	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Analy	rtical Me	thod: SM	2540 C				
Total Dissolved Solids	160		mg/L	1	10	10	11/27/2019 16:00	J
Lab ID: J1915380002				Date Received:	11/22/19 09:00	Matrix:	Water	
Sample ID: 19325-MW-6B				Date Collected:	11/21/19 13:24			
Sample Description:				Location:				

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	346 6010				
Barium	49		ug/L	1	4.0	1.0	11/26/2019 18:27	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:27	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:27	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:27	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:27	J

Report ID: 920482 - 1869630 Page 5 of 83

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

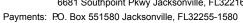
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380002 Matrix: Water

19325-MW-6B Date Collected: 11/21/19 13:24 Sample ID:


Sample Description: Location:

					/ lajablea	/ lajubica		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:14	J
Iron	1600		ug/L	1	400	100	11/26/2019 18:27	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:27	J
Nickel	6.0	Ü	ug/L	1	24		11/26/2019 18:27	J
Selenium	40	Ü	ug/L	1	160		11/26/2019 18:27	J
Silver	10	Ü	ug/L ug/L	1	40		11/26/2019 18:27	J
Sodium	12	U	•	1	1.4	0.35		J
			mg/L				11/26/2019 18:27	
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:27	J
Analysis Desc: SW846 6020B	Prep	aration N	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 00:16	J
Arsenic	0.36	ı	ug/L	1	1.0	0.077	12/6/2019 00:16	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 00:16	J
Vanadium	1.8	ī	ug/L	1	2.0	0.71	12/6/2019 00:16	J
								_
Analysis Desc: SW846 7470A	Prep	aration N	Method: SV	V-846 7470A				
Analysis, Water	Anal	ytical Me	thod: SW-	846 7470A				
Mercury	0.018	ı	ug/L	1	0.10	0.011	12/4/2019 16:19	J
·			J					
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration N	Method: SV	V-846 5030B				
Water	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 14:40	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 14:40	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 14:40	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 14:40	J
1,1-Dichloroethane	0.14	Ū	ug/L	1	1.0	0.14	12/3/2019 14:40	J
1,1-Dichloroethylene	0.18	Ū	ug/L	1	1.0	0.18	12/3/2019 14:40	J
1,2,3-Trichloropropane	0.91	Ü	ug/L	1	1.0	0.91	12/3/2019 14:40	J
1.2-Dichlorobenzene	0.18	Ü	ug/L	1	1.0	0.18	12/3/2019 14:40	J
1,2-Dichloroethane	0.23	Ü	ug/L	1	1.0	0.13	12/3/2019 14:40	J
1,2-Dichloropropane	0.23	Ü	ug/L	1	1.0	0.66	12/3/2019 14:40	J
1,4-Dichlorobenzene	0.00	U	ug/L ug/L	1	1.0	0.00	12/3/2019 14:40	J
2-Butanone (MEK)	0.22	U	ug/L ug/L	1	5.0	0.22	12/3/2019 14:40	J
` ,		_	•		5.0			
2-Hexanone	0.71	U	ug/L	1		0.71	12/3/2019 14:40	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0		12/3/2019 14:40	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 14:40	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 14:40	J

Report ID: 920482 - 1869630 Page 6 of 83

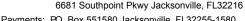
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915380002 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 13:24 Sample ID: 19325-MW-6B


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 14:40	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 14:40	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 14:40	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 14:40	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 14:40	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 14:40	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 14:40	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 14:40	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 14:40	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 14:40	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 14:40	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 14:40	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 14:40	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 14:40	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 14:40	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 14:40	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 14:40	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 14:40	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 14:40	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 14:40	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 14:40	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 14:40	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 14:40	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 14:40	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 14:40	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 14:40	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 14:40	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 14:40	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 14:40	J
1,2-Dichloroethane-d4 (S)	97		%	1	70-128		12/3/2019 14:40	
Toluene-d8 (S)	93		%	1	77-119		12/3/2019 14:40	
Bromofluorobenzene (S)	105		%	1	86-123		12/3/2019 14:40	
Analysis Desc: 8260B SIM Analysis,	Prep	paration N	Method: SV	V-846 5030B				
Water	Ana	lytical Me	thod: SW-	846 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 14:40	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 14:40	J
1,2-Dichloroethane-d4 (S)	92		%	1	77-125		12/3/2019 14:40	
Toluene-d8 (S)	83		%	1	80-121		12/3/2019 14:40	
Bromofluorobenzene (S)	104		%	1	80-129		12/3/2019 14:40	

Report ID: 920482 - 1869630 Page 7 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380002 Matrix: Water

19325-MW-6B Date Collected: 11/21/19 13:24 Sample ID:

Sample Description: Location:

B	.	0 1		5.5	Adjusted	Adjusted	A I I	1 - 1-
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab ——
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	25		mg/L	1	5.0	0.50	11/23/2019 00:15	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/23/2019 00:15	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	0.18		mg/L	5	0.050	0.040	12/3/2019 18:53	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	86		mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380003 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 13:48 Sample ID: 19325-MW-7A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium	20		ug/L	1	4.0	1.0	11/26/2019 18:32	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:32	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:32	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:32	J
Cobalt	3.2	- 1	ug/L	1	8.0	2.0	11/26/2019 18:32	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:18	J
Iron	21000		ug/L	1	400	100	11/26/2019 18:32	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:32	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:32	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:32	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:32	J
Sodium	18		mg/L	1	1.4	0.35	11/26/2019 18:32	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:32	J

Report ID: 920482 - 1869630 Page 8 of 83

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380003 Matrix: Water

19325-MW-7A Date Collected: 11/21/19 13:48 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	•			W-846 3010A -846 6020				
Antimony Arsenic Thallium Vanadium	0.11 0.80 0.057 1.1	U I U I	ug/L ug/L ug/L ug/L	1 1 1 1	0.70 1.0 0.20 2.0	0.11 0.077 0.057 0.71	12/6/2019 00:20 12/6/2019 00:20 12/6/2019 00:20 12/6/2019 00:20	J J J
Analysis Desc: SW846 7470A Analysis,Water	•			W-846 7470A -846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 16:22	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration	Method: SV	V-846 5030B				
Water	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 15:10	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 15:10	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 15:10	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 15:10	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 15:10	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 15:10	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 15:10	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 15:10	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 15:10	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 15:10	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 15:10	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 15:10	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 15:10	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 15:10	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 15:10	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 15:10	J
Benzene	0.45	- 1	ug/L	1	1.0	0.16	12/3/2019 15:10	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 15:10	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 15:10	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 15:10	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 15:10	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 15:10	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 15:10	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 15:10	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 15:10	J

Report ID: 920482 - 1869630 Page 9 of 83

CERTIFICATE OF ANALYSIS

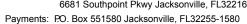
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380003 Matrix: Water

19325-MW-7A Date Collected: 11/21/19 13:48 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 15:10	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 15:10	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 15:10	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 15:10	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 15:10	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 15:10	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 15:10	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 15:10	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 15:10	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 15:10	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 15:10	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 15:10	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 15:10	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 15:10	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 15:10	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 15:10	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 15:10	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 15:10	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 15:10	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 15:10	J
1,2-Dichloroethane-d4 (S)	95		%	1	70-128		12/3/2019 15:10	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 15:10	
Bromofluorobenzene (S)	103		%	1	86-123		12/3/2019 15:10	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SW	/-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 15:10	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 15:10	J
1,2-Dichloroethane-d4 (S)	90		%	1	77-125		12/3/2019 15:10	
Toluene-d8 (S)	83		%	1	80-121		12/3/2019 15:10	
Bromofluorobenzene (S)	103		%	1	80-129		12/3/2019 15:10	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	56		mg/L	1	5.0	0.50	11/23/2019 01:01	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/23/2019 01:01	J
, ,						3.000		
Analysis Desc: Ammonia,E350.1,Water		iyilda ivle	ethod: EPA					
Ammonia (N)	13		mg/L	25	0.25	0.20	12/3/2019 18:54	G

Report ID: 920482 - 1869630 Page 10 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380003 Matrix: Water

19325-MW-7A Date Collected: 11/21/19 13:48 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	130		mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380004 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 14:20 Sample ID: 19325-MW-7B

Sample Description: Location:

Sample Description.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SW	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	346 6010				
Barium	33		ug/L	1	4.0	1.0	11/26/2019 18:37	J
Beryllium	0.80	- 1	ug/L	1	2.0	0.50	11/26/2019 18:37	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:37	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:37	J
Cobalt	4.1	ı	ug/L	1	8.0	2.0	11/26/2019 18:37	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:21	J
Iron	20000		ug/L	1	400	100	11/26/2019 18:37	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:37	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:37	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:37	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:37	J
Sodium	18		mg/L	1	1.4	0.35	11/26/2019 18:37	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:37	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 00:23	J
Arsenic	0.81	1	ug/L	1	1.0	0.077	12/6/2019 00:23	J
Thallium	0.067	- 1	ug/L	1	0.20	0.057	12/6/2019 00:23	J
Vanadium	1.9	I	ug/L	1	2.0	0.71	12/6/2019 00:23	J
Analysis Desc: SW846 7470A	Preparation Method: SW-846 7470A							
Analysis, Water	Δnai	vtical Ma	ethod: SW-8	846 7470Δ				
	Allal	y doar ivit	Juliou. OVV-C	7-07-07-				

Report ID: 920482 - 1869630 Page 11 of 83

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380004 Matrix: Water

19325-MW-7B Date Collected: 11/21/19 14:20 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	12/4/2019 16:25	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Preparation Method: SW-846 5030B							
Water	Analy	tical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 15:46	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 15:46	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 15:46	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 15:46	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 15:46	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 15:46	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 15:46	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 15:46	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 15:46	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 15:46	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 15:46	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 15:46	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 15:46	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 15:46	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 15:46	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 15:46	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 15:46	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 15:46	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 15:46	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 15:46	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 15:46	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 15:46	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 15:46	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 15:46	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 15:46	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 15:46	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 15:46	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 15:46	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 15:46	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 15:46	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 15:46	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 15:46	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 15:46	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 15:46	J

Report ID: 920482 - 1869630 Page 12 of 83

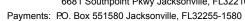
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380004 Matrix: Water

Sample ID: 19325-MW-7B Date Collected: 11/21/19 14:20


Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 15:46	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 15:46	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 15:46	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 15:46	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 15:46	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 15:46	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 15:46	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 15:46	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 15:46	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 15:46	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 15:46	J
1,2-Dichloroethane-d4 (S)	96		%	1	70-128		12/3/2019 15:46	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 15:46	
Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 15:46	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 15:46	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/3/2019 15:46	J
1,2-Dichloroethane-d4 (S)	91		%	1	77-125		12/3/2019 15:46	
Toluene-d8 (S)	82		%	1	80-121		12/3/2019 15:46	
Bromofluorobenzene (S)	101		%	1	80-129		12/3/2019 15:46	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	31		mg/L	1	5.0	0.50	11/23/2019 01:47	J
Nitrate (as N)	0.050	U	mg/L	1	0.50		11/23/2019 01:47	
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	2.6		mg/L	5	0.050	0.040	12/3/2019 18:55	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM :	2540 C				
Total Dissolved Solids	400		mg/L	1	10	10	11/27/2019 16:00	J
			-					

Report ID: 920482 - 1869630 Page 13 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380005 Matrix: Water

19325-MW-8A Date Collected: 11/21/19 12:30 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration N	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	thod: SW-	846 6010				
Barium	31		ug/L	1	4.0	1.0	11/26/2019 18:50	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:50	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:50	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:50	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:50	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:25	J
Iron	1800		ug/L	1	400	100	11/26/2019 18:50	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:50	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:50	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:50	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:50	J
Sodium	4.5		mg/L	1	1.4	0.35	11/26/2019 18:50	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:50	J
Analysis Desc: SW846 6020B	Prep	paration N	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	846 6020				
Antimony	0.12	, I	ug/L	1	0.70	0.11	12/6/2019 00:39	J
Arsenic	0.68	i	ug/L	1	1.0	0.077	12/6/2019 00:39	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057	12/6/2019 00:39	J
Vanadium	4.6	•	ug/L	1	2.0	0.71	12/6/2019 00:39	J
		acration N		V 946 7470A				
Analysis Desc: SW846 7470A Analysis, Water	Piel	Daration i	vietrioa. Sv	V-846 7470A				
	Ana	lytical Me	ethod: SW-	846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 16:29	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	paration N	Method: SV	V-846 5030B				
Water	lvtical Me	ethod: SW-	846 8260B					
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 16:16	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	12/3/2019 16:16	J
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.20	12/3/2019 16:16	J
1,1,2-Trichloroethane	0.30	Ü	ug/L	1	1.0	0.30	12/3/2019 16:16	J
1,1-Dichloroethane	0.14	Ü	ug/L	1	1.0	0.14	12/3/2019 16:16	J
1,1-Dichloroethylene	0.18	Ū	ug/L	1	1.0	0.18	12/3/2019 16:16	J
•	0.91	Ū	ug/L	1	1.0	0.91	12/3/2019 16:16	J

Report ID: 920482 - 1869630 Page 14 of 83

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380005 Matrix: Water

Sample ID: 19325-MW-8A Date Collected: 11/21/19 12:30

Sample Description: Location:

Advanced Environmental Laboratories, Inc.

Campio Bocomption:								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 16:16	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 16:16	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 16:16	
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 16:16	
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 16:16	
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 16:16	
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 16:16	
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 16:16	
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 16:16	
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 16:16	
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 16:16	
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 16:16	
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 16:16	
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 16:16	
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 16:16	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 16:16	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 16:16	,
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 16:16	
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 16:16	
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 16:16	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 16:16	
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 16:16	,
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 16:16	
odomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 16:16	
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 16:16	
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 16:16	
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 16:16	
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 16:16	
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 16:16	
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 16:16	
/inyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 16:16	,
/inyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 16:16	
(ylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 16:16	
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 16:16	,
sis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 16:16	,
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 16:16	,
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 16:16	,
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 16:16	
1,2-Dichloroethane-d4 (S)	101		%	1	70-128		12/3/2019 16:16	
Toluene-d8 (S)	85		%	1	77-119		12/3/2019 16:16	

Report ID: 920482 - 1869630 Page 15 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380005 Matrix: Water

19325-MW-8A Date Collected: 11/21/19 12:30 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	104		%	1	86-123		12/3/2019 16:16	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: S	W-846 5030B				
Water	Ana	lytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 16:16	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 16:16	J
1,2-Dichloroethane-d4 (S)	96		%	1	77-125		12/3/2019 16:16	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 16:16	
Bromofluorobenzene (S)	103		%	1	80-129		12/3/2019 16:16	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	A 300.0				
Chloride	5.0	ı	mg/L	2	10	1.0	11/22/2019 23:29	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	11/22/2019 23:29	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	A 350.1				
Ammonia (N)	0.91		mg/L	5	0.050	0.040	12/3/2019 16:00	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1100		mg/L	1	10	10	11/27/2019 16:00	J
Lab ID: J1915380006				Date Received:	11/22/19 09:00	Matrix:	Water	
						Matrix.	vvalei	
Sample ID: 19325-MW-8B				Date Collected:	11/21/19 13:04			
Sample Description:				Location:				
-					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS			_					•

Analysis Desc: SW846 6010B Preparation Method: SW-846 3010A Analysis,Water

Analytical Method: SW-846 6010 Barium 38 ug/L 4.0 1.0 11/26/2019 18:55 Beryllium 0.80 ug/L 2.0 0.50 11/26/2019 18:55 Cadmium 1.0 U ug/L 1 4.0 1.0 11/26/2019 18:55 Chromium 2.0 U 8.0 2.0 11/26/2019 18:55 ug/L 1 Cobalt 8.9 ug/L 8.0 2.0 11/26/2019 18:55

Report ID: 920482 - 1869630 Page 16 of 83

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380006 Matrix: Water

19325-MW-8B Date Collected: 11/21/19 13:04 Sample ID:

Sample Description: Location:

					Aujusteu	Aujusteu		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 12:28	J
Iron	46000		ug/L	1	400	100	11/26/2019 18:55	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:55	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:55	J
Selenium	40	U	ug/L	1	160		11/26/2019 18:55	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:55	J
Sodium	30		mg/L	1	1.4	0.35	11/26/2019 18:55	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:55	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total								
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 02:17	J
Arsenic	0.70	ı	ug/L	5	5.0	0.39	12/6/2019 01:41	J
Thallium	0.092	1	ug/L	1	0.20	0.057	12/6/2019 02:17	J
Vanadium	3.8	- 1	ug/L	5	10	3.6	12/6/2019 01:41	J
Analysis Desc: SW846 7470A	Pren	paration N	Method: SV	V-846 7470A				
Analysis,Water				846 7470A				
Managemen					0.40	0.044	40/4/0040 40:00	
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 16:32	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Anal	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 16:53	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 16:53	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 16:53	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 16:53	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 16:53	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 16:53	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 16:53	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 16:53	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 16:53	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 16:53	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 16:53	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 16:53	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 16:53	J
4-Methyl-2-pentanone (MIBK)	0.47	Ū	ug/L	1	1.0	0.47	12/3/2019 16:53	J
Acetone	2.1	Ü	ug/L	1	5.0	2.1	12/3/2019 16:53	J
Acrylonitrile	1.1	Ü	ug/L	1	10	1.1	12/3/2019 16:53	J
•		_	-					

Report ID: 920482 - 1869630 Page 17 of 83

CERTIFICATE OF ANALYSIS

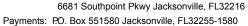
ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915380006 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 13:04 Sample ID: 19325-MW-8B

Sample Description: Location:


Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 16:53	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 16:53	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 16:53	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 16:53	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 16:53	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 16:53	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 16:53	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 16:53	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 16:53	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 16:53	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 16:53	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 16:53	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 16:53	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 16:53	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 16:53	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 16:53	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 16:53	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 16:53	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 16:53	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 16:53	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 16:53	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 16:53	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 16:53	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 16:53	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 16:53	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 16:53	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 16:53	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 16:53	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 16:53	J
1,2-Dichloroethane-d4 (S)	98		%	1	70-128		12/3/2019 16:53	
Toluene-d8 (S)	85		%	1	77-119		12/3/2019 16:53	
Bromofluorobenzene (S)	100		%	1	86-123		12/3/2019 16:53	
Analysis Desc: 8260B SIM Analysis,	Prei	paration I	Method: S\	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 16:53	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 16:53	J
1,2-Dichloroethane-d4 (S)	93		%	1	77-125		12/3/2019 16:53	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 16:53	
Bromofluorobenzene (S)	100		%	1	80-129		12/3/2019 16:53	

Analysis Desc. 02000 Olivi Analysis,	1 reparation without Ow-040 0000B									
Water	Analy	tical M	ethod: SW-8	846 8260B (SIM)						
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 16:53	J		
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 16:53	J		
1,2-Dichloroethane-d4 (S)	93		%	1	77-125		12/3/2019 16:53			
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 16:53			
Bromofluorobenzene (S)	100		%	1	80-129		12/3/2019 16:53			

Report ID: 920482 - 1869630 Page 18 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380006 Matrix: Water

19325-MW-8B Date Collected: 11/21/19 13:04 Sample ID:

Sample Description: Location:

				5-	Adjusted	Adjusted	A I I	1 - 6
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab ——
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	A 300.0				
Chloride	17		mg/L	1	5.0	0.50	11/22/2019 20:47	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/22/2019 20:47	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	1.4		mg/L	5	0.050	0.040	12/3/2019 16:02	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1000		mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380007 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 10:54 Sample ID: 19325-MW-10A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	90		ug/L	1	4.0	1.0	11/26/2019 18:59	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 18:59	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 18:59	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:59	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 18:59	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 13:52	J
Iron	16000		ug/L	1	400	100	11/26/2019 18:59	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 18:59	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 18:59	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 18:59	J
Silver	10	U	ug/L	1	40	10	11/26/2019 18:59	J
Sodium	25		mg/L	1	1.4	0.35	11/26/2019 18:59	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 18:59	J

Report ID: 920482 - 1869630 Page 19 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380007 Matrix: Water

19325-MW-10A Date Collected: 11/21/19 10:54 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	·			W-846 3010A -846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 00:43	J
Arsenic	1.5		ug/L	1	1.0	0.077	12/6/2019 00:43	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 00:43	J
Vanadium	1.8	I	ug/L	1	2.0	0.71	12/6/2019 00:43	J
Analysis Desc: SW846 7470A Analysis,Water	•			W-846 7470A -846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 16:35	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration	Method: SV	V-846 5030B				
Water	Analy	ytical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 17:22	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 17:22	J
1,1,2,2-Tetrachloroethane	0.20	Ū	ug/L	1	1.0	0.20	12/3/2019 17:22	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 17:22	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 17:22	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 17:22	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 17:22	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 17:22	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 17:22	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 17:22	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 17:22	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 17:22	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 17:22	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 17:22	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 17:22	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 17:22	J
Benzene	6.3		ug/L	1	1.0	0.16	12/3/2019 17:22	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 17:22	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 17:22	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 17:22	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 17:22	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 17:22	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 17:22	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 17:22	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 17:22	J

Report ID: 920482 - 1869630 Page 20 of 83

CERTIFICATE OF ANALYSIS

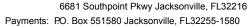
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380007 Matrix: Water

19325-MW-10A Date Collected: 11/21/19 10:54 Sample ID:


Sample Description: Location:

Chloroform	Campio Bocomption.				Location.				
Chloroform						Adjusted	Adjusted		
Chloromethane 0.21 U ug/L 1 1 1.0 0.21 12/32/2019 17:22 J Dibromochicomethane 0.33 U ug/L 1 1 1.0 0.26 12/3/2019 17:22 J Dibromochicomethane 0.26 U ug/L 1 1.0 0.26 12/3/2019 17:22 J Dibromochicomethane 0.26 U ug/L 1 1.0 0.26 12/3/2019 17:22 J Ethylbenzene 0.24 U ug/L 1 1.0 0.16 12/3/2019 17:22 J Methylene Chloride 0.25 U ug/L 1 1.0 0.16 12/3/2019 17:22 J Methylene Chloride 0.25 U ug/L 1 1.0 0.33 12/3/2019 17:22 J Methylene Chloride 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J Siyrene 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J Siyrene 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J T Siyrene 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J T Siyrene 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J T Siyrene 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J T Siyrene 0.29 U ug/L 1 1.0 0.29 12/3/2019 17:22 J T Siyrene 0.32 U ug/L 1 1.0 0.39 12/3/2019 17:22 J T Siyrene 0.32 U ug/L 1 1.0 0.39 12/3/2019 17:22 J T Siyrene 0.32 U ug/L 1 1.0 0.39 12/3/2019 17:22 J T Siyrene 0.32 U ug/L 1 1.0 0.09 12/3/2019 17:22 J T Siyrene 0.32 U ug/L 1 1.0 0.09 12/3/2019 17:22 J Siyrene 0.34 U ug/L 1 1.0 0.0 12/3/2019 17:22 J Siyrene 0.35 U ug/L 1 1.0 0.0 12/3/2019 17:22 J Siyrene 0.36 U ug/L 1 1.0 0.0 12/3/2019 17:22 J Siyrene 0.37 U ug/L 1 1.0 0.0 12/3/2019 17:22 J Siyrene 0.38 U ug/L 1 1.0 0.0 12/3/2019 17:22 J Siyrene 0.39 U ug/L 1 1.0 0.0 16 12/3/2019 17:22 J Siyrene 0.39 U ug/L 1 1.0 0.0 16 12/3/2019 17:22 J Siyrene 0.39 U ug/L 1 1.0 0.0 16 12/3/2019 17:22 J Siyrene 0.39 U ug/L 1 1.0 0.0 12/3/2019 17:22 J Siyrene 0.39 W U ug/L 1 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 0.0 0.0 12/3/2019 17:22 J Siyrene 0.40 U ug/L 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Dibromochloromethane 0.33 U ug/L 1 1.0 0.33 12/3/2019 17:22 J Dibromomethane 0.26 U ug/L 1 1.0 0.24 12/3/2019 17:22 J Dibromomethane 0.24 U ug/L 1 1.0 0.24 12/3/2019 17:22 J Dibromomethane Methylene Chloride 0.16 U ug/L 1 1.0 0.16 12/3/2019 17:22 J Dibromomethane Methylene Chloride 0.23 U ug/L 1 1.0 0.33 12/3/2019 17:22 J Dibromomethane 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J Dibromomethane 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J Dibromomethane 0.23 U ug/L 1 1.0 0.29 12/3/2019 17:22 J Dibromomethane 0.24 U ug/L 1 1.0 0.29 12/3/2019 17:22 J Dibromomethane 0.10	Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 17:22	J
Dibromoethane	Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 17:22	J
Ethylbenzene	Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 17:22	J
odomethane (Methyl Iodide) 0.16 U ug/L 1 1.0 0.16 12/3/2019 17:22 J Welthylene Chloride 2.5 U ug/L 1 5.0 2.5 12/3/2019 17:22 J Skyrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 17:22 J Defendance 0.23 U ug/L 1 1.0 0.36 12/3/2019 17:22 J U Ug/L 1 1.0 0.36 12/3/2019 17:22 J U U Ug/L 1 1.0 0.26 12/3/2019 17:22 J Tirchlorofthere 0.29 12/3/2019 17:22 J U Ug/L 1 1.0 0.23 12/3/2019 17:22 J I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/	Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 17:22	J
Methylene Chloride 2.5 U ug/L 1 5.0 2.5 12/3/2019 17:22 J Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 17:22 J I I I I I I I I I I I I I I I I I I	Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 17:22	J
Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 17:22 J retrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/3/2019 17:22 J retrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/3/2019 17:22 J retrachloroethylene 0.23 U ug/L 1 1.0 0.23 12/3/2019 17:22 J retrachloroethene 0.29 U ug/L 1 1.0 0.29 12/3/2019 17:22 J retrachloroethene 0.32 U ug/L 1 1.0 0.32 12/3/2019 17:22 J retrachloroethylene 0.32 U ug/L 1 1.0 0.32 12/3/2019 17:22 J retrachloroethylene 0.20 U ug/L 1 1.0 0.00 12/3/2019 17:22 J retrachloroethylene 0.20 U ug/L 1 1.0 0.00 12/3/2019 17:22 J retrachloroethylene 0.24 U ug/L 1 1.0 0.04 12/3/2019 17:22 J retrachloroethylene 0.24 U ug/L 1 1.0 0.04 12/3/2019 17:22 J retrachloroethylene 0.20 U ug/L 1 1.0 0.06 12/3/2019 17:22 J retrachloroethylene 0.20 U ug/L 1 1.0 0.06 12/3/2019 17:22 J retrachloroethylene 0.20 U ug/L 1 1.0 0.00 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 1.0 0.00 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 1.0 0.00 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 1.0 0.10 1.8 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 1.0 0.10 1.8 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.11 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.21 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.22 U ug/L 1 0.0 0.01 12/3/2019 17:22 J retrachloroethylene 0.22 U ug/L 1 0.0 0.01 12/3/2019 17	lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 17:22	J
Perachloroethylene (PCE)	Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 17:22	J
Toluene 0.23 U ug/L 1 1.0 0.23 12/3/2019 17:22 J Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/3/2019 17:22 J Trichloroethene 0.32 U ug/L 1 1.0 0.29 12/3/2019 17:22 J J/Inchloromethane 0.32 U ug/L 1 1.0 0.29 12/3/2019 17:22 J J/Inchlorofluoromethane 0.32 U ug/L 1 1.0 0.032 12/3/2019 17:22 J J/Inchlorofluoromethane 0.39 U ug/L 1 1.0 0.00 12/3/2019 17:22 J J/Inchlorofluoromethane 0.20 U ug/L 1 0.0 0.20 12/3/2019 17:22 J J/Inchloroethylene 0.24 U ug/L 1 0.0 0.20 12/3/2019 17:22 J J/Inchloroethylene 0.24 U ug/L 1 0.0 0.24 12/3/2019 17:22 J J/Inchloroethylene 0.24 U ug/L 1 0.0 0.24 12/3/2019 17:22 J J/Inchloroethylene 0.20 U ug/L 1 0.0 0.16 12/3/2019 17:22 J J/Inchloroethylene 0.20 U ug/L 1 0.0 0.10 12/3/2019 17:22 J J/Inchloroethylene 0.20 U ug/L 1 0.0 0.21 12/3/2019 17:22 J J/Inchloroethylene 0.21 U ug/L 1 0.0 0.21 12/3/2019 17:22 J J/Inchloroethylene 0.21 U ug/L 1 0.0 0.21 12/3/2019 17:22 J J/Inchloroethylene 0.21 U ug/L 1 0.0 0.21 12/3/2019 17:22 J J/Inchloroethylene 0.21 U ug/L 1 0.0 0.21 12/3/2019 17:22 J J/Inchloroethylene 0.21 U ug/L 1 0.0 0.21 12/3/2019 17:22 J J/Inchloroethane-04 (S) 93 % 1 70-128 12/3/2019 17:22 J/Inchloroethane-04 (S) 93 % 1 77-119 12/3/2019 17:22 J/Inchloroethane-04 (S) 84 % 1 77-119 12/3/2019 17:22 J/Inchloroethane-04 (S) 84 % 1 77-119 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 77-125 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 80-129 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 80-121 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 80-121 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 80-121 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 80-129 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 80-129 12/3/2019 17:22 J/Inchloroethane-04 (S) 89 % 1 80-129 12/3/2019 17:22 J/Inchloroethane-04 (S) 80 S 81 % 1 80-129 12/3/2019 17:22 J/Inchloroethane-04 (S) 80 S 81 % 1 80-129 12	Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 17:22	J
Trichloroethene	Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 17:22	J
Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/3/2019 17:22 J //inyl Acetate 0.19 U ug/L 1 1.0 0.19 12/3/2019 17:22 J //inyl Acetate 0.20 U ug/L 1 1.0 0.20 12/3/2019 17:22 J //inyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 17:22 J //inyl Chloride 0.21 U ug/L 1 1.0 0.20 12/3/2019 17:22 J //inyl Chloroethylene 0.24 U ug/L 1 1.0 0.24 12/3/2019 17:22 J //inyl Chloroptropene 0.16 U ug/L 1 1.0 0.6 12/3/2019 17:22 J //inyl Chloroptropene 0.16 U ug/L 1 1.0 0.06 12/3/2019 17:22 J //inyl Chloroptropene 0.21 U ug/L 1 1.0 0.01 12/3/2019 17:22 J //inyl Chloroptropene 0.21 U ug/L 1 1.0 0.01 12/3/2019 17:22 J //inyl Chloroptropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 17:22 J //inyl Chloroptropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 17:22 J //inyl Chloroptropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 17:22 J //inyl Chloroptropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 17:22 J //inyl Chloroptropene 0.23 W ug/L 1 70-128 12/3/2019 17:22 J //inyl Chloroptropene 0.33 % 1 70-128 12/3/2019 17:22 J //inyl Chloroptropene 0.44 % 1 77-119 12/3/2019 17:22 J //inyl Chloroptropene 0.55 W 102 % 1 86-123 12/3/2019 17:22 J //inyl Chloroptropene 0.56 W 102 W 104 N	Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 17:22	J
Trichlorofluoromethane	Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 17:22	J
Vinyl Acetate	Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 17:22	J
Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 17:22 J Kylene (Total) Kylene (Total) 0.53 U ug/L 1 2.0 0.53 12/3/2019 17:22 J J 2/3/2019 17:22 J 2/3/2019 17:	Vinyl Acetate	0.19	U		1	1.0	0.19	12/3/2019 17:22	J
Material	Vinyl Chloride	0.20	U		1	1.0	0.20		J
Dis-1,2-Dichloroethylene Dis-1,2-Dichloroperhylene Dis-1,3-Dichloropropene Dis-1,3-Dichloropropene Dis-1,3-Dichloropropene Dis-1,3-Dichloropropene Dis-1,3-Dichloropropene Dis-1,3-Dichloropropene Dis-1,2-Dichloroethylene Dis-1,2-Dichloropropylene Dis-1,2-Dichloropropylene Dis-1,2-Dichloropropylene Dis-1,2-Dichloro-2-butene Dis-1,2-Dichloro-2-butene Dis-1,2-Dichloroethane-d4 (S) Dis-1,2-Dichloroethane-d4 (S) Dis-1,2-Dichloroethane-d4 (S) Dis-1,2-Dichloroethane-d4 (S) Dis-1,2-Dichloroethane-d4 (S) Dis-1,2-Dichloroethane-d5 (S) Di	Xylene (Total)	0.53	U		1	2.0	0.53	12/3/2019 17:22	J
District of the content of the con	cis-1,2-Dichloroethylene	0.24	U	_	1	1.0	0.24	12/3/2019 17:22	J
Trans-1,2-Dichloroethylene 0.20	•	0.16	U		1	1.0	0.16	12/3/2019 17:22	J
Company	trans-1,2-Dichloroethylene	0.20	U	_	1	1.0	0.20	12/3/2019 17:22	J
Trans-1,4-Dichloro-2-butene	trans-1,3-Dichloropropylene	0.21	U	-	1	1.0	0.21	12/3/2019 17:22	J
1,2-Dichloroethane-d4 (S) 1,2-Dichloroethane-d4 (S) 1,2-Dichloroethane-d4 (S) 1,2-Dichloroethane-d8 (S) 1,3-Dichloroethane-d8 (S) 1,3-Dichloroethane-d8 (S) 1,3-Dichloroethane-d8 (S) 1,3-Dichloroethane-d8 (S) 1,3-Dichloroethane-d8 (S) 1,4-Dichloroethane-d8 (S) 1,4-Dichloroethane	trans-1,4-Dichloro-2-butene	1.8	U	-	1	10	1.8	12/3/2019 17:22	J
Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analysis Desc: 8260B SIM Analysis, Water Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/3/2019 17:22 J ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/3/2019 17:22 J 1,2-Dichloroethane-d4 (S) 89 % 1 77-125 12/3/2019 17:22 J 1,2-Dichloroethane-d8 (S) 81 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 81 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 1 80-129 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-129 12/3/2019 17:22 Endueroed8 (S) 101 % 1 80-129 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-129 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-129 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 101 % 1 80-121 12/3/2019 17:22 Endueroed8 (S) 101 % 1	1,2-Dichloroethane-d4 (S)	93		_	1	70-128		12/3/2019 17:22	
Analysis Desc: 8260B SIM Analysis, Nater Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/3/2019 17:22 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/3/2019 17:22 J 1,2-Dichloroethane-d4 (S) 89 % 1 77-125 12/3/2019 17:22 J Toluene-d8 (S) Bromofluorobenzene (S) 101 % 1 80-121 12/3/2019 17:22 J Netr CHEMISTRY Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0 Chloride 17 mg/L 1 5.0 0.50 11/22/2019 20:47 J Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1	Toluene-d8 (S)	84		%	1	77-119		12/3/2019 17:22	
Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/3/2019 17:22 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/3/2019 17:22 J 1,2-Dichloroethane-d4 (S) 89 % 1 77-125 12/3/2019 17:22 J Foluene-d8 (S) 81 % 1 80-121 12/3/2019 17:22 J Bromofluorobenzene (S) 101 % 1 80-129 12/3/2019 17:22 J WET CHEMISTRY Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0 Chloride 17 mg/L 1 5.0 0.50 11/22/2019 20:47 J Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1 Analytical Method: EPA 350.1	Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 17:22	
Analytical Method: SW-846 8260B (SIM) 1,2-Dibromo-3-Chloropropane 0.11 U ug/L 1 0.20 0.11 12/3/2019 17:22 J Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/3/2019 17:22 J 1,2-Dichloroethane-d4 (S) 89 % 1 77-125 12/3/2019 17:22 J Toluene-d8 (S) 81 % 1 80-121 12/3/2019 17:22 B Bromofluorobenzene (S) 101 % 1 80-121 12/3/2019 17:22 B WET CHEMISTRY Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0 Chloride 17 mg/L 1 5.0 0.50 11/22/2019 20:47 J Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1	Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SW	V-846 5030B				
Ethylene Dibromide (EDB)	Water	Anal	lytical Me	ethod: SW-8	346 8260B (SIM)				
Ethylene Dibromide (EDB)	1.2-Dibromo-3-Chloropropane	0.11	U	ua/L	1	0.20	0.11	12/3/2019 17:22	J
1,2-Dichloroethane-d4 (S) 89 % 1 77-125 12/3/2019 17:22 Foluene-d8 (S) 81 % 1 80-121 12/3/2019 17:22 Bromofluorobenzene (S) 101 % 1 80-129 12/3/2019 17:22 WET CHEMISTRY Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0 Chloride 17 mg/L 1 Nitrate (as N) 0.050 U mg/L 1 0.50 0.50 11/22/2019 20:47 J Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1		-		•			0.020		
Role	• • • • • • • • • • • • • • • • • • • •		_	_			***-*		_
### Paramonian Promonsion 101 % 1 80-129 12/3/2019 17:22 ##################################	` ,								
WET CHEMISTRY Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0 Chloride 17 mg/L 1 5.0 0.50 11/22/2019 20:47 J Nitrate (as N) 0.050 U mg/L 1 0.50 0.050 11/22/2019 20:47 J Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1	Bromofluorobenzene (S)								
Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0 Chloride 17 mg/L 1 5.0 0.50 11/22/2019 20:47 J Nitrate (as N) 0.050 U mg/L 1 0.50 0.050 11/22/2019 20:47 J Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1	MET CUEMICTRY								
Chloride 17 mg/L 1 5.0 0.50 11/22/2019 20:47 J Nitrate (as N) 0.050 U mg/L 1 0.50 0.50 11/22/2019 20:47 J Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1		Δnal	lytical Me	thod: FPA	300 O				
Nitrate (as N)			iy doar ivid						
Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1	Chloride			•					
	Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/22/2019 20:47	J
Ammonia (N) 23 J4 mg/L 50 0.50 0.40 12/3/2019 18:57 G	Analysis Desc: Ammonia,E350.1,Water	Anal	lytical Me	ethod: EPA	350.1				
	Ammonia (N)	23	J4	mg/L	50	0.50	0.40	12/3/2019 18:57	G

Report ID: 920482 - 1869630 Page 21 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

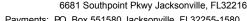
Date Received: 11/22/19 09:00 Lab ID: J1915380007 Matrix: Water

19325-MW-10A Date Collected: 11/21/19 10:54 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				
Total Dissolved Solids	590		mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380008 Date Received: 11/22/19 09:00 Matrix: Water


Date Collected: 11/21/19 11:26 Sample ID: 19325-MW-10B

Sample Description: Location:

Sample Description.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-8	846 6010				
Barium	44		ug/L	1	4.0	1.0	11/26/2019 19:04	J
Beryllium	1.3	I	ug/L	1	2.0	0.50	11/26/2019 19:04	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 19:04	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 19:04	J
Cobalt	3.1	I	ug/L	1	8.0	2.0	11/26/2019 19:04	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 13:55	J
Iron	11000		ug/L	1	400	100	11/26/2019 19:04	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 19:04	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 19:04	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 19:04	J
Silver	10	U	ug/L	1	40	10	11/26/2019 19:04	J
Sodium	17		mg/L	1	1.4	0.35	11/26/2019 19:04	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 19:04	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SW	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-8	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 00:47	J
Arsenic	0.94	ı	ug/L	1	1.0	0.077	12/6/2019 00:47	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 00:47	J
Vanadium	2.3		ug/L	1	2.0	0.71	12/6/2019 00:47	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	846 7470A				

Report ID: 920482 - 1869630 Page 22 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380008 Matrix: Water

19325-MW-10B Date Collected: 11/21/19 11:26 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	12/4/2019 16:45	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SV	V-846 5030B				
Water	Analy	tical Mo	ethod: SW-	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 17:59	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 17:59	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 17:59	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 17:59	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 17:59	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 17:59	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 17:59	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 17:59	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 17:59	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 17:59	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 17:59	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 17:59	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 17:59	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 17:59	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 17:59	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 17:59	J
Benzene	13		ug/L	1	1.0	0.16	12/3/2019 17:59	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 17:59	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 17:59	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 17:59	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 17:59	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 17:59	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 17:59	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 17:59	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 17:59	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 17:59	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 17:59	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 17:59	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 17:59	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 17:59	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 17:59	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 17:59	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 17:59	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 17:59	J

Report ID: 920482 - 1869630 Page 23 of 83

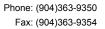
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380008 Matrix: Water

19325-MW-10B Date Collected: 11/21/19 11:26 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 17:59	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 17:59	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 17:59	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 17:59	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 17:59	J
Xylene (Total)	1.5	ı	ug/L	1	2.0	0.53	12/3/2019 17:59	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 17:59	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 17:59	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 17:59	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 17:59	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 17:59	J
1,2-Dichloroethane-d4 (S)	95		%	1	70-128		12/3/2019 17:59	
Toluene-d8 (S)	85		%	1	77-119		12/3/2019 17:59	
Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 17:59	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	/-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 17:59	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/3/2019 17:59	J
1,2-Dichloroethane-d4 (S)	90		%	1	77-125		12/3/2019 17:59	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 17:59	
Bromofluorobenzene (S)	103		%	1	80-129		12/3/2019 17:59	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	5.6	- 1	mg/L	2	10	1.0	11/22/2019 23:06	J
Nitrate (as N)	0.10	Ü	mg/L	2	1.0		11/22/2019 23:06	J
Analysis Desc: Ammonia,E350.1,Water	Δna	lytical Me	ethod: EPA	350 1				
•	7.5	ry tiodi ivic		10	0.10	0.080	12/3/2019 19:00	G
Ammonia (N)	1.5		mg/L	10	0.10	0.080	12/3/2019 19:00	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	850		mg/L	1	10	10	11/27/2019 16:00	J

Report ID: 920482 - 1869630 Page 24 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380009 Matrix: Water

19325-MW-24A Date Collected: 11/21/19 11:12 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration N	/lethod: SV	V-846 3010A				
Analysis,Water	Ana	lytical Me	thod: SW-8	346 6010				
Barium	21	,	ug/L	1	4.0	1.0	11/26/2019 19:08	J
Beryllium	0.50	U	ug/L ug/L	1	2.0		11/26/2019 19:08	
Cadmium	1.0	Ü	ug/L	1	4.0	1.0	11/26/2019 19:08	
Chromium	2.0	Ü	ug/L	1	8.0	2.0	11/26/2019 19:08	
Cobalt	2.0	Ū	ug/L	1	8.0	2.0	11/26/2019 19:08	
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 13:59	J
Iron	810		ug/L	1	400	100	11/26/2019 19:08	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 19:08	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 19:08	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 19:08	J
Silver	10	U	ug/L	1	40	10	11/26/2019 19:08	J
Sodium	15		mg/L	1	1.4	0.35	11/26/2019 19:08	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 19:08	J
Analysis Desc: SW846 6020B	Prep	aration N	/lethod: SV	V-846 3010A				
Analysis,Total			thod: SW-8					
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 00:51	J
Arsenic	0.23	i	ug/L ug/L	1	1.0	0.11	12/6/2019 00:51	J
Thallium	0.057	Ü	ug/L	1	0.20	0.057	12/6/2019 00:51	J
Vanadium	1.2	i	ug/L	1	2.0	0.71	12/6/2019 00:51	J
				1.040.74704				
Analysis Desc: SW846 7470A Analysis,Water	Prep	paration r	vietnoa: Sv	V-846 7470A				
, maryoto, vvator	Ana	lytical Me	thod: SW-8	846 7470A				
Mercury	0.014	I	ug/L	1	0.10	0.011	12/4/2019 16:48	J
VOLATILES								
Analysis Desc: IC,E300.0,Water	Ana	lvtical Me	thod: EPA	300.0				
•		J			5 0	0.50	44/00/0040 04:40	
Chloride	23		mg/L	1	5.0	0.50	11/22/2019 21:10	-
Nitrate (as N)	0.052	ı	mg/L	1	0.50	0.050	11/22/2019 21:10	J
Analysis Desc: 8260B VOCs Analysis,	Prep	paration N	/lethod: SV	V-846 5030B				
Water	Ana	lytical Me	thod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 18:29	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	12/3/2019 18:29	J
1,1,2,2-Tetrachloroethane	0.20	Ü	ug/L	1	1.0	0.20	12/3/2019 18:29	J

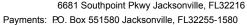
Report ID: 920482 - 1869630 Page 25 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915380009 Date Received: 11/22/19 09:00 Matrix: Water


Sample ID: 19325-MW-24A Date Collected: 11/21/19 11:12

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 18:29	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 18:29	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 18:29	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 18:29	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 18:29	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 18:29	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 18:29	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 18:29	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 18:29	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 18:29	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 18:29	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 18:29	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 18:29	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 18:29	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 18:29	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 18:29	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 18:29	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 18:29	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 18:29	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 18:29	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 18:29	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 18:29	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 18:29	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 18:29	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 18:29	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 18:29	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 18:29	J
lodomethane (Methyl lodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 18:29	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 18:29	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 18:29	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 18:29	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 18:29	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 18:29	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 18:29	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 18:29	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 18:29	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 18:29	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 18:29	J
cis-1,3-Dichloropropene	0.16	Ū	ug/L	1	1.0	0.16	12/3/2019 18:29	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 18:29	J

Report ID: 920482 - 1869630 Page 26 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380009 Matrix: Water

Sample ID: 19325-MW-24A Date Collected: 11/21/19 11:12

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 18:29	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 18:29	J
1,2-Dichloroethane-d4 (S)	99		%	1	70-128		12/3/2019 18:29	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 18:29	
Bromofluorobenzene (S)	101		%	1	86-123		12/3/2019 18:29	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: S	W-846 5030B				
Water	Anal	ytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 18:29	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 18:29	J
1,2-Dichloroethane-d4 (S)	94		%	1	77-125		12/3/2019 18:29	
Toluene-d8 (S)	82		%	1	80-121		12/3/2019 18:29	
Bromofluorobenzene (S)	100		%	1	80-129		12/3/2019 18:29	
WET CHEMISTRY								
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	A 350.1				
Ammonia (N)	0.040	U	mg/L	5	0.050	0.040	12/3/2019 19:01	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	94		mg/L	1	10	10	11/27/2019 16:00	J
Lab ID: J1915380010				Date Received:	11/22/19 09:00	Matrix: \	Vater	

19325-MW-24B Date Collected: 11/21/19 10:50 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical M	ethod: SW-	346 6010				
Barium	6.3		ug/L	1	4.0	1.0	11/26/2019 19:13	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 19:13	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 19:13	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 19:13	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 19:13	J

Report ID: 920482 - 1869630 Page 27 of 83

CERTIFICATE OF ANALYSIS

Adjusted

Adjusted

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380010 Matrix: Water

19325-MW-24B Date Collected: 11/21/19 10:50 Sample ID:

Sample Description: Location:

					Aujusteu	Aujusteu		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:02	J
Iron	490		ug/L	1	400	100	11/26/2019 19:13	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 19:13	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 19:13	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 19:13	J
Silver	10	U	ug/L	1	40	10	11/26/2019 19:13	J
Sodium	5.3		mg/L	1	1.4	0.35	11/26/2019 19:13	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 19:13	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 00:54	J
Arsenic	0.081	ı	ug/L	1	1.0	0.077	12/6/2019 00:54	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 00:54	J
Vanadium	0.71	U	ug/L	1	2.0	0.71	12/6/2019 00:54	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SW	V-846 7470A				
Analysis,Water			ethod: SW-8					
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 16:51	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 19:05	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 19:05	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 19:05	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 19:05	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 19:05	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 19:05	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 19:05	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 19:05	J
1,2-Dichloroethane	0.23	Ū	ug/L	1	1.0	0.23	12/3/2019 19:05	J
1,2-Dichloropropane	0.66	Ü	ug/L	1	1.0	0.66	12/3/2019 19:05	J
1,4-Dichlorobenzene	0.22	Ü	ug/L	1	1.0	0.22	12/3/2019 19:05	J
2-Butanone (MEK)	0.43	Ü	ug/L	1	5.0	0.43	12/3/2019 19:05	J
2-Hexanone	0.71	Ü	ug/L	1	5.0	0.70	12/3/2019 19:05	J
4-Methyl-2-pentanone (MIBK)	0.47	Ü	ug/L ug/L	1	1.0	0.47	12/3/2019 19:05	J
Acetone (WIBIC)	2.1	Ü	ug/L ug/L	1	5.0	2.1	12/3/2019 19:05	J
Acrylonitrile	1.1	Ü	ug/L ug/L	1	10	1.1	12/3/2019 19:05	J
Actyoniume	1.1	U	ug/L	'	10	1.1	12/3/2018 18.03	J

Report ID: 920482 - 1869630 Page 28 of 83

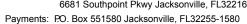
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915380010 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 10:50 Sample ID: 19325-MW-24B


Sample Description: Location:

Campic Becomption.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 19:05	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 19:05	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 19:05	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 19:05	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 19:05	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 19:05	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 19:05	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 19:05	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 19:05	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 19:05	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 19:05	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 19:05	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 19:05	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 19:05	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 19:05	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 19:05	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 19:05	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 19:05	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 19:05	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 19:05	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 19:05	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 19:05	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 19:05	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 19:05	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 19:05	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 19:05	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 19:05	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 19:05	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 19:05	J
1,2-Dichloroethane-d4 (S)	94		%	1	70-128		12/3/2019 19:05	
Toluene-d8 (S)	85		%	1	77-119		12/3/2019 19:05	
Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 19:05	
Analysis Desc: 8260B SIM Analysis,	Pre	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 19:05	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/3/2019 19:05	J
1,2-Dichloroethane-d4 (S)	90	-	%	1	77-125		12/3/2019 19:05	-
Toluene-d8 (S)	83		%	1	80-121		12/3/2019 19:05	

Report ID: 920482 - 1869630 Page 29 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380010 Matrix: Water

19325-MW-24B Date Collected: 11/21/19 10:50 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride Nitrate (as N)	8.9 0.050	J4 U,J4	mg/L mg/L	1 1	5.0 0.50	0.50 0.050	11/22/2019 20:01 11/22/2019 20:01	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	0.040	U	mg/L	5	0.050	0.040	12/3/2019 16:17	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	38		mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380011 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 12:22 Sample ID: 19325-MW-25A

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	
METALS							. ,	
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-	846 6010				
Barium	74		ug/L	1	4.0	1.0	11/26/2019 19:17	J
Beryllium	1.1	ı	ug/L	1	2.0	0.50	11/26/2019 19:17	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 19:17	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 19:17	J
Cobalt	2.5	ı	ug/L	1	8.0	2.0	11/26/2019 19:17	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:06	J
Iron	18000		ug/L	1	400	100	11/26/2019 19:17	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 19:17	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 19:17	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 19:17	J
Silver	10	U	ug/L	1	40	10	11/26/2019 19:17	J
Sodium	64		mg/L	1	1.4	0.35	11/26/2019 19:17	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 19:17	J

Report ID: 920482 - 1869630 Page 30 of 83

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380011 Matrix: Water

Sample ID: 19325-MW-25A Date Collected: 11/21/19 12:22

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 6020B Analysis,Total	•			W-846 3010A -846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 00:58	J
Arsenic	1.0		ug/L	1	1.0	0.077	12/6/2019 00:58	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 00:58	J
Vanadium	4.7		ug/L	1	2.0	0.71	12/6/2019 00:58	J
Analysis Desc: SW846 7470A Analysis,Water				W-846 7470A				
•	Analy	tical Me	thod: SW	-846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 16:55	J

VOLATILES

VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: S\	N-846 5030B				
Water	Analy	tical Me	ethod: SW-	-846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 19:35	J
1.1.1-Trichloroethane	0.22	Ü	ug/L	1		0.22	12/3/2019 19:35	ı
1,1,2,2-Tetrachloroethane	0.22	Ü	ug/L ug/L	1		0.20	12/3/2019 19:35	ı
1,1,2-Trichloroethane	0.20	U	_	1		0.20	12/3/2019 19:35	J
• •	0.30 0.14	U	ug/L	1		0.30	12/3/2019 19:35	J
1,1-Dichloroethane	-	_	ug/L	1				J
1,1-Dichloroethylene	0.18	U	ug/L	1		0.18	12/3/2019 19:35	J
1,2,3-Trichloropropane	0.91	U	ug/L	1		0.91	12/3/2019 19:35	J
1,2-Dichlorobenzene	0.18	U	ug/L	1		0.18	12/3/2019 19:35	J
1,2-Dichloroethane	0.23	U	ug/L	1		0.23	12/3/2019 19:35	J
1,2-Dichloropropane	0.66	U	ug/L	1		0.66	12/3/2019 19:35	J
1,4-Dichlorobenzene	0.22	U	ug/L	1		0.22	12/3/2019 19:35	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 19:35	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 19:35	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 19:35	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 19:35	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 19:35	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 19:35	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 19:35	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 19:35	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 19:35	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 19:35	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 19:35	J
Carbon Tetrachloride	0.36	Ū	ug/L	1		0.36	12/3/2019 19:35	J
Chlorobenzene	0.21	Ū	ug/L	1		0.21	12/3/2019 19:35	J
Chloroethane	0.33	Ū	ug/L	1		0.33	12/3/2019 19:35	J

Report ID: 920482 - 1869630 Page 31 of 83

CERTIFICATE OF ANALYSIS

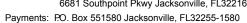
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380011 Matrix: Water

19325-MW-25A Date Collected: 11/21/19 12:22 Sample ID:


Sample Description: Location:

Parameters Results Qual Units DF Adjusted Adjusted Analyzed Chloroform 0.18 U ug/L 1 1.0 0.18 12/3/2019 19:35 Chloromethane 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 Dibromochloromethane 0.33 U ug/L 1 1.0 0.26 12/3/2019 19:35 Dibromochloromethane 0.26 U ug/L 1 1.0 0.26 12/3/2019 19:35 Ethylbenzene 0.24 U ug/L 1 1.0 0.26 12/3/2019 19:35 Iodomethane (Methyl loidide) 0.16 U ug/L 1 1.0 0.26 12/3/2019 19:35 Methylene Chloride 2.5 U ug/L 1 1.0 0.16 12/3/2019 19:35 Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.33 12/3/2019 19:35 Tichloroethene 0.23 <td< th=""><th>Lab</th></td<>	Lab
Chloroform 0.18 U ug/L 1 1.0 0.18 12/3/2019 19:35 Chloromethane 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 Dibromochloromethane 0.33 U ug/L 1 1.0 0.33 12/3/2019 19:35 Dibromochloromethane 0.26 U ug/L 1 1.0 0.26 12/3/2019 19:35 Ethylbenzene 0.24 U ug/L 1 1.0 0.26 12/3/2019 19:35 lodomethane (Methyl lodide) 0.16 U ug/L 1 1.0 0.26 12/3/2019 19:35 lodomethane (Methyl lodide) 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 Methylene Chloride 2.5 U ug/L 1 5.0 2.5 12/3/2019 19:35 Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.23 12/3/2019 19:35 Toluene 0.23 U ug/L 1 1.0 0.36 12/3/2019 19:35 Trichloroethhene 0.29 U ug/L 1 1.0 0.23 12/3/2019 19:35 Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/3/2019 19:35 Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.29 12/3/2019 19:35 Vinyl Acetate 0.19 U ug/L 1 1.0 0.32 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.30 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Sis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.20 12/3/2019 19:35 cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,2-Dichloropropene 0.16 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropene 0.20 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.20 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.20 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,3-Dichloropropene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichl	Lab
Chloromethane 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 Dibromochloromethane 0.33 U ug/L 1 1.0 0.33 12/3/2019 19:35 Ethylbenzene 0.26 U ug/L 1 1.0 0.24 12/3/2019 19:35 Ichylbenzene 0.24 U ug/L 1 1.0 0.16 12/3/2019 19:35 Ichylbene Chloride 2.5 U ug/L 1 1.0 0.16 12/3/2019 19:35 Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tichloroethylene (PCE) 0.36 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tichloroethylene (PCE) 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tichloroethylene (PCE) 0.23 U ug/L 1	
Dibromochloromethane 0.33 U ug/L 1 1.0 0.33 12/3/2019 19:35 Dibromomethane 0.26 U ug/L 1 1.0 0.26 12/3/2019 19:35 Ethylbenzene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 Iodomethane (Methyl Iodide) 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 Methylene Chloride 2.5 U ug/L 1 5.0 2.5 12/3/2019 19:35 Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.32 12/3/2019 19:35 Trichlorofluore 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Trichlorofluoromethane 0.29 U ug/L 1 1.0 0.22 12/3/2019 19:35 Vinyl Chloride 0.29 U ug/L 1	J
Dibromomethane 0.26 U ug/L 1 1.0 0.26 12/3/2019 19:35 Ethylbenzene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 Icodomethane (Methyl Iodide) 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 Methylene Chloride 2.5 U ug/L 1 1.0 0.23 12/3/2019 19:35 Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/3/2019 19:35 Tichloroethylene (PCE) 0.36 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tichloroethene 0.29 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tichlorofluoromethane 0.32 U ug/L 1 1.0 0.29 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1	J
Ethylbenzene	J
Indomethane (Methyl Iodide)	J
Methylene Chloride 2.5 U ug/L 1 5.0 2.5 12/3/2019 19:35 Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tetrachlororethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/3/2019 19:35 Tolluene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Trichlorofluoromethane 0.29 U ug/L 1 1.0 0.29 12/3/2019 19:35 Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/3/2019 19:35 Cis-1,3-Dichloroethylene 0.24 U	J
Styrene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/3/2019 19:35 Toluene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/3/2019 19:35 Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.29 12/3/2019 19:35 Vinyl Acetate 0.19 U ug/L 1 1.0 0.32 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/3/2019 19:35 xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/3/2019 19:35 xis-1,2-Dichloroethylene 0.16 U ug/	J
Tetrachloroethylene (PCE) 0.36 U ug/L 1 1.0 0.36 12/3/2019 19:35 Toluene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/3/2019 19:35 Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/3/2019 19:35 Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/3/2019 19:35 Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/3/2019 19:35 cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.24 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1.0 0.21 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) Bromofluorobenzene (S) Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Water	J
Toluene 0.23 U ug/L 1 1.0 0.23 12/3/2019 19:35 Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/3/2019 19:35 Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/3/2019 19:35 Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/3/2019 19:35 cis-1,2-Dichloroethylene 0.24 U ug/L 1 2.0 0.53 12/3/2019 19:35 cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.24 12/3/2019 19:35 cis-1,3-Dichloroethylene 0.20 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1.0 0.21 12/3/2019 19:35 Toluene-d8 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Analytical Method: SW-846 8260B (SIM)	J
Trichloroethene 0.29 U ug/L 1 1.0 0.29 12/3/2019 19:35 Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/3/2019 19:35 Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/3/2019 19:35 xylene (Total) 0.53 U ug/L 1 1.0 0.24 12/3/2019 19:35 xylene (Total) 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 xtans-1,2-Dichloroethylene 0.16 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloroethylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-bute	J
Trichlorofluoromethane 0.32 U ug/L 1 1.0 0.32 12/3/2019 19:35 Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/3/2019 19:35 cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/3/2019 19:35 Toluene-d8 (S) 97 % 1 70-128 12/3/2019 19:35 Bromofluorobenzene (S) 104 %	J
Vinyl Acetate 0.19 U ug/L 1 1.0 0.19 12/3/2019 19:35 Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/3/2019 19:35 cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1.0 0.21 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123	J
Vinyl Chloride 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/3/2019 19:35 cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 1.0 0.21 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B	J
Xylene (Total) 0.53 U ug/L 1 2.0 0.53 12/3/2019 19:35 cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 8260B (SIM)	J
cis-1,2-Dichloroethylene 0.24 U ug/L 1 1.0 0.24 12/3/2019 19:35 cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Water Analytical Method: SW-846 8260B (SIM)	J
cis-1,3-Dichloropropene 0.16 U ug/L 1 1.0 0.16 12/3/2019 19:35 trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Mater Analytical Method: SW-846 8260B (SIM)	J
trans-1,2-Dichloroethylene 0.20 U ug/L 1 1.0 0.20 12/3/2019 19:35 trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Water Analytical Method: SW-846 8260B (SIM)	J
trans-1,3-Dichloropropylene 0.21 U ug/L 1 1.0 0.21 12/3/2019 19:35 trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Water Analytical Method: SW-846 8260B (SIM)	J
trans-1,4-Dichloro-2-butene 1.8 U ug/L 1 10 1.8 12/3/2019 19:35 1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Water Analytical Method: SW-846 8260B (SIM)	J
1,2-Dichloroethane-d4 (S) 97 % 1 70-128 12/3/2019 19:35 Toluene-d8 (S) 85 % 1 77-119 12/3/2019 19:35 Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM)	J
Toluene-d8 (S)	J
Bromofluorobenzene (S) 104 % 1 86-123 12/3/2019 19:35 Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM)	
Analysis Desc: 8260B SIM Analysis, Water Preparation Method: SW-846 5030B Analytical Method: SW-846 8260B (SIM)	
Water Analytical Method: SW-846 8260B (SIM)	
Water Analytical Method: SW-846 8260B (SIM)	
1 2-Dibromo-3-Chloropropage 0.11 II uall 1 0.20 0.11 12/3/2010 10:35	
	J
Ethylene Dibromide (EDB) 0.020 U ug/L 1 0.10 0.020 12/3/2019 19:35	J
1,2-Dichloroethane-d4 (S) 93 % 1 77-125 12/3/2019 19:35	·
Toluene-d8 (S) 81 % 1 80-121 12/3/2019 19:35	
Bromofluorobenzene (S) 103 W 1 80-129 12/3/2019 19:35	
WET CHEMISTRY	
Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0	
Chloride 110 mg/L 2 10 1.0 11/22/2019 23:06	J
Nitrate (as N) 0.10 U mg/L 2 1.0 0.10 11/22/2019 23:06	J
Analysis Desc: Ammonia,E350.1,Water Analytical Method: EPA 350.1	
Ammonia (N) 7.9 mg/L 25 0.25 0.20 12/3/2019 19:02	G

Report ID: 920482 - 1869630 Page 32 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380011 Matrix: Water

19325-MW-25A Date Collected: 11/21/19 12:22 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	thod: SM	2540 C				
Total Dissolved Solids	610		mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380012 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 12:00 Sample ID: 19325-MW-25B

Sample Description: Location:

oumpie Bescription.				Location.				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	38		ug/L	1	4.0	1.0	11/26/2019 19:22	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 19:22	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 19:22	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 19:22	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 19:22	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:09	J
Iron	1300		ug/L	1	400	100	11/26/2019 19:22	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 19:22	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 19:22	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 19:22	J
Silver	10	U	ug/L	1	40	10	11/26/2019 19:22	J
Sodium	15		mg/L	1	1.4	0.35	11/26/2019 19:22	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 19:22	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 01:02	J
Arsenic	0.75	- 1	ug/L	1	1.0	0.077	12/6/2019 01:02	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 01:02	J
Vanadium	1.6	ı	ug/L	1	2.0	0.71	12/6/2019 01:02	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis,Water	Anal	vtical Me	ethod: SW-	846 7470A				
	7	,						

Report ID: 920482 - 1869630 Page 33 of 83

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380012 Matrix: Water

19325-MW-25B Date Collected: 11/21/19 12:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Mercury	0.011	U	ua/L	1	0.10	0.011	12/4/2019 16:58	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prepa	aration I	Method: SW	/-846 5030B				
Water	Analy	tical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 20:11	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 20:11	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 20:11	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 20:11	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 20:11	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 20:11	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 20:11	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 20:11	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 20:11	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 20:11	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 20:11	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 20:11	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 20:11	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 20:11	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 20:11	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 20:11	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 20:11	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 20:11	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 20:11	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 20:11	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 20:11	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 20:11	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 20:11	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 20:11	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 20:11	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 20:11	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 20:11	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 20:11	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 20:11	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 20:11	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 20:11	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 20:11	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 20:11	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 20:11	J

Report ID: 920482 - 1869630 Page 34 of 83

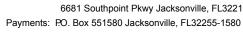
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380012 Matrix: Water

Sample ID: 19325-MW-25B Date Collected: 11/21/19 12:00


Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 20:11	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 20:11	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 20:11	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 20:11	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 20:11	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 20:11	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 20:11	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 20:11	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 20:11	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 20:11	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 20:11	J
1,2-Dichloroethane-d4 (S)	98		%	1	70-128		12/3/2019 20:11	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 20:11	
Bromofluorobenzene (S)	105		%	1	86-123		12/3/2019 20:11	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 20:11	J
Ethylene Dibromide (EDB)	0.020	Ū	ug/L	1	0.10	0.020	12/3/2019 20:11	J
1,2-Dichloroethane-d4 (S)	93		%	1	77-125		12/3/2019 20:11	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 20:11	
Bromofluorobenzene (S)	104		%	1	80-129		12/3/2019 20:11	
WET OUT WOTON								
WET CHEMISTRY	۸۵۵	lution Ma	thad: FDA	300.0				
Analysis Desc: IC,E300.0,Water	Ana	iyilcai ivie	ethod: EPA	300.0				
Chloride	26		mg/L	1	5.0	0.50	11/22/2019 21:56	J
Nitrate (as N)	0.050	U	mg/L	1	0.50	0.050	11/22/2019 21:56	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	0.08		mg/L	5	0.050	0.040	12/3/2019 19:04	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM :	2540 C				
Total Dissolved Solids	130		mg/L	1	10	10	11/27/2019 16:00	J

Report ID: 920482 - 1869630 Page 35 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Matrix: Water Lab ID: J1915380013

Date Collected: 11/21/19 09:26 Sample ID: 19325-MW-31A

Sample Description: Location:

• •								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis,Water	Δηα	lytical Me	ethod: SW-	846 6010				
		iyildai ivid						
Barium	66		ug/L	1	4.0	1.0	11/26/2019 19:26	J
Beryllium	4.8		ug/L	1	2.0	0.50	11/26/2019 19:26	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 19:26	J
Chromium	3.8	ı	ug/L	1	8.0	2.0	11/26/2019 19:26	J
Cobalt	23		ug/L	1	8.0	2.0	11/26/2019 19:26	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 14:13	J
Iron	80000		ug/L	1	400	100	11/26/2019 19:26	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 19:26	J
Nickel	16	ı	ug/L	1	24	6.0	11/26/2019 19:26	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 19:26	J
Silver	10	U	ug/L	1	40	10	11/26/2019 19:26	J
Sodium	21		mg/L	1	1.4	0.35	11/26/2019 19:26	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 19:26	J
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3005A				
Analysis, Dissolved	۸,	lution Ma	thad: CM	246 6010 Dissolve	d			
		iyildai ivie		846 6010,Dissolve				
Barium	66		ug/L	1	4.0	1.0	11/25/2019 14:23	J
Beryllium	3.7		ug/L	1	2.0	0.50	11/25/2019 14:23	J
Cadmium	1.7	ı	ug/L	1	4.0	1.0	11/25/2019 14:23	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/25/2019 14:23	J
Cobalt	23		ug/L	1	8.0	2.0	11/25/2019 14:23	J
Copper	4.0	U	ug/L	1	16	4.0	11/25/2019 14:23	J
Iron	80000		ug/L	2	800	200	11/26/2019 14:08	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 14:04	J
Nickel	16	ı	ug/L	1	24	6.0	11/26/2019 14:04	J
Selenium	40	U	ug/L	1	160	40	11/25/2019 14:23	J
Silver	10	U	ug/L	1	40	10	11/25/2019 14:23	J
Sodium	22		mg/L	1	1.4	0.35	11/26/2019 14:04	J
Zinc	50	U	ug/L	1	200	50	11/25/2019 14:23	J
Analysis Desc: SW846 6020B	Pre	paration I	Method: SV	V-846 3010A				
Analysis,Total	·							
			ethod: SW-					
Antimony	0.13	I	ug/L	1	0.70	0.11	12/6/2019 02:21	J
Arsenic	3.6	ı	ug/L	5	5.0	0.39	12/10/2019 11:47	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 02:21	J
Vanadium	11		ug/L	5	10	3.6	12/10/2019 11:47	J

Page 36 of 83 Report ID: 920482 - 1869630

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380013 Matrix: Water

19325-MW-31A Date Collected: 11/21/19 09:26 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis,Water	Anal	ytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 17:01	J
METALS, DISSOLVED								
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3005A				
Analysis, Dissolved	Anal	ytical Me	ethod: SW-8	846 6020				
Antimony	0.17	ı	ug/L	1	0.70	0.11	12/5/2019 01:59	J
Arsenic	1.1		ug/L	1	1.0	0.077	12/5/2019 01:59	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/5/2019 01:59	J
Vanadium	11	I	ug/L	10	20	7.1	12/5/2019 14:08	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Dissolved	Anal	ytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 17:33	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Anal	ytical Me	ethod: SW-8	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 20:41	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 20:41	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 20:41	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 20:41	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 20:41	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 20:41	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 20:41	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 20:41	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 20:41	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 20:41	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 20:41	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 20:41	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 20:41	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 20:41	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 20:41	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 20:41	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 20:41	J
Bromochloromethane	0.17	Ū	ug/L	1	1.0	0.17	12/3/2019 20:41	J
Bromodichloromethane	0.46	Ū	ug/L	1	1.0	0.46	12/3/2019 20:41	J

Report ID: 920482 - 1869630 Page 37 of 83

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380013 Matrix: Water

19325-MW-31A Date Collected: 11/21/19 09:26 Sample ID:

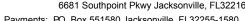
Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 20:41	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 20:41	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 20:41	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 20:41	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 20:41	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 20:41	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 20:41	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 20:41	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 20:41	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 20:41	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 20:41	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 20:41	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 20:41	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 20:41	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 20:41	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 20:41	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 20:41	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 20:41	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 20:41	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 20:41	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 20:41	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 20:41	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 20:41	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 20:41	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 20:41	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 20:41	J
1,2-Dichloroethane-d4 (S)	96		%	1	70-128		12/3/2019 20:41	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 20:41	
Bromofluorobenzene (S)	102		%	1	86-123		12/3/2019 20:41	
Analysis Desc: 8260B SIM Analysis,	Prep	oaration M	Method: SV	V-846 5030B				
Water				846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 20:41	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 20:41	J
1,2-Dichloroethane-d4 (S)	91		%	1	77-125		12/3/2019 20:41	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 20:41	
D (1) (0)	404		0.4		00.400		10/0/0010 00 11	

WET CHEMISTRY

Bromofluorobenzene (S)

Report ID: 920482 - 1869630 Page 38 of 83


80-129

12/3/2019 20:41

101

Advanced Environmental Laboratories, Inc.

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380013 Matrix: Water

19325-MW-31A Date Collected: 11/21/19 09:26 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	thod: EP	A 300.0				
Chloride	24		mg/L	2	10	1.0	11/22/2019 18:52	J
Nitrate (as N)	0.10	U	mg/L	2	1.0	0.10	11/22/2019 18:52	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EP	A 350.1				
Ammonia (N)	8.8		mg/L	25	0.25	0.20	12/3/2019 19:13	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	870		mg/L	1	10	10	11/27/2019 16:00	J

Date Received: 11/22/19 09:00 Matrix: Water Lab ID: J1915380014

Sample ID: 19325-MW-31B Date Collected: 11/21/19 10:06

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration N	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	346 6010				
Barium	86		ug/L	1	4.0	1.0	11/26/2019 16:33	J
Beryllium	2.0		ug/L	1	2.0	0.50	11/26/2019 16:33	J
Cadmium	1.0	U,J4	ug/L	1	4.0	1.0	11/26/2019 16:33	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 16:33	J
Cobalt	28		ug/L	1	8.0	2.0	11/26/2019 16:33	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:20	J
Iron	70000		ug/L	1	400	100	11/26/2019 16:33	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 16:33	J
Nickel	20	I	ug/L	1	24	6.0	11/26/2019 16:33	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 16:33	J
Silver	10	U	ug/L	1	40	10	11/26/2019 16:33	J
Sodium	31		mg/L	1	1.4	0.35	11/26/2019 16:33	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 16:33	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				

Analysis, Total Analytical Method: SW-846 6020

Report ID: 920482 - 1869630 Page 39 of 83

Adjusted

Adjusted

0.44 12/3/2019 21:17

12/3/2019 21:17

12/3/2019 21:17

12/3/2019 21:17

12/3/2019 21:17

12/3/2019 21:17

12/3/2019 21:17

12/3/2019 21:17

J

0.29

0.67

0.36

0.21

0.33

0.18

0.21

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380014 Matrix: Water

19325-MW-31B Date Collected: 11/21/19 10:06 Sample ID:

0.44

0.29

0.67

0.36

0.21

0.33

0.18

0.21

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon Disulfide

Carbon Tetrachloride

U

U

U

U

U

U

U

U

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Sample Description: Location:

					-,	. ,		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 02:25	J
Arsenic	1.3	ı	ug/L	5	5.0	0.39	12/6/2019 01:45	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 02:25	J
Vanadium	4.0	I	ug/L	5	10	3.6	12/6/2019 01:45	J
Analysis Desc: SW846 7470A	Pre	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 17:04	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 21:17	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 21:17	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 21:17	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 21:17	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 21:17	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 21:17	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 21:17	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 21:17	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 21:17	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 21:17	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 21:17	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 21:17	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 21:17	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 21:17	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 21:17	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 21:17	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 21:17	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 21:17	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 21:17	J

Report ID: 920482 - 1869630 Page 40 of 83

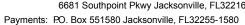
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380014 Matrix: Water

Sample ID: 19325-MW-31B Date Collected: 11/21/19 10:06


Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lal
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 21:17	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 21:17	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 21:17	J
lodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 21:17	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 21:17	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 21:17	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 21:17	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 21:17	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 21:17	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 21:17	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 21:17	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 21:17	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 21:17	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 21:17	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 21:17	J
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 21:17	J
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 21:17	J
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 21:17	J
1,2-Dichloroethane-d4 (S)	92		%	1	70-128		12/3/2019 21:17	
Foluene-d8 (S)	84		%	1	77-119		12/3/2019 21:17	
Bromofluorobenzene (S)	108		%	1	86-123		12/3/2019 21:17	
Analysis Desc: 8260B SIM Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)			
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 21:17	J
• •	0.020	U	ug/L ug/L	1	0.20	0.020	12/3/2019 21:17	J
Ethylene Dibromide (EDB)	0.020 87	U	ug/L %	1	77-125	0.020		J
I,2-Dichloroethane-d4 (S)							12/3/2019 21:17	
Foluene-d8 (S)	81		%	1	80-121		12/3/2019 21:17	
Bromofluorobenzene (S)	107		%	1	80-129		12/3/2019 21:17	
NET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	21	ı	mg/L	5	25	2.5	11/22/2019 10:22	J
Nitrate (as N)	0.25	U	mg/L	5	2.5	0.25	11/22/2019 10:22	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	1.4		mg/L	5	0.050	0.040	12/3/2019 19:14	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM	2540 C				

Report ID: 920482 - 1869630 Page 41 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Mercury

Date Received: 11/22/19 09:00 Lab ID: J1915380014 Matrix: Water

19325-MW-31B Date Collected: 11/21/19 10:06 Sample ID:

Sample Description: Location:

Total Dissolved Solids	1200		ma/L	1	10	10	11/27/2019 16:00	
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
					Adjusted	Adjusted		

Lab ID: J1915380015 Date Received: 11/22/19 09:00 Matrix: Water

Sample ID: 19325-CW-2A Date Collected: 11/21/19 09:52

0.011

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	346 6010				
Barium	76		ug/L	1	4.0	1.0	11/26/2019 17:05	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 17:05	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 17:05	J
Chromium	3.8	ı	ug/L	1	8.0	2.0	11/26/2019 17:05	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 17:05	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:23	J
Iron	330	ı	ug/L	1	400	100	11/26/2019 17:05	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 17:05	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 17:05	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 17:05	J
Silver	10	U	ug/L	1	40	10	11/26/2019 17:05	J
Sodium	230		mg/L	1	1.4	0.35	11/26/2019 17:05	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 17:05	J
Analysis Desc: SW846 6020B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Total	Ana	lytical Me	ethod: SW-8	346 6020				
Antimony	0.17	ı	ug/L	1	0.70	0.11	12/6/2019 02:29	J
Arsenic	3.3	ı	ug/L	5	5.0	0.39	12/6/2019 01:49	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 02:29	J
Vanadium	18		ug/L	5	10	3.6	12/6/2019 01:49	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	846 7470A				

Report ID: 920482 - 1869630 Page 42 of 83

0.10

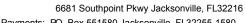
0.011 12/4/2019 17:07

ug/L

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380015 Matrix: Water


19325-CW-2A Date Collected: 11/21/19 09:52 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 21:47	J
1,1,1-Trichloroethane	0.22	Ū	ug/L	1	1.0	0.22	12/3/2019 21:47	J
1,1,2,2-Tetrachloroethane	0.20	Ū	ug/L	1	1.0	0.20	12/3/2019 21:47	J
1,1,2-Trichloroethane	0.30	Ü	ug/L	1	1.0	0.30	12/3/2019 21:47	J
1,1-Dichloroethane	0.14	Ü	ug/L	1	1.0	0.14	12/3/2019 21:47	Ĵ
1,1-Dichloroethylene	0.18	Ü	ug/L	1	1.0	0.18	12/3/2019 21:47	J
1,2,3-Trichloropropane	0.91	Ü	ug/L	1	1.0	0.91	12/3/2019 21:47	J
1,2-Dichlorobenzene	0.18	Ü	ug/L	1	1.0	0.18	12/3/2019 21:47	J
1,2-Dichloroethane	0.23	Ü	ug/L	1	1.0	0.23	12/3/2019 21:47	J
1,2-Dichloropropane	0.66	Ü	ug/L	1	1.0	0.66	12/3/2019 21:47	J
1,4-Dichlorobenzene	0.22	Ü	ug/L	1	1.0	0.22	12/3/2019 21:47	J
2-Butanone (MEK)	0.43	Ü	ug/L	1	5.0	0.43	12/3/2019 21:47	J
2-Hexanone	0.71	Ü	ug/L	1	5.0	0.71	12/3/2019 21:47	J
4-Methyl-2-pentanone (MIBK)	0.47	Ü	ug/L	1	1.0	0.47	12/3/2019 21:47	J
Acetone	8.2	•	ug/L	1	5.0	2.1	12/3/2019 21:47	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 21:47	J
Benzene	0.16	Ü	ug/L	1	1.0	0.16	12/3/2019 21:47	J
Bromochloromethane	0.17	Ü	ug/L	1	1.0	0.17	12/3/2019 21:47	J
Bromodichloromethane	0.46	Ü	ug/L	1	1.0	0.46	12/3/2019 21:47	J
Bromoform	0.44	Ü	ug/L	1	1.0	0.44	12/3/2019 21:47	J
Bromomethane	0.29	Ü	ug/L	1	1.0	0.29	12/3/2019 21:47	J
Carbon Disulfide	0.67	Ü	ug/L	1	1.0	0.67	12/3/2019 21:47	J
Carbon Tetrachloride	0.36	Ü	ug/L	1	1.0	0.36	12/3/2019 21:47	J
Chlorobenzene	0.21	Ü	ug/L	1	1.0	0.21	12/3/2019 21:47	J
Chloroethane	0.33	Ü	ug/L	1	1.0	0.33	12/3/2019 21:47	J
Chloroform	0.18	Ü	ug/L	1	1.0	0.18	12/3/2019 21:47	J
Chloromethane	0.21	Ü	ug/L	1	1.0	0.21	12/3/2019 21:47	J
Dibromochloromethane	0.33	Ü	ug/L	1	1.0	0.33	12/3/2019 21:47	J
Dibromomethane	0.26	Ü	ug/L	1	1.0	0.26	12/3/2019 21:47	J
Ethylbenzene	0.24	Ü	ug/L	1	1.0	0.24	12/3/2019 21:47	J
Iodomethane (Methyl Iodide)	0.16	Ü	ug/L	1	1.0	0.16	12/3/2019 21:47	J
Methylene Chloride	2.5	Ü	ug/L	1	5.0	2.5	12/3/2019 21:47	J
Styrene	0.23	Ü	ug/L	1	1.0	0.23	12/3/2019 21:47	J
Tetrachloroethylene (PCE)	0.25	Ü	ug/L	1	1.0	0.25	12/3/2019 21:47	J
Toluene	0.30	Ü	ug/L ug/L	1	1.0	0.30	12/3/2019 21:47	J
Trichloroethene	0.23	Ü	ug/L ug/L	1	1.0	0.23	12/3/2019 21:47	J
HIGHOLOGUICHE	0.29	U	ug/L	•	1.0	0.29	12/3/2018 21.4/	J

Report ID: 920482 - 1869630 Page 43 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380015 Matrix: Water

19325-CW-2A Date Collected: 11/21/19 09:52 Sample ID:

Sample Description: Location:

Campic Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 21:47	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 21:47	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 21:47	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 21:47	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 21:47	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 21:47	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 21:47	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 21:47	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 21:47	J
1,2-Dichloroethane-d4 (S)	99		%	1	70-128		12/3/2019 21:47	
Toluene-d8 (S)	86		%	1	77-119		12/3/2019 21:47	
Bromofluorobenzene (S)	104		%	1	86-123		12/3/2019 21:47	
Analysis Desc: 8260B SIM Analysis,	Pre	paration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 21:47	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 21:47	J
1,2-Dichloroethane-d4 (S)	94		%	1	77-125		12/3/2019 21:47	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 21:47	
Bromofluorobenzene (S)	104		%	1	80-129		12/3/2019 21:47	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Ana	lytical Me	ethod: EPA	300.0				
Chloride	330		mg/L	10	50	5.0	11/22/2019 19:15	J
Nitrate (as N)	0.50	U	mg/L	10	5.0	0.50	11/22/2019 19:15	J
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	23		mg/L	50	0.50	0.40	12/3/2019 19:15	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	1200		mg/L	1	10	10	11/27/2019 16:00	J

Report ID: 920482 - 1869630 Page 44 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380016 Matrix: Water

19325-CW-3A Date Collected: 11/21/19 09:00 Sample ID:

Sample Description: Location:

Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	50		ug/L	1	4.0	1.0	11/26/2019 17:09	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 17:09	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 17:09	J
Chromium	17		ug/L	1	8.0	2.0	11/26/2019 17:09	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 17:09	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:27	J
Iron	2300		ug/L	1	400		11/26/2019 17:09	
Lead	3.0	U	ug/L	1	12		11/26/2019 17:09	
Nickel	10	ı	ug/L	1	24	6.0	11/26/2019 17:09	
Selenium	40	U	ug/L	1	160	40	11/26/2019 17:09	
Silver	10	U	ug/L	1	40		11/26/2019 17:09	
Sodium	400		mg/L	1	1.4		11/26/2019 17:09	
Zinc	50	U	ug/L	1	200	50	11/26/2019 17:09	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Anal	ytical Me	ethod: SW-	846 6020				
Antimony	0.35	1	ug/L	1	0.70	0.11	12/6/2019 02:33	J
Arsenic	13		ug/L	5	5.0	0.39	12/6/2019 01:53	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 02:33	J
Vanadium	31		ug/L	5	10	3.6	12/6/2019 01:53	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	·			846 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 17:11	J
,			Ü					
VOLATILES								
Analysis Desc: 8260B VOCs Analysis, Water	Prep	aration I	Method: SV	V-846 5030B				
vvalei	Anal	ytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/4/2019 01:43	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/4/2019 01:43	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/4/2019 01:43	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/4/2019 01:43	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/4/2019 01:43	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/4/2019 01:43	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/4/2019 01:43	J
			_					

Report ID: 920482 - 1869630 Page 45 of 83

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380016 Matrix: Water

Sample ID: 19325-CW-3A Date Collected: 11/21/19 09:00

Sample Description: Location:

Campio Bocomption:								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/4/2019 01:43	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/4/2019 01:43	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/4/2019 01:43	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/4/2019 01:43	
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/4/2019 01:43	
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/4/2019 01:43	
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/4/2019 01:43	
Acetone	12		ug/L	1	5.0	2.1	12/4/2019 01:43	
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/4/2019 01:43	
Benzene	0.16	U	ug/L	1	1.0	0.16	12/4/2019 01:43	
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/4/2019 01:43	
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/4/2019 01:43	
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/4/2019 01:43	·
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/4/2019 01:43	·
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/4/2019 01:43	
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/4/2019 01:43	
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/4/2019 01:43	
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/4/2019 01:43	
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/4/2019 01:43	,
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/4/2019 01:43	
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/4/2019 01:43	
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/4/2019 01:43	
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/4/2019 01:43	
odomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/4/2019 01:43	
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/4/2019 01:43	
Styrene	0.23	U	ug/L	1	1.0	0.23	12/4/2019 01:43	
etrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/4/2019 01:43	
Toluene	0.23	U	ug/L	1	1.0	0.23	12/4/2019 01:43	
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/4/2019 01:43	
richlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/4/2019 01:43	
/inyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/4/2019 01:43	
/inyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/4/2019 01:43	,
(ylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/4/2019 01:43	
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/4/2019 01:43	,
sis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/4/2019 01:43	,
rans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/4/2019 01:43	,
rans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/4/2019 01:43	,
rans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/4/2019 01:43	
1,2-Dichloroethane-d4 (S)	96		%	1	70-128		12/4/2019 01:43	
Toluene-d8 (S)	84		%	1	77-119		12/4/2019 01:43	

Report ID: 920482 - 1869630 Page 46 of 83

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

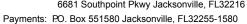
Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380016 Matrix: Water

19325-CW-3A Date Collected: 11/21/19 09:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromofluorobenzene (S)	102		%	1	86-123		12/4/2019 01:43	
Analysis Desc: 8260B SIM Analysis,	Prep	aration N	Method: S	W-846 5030B				
Water	Anal	ytical Me	thod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/4/2019 01:43	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/4/2019 01:43	J
1,2-Dichloroethane-d4 (S)	91		%	1	77-125		12/4/2019 01:43	
Toluene-d8 (S)	80		%	1	80-121		12/4/2019 01:43	
Bromofluorobenzene (S)	101		%	1	80-129		12/4/2019 01:43	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0								
Chloride	550		mg/L	10	50	5.0	11/22/2019 18:29	J
Nitrate (as N)	0.50	U	mg/L	10	5.0	0.50	11/22/2019 18:29	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	thod: EPA	350.1				
Ammonia (N)	21		mg/L	50	0.50	0.40	12/3/2019 19:16	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	thod: SM	2540 C				
Total Dissolved Solids	1600		mg/L	1	10	10	11/27/2019 16:00	J
Lab ID: J1915380017				Date Received:	11/22/19 09:00	Matrix:	Water	
Sample ID: 19325-Dup-2				Date Collected:	11/21/19 00:02			


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration	Method: SV	V-846 3010A				
Analysis, Water	Anal	ytical Me	ethod: SW-	846 6010				
Barium	50		ug/L	1	4.0	1.0	11/26/2019 17:14	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 17:14	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 17:14	J
Chromium	17		ug/L	1	8.0	2.0	11/26/2019 17:14	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 17:14	J

Report ID: 920482 - 1869630 Page 47 of 83

CERTIFICATE OF ANALYSIS

Adjusted

PQL

Adjusted

MDL

Analyzed

Lab

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Parameters

Date Received: 11/22/19 09:00 Lab ID: J1915380017 Matrix: Water

Units

DF

Qual

19325-Dup-2 Date Collected: 11/21/19 00:02 Sample ID:

Sample Description: Location:

Results

T didifictors	results	Quai	Office	ы	I QL	IVIDL	7 11 101 1 2 0 0	Lub
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:30	J
Iron	2300		ug/L	1	400	100	11/26/2019 17:14	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 17:14	J
Nickel	9.5	1	ug/L	1	24	6.0	11/26/2019 17:14	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 17:14	J
Silver	10	U	ug/L	1	40	10	11/26/2019 17:14	J
Sodium	390		mg/L	1	1.4	0.35	11/26/2019 17:14	J
Zinc	50	U	ug/L	1	200		11/26/2019 17:14	J
Analysis Desc: SW846 6020B	Prep	aration I	Method: SV	V-846 3010A				
Analysis,Total	Ana	lytical Me	ethod: SW-	346 6020				
Antimony	0.34	1	ug/L	1	0.70	0.11	12/6/2019 02:37	J
Arsenic	13		ug/L	5	5.0	0.39	12/6/2019 02:09	J
Thallium	0.057	U	ug/L	1	0.20	0.057	12/6/2019 02:37	J
Vanadium	32		ug/L	5	10	3.6	12/6/2019 02:09	J
Analysis Desc: SW846 7470A	Prep	aration I	Method: SV	V-846 7470A				
Analysis, Water	Ana	lytical Me	ethod: SW-	346 7470A				
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 17:14	J
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration I	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	346 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/4/2019 02:12	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/4/2019 02:12	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/4/2019 02:12	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/4/2019 02:12	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/4/2019 02:12	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/4/2019 02:12	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/4/2019 02:12	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/4/2019 02:12	J
1,2-Dichloroethane	0.23	Ü	ug/L	1	1.0	0.23	12/4/2019 02:12	J
1,2-Dichloropropane	0.66	Ü	ug/L	1	1.0	0.66	12/4/2019 02:12	J
1,4-Dichlorobenzene	0.22	Ü	ug/L	1	1.0	0.22	12/4/2019 02:12	J
2-Butanone (MEK)	0.43	Ü	ug/L	1	5.0	0.43	12/4/2019 02:12	J
2-Hexanone	0.71	Ü	ug/L	1	5.0	0.71	12/4/2019 02:12	J
4-Methyl-2-pentanone (MIBK)	0.47	Ü	ug/L ug/L	1	1.0	0.47	12/4/2019 02:12	J
Acetone	11	J	ug/L ug/L	1	5.0	2.1	12/4/2019 02:12	J
Acrylonitrile	1.1	U	ug/L ug/L	1	10	1.1	12/4/2019 02:12	J
	1.1	U	ug/L	ı	10	1.1	121412018 02.12	J

Report ID: 920482 - 1869630 Page 48 of 83

CERTIFICATE OF ANALYSIS

Phone: (904)363-9350 Fax: (904)363-9354

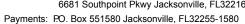
ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: J1915380017 Date Received: 11/22/19 09:00 Matrix: Water

Date Collected: 11/21/19 00:02 Sample ID: 19325-Dup-2

Sample Description: Location:


Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Benzene	0.16	U	ug/L	1	1.0	0.16	12/4/2019 02:12	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/4/2019 02:12	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/4/2019 02:12	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/4/2019 02:12	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/4/2019 02:12	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/4/2019 02:12	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/4/2019 02:12	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/4/2019 02:12	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/4/2019 02:12	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/4/2019 02:12	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/4/2019 02:12	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/4/2019 02:12	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/4/2019 02:12	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/4/2019 02:12	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/4/2019 02:12	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/4/2019 02:12	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/4/2019 02:12	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/4/2019 02:12	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/4/2019 02:12	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/4/2019 02:12	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/4/2019 02:12	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/4/2019 02:12	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/4/2019 02:12	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/4/2019 02:12	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/4/2019 02:12	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/4/2019 02:12	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/4/2019 02:12	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/4/2019 02:12	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/4/2019 02:12	J
1,2-Dichloroethane-d4 (S)	99		%	1	70-128		12/4/2019 02:12	
Toluene-d8 (S)	89		%	1	77-119		12/4/2019 02:12	
Bromofluorobenzene (S)	103		%	1	86-123		12/4/2019 02:12	
Analysis Desc: 8260B SIM Analysis,	Prei	oaration I	Method: S\	V-846 5030B				
Water	·			846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/4/2019 02:12	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/4/2019 02:12	J
1,2-Dichloroethane-d4 (S)	94		%	1	77-125		12/4/2019 02:12	
Toluene-d8 (S)	82		%	1	80-121		12/4/2019 02:12	
Bromofluorobenzene (S)	102		%	1	80-129		12/4/2019 02:12	

Water Analytical Method: SW-846 8260B (SIM)											
	1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/4/2019 02:12	J		
	Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/4/2019 02:12	J		
	1,2-Dichloroethane-d4 (S)	94		%	1	77-125		12/4/2019 02:12			
	Toluene-d8 (S)	82		%	1	80-121		12/4/2019 02:12			
	Bromofluorobenzene (S)	102		%	1	80-129		12/4/2019 02:12			

Report ID: 920482 - 1869630 Page 49 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

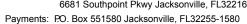
Date Received: 11/22/19 09:00 Lab ID: J1915380017 Matrix: Water

19325-Dup-2 Date Collected: 11/21/19 00:02 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	ytical Me	ethod: EPA	300.0				
Chloride	490		mg/L	10	50	5.0	11/22/2019 18:07	J
Nitrate (as N)	0.50	U	mg/L	10	5.0	0.50	11/22/2019 18:07	J
Analysis Desc: Ammonia,E350.1,Water	Anal	ytical Me	ethod: EPA	350.1				
Ammonia (N)	20	J4	mg/L	50	0.50	0.40	12/3/2019 19:18	G
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	1600		mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380018 Date Received: 11/22/19 09:00 Matrix: Water


Date Collected: 11/21/19 15:02 Sample ID: 19325-EQ-2

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	aration I	Method: S\	V-846 3010A				
Analysis, Water	Anal	ytical Me						
Barium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 17:19	J
Beryllium	0.50	U	ug/L	1	2.0	0.50	11/26/2019 17:19	J
Cadmium	1.0	U	ug/L	1	4.0	1.0	11/26/2019 17:19	J
Chromium	2.0	U	ug/L	1	8.0	2.0	11/26/2019 17:19	J
Cobalt	2.0	U	ug/L	1	8.0	2.0	11/26/2019 17:19	J
Copper	4.0	U	ug/L	1	16	4.0	12/3/2019 11:34	J
Iron	100	U	ug/L	1	400	100	11/26/2019 17:19	J
Lead	3.0	U	ug/L	1	12	3.0	11/26/2019 17:19	J
Nickel	6.0	U	ug/L	1	24	6.0	11/26/2019 17:19	J
Selenium	40	U	ug/L	1	160	40	11/26/2019 17:19	J
Silver	10	U	ug/L	1	40	10	11/26/2019 17:19	J
Sodium	0.35	U	mg/L	1	1.4	0.35	11/26/2019 17:19	J
Zinc	50	U	ug/L	1	200	50	11/26/2019 17:19	J

Report ID: 920482 - 1869630 Page 50 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380018 Matrix: Water

19325-EQ-2 Date Collected: 11/21/19 15:02 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted			
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab	
Analysis Desc: SW846 6020B Analysis,Total	·			W-846 3010A -846 6020					
Antimony	0.11	U	ug/L	1	0.70	0.11	12/6/2019 02:41	J	
Arsenic Thallium	0.077 0.057	U U	ug/L ug/L	1	1.0 0.20	0.077 0.057	12/6/2019 02:41 12/6/2019 02:41	J	
Vanadium	0.71	U	ug/L	1	2.0	0.71	12/6/2019 02:41	J	
Analysis Desc: SW846 7470A Analysis,Water	Preparation Method: SW-846 7470A Analytical Method: SW-846 7470A								
Mercury	0.011	U	ug/L	1	0.10	0.011	12/4/2019 17:24	J	

VOLATILES

VOLATILLS	_							
Analysis Desc: 8260B VOCs Analysis,	Prep	aration	Method: SV	V-846 5030B				
Water	Anal	ytical M	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/4/2019 02:42	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/4/2019 02:42	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/4/2019 02:42	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/4/2019 02:42	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/4/2019 02:42	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/4/2019 02:42	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/4/2019 02:42	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/4/2019 02:42	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/4/2019 02:42	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/4/2019 02:42	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/4/2019 02:42	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/4/2019 02:42	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/4/2019 02:42	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/4/2019 02:42	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/4/2019 02:42	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/4/2019 02:42	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/4/2019 02:42	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/4/2019 02:42	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/4/2019 02:42	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/4/2019 02:42	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/4/2019 02:42	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/4/2019 02:42	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/4/2019 02:42	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/4/2019 02:42	J
Chloroethane	0.33	U	ua/L	1	1.0	0.33	12/4/2019 02:42	J

Report ID: 920482 - 1869630 Page 51 of 83

CERTIFICATE OF ANALYSIS

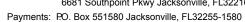
Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380018 Matrix: Water

19325-EQ-2 Date Collected: 11/21/19 15:02 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/4/2019 02:42	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/4/2019 02:42	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/4/2019 02:42	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/4/2019 02:42	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/4/2019 02:42	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/4/2019 02:42	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/4/2019 02:42	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/4/2019 02:42	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/4/2019 02:42	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/4/2019 02:42	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/4/2019 02:42	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/4/2019 02:42	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/4/2019 02:42	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/4/2019 02:42	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/4/2019 02:42	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/4/2019 02:42	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/4/2019 02:42	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/4/2019 02:42	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/4/2019 02:42	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/4/2019 02:42	J
1,2-Dichloroethane-d4 (S)	93		%	1	70-128		12/4/2019 02:42	
Toluene-d8 (S)	90		%	1	77-119		12/4/2019 02:42	
Bromofluorobenzene (S)	101		%	1	86-123		12/4/2019 02:42	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SV	/-846 5030B				
Water	Anal	lytical Me	thod: SW-8	346 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/4/2019 02:42	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/4/2019 02:42	J
1,2-Dichloroethane-d4 (S)	89		%	1	77-125		12/4/2019 02:42	
Toluene-d8 (S)	81		%	1	80-121		12/4/2019 02:42	
Bromofluorobenzene (S)	101		%	1	80-129		12/4/2019 02:42	
WET CHEMISTRY								
Analysis Desc: IC,E300.0,Water	Anal	lytical Me	thod: EPA	300.0				
Chloride	0.50	U	mg/L	1	5.0	0.50	11/22/2019 16:57	J
Nitrate (as N)	0.050	Ü	mg/L	1	0.50		11/22/2019 16:57	J
Analysis Desc: Ammonia,E350.1,Water			ethod: EPA					
		•			0.050	0.040	12/2/2010 10:01	_
Ammonia (N)	0.040	U	mg/L	5	0.050	0.040	12/3/2019 19:21	G

Report ID: 920482 - 1869630 Page 52 of 83

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380018 Matrix: Water

19325-EQ-2 Date Collected: 11/21/19 15:02 Sample ID:

Sample Description: Location:

Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Analysis Desc: Tot Dissolved Solids,SM2540C	Anal	ytical Me	ethod: SM	2540 C				
Total Dissolved Solids	10	U	mg/L	1	10	10	11/27/2019 16:00	J

Lab ID: J1915380019 Date Received: 11/22/19 09:00 Matrix: Water


Date Collected: 11/21/19 00:00 Sample ID: 19325-Trip Blank-6

Sample Description: Location:

_					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	aration M	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 12:58	J
1,1,1-Trichloroethane	0.22	U	ug/L	1	1.0	0.22	12/3/2019 12:58	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/3/2019 12:58	J
1,1,2-Trichloroethane	0.30	U	ug/L	1	1.0	0.30	12/3/2019 12:58	J
1,1-Dichloroethane	0.14	U	ug/L	1	1.0	0.14	12/3/2019 12:58	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 12:58	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 12:58	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 12:58	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 12:58	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 12:58	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 12:58	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 12:58	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 12:58	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 12:58	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 12:58	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 12:58	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 12:58	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 12:58	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 12:58	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 12:58	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 12:58	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 12:58	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 12:58	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 12:58	J

Report ID: 920482 - 1869630 Page 53 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380019 Matrix: Water

Sample ID: 19325-Trip Blank-6 Date Collected: 11/21/19 00:00

Sample Description: Location:

Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 12:58	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 12:58	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 12:58	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 12:58	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 12:58	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 12:58	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 12:58	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 12:58	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 12:58	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 12:58	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 12:58	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 12:58	J
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 12:58	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 12:58	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/3/2019 12:58	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 12:58	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 12:58	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 12:58	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 12:58	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 12:58	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/3/2019 12:58	J
1,2-Dichloroethane-d4 (S)	97		%	1	70-128		12/3/2019 12:58	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 12:58	
Bromofluorobenzene (S)	103		%	1	86-123		12/3/2019 12:58	
Analysis Desc: 8260B SIM Analysis,	Pre	oaration N	Method: S'	W-846 5030B				
Water	Ana	lytical Me	ethod: SW	-846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 12:58	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 12:58	J
1,2-Dichloroethane-d4 (S)	92		%	1	77-125		12/3/2019 12:58	
Toluene-d8 (S)	81		%	1	80-121		12/3/2019 12:58	
Bromofluorobenzene (S)	103		%	1	80-129		12/3/2019 12:58	

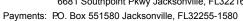
Report ID: 920482 - 1869630 Page 54 of 83

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380020 Matrix: Water


19325-Trip Blank-7 Date Collected: 11/21/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Pre	paration I	Method: SW	-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	46 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/3/2019 13:34	J
1,1,1-Trichloroethane	0.22	Ü	ug/L	1	1.0	0.22	12/3/2019 13:34	J
1,1,2,2-Tetrachloroethane	0.20	Ū	ug/L	1	1.0	0.20	12/3/2019 13:34	J
1,1,2-Trichloroethane	0.30	Ū	ug/L	1	1.0	0.30	12/3/2019 13:34	J
1,1-Dichloroethane	0.14	Ū	ug/L	1	1.0	0.14	12/3/2019 13:34	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 13:34	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/3/2019 13:34	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/3/2019 13:34	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/3/2019 13:34	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/3/2019 13:34	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/3/2019 13:34	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/3/2019 13:34	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/3/2019 13:34	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/3/2019 13:34	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/3/2019 13:34	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/3/2019 13:34	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 13:34	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/3/2019 13:34	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/3/2019 13:34	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/3/2019 13:34	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/3/2019 13:34	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/3/2019 13:34	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/3/2019 13:34	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 13:34	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 13:34	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/3/2019 13:34	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/3/2019 13:34	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/3/2019 13:34	J
Dibromomethane	0.26	U	ug/L	1	1.0	0.26	12/3/2019 13:34	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 13:34	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/3/2019 13:34	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/3/2019 13:34	J
Styrene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 13:34	J
Tetrachloroethylene (PCE)	0.36	U	ug/L	1	1.0	0.36	12/3/2019 13:34	J
Toluene	0.23	U	ug/L	1	1.0	0.23	12/3/2019 13:34	J
Trichloroethene	0.29	U	ug/L	1	1.0	0.29	12/3/2019 13:34	J

Report ID: 920482 - 1869630 Page 55 of 83

ANALYTICAL RESULTS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 09:00 Lab ID: J1915380020 Matrix: Water

19325-Trip Blank-7 Date Collected: 11/21/19 00:00 Sample ID:

Sample Description: Location:

P P								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/3/2019 13:34	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/3/2019 13:34	J
yl Chloride 0.20 U ug/L 1 1.0		0.20	12/3/2019 13:34	J				
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/3/2019 13:34	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/3/2019 13:34	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/3/2019 13:34	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/3/2019 13:34	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/3/2019 13:34	J
trans-1,4-Dichloro-2-butene			ug/L	1	10	1.8	12/3/2019 13:34	J
1,2-Dichloroethane-d4 (S)	97		%	1	70-128		12/3/2019 13:34	
Toluene-d8 (S)	84		%	1	77-119		12/3/2019 13:34	
Bromofluorobenzene (S)	105		%	1	86-123		12/3/2019 13:34	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SW	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/3/2019 13:34	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/3/2019 13:34	J
1,2-Dichloroethane-d4 (S)	93		%	1	77-125		12/3/2019 13:34	
Toluene-d8 (S)	83		%	1	80-121		12/3/2019 13:34	
Bromofluorobenzene (S)	105		%	1	80-129		12/3/2019 13:34	

Report ID: 920482 - 1869630 Page 56 of 83

Phone: (904)363-9350 Fax: (904)363-9354

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Estimated Result J4

LAB QUALIFIERS

- G DOH Certification #E82001(AEL-G)(FL NELAC Certification)
- J DOH Certification #E82574(AEL-JAX)(FL NELAC Certification)

Report ID: 920482 - 1869630 Page 57 of 83

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAj/6811 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Prepared:

Associated Lab Samples: J1915380001, J1915380002, J1915380003, J1915380004, J1915380005, J1915380006, J1915380007, J1915380008,

METHOD BLANK: 3299858

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
WET CHEMISTRY				
Chloride	mg/L	0.50	0.50 U	
Nitrate (as N)	mg/L	0.050	0.050 U	

LABORATORY CONTROL SA	MPLE & LCSD:	3299859)	3299860	3299860							
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers			
WET CHEMISTRY Chloride Nitrate (as N)	mg/L mg/L	20 2	19 1.9	19 1.9	97 96	96 95	90-110 90-110	1 1	10 10			

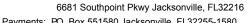
MATRIX SPIKE SAMPLE: 3299861 Original: J1915380002

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Chloride	mg/L	25	20	45	99	90-110	
Nitrate (as N)	mg/L	0	2	1.9	96	90-110	

 QC Batch:
 DGMj/4302
 Analysis Method:
 SW-846 6020

 QC Batch Method:
 SW-846 3005A
 Prepared:
 12/04/2019 14:30

Associated Lab Samples: J1915380013


METHOD BLANK: 3300319

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Vanadium	ug/L	0.71	0.71 U	
Arsenic	ug/L	0.077	0.077 U	
Antimony	ug/L	0.11	0.11 U	
Thallium	ug/L	0.057	0.057 U	

Report ID: 920482 - 1869630 Page 58 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3300320

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Vanadium	ug/L	50	47	94	80-120	
Arsenic	ug/L	50	47	94	80-120	
Antimony	ug/L	50	45	90	80-120	
Thallium	ug/L	50	46	92	80-120	

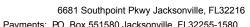
	,,	4.4			0.4		4-	75 405		^	
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD RPI	O Qualifiers	
		Original	Spike	MS	MSD	MS	MSD	% Rec	Ма	x	
MATRIX SPIKE & MA	TRIX SPIKE DUPL	X SPIKE DUPLICATE: 3300321				3300322 Original: J19153800					
MATRIX CRIZE 6 MA	TOIV COIVE DUIDI	ICATE: 2200	221	2200	വവ	Origin	adi 14045	200012			

Arsenic ug/L 1.1 50 23 75-125 20 47 0.17 50 46 92 94 75-125 20 Antimony ug/L 2 50 75-125 20 Thallium ug/L 0.018 50 48 96 99 4

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3300321 3300322 Original: J1915380013

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit F	Max RPD RPD Qualifiers	
Vanadium	ug/L	11	50	63	63	104	104	75-125	0 20	

QC Batch: SW-846 6010 DGMj/4306 Analysis Method: QC Batch Method: SW-846 3010A Prepared: 11/25/2019 10:30


Associated Lab Samples: J1915380001, J1915380002, J1915380003, J1915380004, J1915380005, J1915380006, J1915380007, J1915380008,

METHOD BLANK: 3300342

		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U

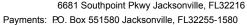
Report ID: 920482 - 1869630 Page 59 of 83

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3300	342		
Parameter	Units	Blank Result	Reporting Limit Qualifiers
Selenium	ug/L	40	40 U
Zinc	ug/L	50	50 U
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Copper	ug/L	4.0	4.0 U

LABORATORY CONTROL SAMPLE: 3300343


Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	200	102	80-120
Barium	ug/L	20	20	103	80-120
Beryllium	ug/L	10	9.7	97	80-120
Cadmium	ug/L	20	20	100	80-120
Cobalt	ug/L	40	41	102	80-120
Chromium	ug/L	40	40	99	80-120
Copper	ug/L	80	93	116	80-120
Iron	ug/L	2000	2000	98	80-120
Sodium	mg/L	7	6.8	97	80-120
Nickel	ug/L	120	120	104	80-120
Lead	ug/L	60	58	97	80-120
Selenium	ug/L	800	780	98	80-120
Zinc	ug/L	1000	1000	104	80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3300344				3300	345	Original: J1915320016					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
METALS											
Silver	ug/L	0	200	200	200	99	101	75-125	2	20	
Barium	ug/L	20	20	39	40	99	101	75-125	1	20	
Beryllium	ug/L	0	10	9.7	9.9	97	99	75-125	2	20	
Cadmium	ug/L	0	20	20	20	98	99	75-125	1	20	
Cobalt	ug/L	0.2	40	40	40	101	101	75-125	0	20	
Chromium	ug/L	0	40	37	40	94	100	75-125	6	20	
Copper	ug/L	0.8	80	90	92	113	115	75-125	1	20	

Report ID: 920482 - 1869630 Page 60 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

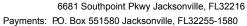
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3300344					345	Original: J1915320016					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD	Qualifiers
Iron	ug/L	660	2000	2600	2600	97	99	75-125	1	20	
Sodium	mg/L	7.3	7	14	14	94	96	75-125	1	20	
Nickel	ug/L	1.7	120	120	130	103	105	75-125	1	20	
Lead	ug/L	0	60	63	63	105	104	75-125	1	20	
Selenium	ug/L	0	800	770	790	97	99	75-125	2	20	
Zinc	ug/L	9.3	1000	1000	1000	103	104	75-125	1	20	

QC Batch: DGMj/4307 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 11/25/2019 10:30

Associated Lab Samples: J1915380014, J1915380015, J1915380016, J1915380017, J1915380018

METHOD BLANK: 3300346

		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Silver	ug/L	10	10 U
Barium	ug/L	1.0	1.0 U
Beryllium	ug/L	0.50	0.50 U
Cadmium	ug/L	1.0	1.0 U
Cobalt	ug/L	2.0	2.0 U
Chromium	ug/L	2.0	2.0 U
Iron	ug/L	100	100 U
Sodium	mg/L	0.35	0.35 U
Nickel	ug/L	6.0	6.0 U
Lead	ug/L	3.0	3.0 U
Selenium	ug/L	40	40 U
Zinc	ug/L	50	50 U
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
METALS			
Copper	ug/L	4.0	4.0 U


LABORATORY CONTROL SAMPLE: 3300347

LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers

METALS

Report ID: 920482 - 1869630 Page 61 of 83

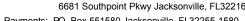
QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3300347

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Silver	ug/L	200	200	101	80-120	
Barium	ug/L	20	20	101	80-120	
Beryllium	ug/L	10	9.7	97	80-120	
Cadmium	ug/L	20	20	100	80-120	
Cobalt	ug/L	40	41	102	80-120	
Chromium	ug/L	40	38	96	80-120	
Copper	ug/L	80	88	110	80-120	
Iron	ug/L	2000	2000	99	80-120	
Sodium	mg/L	7	6.8	97	80-120	
Nickel	ug/L	120	130	105	80-120	
Lead	ug/L	60	59	99	80-120	
Selenium	ug/L	800	800	100	80-120	
Zinc	ug/L	1000	1000	104	80-120	

MATRIX SPIKE & MAT	ICATE: 3300	348	3300349		Original: J1915380014					
		Original	Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD Qualifiers
METALS										
Silver	ug/L	0	200	190	190	93	94	75-125	1	20
Barium	ug/L	86	20	110	110	119	114	75-125	1	20
Beryllium	ug/L	2	10	12	12	101	102	75-125	1	20
Cadmium	ug/L	0	20	14	14	69	70	75-125	1	20
Cobalt	ug/L	28	40	71	71	107	106	75-125	1	20
Chromium	ug/L	0	40	43	42	108	106	75-125	2	20
Copper	ug/L	0.2	80	97	99	121	124	75-125	2	20
ron	ug/L	70000	2000	75000	74000	215	163	75-125	1	20
Sodium	mg/L	31	7	40	40	124	118	75-125	1	20
Nickel	ug/L	20	120	150	150	104	105	75-125	0	20
Lead	ug/L	0	60	60	60	99	100	75-125	1	20
Selenium	ug/L	0	800	760	750	95	94	75-125	1	20
Zinc	ug/L	26	1000	1100	1100	112	112	75-125	0	20


QC Batch: DGMj/4309 Analysis Method: SW-846 6010, Dissolved QC Batch Method: SW-846 3010A Prepared: 11/25/2019 12:08

Associated Lab Samples: J1915380013

Report ID: 920482 - 1869630 Page 62 of 83

0.35

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (904)363-9350 Fax: (904)363-9354

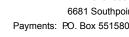
QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 33004	101			
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
METALS				
Silver	ug/L	10	10 U	
Barium	ug/L	1.0	1.0 U	
Beryllium	ug/L	0.50	0.50 U	
Cadmium	ug/L	1.0	1.0 U	
Cobalt	ug/L	2.0	2.0 U	
Chromium	ug/L	2.0	2.0 U	
Copper	ug/L	4.0	4.0 U	
Iron	ug/L	100	100 U	
Nickel	ug/L	6.0	6.0 U	
Lead	ug/L	3.0	3.0 U	
Selenium	ug/L	40	40 U	
Zinc	ug/L	50	50 U	
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	

0.35 U

LABORATORY CONTROL SAMPLE: 3300402


mg/L

Sodium

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	200	200	100	80-120
Barium	ug/L	20	20	102	80-120
Beryllium	ug/L	10	9.5	95	80-120
Cadmium	ug/L	20	20	101	80-120
Cobalt	ug/L	40	41	102	80-120
Chromium	ug/L	40	38	94	80-120
Copper	ug/L	80	78	98	80-120
Iron	ug/L	2000	1900	97	80-120
Sodium	mg/L	7	6.9	98	80-120
Lead	ug/L	60	63	104	80-120
Selenium	ug/L	800	780	98	80-120
Zinc	ug/L	1000	1000	101	80-120

Report ID: 920482 - 1869630 Page 63 of 83

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

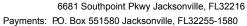
LABORATORY CONTROL SAMPLE: 3300402

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
METALS Nickel	ug/L	120	130	107	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPI		ICATE: 3300403		3300404		Original: J1915380013					
Doromotor	Lloito	Original	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	LIIIII	RPD	RPD Qualifiers	
METALS											
Silver	ug/L	0	200	170	170	86	86	75-125	1	20	
Barium	ug/L	66	20	85	84	97	92	75-125	1	20	
Beryllium	ug/L	3.7	10	14	14	101	102	75-125	1	20	
Cadmium	ug/L	1.7	20	22	22	100	100	75-125	0	20	
Cobalt	ug/L	23	40	63	61	100	96	75-125	3	20	
Chromium	ug/L	0.6	40	41	41	102	103	75-125	1	20	
Copper	ug/L	1.6	80	82	84	103	105	75-125	2	20	
Iron	ug/L	80000	2000	83000	84000	182	189	75-125	0	20	
Sodium	mg/L	22	7	29	30	104	107	75-125	1	20	
Nickel	ug/L	16	120	140	130	101	98	75-125	3	20	
Lead	ug/L	0	60	63	60	106	100	75-125	5	20	
Selenium	ug/L	0	800	930	910	116	113	75-125	3	20	
Zinc	ug/L	22	1000	1100	1000	107	104	75-125	3	20	

QC Batch: DGMj/4316 Analysis Method: SW-846 6020 QC Batch Method: SW-846 3010A 11/26/2019 03:30 Prepared:

J1915380001, J1915380002, J1915380003, J1915380004, J1915380005, J1915380006, J1915380007, J1915380008, Associated Lab Samples:


METHOD BLANK: 3301208

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Vanadium	ug/L	0.71	0.71 U	
Arsenic	ug/L	0.077	0.077 U	
Antimony	ug/L	0.11	0.11 U	
Thallium	ug/L	0.057	0.057 U	
	-			

Report ID: 920482 - 1869630 Page 64 of 83

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3301209

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Vanadium	ug/L	50	47	94	80-120
Arsenic	ug/L	50	46	92	80-120
Antimony	ug/L	50	47	93	80-120
Thallium	ug/L	50	48	96	80-120

MATRIX SPIKE & MATR	IX SPIKE DUPL	(E DUPLICATE: 3301210			211	Original: J1915380001					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers	
METALS											
Vanadium	ug/L	3	50	49	49	93	92	75-125	1	20	
Arsenic	ug/L	0.49	50	45	45	89	88	75-125	1	20	
Antimony	ug/L	0.078	50	47	47	95	94	75-125	1	20	
Thallium	ug/L	0.0026	50	49	49	98	97	75-125	1	20	

QC Batch: WCAj/6861 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

J1915380001, J1915380002, J1915380003, J1915380004, J1915380005, J1915380006, J1915380007, J1915380008, Associated Lab Samples:

METHOD BLANK: 3304621

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
WET CHEMISTRY				
Total Dissolved Solids	mg/L	10	10 U	

LABORATORY CONTROL SAMPLE: 3304622

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Total Dissolved Solids	mg/L	300	310	104	85-115	

Report ID: 920482 - 1869630 Page 65 of 83

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

SAMPLE DUPLICATE: 3304623 Original: J1915361001

Original DUP Max

Parameter Units Result Result RPD RPD Qualifiers

Parameter Units Result Result RPD RPD Q

WET CHEMISTRY

 Total Dissolved Solids
 mg/L
 1100
 1 10
 1
 10

 QC Batch:
 WCAj/6862
 Analysis Method:
 SM 2540 C

QC Batch Method: SM 2540 C Prepared:

Associated Lab Samples: J1915380017, J1915380018

METHOD BLANK: 3304624

Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Total Dissolved Solids mg/L 10 10 U

LABORATORY CONTROL SAMPLE: 3304625

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY

Total Dissolved Solids mg/L 300 290 96 85-115

SAMPLE DUPLICATE: 3304626 Original: J1915380017

Original DUP Max

Parameter Units Result Result RPD RPD Qualifiers

WET CHEMISTRY

Total Dissolved Solids mg/L 1600 1600 1 10

QC Batch: WCAg/8950 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1915380001, J1915380002, J1915380003, J1915380004, J1915380005, J1915380006

METHOD BLANK: 3307607

Blank Reporting
Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Ammonia (N) mg/L 0.0080 U

Report ID: 920482 - 1869630 Page 66 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM	
--	--

LABORATORY CONTR	OL SAMPLE:	3307608									
Parameter	Units		Spike Conc.	LCS Result	L(% R	CS lec	% Rec Limits C	ualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.5	0.48		97	90-110				
LABORATORY CONTR	OL SAMPLE:	3307609									
Parameter	Units		Spike Conc.		LCS LCS Result % Rec		% Rec Limits C	ualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.2	0.22	1	09	90-110				
MATRIX SPIKE & MATE	RIX SPIKE DUF	PLICATE: 33	07610	33076	611	Orig	inal: G191	0233009			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY Ammonia (N)	mg/L	0	2	2.0	2.0	100	100	90-110	0	10	
QC Batch: V	/CAg/8951			Analysis M	ethod:	EPA :	350.1				
QC Batch Method: E	PA 350.1			Prepared:							
Associated Lab Sample	s: J1915380	0007, J191538	30008, J191	5380009, J19	915380010	, J191538	0011, J191	5380012,	J1915	380013, J191538	30014
METHOD BLANK: 3307	7612										
Parameter	Units		Blank Result	Reporting Limit	Qualifiers						
WET CHEMISTRY Ammonia (N)	mg/L		0.0080	0.0080	U						
LABORATORY CONTR	OL SAMPLE:	3307613									
Parameter	Units		Spike Conc.	LCS Result	L(% R	CS lec	% Rec Limits C	ualifiers			
WET CHEMISTRY Ammonia (N)	mg/L		0.5	0.48		97	90-110				

Report ID: 920482 - 1869630 Page 67 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3307614

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY

Ammonia (N) mg/L 0.2 0.22 110 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3307615 3307616 Original: J1915380007

Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers

WET CHEMISTRY

Ammonia (N) mg/L 23 20 39 39 80 79 90-110 1 10

QC Batch: WCAg/8952 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: J1915380017, J1915380018

METHOD BLANK: 3307628

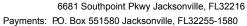
Blank Reporting

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Ammonia (N) mg/L 0.0080 U

LABORATORY CONTROL SAMPLE: 3307629


Spike LCS LCS % Rec Limits Qualifiers Parameter Units Conc. Result % Rec WET CHEMISTRY 0.5 0.48 95 90-110 Ammonia (N) mg/L

LABORATORY CONTROL SAMPLE: 3307630

Spike LCS LCS % Rec Limits Qualifiers Parameter Units Conc. Result % Rec WET CHEMISTRY 0.2 0.20 102 90-110 Ammonia (N) mg/L

Report ID: 920482 - 1869630 Page 68 of 83

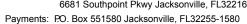
QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:			3307631 3307632			Original: J1915380017					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
WET CHEMISTRY Ammonia (N)	mg/L	20	20	36	36	81	79	90-110	1	10	

QC Batch: MSVj/4698 Analysis Method: SW-846 8260B Prepared: QC Batch Method: SW-846 5030B 12/03/2019 09:33

J1915380001, J1915380002, J1915380003, J1915380004, J1915380005, J1915380006, J1915380007, J1915380008, Associated Lab Samples:


METHOD BLANK: 3307995

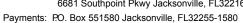
Davamatan	l laita	Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
Iodomethane (Methyl Iodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
2-Butanone (MEK)	ug/L	0.43	0.43 U	
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	
Benzene	ug/L	0.16	0.16 U	
Dibromomethane	ug/L	0.26	0.26 U	
1,2-Dichloropropane	ug/L	0.66	0.66 U	
Trichloroethene	ug/L	0.29	0.29 U	
Bromodichloromethane	ug/L	0.46	0.46 U	
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U	
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U	
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U	

Report ID: 920482 - 1869630 Page 69 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM


METHOD BLANK: 3307995			
Parameter	Units	Blank Result	Reporting Limit Qualifiers
1,1,2-Trichloroethane	ug/L	0.30	0.30 U
Toluene	ug/L	0.23	0.23 U
2-Hexanone	ug/L	0.71	0.71 U
Dibromochloromethane	ug/L	0.33	0.33 U
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U
Chlorobenzene	ug/L	0.21	0.21 U
Ethylbenzene	ug/L	0.24	0.24 U
Bromoform	ug/L	0.44	0.44 U
Styrene	ug/L	0.23	0.23 U
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U
1,2,3-Trichloropropane	ug/L	0.91	0.91 U
1,4-Dichlorobenzene	ug/L	0.22	0.22 U
1,2-Dichlorobenzene	ug/L	0.18	0.18 U
trans-1,4-Dichloro-2-butene	ug/L	1.8	1.8 U
Xylene (Total)	ug/L	0.53	0.53 U
1,2-Dichloroethane-d4 (S)	%	95	70-128
Toluene-d8 (S)	%	86	77-119
Bromofluorobenzene (S)	%	105	86-123

LABORATORY CONTROL SAMPLE & LCSD:		3307996		330799	3307997				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
VOLATILES									
Chloromethane	ug/L	20	24	24	120	118		1	
Vinyl Chloride	ug/L	20	23	22	113	108	70-130	4	20
Bromomethane	ug/L	20	25	27	124	136		9	
Chloroethane	ug/L	20	23	23	113	114		1	
Trichlorofluoromethane	ug/L	20	23	23	114	115		1	
Acetone	ug/L	20	24	25	121	124		2	
1,1-Dichloroethylene	ug/L	20	24	24	119	119	70-130	0	20
lodomethane (Methyl lodide)	ug/L	20	11	4.8	53	24		76	
Acrylonitrile	ug/L	20	23	25	116	124		6	
Methylene Chloride	ug/L	20	25	24	125	119		5	
Carbon Disulfide	ug/L	20	22	23	112	114		2	
trans-1,2-Dichloroethylene	ug/L	20	23	24	115	119		3	
1,1-Dichloroethane	ug/L	20	23	24	117	121		4	
Vinyl Acetate	ug/L	20	32	12	158	59		91	
2-Butanone (MEK)	ug/L	20	23	22	115	111		4	
cis-1,2-Dichloroethylene	ug/L	20	23	24	116	118	70-130	2	20
Bromochloromethane	ug/L	20	24	25	119	126		6	

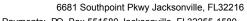
Report ID: 920482 - 1869630 Page 70 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3307996		330799	3307997					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Chloroform	ug/L	20	24	24	118	119	70-130	1	20	
1,2-Dichloroethane	ug/L	20	24	26	122	130		6		
1,1,1-Trichloroethane	ug/L	20	22	23	112	114		2		
Carbon Tetrachloride	ug/L	20	23	23	117	117		0		
Benzene	ug/L	20	24	25	119	124	70-130	4	20	
Dibromomethane	ug/L	20	26	25	128	127		1		
1,2-Dichloropropane	ug/L	20	23	24	117	119		2		
Trichloroethene	ug/L	20	22	25	111	126	70-130	13	20	
Bromodichloromethane	ug/L	20	23	24	116	119		3		
cis-1,3-Dichloropropene	ug/L	20	24	23	118	114		3		
4-Methyl-2-pentanone (MIBK)	ug/L	20	21	22	105	109		3		
trans-1,3-Dichloropropylene	ug/L	20	24	23	119	113		5		
1,1,2-Trichloroethane	ug/L	20	25	26	125	130		4		
Toluene	ug/L	20	19	18	94	91	70-130	3	20	
2-Hexanone	ug/L	20	23	23	114	116		2		
Dibromochloromethane	ug/L	20	19	19	95	93		3		
Tetrachloroethylene (PCE)	ug/L	20	18	16	91	82	70-130	11	20	
1,1,1,2-Tetrachloroethane	ug/L	20	18	18	92	89		4		
Chlorobenzene	ug/L	20	19	18	94	91	70-130	3	20	
Ethylbenzene	ug/L	20	19	18	95	91	70-130	4	20	
Bromoform	ug/L	20	20	20	99	98		1		
Styrene	ug/L	20	19	18	93	92		2		
1,1,2,2-Tetrachloroethane	ug/L	20	24	18	118	93		24		
1,2,3-Trichloropropane	ug/L	20	24	21	121	105		14		
1,4-Dichlorobenzene	ug/L	20	16	15	80	76		4		
1,2-Dichlorobenzene	ug/L	20	17	16	85	82	70-130	3	20	
Xylene (Total)	ug/L	60	57	56	96	93	70-130	3	20	
1,2-Dichloroethane-d4 (S)	%				92	93	70-128	1		
Toluene-d8 (S)	%				84	82	77-119	3		
Bromofluorobenzene (S)	%				96	96	86-123	0		


MATRIX SPIKE SAMPLE:	3307998	Original:	J1915380001
IVI) (I I (I) (OI II (E O) (IVII EE.	0001000	Original.	0 10 10000001

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Chloromethane	ug/L	0	20	21	106	
Vinyl Chloride	ug/L	0	20	20	98	70-130
Bromomethane	ug/L	0	20	25	125	
Chloroethane	ug/L	0	20	21	105	
Trichlorofluoromethane	ug/L	0	20	20	102	

Report ID: 920482 - 1869630 Page 71 of 83

CERTIFICATE OF ANALYSIS

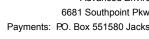
QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 33	807998		Original: J191	5380001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
Acetone	ug/L	0	20	23	114	
1,1-Dichloroethylene	ug/L	0	20	22	111	70-130
lodomethane (Methyl lodide)	ug/L	0	20	5.0	25	
Acrylonitrile	ug/L	0	20	23	114	
Methylene Chloride	ug/L	0	20	22	109	
Carbon Disulfide	ug/L	0	20	22	108	
rans-1,2-Dichloroethylene	ug/L	0	20	22	109	
1,1-Dichloroethane	ug/L	0	20	23	114	
/inyl Acetate	ug/L	0	20	35	176	
P-Butanone (MEK)	ug/L	0	20	26	130	
cis-1,2-Dichloroethylene	ug/L	0	20	23	114	70-130
Bromochloromethane	ug/L	0	20	24	118	
Chloroform	ug/L	0	20	23	114	70-130
,2-Dichloroethane	ug/L	0	20	24	119	
,1,1-Trichloroethane	ug/L	0	20	22	110	
Carbon Tetrachloride	ug/L	0	20	22	108	
senzene	ug/L	4.1	20	27	113	70-130
Dibromomethane	ug/L	0	20	23	117	
,2-Dichloropropane	ug/L	0	20	23	116	
richloroethene	ug/L	0	20	21	104	70-130
Bromodichloromethane	ug/L	0	20	23	113	
is-1,3-Dichloropropene	ug/L	0	20	22	108	
-Methyl-2-pentanone MIBK)	ug/L	0	20	25	123	
rans-1,3-Dichloropropylene	ug/L	0	20	21	107	
,1,2-Trichloroethane	ug/L	0	20	24	119	
oluene	ug/L	0	20	18	91	70-130
-Hexanone	ug/L	0	20	22	109	
Dibromochloromethane	ug/L	0	20	19	94	
etrachloroethylene (PCE)	ug/L	0	20	16	81	70-130
,1,1,2-Tetrachloroethane	ug/L	0	20	18	91	
Chlorobenzene	ug/L	0	20	18	91	70-130
thylbenzene	ug/L	0	20	18	90	70-130
romoform	ug/L	0	20	18	91	
tyrene	ug/L	0	20	18	92	
,1,2,2-Tetrachloroethane	ug/L	0	20	22	108	
,2,3-Trichloropropane	ug/L	0	20	25	123	
,4-Dichlorobenzene	ug/L	0	20	15	75	
,2-Dichlorobenzene	ug/L	0	20	16	78	70-130
(ylene (Total)	ug/L	0	60	54	90	70-130
,2-Dichloroethane-d4 (S)	%	100		0.	89	70-128
oluene-d8 (S)	%	85			85	77-119
	70	40-			00	77.110

Report ID: 920482 - 1869630 Page 72 of 83

99


86-123

105

Bromofluorobenzene (S)

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: MSVj/4700 Analysis Method: SW-846 8260B (SIM) QC Batch Method: SW-846 5030B 12/03/2019 09:33 Prepared:

Associated Lab Samples:

METHOD BLANK: 3308006

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
VOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.020	0.020 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.11	0.11 U	
1,2-Dichloroethane-d4 (S)	%	90	77-125	
Toluene-d8 (S)	%	85	80-121	
Bromofluorobenzene (S)	%	105	80-129	

LABORATORY CONTROL SAMPLE & LCSD:		3308007		3308008						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
VOLATILES										
Ethylene Dibromide (EDB)	ug/L	0.8	0.91	0.80	114	100	70-130	13	30	
1,2-Dibromo-3-Chloropropane	ug/L	8.0	0.84	0.77	105	96	70-130	9	30	
1,2-Dichloroethane-d4 (S)	%				89	89	77-125	1		
Toluene-d8 (S)	%				86	82	80-121	5		
Bromofluorobenzene (S)	%				102	106	80-129	4		

MATRIX SPIKE SAMPLE: 3308009 Original: J1915380002

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
VOLATILES							
Ethylene Dibromide (EDB)	ug/L	0	0.8	0.80	100	70-130	
1,2-Dibromo-3- Chloropropane	ug/L	0	0.8	0.72	90	70-130	
1,2-Dichloroethane-d4 (S)	%	92			89	77-125	
Toluene-d8 (S)	%	83			81	80-121	
Bromofluorobenzene (S)	%	104			101	80-129	

Report ID: 920482 - 1869630 Page 73 of 83

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

 QC Batch:
 DGMj/4347
 Analysis Method:
 SW-846 7470A

 QC Batch Method:
 SW-846 7470A
 Prepared:
 12/04/2019 12:00

Associated Lab Samples: J1915380001, J1915380002, J1915380003, J1915380004, J1915380005, J1915380006, J1915380007, J1915380008,

METHOD BLANK: 3308058

Blank Reporting
Parameter Units Result Limit Qualifiers

METALS

Mercury ug/L 0.011 0.011 U

LABORATORY CONTROL SAMPLE: 3308059

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **METALS** ug/L 2 1.9 96 80-120 Mercury

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3308060 3308061 Original: J1915380001

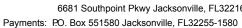
MS Original Spike MSD MS MSD % Rec Max % Rec Limit RPD RPD Qualifiers Parameter Units Result Conc. Result Result % Rec **METALS** 0.02 Mercury ug/L 2 15 15 75 76 80-120 20 1

QC Batch: DGMj/4348
QC Batch Method: SW-846 7470A

Analysis Method: SW-846 7470A Prepared: 12/04/2019 12:00

Associated Lab Samples: J1915380013

METHOD BLANK: 3308062


Blank Reporting
Parameter Units Result Limit Qualifiers

Mercury ug/L 0.011 0.011 U

Report ID: 920482 - 1869630 Page 74 of 83

QUALITY CONTROL DATA

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3308063

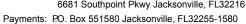
Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 2 Mercury ug/L 2.0 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3308064 3308065 Original: J1915380013

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit R	PD.	Max RPD Qualifiers	
Mercury	ug/L	0	2	1.8	1.8	92	92	80-120	0	20	

Report ID: 920482 - 1869630 Page 75 of 83

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915380001	19325-MW-6A			EPA 300.0	WCAj/6811
J1915380002	19325-MW-6B			EPA 300.0	WCAj/6811
J1915380003	19325-MW-7A			EPA 300.0	WCAj/681′
J1915380004	19325-MW-7B			EPA 300.0	WCAj/6811
J1915380005	19325-MW-8A			EPA 300.0	WCAj/681 ²
11915380006	19325-MW-8B			EPA 300.0	WCAj/6811
1915380007	19325-MW-10A			EPA 300.0	WCAj/6811
1915380008	19325-MW-10B			EPA 300.0	WCAj/6811
1915380009	19325-MW-24A			EPA 300.0	WCAj/6811
1915380010	19325-MW-24B			EPA 300.0	WCAj/6811
1915380011	19325-MW-25A			EPA 300.0	WCAj/6811
1915380012	19325-MW-25B			EPA 300.0	WCAj/6811
11915380013	19325-MW-31A			EPA 300.0	WCAj/681
1915380014	19325-MW-31B			EPA 300.0	WCAj/681′
1915380015	19325-CW-2A			EPA 300.0	WCAj/681
1915380016	19325-CW-3A			EPA 300.0	WCAj/681
1915380017	19325-Dup-2			EPA 300.0	WCAj/681′
11915380018	19325-EQ-2			EPA 300.0	WCAj/6811
J1915380013	19325-MW-31A	SW-846 3005A	DGMj/4302	SW-846 6020	ICMj/2199
11915380001	19325-MW-6A	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380002	19325-MW-6B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380003	19325-MW-7A	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380004	19325-MW-7B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
11915380005	19325-MW-8A	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380006	19325-MW-8B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380007	19325-MW-10A	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380008	19325-MW-10B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380009	19325-MW-24A	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380010	19325-MW-24B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380011	19325-MW-25A	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
11915380012	19325-MW-25B	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388
1915380013	19325-MW-31A	SW-846 3010A	DGMj/4306	SW-846 6010	ICPj/2388

Report ID: 920482 - 1869630 Page 76 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

_ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915380014	19325-MW-31B	SW-846 3010A	DGMj/4307	SW-846 6010	ICPj/2391
11915380015	19325-CW-2A	SW-846 3010A	DGMj/4307	SW-846 6010	ICPj/2391
11915380016	19325-CW-3A	SW-846 3010A	DGMj/4307	SW-846 6010	ICPj/2391
11915380017	19325-Dup-2	SW-846 3010A	DGMj/4307	SW-846 6010	ICPj/2391
11915380018	19325-EQ-2	SW-846 3010A	DGMj/4307	SW-846 6010	ICPj/2391
1915380013	19325-MW-31A	SW-846 3005A	DGMj/4309	SW-846 6010,Dissolved	ICPj/2384
1915380001	19325-MW-6A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
11915380002	19325-MW-6B	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380003	19325-MW-7A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380004	19325-MW-7B	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380005	19325-MW-8A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380006	19325-MW-8B	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380007	19325-MW-10A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380008	19325-MW-10B	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380009	19325-MW-24A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380010	19325-MW-24B	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380011	19325-MW-25A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380012	19325-MW-25B	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380013	19325-MW-31A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380014	19325-MW-31B	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380015	19325-CW-2A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380016	19325-CW-3A	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
1915380017	19325-Dup-2	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
11915380018	19325-EQ-2	SW-846 3010A	DGMj/4316	SW-846 6020	ICMj/2187
11915380001	19325-MW-6A			SM 2540 C	WCAj/686
1915380002	19325-MW-6B			SM 2540 C	WCAj/686
1915380003	19325-MW-7A			SM 2540 C	WCAj/686
1915380004	19325-MW-7B			SM 2540 C	WCAj/686
1915380005	19325-MW-8A			SM 2540 C	WCAj/686
1915380006	19325-MW-8B			SM 2540 C	WCAj/686

Report ID: 920482 - 1869630 Page 77 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

₋ab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915380007	19325-MW-10A			SM 2540 C	WCAj/6861
J1915380008	19325-MW-10B			SM 2540 C	WCAj/6861
11915380009	19325-MW-24A			SM 2540 C	WCAj/6861
11915380010	19325-MW-24B			SM 2540 C	WCAj/6861
11915380011	19325-MW-25A			SM 2540 C	WCAj/6861
11915380012	19325-MW-25B			SM 2540 C	WCAj/6861
11915380013	19325-MW-31A			SM 2540 C	WCAj/6861
11915380014	19325-MW-31B			SM 2540 C	WCAj/6861
11915380015	19325-CW-2A			SM 2540 C	WCAj/6861
11915380016	19325-CW-3A			SM 2540 C	WCAj/6861
J1915380017	19325-Dup-2			SM 2540 C	WCAj/6862
J1915380018	19325-EQ-2			SM 2540 C	WCAj/6862
1915380001	19325-MW-6A			EPA 350.1	WCAg/8950
11915380002	19325-MW-6B			EPA 350.1	WCAg/8950
1915380003	19325-MW-7A			EPA 350.1	WCAg/8950
1915380004	19325-MW-7B			EPA 350.1	WCAg/8950
1915380005	19325-MW-8A			EPA 350.1	WCAg/8950
1915380006	19325-MW-8B			EPA 350.1	WCAg/8950
11915380007	19325-MW-10A			EPA 350.1	WCAg/8951
1915380008	19325-MW-10B			EPA 350.1	WCAg/8951
1915380009	19325-MW-24A			EPA 350.1	WCAg/895
1915380010	19325-MW-24B			EPA 350.1	WCAg/8951
1915380011	19325-MW-25A			EPA 350.1	WCAg/895
1915380012	19325-MW-25B			EPA 350.1	WCAg/895
1915380013	19325-MW-31A			EPA 350.1	WCAg/895
1915380014	19325-MW-31B			EPA 350.1	WCAg/895
1915380015	19325-CW-2A			EPA 350.1	WCAg/895
1915380016	19325-CW-3A			EPA 350.1	WCAg/895
J1915380017	19325-Dup-2			EPA 350.1	WCAg/8952

Report ID: 920482 - 1869630 Page 78 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915380018	19325-EQ-2			EPA 350.1	WCAg/8952
J1915380001	19325-MW-6A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380002	19325-MW-6B	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380003	19325-MW-7A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380004	19325-MW-7B	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380005	19325-MW-8A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380006	19325-MW-8B	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380007	19325-MW-10A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380008	19325-MW-10B	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380009	19325-MW-24A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380010	19325-MW-24B	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380011	19325-MW-25A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
11915380012	19325-MW-25B	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380013	19325-MW-31A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380014	19325-MW-31B	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380015	19325-CW-2A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380016	19325-CW-3A	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380017	19325-Dup-2	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380018	19325-EQ-2	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380019	19325-Trip Blank-6	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380020	19325-Trip Blank-7	SW-846 5030B	MSVj/4698	SW-846 8260B	MSVj/4699
J1915380001	19325-MW-6A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380002	19325-MW-6B	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380003	19325-MW-7A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380004	19325-MW-7B	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380005	19325-MW-8A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
11915380006	19325-MW-8B	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
11915380007	19325-MW-10A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380008	19325-MW-10B	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
11915380009	19325-MW-24A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380010	19325-MW-24B	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380011	19325-MW-25A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701

Report ID: 920482 - 1869630 Page 79 of 83

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1915380 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1915380012	19325-MW-25B	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380013	19325-MW-31A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380014	19325-MW-31B	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380015	19325-CW-2A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380016	19325-CW-3A	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380017	19325-Dup-2	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380018	19325-EQ-2	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380019	19325-Trip Blank-6	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
J1915380020	19325-Trip Blank-7	SW-846 5030B	MSVj/4700	SW-846 8260B (SIM)	MSVj/4701
14045200004	40205 NAM CA	CIN 040 7470A	DOM://0.47	CVA 0.40 7.470 A	C) /A://4707
J1915380001	19325-MW-6A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380002	19325-MW-6B	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380003	19325-MW-7A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380004	19325-MW-7B	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380005	19325-MW-8A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380006	19325-MW-8B	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380007	19325-MW-10A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380008	19325-MW-10B	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380009	19325-MW-24A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380010	19325-MW-24B	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380011	19325-MW-25A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380012	19325-MW-25B	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380013	19325-MW-31A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380014	19325-MW-31B	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380015	19325-CW-2A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380016	19325-CW-3A	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380017	19325-Dup-2	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380018	19325-EQ-2	SW-846 7470A	DGMj/4347	SW-846 7470A	CVAj/1737
J1915380013	19325-MW-31A	SW-846 7470A	DGMj/4348	SW-846 7470A	CVAj/1738

Report ID: 920482 - 1869630 Page 80 of 83

Page 81 of 83

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016	
Fort Myers: 13100 Westlinks Terrace, Suite 10 • Fort Myers	ers
Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608	+ ;
Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL	
Miramar: 10200 USA Today Way, Miramar, FL 33025 - 95	64.
☐ Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL	3
Tampa: 0010 Bringers Bolm Ave Tampa El 22010 - 91	

Client Name:	Waste Connections, Inc.			e: J.E.D OCK DI		ILL (F/ł -)	(/A	BOTTLE SIZE & TYPE	구 ,,	E G	m, tic	in in		1	ĺ	1	1		œ
Address:	5135 Madison Avenue	P.O. Num	ber/Project	Number:				BC	40 mL Viais	500 mL Plastic	500 mL Plastic	250 mL Plastic		_					NUMBER
T	ampa, Florida 33619	Project Lo	cation:					ED											N
Phone: 81	3-468-6142	FDEP I	Facility N	lo: 89544				ANALYSIS REQUIRED	App I VOAs+EDB/DBCP	ā									2.1
FAX:		Project Na	ame and Ad	dress: J	ED 54	PF		D O	l gg	lg,					8 1				Ū.
Contact:	Kirk Wills				OMN.			S	BA	, o	DS								7
	Stoples + Rosel Montrel			St.	cloud,	FL		YS!	#	1+S	3/1								0
	STANDARD RUSH	-				rofile: 3	1172	1AL	DAS	p l	CI/NO3/TDS	2							RA
Page/	of2	AI AI	DaPT	□ EQuIS					4 >	App I Metals+Fe,Hg,Na	ਹੋ	NH3							LABORATORY
SAMPLE ID	SAMPLE DESCRIPTION		Grab	SAM	PLING	MATRIX	NO.	PRESER- VATION	HCL	HNO3	Ice	H2SO4							5
	2, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2		Comp	DATE	TIME		COUNT	PRE		1 2 7	100	7							
1935-MV-	6A		6	11/11/19	1350	GW	6		3	1	1	i						==4	001
19375-MW-	63		1	1	Buy	I -				1	1	1							002
1957- AW-	71				1348														003
19315MV.	76				1420														004
19305-MW-					1230														005
19375-MW-	83				1304								Į,						006
1935- MW-	10 A				1054														007
1935-MW-	103				1126														003
19375-Mid-	DYA		V	1	1112		9		1	9	9	4							009
193)5. MW.	D48		0	11/31/19	1050	GW	6		3	-1	1	1							010
Matrix Code: WW	/ = wastewater SW = surface water GW = gr	ound wate	r DW = d	rinking wate	r O = oil	A = air S	O = soil \$	SL = slud	ge	Preserva	tion Co	de: l = ice	H=(HC	i) S = (H	2SO4) N	_		dium Thic	osulfate)
	∰Yes □No ☐Temp taken from samp in last revised 08/18/2014	le [Temp fro		lavica usad	for measuri	nn Temn b	unique	Where				-		hen rece			n degrees	
	inquished by: Date Time		Red	ceived by:	0700 0360	Date	Time	1				G WAT	_		1230	er ye o	141. 57	0.10	

FC	R DRINKING WATER USE	:		
(Wh	en PWS Information not otherwise supplied)	PWS ID		_
C	ontact Person:		Phone :	
Su	pplier of Water:			
S	ite-Address:			

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016
Fort Myers: 13100 Westlinks Terrace, Suite 10 · Fort My
Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608
☐ Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL
Miramar: 10200 USA Today Way, Miramar, FL 33025 • 9
☐ Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL
☐ Tampa: 9610 Princess Palm Ave. • Tampa, FL 33619 • 81

37.1

					5.54 E	Tampa:	9610 Princ	ess Pain	n Ave. • Ta	mpa, FL 3	33619 • 8	31							
Client Name:	Waste Connections, Inc.			ne: J.E.D OCK DIS	LANDE	TLL (F/	K/A	BOTTLE SIZE & TYPE			-	I ,	- 1				Ĩ		or.
Address:	5135 Madison Avenue	P.O. Numb	per/Project	Number:				BO	40 mL Vials	500 mL Plastic	500 mL Plastic	250 mL Plastic			-				35
T	ampa, Florida 33619	Project Lo	cation:							7 -1			_						NUMBER
Phone: 813	3-468- C/42	FDEP F	acility N	No: 89544				J.	0	m	11,1						- 1		
FAX:		Project Na	me and Ad	Idress:				REQUIRED)BC	Z, g	N.								Ö,
Contact:	Kirk Wills) B/I	I	SO								∑.
Sampled By: N_z	: 1 St-pley + Ponic Montiel							ANALYSIS	H H	Ľ,	CI/NO3/TDS				V I				9
	STANDARD RUSH	Speci	al Inst	ructions	: Jax P	rofile: 3	1172	P.	As-	- c	Š	6							Z X
Page2	of	■ AE	DaPT	☐ EQuIS				AN	App I VOAS+EDB/DBCP	App I Metals+Fe,Hg,Na	S	NH3							ABORATORY I.D.
SAMPLE ID	SAMPLE DESCRIPTION		Grab Comp	SAMI	PLING	MATRIX	NO. COUNT	PRESER- VATION	HCL	HNO3	Ice	H2SO4							F
19335-AV.	25A		G	11/11/4	الادا	GW	6		3	1	t	l						j E	011
19325- MV-	55 B				1200	- (4		1	4	1	1							012
19305- MW-	3 <i>i</i> A		4		0926		J67			2				* ONE	both.	6:14	et to	disse	
19315-AW	31B		G		1006	H	#6			21									014
19305. EW-	A		ĺ		0952		6			V								14.	015
19375- CW-3	A				0900	J				13			T E I					Œ	016
19305- Rp-	7		il	d	0001	GW	1			d	1	1							017
1935-EQ-			G	11/21/19	1502	KW	6			İ	1	1							1018
19355- Trp B	1 - 6 (Incorporate: 64, 68. 24A, 35B, CW-2A 3A,	De - 2)	Ţ	~	·	W	3		T										019
19335 - Try Bl	. L. 7 (Incado: 71.78.81.88 10 with 314,318, EQ	4,108,	1	1	-	w	3		3										020
Matrix Code: WW	V = wastewater SW = surface water GW = gn	ound water	DW = d	Irinking wate	r O = oil	A = air S	O = soil S	L = slud	ge	Preserva	tion Co	de: 1 = ice	H=(HCI)	S = (H2	SO4) N	= (HNO3)	T = (Soc	dium Thio	sulfate)
Received on Ice	Yes No Temp taken from sample	e 🗆	Temp fro	m blank					□Where	required,	pH chec	ked	Tempe	rature wh	nen receiv	ved_ Y	(in	n degrees	celcius)
DCN: AD-051 For	m last revised 08/18/2014			D	evice used	for measuri	ng Temp by	unique i	dentifier (c	ircle IR ter	mp gun u	ised)	9A) G:L	T-1 LT-:	2 T: 10	A A: 3A	M: 3A	S: 1V	
	linquished by: Date Time	,		ceived by:		Date	Time		Aug St			G WAT							
1 (2)	11/21/19 1600	F-	ed E	*		11/31/19	1600		(Wh	en PWS Inf	ormation	not otherwis	e supplied)	PWS	ID:	_			-

	Relinquished by:	Date	Time	Received by:	Date	Time
1	Dis	11/21/19	1600	FedEx	11/31/19	160
2	Feder	11-22+9	9:00	Be and	11-2219	9:00
3						
4					7	16

FOR DRINKING WATER USE		
(When PWS Information not otherwise supplied)	PWS ID:_	
Contact Person:		Phone :
Supplier of Water:		
Site-Address:		

Received by:	11.22.19 /c	0900 Log	-In request numbe Completed b			0	
poler/Shipping I		1	Completed b	y	-		
ourier: 🗆 AEL 🗆 Cli		Strank Mendeus	1 AEC E ABAS E	Nu con			
			JAES LIASAP LI	Other (describ)e):	-	
pe: 🗴 Cooler 🗆 Box	☐ Other (describe)						
oler temperature: I	dentify the cooler an	d document the tem	perature blank or ice	e water measu	irement	t.	
Cooler ID				I			_
	il.				-	_	
Temp (°C)	Mamala Bauth	Co	F 2 1 5 1			100	
Temp taken from	Sample Bottle Cooler	☐ Sample Bottle ☐ Cooler	☐ Sample Bottle ☐ Cooler	☐ Sample Bottle ☐ Cooler		☐ Sample	
Temp measured	XIR gun-S/№ 9333779	☐ IR gun S/N 9333779	☐ IR gun S/N 9333779	IR gun S/N 93		☐ IR gun	S/N 9333
with	☐ Thermometer (enter ID):	☐ Thermometer (enter ID):	☐ Thermometer (enter ID):	☐ Thermometer ID):	(enter	☐ Therm ID):	ometer (en
	apers properly include	iner(s) intact? d with samples?			1		X
	aners properly include				-		X
 Were custody pa Were custody pa 	apers properly include apers properly filled or	d with samples? ut (ink, signed, match	labels)?		~ ~		×
Were custody pa Were custody pa Did all bottles as	apers properly filled or rrive in good condition	d with samples? ut (ink, signed, match n (unbroken)?			1		×
 Were custody pa Were custody pa Did all bottles at Were all bottle 1 	apers properly filled or rrive in good condition abels complete (sampl	d with samples? ut (ink, signed, match n (unbroken)? le #, date, signed, anal			1		×
Were custody pa Were custody pa Did all bottles at Were all bottle l Did the sample l	apers properly filled or rrive in good condition abels complete (sample abels agree with the cl	d with samples? ut (ink, signed, match n (unbroken)? le #, date, signed, anal hain of custody?			1		×
Were custody pa Were custody pa Did all bottles at Were all bottle I Did the sample I Were correct bottle	apers properly filled or trive in good condition abels complete (sample abels agree with the cl ttles used for the tests	d with samples? ut (ink, signed, match n (unbroken)? le #, date, signed, anal hain of custody? indicated?	ysis, preservatives)?		1111		×
Were custody pa Were custody pa Did all bottles as Were all bottle I Did the sample I Were correct bottle. Were proper sam	apers properly filled or prive in good condition abels complete (sample abels agree with the classes titles used for the tests apple preservation technical	d with samples? ut (ink, signed, match n (unbroken)? le #, date, signed, anal- hain of custody? indicated? niques indicated on the	ysis, preservatives)?		11111		×
 Were custody pa Were custody pa Did all bottles at Were all bottle I Did the sample I Were correct both Were proper sam Were samples re 	apers properly filled or rrive in good condition abels complete (sample labels agree with the cl ttles used for the tests aple preservation technoceived within holding	d with samples? ut (ink, signed, match n (unbroken)? le #, date, signed, anal hain of custody? indicated? niques indicated on the times?	ysis, preservatives)?		1111		×
 Were custody pa Were custody pa Did all bottles at Were all bottle I Did the sample I Were correct bo Were proper sam Were samples re Were all VOA v 	apers properly filled or rrive in good condition abels complete (sample abels agree with the cl ttles used for the tests apple preservation technologies ceived within holding ials free of the presence	d with samples? ut (ink, signed, match n (unbroken)? le #, date, signed, analy hain of custody? indicated? niques indicated on the times? ce of air bubbles?	ysis, preservatives)?	collection?	11111		X
 Were custody pa Were custody pa Did all bottles at Were all bottle I Did the sample I Were correct bo Were proper sam Were samples re Were all VOA v Have all Soil VO 	apers properly filled or prive in good condition abels complete (sample abels agree with the cl ttles used for the tests apple preservation technologies eceived within holding ials free of the presence DA Vials and Encores	d with samples? ut (ink, signed, match in (unbroken)? le #, date, signed, analy hain of custody? indicated? iniques indicated on the times? be of air bubbles? been placed in a freeze	ysis, preservatives)? clabel? er within 48 hours of c	collection?	11111111		×
 Were custody pages Were custody pages Did all bottles at 5. Were all bottle 1 Did the sample 1 Were correct books. Were proper samples re 10. Were all VOA vol. Have all Soil VOI. Were samples in 13. Was the cooler to the samples of the	apers properly filled or rrive in good condition abels complete (sample labels agree with the classified titles used for the tests apple preservation technologies acceived within holding itals free of the presence OA Vials and Encores a direct contact with we comperature less than 6	d with samples? ut (ink, signed, match in (unbroken)? le #, date, signed, analy hain of custody? indicated? indicated? iniques indicated on the times? ce of air bubbles? been placed in a freeze et ice? If "No," check "C?	ysis, preservatives)? label? within 48 hours of cone: □ NO ICE □ BI	LUE ICE	11111		X
2. Were custody page 3. Were custody page 4. Did all bottles at 5. Were all bottle 1. G. Did the sample 1. Were correct both 8. Were proper samples re 10. Were all VOA vol. 11. Have all Soil VOI. Were samples in 13. Was the cooler to 14. Where pH preser	apers properly filled or rrive in good condition abels complete (sample labels agree with the cluttles used for the tests apple preservation technologies of the presence acceived within holding its free of the presence OA Vials and Encores a direct contact with we emperature less than 6 rvation is required, are	d with samples? ut (ink, signed, match in (unbroken)? le #, date, signed, analy hain of custody? indicated? iniques indicated on the times? be of air bubbles? been placed in a freeze et ice? If "No," check "C? essample pHs checked	ysis, preservatives)? label? within 48 hours of cone: □ NO ICE □ BI and any anomalies rec	LUE ICE	111111111		X
 Were custody pa Were custody pa Did all bottles at Were all bottle I Did the sample I Were correct boton Were proper sam Were samples re Were all VOA v Have all Soil VO Were samples in Was the cooler to Where pH presents Sample control? 	apers properly filled or rrive in good condition abels complete (sample labels agree with the classical titles used for the tests apple preservation technologies of the presence of the presence of the prese	d with samples? ut (ink, signed, match in (unbroken)? le #, date, signed, analy hain of custody? indicated? iniques indicated on the times? be of air bubbles? been placed in a freeze et ice? If "No," check OC? e sample pHs checked Note: VOA samples ar	ysis, preservatives)? label? within 48 hours of cone: □ NO ICE □ BI and any anomalies rec	LUE ICE	111111111		X
 Were custody pa Were custody pa Did all bottles at Were all bottle I Did the sample I Were correct bo Were correct bo Were proper sam Were samples re Were all VOA v Have all Soil VO Were samples in Was the cooler to Where pH preser Sample control? Was sufficient sa 	apers properly filled or rrive in good condition abels complete (sample abels agree with the classical titles used for the tests apple preservation technologies of the presence of the presence of the presen	d with samples? ut (ink, signed, match in (unbroken)? le #, date, signed, analy hain of custody? indicated? iniques indicated on the times? been placed in a freeze et ice? If "No," check of the perform all tests?	ysis, preservatives)? e label? er within 48 hours of cone: □ NO ICE □ BI and any anomalies rece checked by laborato	orded by ry analysts.	11111111111		×
 Were custody pages Were custody pages Did all bottles are Were all bottle I Did the sample I Were correct bots Were proper samples re Were all VOA v Have all Soil VO Were samples in Were proper samples re Were all VOA v Have all Soil VO Were samples in Was the cooler to Where pH preser Sample control? Was sufficient sa If for Bacteriological 	apers properly filled or rrive in good condition abels complete (sample labels agree with the classical titles used for the tests apple preservation technologies. The eceived within holding its free of the presence OA Vials and Encores direct contact with we emperature less than 6 arvation is required, are Are all <2 or >10? I ample volume provide gical testing, were con	d with samples? ut (ink, signed, match in (unbroken)? le #, date, signed, analy hain of custody? indicated? iniques indicated on the times? ce of air bubbles? been placed in a freeze et ice? If "No," check inc? e sample pHs checked Note: VOA samples ar d to perform all tests? tainers supplied by AE	er within 48 hours of cone: NO ICE DBI and any anomalies rece checked by laborato	orded by ry analysts.	1111111111111		X
 Were custody pages Were custody pages Did all bottles at 5. Were all bottle 1 Did the sample 1 Were correct bottles Were proper samples resonance Were all VOA v Have all Soil VO Were samples in 13. Was the cooler to 14. Where pH presens Sample control? Was sufficient sample 16. If for Bacteriolog 17. Were all sample 	apers properly filled or rrive in good condition abels complete (sample labels agree with the classical titles used for the tests apple preservation technologies. The eceived within holding its free of the presence OA Vials and Encores direct contact with we emperature less than 6 arvation is required, are Are all <2 or >10? I ample volume provide gical testing, were con	d with samples? ut (ink, signed, match in (unbroken)? le #, date, signed, analy hain of custody? indicated? iniques indicated on the times? ce of air bubbles? been placed in a freeze et ice? If "No," check of complete in the checked Note: VOA samples ar d to perform all tests? tainers supplied by AE y AEL? (Other than Be	er within 48 hours of cone: NO ICE DBI and any anomalies rece checked by laborato	orded by ry analysts.	11111111111		X

DCN: AD-D048 Eff date 2/3/10, Last rev 9/6/16

Project No.: J1915380

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 7470A Preparation: SW-846 7470A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.
 B. Blanks: All acceptance criteria were met.
 C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike (MS) recoveries of mercury for J1915380001 were outside control

criteria. Recoveries in the Laboratory Control Sample (LCS) were acceptable, which indicates the analytical batch was in control. The affected sample is qualified to indicate

matrix interference.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1915380

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 6010
Preparation: SW-846 3010A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: The upper control criterion was exceeded for Copper in Continuing Calibration

Verification (CCV) standards for analytical batch 2388, indicating increased sensitivity. The client samples reported in this batch did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No

further corrective action was required.

B. Blanks: All acceptance criteria were met.
C. Duplicates: All acceptance criteria were met.
D. Spikes: All acceptance criteria were met.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1915380

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 6010
Preparation: SW-846 3010A

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: The upper control criterion was exceeded for Copper in Continuing Calibration Verification

(CCV) standards for analytical batch 2391, indicating increased sensitivity. The client samples reported in this batch did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No

further corrective action was required.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The control criteria for matrix spike recoveries of Iron for J1915380014 are not applicable.

The analyte concentration in the sample was greater than 4 times the added spike concentrations, preventing accurate evaluation of the spike recovery. No further

corrective action was required.

The matrix spike recovery of Cadmium for J1915380014 was outside control criteria due to the presence of target analytes in the sample. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The affected

sample is qualified to indicate matrix interference.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1915380

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 350.1

Preparation: None

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike recoveries of NH3 for J1915380007 were outside control criteria.

Recoveries in the Laboratory Control Sample (LCS) and %RPD were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential

low bias in this matrix. No further corrective action was required.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1915380

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 350.1

Preparation: None

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike recoveries of NH3 for J1915380017 were outside control criteria.

Recoveries in the Laboratory Control Sample (LCS) and %RPD were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential

low bias in this matrix. No further corrective action was required.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: J1915380

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 300.0

Preparation: None

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: The matrix spike recovery of Chloride for J1915380010 was outside control criteria.

Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample

Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The

affected sample is qualified accordingly.

The matrix spike (MS) recovery of Nitrate for J1915380010 was outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were acceptable, which indicates the analytical batch was in control. The offending analytes were not detected in the client sample. No further corrective action is required.

E. Serial Diluion:

F. Samples:

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (813)630-9616 Fax: (813)630-4327

December 13, 2019

Kirk Wills Waste Connections 5135 Madison Avenue Tampa, FL 33619

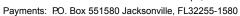
RE: Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Dear Kirk Wills:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, November 22, 2019. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these

If you have any questions concerning this report, please feel free to contact me.

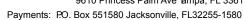
Sincerely,


Craig Myers - Client Services Manager

CMyers@AELLab.com

Enclosures

Report ID: 920466 - 1865554 Page 1 of 65


SAMPLE SUMMARY

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1921060001	19326-UL	Water	11/21/2019 09:15	11/22/2019 12:00
T1921060002	19326-TL	Water	11/21/2019 08:30	11/22/2019 12:00
T1921060003	Trip Blank	Water	11/22/2019 00:00	11/22/2019 12:00

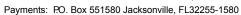
Report ID: 920466 - 1865554 Page 2 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060001 Matrix: Water

19326-UL Date Collected: 11/21/19 09:15 Sample ID:


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	846 6010				
A I		iyalodi ivic			4000	050	40/4/0040 47:05	_
Aluminum	120000		ug/L	1	1600	250	12/4/2019 17:35	T
Arsenic	170		ug/L	1	100	28	12/4/2019 17:35	T
Barium	1700	U	ug/L	1	2000	1700	12/4/2019 17:35	T
Beryllium	2.9	U	ug/L	1	6.0	2.9	12/4/2019 17:35	T
Cadmium	2.4	U	ug/L	1	9.0	2.4	12/4/2019 17:35	T
Calcium	360		mg/L	1	3.0	0.72	12/4/2019 17:35	T
Chromium	810		ug/L	1	25	20	12/4/2019 17:35	Т
Cobalt	44		ug/L	1	20	2.8	12/4/2019 17:35	T
Copper	46	ı	ug/L	1	80	14	12/4/2019 17:35	Т
Iron	31000		ug/L	1	1500	1400	12/4/2019 17:35	Т
Lead	78	U	ug/L	1	100	78	12/4/2019 17:35	Т
Magnesium	110		mg/L	1	5.0	4.4	12/4/2019 17:35	Т
Manganese	1000		ug/L	1	20	4.9	12/4/2019 17:35	Т
Nickel	210		ug/L	1	90	44	12/4/2019 17:35	Т
Potassium	1200		mg/L	2	10	2.9	12/6/2019 13:44	Т
Selenium	120	ı	ug/L	1	300	120	12/4/2019 17:35	Т
Silver	34	U	ug/L	1	50	34	12/4/2019 17:35	Т
Sodium	3200		mg/L	2	12	10	12/6/2019 13:44	Т
Tin	47	ı	ug/L	1	100	18	12/4/2019 17:35	Т
Vanadium	620		ug/L	1	10	5.8	12/4/2019 17:35	Т
Zinc	190		ug/L	1	100	74	12/4/2019 17:35	Т
Analysis Desc: SW846 6020B	Prer	paration N	Method: SW	V-846 3010A				
Analysis,Total								
		•	ethod: SW-8					
Antimony	19	ı	ug/L	5	35	5.5	12/5/2019 14:50	J
Thallium	2.8	U	ug/L	5	10	2.8	12/5/2019 14:50	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SW	V-846 7470A				
Analysis,Water	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.50	U	ug/L	1	1.0	0.50	11/26/2019 14:57	Т
SEMIVOLATILES								
Analysis Desc: 8081B Pesticide	Prep	paration I	Method: SW	V-846 3510C				
Analysis, Water	Ana	lytical Me	thod: EPA	8081				
4.4`-DDD	0.0066	U	ug/L	1	0.080	0.0066	11/27/2019 00:14	J

Report ID: 920466 - 1865554 Page 3 of 65

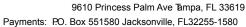
CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: T1921060001 Date Received: 11/22/19 12:00 Matrix: Water

Sample ID: 19326-UL Date Collected: 11/21/19 09:15


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
4,4`-DDE	0.015	U	ug/L	1	0.080	0.015	11/27/2019 00:14	J
4,4`-DDT	0.0086	U	ug/L	1	0.080	0.0086	11/27/2019 00:14	J
Aldrin	0.0076	U	ug/L	1	0.080	0.0076	11/27/2019 00:14	J
Chlordane (technical)	0.21	U	ug/L	1	0.80	0.21	11/27/2019 00:14	J
Dieldrin	0.0044	U	ug/L	1	0.080	0.0044	11/27/2019 00:14	J
Endosulfan I	0.012	U	ug/L	1	0.080	0.012	11/27/2019 00:14	J
Endosulfan II	0.011	U	ug/L	1	0.080	0.011	11/27/2019 00:14	J
Endosulfan Sulfate	0.013	U	ug/L	1	0.080	0.013	11/27/2019 00:14	J
Endrin	0.0067	U	ug/L	1	0.080	0.0067	11/27/2019 00:14	J
Endrin Aldehyde	0.010	U	ug/L	1	0.080	0.010	11/27/2019 00:14	J
Heptachlor	0.014	U	ug/L	1	0.080	0.014	11/27/2019 00:14	J
Heptachlor Epoxide	0.0066	U	ug/L	1	0.080	0.0066	11/27/2019 00:14	J
Methoxychlor	0.023	U	ug/L	1	0.080	0.023	11/27/2019 00:14	J
Toxaphene	0.48	U	ug/L	1	0.80	0.48	11/27/2019 00:14	J
alpha-BHC	0.012	U	ug/L	1	0.080	0.012	11/27/2019 00:14	J
beta-BHC	0.0075	U	ug/L	1	0.080		11/27/2019 00:14	J
delta-BHC	0.0034	U	ug/L	1	0.080	0.0034	11/27/2019 00:14	J
gamma-BHC (Lindane)	0.0074	U	ug/L	1	0.080	0.0074	11/27/2019 00:14	J
Tetrachloro-m-xylene (S)	5	J4	%	1	44-124		11/27/2019 00:14	
Decachlorobiphenyl (S)	7	J4	%	1	48-137		11/27/2019 00:14	
Analysis Desc: 8141A Org Phos	Pre	paration N	Method: SV	V-846 3510C				
Pesticide Analysis, Water	Ana	lytical Me	thod: EPA	8141				
Atrazine	0.28	U	ug/L	1	0.80	0.28	11/26/2019 20:49	J
Azinphos-methyl	0.23	U	ug/L	1	0.80	0.23	11/26/2019 20:49	J
Chlorpyrifos	0.16	U	ug/L	1	0.80	0.16	11/26/2019 20:49	J
Chlorpyrifos-methyl	0.24	U	ug/L	1	0.80	0.24	11/26/2019 20:49	J
Demeton	0.24	U	ug/L	1	0.80	0.24	11/26/2019 20:49	J
Diazinon	0.22	U	ug/L	1	0.80	0.22	11/26/2019 20:49	J
Dimethoate	0.22	U	ug/L	1	0.80	0.22	11/26/2019 20:49	J
Disulfoton	0.16	U	ug/L	1	0.80	0.16	11/26/2019 20:49	J
Ethion	0.27	U	ug/L	1	0.80	0.27	11/26/2019 20:49	J
Ethoprop	0.19	U	ug/L	1	0.80	0.19	11/26/2019 20:49	J
Famphur	0.44	U	ug/L	1	0.80	0.44	11/26/2019 20:49	J
Fensulfothion	0.19	Ū	ug/L	1	0.80	0.19	11/26/2019 20:49	J
Fonophos	0.20	Ū	ug/L	1	0.80	0.20	11/26/2019 20:49	J
Malathion	0.29	Ū	ug/L	1	0.80	0.29	11/26/2019 20:49	J
			_					
Merphos	0.23	U	ug/L	1	0.80	0.23	11/26/2019 20:49	J
Merphos Methyl Parathion	0.23 0.22	U U	ug/L ug/L	1 1	0.80 0.80		11/26/2019 20:49 11/26/2019 20:49	J J

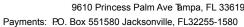
Report ID: 920466 - 1865554 Page 4 of 65

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060001 Matrix: Water


Sample ID: 19326-UL Date Collected: 11/21/19 09:15

Sample Description: Location:

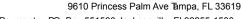
Sample Description:				Location:				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Parathion (Ethyl)	0.26	U	ug/L	1	0.80		11/26/2019 20:49	J
Phorate	0.20	U	ug/L ug/L	1	0.80		11/26/2019 20:49	J
Phosmet	0.17	U	ug/L ug/L	1	0.80		11/26/2019 20:49	J
Ronnel	0.19	Ü	ug/L ug/L	1	0.80		11/26/2019 20:49	J
Simazine	0.19	Ü	ug/L ug/L	1	0.80		11/26/2019 20:49	J
Tributylphosphate (S)	37	J4	%	1	48.5-121	0.20	11/26/2019 20:49	J
Analysis Desc: 8151A Herbicides	Prep	aration I	Method: 81	51				
Analysis, Water	Ana	ytical Me	ethod: EPA	8151				
2,4,5-T	3.3	U	ug/L	10	20	3.3	12/4/2019 21:22	J
2,4-D	13	U	ug/L	10	60	13	12/4/2019 21:22	J
2,4-DB	17	U	ug/L	10	60	17	12/4/2019 21:22	J
Dalapon	76	U	ug/L	10	200	76	12/4/2019 21:22	J
Dicamba	7.5	U	ug/L	10	20	7.5	12/4/2019 21:22	J
Dichloroprop	8.7	U	ug/L	10	60	8.7	12/4/2019 21:22	J
Dinoseb	5.1	U	ug/L	10	200	5.1	12/4/2019 21:22	J
Pentachlorophenol	2.9	U	ug/L	10	10	2.9	12/4/2019 21:22	J
Silvex (2,4,5-TP)	3.0	U	ug/L	10	20	3.0	12/4/2019 21:22	J
2,4-Dichlorophenylacetic acid (S)	0	2	%	10	41-122		12/4/2019 21:22	J
Analysis Desc: SW 8011 Analysis,	Prep	aration I	Method: SV	V-846 8011				
Water	Ana	ytical Me	ethod: SW-	846 8011				
1,2-Dibromo-3-Chloropropane	0.0062	U	ug/L	1	0.021	0.0062	12/5/2019 17:49	J
Ethylene Dibromide (EDB)	0.0064	Ü	ug/L	1	0.021	0.0064	12/5/2019 17:49	J
Tetrachloro-m-xylene (S)	149	J	%	1	64-150	0.0001	12/5/2019 17:49	Ū
Analysis Desc: 8082A PCB Analysis,	Prep	aration I	Method: SV	V-846 3510C				
Water	Ana	ytical Me	ethod: SW-	846 8082A				
Aroclor 1016 (PCB-1016)	0.26	U	ug/L	1	0.80	0.26	11/27/2019 00:14	J
Aroclor 1221 (PCB-1221)	0.44	U	ug/L	1	0.80	0.44	11/27/2019 00:14	J
Aroclor 1232 (PCB-1232)	0.39	U	ug/L	1	0.80	0.39	11/27/2019 00:14	J
Aroclor 1242 (PCB-1242)	0.38	U	ug/L	1	0.80	0.38	11/27/2019 00:14	J
Aroclor 1248 (PCB-1248)	0.27	U	ug/L	1	0.80	0.27	11/27/2019 00:14	J
Aroclor 1254 (PCB-1254)	0.20	U	ug/L	1	0.80	0.20	11/27/2019 00:14	J
,	0.32	U	ug/L	1	0.80	0.32	11/27/2019 00:14	J
Aroclor 1260 (PCB-1260) Tetrachloro-m-xylene (S)	0.32 5	U J4	ug/L %	1 1	0.80 61-119	0.32	11/27/2019 00:14 11/27/2019 00:14	J

Report ID: 920466 - 1865554 Page 5 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060001 Matrix: Water


19326-UL Date Collected: 11/21/19 09:15 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: 8270C Analysis, Water	Prep	paration I	Method: SV	V-846 3510C				
	Ana	lytical Me	ethod: SW-	846 8270C				
1,2,4,5-Tetrachlorobenzene	32	U	ug/L	5	120	32	12/2/2019 06:07	J
1,2,4-Trichlorobenzene	17	U	ug/L	5	120	17	12/2/2019 06:07	J
1,2-Dichlorobenzene	34	U	ug/L	5	120	34	12/2/2019 06:07	J
1,2-Diphenylhydrazine	23	U	ug/L	5	120	23	12/2/2019 06:07	J
1,3,5-Trinitrobenzene	59	U	ug/L	5	120	59	12/2/2019 06:07	J
1,3-Dichlorobenzene	25	U	ug/L	5	120	25	12/2/2019 06:07	J
1,3-Dinitrobenzene	50	U	ug/L	5	120	50	12/2/2019 06:07	J
1,4-Dichlorobenzene	48	U	ug/L	5	120	48	12/2/2019 06:07	J
1,4-Naphthoquinone	110	U	ug/L	5	120	110	12/2/2019 06:07	J
1,4-Phenylenediamine	120	U	ug/L	5	1900	120	12/2/2019 06:07	J
1-Methylnaphthalene	1.2	U	ug/L	5	4.8	1.2	12/2/2019 06:07	J
1-Naphthylamine	23	U	ug/L	5	120	23	12/2/2019 06:07	J
2,3,4,6-Tetrachlorophenol	31	U	ug/L	5	120	31	12/2/2019 06:07	J
2,4,5-Trichlorophenol	32	U	ug/L	5	120	32	12/2/2019 06:07	J
2,4,6-Trichlorophenol	34	U	ug/L	5	120	34	12/2/2019 06:07	J
2,4-Dichlorophenol	22	U	ug/L	5	120	22	12/2/2019 06:07	J
2,4-Dimethylphenol	63	U	ug/L	5	120	63	12/2/2019 06:07	J
2,4-Dinitrophenol	26	U	ug/L	5	240	26	12/2/2019 06:07	J
2,4-Dinitrotoluene (2,4-DNT)	44	U	ug/L	5	120	44	12/2/2019 06:07	J
2,6-Dichlorophenol	32	U	ug/L	5	120	32	12/2/2019 06:07	J
2,6-Dinitrotoluene (2,6-DNT)	47	U	ug/L	5	120	47	12/2/2019 06:07	J
2-Acetylaminofluorene	85	U	ug/L	5	120	85	12/2/2019 06:07	J
2-Chloronaphthalene	40	U	ug/L	5	120	40	12/2/2019 06:07	J
2-Chlorophenol	36	U	ug/L	5	120	36	12/2/2019 06:07	J
2-Methyl-4,6-dinitrophenol	28	U	ug/L	5	120	28	12/2/2019 06:07	J
2-Methylnaphthalene	1.2	U	ug/L	5	4.8	1.2	12/2/2019 06:07	J
2-Methylphenol (o-Cresol)	35	U	ug/L	5	120	35	12/2/2019 06:07	J
2-Naphthylamine	21	U	ug/L	5	120	21	12/2/2019 06:07	J
2-Nitroaniline	37	U	ug/L	5	120	37	12/2/2019 06:07	J
2-Nitrophenol	15	U	ug/L	5	120	15	12/2/2019 06:07	J
2-Picoline (2-Methylpyridine)	29	U	ug/L	5	120	29	12/2/2019 06:07	J
3+4-Methylphenol(mp-Cresol)	870		ug/L	5	120	24	12/2/2019 06:07	J
3,3'-Dimethylbenzidine	57	U	ug/L	5	120	57	12/2/2019 06:07	J
3,3`-Dichlorobenzidine	30	U	ug/L	5	120	30	12/2/2019 06:07	J
3-Methylcholanthrene	45	U	ug/L	5	120	45	12/2/2019 06:07	J
3-Nitroaniline	26	U	ug/L	5	120	26	12/2/2019 06:07	J
4-Aminobiphenyl	15	U	ug/L	5	120	15	12/2/2019 06:07	J

Report ID: 920466 - 1865554 Page 6 of 65

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

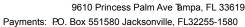
Phone: (813)630-9616 Fax: (813)630-4327

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060001 Matrix: Water

19326-UL Date Collected: 11/21/19 09:15 Sample ID:


Sample Description: Location:

Advanced Environmental Laboratories, Inc.

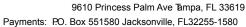
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
4-Bromophenyl Phenyl Ether	27	U	ug/L	5	120	27	12/2/2019 06:07	J
4-Chloro-3-methylphenol	15	U	ug/L	5	120	15	12/2/2019 06:07	J
4-Chloroaniline	22	U	ug/L	5	120	22	12/2/2019 06:07	J
4-Chlorophenyl Phenyl Ether	39	U	ug/L	5	120	39	12/2/2019 06:07	J
4-Dimethyl aminoazobenzene	18	U	ug/L	5	120	18	12/2/2019 06:07	J
4-Nitroaniline	31	U	ug/L	5	120	31	12/2/2019 06:07	J
4-Nitrophenol	69	U	ug/L	5	120	69	12/2/2019 06:07	J
5-Nitro-o-toluidine	69	U	ug/L	5	120	69	12/2/2019 06:07	J
7,12-Dimethylbenz[a]anthracene	26	U	ug/L	5	120	26	12/2/2019 06:07	J
Acenaphthene	0.96	U	ug/L	5	4.8	0.96	12/2/2019 06:07	J
Acenaphthylene	1.0	U	ug/L	5	4.8	1.0	12/2/2019 06:07	J
Acetophenone	41	ı	ug/L	5	120	38	12/2/2019 06:07	J
Aniline	21	U	ug/L	5	120	21	12/2/2019 06:07	J
Anthracene	0.85	U	ug/L	5	4.8	0.85	12/2/2019 06:07	J
Benzidine	29	U	ug/L	5	120	29	12/2/2019 06:07	J
Benzo[a]anthracene	0.30	U	ug/L	5	4.8	0.30	12/2/2019 06:07	J
Benzo[a]pyrene	0.89	U	ug/L	5	4.8	0.89	12/2/2019 06:07	J
Benzo[b]fluoranthene	0.30	U	ug/L	5	2.4	0.30	12/2/2019 06:07	J
Benzo[g,h,i]perylene	1.1	U	ug/L	5	4.8	1.1	12/2/2019 06:07	J
Benzo[k]fluoranthene	1.2	U	ug/L	5	4.8	1.2	12/2/2019 06:07	J
Benzoic Acid	2800		ug/L	10	480	37	12/3/2019 02:39	J
Benzyl Alcohol	56	U	ug/L	5	120	56	12/2/2019 06:07	J
Butyl benzyl phthalate	26	U	ug/L	5	120	26	12/2/2019 06:07	J
Chlorobenzilate	48	U	ug/L	5	120	48	12/2/2019 06:07	J
Chrysene	0.79	U	ug/L	5	4.8	0.79	12/2/2019 06:07	J
Di-n-Butyl Phthalate	21	U	ug/L	5	120	21	12/2/2019 06:07	J
Di-n-octyl Phthalate	29	U	ug/L	5	120	29	12/2/2019 06:07	J
Diallate	27	U	ug/L	5	120	27	12/2/2019 06:07	J
Dibenzo[a,h]anthracene	0.57	U	ug/L	5	4.8	0.57	12/2/2019 06:07	J
Dibenzofuran	1.7	U	ug/L	5	120	1.7	12/2/2019 06:07	J
Diethyl phthalate	50	U	ug/L	5	120	50	12/2/2019 06:07	J
Dimethoate	29	U	ug/L	5	120	29	12/2/2019 06:07	J
Dimethyl phthalate	43	U	ug/L	5	240	43	12/2/2019 06:07	J
Dinoseb	55	U	ug/L	5	120	55	12/2/2019 06:07	J
Diphenylamine	50	Ū	ug/L	5	120	50	12/2/2019 06:07	J
Disulfoton	52	Ū	ug/L	5	120	52	12/2/2019 06:07	J
Ethyl methanesulfonate	22	Ū	ug/L	5	120	22	12/2/2019 06:07	J
Famphur	48	Ū	ug/L	5	120	48	12/2/2019 06:07	J
Fluoranthene	0.89	Ū	ug/L	5	4.8	0.89	12/2/2019 06:07	J
Fluorene	0.92	Ü	ug/L	5	4.8	0.92	12/2/2019 06:07	J

Report ID: 920466 - 1865554 Page 7 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060001 Matrix: Water


Sample ID: 19326-UL Date Collected: 11/21/19 09:15

Sample Description: Location:

campio Boodilption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Hexachlorobenzene	24	U	ug/L	5	120	24	12/2/2019 06:07	J
Hexachlorobutadiene	30	U	ug/L	5	120	30	12/2/2019 06:07	J
Hexachlorocyclopentadiene	25	U	ug/L	5	120	25	12/2/2019 06:07	J
Hexachloroethane	30	U	ug/L	5	120	30	12/2/2019 06:07	J
Hexachloropropene	64	U	ug/L	5	120	64	12/2/2019 06:07	J
Indeno(1,2,3-cd)pyrene	0.27	U	ug/L	5	4.8	0.27	12/2/2019 06:07	J
Isodrin	74	U	ug/L	5	120	74	12/2/2019 06:07	J
Isophorone	27	U	ug/L	5	120	27	12/2/2019 06:07	J
Isosafrole	76	U	ug/L	5	120	76	12/2/2019 06:07	J
Kepone	120	U	ug/L	5	1900	120	12/2/2019 06:07	J
Methapyrilene	44	U	ug/L	5	120	44	12/2/2019 06:07	J
Methyl Methanesulfonate	16	U	ug/L	5	120	16	12/2/2019 06:07	J
Methyl Parathion	31	U	ug/L	5	120	31	12/2/2019 06:07	J
N-Nitrosodi-n-butylamine	35	U	ug/L	5	120	35	12/2/2019 06:07	J
N-Nitrosodi-n-propylamine	54	U	ug/L	5	120	54	12/2/2019 06:07	J
N-Nitrosodiethylamine	51	U	ug/L	5	120	51	12/2/2019 06:07	J
N-Nitrosodimethylamine	22	U	ug/L	5	120	22	12/2/2019 06:07	J
N-Nitrosodiphenylamine	50	U	ug/L	5	120	50	12/2/2019 06:07	J
N-Nitrosomethylethylamine	65	U	ug/L	5	120	65	12/2/2019 06:07	J
N-Nitrosopiperidine	30	U	ug/L	5	120	30	12/2/2019 06:07	J
N-Nitrosopyrrolidine	51	U	ug/L	5	120	51	12/2/2019 06:07	J
Naphthalene	1.1	U	ug/L	5	4.8	1.1	12/2/2019 06:07	J
Nitrobenzene	27	U	ug/L	5	120	27	12/2/2019 06:07	J
Nitroquinoline-1-oxide	48	U	ug/L	5	120	48	12/2/2019 06:07	J
Pentachlorobenzene	32	U	ug/L	5	120	32	12/2/2019 06:07	J
Pentachloronitrobenzene	42	U	ug/L	5	120	42	12/2/2019 06:07	J
Pentachlorophenol	23	U	ug/L	5	120	23	12/2/2019 06:07	J
Phenacetin	76	U	ug/L	5	120	76	12/2/2019 06:07	J
Phenanthrene	0.95	U	ug/L	5	4.8	0.95	12/2/2019 06:07	J
Phenol	410		ug/L	5	120	13	12/2/2019 06:07	J
Phorate	28	U	ug/L	5	120	28	12/2/2019 06:07	J
Pronamide (Kerb)	87	U	ug/L	5	120	87	12/2/2019 06:07	J
Pyrene	0.86	U	ug/L	5	4.8	0.86	12/2/2019 06:07	J
Safrole	84	U	ug/L	5	120	84	12/2/2019 06:07	J
Thionazin (Zinophos)	28	U	ug/L	5	120	28	12/2/2019 06:07	J
a,a-Dimethylphenethylamine	45	U	ug/L	5	120	45	12/2/2019 06:07	J
bis(2-Chloroethoxy)methane	30	U	ug/L	5	120	30	12/2/2019 06:07	J
bis(2-Chloroethyl)Ether	35	U	ug/L	5	120	35	12/2/2019 06:07	J
bis(2-Chloroisopropyl) Ether	34	U	ug/L	5	120	34	12/2/2019 06:07	J
bis(2-Ethylhexyl) phthalate	48	U	ug/L	5	120	48	12/2/2019 06:07	J

Report ID: 920466 - 1865554 Page 8 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060001 Matrix: Water

19326-UL Date Collected: 11/21/19 09:15 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
o,o,o-Triethylphosphorothioate	71	U	ug/L	5	120	71	12/2/2019 06:07	
o-Toluidine	59	U	ug/L	5	120	59	12/2/2019 06:07	J
2-Fluorophenol (S)	0	1	%	5	31-134		12/2/2019 06:07	
Phenol-d6 (S)	0	1	%	5	24-120		12/2/2019 06:07	
Nitrobenzene-d5 (S)	0	1	%	5	38-139		12/2/2019 06:07	
2-Fluorobiphenyl (S)	0	1	%	5	42-138		12/2/2019 06:07	
2,4,6-Tribromophenol (S)	0	1	%	5	48-147		12/2/2019 06:07	
p-Terphenyl-d14 (S)	0	1	%	5	61-154		12/2/2019 06:07	

VOLATILES

Analysis Desc: 8260B VOCs Analysis,	Prep	aration	Method: SV	V-846 5030B				
Water	·							
	Anai	yticai ivi	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	54	U	ug/L	100	100	54	12/4/2019 22:06	J
1,1,1-Trichloroethane	22	U	ug/L	100	100	22	12/4/2019 22:06	J
1,1,2,2-Tetrachloroethane	20	U	ug/L	100	100	20	12/4/2019 22:06	J
1,1,2-Trichloroethane	30	U	ug/L	100	100	30	12/4/2019 22:06	J
1,1-Dichloroethane	14	U	ug/L	100	100	14	12/4/2019 22:06	J
1,1-Dichloroethylene	18	U	ug/L	100	100	18	12/4/2019 22:06	J
1,1-Dichloropropene	24	U	ug/L	100	100	24	12/4/2019 22:06	J
1,2,3-Trichloropropane	91	U	ug/L	100	100	91	12/4/2019 22:06	J
1,2-Dibromo-3-Chloropropane	310	U	ug/L	100	500	310	12/4/2019 22:06	J
1,2-Dichlorobenzene	18	U	ug/L	100	100	18	12/4/2019 22:06	J
1,2-Dichloroethane	23	U	ug/L	100	100	23	12/4/2019 22:06	J
1,2-Dichloropropane	66	U	ug/L	100	100	66	12/4/2019 22:06	J
1,3-Dichlorobenzene	19	U	ug/L	100	100	19	12/4/2019 22:06	J
1,3-Dichloropropane	24	U	ug/L	100	100	24	12/4/2019 22:06	J
1,4-Dichlorobenzene	22	U	ug/L	100	100	22	12/4/2019 22:06	J
2,2-Dichloropropane	22	U	ug/L	100	100	22	12/4/2019 22:06	J
2-Butanone (MEK)	5900		ug/L	100	500	43	12/4/2019 22:06	J
2-Hexanone	71	U	ug/L	100	500	71	12/4/2019 22:06	J
4-Methyl-2-pentanone (MIBK)	150		ug/L	100	100	47	12/4/2019 22:06	J
Acetone	6800		ug/L	100	500	210	12/4/2019 22:06	J
Acetonitrile	2100	U	ug/L	100	5000	2100	12/4/2019 22:06	J
Acrolein (Propenal)	160	U	ug/L	100	1000	160	12/4/2019 22:06	J
Acrylonitrile	110	U	ug/L	100	1000	110	12/4/2019 22:06	J
Allyl Chloride(3-Chloropropene	210	U	ug/L	100	1000	210	12/4/2019 22:06	J
Benzene	16	U	ug/L	100	100	16	12/4/2019 22:06	J
Bromochloromethane	17	U	ug/L	100	100	17	12/4/2019 22:06	J
Bromodichloromethane	46	U	ug/L	100	100	46	12/4/2019 22:06	J

Report ID: 920466 - 1865554 Page 9 of 65

ANALYTICAL RESULTS

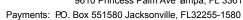
Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: T1921060001 Date Received: 11/22/19 12:00 Matrix: Water

Sample ID: 19326-UL Date Collected: 11/21/19 09:15

Sample Description: Location:

Parameters Results Qual Units DF PQL MDL MAIJzed Lab Bromoform 44 U ug/L 100 100 44 12/4/2019 22:06 J Bromomethane 29 U ug/L 100 100 29 12/4/2019 22:06 J Carbon Tetrachloride 36 U ug/L 100 100 67 12/4/2019 22:06 J Chlorobenzene 21 U ug/L 100 100 33 12/4/2019 22:06 J Chlorobrane 33 U ug/L 100 100 18 12/4/2019 22:06 J Chloroform 37 I ug/L 100 100 21 12/4/2019 22:06 J Chloroforeme 20 U ug/L 100 100 21 12/4/2019 22:06 J Dibromochiane 26 U ug/L 100 100 21 12/4/2019 22:06 J Di						Adjusted	Adjusted		
Bromomethane	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Carbon Disulfide 67 U ug/L 100 100 67 12/4/2019 22:06 J Carbon Tetrachloride 36 U ug/L 100 100 36 12/4/2019 22:06 J Chlorochane 21 U ug/L 100 100 33 12/4/2019 22:06 J Chlorochane 33 U ug/L 100 100 18 12/4/2019 22:06 J Chloroperen 20 U ug/L 100 500 200 12/4/2019 22:06 J Chloroperen 200 U ug/L 100 500 200 12/4/2019 22:06 J Dibromomethane 26 U ug/L 100 100 33 12/4/2019 22:06 J Dibriorodiffluoromethane 19 U ug/L 100 100 10 12/4/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 100 10 12/4/2019 22:06 J </td <td>Bromoform</td> <td>44</td> <td>U</td> <td>ug/L</td> <td>100</td> <td>100</td> <td>44</td> <td>12/4/2019 22:06</td> <td>J</td>	Bromoform	44	U	ug/L	100	100	44	12/4/2019 22:06	J
Carbon Tetrachloride 36 U ug/L 100 100 36 12/4/2019 22:06 J Chlorobenzene 21 U ug/L 100 100 21 12/4/2019 22:06 J Chloroform 37 I ug/L 100 100 18 12/4/2019 22:06 J Chloromethane 21 U ug/L 100 100 20 12/4/2019 22:06 J Chloromethane 20 U ug/L 100 100 33 12/4/2019 22:06 J Dibromochloromethane 26 U ug/L 100 100 26 12/4/2019 22:06 J Dibromochloromethane 19 U ug/L 100 100 26 12/4/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 100 20 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 10 12/4/2019 22:06 J	Bromomethane	29	U	ug/L	100	100	29	12/4/2019 22:06	J
Chlorobenzene 21 U ug/L 100 100 21 12/4/2019 22:06 J Chloroethane 33 U ug/L 100 100 38 12/4/2019 22:06 J Chloromethane 21 U ug/L 100 100 21 12/4/2019 22:06 J Chloroprene 200 U ug/L 100 500 200 12/4/2019 22:06 J Dibromochloromethane 33 U ug/L 100 100 26 12/4/2019 22:06 J Dibromochlane 26 U ug/L 100 100 26 12/4/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 100 20 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J<	Carbon Disulfide	67	U	ug/L	100	100	67	12/4/2019 22:06	J
Chloroethane 33 U ug/L 100 100 13 124/2019 22:06 J Chloroform 37 L ug/L 100 100 100 13 124/2019 22:06 J Chloromethane 21 U ug/L 100 100 21 124/2019 22:06 J Chloromethane 21 U ug/L 100 100 21 124/2019 22:06 J Chloromethane 20 U ug/L 100 500 200 124/2019 22:06 J Dibromochloromethane 26 U ug/L 100 100 33 124/2019 22:06 J Dibromochloromethane 26 U ug/L 100 100 26 124/2019 22:06 J Dibromochloromethane 26 U ug/L 100 100 26 124/2019 22:06 J Dichlorodifluoromethane 27 U ug/L 100 100 20 124/2019 22:06 J Dichlorodifluoromethane 29 U ug/L 100 100 21 124/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 100 20 124/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 24 124/2019 22:06 J Ethylene Dibromide (EDB) 100 100 24 124/2019 22:06 J Ethylene Dibromide (Methyl lodide) 16 U ug/L 100 100 100 12 124/2019 22:06 J Ethylene Dibromide (Methyl lodide) 16 U ug/L 100 100 100 12 124/2019 22:06 J Ethylene Dibromide (Methyl lodide) 1800 U ug/L 100 100 100 12 124/2019 22:06 J Methacrylonitrile 1800 U ug/L 100 2000 4400 124/2019 22:06 J Methylene Chloride 250 U ug/L 100 500 180 124/2019 22:06 J Propionitrile (Ethyl cyanide) 210 U ug/L 100 500 250 124/2019 22:06 J Propionitrile (Ethyl cyanide) 210 U ug/L 100 100 200 210 124/2019 22:06 J Propionitrile (Ethyl cyanide) 210 U ug/L 100 100 20 124/2019 22:06 J Propionitrile (Ethyl cyanide) 210 U ug/L 100 100 20 124/2019 22:06 J Propionitrile (Ethyl cyanide) 210 U ug/L 100 100 23 124/2019 22:06 J Propionitrile (Ethyl cyanide) 210 U ug/L 100 100 23 124/2019 22:06 J Propionitrile (Ethyl cyanide) 21 U ug/L 100 100 23 124/2019 22:06 J V U ug/L 100 100 23 124/2019 22:06 J V U ug/L 100 100 23 124/2019 22:06 J V U ug/L 100 100 23 124/2019 22:06 J V U ug/L 100 100 23 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2019 22:06 J V U ug/L 100 100 20 124/2	Carbon Tetrachloride	36	U	ug/L	100	100	36	12/4/2019 22:06	J
Chloroform 37 I ug/L 100 100 18 12/4/2019 22:08 J Chloromethane 21 U ug/L 100 100 21 12/4/2019 22:08 J Chloroprene 200 U ug/L 100 500 200 12/4/2019 22:06 J Dibromochloromethane 33 U ug/L 100 100 33 12/4/2019 22:06 J Dibromochtane 26 U ug/L 100 100 10 26 12/4/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 100 20 12/4/2019 22:06 J Ethyloenzene 24 U ug/L 100 100 20 12/4/2019 22:06 J Ethyloenzene 24 U ug/L 100 100 20 12/4/2019 22:06 J Ethyloenzene 24 U ug/L 100 100 10 12/4/2019 22:06 J	Chlorobenzene	21	U	ug/L	100	100	21	12/4/2019 22:06	J
Chloromethane 21 U ug/L 100 100 21 12/4/2019 22:06 J Chloroprene 200 U ug/L 100 500 200 12/4/2019 22:06 J Dibromochloromethane 26 U ug/L 100 100 26 12/4/2019 22:06 J Dibromodifluoromethane 19 U ug/L 100 100 100 12/4/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 100 100 12/4/2019 22:06 J Ethyl Methacrylate 21 U ug/L 100 100 100 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 100 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 100 12/4/2019 22:06 J Ethylene Dibromide (EDB) 40 U ug/L 100 100 100 12/	Chloroethane	33	U	ug/L	100	100	33	12/4/2019 22:06	J
Chloroprene 200 U ug/L ug/L 100 500 200 12/4/2019 22:06 J 10bromochloromethane J ug/L 100 100 33 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 33 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 26 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 210 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 24 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 24 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 20 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 20 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100 100 100 100 100 100 100 100 12/4/2019 22:06 J 20bromochloromethane J ug/L 100 100	Chloroform	37	ı	ug/L	100	100	18	12/4/2019 22:06	J
Dibromochloromethane 33 U ug/L 100 100 33 12/4/2019 22:06 J Dibromomethane 26 U ug/L 100 100 26 12/4/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 100 210 12/4/2019 22:06 J Ethylbenzene 24 U ug/L 100 100 20 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J Isobutyl Alcohol 4400 U ug/L 100 100 16 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 2000 4400 12/4/2019 22:06 J Methylene Chloride 250 U ug/L 100 500 180 12/4/2019 22:06 J Propionitrile (Ethyl cyanide) 210 ug/L 100 500 250 12/4/2019 22:06	Chloromethane	21	U	ug/L	100	100	21	12/4/2019 22:06	J
Dibromomethane 26	Chloroprene	200	U	ug/L	100	500	200	12/4/2019 22:06	J
Dichlorodifluoromethane 19 U ug/L 100 100 19 12/4/2019 22:06 J Ethyl Methacrylate 210 U ug/L 100 1000 210 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J Ichylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J Ichylene Dibromide (EDB) 16 U ug/L 100 100 16 12/4/2019 22:06 J Isobutyl Alcohol 4400 U ug/L 100 20000 440 12/4/2019 22:06 J Methacrylonitrile 180 U ug/L 100 500 180 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 250	Dibromochloromethane	33	U	ug/L	100	100	33	12/4/2019 22:06	J
Ethyl Methacrylate 210 U ug/L 100 1000 210 12/4/2019 22:06 J Ethylbenzene 24 U ug/L 100 100 24 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J Isobutyl Alcohol 4400 U ug/L 100 100 16 12/4/2019 22:06 J Methocylonitrile 1800 U ug/L 100 10000 1800 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 500 12/4/	Dibromomethane	26	U	ug/L	100	100	26	12/4/2019 22:06	J
Ethylbenzene 24 U ug/L 100 100 24 12/4/2019 22:06 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J Isobutyl Alcohol 4400 U ug/L 100 20000 4400 12/4/2019 22:06 J Methyl Alcohol 4400 U ug/L 100 10000 1800 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methylene Chloride 250 U ug/L 100 500 250 12/4/2019 22:06 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 1000 250 12/4/2019 22:06 J Styrene 23 U ug/L 100 100 23 12/4/2019 22:06 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 23 12	Dichlorodifluoromethane	19	U	ug/L	100	100	19	12/4/2019 22:06	J
Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/4/2019 22:06 J Iodomethane (Methyl Iodide) 16 U ug/L 100 100 16 12/4/2019 22:06 J Isobutyl Alcohol 4400 U ug/L 100 2000 4400 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methylene Chloride 250 U ug/L 100 500 250 12/4/2019 22:06 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 1000 200 12/4/2019 22:06 J Styrene 23 U ug/L 100 100 23 12/4/2019 22:06 J Totluene 27 I ug/L 100 100 23 12/4	Ethyl Methacrylate	210	U	ug/L	100	1000	210	12/4/2019 22:06	J
Indomethane (Methyl Iodide)	Ethylbenzene	24	U	ug/L	100	100	24	12/4/2019 22:06	J
Sobutyl Alcohol 4400 U Ug/L 100 20000 4400 12/4/2019 22:06 J	Ethylene Dibromide (EDB)	20	U	ug/L	100	100	20	12/4/2019 22:06	J
Methacrylonitrile 1800 U ug/L 100 10000 1800 12/4/2019 22:06 J Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methyl Methacrylate 250 U ug/L 100 500 250 12/4/2019 22:06 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 250 12/4/2019 22:06 J Styrene 23 U ug/L 100 100 23 12/4/2019 22:06 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/4/2019 22:06 J Toluene 27 U ug/L 100 100 23 12/4/2019 22:06 J Trichloroethylene 29 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 <td>Iodomethane (Methyl Iodide)</td> <td>16</td> <td>U</td> <td>ug/L</td> <td>100</td> <td>100</td> <td>16</td> <td>12/4/2019 22:06</td> <td>J</td>	Iodomethane (Methyl Iodide)	16	U	ug/L	100	100	16	12/4/2019 22:06	J
Methyl Methacrylate 180 U ug/L 100 500 180 12/4/2019 22:06 J Methylene Chloride 250 U ug/L 100 500 250 12/4/2019 22:06 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/4/2019 22:06 J Styrene 23 U ug/L 100 100 23 12/4/2019 22:06 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 23 12/4/2019 22:06 J Toluene 27 I ug/L 100 100 23 12/4/2019 22:06 J Trichloroethylene 29 U ug/L 100 100 29 12/4/2019 22:06 J Trichloroethylene 32 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 100 12/4/2019 22:06	Isobutyl Alcohol	4400	U	ug/L	100	20000	4400	12/4/2019 22:06	J
Methylene Chloride 250 U ug/L 100 500 250 12/4/2019 22:06 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/4/2019 22:06 J Styrene 23 U ug/L 100 100 23 12/4/2019 22:06 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/4/2019 22:06 J Toluene 27 I ug/L 100 100 23 12/4/2019 22:06 J Trichloroethene 29 U ug/L 100 100 29 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 19 12/4/2019 22:06 J Vinyl Chloride 20 U ug/L 100 100 20 12/4/2019 22:06	Methacrylonitrile	1800	U	ug/L	100	10000	1800	12/4/2019 22:06	J
Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/4/2019 22:06 J Styrene 23 U ug/L 100 100 23 12/4/2019 22:06 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/4/2019 22:06 J Toluene 27 I ug/L 100 100 23 12/4/2019 22:06 J Trichloroethene 29 U ug/L 100 100 29 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 19 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 20 12/4/2019 22:06 J Vinyl Acetate 19 u </td <td>Methyl Methacrylate</td> <td>180</td> <td>U</td> <td>ug/L</td> <td>100</td> <td>500</td> <td>180</td> <td>12/4/2019 22:06</td> <td>J</td>	Methyl Methacrylate	180	U	ug/L	100	500	180	12/4/2019 22:06	J
Styrene 23 U ug/L 100 100 23 12/4/2019 22:06 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/4/2019 22:06 J Toluene 27 I ug/L 100 100 23 12/4/2019 22:06 J Trichloroethene 29 U ug/L 100 100 29 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 19 12/4/2019 22:06 J Vinyl Chloride 20 U ug/L 100 100 20 12/4/2019 22:06 J Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J xylene (Total) 53 U ug/L 100 100 20 12/4/2019 22:06 J <	Methylene Chloride	250	U	ug/L	100	500	250	12/4/2019 22:06	J
Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/4/2019 22:06 J Toluene 27 I ug/L 100 100 23 12/4/2019 22:06 J Trichloroethene 29 U ug/L 100 100 29 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 19 12/4/2019 22:06 J Vinyl Chloride 20 U ug/L 100 100 100 20 12/4/2019 22:06 J X Xylene (Total) 53 U ug/L 100 100 20 12/4/2019 22:06 J X Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 20 100 24 12/4/2019 22:06 J cis-1,3-Dichloropropene 16 U ug/L 100 100 100 24 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 100 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 J 1/2-Dichloroethane-d4 (S) 80 % 100 77-119 12/4/2019 22:06	Propionitrile (Ethyl cyanide)	2100	U	ug/L	100	10000	2100	12/4/2019 22:06	J
Toluene 27 I ug/L 100 100 23 12/4/2019 22:06 J Trichloroethene 29 U ug/L 100 100 29 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 100 19 12/4/2019 22:06 J Vinyl Chloride 20 U ug/L 100 100 20 12/4/2019 22:06 J Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J cis-1,2-Dichloroethylene 24 U ug/L 100 200 53 12/4/2019 22:06 J cis-1,3-Dichloropropene 16 U ug/L 100 100 24 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 100 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 Toluene-d8 (S)	Styrene	23	U	ug/L	100	100	23	12/4/2019 22:06	J
Trichloroethene 29 U ug/L 100 100 29 12/4/2019 22:06 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 19 12/4/2019 22:06 J Vinyl Chloride 20 U ug/L 100 100 20 12/4/2019 22:06 J Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J xylene (Total) 53 U ug/L 100 100 20 12/4/2019 22:06 J xis-1,2-Dichloroethylene 24 U ug/L 100 100 100 20 12/4/2019 22:06	Tetrachloroethylene (PCE)	36	U	ug/L	100	100	36	12/4/2019 22:06	J
Trichlorofluoromethane 32 U ug/L 100 100 32 12/4/2019 22:06 J Vinyl Acetate 19 U ug/L 100 100 19 12/4/2019 22:06 J Vinyl Chloride 20 U ug/L 100 100 20 12/4/2019 22:06 J Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/4/2019 22:06 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180	Toluene	27	ı	ug/L	100	100	23	12/4/2019 22:06	J
Vinyl Acetate 19 U ug/L 100 100 19 12/4/2019 22:06 J Vinyl Chloride 20 U ug/L 100 100 20 12/4/2019 22:06 J Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/4/2019 22:06 J trans-1,3-Dichloropropene 16 U ug/L 100 100 16 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180 12/4/2019 22:06 J Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06 J	Trichloroethene	29	U	ug/L	100	100	29	12/4/2019 22:06	J
Vinyl Chloride 20 U ug/L 100 100 20 12/4/2019 22:06 J Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/4/2019 22:06 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06	Trichlorofluoromethane	32	U	ug/L	100	100	32	12/4/2019 22:06	J
Xylene (Total) 53 U ug/L 100 200 53 12/4/2019 22:06 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/4/2019 22:06 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 J Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06 J	Vinyl Acetate	19	U	ug/L	100	100	19	12/4/2019 22:06	J
cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/4/2019 22:06 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06	Vinyl Chloride	20	U	ug/L	100	100	20	12/4/2019 22:06	J
cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/4/2019 22:06 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06	Xylene (Total)	53	U	ug/L	100	200	53	12/4/2019 22:06	J
trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/4/2019 22:06 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06	cis-1,2-Dichloroethylene	24	U	ug/L	100	100	24	12/4/2019 22:06	J
trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/4/2019 22:06 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/4/2019 22:06 J 12/	cis-1,3-Dichloropropene	16	U	ug/L	100	100	16	12/4/2019 22:06	J
trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/4/2019 22:06 J 1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06	trans-1,2-Dichloroethylene	20	U	ug/L	100	100	20	12/4/2019 22:06	J
1,2-Dichloroethane-d4 (S) 83 % 100 70-128 12/4/2019 22:06 Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06	trans-1,3-Dichloropropylene	21	U	ug/L	100	100	21	12/4/2019 22:06	J
Toluene-d8 (S) 80 % 100 77-119 12/4/2019 22:06	trans-1,4-Dichloro-2-butene	180	U	ug/L	100	1000	180	12/4/2019 22:06	J
	1,2-Dichloroethane-d4 (S)	83		%	100	70-128		12/4/2019 22:06	
Bromofluorobenzene (S) 102 % 100 86-123 12/4/2019 22:06	Toluene-d8 (S)	80		%	100	77-119		12/4/2019 22:06	
	Bromofluorobenzene (S)	102		%	100	86-123		12/4/2019 22:06	


WET CHEMISTRY

Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0

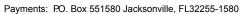
Report ID: 920466 - 1865554 Page 10 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060001 Matrix: Water

Sample ID: 19326-UL Date Collected: 11/21/19 09:15


Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromide	29		mg/L	25	2.5	2.2	12/4/2019 10:58	Т
Chloride	4300		mg/L	25	120	25	12/4/2019 10:58	Т
Fluoride	2.5	U	mg/L	25	12	2.5	12/4/2019 10:58	Т
Sulfate	25	U	mg/L	25	120	25	12/4/2019 10:58	Т
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	6700		mg/L	2000	200	40	11/25/2019 12:05	Т
Analysis Desc: COD,E410.4,Water	Ana	lytical Me	ethod: EPA	410.4				
Chemical Oxygen Demand	13000		mg/L	10	500	240	11/25/2019 12:00	Т
Analysis Desc: Alkalinity,SM2320B,Water	Ana	lytical Me	ethod: SM 2	2320B				
Alkalinity, Bicarbonate	170		mg/L	1	20	5.0	12/3/2019 13:02	Т
Alkalinity, Carbonate	5.0	U	mg/L	1	20	5.0	12/3/2019 13:02	Т
Alkalinity, Total	170		mg/L	1	20	5.0	12/3/2019 13:02	Т
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	18000		mg/L	5	50	50	11/25/2019 15:00	Т
Analysis Desc: Cyanide, SM4500-E, Water	Ana	lytical Me	ethod: SM 4	1500-CN-E				
Cyanide	0.024	U	mg/L	5	0.050	0.024	11/25/2019 14:05	Т
Analysis Desc: Sulfide,SM4500S- D,Aqueous	Ana	lytical Me	ethod: SM 4	1500-S D				
Sulfide	25		mg/L	50	2.5	0.41	11/26/2019 09:35	Т
Analysis Desc: Nitrate, Nitrite SM4500NO3F, Water	Ana	lytical Me	ethod: SM 4	500NO3-F				
Nitrate (as N)	12		mg/L	100	10	7.9	11/22/2019 15:54	Т
Nitrite (as N)	7.7	U	mg/L	100	10	7.7	11/22/2019 15:54	Т
Analysis Desc: BOD,SM5210B,Water	Ana	lytical Me	ethod: SM 5	5210B				
Biochemical Oxygen Demand	570		mg/L	10	20	20	11/22/2019 17:40	Т

Report ID: 920466 - 1865554 Page 11 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: T1921060002 Date Received: 11/22/19 12:00 Matrix: Water

Sample ID: 19326-TL Date Collected: 11/21/19 08:30

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
METALS								
Analysis Desc: SW846 6010B	Prep	paration I	Method: SV	V-846 3010A				
Analysis, Water	Ana	lytical Me	ethod: SW-8	846 6010				
A I		iyalodi ivic			4000	050	40/4/0040 47:00	_
Aluminum	100000		ug/L	1	1600	250	12/4/2019 17:39	T
Arsenic	200		ug/L	1	100	28	12/4/2019 17:39	T
Barium	1700	U	ug/L	1	2000	1700	12/4/2019 17:39	T
Beryllium	2.9	U	ug/L	1	6.0	2.9	12/4/2019 17:39	T
Cadmium	3.1	ı	ug/L	1	9.0	2.4	12/4/2019 17:39	T
Calcium	590		mg/L	1	3.0	0.72	12/4/2019 17:39	T
Chromium	750		ug/L	1	25	20	12/4/2019 17:39	Т
Cobalt	40		ug/L	1	20	2.8	12/4/2019 17:39	Т
Copper	66	ı	ug/L	1	80	14	12/4/2019 17:39	Т
Iron	120000		ug/L	1	1500	1400	12/4/2019 17:39	Т
Lead	78	U	ug/L	1	100	78	12/4/2019 17:39	Т
Magnesium	140		mg/L	1	5.0	4.4	12/4/2019 17:39	Т
Manganese	2200		ug/L	1	20	4.9	12/4/2019 17:39	Т
Nickel	150		ug/L	1	90	44	12/4/2019 17:39	Т
Potassium	1300		mg/L	2	10	2.9	12/6/2019 13:47	Т
Selenium	120	ı	ug/L	1	300	120	12/4/2019 17:39	Т
Silver	34	U	ug/L	1	50	34	12/4/2019 17:39	Т
Sodium	3300		mg/L	2	12	10	12/6/2019 13:47	Т
Tin	45	ı	ug/L	1	100	18	12/4/2019 17:39	Т
Vanadium	550		ug/L	1	10	5.8	12/4/2019 17:39	Т
Zinc	310		ug/L	1	100	74	12/4/2019 17:39	Т
Analysis Desc: SW846 6020B	Prer	paration N	Method: SV	V-846 3010A				
Analysis, Total								
		•	ethod: SW-8					
Antimony	24	ı	ug/L	5	35	5.5	12/5/2019 14:53	J
Thallium	2.8	U	ug/L	5	10	2.8	12/5/2019 14:53	J
Analysis Desc: SW846 7470A	Prep	paration I	Method: SV	V-846 7470A				
Analysis,Water	Ana	lytical Me	ethod: SW-8	346 7470A				
Mercury	0.50	U	ug/L	1	1.0	0.50	11/26/2019 15:00	Т
SEMIVOLATILES								
Analysis Desc: 8081B Pesticide	Prep	paration M	Method: SV	V-846 3510C				
Analysis, Water	Ana	lytical Me	thod: EPA	8081				
4.4`-DDD	0.0066	U	ug/L	1	0.080	0.0066	11/27/2019 00:37	J

Report ID: 920466 - 1865554 Page 12 of 65

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: T1921060002 Date Received: 11/22/19 12:00 Matrix: Water

Sample ID: 19326-TL Date Collected: 11/21/19 08:30

Sample Description: Location:

4.4 - DDE						Adjusted	Adjusted		
Ad-ind Ad	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Aldrin	4,4`-DDE	0.015	U	ug/L	1	0.080	0.015	11/27/2019 00:37	J
Chlordane (technical)	4,4`-DDT	0.0086	U	ug/L	1	0.080	0.0086	11/27/2019 00:37	J
Dieldrin	Aldrin	0.0076	U	ug/L	1	0.080	0.0076	11/27/2019 00:37	J
Endosulfan I 0.012 U ug/L 1 0.080 0.012 11/27/2019 00:37 J Endosulfan II 0.011 U ug/L 1 0.080 0.011 11/27/2019 00:37 J Endosulfan Sulfate 0.013 U ug/L 1 0.080 0.013 11/27/2019 00:37 J Endosulfan Sulfate 0.013 U ug/L 1 0.080 0.013 11/27/2019 00:37 J Endosin Sulfate 0.010 U ug/L 1 0.080 0.006 11/27/2019 00:37 J Endrin Aldehyde 0.010 U ug/L 1 0.080 0.006 11/27/2019 00:37 J Endrin Aldehyde 0.010 U ug/L 1 0.080 0.010 11/27/2019 00:37 J Heptachlor Depoxide 0.0066 U ug/L 1 0.080 0.006 11/27/2019 00:37 J Heptachlor Epoxide 0.0066 U ug/L 1 0.080 0.023 11/27/2019 00:37 J Heptachlor Epoxide 0.0066 U ug/L 1 0.080 0.023 11/27/2019 00:37 J Almetroxychlor 0.023 U ug/L 1 0.080 0.023 11/27/2019 00:37 J Almetroxychlor 0.023 U ug/L 1 0.80 0.48 11/27/2019 00:37 J Alpha-BHC 0.012 U ug/L 1 0.80 0.48 11/27/2019 00:37 J Alpha-BHC 0.005 0.005 11/27/2019 00:37 J Alpha-BHC 0.005 0.005 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.080 0.007 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.080 0.005 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.080 0.005 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.080 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 00:37 J Alpha-BHC 0.0034 U ug/L 1 0.80 0.0034 11/27/2019 21:22 J Dimenton 0.02 U ug/L 1 0.80 0.0034 11/26/2019 21:22 J Dimenton 0.02 U ug/L 1 0.80 0.02 11/26/2019 21:22 J Dimenton 0.02 U ug/L 1 0.80 0.00 0.0034 11/26/2019 21:22 J Dimenton 0.03 0.0034	Chlordane (technical)	0.21	U	ug/L	1	0.80	0.21	11/27/2019 00:37	J
Endosulfan II	Dieldrin	0.0044	U	ug/L	1	0.080	0.0044	11/27/2019 00:37	J
Endosulfan Sulfate 0.013 U ug/L 1 0.080 0.013 11/27/2019 00:37 J Endrin 0.0067 U ug/L 1 0.080 0.006 11/27/2019 00:37 J Endrin Aldehyde 0.010 U ug/L 1 0.080 0.010 11/27/2019 00:37 J Heptachlor 0.014 U ug/L 1 0.080 0.006 11/27/2019 00:37 J Heptachlor Epoxide 0.0066 U ug/L 1 0.080 0.006 11/27/2019 00:37 J Methoxychlor 0.023 U ug/L 1 0.080 0.023 11/27/2019 00:37 J Toxaphene 0.48 U ug/L 1 0.80 0.48 11/27/2019 00:37 J Jalpha-BHC 0.012 U ug/L 1 0.080 0.007 11/27/2019 00:37 J Jeta-BHC 0.0034 U ug/L 1 0.080 0.007 11/27/2019 00:37 J Jeta-BHC 0.0034 U ug/L 1 0.080<	Endosulfan I	0.012	U	ug/L	1	0.080	0.012	11/27/2019 00:37	J
Endrin	Endosulfan II	0.011	U	ug/L	1	0.080	0.011	11/27/2019 00:37	J
Endrin Aldehyde	Endosulfan Sulfate	0.013	U	ug/L	1	0.080	0.013	11/27/2019 00:37	J
Heptachlor	Endrin	0.0067	U	ug/L	1	0.080	0.0067	11/27/2019 00:37	J
Heptachlor Epoxide 0.0066 U ug/L 1 0.080 0.066 11/27/2019 00:37 J Methoxychlor 0.023 U ug/L 1 0.080 0.023 11/27/2019 00:37 J J Toxaphene 0.48 U ug/L 1 0.080 0.08 11/27/2019 00:37 J alpha-BHC 0.012 U ug/L 1 0.080 0.048 11/27/2019 00:37 J beta-BHC 0.0075 U ug/L 1 0.080 0.005 11/27/2019 00:37 J beta-BHC 0.0034 U ug/L 1 0.080 0.005 11/27/2019 00:37 J delta-BHC 0.0034 U ug/L 1 0.080 0.0075 11/27/2019 00:37 J agmma-BHC (Lindane) 0.0074 U ug/L 1 0.080 0.0074 11/27/2019 00:37 J agmma-BHC (Lindane) Tetrachloro-m-xylene (S) 8 J4 % 1 44-124 11/27/2019 00:37 I 11/27/2019 00:37 J agmma-BHC (Lindane) Perparation Method: SW-846 3510C Pesticide Analysis, Water Analytical Method: EPA 8141 Atrazine 0.28 U ug/L 1 0.80 0.28 11/26/2019 21:22 J Azinphos-methyl 0.23 U ug/L 1 0.80 0.23 11/26/2019 21:22 J Azinphos-methyl 0.24 U ug/L 1 0.80 0.04 11/26/2019 21:22 J Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Dizainon 0.22 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.22 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.22 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.22 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.24 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.25 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.26 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.27 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Dizainon 0.27 U ug/L 1 0.80 0.20 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.40 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.40 11/26/2019 21:22 J Ethoprop 6.19 U ug/L 1 0.80 0.40 11/26/2019 21:22 J Ethoprop 6.19 U ug/L 1 0.80 0.40 11/26/2019 21:22 J Ethoprop 6.19 U ug/L 1 0.80 0.40 11/26/2019 21:22 J Ethoprop 6.19 U ug/L 1 0.80 0.40 11/26/2019 21:22 J Ethoprop	Endrin Aldehyde	0.010	U	ug/L	1	0.080	0.010	11/27/2019 00:37	J
Methoxychlor 0.023 U ug/L 1 0.080 0.023 11/27/2019 00:37 J Toxaphene 0.48 U ug/L 1 0.80 0.48 11/27/2019 00:37 J alapha-BHC 0.0075 U ug/L 1 0.080 0.0075 11/27/2019 00:37 J delta-BHC 0.0034 U ug/L 1 0.080 0.0074 11/27/2019 00:37 J gamma-BHC (Lindane) 0.0074 U ug/L 1 0.080 0.0074 11/27/2019 00:37 J Tetrachloro-m-xylene (S) 8 J4 % 1 44-124 11/27/2019 00:37 J Decachlorobiphenyl (S) 9 J4 % 1 48-137 11/27/2019 00:37 J Analysis Desc: 8141A Org Phos Preparation Method: SW-846 3510C B 11/27/2019 00:37 J J Analysical Method: EPA 8141 Analysis Meter Analysis Meter Analysis Method: EPA 8141 Analysis Method: EPA 8141 Analysis Method: EPA 8141 Analysis Met	Heptachlor	0.014	U	ug/L	1	0.080	0.014	11/27/2019 00:37	J
Toxaphene	Heptachlor Epoxide	0.0066	U	ug/L	1	0.080	0.0066	11/27/2019 00:37	J
Alpha-BHC 0.012 U ug/L 1 0.080 0.012 11/27/2019 00:37 J	Methoxychlor	0.023	U	ug/L	1	0.080	0.023	11/27/2019 00:37	J
Deta-BHC	Toxaphene	0.48	U	ug/L	1	0.80	0.48	11/27/2019 00:37	J
December of the American Service of the American Ser	alpha-BHC	0.012	U	ug/L	1	0.080	0.012	11/27/2019 00:37	J
Samma-BHC (Lindane)	beta-BHC	0.0075	U	ug/L	1	0.080	0.0075	11/27/2019 00:37	J
Tetrachloro-m-xylene (S) 8 J4 % 1 44-124 11/27/2019 00:37 Decachlorobiphenyl (S) 9 J4 % 1 48-137 11/27/2019 00:37 Analysis Desc: 8141A Org Phos Pesticide Analysis, Water Analytical Method: SW-846 3510C Pesticide Analysis, Water Analytical Method: EPA 8141 Atrazine 0.28 U ug/L 1 0.80 0.28 11/26/2019 21:22 J Azinphos-methyl 0.23 U ug/L 1 0.80 0.23 11/26/2019 21:22 J Chlorpyrifos 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Chlorpyrifos-methyl 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Diazinon 0.22 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Diazinon 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethiorpy 0.19 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J	delta-BHC	0.0034	U	ug/L	1	0.080	0.0034	11/27/2019 00:37	J
Tetrachloro-m-xylene (S) 8	gamma-BHC (Lindane)	0.0074	U	ug/L	1	0.080	0.0074	11/27/2019 00:37	J
Analysis Desc: 8141A Org Phos Pesticide Analysis, Water Analytical Method: EPA 8141 Atrazine O.28 U ug/L 1 0.80 0.28 11/26/2019 21:22 J Azinphos-methyl O.23 U ug/L 1 0.80 0.23 11/26/2019 21:22 J Chlorpyrifos O.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Chlorpyrifos-methyl O.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Demeton O.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Diazinon O.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Dimethoate O.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton O.16 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Ethion O.27 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethoprop O.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur O.44 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion O.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion O.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion O.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion O.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion O.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion O.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fensulfothion O.20 U ug/L 1 0.80 0.19 11/26/2019 21:22 J	Tetrachloro-m-xylene (S)	8	J4		1	44-124		11/27/2019 00:37	
Analytical Method: EPA 8141 Atrazine O.28	Decachlorobiphenyl (S)	9	J4	%	1	48-137		11/27/2019 00:37	
Analytical Method: EPA 8141 Atrazine	Analysis Desc: 8141A Org Phos	Prep	paration N	Method: SV	V-846 3510C				
Azinphos-methyl 0.23 U ug/L 1 0.80 0.23 11/26/2019 21:22 J Chlorpyrifos 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Chlorpyrifos-methyl 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Diazinon 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Dimethoate 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1	Pesticide Analysis, Water	Ana	lytical Me	thod: EPA	8141				
Chlorpyrifos 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Chlorpyrifos-methyl 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Diazinon 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Dimethoate 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.19 11/26/2019 21:22 J	Atrazine	0.28	U	ug/L	1	0.80	0.28	11/26/2019 21:22	J
Chlorpyrifos-methyl 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Diazinon 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Dimethoate 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Azinphos-methyl	0.23	U	ug/L	1	0.80	0.23	11/26/2019 21:22	J
Demeton 0.24 U ug/L 1 0.80 0.24 11/26/2019 21:22 J Diazinon 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Dimethoate 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Chlorpyrifos	0.16	U	ug/L	1	0.80	0.16	11/26/2019 21:22	J
Diazinon 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Dimethoate 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Chlorpyrifos-methyl	0.24	U	ug/L	1	0.80	0.24	11/26/2019 21:22	J
Dimethoate 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Demeton	0.24	U	ug/L	1	0.80	0.24	11/26/2019 21:22	J
Dimethoate 0.22 U ug/L 1 0.80 0.22 11/26/2019 21:22 J Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Diazinon	0.22	U	ug/L	1	0.80	0.22	11/26/2019 21:22	J
Disulfoton 0.16 U ug/L 1 0.80 0.16 11/26/2019 21:22 J Ethion 0.27 U ug/L 1 0.80 0.27 11/26/2019 21:22 J Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Dimethoate	0.22	U		1	0.80	0.22	11/26/2019 21:22	J
Ethoprop 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Disulfoton	0.16	U	_	1	0.80	0.16	11/26/2019 21:22	J
Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Ethion	0.27	U	_	1	0.80	0.27	11/26/2019 21:22	J
Famphur 0.44 U ug/L 1 0.80 0.44 11/26/2019 21:22 J Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Ethoprop	0.19	U	ug/L	1	0.80	0.19	11/26/2019 21:22	J
Fensulfothion 0.19 U ug/L 1 0.80 0.19 11/26/2019 21:22 J Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Famphur	0.44	U		1	0.80	0.44	11/26/2019 21:22	J
Fonophos 0.20 U ug/L 1 0.80 0.20 11/26/2019 21:22 J	Fensulfothion	0.19	U		1	0.80			J
	Fonophos			•					
	Malathion			ug/L			0.29		J

Report ID: 920466 - 1865554 Page 13 of 65

0.80

0.80

0.80

0.23 11/26/2019 21:22

0.22 11/26/2019 21:22

0.22 11/26/2019 21:22

0.23

0.22

0.22

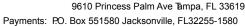
U

U

U

ug/L ug/L

ug/L


Merphos

Mevinphos

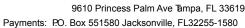
Methyl Parathion

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060002 Matrix: Water


Sample ID: 19326-TL Date Collected: 11/21/19 08:30

Sample Description: Location:

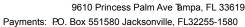
Sample Description:				Location:				
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
Parathion (Ethyl)	0.26	U	ug/L	1	0.80		11/26/2019 21:22	
Phorate	0.26 0.17	U	ug/L ug/L	1	0.80		11/26/2019 21:22	
Phosmet	0.17	U	ug/L ug/L	1	0.80		11/26/2019 21:22	J
Ronnel	0.31	U	ug/L ug/L	1	0.80		11/26/2019 21:22	J
Simazine	0.19	U	ug/L ug/L	1	0.80		11/26/2019 21:22	J
Tributylphosphate (S)	17	J4	ug/∟ %	1	48.5-121	0.23	11/26/2019 21:22	
Tributyipriospriate (3)	17	J 4	/0	'	40.5-121		11/20/2019 21.22	J
Analysis Desc: 8151A Herbicides	Prep	paration I	Method: 81	51				
Analysis, Water	Ana	lytical Me	ethod: EPA	8151				
2,4,5-T	3.3	U	ug/L	10	20	3.3	12/4/2019 21:56	J
2,4-D	13	U	ug/L	10	60	13	12/4/2019 21:56	J
2,4-DB	17	U	ug/L	10	60	17	12/4/2019 21:56	J
Dalapon	76	U	ug/L	10	200	76	12/4/2019 21:56	J
Dicamba	7.5	U	ug/L	10	20	7.5	12/4/2019 21:56	J
Dichloroprop	8.7	U	ug/L	10	60	8.7	12/4/2019 21:56	J
Dinoseb	5.1	U	ug/L	10	200	5.1	12/4/2019 21:56	J
Pentachlorophenol	2.9	U	ug/L	10	10	2.9	12/4/2019 21:56	J
Silvex (2,4,5-TP)	3.0	U	ug/L	10	20	3.0	12/4/2019 21:56	J
2,4-Dichlorophenylacetic acid	0	2	%	10	41-122		12/4/2019 21:56	J
(S)								
Analysis Desc: SW 8011 Analysis,	Prep	paration I	Method: SV	V-846 8011				
Water	Ana	lytical Me	ethod: SW-	846 8011				
1,2-Dibromo-3-Chloropropane	0.0061	U	ug/L	1	0.020	0.0061	12/5/2019 18:20	J
Ethylene Dibromide (EDB)	0.0063	Ū	ug/L	1	0.020	0.0063	12/5/2019 18:20	J
Tetrachloro-m-xylene (S)	77		%	1	64-150		12/5/2019 18:20	
Analysis Desc: 8082A PCB Analysis,	Pre	paration N	Method: SV	V-846 3510C				
Water				846 8082A				
Arcelor 1016 (DCD 1016)		-			0.00	0.26	11/07/2010 00:27	-
Aroclor 1016 (PCB-1016)	0.26	U	ug/L	1	0.80		11/27/2019 00:37	J
Aroclor 1221 (PCB-1221)	0.44	U	ug/L	1	0.80		11/27/2019 00:37	J
Aroclor 1232 (PCB-1232)	0.39	U	ug/L	1	0.80		11/27/2019 00:37	J
Arcelor 1242 (PCB-1242)	0.38	U	ug/L	1	0.80		11/27/2019 00:37	J
Arcelor 1248 (PCB-1248)	0.27	U	ug/L	1	0.80		11/27/2019 00:37	J
Aroclor 1254 (PCB-1254)	0.20	U	ug/L	1	0.80		11/27/2019 00:37	J
Aroclor 1260 (PCB-1260)	0.32	U	ug/L	1	0.80	0.32	11/27/2019 00:37	J
Tetrachloro-m-xylene (S)	8	J4	%	1	61-119		11/27/2019 00:37	
Decachlorobiphenyl (S)	9	J4	%	1	44-136		11/27/2019 00:37	

Report ID: 920466 - 1865554 Page 14 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060002 Matrix: Water


19326-TL Date Collected: 11/21/19 08:30 Sample ID:

Sample Description: Location:

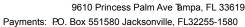
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: 8270C Analysis, Water	Prep	paration I	Method: SV	V-846 3510C				
	Ana	lytical Me	ethod: SW-	846 8270C				
1,2,4,5-Tetrachlorobenzene	30	U	ug/L	5	110	30	12/2/2019 06:48	J
1,2,4-Trichlorobenzene	15	U	ug/L	5	110	15	12/2/2019 06:48	J
1,2-Dichlorobenzene	31	U	ug/L	5	110	31	12/2/2019 06:48	J
1,2-Diphenylhydrazine	21	U	ug/L	5	110	21	12/2/2019 06:48	J
1,3,5-Trinitrobenzene	54	U	ug/L	5	110	54	12/2/2019 06:48	J
1,3-Dichlorobenzene	23	U	ug/L	5	110	23	12/2/2019 06:48	J
1,3-Dinitrobenzene	46	U	ug/L	5	110	46	12/2/2019 06:48	J
1,4-Dichlorobenzene	44	U	ug/L	5	110	44	12/2/2019 06:48	J
1,4-Naphthoquinone	110	U	ug/L	5	110	110	12/2/2019 06:48	J
1,4-Phenylenediamine	110	U	ug/L	5	1800	110	12/2/2019 06:48	J
1-Methylnaphthalene	1.1	U	ug/L	5	4.4	1.1	12/2/2019 06:48	J
1-Naphthylamine	21	U	ug/L	5	110	21	12/2/2019 06:48	J
2,3,4,6-Tetrachlorophenol	28	U	ug/L	5	110	28	12/2/2019 06:48	J
2,4,5-Trichlorophenol	29	U	ug/L	5	110	29	12/2/2019 06:48	J
2,4,6-Trichlorophenol	31	U	ug/L	5	110	31	12/2/2019 06:48	J
2,4-Dichlorophenol	20	U	ug/L	5	110	20	12/2/2019 06:48	J
2,4-Dimethylphenol	57	U	ug/L	5	110	57	12/2/2019 06:48	J
2,4-Dinitrophenol	24	U	ug/L	5	220	24	12/2/2019 06:48	J
2,4-Dinitrotoluene (2,4-DNT)	40	U	ug/L	5	110	40	12/2/2019 06:48	J
2,6-Dichlorophenol	29	U	ug/L	5	110	29	12/2/2019 06:48	J
2,6-Dinitrotoluene (2,6-DNT)	43	U	ug/L	5	110	43	12/2/2019 06:48	J
2-Acetylaminofluorene	78	U	ug/L	5	110	78	12/2/2019 06:48	J
2-Chloronaphthalene	37	U	ug/L	5	110	37	12/2/2019 06:48	J
2-Chlorophenol	33	U	ug/L	5	110	33	12/2/2019 06:48	J
2-Methyl-4,6-dinitrophenol	25	U	ug/L	5	110	25	12/2/2019 06:48	J
2-Methylnaphthalene	1.1	U	ug/L	5	4.4	1.1	12/2/2019 06:48	J
2-Methylphenol (o-Cresol)	32	U	ug/L	5	110	32	12/2/2019 06:48	J
2-Naphthylamine	20	U	ug/L	5	110	20	12/2/2019 06:48	J
2-Nitroaniline	34	U	ug/L	5	110	34	12/2/2019 06:48	J
2-Nitrophenol	14	U	ug/L	5	110	14	12/2/2019 06:48	J
2-Picoline (2-Methylpyridine)	26	U	ug/L	5	110	26	12/2/2019 06:48	J
3+4-Methylphenol(mp-Cresol)	3500		ug/L	50	1100	220	12/3/2019 03:19	J
3,3'-Dimethylbenzidine	52	U	ug/L	5	110	52	12/2/2019 06:48	J
3,3`-Dichlorobenzidine	28	U	ug/L	5	110	28	12/2/2019 06:48	J
3-Methylcholanthrene	41	U	ug/L	5	110	41	12/2/2019 06:48	J
3-Nitroaniline	24	U	ug/L	5	110	24	12/2/2019 06:48	J
4-Aminobiphenyl	13	U	ug/L	5	110	13	12/2/2019 06:48	J

Report ID: 920466 - 1865554 Page 15 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060002 Matrix: Water


Sample ID: 19326-TL Date Collected: 11/21/19 08:30

Sample Description: Location:

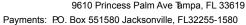
Campio Bocomption.								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	La
4-Bromophenyl Phenyl Ether	25	U	ug/L	5	110	25	12/2/2019 06:48	J
4-Chloro-3-methylphenol	14	U	ug/L	5	110	14	12/2/2019 06:48	J
4-Chloroaniline	20	U	ug/L	5	110	20	12/2/2019 06:48	J
1-Chlorophenyl Phenyl Ether	36	U	ug/L	5	110	36	12/2/2019 06:48	
4-Dimethyl aminoazobenzene	16	U	ug/L	5	110	16	12/2/2019 06:48	
4-Nitroaniline	28	U	ug/L	5	110	28	12/2/2019 06:48	
4-Nitrophenol	63	U	ug/L	5	110	63	12/2/2019 06:48	
5-Nitro-o-toluidine	63	U	ug/L	5	110	63	12/2/2019 06:48	,
7,12-Dimethylbenz[a]anthracene	23	U	ug/L	5	110	23	12/2/2019 06:48	,
Acenaphthene	0.88	U	ug/L	5	4.4	0.88	12/2/2019 06:48	
Acenaphthylene	0.92	U	ug/L	5	4.4	0.92	12/2/2019 06:48	
Acetophenone	64	ı	ug/L	5	110	35	12/2/2019 06:48	
Aniline	20	U	ug/L	5	110	20	12/2/2019 06:48	
Anthracene	0.78	U	ug/L	5	4.4	0.78	12/2/2019 06:48	
Benzidine	26	U	ug/L	5	110	26	12/2/2019 06:48	
Benzo[a]anthracene	0.27	U	ug/L	5	4.4	0.27	12/2/2019 06:48	
Benzo[a]pyrene	0.81	U	ug/L	5	4.4	0.81	12/2/2019 06:48	,
Benzo[b]fluoranthene	0.27	U	ug/L	5	2.2	0.27	12/2/2019 06:48	,
Benzo[g,h,i]perylene	1.0	U	ug/L	5	4.4	1.0	12/2/2019 06:48	,
Benzo[k]fluoranthene	1.1	U	ug/L	5	4.4	1.1	12/2/2019 06:48	,
Benzoic Acid	7800		ug/L	50	2200	170	12/3/2019 03:19	
Benzyl Alcohol	52	U	ug/L	5	110	52	12/2/2019 06:48	
Butyl benzyl phthalate	24	U	ug/L	5	110	24	12/2/2019 06:48	
Chlorobenzilate	44	U	ug/L	5	110	44	12/2/2019 06:48	
Chrysene	0.73	U	ug/L	5	4.4	0.73	12/2/2019 06:48	
Di-n-Butyl Phthalate	19	U	ug/L	5	110	19	12/2/2019 06:48	
Di-n-octyl Phthalate	27	U	ug/L	5	110	27	12/2/2019 06:48	
Diallate	25	U	ug/L	5	110	25	12/2/2019 06:48	
Dibenzo[a,h]anthracene	0.52	U	ug/L	5	4.4	0.52	12/2/2019 06:48	,
Dibenzofuran	1.5	U	ug/L	5	110	1.5	12/2/2019 06:48	,
Diethyl phthalate	46	U	ug/L	5	110	46	12/2/2019 06:48	,
Dimethoate	26	U	ug/L	5	110	26	12/2/2019 06:48	,
Dimethyl phthalate	39	U	ug/L	5	220	39	12/2/2019 06:48	,
Dinoseb	51	U	ug/L	5	110	51	12/2/2019 06:48	,
Diphenylamine	46	U	ug/L	5	110	46	12/2/2019 06:48	,
Disulfoton	48	U	ug/L	5	110	48	12/2/2019 06:48	
Ethyl methanesulfonate	20	U	ug/L	5	110	20	12/2/2019 06:48	
Famphur	44	U	ug/L	5	110	44	12/2/2019 06:48	
Fluoranthene	0.81	U	ug/L	5	4.4	0.81	12/2/2019 06:48	J
Fluorene	0.85	U	ug/L	5	4.4	0.85	12/2/2019 06:48	J

Report ID: 920466 - 1865554 Page 16 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060002 Matrix: Water


Sample ID: 19326-TL Date Collected: 11/21/19 08:30

Sample Description: Location:

campio Boodilption.				2000				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Hexachlorobenzene	22	U	ug/L	5	110	22	12/2/2019 06:48	J
Hexachlorobutadiene	28	U	ug/L	5	110	28	12/2/2019 06:48	J
Hexachlorocyclopentadiene	23	U	ug/L	5	110	23	12/2/2019 06:48	J
Hexachloroethane	27	U	ug/L	5	110	27	12/2/2019 06:48	J
Hexachloropropene	59	U	ug/L	5	110	59	12/2/2019 06:48	J
Indeno(1,2,3-cd)pyrene	0.25	U	ug/L	5	4.4	0.25	12/2/2019 06:48	J
Isodrin	68	U	ug/L	5	110	68	12/2/2019 06:48	J
Isophorone	25	U	ug/L	5	110	25	12/2/2019 06:48	J
Isosafrole	69	U	ug/L	5	110	69	12/2/2019 06:48	J
Kepone	110	U	ug/L	5	1800	110	12/2/2019 06:48	J
Methapyrilene	41	U	ug/L	5	110	41	12/2/2019 06:48	J
Methyl Methanesulfonate	15	U	ug/L	5	110	15	12/2/2019 06:48	J
Methyl Parathion	28	U	ug/L	5	110	28	12/2/2019 06:48	J
N-Nitrosodi-n-butylamine	32	U	ug/L	5	110	32	12/2/2019 06:48	J
N-Nitrosodi-n-propylamine	50	U	ug/L	5	110	50	12/2/2019 06:48	J
N-Nitrosodiethylamine	46	U	ug/L	5	110	46	12/2/2019 06:48	J
N-Nitrosodimethylamine	20	U	ug/L	5	110	20	12/2/2019 06:48	J
N-Nitrosodiphenylamine	46	U	ug/L	5	110	46	12/2/2019 06:48	J
N-Nitrosomethylethylamine	60	U	ug/L	5	110	60	12/2/2019 06:48	J
N-Nitrosopiperidine	28	U	ug/L	5	110	28	12/2/2019 06:48	J
N-Nitrosopyrrolidine	46	U	ug/L	5	110	46	12/2/2019 06:48	J
Naphthalene	1.0	U	ug/L	5	4.4	1.0	12/2/2019 06:48	J
Nitrobenzene	25	U	ug/L	5	110	25	12/2/2019 06:48	J
Nitroquinoline-1-oxide	44	U	ug/L	5	110	44	12/2/2019 06:48	J
Pentachlorobenzene	30	U	ug/L	5	110	30	12/2/2019 06:48	J
Pentachloronitrobenzene	38	U	ug/L	5	110	38	12/2/2019 06:48	J
Pentachlorophenol	21	U	ug/L	5	110	21	12/2/2019 06:48	J
Phenacetin	69	U	ug/L	5	110	69	12/2/2019 06:48	J
Phenanthrene	4.3	1	ug/L	5	4.4	0.87	12/2/2019 06:48	J
Phenol	1500		ug/L	5	110	12	12/2/2019 06:48	J
Phorate	26	U	ug/L	5	110	26	12/2/2019 06:48	J
Pronamide (Kerb)	80	U	ug/L	5	110	80	12/2/2019 06:48	J
Pyrene	0.79	U	ug/L	5	4.4	0.79	12/2/2019 06:48	J
Safrole	77	U	ug/L	5	110	77	12/2/2019 06:48	J
Thionazin (Zinophos)	26	U	ug/L	5	110	26	12/2/2019 06:48	J
a,a-Dimethylphenethylamine	41	U	ug/L	5	110	41	12/2/2019 06:48	J
bis(2-Chloroethoxy)methane	27	U	ug/L	5	110	27	12/2/2019 06:48	J
bis(2-Chloroethyl)Ether	32	U	ug/L	5	110	32	12/2/2019 06:48	J
bis(2-Chloroisopropyl) Ether	31	U	ug/L	5	110	31	12/2/2019 06:48	J
bis(2-Ethylhexyl) phthalate	44	U	ug/L	5	110	44	12/2/2019 06:48	J

Report ID: 920466 - 1865554 Page 17 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060002 Matrix: Water

19326-TL Date Collected: 11/21/19 08:30 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
o,o,o-Triethylphosphorothioate	65	U	ug/L	5	110	65	12/2/2019 06:48	J
o-Toluidine	54	U	ug/L	5	110	54	12/2/2019 06:48	J
2-Fluorophenol (S)	0	1	%	5	31-134		12/2/2019 06:48	
Phenol-d6 (S)	0	1	%	5	24-120		12/2/2019 06:48	
Nitrobenzene-d5 (S)	0	1	%	5	38-139		12/2/2019 06:48	
2-Fluorobiphenyl (S)	0	1	%	5	42-138		12/2/2019 06:48	
2,4,6-Tribromophenol (S)	0	1	%	5	48-147		12/2/2019 06:48	
p-Terphenyl-d14 (S)	0	1	%	5	61-154		12/2/2019 06:48	

VOLATILES

TOLATILLO								
Analysis Desc: 8260B VOCs Analysis,	Prepa	aration	Method: SW	/-846 5030B				
Water	Analy	tical M	ethod: SW-8	346 8260B				
1,1,1,2-Tetrachloroethane	54	U	ug/L	100	100	54	12/5/2019 00:05	J
1,1,1-Trichloroethane	22	U	ug/L	100	100	22	12/5/2019 00:05	J
1,1,2,2-Tetrachloroethane	20	U	ug/L	100	100	20	12/5/2019 00:05	J
1,1,2-Trichloroethane	30	U	ug/L	100	100	30	12/5/2019 00:05	J
1,1-Dichloroethane	14	U	ug/L	100	100	14	12/5/2019 00:05	J
1,1-Dichloroethylene	18	U	ug/L	100	100	18	12/5/2019 00:05	J
1,1-Dichloropropene	24	U	ug/L	100	100	24	12/5/2019 00:05	J
1,2,3-Trichloropropane	91	U	ug/L	100	100	91	12/5/2019 00:05	J
1,2-Dibromo-3-Chloropropane	310	U	ug/L	100	500	310	12/5/2019 00:05	J
1,2-Dichlorobenzene	18	U	ug/L	100	100	18	12/5/2019 00:05	J
1,2-Dichloroethane	23	U	ug/L	100	100	23	12/5/2019 00:05	J
1,2-Dichloropropane	66	U	ug/L	100	100	66	12/5/2019 00:05	J
1,3-Dichlorobenzene	19	U	ug/L	100	100	19	12/5/2019 00:05	J
1,3-Dichloropropane	24	U	ug/L	100	100	24	12/5/2019 00:05	J
1,4-Dichlorobenzene	22	U	ug/L	100	100	22	12/5/2019 00:05	J
2,2-Dichloropropane	22	U	ug/L	100	100	22	12/5/2019 00:05	J
2-Butanone (MEK)	9200		ug/L	100	500	43	12/5/2019 00:05	J
2-Hexanone	71	U	ug/L	100	500	71	12/5/2019 00:05	J
4-Methyl-2-pentanone (MIBK)	180		ug/L	100	100	47	12/5/2019 00:05	J
Acetone	13000		ug/L	100	500	210	12/5/2019 00:05	J
Acetonitrile	2100	U	ug/L	100	5000	2100	12/5/2019 00:05	J
Acrolein (Propenal)	160	U	ug/L	100	1000	160	12/5/2019 00:05	J
Acrylonitrile	110	U	ug/L	100	1000	110	12/5/2019 00:05	J
Allyl Chloride(3-Chloropropene	210	U	ug/L	100	1000	210	12/5/2019 00:05	J
Benzene	16	U	ug/L	100	100	16	12/5/2019 00:05	J
Bromochloromethane	17	U	ug/L	100	100	17	12/5/2019 00:05	J
Bromodichloromethane	46	U	ug/L	100	100	46	12/5/2019 00:05	J

Report ID: 920466 - 1865554 Page 18 of 65

ANALYTICAL RESULTS

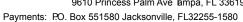
Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID: T1921060002 Date Received: 11/22/19 12:00 Matrix: Water

Sample ID: 19326-TL Date Collected: 11/21/19 08:30

Sample Description: Location:

Parameters Results Qual Units DF PQL MDL Malyzed Lab Bromoform 44 U uglL 100 100 44 12/5/2019 00:05 J Bromomethane 29 U uglL 100 100 29 12/5/2019 00:05 J Carbon Tetrachloride 36 U uglL 100 100 67 12/5/2019 00:05 J Chloroberzene 21 U uglL 100 100 33 12/5/2019 00:05 J Chlorofertane 33 U uglL 100 100 13 12/5/2019 00:05 J Chloropera 20 U uglL 100 100 21 12/5/2019 00:05 J Chloroprene 20 U uglL 100 100 21 12/5/2019 00:05 J Dibromochloromethane 26 U uglL 100 100 12 12/5/2019 00:05 J						Adjusted	Adjusted		
Bromomethane 29	Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Carbon Disulfide 67 U ug/L 100 100 67 12/5/2019 00:05 J Carbon Tetrachioride 36 U ug/L 100 100 36 12/5/2019 00:05 J Chloroethane 21 U ug/L 100 100 33 12/5/2019 00:05 J Chlorofform 18 U ug/L 100 100 18 12/5/2019 00:05 J Chloroprene 20 U ug/L 100 500 200 12/5/2019 00:05 J Chloroprene 200 U ug/L 100 500 200 12/5/2019 00:05 J Chloroprene 20 U ug/L 100 100 20 12/5/2019 00:05 J Dibromomethane 26 U ug/L 100 100 10 21/5/2019 00:05 J Ethyl Methacrylate 210 U ug/L 100 100 10 12/5/2019 00:05 J	Bromoform	44	U	ug/L	100	100	44	12/5/2019 00:05	J
Carbon Tetrachloride 36 U ug/L 100 100 36 12/5/2019 00:05 J Chlorobenzene 21 U ug/L 100 100 21 12/5/2019 00:05 J Chloroform 18 U ug/L 100 100 18 12/5/2019 00:05 J Chloromethane 21 U ug/L 100 100 21 12/5/2019 00:05 J Chloromethane 20 U ug/L 100 100 20 02/5/2019 00:05 J Dibromochloromethane 26 U ug/L 100 100 33 12/5/2019 00:05 J Ethyl Methacrylate 210 U ug/L 100 100 20 12/5/2019 00:05 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/5/2019 00:05 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/5/2019 00:05 <	Bromomethane	29	U	ug/L	100	100	29	12/5/2019 00:05	J
Chlorobenzene 21 U ug/L 100 100 21 12/5/2019 00:05 J Chloroethane 33 U ug/L 100 100 33 12/5/2019 00:05 J Chloromethane 21 U ug/L 100 100 21 12/5/2019 00:05 J Chloroprene 20 U ug/L 100 500 20 12/5/2019 00:05 J Dibromochloromethane 26 U ug/L 100 100 26 12/5/2019 00:05 J Dibromochloromethane 26 U ug/L 100 100 26 12/5/2019 00:05 J Dichlorodifluoromethane 26 U ug/L 100 100 26 12/5/2019 00:05 J Ethyl Methacrylate 210 U ug/L 100 100 20 12/5/2019 00:05 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 10 12/5/2019 00:05 <t< td=""><td>Carbon Disulfide</td><td>67</td><td>U</td><td>ug/L</td><td>100</td><td>100</td><td>67</td><td>12/5/2019 00:05</td><td>J</td></t<>	Carbon Disulfide	67	U	ug/L	100	100	67	12/5/2019 00:05	J
Chloroethane 33 U ug/L 100 100 13 12/5/2019 00:05 J Chloroform 18 U ug/L 100 100 13 12/5/2019 00:05 J Chloroprene 20 U ug/L 100 500 20 12/5/2019 00:05 J Dibromochloromethane 26 U ug/L 100 100 26 12/5/2019 00:05 J Dichlorodifluoromethane 19 U ug/L 100 100 19 12/5/2019 00:05 J Ethylene floridifluoromethane 19 U ug/L 100 100 10 12/5/2019 00:05 J Ethylene floridifluoromethane 19 U ug/L 100 100 10 12/5/2019 00:05 J Ethylene floridifluoromethane 19 U ug/L 100 100 20 12/5/2019 00:05 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 10 <td< td=""><td>Carbon Tetrachloride</td><td>36</td><td>U</td><td>ug/L</td><td>100</td><td>100</td><td>36</td><td>12/5/2019 00:05</td><td>J</td></td<>	Carbon Tetrachloride	36	U	ug/L	100	100	36	12/5/2019 00:05	J
Chloroform 18 U ug/L 100 100 18 12/5/2019 00:05 J Chloromethane 21 U ug/L 100 100 21 12/5/2019 00:05 J Chloroprene 200 U ug/L 100 500 200 12/5/2019 00:05 J Dibromochloromethane 26 U ug/L 100 100 26 12/5/2019 00:05 J Dibromochloromethane 19 U ug/L 100 100 20 12/5/2019 00:05 J Ethyl Methacrylate 210 U ug/L 100 100 20 12/5/2019 00:05 J Ethylence Dibromide (EDB) 20 U ug/L 100 100 20 12/5/2019 00:05 J Ethylence Dibromide (EDB) 16 U ug/L 100 100 20 12/5/2019 00:05 J Ibdomethane (Methyl lodide) 16 U ug/L 100 100 100 12/5/2019 00:	Chlorobenzene	21	U	ug/L	100	100	21	12/5/2019 00:05	J
Chloromethane 21 U ug/L 100 100 21 12/5/2019 00:05 J Chloroprene 200 U ug/L 100 500 220 12/5/2019 00:05 J Dibromomethane 23 U ug/L 100 100 20 12/5/2019 00:05 J Dibriomomethane 26 U ug/L 100 100 100 26 12/5/2019 00:05 J Ethyl Methacrylate 210 U ug/L 100 100 100 12/5/2019 00:05 J Ethyl Methacrylate 21 U ug/L 100 100 100 12/5/2019 00:05 J Ethylee Dibromide (EDB) 20 U ug/L 100 100 100 12/5/2019 00:05 J Ethylee Dibromide (EDB) 20 U ug/L 100 100 100 100 12/5/2019 00:05 J Bethylee Dibromide (EDB) 40 ug/L 100 100 100	Chloroethane	33	U	ug/L	100	100	33	12/5/2019 00:05	J
Chloroprene 200	Chloroform	18	U	ug/L	100	100	18	12/5/2019 00:05	J
Dibromochloromethane 33 U Ug/L 100 100 33 12/5/2019 00:05 J Dibromomethane 26 U Ug/L 100 100 26 12/5/2019 00:05 J Dichlorodifluoromethane 19 U Ug/L 100 100 100 12/5/2019 00:05 J Dichlorodifluoromethane 19 U Ug/L 100 100 100 12/5/2019 00:05 J Ethyl Methacrylate 210 U Ug/L 100 100 100 24 12/5/2019 00:05 J Ethylbenzene 24 U Ug/L 100 100 100 24 12/5/2019 00:05 J Ethylbenzene 24 U Ug/L 100 100 100 100 12/5/2019 00:05 J Ug/L Ug/L 100 100 100 100 12/5/2019 00:05 J Ug/L Ug/L 100 100 100 100 12/5/2019 00:05 J Ug/L Ug/L 100 1000 100 12/5/2019 00:05 J Ug/L Ug/L 100 1000 1800 12/5/2019 00:05 J Ug/L Ug/L 100 1000 1800 12/5/2019 00:05 J Ug/L Ug/	Chloromethane	21	U	ug/L	100	100	21	12/5/2019 00:05	J
Dibromomethane 26	Chloroprene	200	U	ug/L	100	500	200	12/5/2019 00:05	J
Dichlorodifluoromethane 19	Dibromochloromethane	33	U	ug/L	100	100	33	12/5/2019 00:05	J
Ethyl Methacrylate 210	Dibromomethane	26	U	ug/L	100	100	26	12/5/2019 00:05	J
Ethylbenzene 24 U ug/L 100 100 24 12/5/2019 00:05 J Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/5/2019 00:05 J Isobutyl Alcohol 4400 U ug/L 100 20000 4400 12/5/2019 00:05 J Methyl Alcohol 4400 U ug/L 100 20000 4400 12/5/2019 00:05 J Methyl Methacrylate 180 U ug/L 100 500 180 12/5/2019 00:05 J Methylene Chloride 250 U ug/L 100 500 250 12/5/2019 00:05 J Methylene Chloride 250 U ug/L 100 500 250 12/5/2019 00:05 J Styrene 23 U ug/L 100 1000 23 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 23 12/5/2019 00:0	Dichlorodifluoromethane	19	U	ug/L	100	100	19	12/5/2019 00:05	J
Ethylene Dibromide (EDB) 20 U ug/L 100 100 20 12/5/2019 00:05 J Iodomethane (Methyl Iodide) 16 U ug/L 100 100 100 16 12/5/2019 00:05 J Isobutyl Alcohol 4400 U ug/L 100 20000 4400 12/5/2019 00:05 J Methacrylonitrile 1800 U ug/L 100 10000 1800 12/5/2019 00:05 J Methyl Methacrylate 1800 U ug/L 100 500 180 12/5/2019 00:05 J Methyl Methacrylate 1800 U ug/L 100 500 250 12/5/2019 00:05 J Methylene Chloride 250 U ug/L 100 500 250 12/5/2019 00:05 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/5/2019 00:05 J Styrene 23 U ug/L 100 1000 23 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 23 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 20 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/5/2019 00:05 J Trichlorofluoromethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J U ug/L 100 100 100 100 12/5/2019 00:05 J U ug/L 100 100 100 100 12/5/2019 00:05 J U ug/L 100 100 100 100 12/5/2019 00:05 J U ug/L 100 100 100 100 100 100 100 100 100	Ethyl Methacrylate	210	U	ug/L	100	1000	210	12/5/2019 00:05	J
Indomethane (Methyl Iodide)	Ethylbenzene	24	U	ug/L	100	100	24	12/5/2019 00:05	J
Sobutyl Alcohol A400 U Ug/L 100 20000 A400 12/5/2019 00:05 J Methacrylonitrile 1800 U Ug/L 100 10000 1800 12/5/2019 00:05 J Methyl Methacrylate 180 U Ug/L 100 500 180 12/5/2019 00:05 J Methyl Methacrylate 180 U Ug/L 100 500 250 12/5/2019 00:05 J Methylene Chloride 250 U Ug/L 100 500 250 12/5/2019 00:05 J Methylene Chloride 2100 U Ug/L 100 1000 250 12/5/2019 00:05 J Styrene 23 U Ug/L 100 100 23 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U Ug/L 100 100 36 12/5/2019 00:05 J Toluene 23 U Ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U Ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U Ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U Ug/L 100 100 32 12/5/2019 00:05 J Vinyl Acetate 19 U Ug/L 100 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U Ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U Ug/L 100 100 20 12/5/2019 00:05 J Cis-1,2-Dichloroethylene 24 U Ug/L 100 100 20 12/5/2019 00:05 J Cis-1,3-Dichloropropene 16 U Ug/L 100 100 20 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U Ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U Ug/L 100 100 20 12/5/2019 00:05 J trans-1,4-Dichloroethylene 180 U Ug/L 100 100 20 12/5/2019 00:05 J Toluene-d8 (S) 81 W Ug/L 100 70-128 12/5/2019 00:05 Toluene-d8 (S) 12/5/2019 00:05 Toluene-d8 (S) 12/5/2019 00:05 Toluene-d8 (S) 100	Ethylene Dibromide (EDB)	20	U	ug/L	100	100	20	12/5/2019 00:05	J
Methacrylonitrile 1800 U ug/L 100 10000 1800 12/5/2019 00:05 J Methyl Methacrylate 180 U ug/L 100 500 180 12/5/2019 00:05 J Methylene Chloride 250 U ug/L 100 500 250 12/5/2019 00:05 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/5/2019 00:05 J Styrene 23 U ug/L 100 100 36 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/5/2019 00:05 J Toluene 23 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethylene (PCE) 36 U ug/L 100 100 29 12/5/2019 00:05 J Trichloroethylene (PCE) 36 U ug/L 100 100 29 12	Iodomethane (Methyl Iodide)	16	U	ug/L	100	100	16	12/5/2019 00:05	J
Methyl Methacrylate 180 U ug/L 100 500 180 12/5/2019 00:05 J Methylene Chloride 250 U ug/L 100 500 250 12/5/2019 00:05 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/5/2019 00:05 J Styrene 23 U ug/L 100 100 23 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethylene (PCE) 36 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethylene (PCE) 36 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethylene (PCE) 36 U ug/L 100 100 29 12/5/2019 00:05 J Trichloroethylene (PCE) 32 U ug/L 100 100 20 <td>Isobutyl Alcohol</td> <td>4400</td> <td>U</td> <td>ug/L</td> <td>100</td> <td>20000</td> <td>4400</td> <td>12/5/2019 00:05</td> <td>J</td>	Isobutyl Alcohol	4400	U	ug/L	100	20000	4400	12/5/2019 00:05	J
Methylene Chloride 250 U ug/L 100 500 250 12/5/2019 00:05 J Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/5/2019 00:05 J Styrene 23 U ug/L 100 100 23 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/5/2019 00:05 J Toluene 23 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 20 12/5/2019 00:05 J Vinyl Acetate 19 U ug/L 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05	Methacrylonitrile	1800	U	ug/L	100	10000	1800	12/5/2019 00:05	J
Propionitrile (Ethyl cyanide) 2100 U ug/L 100 10000 2100 12/5/2019 00:05 J Styrene 23 U ug/L 100 100 23 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/5/2019 00:05 J Toluene 23 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/5/2019 00:05 J Vinyl Acetate 19 U ug/L 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 100 24 12/5/2019 00:05 J	Methyl Methacrylate	180	U	ug/L	100	500	180	12/5/2019 00:05	J
Styrene 23 U ug/L 100 100 23 12/5/2019 00:05 J Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/5/2019 00:05 J Toluene 23 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/5/2019 00:05 J Vinyl Acetate 19 U ug/L 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 100 20 12/5/2019 00:05 J xylene (Total) 53 U ug/L 100 100 24 12/5/2019 00:05 J <	Methylene Chloride	250	U	ug/L	100	500	250	12/5/2019 00:05	J
Tetrachloroethylene (PCE) 36 U ug/L 100 100 36 12/5/2019 00:05 J Toluene 23 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/5/2019 00:05 J Vinyl Acetate 19 U ug/L 100 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 100 20 12/5/2019 00:05 J X Xylene (Total) 53 U ug/L 100 100 20 12/5/2019 00:05 J X Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 20 12/5/2019 00:05 J cis-1,3-Dichloropropene 16 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 180 U ug/L 100 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 100 21 12/5/2019 00:05 J 1,2-Dichloroethylene 20 U ug/L 100 100 100 20 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S)	Propionitrile (Ethyl cyanide)	2100	U	ug/L	100	10000	2100	12/5/2019 00:05	J
Toluene 23 U ug/L 100 100 23 12/5/2019 00:05 J Trichloroethene 29 U ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/5/2019 00:05 J Vinyl Acetate 19 U ug/L 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J xylene (Total) 20 U ug/L 100 100 24 12/5/2019 00:05 J	Styrene	23	U	ug/L	100	100	23	12/5/2019 00:05	J
Trichloroethene 29 U ug/L 100 100 29 12/5/2019 00:05 J Trichlorofluoromethane 32 U ug/L 100 100 32 12/5/2019 00:05 J Vinyl Acetate 19 U ug/L 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J xylene (Total) 24 U ug/L 100 200 53 12/5/2019 00:05 J xylene (Total) 25 24 U ug/L 100 100 24 12/5/2019 00:05 J cis-1,2-Dichloroethylene 26 U ug/L 100 100 20 12/5/2019 00:05	Tetrachloroethylene (PCE)	36	U	ug/L	100	100	36	12/5/2019 00:05	J
Trichlorofluoromethane 32 U ug/L 100 100 32 12/5/2019 00:05 J Vinyl Acetate 19 U ug/L 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/5/2019 00:05 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180	Toluene	23	U	ug/L	100	100	23	12/5/2019 00:05	J
Vinyl Acetate 19 U ug/L 100 100 19 12/5/2019 00:05 J Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/5/2019 00:05 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180 12/5/2019 00:05 J Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05 12/5/201	Trichloroethene	29	U	ug/L	100	100	29	12/5/2019 00:05	J
Vinyl Chloride 20 U ug/L 100 100 20 12/5/2019 00:05 J Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/5/2019 00:05 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	Trichlorofluoromethane	32	U	ug/L	100	100	32	12/5/2019 00:05	J
Xylene (Total) 53 U ug/L 100 200 53 12/5/2019 00:05 J cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/5/2019 00:05 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 100 180 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	Vinyl Acetate	19	U	ug/L	100	100	19	12/5/2019 00:05	J
cis-1,2-Dichloroethylene 24 U ug/L 100 100 24 12/5/2019 00:05 J cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	Vinyl Chloride	20	U	ug/L	100	100	20	12/5/2019 00:05	J
cis-1,3-Dichloropropene 16 U ug/L 100 100 16 12/5/2019 00:05 J trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	Xylene (Total)	53	U	ug/L	100	200	53	12/5/2019 00:05	J
trans-1,2-Dichloroethylene 20 U ug/L 100 100 20 12/5/2019 00:05 J trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 77-119 12/5/2019 00:05 Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	cis-1,2-Dichloroethylene	24	U	ug/L	100	100	24	12/5/2019 00:05	J
trans-1,3-Dichloropropylene 21 U ug/L 100 100 21 12/5/2019 00:05 J trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S) Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	cis-1,3-Dichloropropene	16	U	ug/L	100	100	16	12/5/2019 00:05	J
trans-1,4-Dichloro-2-butene 180 U ug/L 100 1000 180 12/5/2019 00:05 J 1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	trans-1,2-Dichloroethylene	20	U	ug/L	100	100	20	12/5/2019 00:05	J
1,2-Dichloroethane-d4 (S) 81 % 100 70-128 12/5/2019 00:05 Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	trans-1,3-Dichloropropylene	21	U	ug/L	100	100	21	12/5/2019 00:05	J
Toluene-d8 (S) 81 % 100 77-119 12/5/2019 00:05	trans-1,4-Dichloro-2-butene	180	U	ug/L	100	1000	180	12/5/2019 00:05	J
	1,2-Dichloroethane-d4 (S)	81		%	100	70-128		12/5/2019 00:05	
Bromofluorobenzene (S) 104 % 100 86-123 12/5/2019 00:05	Toluene-d8 (S)	81		%	100	77-119		12/5/2019 00:05	
	Bromofluorobenzene (S)	104		%	100	86-123		12/5/2019 00:05	


WET CHEMISTRY

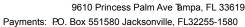
Analysis Desc: IC,E300.0,Water Analytical Method: EPA 300.0

Report ID: 920466 - 1865554 Page 19 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060002 Matrix: Water


19326-TL Date Collected: 11/21/19 08:30 Sample ID:

Sample Description: Location:

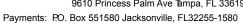
campic 2 cooring troin								
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Bromide	37		mg/L	25	2.5	2.2	12/4/2019 11:14	Т
Chloride	4400		mg/L	25	120	25	12/4/2019 11:14	Т
Fluoride	2.5	U	mg/L	25	12	2.5	12/4/2019 11:14	Т
Sulfate	25	U	mg/L	25	120	25	12/4/2019 11:14	Т
Analysis Desc: Ammonia,E350.1,Water	Ana	lytical Me	ethod: EPA	350.1				
Ammonia (N)	7400		mg/L	2000	200	40	11/25/2019 12:05	Т
Analysis Desc: COD,E410.4,Water	Ana	lytical Me	ethod: EPA	410.4				
Chemical Oxygen Demand	23000		mg/L	20	1000	470	11/25/2019 12:00	Т
Analysis Desc: Alkalinity,SM2320B,Water	Ana	lytical Me	ethod: SM 2	320B				
Alkalinity, Bicarbonate	170		mg/L	1	20	5.0	12/3/2019 13:07	Т
Alkalinity, Carbonate	5.0	U	mg/L	1	20	5.0	12/3/2019 13:07	Т
Alkalinity, Total	170		mg/L	1	20	5.0	12/3/2019 13:07	Т
Analysis Desc: Tot Dissolved Solids,SM2540C	Ana	lytical Me	ethod: SM 2	2540 C				
Total Dissolved Solids	18000		mg/L	5	50	50	11/25/2019 15:00	Т
Analysis Desc: Cyanide, SM4500-E, Water	Ana	lytical Me	ethod: SM 4	500-CN-E				
Cyanide	0.024	U	mg/L	5	0.050	0.024	11/25/2019 14:07	Т
Analysis Desc: Sulfide,SM4500S- D,Aqueous	Ana	lytical Me	ethod: SM 4	500-S D				
Sulfide	36		mg/L	50	2.5	0.41	11/26/2019 09:35	Т
Analysis Desc: Nitrate,Nitrite SM4500NO3F,Water	Ana	lytical Me	ethod: SM 4	500NO3-F				
Nitrate (as N)	7.9	U	mg/L	100	10	7.9	11/22/2019 15:56	Т
Nitrite (as N)	7.7	U	mg/L	100	10	7.7	11/22/2019 15:56	Т
Analysis Desc: BOD,SM5210B,Water	Ana	lytical Me	ethod: SM 5	210B				
Biochemical Oxygen Demand	3700		mg/L	10	20	20	11/22/2019 17:43	Т

Report ID: 920466 - 1865554 Page 20 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060003 Matrix: Water


Trip Blank Date Collected: 11/22/19 00:00 Sample ID:

Sample Description: Location:

					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B VOCs Analysis,	Prep	oaration N	Method: SV	V-846 5030B				
Water	Ana	lytical Me	ethod: SW-	846 8260B				
1,1,1,2-Tetrachloroethane	0.54	U	ug/L	1	1.0	0.54	12/5/2019 01:04	J
1,1,1-Trichloroethane	0.22	Ū	ug/L	1	1.0	0.22	12/5/2019 01:04	J
1,1,2,2-Tetrachloroethane	0.20	U	ug/L	1	1.0	0.20	12/5/2019 01:04	J
1,1,2-Trichloroethane	0.30	Ū	ug/L	1	1.0	0.30	12/5/2019 01:04	J
1,1-Dichloroethane	0.14	Ū	ug/L	1	1.0	0.14	12/5/2019 01:04	J
1,1-Dichloroethylene	0.18	U	ug/L	1	1.0	0.18	12/5/2019 01:04	J
1,2,3-Trichloropropane	0.91	U	ug/L	1	1.0	0.91	12/5/2019 01:04	J
1,2-Dichlorobenzene	0.18	U	ug/L	1	1.0	0.18	12/5/2019 01:04	J
1,2-Dichloroethane	0.23	U	ug/L	1	1.0	0.23	12/5/2019 01:04	J
1,2-Dichloropropane	0.66	U	ug/L	1	1.0	0.66	12/5/2019 01:04	J
1,4-Dichlorobenzene	0.22	U	ug/L	1	1.0	0.22	12/5/2019 01:04	J
2-Butanone (MEK)	0.43	U	ug/L	1	5.0	0.43	12/5/2019 01:04	J
2-Hexanone	0.71	U	ug/L	1	5.0	0.71	12/5/2019 01:04	J
4-Methyl-2-pentanone (MIBK)	0.47	U	ug/L	1	1.0	0.47	12/5/2019 01:04	J
Acetone	2.1	U	ug/L	1	5.0	2.1	12/5/2019 01:04	J
Acrylonitrile	1.1	U	ug/L	1	10	1.1	12/5/2019 01:04	J
Benzene	0.16	U	ug/L	1	1.0	0.16	12/5/2019 01:04	J
Bromochloromethane	0.17	U	ug/L	1	1.0	0.17	12/5/2019 01:04	J
Bromodichloromethane	0.46	U	ug/L	1	1.0	0.46	12/5/2019 01:04	J
Bromoform	0.44	U	ug/L	1	1.0	0.44	12/5/2019 01:04	J
Bromomethane	0.29	U	ug/L	1	1.0	0.29	12/5/2019 01:04	J
Carbon Disulfide	0.67	U	ug/L	1	1.0	0.67	12/5/2019 01:04	J
Carbon Tetrachloride	0.36	U	ug/L	1	1.0	0.36	12/5/2019 01:04	J
Chlorobenzene	0.21	U	ug/L	1	1.0	0.21	12/5/2019 01:04	J
Chloroethane	0.33	U	ug/L	1	1.0	0.33	12/5/2019 01:04	J
Chloroform	0.18	U	ug/L	1	1.0	0.18	12/5/2019 01:04	J
Chloromethane	0.21	U	ug/L	1	1.0	0.21	12/5/2019 01:04	J
Dibromochloromethane	0.33	U	ug/L	1	1.0	0.33	12/5/2019 01:04	J
Dibromomethane	0.26	Ū	ug/L	1	1.0	0.26	12/5/2019 01:04	J
Ethylbenzene	0.24	Ū	ug/L	1	1.0	0.24	12/5/2019 01:04	J
Iodomethane (Methyl Iodide)	0.16	U	ug/L	1	1.0	0.16	12/5/2019 01:04	J
Methylene Chloride	2.5	U	ug/L	1	5.0	2.5	12/5/2019 01:04	J
Styrene	0.23	Ū	ug/L	1	1.0	0.23	12/5/2019 01:04	J
Tetrachloroethylene (PCE)	0.36	Ū	ug/L	1	1.0	0.36	12/5/2019 01:04	J
Toluene	0.23	Ū	ug/L	1	1.0	0.23	12/5/2019 01:04	J
Trichloroethene	0.29	Ū	ug/L	1	1.0	0.29	12/5/2019 01:04	J

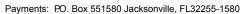
Report ID: 920466 - 1865554 Page 21 of 65

ANALYTICAL RESULTS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Date Received: 11/22/19 12:00 Lab ID: T1921060003 Matrix: Water

Sample ID: Trip Blank Date Collected: 11/22/19 00:00


Sample Description: Location:

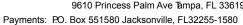
Sample Description.				Location.				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Trichlorofluoromethane	0.32	U	ug/L	1	1.0	0.32	12/5/2019 01:04	J
Vinyl Acetate	0.19	U	ug/L	1	1.0	0.19	12/5/2019 01:04	J
Vinyl Chloride	0.20	U	ug/L	1	1.0	0.20	12/5/2019 01:04	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	12/5/2019 01:04	J
cis-1,2-Dichloroethylene	0.24	U	ug/L	1	1.0	0.24	12/5/2019 01:04	J
cis-1,3-Dichloropropene	0.16	U	ug/L	1	1.0	0.16	12/5/2019 01:04	J
trans-1,2-Dichloroethylene	0.20	U	ug/L	1	1.0	0.20	12/5/2019 01:04	J
trans-1,3-Dichloropropylene	0.21	U	ug/L	1	1.0	0.21	12/5/2019 01:04	J
trans-1,4-Dichloro-2-butene	1.8	U	ug/L	1	10	1.8	12/5/2019 01:04	J
1,2-Dichloroethane-d4 (S)	84		%	1	70-128		12/5/2019 01:04	
Toluene-d8 (S)	80		%	1	77-119		12/5/2019 01:04	
Bromofluorobenzene (S)	102		%	1	86-123		12/5/2019 01:04	
Analysis Desc: 8260B SIM Analysis,	Prep	aration I	Method: SW	/-846 5030B				
Water	Ana	lytical Me	ethod: SW-8	846 8260B (SIM)				
1,2-Dibromo-3-Chloropropane	0.11	U	ug/L	1	0.20	0.11	12/5/2019 01:04	J
Ethylene Dibromide (EDB)	0.020	U	ug/L	1	0.10	0.020	12/5/2019 01:04	J
1,2-Dichloroethane-d4 (S)	78		%	1	77-125		12/5/2019 01:04	
Toluene-d8 (S)	81		%	1	80-121		12/5/2019 01:04	
Bromofluorobenzene (S)	97		%	1	80-129		12/5/2019 01:04	

Report ID: 920466 - 1865554 Page 22 of 65

ANALYTICAL RESULTS QUALIFIERS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

PARAMETER QUALIFIERS


- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- [1] Surrogate diluted out.
- [2] Surrogate diluted out.
- J4 Estimated Result

LAB QUALIFIERS

- J DOH Certification #E82574(AEL-JAX)(FL NELAC Certification)
- T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 920466 - 1865554 Page 23 of 65

Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAt/15015 Analysis Method: SM 4500NO3-F

QC Batch Method: SM 4500NO3-F Prepared:

Associated Lab Samples: T1921060001, T1921060002

METHOD BLANK: 3299450

Blank Reporting Limit Qualifiers Parameter Units Result WET CHEMISTRY Nitrate (as N) 0.079 0.079 U mg/L 0.077 U Nitrite (as N) mg/L 0.077

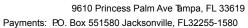
LABORATORY CONTROL SAMPLE: 3299451

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY						
Nitrate (as N)	mg/L	1	1.0	103	90-110	
Nitrite (as N)	mg/L	1	0.97	97	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3299452 Original: T1921036002 3299453 MSD Original Spike MS MS MSD % Rec Max % Rec Parameter Units Result Conc. Result Result % Rec Limit RPD RPD Qualifiers WET CHEMISTRY Nitrate (as N) mg/L 0.004 1 0.98 1.0 98 100 90-110 3 10 Nitrite (as N) mg/L 0.007 1 1.1 1.1 108 107 90-110 1 10

SM 5210B QC Batch: WCAt/15024 Analysis Method:

QC Batch Method: SM 5210B Prepared:


T1921060001, T1921060002 Associated Lab Samples:

METHOD BLANK: 3300510

Blank Reporting Parameter Units Result Limit Qualifiers WET CHEMISTRY Biochemical Oxygen Demand 2.0 2.0 U mg/L

Report ID: 920466 - 1865554 Page 24 of 65

QUALITY CONTROL DATA

W	orkorde	er: T	1921060	J.E.D	LAND	FILL ((F/K/A	OAK HAMM	
---	---------	-------	---------	-------	------	--------	--------	----------	--

LABORATORY	CONTROL	SAMPLE:	3300511

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY Biochemical Oxygen Demand	mg/L	200	200	99	84.6-115.4

SAMPLE DUPLICATE: 3300512 Original: T1921092001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
WET CHEMISTRY Biochemical Oxygen Demand	mg/L	1900	2000	0	20
QC Batch:	WCAt/15027		Analysis Metho	od: SM	4500-CN-E
OC Ratch Mothod:	SM 4500 CN E		Dropared:		

QC Batch Method: Prepared:

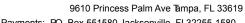
T1921060001, T1921060002 Associated Lab Samples:

METHOD BLANK: 3300527

Parameter	Units	Blank Result	Reporting Limit Qualifiers
WET CHEMISTRY			

0.0048 0.0048 U Cyanide mg/L

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
WET CHEMISTRY Cyanide	mg/L	0.04	0.037	92	90-110	


MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3301316 3301317 Original: J1915375004

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RF	Max D RPD Qualifiers
WET CHEMISTRY Cyanide	mg/L	-0.0035	0.04	0.026	0.026	65	65	90-110	1 10

Report ID: 920466 - 1865554 Page 25 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: WCAt/15032 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Prepared:

Associated Lab Samples: T1921060001, T1921060002

METHOD BLANK: 3300577

Blank Reporting Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Ammonia (N) 0.020 0.020 U mg/L

LABORATORY CONTROL SAMPLE: 3300578

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers WET CHEMISTRY

0.5 0.55 110 90-110 Ammonia (N) mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3300579 Original: T1920648002 3300580

MSD Original Spike MS MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers WET CHEMISTRY Ammonia (N) mg/L 0.01 1 1.0 1.0 105 105 90-110 0 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3300581 3300582 Original: T1920843004

Spike MS MSD MS MSD % Rec Original Max Limit RPD RPD Qualifiers Parameter Units Result Conc. Result Result % Rec % Rec WET CHEMISTRY

Ammonia (N) mg/L -0.04 1 1.1 1.1 108 106 90-110 3 10

QC Batch: WCAt/15034 Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C Prepared:

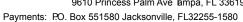
Associated Lab Samples: T1921060001, T1921060002

Report ID: 920466 - 1865554 Page 26 of 65

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (813)630-9616

Fax: (813)630-4327



QUALITY CONTROL DATA

Variety Vari	Workorder: T1921060 J.E	.D LANDFILL (F/K	/A OAK HAMM				
Parameter Units Result Limit Qualifiers WET CHEMISTRY Total Dissolved Solids mg/L 10 10 U LABORATORY CONTROL SAMPLE: 3300626 LCS LCS % Rec Parameter Units Spike LCS LCS % Rec Parameter Units Spike LCS LCS % Rec WET CHEMISTRY Total Dissolved Solids mg/L 660 660 99 85-115 SAMPLE DUPLICATE: 3300627 Original: T1920963001 Max Parameter Units Result Result RPD Max WET CHEMISTRY Total Dissolved Solids mg/L 190 190 0 10 QC Batch DGMJ/4314 Analysis Method: SW-846 6020 QC Batch QC Batch SW-846 3010A Prepared: 11/26/2019 03:30 Associated Lab Samples: T1921060001, T1921060002 METHOD BLANK: 3301179 Blank Reporting Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U	METHOD BLANK: 330062	25					
Total Dissolved Solids mg/L 10 10 U	Parameter	Units			llifiers		
Parameter		mg/L	10	10 U			
Parameter Units Conc. Result % Rec Limits Qualifiers WET CHEMISTRY Total Dissolved Solids mg/L 660 660 99 85-115 SAMPLE DUPLICATE: 3300627 Original: T1920963001 T1920963001 Parameter Units Result Result RPD Max Parameter Units Result Result RPD RPD Qualifiers WET CHEMISTRY Total Dissolved Solids mg/L 190 190 0 10 QC Batch: DGMj/4314 Analysis Method: SW-846 6020 QC Batch: DGMj/4314 Analysis Method: SW-846 6020 QC Batch Method: SW-846 3010A Prepared: 11/26/2019 03:30 Associated Lab Samples: T1921060001, T1921060002 METHOD BLANK: 3301179 Blank Reporting Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Antimony ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 LABORAT	LABORATORY CONTROL	SAMPLE: 3300	626				
Total Dissolved Solids mg/L 660 660 99 85-115	Parameter	Units					
Parameter	WET CHEMISTRY Total Dissolved Solids	mg/L	660	660	99	85-115	
Parameter Units Result Result RPD RPD Qualifiers WET CHEMISTRY Total Dissolved Solids mg/L 190 190 0 10 QC Batch: DGMj/4314 Analysis Method: SW-846 6020 QC Batch Method: SW-846 3010A Prepared: 11/26/2019 03:30 Associated Lab Samples: T1921060001, T1921060002 METHOD BLANK: 3301179 Blank Reporting Limit Qualifiers METALS Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers	SAMPLE DUPLICATE: 33	300627		Original: T19209	963001		
Total Dissolved Solids mg/L 190 190 0 10 QC Batch: DGMj/4314 Analysis Method: SW-846 6020 QC Batch Method: SW-846 3010A Prepared: 11/26/2019 03:30 Associated Lab Samples: T1921060001, T1921060002 METHOD BLANK: 3301179 Blank Reporting Parameter Units Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Spike LCS LCS % Rec Parameter Units Qualifiers Parameter Units Result % Rec Limits Qualifiers	Parameter	Units			RPD		
QC Batch Method: SW-846 3010A Prepared: 11/26/2019 03:30 Associated Lab Samples: T1921060001, T1921060002 METHOD BLANK: 3301179 Parameter Units Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Spike LCS LCS Result Res Result Result Result Result Result Result Result Result Result	WET CHEMISTRY Total Dissolved Solids	mg/L	190	190	0	10	
Associated Lab Samples: T1921060001, T1921060002 METHOD BLANK: 3301179 Blank Reporting Parameter Units Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers	QC Batch: DGI	Mj/4314		Analysis Method:		SW-846 6020	
METHOD BLANK: 3301179 Blank Reporting Parameter Units Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Parameter Units Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers				Prepared:		11/26/2019 03:30	
Parameter Units Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Parameter Units Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers			T1921060002				
Parameter Units Result Limit Qualifiers METALS Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Parameter Units Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers	METHOD BLANK: 330117	79					
Antimony ug/L 0.11 0.11 U Thallium ug/L 0.057 0.057 U LABORATORY CONTROL SAMPLE: 3301180 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers	Parameter	Units			llifiers		
Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers	METALS Antimony Thallium	-					
Parameter Units Conc. Result % Rec Limits Qualifiers	LABORATORY CONTROL	SAMPLE: 3301	180				
Antimony ug/L 50 45 90 80-120	Parameter	Units					
	Antimony	ug/L	50	45	90	80-120	

Report ID: 920466 - 1865554 Page 27 of 65

Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

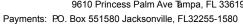
Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3301180

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS Thallium	ug/L	50	46	91	80-120

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3301	181	3301	182	Origii	nal: T1920	0891001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit F	RPD	Max RPD Qualifiers	
METALS Antimony Thallium	ug/L ug/L	0.15 0.044	50 50	45 43	45 46	90 87	89 92	75-125 75-125	0	20 20	

QC Batch: EXTj/4440 Analysis Method: SW-846 8270C QC Batch Method: SW-846 3510C Prepared: 11/25/2019 15:00


Associated Lab Samples: T1921060001, T1921060002

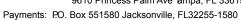
METHOD BLANK: 3301848

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
SEMIVOLATILES				
Phenol	ug/L	0.54	0.54 U	
2-Chlorophenol	ug/L	1.5	1.5 U	
2-Methylphenol (o-Cresol)	ug/L	1.5	1.5 U	
3+4-Methylphenol(mp-Cresol)	ug/L	1.0	1.0 U	
2-Nitrophenol	ug/L	0.63	0.63 U	
2,4-Dimethylphenol	ug/L	2.6	2.6 U	
Benzoic Acid	ug/L	0.78	0.78 U	
2,4-Dichlorophenol	ug/L	0.90	0.90 U	
2,6-Dichlorophenol	ug/L	1.3	1.3 U	
4-Chloro-3-methylphenol	ug/L	0.63	0.63 U	
2,4,6-Trichlorophenol	ug/L	1.4	1.4 U	
2,4,5-Trichlorophenol	ug/L	1.3	1.3 U	
2,4-Dinitrophenol	ug/L	1.1	1.1 U	
4-Nitrophenol	ug/L	2.9	2.9 U	
2,3,4,6-Tetrachlorophenol	ug/L	1.3	1.3 U	
2-Methyl-4,6-dinitrophenol	ug/L	1.2	1.2 U	
Pentachlorophenol	ug/L	0.95	0.95 U	
N-Nitrosodimethylamine	ug/L	0.93	0.93 U	
2-Picoline (2-Methylpyridine)	ug/L	1.2	1.2 U	

Report ID: 920466 - 1865554 Page 28 of 65

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM


Ν	/IETH	4OD	RI	ANK.	3301	242

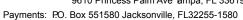
Parameter	METHOD BLANK: 3301848				
Parameter			Blank	Reporting	
Ethyl methanesulfonate ug/L 0.91 0.90 0.90 U Aniline ug/L 0.90 0.90 U 0.90 U 0.90 U 0.90 U bis(2-Chlorosthyl)Ether ug/L 1.5 1.5 U 1.5 U	Parameter	Units	Result		
Ethyl methanesulfonate ug/L 0.91 0.90 0.90 U Aniline ug/L 0.90 0.90 U 0.90 U 0.90 U 0.90 U bis(2-Chlorosthyl)Ether ug/L 1.5 1.5 U 1.5 U	Methyl Methanesulfonate	ug/L	0.67	0.67 U	
Aniline ug/L 0.90 0.90 U bis(2-Chroroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.6 1.8 U N-Nitrosod-n-propylamine ug/L 1.2 1.2 U Nexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U Nitrobenzene ug/L 1.1 1.1 U Nitrobenzene ug/L 1.1 1.1 U Visita (Schoroethoxy)methane ug/L 1.1 1.1 U Visita (Schoroethoxy)methane ug/L 0.69 0.69 U Vaphthalene ug/L 0.99 0.69 U A-Chiroroaniline ug/L 0.90 0.90 U Hexachlorobutadiene ug/L 1.3 1.3 U N-Methylaphthalene ug/L 0.04 <td< td=""><td>•</td><td></td><td>0.91</td><td>0.91 U</td><td></td></td<>	•		0.91	0.91 U	
bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosoln-propylamine ug/L 1.2 1.2 U Hexachloroethane ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U Isojac/Chloroethoxy)methane ug/L 1.2 1.2 U 1,2-4-Trichlorobenzene ug/L 0.69 0.69 U 1,2-4-Trichlorobenzene ug/L 0.09 0.09 U a,a-Dimethylphenethylamine ug/L 1.9 1.9 U a,a-Dimethylphanethalene ug/L 1.9 1.9 U a,-Witrosodin-butylamine ug/L 0.09 0.09 4-Methylnaphthalene ug/L	Aniline		0.90	0.90 U	
1,3-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U U Benzy/ Alcohol ug/L 1.4 1.4 U U Berzy/ Alcohol ug/L 1.4 1.4 U U Acetophenone ug/L 1.6 1.6 U U N-Nitrosodin-propylamine ug/L 1.2 1.2 U U Hexachloroethane ug/L 1.1 1.1 U U N-Nitrosopiperidine ug/L 1.1 1.1 U U Isophorone ug/L 1.2 1.2 U U 1s/2-4-Tichlorobenzene ug/L 0.69 0.69 U U Naphthalene ug/L 0.048 0.048 U U 4-Chloroaniline ug/L 0.90 0.90 U U 4-Evachlorobuladiene ug/L 0.049 0.049 U U 4-Methylnaphthalene ug/L 0.049 0.049 U U 4-Evachlorobuladiene ug/L 0.050 </td <td>bis(2-Chloroethyl)Ether</td> <td>-</td> <td>1.5</td> <td>1.5 U</td> <td></td>	bis(2-Chloroethyl)Ether	-	1.5	1.5 U	
1.4-Dichlorobenzene ug/L 2.0 2.0 U 1.2-Dichlorobenzene ug/L 1.4 1.4 U Benzy/ Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 1.6 N-Nitrosodi-n-propylamine ug/L 1.2 1.2 U Hexachlorothane ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.2 1.2 U hispophrone ug/L 1.2 1.2 U L2-A-Tirchlorobenzene ug/L 0.69 0.69 U Apa-Tirchlorobenzene ug/L 0.048 0.048 U a.a-Dimethylphenethylamine ug/L 1.9 1.9 U 4-Chloroanline ug/L 1.3 1.3 U N-Nitrosodi-n-butylamine ug/L 1.5 1.5 U 2-Methylaphthalene ug/L 0.05 0.050 U 4-Methylaphthalene ug/L			1.0	1.0 U	
1,2-Dichlorobenzene	1,4-Dichlorobenzene		2.0	2.0 U	
Benzyl Alcohol ug/L 2.4 U bis(2-Chloroispropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodin-propylamine ug/L 2.2 2.2 U Hexachloroschane ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U bis(2-Chloroethoxy)methane ug/L 0.69 0.69 U L2,4-Trichlorobenzene ug/L 0.69 0.69 U Naphthalene ug/L 0.048 0.048 U a,a-Dimethylphenethylamine ug/L 1.9 1.9 U 4-Chloroaniline ug/L 0.90 0.90 U Hexachlorobutadiene ug/L 1.3 1.3 U N-Nitrosodi-n-butylamine ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 1.0 1.0 U 1-STetrachlorobenzene ug/L	1,2-Dichlorobenzene		1.4	1.4 U	
bist2-Chloroisopropyl) Ether ug/L 1.4 U.A. Acetophenone ug/L 1.6 1.6 U.N. N-Nitrosodinpropylamine ug/L 1.2 2.2 U.N. Hexachloroethane ug/L 1.1 1.1 U.N. Nitrobenzene ug/L 1.3 1.3 U.N. Isophorone ug/L 1.1 1.1 U.N. bist2-Chlorethoxy)methane ug/L 0.69 0.69 U.N. 1,2,4-Trichlorobenzene ug/L 0.69 0.69 U.N. Naphthalene ug/L 0.048 0.048 U.N. 4-Chloroaniline ug/L 0.90 0.90 U.N. 4-Chloroaniline ug/L 0.13 1.3 U.N. N-Introsodi-n-butylamine ug/L 0.13 1.3 U.N. N-Methylnaphthalene ug/L 0.049 0.049 U.N. H-Methylnaphthalene ug/L 0.050 0.050 U.N. H-Exachlorobenzene ug/L 1.0 1.0 U.N. 2-Chlorinoaphthalene ug/L 1.5 U.N. 2-Chlorinoaphthalene ug/	Benzyl Alcohol		2.4	2.4 U	
Actophenone Ug/L 1.6 L U N-Nitrosodi-n-propylamine ug/L 1.2 2.2 U Hexachloroschtane ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.1 1.1 U U Isophorone ug/L 1.1 1.1 U U bist2-Chloroethoxy)methane ug/L 0.69 0.69 U U Aphthalene ug/L 0.048 0.048 U U 4-Chloroaniline ug/L 0.90 0.90 U U 4-Chloroaniline ug/L 1.9 1.9 U 4-Chloroaniline ug/L 0.048 U 4-Chloroaniline ug/L 0.04 0.09 U U 4-Chloroaniline ug/L 0.00 0.90 U U 4-Methylnaphthalene ug/L 0.050 0.050 U U 4-Chloroaniline ug/L 0.050 U 0.050 U U 4-Chloroaniline ug/L 1.0 1.0 U 1.2.4.5-Tetrachlorobenzene ug/L 1.0 1.0 U 1.2.4.5-Tetrach	-		1.4	1.4 U	
N-Nitrosodin-propylamine ug/L 1.2 1.2 U					
Hexachloroethane	N-Nitrosodi-n-propylamine		2.2	2.2 U	
Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U bis(2-Chloroethoxy)methane ug/L 0.69 0.69 U 1,2,4-Trichlorobenzene ug/L 0.048 U 0.048 U a,a-Dimethylphenethylamine ug/L 0.90 U 0.90 U 4-Chloroaniline ug/L 0.90 U 0.90 U Hexachlorobutadiene ug/L 1.3 I.3 U N-Nitrosodin-butylamine ug/L 1.5 I.5 U 2-Methylnaphthalene ug/L 0.049 U 1-Methylnaphthalene ug/L 0.050 U 1-Methylnaphthalene ug/L 1.0 U 12,4.5-Tetrachlorobenzene ug/L 1.3 I.3 U 2-Chloronaphthalene ug/L 1.7 I.7 U 2-Nitroaniline ug/L 1.8 I.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 0.042 U 3-Nitroaniline ug/L 0.042 U 4-Chloropherzene ug/L 0.040 U 1-Naphthy					
N-Nitrosopiperidine					
Sophorone	N-Nitrosopiperidine				
bis(2-Chloroethoxy)methane ug/L 1.2 1.2 U 1,2,4-Trichlorobenzene ug/L 0.689 0.69 U Naphthalene ug/L 0.048 0.048 U a,a-Dimethylphenethylamine ug/L 1.9 1.9 U 4-Chloroaniline ug/L 0.90 0.90 U Hexachlorobutadiene ug/L 1.3 1.3 U N-Nitrosodi-n-butylamine ug/L 1.5 1.5 U 2-Methylnaphthalene ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 1.0 1.0 U 1-Methylnaphthalene ug/L 1.0 1.0 U 1-2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Choironaphthalene ug/L 1.5 1.5 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 0.042 U Acenaphthylene ug/L 0.040 U Acenaphthene ug/L 0.040 U <t< td=""><td>• •</td><td></td><td></td><td></td><td></td></t<>	• •				
1,2,4-Trichlorobenzene ug/L 0.69 0.69 U Naphthalene ug/L 0.048 0.048 U a,a-Dimethylphenethylamine ug/L 1.9 1.9 U 4-Chloroaniline ug/L 0.90 0.90 U Hexachlorobutadiene ug/L 1.3 1.3 U N-Nitrosodi-n-butylamine ug/L 1.5 1.5 U 2-Methylnaphthalene ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 0.050 0.050 U Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1.2.4,5-Tetrachlorobenzene ug/L 1.0 1.0 U 2.2.4,5-Tetrachlorobenzene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.5 1.5 U 2-6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 0.04 0.040 U Pentachlorobenzene	•				
Naphthalene ug/L 0.048 0.048 U U a.a-Dimethylphenethylamine ug/L 1.9 1.9 U 4-Chloroaniline ug/L 0.90 0.90 U Hexachlorobutadiene ug/L 1.3 1.3 U N-Nitrosodi-n-butylamine ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 0.050 0.050 U Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1.2-4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chloronaphthalene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U 2-Nitroaniline ug/L 1.8 1.8 U 2-G-Dinitrotoluene (2,6-DNT) ug/L 0.042 0.042 U Acenaphthylene ug/L 0.042 0.042 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 0.069 0.069 U Dibenzofuran ug/L 0.95 0.95 U 1-Naphthylamine	` ,				
a,a-Dimethylphenethylamine ug/L 1.9 1.9 U 4-Chloroaniline ug/L 0.90 0.90 U Hexachlorobutadiene ug/L 1.3 1.3 U N-Nitrosodi-n-butylamine ug/L 1.5 1.5 U 2-Methylnaphthalene ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 0.050 0.050 U Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1.2.4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chioronaphthalene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.059 0.069 U 2-Naphthylamine ug/L					
4-Chloroaniline ug/L 0.90 0.90 U Hexachlorobutadiene ug/L 1.3 1.3 U N-Nitrosodi-n-butylamine ug/L 1.5 1.5 U 2-Methylnaphthalene ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 0.050 0.050 U Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1,2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chloronaphthalene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 0.042 0.042 U 4-Cenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 0.95 0.95 U 2-Naphthylamine u	•				
Hexachlorobutadiene ug/L 1.3 1.3 U					
N-Nitrosodi-n-butylamine ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 0.050 0.050 U Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1.2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chloronaphthalene ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 1.1 1.1 U Acenaphthene ug/L 1.1 1.1 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.3 1.3 U Diphenylmanine ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylmanine ug/L 1.3 1.3 U Diphenylmanine ug/L 1.4 1.5 1.8 U 1-Ciphenylmanine ug/L 1.5 1.9 U 1,2-Diphenylhydrazine ug/L 1.3 1.3 U Diphenylmanine ug/L 1.3 1.3 U Diphenylmanine ug/L 1.3 1.3 U Diphenylmanine ug/L 1.3 1.3 U Diphenylmydrazine ug/L 1.3 1.3 U					
2-Methylnaphthalene ug/L 0.049 0.049 U 1-Methylnaphthalene ug/L 0.050 0.050 U Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1,2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chloronaphthalene ug/L 1.5 1.5 U 2-Nitroaniline ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 0.042 0.042 U 3-Nitroaniline ug/L 0.040 0.040 U Pentachlorobenzene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether					
1-Methylnaphthalene ug/L 0.050 0.050 U Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1,2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chloronaphthalene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 U 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 U 2.0 U Acenaphthylene ug/L 0.042 U 0.042 U 3-Nitroaniline ug/L 1.1 1 1.1 U 1.1 U Acenaphthene ug/L 0.040 U 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 U 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 0.95 U 0.95 U 1-Naphthylamine ug/L 0.95 U 0.95 U 2-Naphthylamine ug/L 0.89 U 0.89 U Diethyl phthalate ug/L 0.038 U 0.038 U 4-Chlorophenyl Phenyl Ether u	•				
Hexachlorocyclopentadiene ug/L 1.0 1.0 U 1,2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chloronaphthalene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 0.042 0.042 U 3-Nitroaniline ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3		-			
1,2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U 2-Chloronaphthalene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 U 0.042 U 3-Nitroaniline ug/L 0.040 0.040 U 0.040 U Pentachlorobenzene ug/L 0.069 0.069 U 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U 0.89 U Diethyl phthalate ug/L 2.1 2.1 U 1.6 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
2-Chloronaphthalene ug/L 1.7 1.7 U 2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 1.1 1.1 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U <	• •				
2-Nitroaniline ug/L 1.5 1.5 U Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 1.1 1.1 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
Dimethyl phthalate ug/L 1.8 1.8 U 2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 1.1 1.1 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 1.1 1.1 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
Acenaphthylene ug/L 0.042 0.042 U 3-Nitroaniline ug/L 1.1 1.1 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U	, ,				
3-Nitroaniline ug/L 1.1 1.1 U Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U	, ,				
Acenaphthene ug/L 0.040 0.040 U Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
Pentachlorobenzene ug/L 1.3 1.3 U Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
Dibenzofuran ug/L 0.069 0.069 U 2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U	•				
2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U 1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
1-Naphthylamine ug/L 0.95 0.95 U 2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
2-Naphthylamine ug/L 0.89 0.89 U Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U	. , ,	-			
Diethyl phthalate ug/L 2.1 2.1 U Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U	. ,				
Fluorene ug/L 0.038 0.038 U 4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
4-Chlorophenyl Phenyl Ether ug/L 1.6 1.6 U 4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
4-Nitroaniline ug/L 1.3 1.3 U Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U					
Diphenylamine ug/L 2.1 2.1 U 1,2-Diphenylhydrazine ug/L 0.96 0.96 U		-			
1,2-Diphenylhydrazine ug/L 0.96 0.96 U		-			
	Phenacetin	ug/L	3.2	3.2 U	

Report ID: 920466 - 1865554 Page 29 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM


METHOD BLANK:	3301848
---------------	---------

METHOD BLANK: 3301848				
Parameter	Units	Blank Result	Reporting Limit Qualifiers	
4-Bromophenyl Phenyl Ether	ug/L	1.1	1.1 U	
Hexachlorobenzene	ug/L	0.99	0.99 U	
Pentachloronitrobenzene	ug/L	1.7	1.7 U	
4-Aminobiphenyl	ug/L	0.61	0.61 U	
Pronamide (Kerb)	ug/L	3.6	3.6 U	
Phenanthrene	ug/L	0.040	0.040 U	
Anthracene	ug/L	0.035	0.035 U	
Di-n-Butyl Phthalate	ug/L	0.88	0.88 U	
Fluoranthene	ug/L	0.037	0.037 U	
Benzidine	ug/L	1.2	1.2 U	
Pyrene	ug/L	0.036	0.036 U	
4-Dimethyl aminoazobenzene	ug/L	0.73	0.73 U	
Butyl benzyl phthalate	ug/L	1.1	1.1 U	
Benzo[a]anthracene	ug/L	0.012	0.012 U	
3,3`-Dichlorobenzidine	ug/L	1.3	1.3 U	
Chrysene	ug/L	0.033	0.033 U	
bis(2-Ethylhexyl) phthalate	ug/L	2.0	2.0 U	
Di-n-octyl Phthalate	ug/L	1.2	1.2 U	
Benzo[b]fluoranthene	ug/L	0.012	0.012 U	
7,12-	ug/L	1.1	1.1 U	
Dimethylbenz[a]anthracene	Ü			
Benzo[k]fluoranthene	ug/L	0.048	0.048 U	
Benzo[a]pyrene	ug/L	0.037	0.037 U	
3-Methylcholanthrene	ug/L	1.9	1.9 U	
Indeno(1,2,3-cd)pyrene	ug/L	0.011	0.011 U	
Dibenzo[a,h]anthracene	ug/L	0.024	0.024 U	
Benzo[g,h,i]perylene	ug/L	0.048	0.048 U	
N-Nitrosodiphenylamine	ug/L	2.1	2.1 U	
N-Nitrosomethylethylamine	ug/L	2.7	2.7 U	
N-Nitrosodiethylamine	ug/L	2.1	2.1 U	
N-Nitrosopyrrolidine	ug/L	2.1	2.1 U	
o-Toluidine	ug/L	2.4	2.4 U	
0,0,0-	ug/L	2.9	2.9 U	
Triethylphosphorothioate				
Hexachloropropene	ug/L	2.7	2.7 U	
1,4-Phenylenediamine	ug/L	5.0	5.0 U	
Safrole	ug/L	3.5	3.5 U	
Isosafrole	ug/L	3.2	3.2 U	
1,4-Naphthoquinone	ug/L	4.8	4.8 U	
1,3-Dinitrobenzene	ug/L	2.1	2.1 U	
5-Nitro-o-toluidine	ug/L	2.9	2.9 U	
1,3,5-Trinitrobenzene	ug/L	2.5	2.5 U	
Nitroquinoline-1-oxide	ug/L	2.0	2.0 U	
Methapyrilene	ug/L	1.8	1.8 U	
Isodrin	ug/L	3.1	3.1 U	
	•			

Report ID: 920466 - 1865554 Page 30 of 65

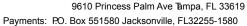
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3301848	3
-----------------------	---

Parameter	Units	Blank Result	Reporting Limit Qualifiers
3,3'-Dimethylbenzidine	ug/L	2.4	2.4 U
2-Acetylaminofluorene	ug/L	3.5	3.5 U
Thionazin (Zinophos)	ug/L	1.2	1.2 U
Diallate	ug/L	1.1	1.1 U
Phorate	ug/L	1.2	1.2 U
Dimethoate	ug/L	1.2	1.2 U
Dinoseb	ug/L	2.3	2.3 U
Methyl Parathion	ug/L	1.3	1.3 U
Chlorobenzilate	ug/L	2.0	2.0 U
Kepone	ug/L	5.2	5.2 U
Famphur	ug/L	2.0	2.0 U
2-Fluorophenol (S)	%	91	31-134
Phenol-d6 (S)	%	84	24-120
Nitrobenzene-d5 (S)	%	97	38-139
2-Fluorobiphenyl (S)	%	86	42-138
2,4,6-Tribromophenol (S)	%	77	48-147
p-Terphenyl-d14 (S)	%	104	61-154

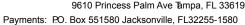

LABORATORY CONTROL SAMPLE & LCSD:	3301849	3301850
-----------------------------------	---------	---------

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
SEMIVOLATILES									
N-Nitrosodimethylamine	ug/L	50	41	39	81	78		5	
Methyl Methanesulfonate	ug/L	50	42	42	85	84		1	
Ethyl methanesulfonate	ug/L	50	43	43	85	85		0	
Aniline	ug/L	50	38	41	76	81		7	
Phenol	ug/L	50	38	38	75	77	19-106	2	20
ois(2-Chloroethyl)Ether	ug/L	50	44	43	88	86		2	
2-Chlorophenol	ug/L	50	41	41	82	82		0	
1,3-Dichlorobenzene	ug/L	50	35	37	71	73		3	
1,4-Dichlorobenzene	ug/L	50	36	36	73	72	29-112	1	20
1,2-Dichlorobenzene	ug/L	50	37	38	74	76		3	
Benzyl Alcohol	ug/L	50	47	47	95	94		0	
ois(2-Chloroisopropyl) Ether	ug/L	50	43	43	86	86		1	
2-Methylphenol (o-Cresol)	ug/L	50	45	43	89	87		3	
Acetophenone	ug/L	50	42	43	84	86		2	
N-Nitrosodi-n-propylamine	ug/L	50	45	45	90	91		1	
3+4-Methylphenol(mp-Cresol)	ug/L	50	47	45	94	90		5	
Hexachloroethane	ug/L	50	39	41	79	82	21-115	3	20
Nitrobenzene	ug/L	50	52	50	103	100	45-121	4	20
sophorone	ug/L	50	48	47	96	93		3	

Report ID: 920466 - 1865554 Page 31 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA


Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

-Nitrophenol ug/L 50 48 47 97 94 2 ,4-Dimethylphenol ug/L 50 49 47 99 94 55 is(2-Chloroethoxy)methane ug/L 50 45 44 90 88 2 ,4-Dichlorophenol ug/L 50 47 45 93 90 47-121 3 20 ienzoic Acid ug/L 50 49 49 98 98 98 0 ,2,4-Trichlorobenzene ug/L 50 46 43 91 86 5 laphthalene ug/L 50 43 41 85 83 3 -Chloroaniline ug/L 50 38 39 76 77 1 ,6-Dichlorophenol ug/L 50 53 52 105 104 1 lexachlorobutadiene ug/L 50 41 39 82 78 22-124 4 20 -Chloro-3-methylphenol ug/L 50 41 39 82 78 22-119 3 20 -Methylnaphthalene ug/L 50 41 39 79 78 2 -Methylnaphthalene ug/L 50 41 39 81 79 3 -Methylnaphthalene ug/L 50 41 39 81 79 3 -Revachlorocyclopentadiene ug/L 50 41 40 82 81 2 -Revachlorocyclopentadiene ug/L 50 49 49 99 98 1 -Chloronaphthalene ug/L 50 49 49 99 98 1	LABORATORY CONTROL SAM	MPLE & LCSD:	3301849 3301850							
A-Dimethylphenol ug/L 50 49 47 99 94 5 45 42 5 48 2 4 40 88 2 4 4 90 88 2 2 4 4 90 88 9 2 4 4 90 88 90 0 4 4 90 88 90 0 0 4 4 90 88 90 0 0 4 4 90 88 90 0 0 4 4 90 88 98 0 0 4 4 85 83 3 0 0 1 4 1 1 4 1 4 1 4 1 4 1 4 1 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <	Parameter	Units							RPD	
is(2-Chlororethoxy)methane ug/L 50 45 44 49 9 88 2 2 -t-Dichiorophenol ug/L 50 47 45 93 90 47-121 3 20 renzoic Acld ug/L 50 49 49 98 98 0 0 -t-Chloro-chlorophenol ug/L 50 46 43 91 86 5 -t-Chlorophenol ug/L 50 43 41 85 83 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2-Nitrophenol	ug/L	50	48	47	97	94		2	
4Dichlorophenol ug/L 50 47 45 93 90 47-121 3 20 renzoic Acid ug/L 50 49 49 98 98 98 0 2 renzoic Acid ug/L 50 46 43 91 86 5 Laphthalene ug/L 50 43 41 85 83 3 Chloronaline ug/L 50 53 52 105 104 1 A-Dichloro-Jamethylphenol ug/L 50 51 49 102 98 52-119 3 20 -Methylnaphthalene ug/L 50 40 39 79 78 2 2 -Methylnaphthalene ug/L 50 41 49 102 98 52-119 3 20 -Wethylnaphthalene ug/L 50 47 47 75 2 2 20 -Lescathorophenol ug/L 50	2,4-Dimethylphenol	ug/L	50	49	47	99	94		5	
Internation Control	bis(2-Chloroethoxy)methane	ug/L	50	45	44	90	88		2	
2,4-Trichlorobenzene Ug/L 50 46 43 91 86 5 Laphthalene Ug/L 50 43 41 85 83 3 Chloronalline Ug/L 50 38 39 76 77 1 .6-Dichloro-Shenol Ug/L 50 53 52 105 104 1 Lexachlorobutadiene Ug/L 50 41 39 82 78 22-124 4 20 -Methylnaphthalene Ug/L 50 40 39 79 78 2 -Methylnaphthalene Ug/L 50 41 39 81 79 3 2 -Methylnaphthalene Ug/L 50 41 40 82 81 2	2,4-Dichlorophenol	ug/L	50	47	45	93	90	47-121	3	20
Laphthalene ug/L 50 43 41 85 83 3 3 -Chloronalline ug/L 50 38 39 76 77 1 Chloron-Incomple of the seachlorobutadiene ug/L 50 53 52 105 104 1 1 Lexachlorobutadiene ug/L 50 41 39 82 78 22-124 4 20 -Chloron-Methylphenol ug/L 50 40 39 79 78 22-119 3 20 -Methylnaphthalene ug/L 50 41 39 81 79 3 20 -Methylnaphthalene ug/L 50 41 39 81 79 3 3 20 -Methylnaphthalene ug/L 50 41 40 82 81 2 2 20 44 41 40 82 81 1 2 20 4,5 50 41 40 82 81 1 20 4 40 82	Benzoic Acid	ug/L	50	49	49	98	98		0	
Laphthalene ug/L 50 43 41 85 83 3 3 -Chloronalline ug/L 50 38 39 76 77 1 Chloron-Incomple of the seachlorobutadiene ug/L 50 53 52 105 104 1 1 Lexachlorobutadiene ug/L 50 41 39 82 78 22-124 4 20 -Chloron-Methylphenol ug/L 50 40 39 79 78 22-119 3 20 -Methylnaphthalene ug/L 50 41 39 81 79 3 20 -Methylnaphthalene ug/L 50 41 39 81 79 3 3 20 -Methylnaphthalene ug/L 50 41 40 82 81 2 2 20 44 41 40 82 81 1 2 20 4,5 50 41 40 82 81 1 20 4 40 82	1,2,4-Trichlorobenzene	ug/L	50	46	43	91	86		5	
-Chloropalline ug/L 50 38 39 76 77 1 1 6 6 Dichlorophenol ug/L 50 50 53 52 105 104 1 1 6 Exachlorobutadiene ug/L 50 41 39 82 78 22-124 4 20 Chloro-3-methylphenol ug/L 50 41 39 82 78 22-124 4 20 Chloro-3-methylphenol ug/L 50 41 39 82 78 22-119 3 20 Chloro-3-methylphenol ug/L 50 40 39 79 78 2 2 Chethylphenol ug/L 50 41 49 102 98 52-119 3 20 Chethylphenol ug/L 50 41 49 102 98 52-119 3 20 Chethylphenol ug/L 50 41 49 102 98 52-119 3 20 Chethylphenol ug/L 50 41 40 82 81 2 2 Chethylphenol ug/L 50 41 40 82 81 2 2 Chethylphenol ug/L 50 48 47 75 2 2 Chethylphenol ug/L 50 48 47 97 95 50-125 2 20 Chethylphenol ug/L 50 48 47 97 95 50-125 2 20 Chethylphenol ug/L 50 49 49 99 98 1 1 Chethylphenol ug/L 50 42 42 83 84 1 1 Chethylphenol ug/L 50 42 42 83 84 1 1 Chethylphenol ug/L 50 42 42 83 84 1 1 Chethylphenol ug/L 50 47 47 95 94 1 1 Chethylphenol ug/L 50 47 47 95 94 1 1 Chethylphenol ug/L 50 47 48 94 96 2 Chethylphenol ug/L 50 47 48 94 96 2 Chethylphenol ug/L 50 47 48 94 96 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 47 48 94 96 6 2 Chethylphenol ug/L 50 46 45 92 89 2 2 Chethylphenol ug/L 50 46 45 92 89 2 2 Chethylphenol ug/L 50 46 45 92 89 2 2 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 20 Chethylphenol ug/L 50 46 47 93 94 52-124 1 1 20 Chethylphenol ug/L 50 48 44 48 88 88 60 1 Chethylphenol ug/L 50 48 44	Naphthalene		50	43	41	85	83		3	
lexachlorobutatiene	4-Chloroaniline		50	38	39	76	77		1	
-Chloro-3-methylphenol ug/L 50 40 39 79 78 2 2 -Methylnaphthalene ug/L 50 40 39 79 78 2 2 -Methylnaphthalene ug/L 50 41 39 81 79 3 -Exachlorocyclopentadiene ug/L 50 41 39 81 79 3 -Exachlorocyclopentadiene ug/L 50 41 40 82 81 79 2 -Z.4.5-Tetrachlorobenzene ug/L 50 41 40 82 81 79 95 50-125 2 -Z.4.6-Trichlorophenol ug/L 50 48 47 97 95 50-125 2 -Z.4.6-Trichlorophenol ug/L 50 48 47 97 95 50-125 2 -Chloronaphthalene ug/L 50 42 42 83 84 1 -Chloronaphthalene ug/L 50 50 49 100 99 81 1 -Emethyl phthalate ug/L 50 50 47 47 95 94 11 2 -Emethyl phthalate ug/L 50 57 58 115 116 2 -Ecenaphthene ug/L 50 44 43 88 86 3 -Nitroaniline ug/L 50 44 43 89 86 3 -Nitroaniline ug/L 50 47 48 94 96 2 -Ecenaphthene ug/L 50 41 40 81 80 47-122 1 20 -Ecenaphthene ug/L 50 41 40 81 80 47-122 1 20 -Emethyl phthalate ug/L 50 41 41 83 82 0 -Emetholrobenzene ug/L 50 41 41 83 82 0 -Emetholrobenzene ug/L 50 41 41 83 82 0 -Emetholrobenzene ug/L 50 46 45 92 80 7 2 -Emetholrobenzene ug/L 50 46 45 92 80 7 2 -Emetholrophenol ug/L 50 46 45 92 80 7 2 -Emetholrophenol ug/L 50 46 47 93 94 52-124 1 20 -Emitophenol ug/L 50 46 47 93 94 52-124 1 20 -Emitophenol ug/L 50 46 47 93 94 52-124 1 20 -Emitophenol ug/L 50 46 46 91 93 2 -Emitophenol ug/L 50 47 50 94 100 6 -Emitophenol ug/L 50 47 50 94 100 6 -Emitophenol ug/L 50 48 49 99 100 6 -Emitophenol ug/L 50 48 49 99 100 6 -Emitophenol ug/L 50 48 49 99 100 6 -Emitophyl phthalate ug/L 50 46 46 91 93 94 52-124 1 20 -Emitophenol ug/L 50 46 47 93 94 52-124 1 20 -Emitophenol ug/L 50 48 49 88 1 1 -Emitophyl phthalate ug/L 50 47 50 94 100 6 -Emitophyl phthalate ug/L 50 47 50 94 100 6 -Emitophyl phthalate ug/L 50 48 49 88 8	2,6-Dichlorophenol	ug/L	50	53	52	105	104		1	
-Chloro-3-methylphenol ug/L 50 51 49 102 98 52-119 3 20 -Methylnaphthalene ug/L 50 40 39 79 78 2 2 -Methylnaphthalene ug/L 50 41 39 81 79 3 3 -Exachlorocyclopentadiene ug/L 50 41 39 81 79 3 -Exachlorocyclopentadiene ug/L 50 41 40 82 81 79 2 2 -Z.4.5-Tetrachlorobenzene ug/L 50 48 47 97 95 50-125 2 20 -Z.4.6-Trichlorophenol ug/L 50 48 47 97 95 50-125 2 20 -Z.4.6-Trichlorophenol ug/L 50 48 49 99 98 84 1 -Chloronaphthalene ug/L 50 42 42 83 84 1 -Chloronaphthalene ug/L 50 50 49 100 99 1 1 -Emityl phthalate ug/L 50 57 58 115 116 2 -Cenaphthylene ug/L 50 47 47 95 94 116 2 -Cenaphthylene ug/L 50 44 43 88 86 3 -Nitroaniline ug/L 50 44 43 88 86 3 -Nitroaniline ug/L 50 41 40 81 80 47-122 1 20 -Chlorophenol ug/L 50 41 40 81 80 47-122 1 20 -Chlorophenol ug/L 50 41 40 81 80 47-122 1 20 -Chlorophenol ug/L 50 41 41 83 82 0 0 -Chlorophenol ug/L 50 46 45 92 80 7 2 -Chlorophenol ug/L 50 46 45 92 80 7 2 -Chlorophenol ug/L 50 46 45 92 80 7 2 -Chlorophenol ug/L 50 46 45 92 80 7 2 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 48 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenol ug/L 50 48 47 89 94 100 6 -Chlorophenyl Phenyl Ether ug/L 50 47 50 94 100 6 -Chlorophenyl Phenyl Ether ug/L 50 47 50 94 100 6 -Chlorophenyl Phenyl Ether ug/L 50 48 48 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 48 48 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 48 48 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 48 44 88 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 44 44 88 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 44 44 88 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 44 44 88 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 44 44 88 88 80 1 -Chlorophenyl Phenyl Ether ug/L 50 44 44 88 88 80 1 -Chlorophenyl	Hexachlorobutadiene	-	50	41	39	82	78	22-124	4	20
-Methylnaphthalene ug/L 50 40 39 79 78 2 -Methylnaphthalene ug/L 50 41 39 81 79 3 -Methylnaphthalene ug/L 50 37 38 74 75 2 -Methylnaphthalene ug/L 50 37 38 74 75 2 -Methylnaphthalene ug/L 50 37 38 74 75 2 -Methylnaphthalene ug/L 50 41 40 82 81 2 -Methylnaphthalene ug/L 50 48 47 97 95 50-125 2 -Methylnaphthalene ug/L 50 48 47 97 95 50-125 2 -Methylnaphthalene ug/L 50 48 47 97 95 50-125 2 -Methylnaphthalene ug/L 50 48 47 97 95 95 50-125 2 -Methylnaphthalene ug/L 50 49 99 98 10 1 -Methylnaphthalene ug/L 50 50 49 100 99 10 1 -Methylnaphthalene ug/L 50 57 58 115 116 2 -Methylnaphthalene ug/L 50 47 47 95 94 10 1 -Methylnaphthalene ug/L 50 44 43 88 86 3 -Methylnaphthalene ug/L 50 41 40 81 80 47-122 1 20 -Methylnaphthalene ug/L 50 41 40 81 80 47-122 1 20 -Methylnaphthalene ug/L 50 41 40 81 80 47-122 1 20 -Methylnaphthalene ug/L 50 41 40 81 80 47-122 1 20 -Methylnaphthalene ug/L 50 46 45 92 89 2 -Methylnaphthalene ug/L 50 46 46 91 93 2 -Methylnaphthalene ug/L 50 47 93 94 52-124 1 20 -Methylnaphthalene ug/L 50 47 93 94 52-124 1 20 -Methylnaphthalene ug/L 50 47 50 94 100 99 101 93 2 -Methylnaphthalene ug/L 50 46 46 89 1 93 94 52-124 1 20 -Methylnaphthalene ug/L 50 47 50 94 100 95 101 93 94 52-124 1 20 -Methylnaphthalene ug/L 50 47 50 94 100 66 -Methylnaphthalene ug/L 50 47 50 94 100 66 -Methylnaphthalene ug/L 50 47 50 94 100 66 -Methylnaphthalene ug/L 50 48 44 88 88 00 -Methylnaphthalene ug/L 50 48 44 88 88 00 -Methylnaphthalene ug/L 50 50 51 99 101 2 -Methylnaphthalene ug/L 50 50 51 99 101 2 -Methylnaphthalene ug/L 50 50 51 99 101 2 -Methylnaphthalene ug/L 50 44 44 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88 88 00 10 -Methylnaphthalene ug/L 50 44 44 88 88	4-Chloro-3-methylphenol		50				98	52-119	3	
-Methylaphthalene ug/L 50 41 39 81 79 3 elevachlorocyclopentadiene ug/L 50 37 38 74 75 2 elevachlorocyclopentadiene ug/L 50 41 40 82 81 2 elevachlorocyclopentadiene ug/L 50 41 40 82 81 2 elevachlorophenol ug/L 50 48 47 97 95 50-125 2 2 20 4.4.5-Tirchlorophenol ug/L 50 48 47 97 99 98 1 1 elevachlorophenol ug/L 50 42 42 83 84 1 1 elevachlorophenol ug/L 50 42 42 83 84 1 1 elevachlorophenol ug/L 50 47 47 95 94 1 1 elevachlorophenol ug/L 50 50 57 58 115 116 2 2 elevachlorophenol ug/L 50 47 47 95 94 1 1 elevachlorophenol ug/L 50 44 43 88 86 3 elevachlorophenol ug/L 50 44 43 88 86 3 elevachlorophenol ug/L 50 41 40 81 80 47-122 1 20 elevachlorophenol ug/L 50 41 40 81 80 47-122 1 20 elevachlorophenol ug/L 50 41 41 83 82 0 elevachlorophenol ug/L 50 46 45 92 89 2 2 elevachlorophenol ug/L 50 46 45 92 89 2 2 elevachlorophenol ug/L 50 46 45 92 89 2 2 elevachlorophenol ug/L 50 46 46 91 93 93 elevachlorophenol ug/L 50 46 46 91 93 93 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 46 47 93 94 52-124 1 20 elevachlorophenol ug/L 50 48 44 44 88 88 elevachlorophenol ug/L 50 48 68 68 68 68 68 68 68 68 68 68 68 68 68	2-Methylnaphthalene		50	40	39	79	78		2	
Rexachlorocyclopentadiene ug/L 50 37 38 74 75 2 2 2.4,5-Tetrachlorobenzene ug/L 50 41 40 82 81 2 2 2 2 2 2 2 2 2			50	41	39	81	79			
2,2,4,5-Tetrachlorobenzene ug/L 50 41 40 82 81 2 4,6-Trichlorophenol ug/L 50 48 47 97 95 50-125 2 20 4,6-Trichlorophenol ug/L 50 49 49 99 98 1			50	37		74	75			
.4,6-Trichlorophenol ug/L 50 48 47 97 95 50-125 2 20 .4,5-Trichlorophenol ug/L 50 49 49 99 98 1 Nitroaniline ug/L 50 42 42 83 84 1 Nitroaniline ug/L 50 50 49 100 99 1 Dinitrophi phthalate ug/L 50 47 47 95 94 1 .6-Dinitrotoluene (2,6-DNT) ug/L 50 47 47 95 94 1 .6-Dinitrotoluene (2,6-DNT) ug/L 50 47 48 94 96 2 .cenaphthene ug/L 50 47 48 94 96 2 2 .cenaphthene ug/L 50 47 48 94 96 2 2 .cenaphthene ug/L 50 41 41 81 80 47-122 1 20 .cenaphthene ug/L 50 41 41 <t< td=""><td></td><td>-</td><td>50</td><td>41</td><td></td><td>82</td><td>81</td><td></td><td></td><td></td></t<>		-	50	41		82	81			
A,5-Trichlorophenol ug/L 50 49 49 99 98 1								50-125		20
-Chloronaphthalene ug/L 50 42 42 83 84 1 -Nitroanline ug/L 50 50 47 47 95 94 1 -Chiracthyl phthalate ug/L 50 47 47 95 94 1 -Chenaphthylene (2,6-DNT) ug/L 50 57 58 115 116 2 -Chenaphthylene ug/L 50 47 48 94 96 2 -Chenaphthylene ug/L 50 47 48 94 96 2 -Chenaphthene ug/L 50 41 40 81 80 47-122 1 20 -Chenaphthene ug/L 50 41 40 81 80 47-122 1 20 -Chenaphthene ug/L 50 41 41 83 82 2 0 -Chenaphthene ug/L 50 41 41 83 82 2 0 -Chenaphthylene ug/L 50 41 41 83 82 2 0 -Chenaphthylene ug/L 50 46 45 92 89 2 2 -Chenaphthylene ug/L 50 38 40 75 80 77 137 57-128 1 20 -Chenaphthylene ug/L 50 38 40 75 80 77 138 1 20 -Chenaphthylene ug/L 50 46 46 91 93 2 2 -Chenaphthylene ug/L 50 46 46 91 93 94 22 1 20 -Chlorophenol ug/L 50 46 46 91 93 94 22 1 20 -Chlorophyl Phenyl Ether ug/L 50 47 93 94 52-124 1 20 -Chlorophenyl Phenyl Ether ug/L 50 47 50 94 100 66 -Methyl-4,6-dinitrophenol ug/L 50 47 50 94 100 66 -Methyl-4,6-dinitrophenol ug/L 50 50 58 57 117 114 2 2 -Chenacetin ug/L 50 50 50 51 99 101 2 2 -Chenacetin ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenacetin ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 44 44 88 88 0 0 -Chenaphyl Phenyl Ether ug/L 50 45 44 91 88 35-138 3 20 -Chenaphyl Phenyl Ether ug/L 50 45 44 91 88 35-138 3 20			50		49	99			1	
-Nitroaniline ug/L 50 50 49 100 99 1 1									1	
Simethyl phthalate	2-Nitroaniline								1	
,6-Dinitrotoluene (2,6-DNT) ug/L 50 57 58 115 116 2 ,cenaphthylene ug/L 50 44 43 88 86 3 -Nitroanilline ug/L 50 47 48 94 96 2 cenaphthene ug/L 50 41 40 81 80 47-122 1 20 ,4-Dinitrophenol ug/L 50 57 54 114 109 4									1	
Seconsphthylene Ug/L SO	· .	ug/L							2	
-Nitroaniline ug/L 50 47 48 94 96 2 Accepaphthene ug/L 50 41 40 81 80 47-122 1 20 A-Dinitrophenol ug/L 50 57 54 114 109 4 Behachlorobenzene ug/L 50 41 41 83 82 0 Behachlorobenzene ug/L 50 46 45 92 89 2 A-Dinitrotolluene (2,4-DNT) ug/L 50 58 58 58 116 117 57-128 1 20 -Nitrophenol ug/L 50 38 40 75 80 7 A-Jiritrophenol ug/L 50 46 46 91 93 93 2 Behachlorobenzene ug/L 50 46 46 91 93 94 52-124 1 20 -Nitrophenol ug/L 50 46 47 93 94 52-124 1 20 -Nitrophenol ug/L 50 46 47 93 94 52-124 1 20 -Nitrophenol ug/L 50 47 50 94 100 6 -Methyl-4,6-dinitrophenol ug/L 50 43 44 89 88 1 Behachlorophenol ug/L 50 58 57 117 114 2 Behachlorophenol ug/L 50 58 57 117 114 2 Behachlorophenol ug/L 50 50 51 99 101 2 Behacetin ug/L 50 43 42 85 84 1 Behacetin ug/L 50 43 42 85 84 1 Behacetin ug/L 50 43 44 88 88 0 Behacetin ug/L 50 44 44 88 88 0 Behacetin ug/L 50 43 44 86 87 53-125 1 20 Behacetin ug/L 50 43 44 86 87 53-125 1 20 Behacetin ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenol ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenol ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenol ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenol ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenol ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenol ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenol ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenolonitrobenzene ug/L 50 45 44 91 88 35-138 3 20 Behacetinophenolonitrobenzene ug/L 50 45 44 91 88 35-138 3 20										
Second S										
4,4-Dinitrophenol ug/L 50 57 54 114 109 4 Pentachlorobenzene ug/L 50 41 41 83 82 0 Dibenzofuran ug/L 50 46 45 92 89 2 J-Dinitrotoluene (2,4-DNT) ug/L 50 58 58 116 117 57-128 1 20 -Nitrophenol ug/L 50 38 40 75 80 7 3,3,4,6-Tetrachlorophenol ug/L 50 42 42 84 84 1 1 10 11 10 10 10 10 10 10 10 10 10								47-122		20
Vertachlorobenzene		-								20
Dibenzofuran Ug/L 50 46 45 92 89 2 2 30 30 30 30 30 30										
,4-Dinitrotoluene (2,4-DNT) ug/L 50 58 58 116 117 57-128 1 20 -Nitrophenol ug/L 50 38 40 75 80 7 ,3,4,6-Tetrachlorophenol ug/L 50 42 42 84 84 1 biethyl phthalate ug/L 50 46 46 91 93 2 chlorophenyl Phenyl Ether ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenyl Phenyl Ether ug/L 50 44 44 89 88 1 1 -Nitrosoniline ug/L 50 47 50 94 100 6 -Nitrosodiphenylamine ug/L 50 58 57 117 114 2 2 1 -Nitrosodiphenylamine ug/L 50 43 42 85 84 1 1 -Nitrosodiphenylamine ug/L 50 50 51 99 101 2 1 -Nitrosodiphenylamine ug/L 50 50 51										
-Nitrophenol ug/L 50 38 40 75 80 7 ,3,4,6-Tetrachlorophenol ug/L 50 42 42 84 84 1 Diethyl phthalate ug/L 50 46 46 91 93 2 Diuorene ug/L 50 46 47 93 94 52-124 1 20 -Chlorophenyl Phenyl Ether ug/L 50 44 44 89 88 1 -Nitroaniline ug/L 50 47 50 94 100 6 -Methyl-4,6-dinitrophenol ug/L 50 58 57 117 114 2 I-Nitrosodiphenylamine ug/L 50 43 42 85 84 1 Diphenylamine ug/L 50 50 50 51 99 101 2 Diphenylhydrazine ug/L 50 50 50 51 101 102 1 Diphenyl Phenyl Ether ug/L 50 44 44 88 88 0 Diexachlorobenzene ug/L 50 43 44 86 87 53-125 1 20 Dientachlorophenol ug/L 50 45 44 91 88 35-138 3 20 Dientachloronitrobenzene ug/L 50 49 100 99 1								57-128		20
,3,4,6-Tetrachlorophenol ug/L 50 42 42 84 84 1 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1		-						37-120		20
Specific content Specific co	•	-								
Studenee Ug/L S0 46 47 93 94 52-124 1 20 -Chlorophenyl Phenyl Ether Ug/L S0 44 44 89 88 1 -Nitroaniline Ug/L S0 47 S0 94 100 6 -Methyl-4,6-dinitrophenol Ug/L S0 58 57 117 114 2 -Nitrosodiphenylamine Ug/L S0 43 42 85 84 1 -Diphenylamine Ug/L S0 43 42 85 84 1 -Diphenylamine Ug/L S0 S0 S1 99 101 2 -Phenacetin Ug/L S0 S0 S1 101 102 1 -Bromophenyl Phenyl Ether Ug/L S0 44 44 88 88 88 -Phenacetin Ug/L S0 43 44 86 87 53-125 1 20 -Phenachlorophenol Ug/L S0 45 44 91 88 35-138 3 20 -Phenachlorophenol Ug/L S0 50 50 49 100 99 1 -Phenachlorophenol Ug/L S0 45 44 91 88 35-138 3 20 -Phenachlorophenol Ug/L S0 50 50 49 100 99 1										
-Chlorophenyl Phenyl Ether ug/L 50 44 44 89 88 1 -Nitroaniline ug/L 50 47 50 94 100 6 -Methyl-4,6-dinitrophenol ug/L 50 58 57 117 114 2 I-Nitrosodiphenylamine ug/L 50 43 42 85 84 1 iphenylamine ug/L 50 50 51 99 101 2 I-Phenacetin ug/L 50 50 50 51 101 102 1 I-Bromophenyl Phenyl Ether ug/L 50 44 44 88 88 0 I-Phenacetin ug/L 50 43 44 86 87 53-125 1 20 I-Phenachlorophenol ug/L 50 45 44 91 88 35-138 3 20 I-Phenachlorophenol ug/L 50 50 50 49 100 99 1	• •							52-124		20
-Nitroaniline ug/L 50 47 50 94 100 6 -Methyl-4,6-dinitrophenol ug/L 50 58 57 117 114 2 I-Nitrosodiphenylamine ug/L 50 43 42 85 84 1 Diphenylamine ug/L 50 50 51 99 101 2 Diphenylhydrazine ug/L 50 50 51 101 102 1 Diphenylenyl Ether ug/L 50 50 51 101 102 1 Diemonophenyl Phenyl Ether ug/L 50 44 44 88 88 88 0 Diexachlorobenzene ug/L 50 43 44 86 87 53-125 1 20 Dientachlorophenol ug/L 50 45 44 91 88 35-138 3 20 Dientachloronitrobenzene ug/L 50 50 49 100 99 1								32-124		20
-Methyl-4,6-dinitrophenol ug/L 50 58 57 117 114 2 I-Nitrosodiphenylamine ug/L 50 43 42 85 84 1 Diphenylamine ug/L 50 50 51 99 101 2 Diphenylhydrazine ug/L 50 50 51 101 102 1 Diphenylenyl Ether ug/L 50 50 51 101 102 1 Diphenyl Phenyl Ether ug/L 50 44 44 88 88 88 0 Diexachlorobenzene ug/L 50 43 44 86 87 53-125 1 20 Dientachlorophenol ug/L 50 45 44 91 88 35-138 3 20 Dientachloronitrobenzene ug/L 50 50 49 100 99 1										
I-Nitrosodiphenylamine ug/L 50 43 42 85 84 1 Diphenylamine ug/L 43 42 1 Diphenylamine ug/L 50 50 51 99 101 2 Diphenylhydrazine ug/L 50 50 51 101 102 1 Diphenylenyl Ether ug/L 50 44 44 88 88 0 Diexachlorobenzene ug/L 50 43 44 86 87 53-125 1 20 Dientachlorophenol ug/L 50 45 44 91 88 35-138 3 20 Dientachloronitrobenzene ug/L 50 50 49 100 99 1		-								
20 20 20 20 20 20 20 20	•									
2-Diphenylhydrazine ug/L 50 50 51 99 101 2 2-Phenacetin ug/L 50 50 51 101 102 1 2-Bromophenyl Phenyl Ether ug/L 50 44 44 88 88 0 2-exachlorobenzene ug/L 50 43 44 86 87 53-125 1 20 2-entachlorophenol ug/L 50 45 44 91 88 35-138 3 20 2-entachloronitrobenzene ug/L 50 50 49 100 99 1			50			၀၁	04		•	
Phenacetin ug/L 50 50 51 101 102 1 Phenacetin ug/L 50 44 44 88 88 0 Phenacetin ug/L 50 44 44 88 88 0 Phenacetin ug/L 50 43 44 86 87 53-125 1 20 Phenacetin ug/L 50 45 44 91 88 35-138 3 20 Phenacetin ug/L 50 50 49 100 99 1			E 0			00	101			
-Bromophenyl Phenyl Ether ug/L 50 44 44 88 88 0 dexachlorobenzene ug/L 50 43 44 86 87 53-125 1 20 dentachlorophenol ug/L 50 45 44 91 88 35-138 3 20 dentachloronitrobenzene ug/L 50 50 49 100 99 1										
dexachlorobenzene ug/L 50 43 44 86 87 53-125 1 20 dentachlorophenol ug/L 50 45 44 91 88 35-138 3 20 dentachloronitrobenzene ug/L 50 50 49 100 99 1		-								
Pentachlorophenol ug/L 50 45 44 91 88 35-138 3 20 Pentachloronitrobenzene ug/L 50 50 49 100 99 1								E2 40E		20
Pentachloronitrobenzene ug/L 50 50 49 100 99 1										
<u> </u>								35-138		20
rronamide (Kerb) ug/L 50 54 55 107 110 3										
	Pronamide (Kerb)	ug/L	50	54	55	107	110		3	

Report ID: 920466 - 1865554 Page 32 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAM	MPLE & LCSD:	3301849)	33018	50				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Phenanthrene	ug/L	50	47	48	94	96		2	
Anthracene	ug/L	50	47	48	95	95		1	
Di-n-Butyl Phthalate	ug/L	50	48	50	96	100		4	
Fluoranthene	ug/L	50	46	48	92	95	57-128	3	20
Pyrene	ug/L	50	52	52	104	105		1	
Butyl benzyl phthalate	ug/L	50	53	56	105	111		5	
Benzo[a]anthracene	ug/L	50	54	54	108	108		0	
Chrysene	ug/L	50	53	54	107	108		2	
bis(2-Ethylhexyl) phthalate	ug/L	50	52	54	103	108	55-135	4	20
Di-n-octyl Phthalate	ug/L	50	54	54	108	108		1	
Benzo[b]fluoranthene	ug/L	50	52	55	103	109		6	
Benzo[k]fluoranthene	ug/L	50	50	50	100	100		0	
Benzo[a]pyrene	ug/L	50	54	55	107	110	54-128	3	20
Indeno(1,2,3-cd)pyrene	ug/L	50	52	55	103	109		6	
3-Methylcholanthrene	ug/L	50	56	59	113	117		4	
Dibenzo[a,h]anthracene	ug/L	50	53	55	106	110		4	
Benzo[g,h,i]perylene	ug/L	50	51	54	102	108		5	
2-Picoline (2-Methylpyridine)	ug/L	50	40	40	81	80		1	
N-Nitrosopiperidine	ug/L	50	48	44	95	89		7	
a,a-Dimethylphenethylamine	ug/L	50	20	20	40	40		2	
N-Nitrosodi-n-butylamine	ug/L	50	60	58	120	116		3	
1-Naphthylamine	ug/L	50	32	34	63	69		9	
2-Naphthylamine	ug/L	50	27	30	53	60		11	
4-Aminobiphenyl	ug/L	50	24	27	48	55		14	
Benzidine	ug/L	50	9.4	15	19	30		45	
4-Dimethyl aminoazobenzene	ug/L	50	51	52	102	104		2	
3,3`-Dichlorobenzidine	ug/L	50	49	49	98	98		1	
7,12-	ug/L	50	46	48	92	96		5	
Dimethylbenz[a]anthracene	-								
2-Fluorophenol (S)	%				84	83	31-134	2	
Phenol-d6 (S)	%				75	77	24-120	3	
Nitrobenzene-d5 (S)	%				102		38-139	3	
2-Fluorobiphenyl (S)	%				94	89	42-138	5	
2,4,6-Tribromophenol (S)	%				91	97	48-147	6	
p-Terphenyl-d14 (S)	%				105	98	61-154	6	
MATRIX SPIKE SAMPLE: 330	7893		Orig	inal: J19	156370	01			
_		Origina	ıl	Spike		MS	MS	%	Rec

SEMIVOLATILES

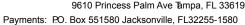
Units

Result

Parameter

Report ID: 920466 - 1865554 Page 33 of 65

Result


% Rec

Limits Qualifiers

Conc.

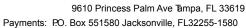
QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

3-Nitroaniline

ug/L

MATRIX SPIKE SAMPLE: 33	07893		Original: J191	5637001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
N-Nitrosodimethylamine	ug/L	0	50	27	54	
Methyl Methanesulfonate	ug/L	0	50	35	70	
Ethyl methanesulfonate	ug/L	0	50	40	79	
Aniline	ug/L	0	50	32	65	
Phenol	ug/L	0	50	22	45	19-106
bis(2-Chloroethyl)Ether	ug/L	0	50	38	77	
2-Chlorophenol	ug/L	0	50	36	72	
1,3-Dichlorobenzene	ug/L	0	50	31	61	
1,4-Dichlorobenzene	ug/L	0	50	32	63	29-112
1,2-Dichlorobenzene	ug/L	0	50	33	66	
Benzyl Alcohol	ug/L	0	50	38	76	
bis(2-Chloroisopropyl) Ether	ug/L	0	50	38	75	
2-Methylphenol (o-Cresol)	ug/L	0	50	37	75	
Acetophenone	ug/L	0	50	37	74	
N-Nitrosodi-n-propylamine	ug/L	0	50	42	83	
3+4-Methylphenol(mp-	ug/L ug/L	0	50	39	77	
Cresol)	ug/L	U	30	39	,,	
Hexachloroethane	ug/L	0	50	34	68	21-115
Nitrobenzene	ug/L	0	50	42	84	45-121
Isophorone	ug/L	0	50	42	84	
2-Nitrophenol	ug/L	0	50	41	83	
2,4-Dimethylphenol	ug/L	0	50	43	85	
bis(2-	ug/L	0	50	39	78	
Chloroethoxy)methane	ug/L	v	00	00	70	
2,4-Dichlorophenol	ug/L	0	50	41	81	47-121
Benzoic Acid	ug/L	0	50	19	38	
1,2,4-Trichlorobenzene	ug/L	0	50	38	76	
Naphthalene	ug/L	0	50	36	72	
4-Chloroaniline	ug/L	0	50	33	66	
2,6-Dichlorophenol	ug/L	0	50	48	96	
Hexachlorobutadiene	ug/L	0	50	34	68	22-124
4-Chloro-3-methylphenol	ug/L	0	50	43	87	52-119
2-Methylnaphthalene	ug/L	0	50	33	67	32 110
1-Methylnaphthalene	ug/L	0	50 50	35	71	
Hexachlorocyclopentadiene	ug/L ug/L	0	50 50	31	63	
1,2,4,5-Tetrachlorobenzene	-	0	50 50	36	72	
2,4,6-Trichlorophenol	ug/L	-	50 50	43	85	50-125
	ug/L	0				50-125
2,4,5-Trichlorophenol	ug/L	0	50 50	44	87 76	
2-Chloronaphthalene	ug/L	0	50 50	38	76	
2-Nitroaniline	ug/L	0	50	42	85	
Dimethyl phthalate	ug/L	0	50	42	84	
2,6-Dinitrotoluene (2,6- DNT)	ug/L	0	50	51	102	
Acenaphthylene	ug/L	0	50	38	75	


Report ID: 920466 - 1865554 Page 34 of 65

93

50

CERTIFICATE OF ANALYSIS

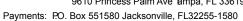
QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

N-Nitrosopiperidine

ug/L

MATRIX SPIKE SAMPLE: 3	307893		Original: J191	5637001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
Acenaphthene	ug/L	0	50	36	72	47-122
2,4-Dinitrophenol	ug/L	0	50	46	92	
Pentachlorobenzene	ug/L	0	50	36	73	
Dibenzofuran	ug/L	0	50	39	77	
2,4-Dinitrotoluene (2,4- DNT)	ug/L	0	50	53	106	57-128
4-Nitrophenol	ug/L	0	50	23	46	
2,3,4,6-Tetrachlorophenol	ug/L	0	50	39	79	
Diethyl phthalate	ug/L	0	50	42	85	
Fluorene	ug/L	0	50	41	82	52-124
4-Chlorophenyl Phenyl Ether	ug/L	0	50	39	78	
1-Nitroaniline	ug/L	0	50	46	91	
2-Methyl-4,6-dinitrophenol	ug/L	0	50	54	109	
N-Nitrosodiphenylamine	ug/L	0	50	37	74	
Diphenylamine	ug/L			37		
,2-Diphenylhydrazine	ug/L	0	50	44	87	
Phenacetin	ug/L	0	50	44	88	
l-Bromophenyl Phenyl Ether	ug/L	0	50	38	76	
Hexachlorobenzene	ug/L	0	50	38	76	53-125
Pentachlorophenol	ug/L	0	50	36	72	35-138
Pentachloronitrobenzene	ug/L	0	50	42	85	
Pronamide (Kerb)	ug/L	0	50	47	94	
Phenanthrene	ug/L	0	50	41	82	
Anthracene	ug/L	0	50	41	83	
Di-n-Butyl Phthalate	ug/L	0	50	43	85	
luoranthene	ug/L	0	50	42	84	57-128
Pyrene	ug/L	0	50	46	93	
Butyl benzyl phthalate	ug/L	0	50	48	96	
Benzo[a]anthracene	ug/L	0	50	49	97	
Chrysene	ug/L	0	50	47	93	
ois(2-Ethylhexyl) phthalate	ug/L	0	50	46	92	55-135
Di-n-octyl Phthalate	ug/L	0	50	50	100	
Benzo[b]fluoranthene	ug/L	0	50	49	98	
Benzo[k]fluoranthene	ug/L	0	50	42	84	
Benzo[a]pyrene	ug/L	0	50	47	95	54-128
ndeno(1,2,3-cd)pyrene	ug/L	0	50	48	97	
B-Methylcholanthrene	ug/L	0	50	50	99	
Dibenzo[a,h]anthracene	ug/L	0	50	49	97	
Benzo[g,h,i]perylene	ug/L	0	50	46	93	
2-Picoline (2- Methylpyridine)	ug/L	0	50	32	65	
N Nitrosopiporidino	ua/l	0	50	11	92	


Report ID: 920466 - 1865554 Page 35 of 65

50

82

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

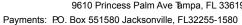
Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

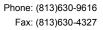
MATRIX SPIKE SAMPLE: 3307893 Original: J1915637001

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
a,a-	ug/L	0	50	17	34		
Dimethylphenethylamine		_					
N-Nitrosodi-n-butylamine	ug/L	0	50	46	92		
1-Naphthylamine	ug/L	0	50	30	60		
2-Naphthylamine	ug/L	0	50	26	52		
4-Aminobiphenyl	ug/L	0	50	25	51		
Benzidine	ug/L	0	50	8.0	16		
4-Dimethyl aminoazobenzene	ug/L	0	50	47	93		
3,3`-Dichlorobenzidine	ug/L	0	50	45	89		
7,12- Dimethylbenz[a]anthracene	ug/L	0	50	42	83		
2-Fluorophenol (S)	%				60	31-134	
Phenol-d6 (S)	%				44	24-120	
Nitrobenzene-d5 (S)	%				89	38-139	
2-Fluorobiphenyl (S)	%				80	42-138	
2,4,6-Tribromophenol (S)	%				86	48-147	
p-Terphenyl-d14 (S)	%				93	61-154	

QC Batch: EXTj/4440 Analysis Method: SW-846 8270C QC Batch Method: SW-846 3510C Prepared: 11/25/2019 17:30

Associated Lab Samples: T1921060001, T1921060002


METHOD BLANK: 3301848

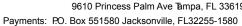

Parameter	Units	Blank Result	Reporting Limit Qualifiers
SEMIVOLATILES			
Phenol	ug/L	0.54	0.54 U
2-Chlorophenol	ug/L	1.5	1.5 U
2-Methylphenol (o-Cresol)	ug/L	1.5	1.5 U
3+4-Methylphenol(mp-Cresol)	ug/L	1.0	1.0 U
2-Nitrophenol	ug/L	0.63	0.63 U
2,4-Dimethylphenol	ug/L	2.6	2.6 U
Benzoic Acid	ug/L	0.78	0.78 U
2,4-Dichlorophenol	ug/L	0.90	0.90 U
2,6-Dichlorophenol	ug/L	1.3	1.3 U
4-Chloro-3-methylphenol	ug/L	0.63	0.63 U
2,4,6-Trichlorophenol	ug/L	1.4	1.4 U
2,4,5-Trichlorophenol	ug/L	1.3	1.3 U
2,4-Dinitrophenol	ug/L	1.1	1.1 U
4-Nitrophenol	ug/L	2.9	2.9 U
2,3,4,6-Tetrachlorophenol	ug/L	1.3	1.3 U

Report ID: 920466 - 1865554 Page 36 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM


METHOD BLANK: (3301848
-----------------	---------

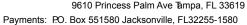
Parameter Units Result Limit Qualifiers 2-Methyl-4,6-dinitrophenol ug/L 1.2 1.2 U Pentachlorophenol ug/L 0.95 0.95 U N-Nitrosodimethylamine ug/L 0.93 0.93 U 2-Picoline (2-Methylpyridine) ug/L 1.2 1.2 U Methyl Methanesulfonate ug/L 0.67 0.67 U Ethyl methanesulfonate ug/L 0.91 0.91 U Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 1.2 2.2 U Hexachloroethane u
Pentachlorophenol ug/L 0.95 0.95 U N-Nitrosodimethylamine ug/L 0.93 0.93 U 2-Picoline (2-Methylpyridine) ug/L 1.2 1.2 U Methyl Methanesulfonate ug/L 0.67 0.67 U Ethyl methanesulfonate ug/L 0.91 0.91 U Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1
Pentachlorophenol ug/L 0.95 0.95 U N-Nitrosodimethylamine ug/L 0.93 0.93 U 2-Picoline (2-Methylpyridine) ug/L 1.2 1.2 U Methyl Methanesulfonate ug/L 0.67 0.67 U Ethyl methanesulfonate ug/L 0.91 0.91 U Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 </td
N-Nitrosodimethylamine ug/L 0.93 0.93 U 2-Picoline (2-Methylpyridine) ug/L 1.2 1.2 U Methyl Methanesulfonate ug/L 0.67 0.67 U Ethyl methanesulfonate ug/L 0.91 0.91 U Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
2-Picoline (2-Methylpyridine) ug/L 1.2 1.2 U Methyl Methanesulfonate ug/L 0.67 0.67 U Ethyl methanesulfonate ug/L 0.91 0.91 U Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Methyl Methanesulfonate ug/L 0.67 0.67 U Ethyl methanesulfonate ug/L 0.91 0.91 U Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Ethyl methanesulfonate ug/L 0.91 0.91 U Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Aniline ug/L 0.90 0.90 U bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
bis(2-Chloroethyl)Ether ug/L 1.5 1.5 U 1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
1,3-Dichlorobenzene ug/L 1.0 1.0 U 1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
1,4-Dichlorobenzene ug/L 2.0 2.0 U 1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
1,2-Dichlorobenzene ug/L 1.4 1.4 U Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Benzyl Alcohol ug/L 2.4 2.4 U bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
bis(2-Chloroisopropyl) Ether ug/L 1.4 1.4 U Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Acetophenone ug/L 1.6 1.6 U N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
N-Nitrosodi-n-propylamine ug/L 2.2 2.2 U Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Hexachloroethane ug/L 1.2 1.2 U Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Nitrobenzene ug/L 1.1 1.1 U N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
N-Nitrosopiperidine ug/L 1.3 1.3 U Isophorone ug/L 1.1 1.1 U
Isophorone ug/L 1.1 1.1 U
·
bis(2-Chloroethoxy)methane ug/L 1.2 1.2 U
· · · · · · · · · · · · · · · · · · ·
1,2,4-Trichlorobenzene ug/L 0.69 0.69 U
Naphthalene ug/L 0.048 U
a,a-Dimethylphenethylamine ug/L 1.9 1.9 U
4-Chloroaniline ug/L 0.90 0.90 U
Hexachlorobutadiene ug/L 1.3 1.3 U
N-Nitrosodi-n-butylamine ug/L 1.5 1.5 U
2-Methylnaphthalene ug/L 0.049 0.049 U
1-Methylnaphthalene ug/L 0.050 0.050 U
Hexachlorocyclopentadiene ug/L 1.0 1.0 U
1,2,4,5-Tetrachlorobenzene ug/L 1.3 1.3 U
2-Chloronaphthalene ug/L 1.7 1.7 U
2-Nitroaniline ug/L 1.5 1.5 U
Dimethyl phthalate ug/L 1.8 1.8 U
2,6-Dinitrotoluene (2,6-DNT) ug/L 2.0 2.0 U
Acenaphthylene ug/L 0.042 0.042 U
3-Nitroaniline ug/L 1.1 1.1 U
Acenaphthene ug/L 0.040 0.040 U
Pentachlorobenzene ug/L 1.3 1.3 U
Dibenzofuran ug/L 0.069 0.069 U
2,4-Dinitrotoluene (2,4-DNT) ug/L 1.8 1.8 U
1-Naphthylamine ug/L 0.95 0.95 U
2-Naphthylamine ug/L 0.89 0.89 U
Diethyl phthalate ug/L 2.1 2.1 U
Fluorene ug/L 0.038 0.038 U
4-Chlorophenyl Phenyl Ether ug/L 1.6 U

Report ID: 920466 - 1865554 Page 37 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM


ME.	Γ) RI	ANK.	3301	1242

METHOD BLANK: 3301848			
		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
4-Nitroaniline	ug/L	1.3	1.3 U
Diphenylamine	ug/L	2.1	2.1 U
1,2-Diphenylhydrazine	ug/L	0.96	0.96 U
Phenacetin	ug/L	3.2	3.2 U
4-Bromophenyl Phenyl Ether	ug/L	1.1	1.1 U
Hexachlorobenzene	ug/L	0.99	0.99 U
Pentachloronitrobenzene	ug/L	1.7	1.7 U
4-Aminobiphenyl	ug/L	0.61	0.61 U
Pronamide (Kerb)	ug/L	3.6	3.6 U
Phenanthrene	ug/L	0.040	0.040 U
Anthracene	ug/L	0.035	0.035 U
Di-n-Butyl Phthalate	ug/L	0.88	0.88 U
Fluoranthene	ug/L	0.037	0.037 U
Benzidine	ug/L	1.2	1.2 U
Pyrene	ug/L	0.036	0.036 U
4-Dimethyl aminoazobenzene	ug/L	0.73	0.73 U
Butyl benzyl phthalate	ug/L	1.1	1.1 U
Benzo[a]anthracene	ug/L	0.012	0.012 U
3,3`-Dichlorobenzidine	ug/L	1.3	1.3 U
Chrysene	ug/L	0.033	0.033 U
bis(2-Ethylhexyl) phthalate	ug/L	2.0	2.0 U
Di-n-octyl Phthalate	ug/L	1.2	1.2 U
Benzo[b]fluoranthene	ug/L	0.012	0.012 U
7,12-	ug/L	1.1	1.1 U
Dimethylbenz[a]anthracene	ug/L		1.1 0
Benzo[k]fluoranthene	ug/L	0.048	0.048 U
Benzo[a]pyrene	ug/L	0.037	0.037 U
3-Methylcholanthrene	ug/L	1.9	1.9 U
Indeno(1,2,3-cd)pyrene	ug/L	0.011	0.011 U
Dibenzo[a,h]anthracene	ug/L	0.024	0.024 U
Benzo[g,h,i]perylene	ug/L	0.048	0.048 U
N-Nitrosodiphenylamine	ug/L	2.1	2.1 U
N-Nitrosomethylethylamine	ug/L	2.7	2.7 U
N-Nitrosodiethylamine	ug/L	2.1	2.1 U
N-Nitrosopyrrolidine	ug/L	2.1	2.1 U
o-Toluidine	ug/L	2.4	2.4 U
0,0,0-	ug/L	2.9	2.9 U
Triethylphosphorothioate	3		=·- ~
Hexachloropropene	ug/L	2.7	2.7 U
1,4-Phenylenediamine	ug/L	5.0	5.0 U
Safrole	ug/L	3.5	3.5 U
Isosafrole	ug/L	3.2	3.2 U
1,4-Naphthoquinone	ug/L	4.8	4.8 U
1,3-Dinitrobenzene	ug/L	2.1	2.1 U
5-Nitro-o-toluidine	ug/L	2.9	2.9 U
	•		

Report ID: 920466 - 1865554 Page 38 of 65

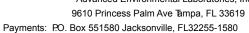
CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3301848

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
1,3,5-Trinitrobenzene	ug/L	2.5	2.5 U	
Nitroquinoline-1-oxide	ug/L	2.0	2.0 U	
Methapyrilene	ug/L	1.8	1.8 U	
Isodrin	ug/L	3.1	3.1 U	
3,3'-Dimethylbenzidine	ug/L	2.4	2.4 U	
2-Acetylaminofluorene	ug/L	3.5	3.5 U	
Thionazin (Zinophos)	ug/L	1.2	1.2 U	
Diallate	ug/L	1.1	1.1 U	
Phorate	ua/l	12	1211	

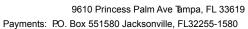

FIIOIale	ug/L	1.2	1.2 0
Dimethoate	ug/L	1.2	1.2 U
Dinoseb	ug/L	2.3	2.3 U
Methyl Parathion	ug/L	1.3	1.3 U
Chlorobenzilate	ug/L	2.0	2.0 U
Kepone	ug/L	5.2	5.2 U
Famphur	ug/L	2.0	2.0 U
2-Fluorophenol (S)	%	91	31-134
Phenol-d6 (S)	%	84	24-120
Nitrobenzene-d5 (S)	%	97	38-139
2-Fluorobiphenyl (S)	%	86	42-138
2,4,6-Tribromophenol (S)	%	77	48-147
p-Terphenyl-d14 (S)	%	104	61-154

LABORATORY CONTROL SAMPLE & LCSD:		3301849		3301850					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
SEMIVOLATILES									
N-Nitrosodimethylamine	ug/L	50	41	39	81	78		5	
Methyl Methanesulfonate	ug/L	50	42	42	85	84		1	
Ethyl methanesulfonate	ug/L	50	43	43	85	85		0	
Aniline	ug/L	50	38	41	76	81		7	
Phenol	ug/L	50	38	38	75	77	19-106	2	20
bis(2-Chloroethyl)Ether	ug/L	50	44	43	88	86		2	
2-Chlorophenol	ug/L	50	41	41	82	82		0	
1,3-Dichlorobenzene	ug/L	50	35	37	71	73		3	
1,4-Dichlorobenzene	ug/L	50	36	36	73	72	29-112	1	20
1,2-Dichlorobenzene	ug/L	50	37	38	74	76		3	
Benzyl Alcohol	ug/L	50	47	47	95	94		0	
bis(2-Chloroisopropyl) Ether	ug/L	50	43	43	86	86		1	
2-Methylphenol (o-Cresol)	ug/L	50	45	43	89	87		3	
Acetophenone	ug/L	50	42	43	84	86		2	
N-Nitrosodi-n-propylamine	ug/L	50	45	45	90	91		1	

Report ID: 920466 - 1865554 Page 39 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

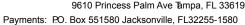

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3301849		330185	3301850				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
3+4-Methylphenol(mp-Cresol)	ug/L	50	47	45	94	90		5	
Hexachloroethane	ug/L	50	39	41	79	82	21-115	3	20
Nitrobenzene	ug/L	50	52	50	103	100	45-121	4	20
Isophorone	ug/L	50	48	47	96	93		3	
2-Nitrophenol	ug/L	50	48	47	97	94		2	
2,4-Dimethylphenol	ug/L	50	49	47	99	94		5	
bis(2-Chloroethoxy)methane	ug/L	50	45	44	90	88		2	
2,4-Dichlorophenol	ug/L	50	47	45	93	90	47-121	3	20
Benzoic Acid	ug/L	50	49	49	98	98		0	
1,2,4-Trichlorobenzene	ug/L	50	46	43	91	86		5	
Naphthalene	ug/L	50	43	41	85	83		3	
4-Chloroaniline	ug/L	50	38	39	76	77		1	
2,6-Dichlorophenol	ug/L	50	53	52	105	104		1	
Hexachlorobutadiene	ug/L	50	41	39	82	78	22-124	4	20
4-Chloro-3-methylphenol	ug/L	50	51	49	102	98	52-119	3	20
2-Methylnaphthalene	ug/L	50	40	39	79	78		2	
1-Methylnaphthalene	ug/L	50	41	39	81	79		3	
Hexachlorocyclopentadiene	ug/L	50	37	38	74	75		2	
1,2,4,5-Tetrachlorobenzene	ug/L	50	41	40	82	81		2	
2,4,6-Trichlorophenol	ug/L	50	48	47	97	95	50-125	2	20
2,4,5-Trichlorophenol	ug/L	50	49	49	99	98	00 .20	1	
2-Chloronaphthalene	ug/L	50	42	42	83	84		1	
2-Nitroaniline	ug/L	50	50	49	100	99		1	
Dimethyl phthalate	ug/L	50	47	47	95	94		1	
2,6-Dinitrotoluene (2,6-DNT)	ug/L	50	57	58	115	116		2	
Acenaphthylene	ug/L	50	44	43	88	86		3	
3-Nitroaniline	ug/L	50	47	48	94	96		2	
Acenaphthene	ug/L	50	41	40	81	80	47-122	1	20
2,4-Dinitrophenol	ug/L	50	57	54	114	109	77-122	4	20
Pentachlorobenzene	ug/L	50	41	41	83	82		0	
Dibenzofuran	ug/L	50	46	45	92	89		2	
2,4-Dinitrotoluene (2,4-DNT)	ug/L	50	58	58	116	117	57-128	1	20
•		50 50	38	40	75	80	37-120	7	20
4-Nitrophenol	ug/L	50 50	30 42	40	75 84	84		, 1	
2,3,4,6-Tetrachlorophenol	ug/L	50 50	42 46	42	91	93		2	
Diethyl phthalate Fluorene	ug/L	50 50	46 46	46 47	93	93 94	52-124	1	20
	ug/L						JZ-1Z4	=	20
4-Chlorophenyl Phenyl Ether 4-Nitroaniline	ug/L	50	44	44 50	89 94	88 100		1	
	ug/L	50	47 50	50				6	
2-Methyl-4,6-dinitrophenol	ug/L	50	58	57	117	114		2	
N-Nitrosodiphenylamine	ug/L	50	43	42	85	84		1	
Diphenylamine	ug/L		43	42		404		1	
1,2-Diphenylhydrazine	ug/L	50	50	51	99	101		2	
Phenacetin	ug/L	50	50	51	101	102		1	
4-Bromophenyl Phenyl Ether	ug/L	50	44	44	88	88		0	

Report ID: 920466 - 1865554 Page 40 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA


Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3301849		330185	50				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Hexachlorobenzene	ug/L	50	43	44	86	87	53-125	1	20
Pentachlorophenol	ug/L	50	45	44	91	88	35-138	3	20
Pentachloronitrobenzene	ug/L	50	50	49	100	99		1	
Pronamide (Kerb)	ug/L	50	54	55	107	110		3	
Phenanthrene	ug/L	50	47	48	94	96		2	
Anthracene	ug/L	50	47	48	95	95		1	
Di-n-Butyl Phthalate	ug/L	50	48	50	96	100		4	
Fluoranthene	ug/L	50	46	48	92	95	57-128	3	20
Pyrene	ug/L	50	52	52	104	105		1	
Butyl benzyl phthalate	ug/L	50	53	56	105	111		5	
Benzo[a]anthracene	ug/L	50	54	54	108	108		0	
Chrysene	ug/L	50	53	54	107	108		2	
bis(2-Ethylhexyl) phthalate	ug/L	50	52	54	103	108	55-135	4	20
Di-n-octyl Phthalate	ug/L	50	54	54	108	108		1	
Benzo[b]fluoranthene	ug/L	50	52	55	103	109		6	
Benzo[k]fluoranthene	ug/L	50	50	50	100	100		0	
Benzo[a]pyrene	ug/L	50	54	55	107	110	54-128	3	20
ndeno(1,2,3-cd)pyrene	ug/L	50	52	55	103	109		6	
3-Methylcholanthrene	ug/L	50	56	59	113	117		4	
Dibenzo[a,h]anthracene	ug/L	50	53	55	106	110		4	
Benzo[g,h,i]perylene	ug/L	50	51	54	102	108		5	
2-Picoline (2-Methylpyridine)	ug/L	50	40	40	81	80		1	
N-Nitrosopiperidine	ug/L	50	48	44	95	89		7	
a,a-Dimethylphenethylamine	ug/L	50	20	20	40	40		2	
N-Nitrosodi-n-butylamine	ug/L	50	60	58	120	116		3	
1-Naphthylamine	ug/L	50	32	34	63	69		9	
2-Naphthylamine	ug/L	50	27	30	53	60		11	
4-Aminobiphenyl	ug/L	50	24	27	48	55		14	
Benzidine	ug/L	50	9.4	15	19	30		45	
4-Dimethyl aminoazobenzene	ug/L	50	51	52	102	104		2	
3,3`-Dichlorobenzidine	ug/L	50	49	49	98	98		1	
7,12-	ug/L	50	46	48	92	96		5	
Dimethylbenz[a]anthracene	_			.5	~-				
2-Fluorophenol (S)	%				84	83	31-134	2	
Phenol-d6 (S)	%				75	77	24-120	3	
Nitrobenzene-d5 (S)	%				102	99	38-139	3	
2-Fluorobiphenyl (S)	%				94	89	42-138	5	
2,4,6-Tribromophenol (S)	%				91	97	48-147	6	
p-Terphenyl-d14 (S)	%				105	98	61-154	6	

Report ID: 920466 - 1865554 Page 41 of 65

QUALITY CONTROL DATA

Workorder: T1921060 J.F.D.I.ANDFILL (F/K/A OAK HAMM

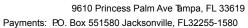
MATRIX SPIKE SAMPLE: 33	807893		Original: J191	5637001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
SEMIVOLATILES						
N-Nitrosodimethylamine	ug/L	0	50	27	54	
Methyl Methanesulfonate	ug/L	0	50	35	70	
Ethyl methanesulfonate	ug/L	0	50	40	79	
Aniline	ug/L	0	50	32	65	
Phenol	ug/L	0	50	22	45	19-106
ois(2-Chloroethyl)Ether	ug/L	0	50	38	77	
2-Chlorophenol	ug/L	0	50	36	72	
,3-Dichlorobenzene	ug/L	0	50	31	61	
,4-Dichlorobenzene	ug/L	0	50	32	63	29-112
1,2-Dichlorobenzene	ug/L	0	50	33	66	-
Benzyl Alcohol	ug/L	0	50	38	76	
ois(2-Chloroisopropyl) Ether	ug/L	0	50	38	75	
2-Methylphenol (o-Cresol)	ug/L	0	50	37	75	
Acetophenone	ug/L	0	50	37	74	
I-Nitrosodi-n-propylamine	ug/L ug/L	0	50	42	83	
+4-Methylphenol(mp- Cresol)	ug/L	0	50	39	77	
lexachloroethane	ug/L	0	50	34	68	21-115
litrobenzene	ug/L	0	50	42	84	45-121
sophorone	ug/L	0	50	42	84	
?-Nitrophenol	ug/L	0	50	41	83	
2,4-Dimethylphenol	ug/L	0	50	43	85	
ois(2-	ug/L	0	50	39	78	
Chloroethoxy)methane	~ 9 , =	v				
2,4-Dichlorophenol	ug/L	0	50	41	81	47-121
Benzoic Acid	ug/L	0	50	19	38	
,2,4-Trichlorobenzene	ug/L	0	50	38	76	
laphthalene	ug/L	0	50	36	72	
-Chloroaniline	ug/L	0	50	33	66	
2,6-Dichlorophenol	ug/L	0	50	48	96	
Hexachlorobutadiene	ug/L	0	50	34	68	22-124
-Chloro-3-methylphenol	ug/L	0	50	43	87	52-119
-Methylnaphthalene	ug/L	0	50	33	67	
-Methylnaphthalene	ug/L	0	50	35	71	
lexachlorocyclopentadiene	ug/L	0	50	31	63	
,2,4,5-Tetrachlorobenzene	ug/L	0	50	36	72	
,4,6-Trichlorophenol	ug/L	0	50	43	85	50-125
,4,5-Trichlorophenol	ug/L ug/L	0	50	44	87	30 .20
-Chloronaphthalene	ug/L ug/L	0	50	38	76	
Chloronaphthalene Nitroaniline	ug/L ug/L	0	50	42	85	
Dimethyl phthalate	ug/L ug/L	0	50 50	42	84	
2,6-Dinitrotoluene (2,6-	ug/L ug/L	0	50	51	102	
ONT)	ug/l	0	50	20	75	

Report ID: 920466 - 1865554 Page 42 of 65

38

50

75


0

ug/L

Acenaphthylene

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

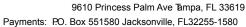
Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

ug/L

N-Nitrosopiperidine

MATRIX SPIKE SAMPLE: 3307893			Original: J191	5637001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
3-Nitroaniline	ug/L	0	50	47	93	
Acenaphthene	ug/L	0	50	36	72	47-122
2,4-Dinitrophenol	ug/L	0	50	46	92	
Pentachlorobenzene	ug/L	0	50	36	73	
Dibenzofuran	ug/L	0	50	39	77	
2,4-Dinitrotoluene (2,4- DNT)	ug/L	0	50	53	106	57-128
4-Nitrophenol	ug/L	0	50	23	46	
2,3,4,6-Tetrachlorophenol	ug/L	0	50	39	79	
Diethyl phthalate	ug/L	0	50	42	85	
Fluorene	ug/L	0	50	41	82	52-124
4-Chlorophenyl Phenyl Ether	ug/L	0	50	39	78	
1-Nitroaniline	ug/L	0	50	46	91	
2-Methyl-4,6-dinitrophenol	ug/L	0	50	54	109	
N-Nitrosodiphenylamine	ug/L	0	50	37	74	
Diphenylamine	ug/L			37		
,2-Diphenylhydrazine	ug/L	0	50	44	87	
Phenacetin	ug/L	0	50	44	88	
-Bromophenyl Phenyl Ether	ug/L	0	50	38	76	
Hexachlorobenzene	ug/L	0	50	38	76	53-125
Pentachlorophenol	ug/L	0	50	36	72	35-138
Pentachloronitrobenzene	ug/L	0	50	42	85	
Pronamide (Kerb)	ug/L	0	50	47	94	
Phenanthrene	ug/L	0	50	41	82	
Anthracene	ug/L	0	50	41	83	
Di-n-Butyl Phthalate	ug/L	0	50	43	85	
luoranthene	ug/L	0	50	42	84	57-128
Pyrene	ug/L	0	50	46	93	
Butyl benzyl phthalate	ug/L	0	50	48	96	
Benzo[a]anthracene	ug/L	0	50	49	97	
Chrysene	ug/L	0	50	47	93	
ois(2-Ethylhexyl) phthalate	ug/L	0	50	46	92	55-135
Di-n-octyl Phthalate	ug/L	0	50	50	100	
Benzo[b]fluoranthene	ug/L	0	50	49	98	
Benzo[k]fluoranthene	ug/L	0	50	42	84	
Benzo[a]pyrene	ug/L	0	50	47	95	54-128
ndeno(1,2,3-cd)pyrene	ug/L	0	50	48	97	
B-Methylcholanthrene	ug/L	0	50	50	99	
Dibenzo[a,h]anthracene	ug/L	0	50	49	97	
Benzo[g,h,i]perylene	ug/L	0	50	46	93	
2-Picoline (2- Methylpyridine)	ug/L	0	50	32	65	

Report ID: 920466 - 1865554 Page 43 of 65

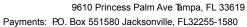

41

82

50

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA


Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 3307893			Original: J191	5637001		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
a,a- Dimethylphenethylamine	ug/L	0	50	17	34	
N-Nitrosodi-n-butylamine	ug/L	0	50	46	92	
1-Naphthylamine	ug/L	0	50	30	60	
2-Naphthylamine	ug/L	0	50	26	52	
4-Aminobiphenyl	ug/L	0	50	25	51	
Benzidine	ug/L	0	50	8.0	16	
4-Dimethyl aminoazobenzene	ug/L	0	50	47	93	
3,3`-Dichlorobenzidine	ug/L	0	50	45	89	
7,12- Dimethylbenz[a]anthracene	ug/L	0	50	42	83	
2-Fluorophenol (S)	%				60	31-134
Phenol-d6 (S)	%				44	24-120
Nitrobenzene-d5 (S)	%				89	38-139
2-Fluorobiphenyl (S)	%				80	42-138
2,4,6-Tribromophenol (S)	%				86	48-147
p-Terphenyl-d14 (S)	%				93	61-154
QC Batch: WCA	1/15062		Analysis Met	hod:	EPA 410.4	
QC Batch Method: EPA 410.4		Prepared:				
Associated Lab Samples:	T1921060001,	T1921060002	r roparou.			
METHOD BLANK: 3302000	1					
Parameter	Units	Blank Result	Reporting Limit Q	ualifiers		
WET CHEMISTRY Chemical Oxygen Demand	mg/L	24	24 U			
Shemical Oxygen Demand	mg/L	24	24 0			
LABORATORY CONTROL S	SAMPLE: 3302	2001				
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qua	alifiers
WET CHEMISTRY		500	100	^ -	00.440	
Chemical Oxygen Demand	mg/L	500	490	97	90-110	

Report ID: 920466 - 1865554 Page 44 of 65

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3302003 3302004 Original: T1921014004

Original Spike MS MSD MS MSD % Rec Max

Parameter Result % Rec % Rec Limit RPD RPD Qualifiers Units Result Conc. Result

WET CHEMISTRY

Chemical Oxygen Demand 140 2500 2600 2600 98 98 90-110 0 10 mg/L

QC Batch: WCAt/15064 Analysis Method: SM 4500-S D

QC Batch Method: SM 4500-S D Prepared:

T1921060001, T1921060002 Associated Lab Samples:

METHOD BLANK: 3302075

Reporting Blank

Parameter Units Result Limit Qualifiers

WET CHEMISTRY

Sulfide 0.0083 0.0083 U mg/L

LABORATORY CONTROL SAMPLE: 3302076

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

WET CHEMISTRY

Sulfide

Report ID: 920466 - 1865554

Sulfide mg/L 0.4 0.37 93 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3302077 3302078 Original: J1915195001

MSD MS MSD Original Spike MS % Rec Max % Rec Result Limit RPD RPD Qualifiers Parameter Units Result Conc. Result % Rec

WET CHEMISTRY Sulfide 0.4 0.62 0.62 90-110 10 0.25 92 93 0 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3302081 3302082 Original: M1905914001

0.4

Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers WET CHEMISTRY

0.38

0.38

95

95

90-110

1 10

0.004

mg/L

CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Page 45 of 65

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (813)630-9616 Fax: (813)630-4327

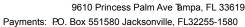
QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

QC Batch: EXTj/4445 Analysis Method: EPA 8081

QC Batch Method: SW-846 3510C 11/26/2019 13:30 Prepared:

Associated Lab Samples: T1921060001, T1921060002


METHOD BLANK: 3302326

Davameter	l leite	Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
SEMIVOLATILES			
alpha-BHC	ug/L	0.0030	0.0030 U
gamma-BHC (Lindane)	ug/L	0.0018	0.0018 U
beta-BHC	ug/L	0.0019	0.0019 U
delta-BHC	ug/L	0.00086	0.00086 U
Heptachlor	ug/L	0.0035	0.0035 U
Aldrin	ug/L	0.0019	0.0019 U
Heptachlor Epoxide	ug/L	0.0017	0.0017 U
Endosulfan I	ug/L	0.0031	0.0031 U
4,4`-DDE	ug/L	0.0037	0.0037 U
Dieldrin	ug/L	0.0011	0.0011 U
Endrin	ug/L	0.0017	0.0017 U
4,4`-DDD	ug/L	0.0016	0.0016 U
Endosulfan II	ug/L	0.0026	0.0026 U
Endrin Aldehyde	ug/L	0.0025	0.0025 U
4,4`-DDT	ug/L	0.0021	0.0021 U
Endosulfan Sulfate	ug/L	0.0032	0.0032 U
Methoxychlor	ug/L	0.0058	0.0058 U
Chlordane (technical)	ug/L	0.053	0.053 U
Toxaphene	ug/L	0.12	0.12 U
Tetrachloro-m-xylene (S)	%	86	44-124
Decachlorobiphenyl (S)	%	97	48-137

LABORATORY CONTROL SAMPLE & LCSD:		3302327		330232	3302328					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
alpha-BHC	ug/L	0.1	0.061	0.061	61	61	54-138	0	30	
gamma-BHC (Lindane)	ug/L	0.1	0.063	0.064	63	64	59-134	1	30	
beta-BHC	ug/L	0.1	0.066	0.062	66	62	56-136	5	30	
delta-BHC	ug/L	0.1	0.065	0.065	65	65	52-142	0	30	
Heptachlor	ug/L	0.1	0.063	0.065	63	65	54-130	2	30	
Aldrin	ug/L	0.1	0.061	0.060	61	60	45-134	3	30	
Heptachlor Epoxide	ug/L	0.1	0.064	0.065	64	65	61-133	2	30	
4,4`-DDE	ug/L	0.1	0.066	0.065	66	65	57-135	1	30	
Dieldrin	ug/L	0.1	0.069	0.068	69	68	60-136	2	30	
Endrin	ug/L	0.1	0.067	0.066	67	67	60-138	0	30	

Report ID: 920466 - 1865554 Page 46 of 65

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Aroclor 1016 (PCB-1016)

Aroclor 1221 (PCB-1221)

Aroclor 1232 (PCB-1232)

Aroclor 1242 (PCB-1242)

Aroclor 1248 (PCB-1248)

Aroclor 1254 (PCB-1254)

Aroclor 1260 (PCB-1260)

Tetrachloro-m-xylene (S)

Decachlorobiphenyl (S)

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

LABORATORY CONTROL S	SAMPLE & LCSD:	3302327		330232	28				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
4,4`-DDD	ug/L	0.1	0.073	0.074	73	74	56-143	1	30
Endosulfan II	ug/L	0.1	0.062	0.062	62	62	52-135	1	30
Endrin Aldehyde	ug/L	0.1	0.065	0.070	65	70	51-132	7	30
4,4`-DDT	ug/L	0.1	0.068	0.070	68	70	51-143	3	30
Endosulfan Sulfate	ug/L	0.1	0.072	0.073	72	73	62-133	1	30
Methoxychlor	ug/L	0.1	0.075	0.077	75	77	54-145	3	30
Chlordane (technical)	ug/L		0.053	0.053U				0	30
Toxaphene	ug/L		0.12	0.12U				0	
Tetrachloro-m-xylene (S)	%				71	73	44-124	2	
Decachlorobiphenyl (S)	%				86	87	48-137	2	
LABORATORY CONTROL S	SAMPLE & LCSD:	3302327		330232	28				
LABORATORY CONTROL S	SAMPLE & LCSD: Units	3302327 Spike Conc.	LCS Result	LCSD		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
		Spike		LCSD	LCS			RPD 9	
Parameter SEMIVOLATILES	Units ug/L	Spike Conc.	Result 0.078	LCSD Result	LCS % Rec 78	% Rec 71	Limit	9	RPD Qualifiers
Parameter SEMIVOLATILES Endosulfan I QC Batch: EXTj/	Units ug/L	Spike Conc.	Result 0.078	LCSD Result	LCS % Rec 78	% Rec 71	Limit 62-126	9	RPD Qualifiers
Parameter SEMIVOLATILES Endosulfan I QC Batch: EXTj/	Units ug/L 4446	Spike Conc.	0.078	LCSD Result 0.071	LCS % Rec 78	% Rec 71	Limit 62-126 V-846 8082A	9	RPD Qualifiers
Parameter SEMIVOLATILES Endosulfan I QC Batch: EXTj/. QC Batch Method: SW-8	Units ug/L 4446 46 3510C T1921060001, T1	Spike Conc.	0.078	LCSD Result 0.071	LCS % Rec 78	% Rec 71	Limit 62-126 V-846 8082A	9	RPD Qualifiers
Parameter SEMIVOLATILES Endosulfan I QC Batch: EXTj/. QC Batch Method: SW-8 Associated Lab Samples:	Units ug/L 4446 46 3510C T1921060001, T1	Spike Conc.	Result 0.078 All Pl	LCSD Result 0.071 nalysis Merepared:	LCS % Rec 78	% Rec 71 SW 11/	Limit 62-126 V-846 8082A	9	RPD Qualifiers

Report ID: 920466 - 1865554 Page 47 of 65

0.065 U

0.11 U

0.097 U

0.096 U

0.067 U

0.051 U

0.080 U

61-119

44-136

0.065

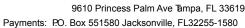
0.11

0.097

0.096

0.067

0.051


0.080

86

97

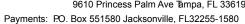
QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3302332	2	33023	3302333					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
SEMIVOLATILES										
Aroclor 1016 (PCB-1016)	ug/L	1	0.59	0.51	59	51	38-156	15	30	
Aroclor 1221 (PCB-1221)	ug/L		0.11	0.11U				0	30	
Aroclor 1232 (PCB-1232)	ug/L		0.097	0.097U				0	30	
Aroclor 1242 (PCB-1242)	ug/L		0.096	0.096U				0	30	
Aroclor 1248 (PCB-1248)	ug/L		0.067	0.067U				0	30	
Aroclor 1254 (PCB-1254)	ug/L		0.051	0.051U				0	30	
Aroclor 1260 (PCB-1260)	ug/L	1	0.59	0.60	59	60	45-134	3	30	
Tetrachloro-m-xylene (S)	%				87	87	61-119	0		
Decachlorobiphenyl (S)	%				102	104	44-136	2		

QC Batch: EXTj/4447 Analysis Method: EPA 8141

QC Batch Method: SW-846 3510C Prepared: 11/26/2019 13:30


T1921060001, T1921060002 Associated Lab Samples:

METHOD BLANK: 3302335

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
SEMIVOLATILES				
Mevinphos	ug/L	0.055	0.055 U	
Demeton	ug/L	0.060	0.060 U	
Ethoprop	ug/L	0.047	0.047 U	
Phorate	ug/L	0.044	0.044 U	
Diazinon	ug/L	0.055	0.055 U	
Disulfoton	ug/L	0.041	0.041 U	
Ronnel	ug/L	0.048	0.048 U	
Methyl Parathion	ug/L	0.054	0.054 U	
Chlorpyrifos	ug/L	0.041	0.041 U	
Merphos	ug/L	0.057	0.057 U	
Fensulfothion	ug/L	0.047	0.047 U	
Azinphos-methyl	ug/L	0.057	0.057 U	
Dimethoate	ug/L	0.054	0.054 U	
Fonophos	ug/L	0.050	0.050 U	
Chlorpyrifos-methyl	ug/L	0.060	0.060 U	
Malathion	ug/L	0.073	0.073 U	
Parathion (Ethyl)	ug/L	0.064	0.064 U	
Ethion	ug/L	0.069	0.069 U	
Famphur	ug/L	0.11	0.11 U	
Phosmet	ug/L	0.076	0.076 U	
Atrazine	ug/L	0.071	0.071 U	
Simazine	ug/L	0.072	0.072 U	

Report ID: 920466 - 1865554 Page 48 of 65

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3302335

Reporting Blank

Parameter Units Limit Qualifiers Result

Tributylphosphate (S) % 96 48.5-121

LABORATORY CONTROL SAMPLE & LCSD: 3302336 3302337

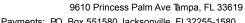
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
SEMIVOLATILES									
Mevinphos	ug/L	0.5	0.48	0.49	96	98	37-171	2	30
Demeton	ug/L	0.5	0.43	0.42	86	84	25-128	3	30
Ethoprop	ug/L	0.5	0.49	0.48	98	96	52-125	2	30
Phorate	ug/L	0.5	0.47	0.46	93	92	23-139	2	30
Diazinon	ug/L	0.5	0.48	0.47	96	94	43-129	2	30
Disulfoton	ug/L	0.5	0.44	0.42	88	83	36-134	5	30
Ronnel	ug/L	0.5	0.48	0.47	97	94	42-133	3	30
Methyl Parathion	ug/L	0.5	0.48	0.47	95	93	49-134	2	30
Chlorpyrifos	ug/L	0.5	0.43	0.43	86	85	47-133	1	30
Merphos	ug/L	0.5	0.45	0.44	91	88	26-133	2	30
Fensulfothion	ug/L	0.5	0.46	0.47	91	93	24-160	3	30
Azinphos-methyl	ug/L	0.5	0.54	0.52	108	104	43-135	3	
Dimethoate	ug/L	0.5	0.39	0.37	77	74	26-125	5	30
Fonophos	ug/L	0.5	0.46	0.45	92	91	54-122	1	30
Chlorpyrifos-methyl	ug/L	0.5	0.54	0.53	108	105	51-133	3	30
Malathion	ug/L	0.5	0.51	0.50	103	99	44-132	3	30
Parathion (Ethyl)	ug/L	0.5	0.52	0.53	105	106	52-134	1	30
Ethion	ug/L	0.5	0.51	0.50	103	101	42-145	2	30
Famphur	ug/L	0.5	0.51	0.50	103	99	38-183	4	30
Phosmet	ug/L	0.5	0.51	0.48	102	95	44-164	7	30
Atrazine	ug/L	0.5	0.48	0.45	96	91	45-120	5	30
Simazine	ug/L	0.5	0.52	0.47	104	93	51-136	11	30
Tributylphosphate (S)	%				91	88	48.5-121	3	30

QC Batch: EXTj/4448 Analysis Method: EPA 8151

QC Batch Method: Prepared: 11/25/2019 15:00

Associated Lab Samples: T1921060001, T1921060002

METHOD BLANK: 3302778


Blank Reporting

Parameter Units Result Limit Qualifiers

SEMIVOLATILES

Report ID: 920466 - 1865554 Page 49 of 65

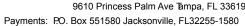
QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 33027	10	
---------------------	----	--

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Dalapon	ug/L	7.6	7.6 U
Dicamba	ug/L	0.75	0.75 U
Dichloroprop	ug/L	0.87	0.87 U
2,4-D	ug/L	1.3	1.3 U
Pentachlorophenol	ug/L	0.29	0.29 U
Silvex (2,4,5-TP)	ug/L	0.30	0.30 U
2,4,5-T	ug/L	0.33	0.33 U
2,4-DB	ug/L	1.7	1.7 U
Dinoseb	ug/L	0.51	0.51 U
2,4-Dichlorophenylacetic acid (S)	%	97	41-122

LABORATORY CONTROL SAMPLE: 3302779


Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
SEMIVOLATILES						
Dalapon	ug/L	40	24	59	19-139	
Dicamba	ug/L	8	4.5	56	50-141	
Dichloroprop	ug/L	24	18	73	46-159	
2,4-D	ug/L	24	16	66	45-152	
Pentachlorophenol	ug/L	4	3.1	77	56-139	
Silvex (2,4,5-TP)	ug/L	8	5.3	66	51-134	
2,4,5-T	ug/L	8	5.4	68	42-147	
2,4-DB	ug/L	24	18	74	45-152	
Dinoseb	ug/L	8	5.3	66	39-160	
2,4-Dichlorophenylacetic acid (S)	%			89	41-122	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3302780				3302781		Original: M1905895033					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
SEMIVOLATILES											
Dalapon	ug/L	0	40	36	28	90	69	19-139	26	30	
Dicamba	ug/L	0	8	6.2	4.9	77	61	50-141	22	30	
Dichloroprop	ug/L	0	24	15	13	62	52	46-159	18	30	
2,4-D	ug/L	0	24	15	11	62	48	45-152	26	30	
Pentachlorophenol	ug/L	0	4	3.4	2.7	85	67	56-139	23	30	
Silvex (2,4,5-TP)	ug/L	0	8	5.4	4.3	67	54	51-134	22	30	

Report ID: 920466 - 1865554 Page 50 of 65

CERTIFICATE OF ANALYSIS

Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3302780 3302781 Original: M1905895033 Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limit RPD RPD Qualifiers 2,4,5-T ug/L 0 8 4.8 4.0 60 50 42-147 20 30 2,4-DB ug/L 0 24 16 14 68 56 45-152 18 30 Dinoseb ug/L 0 8 6.4 5.01 79 63 39-160 24 30 2,4-Dichlorophenylacetic % 107 96 79 41-122 19 30 acid (S)

QC Batch: DGMt/4418 Analysis Method: SW-846 7470A QC Batch Method: SW-846 7470A Prepared: 11/26/2019 10:00

Associated Lab Samples: T1921060001, T1921060002

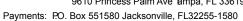
METHOD BLANK: 3302806

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Mercury	ug/L	0.050	0.050 U	

LABORATORY CONTROL SAMPLE: 3302807

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS Mercury	ug/L	1	0.87	87	80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3302808				3302	809	Origir	nal: A190	9925016			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit F		Max RPD Qualifiers	
METALS Mercury	ug/L	0	1	0.98	0.95	98	95	80-120	4	20	


QC Batch: WCAt/15156 Analysis Method: SM 2320B

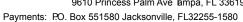
QC Batch Method: SM 2320B Prepared:

Associated Lab Samples: T1921060001, T1921060002

Report ID: 920466 - 1865554 Page 51 of 65

Advanced Environmental Laboratories, Inc.

Phone: (813)630-9616 Fax: (813)630-4327


QUALITY CONTROL DATA

Workorder: T1921060 J	J.E.D LANDFILL (F/K	//A OAK HAMM					
METHOD BLANK: 3306	6287						
Parameter	Units	Blank Result	Reporting Limit Qualifi	ers			
WET CHEMISTRY Alkalinity, Total	mg/L	5.0	5.0 U				
LABORATORY CONTR	OL SAMPLE: 3306	6289					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits C	Qualifiers	
WET CHEMISTRY Alkalinity, Total	mg/L	100	100	101	75-125		
SAMPLE DUPLICATE:	3306290		Original: M190591	5001			
Parameter	Units	Original Result	DUP Result	RPD	Max RPD C	Qualifiers	
WET CHEMISTRY Alkalinity, Total	mg/L	69	69	0	20		
SAMPLE DUPLICATE:	3306291		Original: S190259	6002			
Parameter	Units	Original Result	DUP Result	RPD	Max RPD C	Qualifiers	
WET CHEMISTRY Alkalinity, Total QC Batch: W	mg/L //CAt/15184	190	190 Analysis Method:	1	20 EPA 300.0		
	PA 300.0		Prepared:		2171000.0		
Associated Lab Sample	s: T1921060001,	T1921060002					
METHOD BLANK: 3307	7932						
Parameter	Units	Blank Result	Reporting Limit Qualifi	ers			
WET CHEMISTRY Fluoride Chloride Bromide Sulfate	mg/L mg/L mg/L mg/L	0.10 1.0 0.090 1.0	0.10 U 1.0 U 0.090 U 1.0 U				

Report ID: 920466 - 1865554 Page 52 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY	CONTROL	SAMPLE:	3307933

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
WET CHEMISTRY					
Fluoride	mg/L	2.5	2.5	98	90-110
Chloride	mg/L	25	25	100	90-110
Bromide	mg/L	2.5	2.5	101	90-110
Sulfate	mg/L	25	25	100	90-110

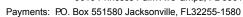
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3307934					935	Original: T1920963005					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY											
Fluoride	mg/L	0.084	2	1.9	1.9	94	94	90-110	0	10	
Chloride	mg/L	48	20	64	64	80	80	90-110	0	10	
Bromide	mg/L	0.15	2	1.8	1.9	92	93	90-110	2	10	
Sulfate	ma/l	7	20	25	25	89	89	90-110	0	10	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3307936	3307937	Original: T1921144001
--	---------	-----------------------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
WET CHEMISTRY											
Fluoride	mg/L	0.54	2	2.3	2.3	89	89	90-110	0	10	
Chloride	mg/L	4.8	20	23	23	90	90	90-110	0	10	
Bromide	mg/L	0	2	1.8	1.8	88	88	90-110	0	10	
Sulfate	mg/L	1.2	20	19	19	95	96	90-110	0	10	

QC Batch: DGMt/4444 Analysis Method: SW-846 6010 QC Batch Method: SW-846 3010A Prepared: 12/04/2019 10:00

Associated Lab Samples: T1921060001, T1921060002


METHOD BLANK: 3308405

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
METALS				
Silver	ug/L	3.4	3.4 U	
Aluminum	ug/L	25	25 U	
Arsenic	ug/L	2.8	2.8 U	

Report ID: 920466 - 1865554 Page 53 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3	308405
-----------------	--------

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Barium	ug/L	170	170 U
Beryllium	ug/L	0.29	0.29 U
Calcium	mg/L	0.072	0.072 U
Cadmium	ug/L	0.24	0.24 U
Cobalt	ug/L	0.28	0.28 U
Chromium	ug/L	2.0	2.0 U
Copper	ug/L	1.4	1.4 U
Iron	ug/L	140	140 U
Potassium	mg/L	0.14	0.14 U
Magnesium	mg/L	0.44	0.44 U
Manganese	ug/L	0.49	0.49 U
Sodium	mg/L	0.50	0.50 U
Nickel	ug/L	4.4	4.4 U
Lead	ug/L	7.8	7.8 U
Selenium	ug/L	12	12 U
Tin	ug/L	1.8	1.8 U
Vanadium	ug/L	0.58	0.58 U
Zinc	ug/L	7.4	7.4 U

LABORATORY CONTROL SAMPLE: 3308406

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
METALS					
Silver	ug/L	400	350	86	80-120
Aluminum	ug/L	25000	25000	97	80-120
Arsenic	ug/L	400	360	91	80-120
Barium	ug/L	400	370	93	80-120
Beryllium	ug/L	400	380	94	80-120
Calcium	mg/L	25	25	97	80-120
Cadmium	ug/L	400	350	88	80-120
Cobalt	ug/L	400	350	86	80-120
hromium	ug/L	400	370	93	80-120
Copper	ug/L	400	380	96	80-120
on	ug/L	25000	24000	95	80-120
otassium	mg/L	29	28	97	80-120
lagnesium	mg/L	25	24	94	80-120
langanese	ug/L	400	350	88	80-120
odium	mg/L	50	50	100	80-120
lickel	ug/L	400	340	85	80-120
.ead	ug/L	400	340	84	80-120
Selenium	ug/L	400	340	85	80-120

Report ID: 920466 - 1865554 Page 54 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE: 3308406

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Tin	ug/L	500	490	98	80-120	
Vanadium	ug/L	400	380	96	80-120	
Zinc	ug/L	400	350	87	80-120	

MATRIX SPIKE & MAT	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3308407		3308	3308408		nal: T1920	0671001				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
METALS											
Silver	ug/L	0	400	340	350	86	87	75-125	1	20	
Aluminum	ug/L	250	25000	24000	25000	95	96	75-125	1	20	
Arsenic	ug/L	0	400	360	360	90	91	75-125	1	20	
Barium	ug/L	8.8	400	370	380	93	94	75-125	1	20	
Beryllium	ug/L	0.045	400	370	380	93	94	75-125	1	20	
Calcium	mg/L	2	25	26	26	94	95	75-125	1	20	
Cadmium	ug/L	0.053	400	350	350	87	88	75-125	1	20	
Cobalt	ug/L	0.1	400	340	340	86	86	75-125	1	20	
Chromium	ug/L	1.3	400	370	370	92	93	75-125	1	20	
Copper	ug/L	0	400	390	390	96	97	75-125	1	20	
Iron	ug/L	360	25000	24000	24000	92	93	75-125	1	20	
Potassium	mg/L	2.4	29	30	31	96	97	75-125	1	20	
Magnesium	mg/L	1.5	25	25	25	91	93	75-125	1	20	
Manganese	ug/L	1.5	400	350	350	87	88	75-125	1	20	
Sodium	mg/L	20	50	68	68	95	95	75-125	0	20	
Nickel	ug/L	0	400	340	340	85	85	75-125	0	20	
Lead	ug/L	0.92	400	330	330	83	83	75-125	0	20	
Selenium	ug/L	0.064	400	340	350	86	86	75-125	1	20	
Tin	ug/L	0.048	400	440	450	111	112	75-125	1	20	
Vanadium	ug/L	0.84	400	380	380	95	96	75-125	1	20	
Zinc	ug/L	8.1	400	360	360	87	87	75-125	1	20	

QC Batch: MSVj/4711 Analysis Method: SW-846 8260B QC Batch Method: SW-846 5030B Prepared: 12/04/2019 18:31

T1921060001, T1921060002, T1921060003 Associated Lab Samples:

Report ID: 920466 - 1865554 Page 55 of 65

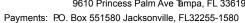
QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

METHOD BLANK: 3310406

Parameter Units Result Limit Qualifiers **VOLATILES** Dichlorodifluoromethane 0.19 U ug/L 0.19

Reporting


Blank

Chloromethane	ug/L	0.21	0.21 U	
Vinyl Chloride	ug/L	0.20	0.20 U	
Bromomethane	ug/L	0.29	0.29 U	
Chloroethane	ug/L	0.33	0.33 U	
Trichlorofluoromethane	ug/L	0.32	0.32 U	
Acrolein (Propenal)	ug/L	1.6	1.6 U	
Acetone	ug/L	2.1	2.1 U	
1,1-Dichloroethylene	ug/L	0.18	0.18 U	
Iodomethane (Methyl Iodide)	ug/L	0.16	0.16 U	
Acrylonitrile	ug/L	1.1	1.1 U	
Methylene Chloride	ug/L	2.5	2.5 U	
Carbon Disulfide	ug/L	0.67	0.67 U	
trans-1,2-Dichloroethylene	ug/L	0.20	0.20 U	
1,1-Dichloroethane	ug/L	0.14	0.14 U	
Vinyl Acetate	ug/L	0.19	0.19 U	
2-Butanone (MEK)	ug/L	0.43	0.43 U	
cis-1,2-Dichloroethylene	ug/L	0.24	0.24 U	
Bromochloromethane	ug/L	0.17	0.17 U	
Chloroform	ug/L	0.18	0.18 U	
2,2-Dichloropropane	ug/L	0.22	0.22 U	
1,2-Dichloroethane	ug/L	0.23	0.23 U	
1,1,1-Trichloroethane	ug/L	0.22	0.22 U	
1,1-Dichloropropene	ug/L	0.24	0.24 U	
Carbon Tetrachloride	ug/L	0.36	0.36 U	
Benzene	ug/L	0.16	0.16 U	
Dibromomethane	ug/L	0.26	0.26 U	
1,2-Dichloropropane	ug/L	0.66	0.66 U	
Trichloroethene	ug/L	0.29	0.29 U	
Bromodichloromethane	ug/L	0.46	0.46 U	
cis-1,3-Dichloropropene	ug/L	0.16	0.16 U	
4-Methyl-2-pentanone (MIBK)	ug/L	0.47	0.47 U	
trans-1,3-Dichloropropylene	ug/L	0.21	0.21 U	
1,1,2-Trichloroethane	ug/L	0.30	0.30 U	
Toluene	ug/L	0.23	0.23 U	
1,3-Dichloropropane	ug/L	0.24	0.24 U	
2-Hexanone	ug/L	0.71	0.71 U	
Dibromochloromethane	ug/L	0.33	0.33 U	
Ethylene Dibromide (EDB)	ug/L	0.20	0.20 U	
Tetrachloroethylene (PCE)	ug/L	0.36	0.36 U	
1,1,1,2-Tetrachloroethane	ug/L	0.54	0.54 U	
Chlorobenzene	ug/L	0.21	0.21 U	
Ethylbenzene	ug/L	0.24	0.24 U	
Bromoform	ug/L	0.44	0.44 U	

Report ID: 920466 - 1865554 Page 56 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

ug/L

ug/L

ug/L

ug/L

%

%

%

METHOD BLANK: 3310406

Methyl Methacrylate

trans-1,4-Dichloro-2-butene

1,2-Dichloroethane-d4 (S)

Bromofluorobenzene (S)

Ethyl Methacrylate

Xylene (Total)

Toluene-d8 (S)

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Styrene	ug/L	0.23	0.23 U	
1,1,2,2-Tetrachloroethane	ug/L	0.20	0.20 U	
1,2,3-Trichloropropane	ug/L	0.91	0.91 U	
1,3-Dichlorobenzene	ug/L	0.19	0.19 U	
1,4-Dichlorobenzene	ug/L	0.22	0.22 U	
1,2-Dichlorobenzene	ug/L	0.18	0.18 U	
1,2-Dibromo-3-Chloropropane	ug/L	3.1	3.1 U	
Acetonitrile	ug/L	21	21 U	
Allyl Chloride(3- Chloropropene	ug/L	2.1	2.1 U	
Propionitrile (Ethyl cyanide)	ug/L	21	21 U	
Chloroprene	ug/L	2.0	2.0 U	
Methacrylonitrile	ug/L	18	18 U	
Isobutyl Alcohol	ug/L	44	44 U	

1.8 U

2.1 U

1.8 U

0.53 U

70-128

77-119

86-123

1.8

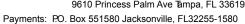
2.1

1.8

0.53

83

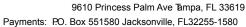
81


103

LABORATORY CONTROL SAI	MPLE & LCSD:	3310407	•	331040	8				
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
VOLATILES									
Dichlorodifluoromethane	ug/L	20	17	18	86	91		6	
Chloromethane	ug/L	20	20	23	101	114		12	
Vinyl Chloride	ug/L	20	21	24	105	120	70-130	13	20
Bromomethane	ug/L	20	25	27	123	134		8	
Chloroethane	ug/L	20	28	30	140	148		6	
Trichlorofluoromethane	ug/L	20	24	27	118	133		12	
Acrolein (Propenal)	ug/L	100	1.6	6.61	0	7		192	
Acetone	ug/L	20	25	29	127	146		14	
1,1-Dichloroethylene	ug/L	20	24	28	120	139	70-130	15	20
lodomethane (Methyl lodide)	ug/L	20	16	18	79	89		13	
Acrylonitrile	ug/L	20	21	25	103	125		19	
Methylene Chloride	ug/L	20	26	31	129	155		18	
Carbon Disulfide	ug/L	20	24	27	118	134		13	
trans-1,2-Dichloroethylene	ug/L	20	24	27	118	135		14	
1,1-Dichloroethane	ug/L	20	24	27	120	137		14	

Report ID: 920466 - 1865554 Page 57 of 65

CERTIFICATE OF ANALYSIS

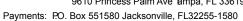

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

LABORATORY CONTROL SAMPLE & LCSD:		3310407		3310408					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Vinyl Acetate	ug/L	20	15	12	73	59		21	
2-Butanone (MEK)	ug/L	20	21	25	105	123		15	
cis-1,2-Dichloroethylene	ug/L	20	22	25	109	126	70-130	14	20
Bromochloromethane	ug/L	20	24	28	123	142		14	
Chloroform	ug/L	20	23	26	116	129	70-130	10	20
2,2-Dichloropropane	ug/L	20	20	21	100	105		5	
1,2-Dichloroethane	ug/L	20	23	26	117	131		11	
1,1,1-Trichloroethane	ug/L	20	23	25	114	126		10	
1,1-Dichloropropene	ug/L	20	24	27	122	136		11	
Carbon Tetrachloride	ug/L	20	22	25	109	127		15	
Benzene	ug/L	20	23	26	115	132	70-130	14	20
Dibromomethane	ug/L	20	22	27	111	134		19	
1,2-Dichloropropane	ug/L	20	23	27	114	134		17	
Trichloroethene	ug/L	20	22	28	112	139	70-130	22	20
Bromodichloromethane	ug/L	20	21	25	107	124		14	
cis-1,3-Dichloropropene	ug/L	20	22	25	108	127		16	
4-Methyl-2-pentanone (MIBK)	ug/L	20	25	29	124	143		14	
rans-1,3-Dichloropropylene	ug/L	20	20	23	98	115		16	
1,1,2-Trichloroethane	ug/L	20	23	27	116	133		13	
Toluene	ug/L	20	17	20	85	99	70-130	15	20
1,3-Dichloropropane	ug/L	20	17	20	85	99		16	
2-Hexanone	ug/L	20	18	22	91	109		18	
Dibromochloromethane	ug/L	20	17	21	87	105		18	
Ethylene Dibromide (EDB)	ug/L	20	17	20	83	101		19	
Tetrachloroethylene (PCE)	ug/L	20	18	21	88	103	70-130	16	20
1,1,1,2-Tetrachloroethane	ug/L	20	17	21	85	103		19	-
Chlorobenzene	ug/L	20	18	20	89	100	70-130	12	20
Ethylbenzene	ug/L	20	17	20	87	101	70-130	15	20
Bromoform	ug/L	20	17	19	83	94		12	-
Styrene	ug/L	20	16	20	83	98		17	
1,1,2,2-Tetrachloroethane	ug/L	20	18	19	91	95		5	
1,2,3-Trichloropropane	ug/L	20	16	20	79	98		21	
1,3-Dichlorobenzene	ug/L	20	15	16	75	81	70-130	8	20
1,4-Dichlorobenzene	ug/L	20	15	16	74	80	. 5 . 60	7	 -
1,2-Dichlorobenzene	ug/L	20	15	16	74	82	70-130	10	20
1,2-Dibromo-3-Chloropropane	ug/L	20	14	15	70	77	.0 100	9	
Kylene (Total)	ug/L	60	52	61	87	101	70-130	15	20
1,2-Dichloroethane-d4 (S)	%	00	02	01	81	80	70-130 70-128	2	20
Toluene-d8 (S)	%				79	81	70-128 77-119	2	
Bromofluorobenzene (S)	%				96	97	86-123	1	

Report ID: 920466 - 1865554 Page 58 of 65

QUALITY CONTROL DATA


Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 33	10409		Original: T192			
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Dichlorodifluoromethane	ug/L	0	2000	1200	59	
Chloromethane	ug/L	0	2000	1700	86	
Vinyl Chloride	ug/L	0	2000	1700	83	70-130
Bromomethane	ug/L	0	2000	1800	92	
Chloroethane	ug/L	0	2000	1700	86	
Trichlorofluoromethane	ug/L	0	2000	1700	85	
Acrolein (Propenal)	ug/L	0	10000	4800	48	
Acetone	ug/L	6800	2000	23000	797	
1,1-Dichloroethylene	ug/L	0	2000	1700	86	70-130
lodomethane (Methyl	ug/L	0	2000	1900	94	
odide)	3	-			-	
Acrylonitrile	ug/L	0	2000	3000	148	
Methylene Chloride	ug/L	0	2000	2000	99	
Carbon Disulfide	ug/L	0	2000	1600	82	
rans-1,2-Dichloroethylene	ug/L	0	2000	1800	89	
1,1-Dichloroethane	ug/L	0	2000	1800	88	
/inyl Acetate	ug/L	0	2000	2400	122	
2-Butanone (MEK)	ug/L	5900	2000	15000	432	
cis-1,2-Dichloroethylene	ug/L	0	2000	1800	91	70-130
Bromochloromethane	ug/L	0	2000	2000	98	
Chloroform	ug/L	37	2000	1800	87	70-130
2,2-Dichloropropane	ug/L	0	2000	1200	61	
1,2-Dichloroethane	ug/L	0	2000	2000	102	
1,1,1-Trichloroethane	ug/L	0	2000	1700	87	
1,1-Dichloropropene	ug/L	0	2000	1800	88	
Carbon Tetrachloride	ug/L	0	2000	1700	87	
Benzene	ug/L	0	2000	1800	92	70-130
Dibromomethane	ug/L	0	2000	2100	103	
1,2-Dichloropropane	ug/L	0	2000	1800	92	
Trichloroethene	ug/L	0	2000	1700	86	70-130
Bromodichloromethane	ug/L	0	2000	1800	91	
cis-1,3-Dichloropropene	ug/L	0	2000	1800	89	
4-Methyl-2-pentanone (MIBK)	ug/L	150	2000	3400	165	
rans-1,3-Dichloropropylene	ug/L	0	2000	1900	96	
1,1,2-Trichloroethane	ug/L	0	2000	2200	109	
Toluene	ug/L	27	2000	1800	89	70-130
1,3-Dichloropropane	ug/L	0	2000	2100	105	
2-Hexanone	ug/L	0	2000	3800	189	
Dibromochloromethane	ug/L	0	2000	2000	99	
Ethylene Dibromide (EDB)	ug/L	0	2000	2200	112	
Tetrachloroethylene (PCE)	ug/L	0	2000	1700	84	70-130
1,1,1,2-Tetrachloroethane	ug/L	0	2000	1800	89	

Report ID: 920466 - 1865554 Page 59 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

MATRIX SPIKE SAMPLE: 3310409			Original: T192	21060001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
Chlorobenzene	ug/L	0	2000	1800	88	70-130	
Ethylbenzene	ug/L	0	2000	1800	89	70-130	
Bromoform	ug/L	0	2000	2300	116		
Styrene	ug/L	0	2000	1700	84		
1,1,2,2-Tetrachloroethane	ug/L	0	2000	2700	134		
1,2,3-Trichloropropane	ug/L	0	2000	3100	153		
1,3-Dichlorobenzene	ug/L	0	2000	1800	89	70-130	
1,4-Dichlorobenzene	ug/L	0	2000	1800	88		
1,2-Dichlorobenzene	ug/L	0	2000	1900	95	70-130	
1,2-Dibromo-3- Chloropropane	ug/L	0	2000	2900	145		
Xylene (Total)	ug/L	0	6000	5400	90	70-130	
1,2-Dichloroethane-d4 (S)	%	83			119	70-128	
Toluene-d8 (S)	%	80			102	77-119	
Bromofluorobenzene (S)	%	102			100	86-123	

QC Batch: MSVj/4713 Analysis Method: SW-846 8260B (SIM) QC Batch Method: SW-846 5030B Prepared: 12/04/2019 18:31

T1921060003 Associated Lab Samples:

METHOD BLANK: 3310412

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
VOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.020	0.020 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.11	0.11 U	
1,2-Dichloroethane-d4 (S)	%	77	77-125	
Toluene-d8 (S)	%	83	80-121	
Bromofluorobenzene (S)	%	98	80-129	

LABORATORY CONTROL SAM	IPLE & LCSD:	3310413		331041	14					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
VOLATILES Ethylene Dibromide (EDB) 1,2-Dibromo-3-Chloropropane 1,2-Dichloroethane-d4 (S)	ug/L ug/L %	0.8 0.8	0.65 0.92	0.73 1.3	81 115 77	91 164 74	70-130 70-130 77-125	12 35 4	30 30	

Report ID: 920466 - 1865554 Page 60 of 65

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder:	T1921060	J.E.D LANDFII	LL (F/K/A OA	K HAMM
------------	----------	---------------	--------------	--------

LABORATORY CONTROL S	AMPLE & LCSD:	3310413		3310414					
Parameter	Units	Spike Conc.	LCS Result	LCSD LCS L Result % Rec %		% Rec Limit	RPD	Max RPD Qualifiers	
Toluene-d8 (S)	%			81	83	80-121	3		
Bromofluorobenzene (S)	%			96	98	80-129	2		

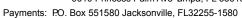
MATRIX SPIKE SAMPLE: 3311113 Original: J1915861001

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
VOLATILES						
Ethylene Dibromide (EDB)	ug/L	0	0.8	0.65	81	70-130
1,2-Dibromo-3- Chloropropane	ug/L	0	0.8	0.92	115	70-130
1,2-Dichloroethane-d4 (S)	%	77			77	77-125
Toluene-d8 (S)	%	83			81	80-121
Bromofluorobenzene (S)	%	98			96	80-129

QC Batch: EXTj/4491 Analysis Method: SW-846 8011 QC Batch Method: SW-846 8011 Prepared: 12/05/2019 07:55

Associated Lab Samples: T1921060001, T1921060002

METHOD BLANK: 3310591


Parameter	Units	Blank Result	Reporting Limit Qualifiers	
SEMIVOLATILES				
Ethylene Dibromide (EDB)	ug/L	0.0062	0.0062 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.0060	0.0060 U	
Tetrachloro-m-xylene (S)	%	138	64-150	

LABORATORY CONTROL SAMPLE & LCSD:	3310592	3310593
-----------------------------------	---------	---------

Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
SEMIVOLATILES									
Ethylene Dibromide (EDB)	ug/L	0.25	0.29	0.22	117	90	70-130	26	30
1,2-Dibromo-3-Chloropropane	ug/L	0.25	0.32	0.28	126	114	70-130	11	30
Tetrachloro-m-xylene (S)	%				126	118	64-150	7	

Report ID: 920466 - 1865554 Page 61 of 65

QUALITY CONTROL DATA

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

QUALITY CONTROL DATA QUALIFIERS

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

QUALITY CONTROL PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J4 Estimated Result

Report ID: 920466 - 1865554 Page 62 of 65

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1921060001	19326-UL			SM 4500NO3-F	WCAt/15015
T1921060002	19326-TL			SM 4500NO3-F	WCAt/15015
T1921060001	19326-UL			SM 5210B	WCAt/15024
T1921060002	19326-TL			SM 5210B	WCAt/15024
T1921060001	19326-UL			SM 4500-CN-E	WCAt/15027
T1921060002	19326-TL			SM 4500-CN-E	WCAt/15027
T1921060001	19326-UL			EPA 350.1	WCAt/15032
T1921060002	19326-TL			EPA 350.1	WCAt/15032
T1921060001	19326-UL			SM 2540 C	WCAt/15034
T1921060002	19326-TL			SM 2540 C	WCAt/15034
T1921060001	19326-UL	SW-846 3010A	DGMj/4314	SW-846 6020	ICMj/2185
T1921060002	19326-TL	SW-846 3010A	DGMj/4314	SW-846 6020	ICMj/2185
T1921060001	19326-UL	SW-846 3510C	EXTj/4440	SW-846 8270C	MSSj/2412
T1921060002	19326-TL	SW-846 3510C	EXTj/4440	SW-846 8270C	MSSj/2412
T1921060001	19326-UL			EPA 410.4	WCAt/15062
T1921060002	19326-TL			EPA 410.4	WCAt/15062
T1921060001	19326-UL			SM 4500-S D	WCAt/15064
T1921060002	19326-TL			SM 4500-S D	WCAt/15064
T1921060001	19326-UL	SW-846 3510C	EXTj/4445	EPA 8081	GCSj/3446
T1921060002	19326-TL	SW-846 3510C	EXTj/4445	EPA 8081	GCSj/3446
T1921060001	19326-UL	SW-846 3510C	EXTj/4446	SW-846 8082A	GCSj/3447
T1921060002	19326-TL	SW-846 3510C	EXTj/4446	SW-846 8082A	GCSj/3447

Report ID: 920466 - 1865554 Page 63 of 65

CERTIFICATE OF ANALYSIS

Payments: P.O. Box 551580 Jacksonville, FL32255-1580

Phone: (813)630-9616 Fax: (813)630-4327

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1921060 J.E.D LANDFILL (F/K/A OAK HAMM

Advanced Environmental Laboratories, Inc.

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1921060001	19326-UL	SW-846 3510C	EXTj/4447	EPA 8141	GCSj/3448
T1921060002	19326-TL	SW-846 3510C	EXTj/4447	EPA 8141	GCSj/3448
T1921060001	19326-UL	8151	EXTj/4448	EPA 8151	GCSj/3469
T1921060002	19326-TL	8151	EXTj/4448	EPA 8151	GCSj/3469
T1921060001	19326-UL	SW-846 7470A	DGMt/4418	SW-846 7470A	CVAt/1869
T1921060002	19326-TL	SW-846 7470A	DGMt/4418	SW-846 7470A	CVAt/1869
T1921060001	19326-UL			SM 2320B	WCAt/15156
T1921060002	19326-TL			SM 2320B	WCAt/15156
T1921060001	19326-UL			EPA 300.0	WCAt/15184
T1921060002	19326-TL			EPA 300.0	WCAt/15184
T1921060001	19326-UL	SW-846 3010A	DGMt/4444	SW-846 6010	ICPt/2969
T1921060002	19326-TL	SW-846 3010A	DGMt/4444	SW-846 6010	ICPt/2969
T1921060001	19326-UL	SW-846 5030B	MSVj/4711	SW-846 8260B	MSVj/4712
T1921060002	19326-TL	SW-846 5030B	MSVj/4711	SW-846 8260B	MSVj/4712
T1921060003	Trip Blank	SW-846 5030B	MSVj/4711	SW-846 8260B	MSVj/4712
T1921060003	Trip Blank	SW-846 5030B	MSVj/4713	SW-846 8260B (SIM)	MSVj/4714
T1921060001	19326-UL	SW-846 8011	EXTj/4491	SW-846 8011	GCSj/3488
T1921060002	19326-TL	SW-846 8011	EXTj/4491	SW-846 8011	GCSj/3488

Report ID: 920466 - 1865554 Page 64 of 65

Altamonte Springs: 528 S. Northlake Blvd., Ste. 1016 • Altamon
Fort Myers: 13100 Westlinks Terrace, Suite 10 - Fort Myers, FL 331
Gainesville: 4965 SW 41st Blvd. • Gainesville, FL 32608 • 352,377
Jacksonville: 6681 Southpoint Pkwy. • Jacksonville, FL 32216 • 90
Miramar: 10200 USA Today Way, Miramar, FL 33025 • 954.889.228

■ Tallahassee: 1288 Cedar Center Drive, Tallahassee, FL 32301 + 850,219,6274 + Fax 850,219,6275 Tampa: 9610 Princess Palm Ave. • Tampa, FL 33619 • 813.630.9616 • Fax 813.630.4327 Project Name: J.E.D LANDFILL (F/K/A BOTTLE SIZE & TYPE 1L Plastic Waste Connections, Inc. Amber Client Name: 1L Ambei 1L Ambe OAK HAMMOCK DISPOSAL) 500 mL Plastic 125 mL Plastic 250 mL Plastic 250 ml Amber 40 mL Vials NUMBER 5135 Madison Avenue P.O. Number/Project Number Address: Tampa, Florida 33619 ANALYSIS REQUIRED Project Location App II A VOAs+EDB/DBCP FDEP Facility No: 89544 Phone: 313-468-6141 App II : Metals+Fe,Hg,Na 0 Project Name and Address: JED SLVDF FAX: App II SVOAs AIK/BOD/TDS St-Cloud, FL Kirk Wills LABORATORY Contact: 8081/8082 8141/8151 NÀ3/COD Ne 1 Staples Cyanide Anions Sulfide um Around Time: STANDARD . RUSH Special Instructions: Jax Profile: 31172 ■ ADaPT □ EQuIS Page_ PRESER-SAMPLING Grab NaOH/Z NO. SAMPLE ID SAMPLE DESCRIPTION MATRIX H2SO4 NaOH lce. HNO3 COUNT nAc Comp Tecx TIME DATE X 19316 - UL WW X 4306 TL 101/19 08:30 14 X WW values from Matrix Code: WW = wastewater SW = surface water GW = ground water DW = drinking water O = oil A = air SO = soil SL = sludge Preservation Code: I = ice H=(HCI) S = (H2SO4) N = (HNO3) T = (Sodium Thiosulfate) Temp taken from sample Temp from blank. Where required, pH checked Temperature when received Device used for measuring Temp by unique identifier (circle IR temp gun used) J: 9A G: LT-1 LT-2 T: 10A A: 3A M: 3A S: 1V DCN: AD-051 Form last revised 08/18/2014

	Relinquished by:	Date	Time	Received by	Date	Time
1	2 mi	ubilia	Nou	m	11/22/19	1200
2						
3						
4						

FOR DRINKING WATER USE	_
(When PWS Information not otherwise supplied)	PWS 10:
Contact Person:	Phone:
Supplier of Water:	
Site-Address:	

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 7470A Preparation: SW-846 7470A

IV. Preparation

The samples T1921060001 and T1921060002 were diluted prior to instrumental analysis. The extracts were highly colored and viscous, which indicated the need to digest the

samples at a dilution.

V. Analysis

A. Calibration: All acceptance criteria were met.
B. Blanks: All acceptance criteria were met.
C. Duplicates: All acceptance criteria were met.
D. Spikes: All acceptance criteria were met.
E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 8081

Preparation: SW-846 3510C

IV. Preparation

The extractionist noted that samples T1921060001 and T1921060002 exhibited very high emulsions, which is known to adversely affect the recoveries in a negative fashion. The affected surrogates have been qualified to indicate matrix interference.

V. Analysis

A. Calibration: The upper control criterion was exceeded for Toxaphene in Continuing Calibration

Verification (CCV) standards for analytical batch GCSj:3446, indicating increased sensitivity. The client samples reported in this batch did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is

not affected. No further corrective action was required.

B. Blanks: All acceptance criteria were met.

C. Surrogates: The control criteria for Tetrachloro-m-xylene and Decachlorobiphenyl in T1921060001 and

T1921060002 are not applicable. As recorded in the extraction logbook, the samples formed emulsions in the solvent layer during the extraction. Such emulsions are known to negatively affect surrogate yields. The affected surrogates were qualified to indicate

matrix interference.

D. Spikes: All acceptance criteria were met.

E. Internal Standard:

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8082A Preparation: SW-846 3510C

IV. Preparation

All samples in batch GCSj:3447 were Florisil cleaned as per EPA method 3620C.

The extractionist noted that samples T1921060001 and T1921060002 exhibited very high emulsions, which is known to adversely affect the recoveries in a negative fashion. The affected surrogates have been qualified to indicate matrix interference.

The Method Detection Limit (MDL) for all analytes for T1921060001 and T1921060002 were elevated due to difficult sample matrix. Due to matrix interferences, the sample was prepped using a 250mL initial volume, instead of the typical 1000mL initial volume. As a result, the reported MDL is elevated on the final report.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Surrogates: The control criteria for Tetrachloro-m-xylene and Decachlorobiphenyl in T1921060001 and

T1921060002 are not applicable. As recorded in the extraction logbook, the samples formed emulsions in the solvent layer during the extraction. Such emulsions are known to negatively affect surrogate yields. The affected surrogates were qualified to indicate

matrix interference.

D. Spikes: All acceptance criteria were met.

E. Internal Standard:

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 8141

Preparation: SW-846 3510C

IV. Preparation

All samples in batch GCSj:3448 were Florisil cleaned as per EPA method 3620C.

The extractionist noted that samples T1921060001 and T1921060002 exhibited very high emulsions, which is known to adversely affect the recoveries in a negative fashion. The affected surrogates have been qualified to indicate matrix interference.

The Method Detection Limit (MDL) for all analytes for T1921060001 and T1921060002 were elevated due to difficult sample matrix. Due to matrix interferences, the sample was prepped using a 250mL initial volume, instead of the typical 1000mL initial volume. As a result, the reported MDL is elevated on the final report.

V. Analysis

A. Calibration: The upper control criterion was exceeded for Simazine in Continuing Calibration

Verification (CCV) standard for analytical batch GCSj:3448, indicating increased sensitivity. The client samples reported in this batch did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No

further corrective action was required.

B. Blanks: All acceptance criteria were met.

C. Surrogates: The control criteria for surrogate Tributylphosphate in T1921060001 and T1921060002

are not applicable. The chromatogram indicated the presence of high background components that masked the surrogate, which prevented adequate resolution for quantitation. Also the samples exhibited very high emulsions during prep which affects the surrogate recoveries. The affected surrogates are qualified to indicate matrix

D. Spikes: All acceptance criteria were met.

E. Internal Standard: The data were reported as is.

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 8151

Preparation: 8151

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Surrogates: The control criteria for the following surrogates in T1921060001 and T1921060002 are not

applicable: 2,4-Dichlorophenylacetic acid. The analysis of the samples required a dilution, which results in an undetected surrogate concentration. The surrogates were qualified as

being diluted out.

D. Spikes: All acceptance criteria were met.

E. Internal Standard: All acceptance criteria were met.

F. Samples: The samples T1921060001 and T1921060002 were diluted prior to instrumental analysis.

The extracts were highly colored and viscous, which indicated the need to perform a dilution prior to injection into the instrument. In addition, the chromatography indicated

high concentrations of non-target/background sample matrix interferences.

Project No.: T1921060

Waste Connections Client Name:

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

Receipt

No Exceptions were encountered.

Holding Times II.

> Preparation: All holding times were met. Analysis: All holding times were met.

Method

Analysis: SW-846 8270C Preparation: SW-846 3510C

IV. Preparation

> Samples T1921060001 and 002 were extracted at a lower volume due to extremely high non-target background components. The initial volumes of the samples were adjusted to the correct initial volumes and the dilution factor adjusted and accounted for in the final

reported result.

Due to the matrix of T1921060001 and 002 the extracts would not concentrate to the required method volume of 1.0mL. The final volume of the extract was adjusted to the correct final volume and the dilution factor adjusted and accounted for in the final

reported result.

Analysis

A. Calibration: All acceptance criteria were met. B. Blanks: All acceptance criteria were met.

C. Surrogates: The control criteria for all the surrogates in T1921060001 and 002 are not applicable. The

analysis of these samples required a dilution, which results in undetected surrogate

concentrations. The surrogates were qualified as being diluted out.

D. Spikes: All acceptance criteria were met. E. Internal Standard: All acceptance criteria were met.

F. Samples: The samples T1921060001 and 002 were diluted prior to instrumental analysis. The

extracts were highly colored and viscous, which indicated the need to perform a dilution

prior to injection into the instrument.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.
 B. Blanks: All acceptance criteria were met.
 C. Surrogates: All acceptance criteria were met.

D. Spikes: The spike recovery of Benzene, Trichloroethene, and 1,1-Dichloroethylene for the

Laboratory Control Sample Duplicate (LCSD) were outside the upper control criterion. The analytes in question were not detected in the associated client samples. The error associated with elevated recovery equates to a high bias. The sample data is not

significantly affected. No further corrective action was required.

The relative percent difference (RPD) for Trichloroethene between the Laboratory Control Sample (LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in 3310408 in comparison with 3310407. Spike recoveries in the LCS and LCSD were within acceptable limits, indicating the analytical batch was in control. No further corrective action was required.

E. Internal Standard: All acceptance criteria were met.

F. Samples: T192106001 and T1921060002 were analyzed at dilution due to high target analyte levels.

The lowest possible dilution was performed to allow the analyte value to be within the calibration curves highest level and to prevent possible carry over in the following sample

analyses.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SW-846 8260B (SIM)

Preparation: SW-846 5030B

IV. Preparation

Sample preparation proceeded normally.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Surrogates: The lower control criterion was exceeded for the following surrogate in 3310414 (LCSD)

due to matrix interference: 1,2-Dichloroethane-d4. No target analytes were detected in the samples. The quality of the sample data is not significantly affected as internal standard area counts met criteria. No further corrective action is required.

D. Spikes: The spike recovery of 1,2-Dibromo-3-Chloropropane for the Laboratory Control Sample

Duplicate (LCSD) was outside the upper control criterion. The analyte in question was not detected in the associated client samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective

action was required.

The relative percent difference (RPD) for 1,2-Dibromo-3-Chloropropane between the Laboratory Control Sample (LCS) and the Laboratory Control Sample Duplicate (LCSD) was outside control criteria due to relatively higher spike recovery in 3310414 in comparison with 3310413. Spike recoveries in the LCS and LCSD were within acceptable limits, indicating the analytical batch was in control. No further corrective action was required.

E. Internal Standard: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SM 4500NO3-F

Preparation: None

IV. Preparation

T1921060001 and 002 were diluted prior to instrumental analysis. The samples were highly colored and viscous, which indicated the need to perform a dilution prior to $\dot{}$

injection into the instrument.

V. Analysis

A. Calibration: All acceptance criteria were met.
 B. Blanks: All acceptance criteria were met.
 C. Duplicates: All acceptance criteria were met.
 D. Spikes: All acceptance criteria were met.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SM 4500-CN-E

Preparation: None

IV. Preparation

Analysis

T1921060001 and 002 were diluted prior to instrumental analysis. The samples were

highly colored and viscous, which indicated the need to perform a dilution prior to

injection into the instrument.

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: All acceptance criteria were met.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: SM 4500-S D

Preparation: None

IV. Preparation

T1921060001 and T1921060002 were diluted prior to instrumental analysis.

The samples were highly colored and viscous, which indicated the need to perform a dilution prior to reading on the spectrophotometer so that Sulfide color development

could be analyzed. Results may be inaccurate.

V. Analysis

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

C. Duplicates: All acceptance criteria were met.

D. Spikes: All acceptance criteria were met.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.

Project No.: T1921060

Client Name: Waste Connections

ProjectID: J.E.D LANDFILL (F/K/A OAK HAMM

I. Receipt

No Exceptions were encountered.

II. Holding Times

Preparation: All holding times were met.

Analysis: All holding times were met.

III. Method

Analysis: EPA 300.0

Preparation: None

IV. Preparation

Analysis

T1921060001 and 002 were diluted prior to instrumental analysis. The samples were

highly colored and viscous, which indicated the need to perform a dilution prior to

injection into the instrument.

A. Calibration: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.

B. Blanks: All acceptance criteria were met.C. Duplicates: All acceptance criteria were met.

D. Spikes: All acceptance criteria were met.

E. Serial Diluion: All acceptance criteria were met.

F. Samples: Sample analyses proceeded normally.