

14055 Riveredge Drive, Suite 300 Tampa, Florida 33637 Tel: 813.558.0990 Fax: 813.558.9726 www.geosyntec.com

6 February 2009

Mr. F. Thomas Lubozynski, P.E. Waste Program Administrator Solid and Hazardous Waste Program Florida Department of Environmental Protection, Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Re:

9th Semi-Annual Water Quality Monitoring Report

J.E.D. Solid Waste Management Facility, Osceola County, Florida DEP Central Dist.

Permit No. SC49-0199726-006 and SO49-0199726-007

Dear Mr. Lubozynski:

Submitted herewith is the subject report documenting the 9th semi-annual water quality monitoring event conducted at the J.E.D. Solid Waste Management (JED) Facility located in Osceola County, Florida. This report is being submitted as required for compliance with the conditions contained within Exhibit I, Monitoring Plan Implementation Schedule (MPIS) of the above referenced permit. In accordance with the permit conditions, the semi-annual water quality monitoring event was performed in November 2008. report is being submitted within the sixty day period after receipt of final analytical data from the laboratory. This report satisfies the semi-annual water quality monitoring compliance requirements as described in Exhibit I of the permit.

As noted in the permit, one hard copy of the report along with an electronic copy of the report on a CD is being submitted to FDEP. The CD with a PDF copy of the entire report is attached to the inside of the front cover of the report. If you have any questions or need additional information, please do not hesitate to contact the undersigned.

Kirk Wills

Project Engineer

Attachments

Copy: Mike Kaiser, WSI

FQ1512/JED 8th Semi-Annual WQ Monitoring Report

Submitted to:

Florida Department of Environmental Protection

NINTH SEMI-ANNUAL WATER QUALITY MONITORING REPORT J.E.D. Solid Waste Management Facility Osceola County, Florida

Prepared for

Waste Services of Florida, Inc. 1501 Omni Way St. Cloud, Florida

Prepared by

Geosyntec consultants

14055 Riveredge Drive, Suite 300 Tampa, Florida 33637

> Project Number FQ1512 February 2009

ATTACHMENT I

Florida Department of Environmental Protection

3319 Maguire Boulevard, Suite 232, Orlando, Florida 32803-3767

GROUND WATER MONITORING REPORT

Rule 62-522.600(11)

RECEIVED FEB 0 9 2003

PART I GENERAL INFORMATION					DEP Centra	2003
(1) Facility Name <u>J.E.D. Solid Waste Man</u>	iagement Fa	cility. Class I I	Landfill		-116	1 Dist.
Address1501 Omni Way						
City St. Cloud		34773		County	Osceola	
Telephone Number (407) 891-3720			(2)	WACS_Facility	<u>89544</u>	
(3) DEP Permit Number SC49-019	9726-006 an	d SO49-0199	726-007			
(4) Authorized Representative's Name _Ti	tle <u>R. Sha</u>	wn McCash.	Senior Vice	President		
Address <u>2893 Executive Park Drive</u>	Suite 305	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
City Weston Zi	p <u>33331</u>		County	Browar	d	
Telephone Number (954) 888-4302						
5) Type of Discharge NA		<u> </u>		<u> </u>		
(6) Method of Discharge NA				<u> </u>		
	CE	RTIFICATIO	N			
I certify under penalty of law that I have document and all attachments and that, be information, I believe that the information in for submission of false information including	ised on my in s true, accur	iquiry of those ate, and com	e individuals plete. I am :	immediately res aware that there	ponsible for o	btaining the
2/2/09 R. Shan	n Me	Cesh				
Date Owner or Authorize	ed Represent	tative's Signa	ture			
PART II QUALITY ASSURANCE REQUIRE	MENTS					
Sampling Organization Comp QAP #N	1					
Analytical Lab Comp QAP #/ HRS Certificat	tion	E82502				
Lab Name Columbia Analytical Service	es, Inc.					
Address 9143 Phillips Highway, Suit	e 200, Jacks	onville, Florid	a 32256			
Phone Number (904) 739-2277						
E-mail Addresscmyers@caslab.co	m or http://w	ww.caslab.co	m/			

TABLE OF CONTENTS

1. I	INTRODUCTION	1
1.1	Terms of Reference	1
1.2	Overview	1
1.3	Site Description	2
2. N	MONITORING WELL DETAILS	2
2.1	Well Layout and Construction	2
2.2	Turbidity Issues	4
3. N	MONITORING WELL SAMPLING	4
3.1	Sampling Locations and Procedures	4
3.2	Sample Analyses	6
4. A	ANALYTICAL RESULTS	7
4.1	Field Parameters	7
4.2	Groundwater Monitoring Wells	7
4.3	Data Validation	11
4.4	Impact of Turbidity on Metals Concentrations	11
5.	GROUNDWATER LEVEL MEASUREMENTS AND FLOW 13	DIRECTION
5.1	Field Measurements	13
5.2	Water Level Contours	13
6 8	SURFACE WATER SAMPLING	15
6.1	Sampling Locations and Procedures	15
6.2	Sample Analyses	15
6.3	Field Measurements and Analytical Results	15

7 LEA	ACHATE SAMPLING	17
7.1	Sampling Location and Procedures	17
7.2	Sample Analyses	17
7.3	Field Measurements and Analytical Results	17
LIST OF	F TABLES	
Table 1	Summary of Monitoring Well Construction Details	
Table 2	Summary of Final Field Parameter Results and Field Data	
Table 3	Summary of Analytical Results (Total Metals)	
Table 4	Summary of Analytical Results (Dissolved Metals)	
Table 5	Summary of Analytical Results (Volatile Compounds)	
Table 6	Summary of Analytical Results (Miscellaneous)	
Table 7	Groundwater Level Measurements	
Table 8	Summary of Surface Water Field Measurements and Analytical	
Table 9	Summary of Field Measurements and Analytical Results for Lea	chate Samples
LIST OF	F FIGURES	
Figure 1	"A" Zone (Shallow) Wells – Water Level Contours	
Figure 2	"B" Zone (Intermediate) Wells – Water Level Contours	;
Figure 3	"C" Zone (Deep) Wells – Water Level Contours	
APPENI	DIX A: FIELD SAMPLING FORMS	
APPENI	DIX B: WATER QUALITY INSTRUMENT CALIBRATION FO	ORMS
APPENI	DIX C: CHAIN-OF-CUSTODY FORMS	
APPENI	DIX D: COLUMBIA-JACKSONVILLE LABORATORY CER	ΓΙΓΙCATIONS
APPENI	DIX E: CD CONTAINING THE ELECTRONIC LABORATOR AND VALIDATOR SPREADSHEET	RY REPORTS

1. INTRODUCTION

1.1 Terms of Reference

This report documents the implementation of the Water Quality Monitoring Plan (Plan) for the J.E.D. Solid Waste Management (JED) facility. The Plan was prepared as a part of the JED facility permit applications. The requirements for executing the Plan are presented in Exhibit I of the current permit (Permit Numbers SC49-0199726-004 and SO49-0199726-005, and Major Permit Modification Numbers SC49-0199726-006 and SO49-0199726-007) that authorizes the development of Phases 1 through 3 at the JED facility. The current permit was issued by the Florida Department of Environmental Protection (FDEP) on 4 April 2008. This report presents the results for the 9th semi-annual water quality (groundwater, surface water, and leachate) monitoring event conducted between 3 November 2008 and 12 November 2008.

This report was prepared on behalf of Waste Services Incorporated (WSI), parent company of Omni Waste of Osceola County, LLC, owner and operator of the JED facility by Mr. Sangho "Jay" Eun and Mr. Kirk E. Wills of Geosyntec Consultants (Geosyntec). In accordance with Geosyntec's peer review procedures, Mr. Michael Lodato, P.G. reviewed this report.

1.2 Overview

The Plan and Exhibit I describe a water quality monitoring program at the JED facility that has as its intent to: (i) measure and report groundwater and surface water conditions for the monitoring network; (ii) monitor the groundwater flow direction; (iii) monitor the groundwater and surface water quality on a semi-annual basis; and (iv) monitor leachate quality on an annual basis. The 9th semi-annual water quality monitoring has been completed. This report includes presentation and discussions of the sample locations, sampling procedures, laboratory analyses and results, field data measurements, groundwater level measurements, groundwater flow direction, and surface water and leachate quality monitoring performed in November 2008. In addition, this report includes a comparison of the analytical results of this sampling event to applicable Groundwater Cleanup Target Levels (GCTLs) as promulgated in Chapter 62-777, Florida Administrative Code (FAC).

1.3 Site Description

The JED facility is located in eastern Osceola County, Florida, west of U.S. Highway 441, and approximately 6.5 miles south of Holopaw. The facility includes a Class I landfill, which is linked to U.S. Highway 441 by a 2.86-mile access road. The JED facility comprises a total of approximately 2,179 acres. The landfill footprint at build-out is approximately 264 acres and consists of a total of 21 landfill cells that provide available waste capacity for a period of approximately 30 years. The FDEP issued a permit to construct and operate Phase 1 development of the JED facility in October 2003. Phase 1 development includes four landfill cells (Cells 1 through 4), located in the northern part of the landfill and covering approximately 53 acres. As part of Phase 1, forty-five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. The baseline water quality report for the Phase 1 monitoring well network was submitted to FDEP in May 2004. All components of the Phase 1 development have been constructed.

The FDEP issued a permit to construct and operate Phases 2 and 3 at the JED facility in March 2007. The development of Phases 2 and 3 includes six cells (Cells 5 through 10) with a total footprint of approximately 72 acres. As part of Phases 2 and 3 development, and as approved by FDEP, six (6) existing Phase 1 monitoring wells (MW-14 A, B, and C, and MW-15 A, B, and C), and ten (10) piezometers were decommissioned. The wells and piezometers were decommissioned to allow for construction of future cells, construction of a storm water retention basin located within Phases 2 and 3, and due to the proximity of piezometers to the new network wells installed. The decommissioning of the monitoring wells and piezometers was discussed in the Phases 2 and 3 baseline water quality report. For the development of Phases 2 and 3, twenty-four (24) additional groundwater monitoring wells were installed in eight (8) well clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas in September 2007. The baseline water quality report for the Phases 2 and 3 monitoring well network was submitted to FDEP in January 2008.

The FDEP issued a permit to construct and operate Phases 1 through 3 with vertical expansion at the JED facility in April 2008. The monitoring well networks for Phase 1, and Phases 2 and 3 remain unchanged. For monitoring purposes, the JED facility was given the Water Assurance Compliance System (WACS) facility identification number 89544.

2. MONITORING WELL DETAILS

2.1 Well Layout and Construction

For the Phase 1 development, forty five (45) groundwater monitoring wells were installed in fifteen (15) clusters (MW-1 through MW-15) around the perimeter of the Phase 1 development area. Monitoring well clusters were located such that the spacing between well clusters was no greater than 500 ft, in accordance with the FDEP permit For development of Phases 2 and 3, twenty four (24) groundwater monitoring wells were installed in eight (8) clusters (MW-16 through MW-23) around the perimeter of the Phases 2 and 3 development areas. In accordance with the FDEP permit requirements, the monitoring well clusters were located such that the spacing between detection well clusters (MW-16 through MW-21) was approximately 500 feet, and the spacing between background well clusters (MW-22 and MW-23) was approximately 800 feet. Each monitoring well cluster consisted of three (3) groundwater monitoring wells installed (i) across the water table to monitor the upper limit of the surficial aquifer (identified as A-zone [shallow] wells); (ii) within the lower limit of the upper surficial aquifer above the intermediate clay layer (identified as C-zone [deep] wells); and (iii) at an intermediate depth between the shallow and deep wells (identified as B-zone [intermediate] wells).

A layout depicting the location of groundwater monitoring wells installed for Phases 2 and 3, and the previously installed groundwater monitoring wells for Phase 1, and the piezometers installed as part of the hydro-geologic investigation are shown for the shallow, intermediate, and deep zones on Figures 1, 2, and 3, respectively. As shown, groundwater monitoring well clusters MW-1 through MW-13 and MW-23 were installed along the top of the outer edge of the landfill perimeter berm. The ground surface at the location of the wells in the perimeter berm is at approximately Elevation 92 feet with respect to National Geodetic Vertical Datum of 1929 (NGVD, 1929). Groundwater monitoring well clusters MW-16 and MW-17 were installed along the outer edge of the landfill perimeter berm that serves as the initial storm water berm. The ground surface at these two well locations is at approximately Elevation 85 feet (NGVD, 1929). Groundwater monitoring well clusters MW-18 through MW-22 were installed along the interim Phase 3 storm water berm at the southern limit of the Phase 3 development at approximately Elevation 84 feet (NGVD, 1929). The location of each well, in Florida state plane coordinates and latitude/longitude, and elevation (NGVD, 1929) was surveyed by professional land surveyors licensed in the State of Florida.

Wells were constructed with 2-in diameter schedule 40 PVC casing. The well screens were 10-ft in length with #6-slot (0.006-in.). A 30/45 graded silica sand was placed around the screen to a height of 2 to 3 ft above the top of the screen. A seal of 30/65 graded fine silica sand was placed above the sand filter around the screen. The remaining annular space from the top of the fine sand filter seal to the existing ground surface was grouted using a tremie pipe with a cement/bentonite mixture containing no more than 5

percent bentonite by dry weight. The PVC well casings were extended approximately 2.5 to 3 ft above the existing ground surface. Surface completion consisted of a protective steel or aluminum casing with a lockable cover set in a concrete pad. Each well was provided with a well cap, padlock, and an identification label. A summary of the monitoring well construction details are presented in Table 1.

2.2 Turbidity Issues

As discussed in the baseline water quality reports for the Phase 1, and Phases 2 and 3 monitoring networks, the formation around the screened intervals consists primarily of a fine, brown to dark brown, silty sand. Due to the subsurface formation properties, fine-grained and colloidal material are able to pass through the sand filter pack in many wells, primarily in the B-zone and C-zone. This is the case even though the wells are constructed using the smallest screen slot size (0.006 in.) commonly available. Most of the intermediate and deep wells had turbidity values in excess of the 20-NTU criterion even after extended well development and the removal of multiple well volumes.

The difficulty in attaining the desired turbidity criterion was originally discussed at a meeting between Geosyntec and FDEP on 12 January 2004 during the well development activities associated with the wells installed as part of the Phase 1 development. Geosyntec notified FDEP again on 14 September 2007 of the elevated turbidity levels even after extended well development during development of the Phases 2 and 3 monitoring wells. In accordance with these discussions, it was agreed to collect field-filtered (1-micron) and unfiltered samples for metals analyses for any sample with a turbidity value greater than 20 NTU. The data generated by the dual sampling is expected to help demonstrate: (i) what effect turbidity may have on metal analyses (i.e., compare total and dissolved metal concentrations); and (ii) whether groundwater samples with turbidities greater than 20 NTU showed higher concentrations of metals than those samples with turbidities less than 20 NTU.

3. MONITORING WELL SAMPLING

3.1 Sampling Locations and Procedures

In accordance with the monitoring plan implementation schedule (MPIS), thirty three (33) monitoring wells installed as part of the Phase 1 development and all twenty four (24) monitoring wells installed as part of the Phase 2 and 3 development were sampled.

Low-flow sampling techniques were used for groundwater sample collection. Except for the turbidity considerations as described in the previous section, all groundwater sampling was performed in accordance with the current applicable FDEP Standard Operating Procedures (SOP's, February 2004) for groundwater sampling. Additionally for quality control (QC) purposes, two sample duplicates and one equipment blank were collected and analyzed.

Peristaltic pumps were used to purge and sample all A-zone (shallow) and a limited number of B-zone (intermediate), and C-zone (deep) groundwater monitoring wells where the measured turbidity from previous water quality events was below 20 NTU. A stainless steel submersible pump was used to purge and sample the remainder of the B-zone (intermediate) and C-zone (deep) groundwater wells where the turbidity from the previous water quality events was above 20 NTU. New tubing (silicone and/or polyethylene) was used at each monitoring well location.

During the purging process, a YSI 556 water quality meter equipped with a flow-through cell was used to monitor the following field parameters: pH; temperature; field conductivity; Eh; and dissolved oxygen. Turbidity levels were measured using a LaMotte 2020e turbidity meter. Field parameters were recorded on sample collection forms, which are contained in Appendix A. When the field parameters stabilized within the acceptable tolerances required by the FDEP SOP, well purging was considered complete and groundwater samples were collected. For wells where the turbidity was not less than 20 NTU, stability was established by purging at least 5 well volumes and observing variations in the measured turbidity. For problematic wells, once the turbidity had stabilized and all other parameters conformed to the guidance set forth in the FDEP SOP's, samples were collected. A non-filtered and field-filtered (1-micron) metals sample was collected for each monitoring well where turbidity measurements exceeded the 20 NTU level.

For monitoring wells where peristaltic pumps were used, volatile organic compound (VOC) sample vials were filled by removing the down well sample tubing, disconnecting the tubing from the water quality meter flow through cell, and reversing the flow direction on the peristaltic pump.

For the monitoring wells that were purged and sampled with a submersible pump, all sample aliquots were filled directly from the down-well tubing.

The calibration of the water quality monitoring instruments was checked daily and recalibrated when necessary. Water quality instrument calibration forms are presented in Appendix B. Samples were placed in coolers and packed with bagged ice for transport to the analytical laboratory. Chain-of-Custody (COC) forms were completed and

accompanied the samples to the analytical laboratory. All COC forms have been included in Appendix C of this report. Trip blank samples accompanied all sample coolers with VOC samples. Temperature blanks were packed in each sample cooler. Security seals were affixed to every cooler shipped.

3.2 Sample Analyses

Samples were analyzed by Columbia Analytical Services, Inc. (Columbia) of Jacksonville, Florida in accordance with the National Environmental Laboratory Accreditation Conference (NELAC) standards. Columbia holds certification from the Florida Department of Health (FDOH) for the analytical test methods used for this project and is certified in the State of Florida for analysis of environmental samples. A copy of Columbia's Florida Department of Health certificate is included in Appendix D.

Groundwater samples were analyzed by Columbia for total ammonia as nitrogen (N), chlorides, nitrate, total dissolved solids (TDS), iron, mercury, sodium, and the 40 CFR Part 258 Appendix I parameters. Other required parameters (i.e., pH; temperature; specific conductance; turbidity; Eh; and dissolved oxygen) were measured in the field during collection of the groundwater samples.

4. ANALYTICAL RESULTS

4.1 Field Parameters

Table 2 provides a summary of the field measurements of selected water quality parameters utilized for determining sample stability for this semi-annual monitoring event.

4.2 Groundwater Monitoring Wells

The analytical results for this groundwater sampling event have been transferred to a compact disc (CD) in the FDEP electronic validator spreadsheet format that is included in Appendix E. PDF versions of the laboratory reports have also been included. Analytical results have been summarized in Tables 3 through 6 to show all parameters where a constituent concentration was reported above the method detection limit. Any parameter exceeding GCTLs has been highlighted. The following discussion regarding groundwater quality is organized by analytical methods.

Total Metals (Method 6020 and Method 7470 for Mercury)

Arsenic was detected in twenty (20) monitoring wells in concentrations ranging between 0.5 and 19 ug/L. All reported concentrations are less than the GCTL for arsenic of 10 ug/L except for MW-11A and 13A, where the reported concentrations were 19 and 16 ug/L, respectively. As discussed in the second biennial water quality monitoring report (September 2008), a positive correlation exists between iron and arsenic levels for monitoring wells at the site. This has been documented throughout the State of Florida, and is due to the fact that low levels of naturally occurring arsenic are bound up primarily by ferric (iron) hydroxides in many Florida soils. This has been discussed in previous correspondence with FDEP. Arsenic was detected in MW-21C where a dissolved (filtered) metal sample was collected at a concentration of 0.7 ug/L, which is below the GCTL of 10 ug/L.

Barium was detected in fifty six (56) monitoring wells in concentrations ranging between 2.1 and 416 ug/L, all of which are below the GCTL of 2,000 ug/L. For the seven (7) wells (MW-8B, 16B, 20B, 22B, 19C, 20C, and 21C) where dissolved (filtered) metals samples were collected, concentrations of barium ranged between 11 and 61 ug/L, which are all below the GCTL.

Beryllium was detected in one (1) monitoring well, MW-4B, at a concentration of 1.6 ug/L, which is below the GCTL of 4 ug/L. Beryllium was not detected in any of the dissolved (filtered) metal samples.

Chromium was detected in nineteen (19) monitoring wells at concentrations ranging between 2.1 and 9.6 ug/L, which are all below the GCTL of 100 ug/L. Chromium was detected in one (1) of the dissolved (filtered) metals samples (MW-21C) at a concentration of 3.0 ug/L, which is below the GCTL.

Five (5) wells (MW-2A, 7A, 8A, 11A, and 4B) contained detectable concentrations of cobalt ranging between 1.1 and 1.9 ug/L, which are all below the GCTL of 140 ug/L. Cobalt was not detected in any of the dissolved (filtered) metal samples.

Copper was detected in three (3) monitoring wells (MW-10A, 22B, and 3C) at concentrations ranging between 2.1 and 9.0 ug/L, which are all below the GCTL of 1,000 ug/L. Copper was not detected in any of the dissolved (filtered) metal samples.

Iron was detected in all fifty seven (57) monitoring wells in concentrations ranging between 0.18 and 18 mg/L, all but three (3) wells (MW-21A, 22A, and 5B) exceeded the GCTL of 0.3 mg/L. For the seven (7) wells (MW-8B, 16B, 20B, 22B, 19C, 20C, and 21C) where dissolved (filtered) metals samples were collected, concentrations of iron ranged between 0.1 and 1.5 mg/L, which are all above the GCTL except for MW-22B. Iron has historically exceeded the GCTL in all wells at the site for all monitoring events including the baseline event. The iron concentrations reported for the 9th semi-annual event are typical of previous monitoring events.

Lead was detected in eleven (11) monitoring wells in concentrations ranging between 1 and 8.3 ug/L, all of which were below the GCTL of 15 ug/L. Lead was detected in one (1) of the dissolved (filtered) metals samples (MW-8B) at a concentration of 2.7 ug/L, which is below the GCTL.

Nickel was detected in seven (7) monitoring wells (MW-3A, 8A, 21A, 22A, 23A, 3C and 9C) at concentrations ranging between 0.9 and 6.9 ug/L, which are all below the GCTL of 100 ug/L. Nickel was not detected in any of the dissolved (filtered) metal samples.

Sodium was detected in all fifty seven (57) monitoring wells in concentrations ranging between 3.1 and 73 mg/L, which are all below the GCTL of 160 mg/L. For the seven (7) wells (MW-8B, 16B, 20B, 22B, 19C, 20C, and 21C) where dissolved (filtered) metals samples were collected, concentrations of sodium ranged between 6.5 and 16 mg/L, which are all below the GCTL.

Vanadium was detected in eight (8) monitoring wells at concentrations ranging between 6.0 and 12 ug/L, which are all below the GCTL of 49 ug/L. Vanadium was not detected in any of the dissolved (filtered) metal samples.

Zinc was detected in four (4) monitoring wells at concentrations ranging between 11 and 3,910 ug/L, which are all below the GCTL of 5,000 ug/L. Zinc was detected in one (1) of the dissolved (filtered) metals samples (MW-20B) at a concentration of 12 ug/L, which is below the GCTL.

Ammonia-N (Method 350.1)

Ammonia-N was detected in fifty five (55) monitoring wells in concentrations ranging between 0.1 mg/L and 16 mg/L. All reported concentrations are less than the GCTL for ammonia-N of 2.8 mg/L except for MW-3A, 4A, 5A, 7A, 8A, 9A, 10A, 11A, 19A, and 4B, where the reported concentrations ranged between 3.0 and 16 mg/L. Ammonia-N has historically exceeded the GCTL in these wells at the site for the previous monitoring events including the baseline event. The ammonia concentrations reported for the 9th semi-annual event are typical of previous monitoring events.

Anions by IC (Method 300.0)

Chloride was detected in all fifty seven (57) monitoring wells at concentrations ranging between 6 and 100 mg/L. All reported concentrations are less than the GCTL for chloride of 250 mg/L.

Nitrate-N (Method 300.0)

Nitrate-N was detected in MW-21A and 22A at concentrations of 0.20 and 0.22 mg/L, respectively, which are all below the GCTL of 10 mg/L.

Total Dissolved Solids (TDS) (Method 160.1)

All fifty seven (57) wells contained detectable concentrations of TDS ranging between 32 and 660 mg/L. All reported concentrations are below the GCTL of 500 mg/L except for MW-4B (660 mg/L).

40 CFR Part 258, Appendix I Volatile Compounds (Method 8260)

Acetone was detected in one (1) well (MW-13B) at a concentration of 120 ug/L, which is below the GCTL of 6,300 ug/L.

Benzene was detected in three (3) wells (MW-9A, 10A, and 11A) at concentrations of ranging between 1.3 and 7.7 ug/L, which are all above the GCTL of 1.0 ug/L.

2-Butanone (MEK) was detected in one (1) well (MW-20A) at a concentration of 22 ug/L, which is below the GCTL of 4,200 ug/L.

Ethyl benzene was detected in two (2) wells (MW-9A and 19B) at concentrations of 3.1 and 2.0 ug/L, respectively, which are both below the GCTL of 30 ug/L.

Cis-1,2-Dichloroethene was detected in one (1) well (MW-9A) at a concentration of 2.3 ug/L, which is below the GCTL of 70 ug/L.

M&p-xylenes was detected in one (1) well (MW-9A) at a concentration of 7.5 ug/L, which is below the GCTL of 20 ug/L.

O-xylene was detected in one (1) well (MW-9A) at a concentration of 3.3 ug/L, which is below the GCTL of 20 ug/L.

Toluene was detected in four (4) wells (MW-9A, 18B, 19B, and 16C) at concentrations ranging between 1.6 and 16 ug/L, which are all below the GCTL of 40 ug/L.

Vinyl Chloride was detected in one (1) well (MW-9A) at a concentration of 2.1 ug/L, which is above the GCTL of 1.0 ug/L.

The GCTL for benzene was exceeded in MW-9A, 10A, and 11A. The GCTL for vinyl chloride was exceeded in MW-9A. In accordance with Chapter 62-701.510(7)(a) F.A.C. and Paragraph 4 of Monitoring Plan Implementation Schedule section of the FDEP Permit, the FDEP is to be notified within 14 days after the receipt of the laboratory data of any GCTL exceedances. The notification also informed the FDEP if any confirmatory samples will be collected from any of the wells or if the data will be accepted as indicative of groundwater conditions. Confirmatory samples are to be collected within thirty (30) days of receipt of data from the laboratory. On behalf of WSI, Geosyntec notified Mr. Thomas Lubozynski (FDEP) in a letter dated 1 December 2008 of the GCTL exceedances in the MW-9A, 10A, and 11A for which certified data was received by Geosyntec on 18 November 2008.

The GCTL for benzene and vinyl chloride were exceeded in monitoring well MW-9A and for benzene in MW-11A. Based on previous analytical laboratory results for both wells and the results of the duplicate sample collected at MW-9A, confirmatory samples were not collected for these two wells.

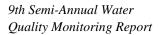
consultants

Before this 9th semi-annual event, benzene had not exceeded the GCTL in MW-10A. A confirmatory sample was collected from MW-10A on 15 December 2008 for Appendix I list of volatile organic compounds (VOCs). The confirmational sampling was performed within 30 days of receiving data for the initial sampling event. The analytical results for the confirmational sampling event reported benzene at a concentration of 1.3 ug/L, which is the same result as the initial sample.

4.3 **Data Validation**

All analyses were performed within the method specified holding times.

An equipment blank was collected using the peristaltic pump set up used for collection of the groundwater samples. De-ionized water supplied by Columbia was pumped through the peristaltic tubing and analyzed for the same parameters as the groundwater samples. All constituents analyzed for were non-detect for all analyses performed.


Two blind field duplicates were collected: Dup-01 was a blind duplicate of sample MW-9A, and Dup-02 was a blind duplicate of sample MW-16C. A review of the analytical data shows that the blind duplicate sample data are in general agreement to the original sample data for all analytes.

4.4 **Impact of Turbidity on Metals Concentrations**

As discussed in Section 2.2 of this report, extended well development was not successful in reducing turbidity levels in a number of B-zone (intermediate) and C-zone (deep) groundwater monitoring wells.

Turbidity levels were less than the FDEP guidance of 20 NTU in fifty (50) of the fifty seven (57) wells sampled. A review of the analytical results for these fifty low-turbidity wells shows that arsenic, barium, beryllium, chromium, cobalt, copper, iron, lead, nickel, sodium, vanadium, and zinc were reported above the method detection limits. The reported concentrations are comparable to those reported for samples with turbidity levels greater than 20 NTU. Analytical results for total metals are presented in Table 3.

Table 4 presents dissolved metals (filtered) analytical results for the seven (7) wells (MW-8B, 16B, 20B, 22B, 19C, 20C, and 21C). These wells displayed turbidity readings greater than 20 NTU, as a result, filtered samples were collected for each well. Turbidity values for the total metals samples ranged between 44.4 and 76.2 NTU. A review of the analytical results for these seven (7) wells indicates that copper and vanadium were detected in samples with turbidities level greater than 20 NTU and not in samples with turbidities less than 20 NTU.

For comparison of analytical results between the total metals (filtered) and dissolved metals (unfiltered) for the seven (7) wells, arsenic, chromium, copper, lead, and vanadium were the metals for which a greater number of detections were made in the unfiltered samples than the filtered samples

Filtering of the samples did not appear to have a significant impact on metals concentrations. The presence and concentrations of all metals analyzed were comparable between the unfiltered and the filtered samples.

5. GROUNDWATER LEVEL MEASUREMENTS AND FLOW DIRECTION

5.1 Field Measurements

Groundwater level measurements were obtained on 3 November 2008 from all of the Phases 1 through 3 groundwater monitoring wells and the remaining piezometers installed as part of the original site hydrogeological investigation. All groundwater levels measurements were made within an approximate 4-hr period. The groundwater level measurements from the monitoring wells and piezometers are presented in Table 7.


It should be noted that, as part of the site hydrogeological investigation, a total of 27 piezometers were installed. Two (2) piezometers (DP-1 and DP-2) located at the northern part of the site within Cell 1 footprint were decommissioned and abandoned on 3 October 2003 by Ambient Technologies, Inc. (ATI) of St. Petersburg, Florida. Two (2) additional piezometers (DP-3 and DP-4) located within Cell 3 footprint were decommissioned and abandoned on 16 January 2006 by National Environmental Technology, Inc (NET) Drilling Services of Dover, Florida. For the development of Phases 2 and 3, six (6) of the Phase 1 groundwater monitoring wells (MW-14A, 14B, 14C, 15A, 15B, and 15C) and ten (10) additional piezometers (DP-5, DP-6, DP-7, DP-8, DP-9, DP-10, DP-11, DP-12, DP-13, and SZ-1) were decommissioned and abandoned on 10 and 11 July 2007 by NET Drilling Services. Geosyntec monitored all monitoring well and piezometer decommissioning activities.

5.2 Water Level Contours

The water level contour maps prepared from groundwater level measurements for the three upper surficial aquifer zones (i.e., A-zone, B-zone and C-zone) are presented in Figures 1, 2, and 3.

Historically, the direction of the horizontal component of groundwater flow for all three zones is predominantly east-northeast towards Bull Creek. However, the dewatering operation for the Bronson's borrow area has created a localized groundwater depression on the west side of the Phase 1 development area. Groundwater flow along the western property boundary is predominantly west towards the dewatering area. Based on a review of the groundwater level elevation data collected from the remainder of the A-zone, B-zone, and C-zone monitoring well network, the direction of the horizontal component of groundwater flow is predominantly east-northeast toward Bull Creek.

Comparison of water levels between the A, B and C wells shows a similar vertical gradient (1E⁻³ ft/ft). These gradients are consistent with the regional gradient in the upper surficial

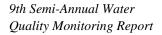
aquifer and indicate an interconnected, sluggish flow regime in the saturated zone above the Intermediate Confining Unit (ICU).

6 SURFACE WATER SAMPLING

6.1 Sampling Locations and Procedures

Two (2) surface water sampling locations established during the initial hydrogeological investigation were selected by FDEP for routine water quality monitoring. As stated in the Permit, surface water samples are only to be collected when there is flow in Bull Creek.

Collection of surface water samples commenced at the upstream monitoring station (SW-4) followed by the downstream monitoring location (SW-3). Bull Creek was observed to be flowing at the time of sampling. Surface water samples were collected from the approximate center of Bull Creek. A YSI 556 water quality meter was used to measure field parameters including temperature, pH, dissolved oxygen, specific conductance, and Eh at each sampling location. Turbidity levels were measured using a LaMotte 2020e turbidity meter. Surface water samples were collected in accordance with FDEP surface water sampling SOPs.


6.2 Sample Analyses

Surface water samples were analyzed by Columbia in accordance with the NELAC (National Environmental Laboratory Accreditation Conference) standards for unionized ammonia, total hardness as CaCO₃, total organic carbon, chlorides, nitrate, total dissolved solids (TDS), total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen as N, nitrate as N, total phosphates as P, chlorophyll A, iron, mercury, fecal coli form, and the 40 CFR, Part 258 Appendix I parameters. Other required parameters (e.g., pH; temperature; specific conductance; turbidity; Eh; and dissolved oxygen) were field measured during collection of the surface water samples.

6.3 Field Measurements and Analytical Results

Table 8 provides a summary of the final field parameter values and field data measured for the surface water samples.

The analytical results for the surface water samples collected are presented on a CD in Appendix E. Copies of the laboratory reports (PDF) and the electronic data files in the FDEP electronic validator spreadsheet format are included on the CD. Analytical results have been summarized in Table 8 to show all parameters where a constituent concentration was reported above the method detection limit and any parameter exceeding Surface Water Quality Criteria (SWQC) Class III concentrations.

The pH concentrations at SW-3 and 4 were both lower than the SWQC range of 6-8.5 standard units, but are consistent with normal ranges of pH as measured in rainfall (i.e., precipitation).

7 LEACHATE SAMPLING

7.1 Sampling Location and Procedures

In accordance with the permit requirements, a leachate sample is to be collected from each disposal cell on an annual basis. To date, Cells 1 through 5 have been constructed and have received waste. The construction of Cell 6 was complete, but waste placement within the cell had not commenced at the time of the sampling event. Therefore, leachate samples for this 9th semi-annual sampling event were collected from primary leachate sump risers for Cells 1 through 5 only. These leachate samples collected as part of the 9th semi-annual sampling event fulfills the leachate sampling requirement for the year 2008.

The leachate samples were collected from sampling ports that are connected with each primary leachate sump riser. An YSI 556 water quality meter was used to measure field parameters including temperature, pH, dissolved oxygen, specific conductance, Eh, and turbidity. The leachate samples were collected in accordance with FDEP SOP.

7.2 Sample Analyses

The leachate sample was analyzed by Columbia-Jacksonville in accordance with the NELAC standards for total ammonia-N, bicarbonate, chlorides, nitrate, total dissolved solids (TDS), iron, mercury, sodium and the 40 CFR, Part 258 Appendix II parameters. Other required parameters (i.e., pH; temperature; specific conductance; turbidity; Eh; and dissolved oxygen) were field measured during collection of the leachate samples.

7.3 Field Measurements and Analytical Results

Table 9 provides a summary of the field parameter values and field data measured for the leachate samples.

The analytical results for the leachate samples are presented on a CD in Appendix E. Analytical results have been summarized in Table 9 to show all parameters where a constituent concentration was reported above the method detection limit. No constituents tested exceeded the regulatory levels listed in 40 CFR Part 261.24. It should be noted that the leachate from the JED facility is removed from the site for treatment.

Table 1 (1 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

				***************************************				Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC (feet)	Total Depth (feet BTOC)	(feet	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal (feet BTOC)
					(reet)		Тор	Bottom	Тор	Bottom		(leet BTOC)
MW-1A	28 03 48.55	81 05 59.88	19900	9-Dec-03	95.1	23.0	13.0	23.0	82.1	72.1	10.6	8.2
MW-2A	28 03 51.99	81 05 59.90	19903	10-Dec-03	95.2	22.6	12.6	22.6	82.6	72.6	10.3	8.9
MW-3A	28 03 55.34	81 05 59.91	19906	11-Dec-03	94.6	22.8	12.8	22.8	81.9	71.9	10.4	9.0
MW-4A	28 03 58.97	81 05 59.92	19909	12-Dec-03	95.5	23.1	13.1	23.1	82.4	72.4	10.8	9.4
MW-5A	28 04 02.92	81 05 59.95	19912	24-Nov-03	95.3	22 <i>.</i> 5	12.5	22.5	82.8	72.8	10.1	9.1
MW-6A	28 04 06.50	81 05 59.15	19915	25-Nov-03	94.7	22.6	12.6	22.6	82.2	72.2	10.6	8.6
MW-7A	28 04 07.13	81 05 54.78	19918	26-Nov-03	95.5	23.3	13.3	23.3	82.2	72.2	10.3	9.3
MW-8A	28 04 06.20	81 05 50.64	19921	5-Dec-03	94.7	22.5	12.5	22.5	82.2	72.2	10.2	8.6
MW-9A	28 04 04.34	81 05 46.60	19924	4-Dec-03	94.7	22.4	12.4	22.4	82.3	72.3	10.0	8.6
MW-10A	28 04 00.07	81 05 44.77	19927	3-Dec-03	96.3	22.1	12.1	22.1	84.1	74.1	9.8	7.6
MW-11A	28 03 55.43	81 05 43.27	19930	3-Dec-03	93.6	22.8	12.8	22.8	80.7	70.7	10.5	9.1
MW-12A	28 03 52.08	81 05 43.26	19933	2-Dec-03	95.1	23.0	13.0	23.0	82.1	72.1	10.7	9.3
MW-13A	28 03 48.67	81 05 43.25	19936	8-Dec-03	95.2	22.5	12.5	22.5	82.7	72.7	10.2	7.7
MW-14A					Monitoring Well	Abandoned 10 Jul	y 2007					
MW-15A					Monitoring Well	Abandoned 10 Jul	y 2007	•				
MW-16A	28 03 44.55	81 05 40.22	22342	21-Sep-07	88.69	18.63	8.1	18.1	80.6	70.6	6.1	5.1
MW-17A	28 03 42.38	81 05 35.42	22345	22-Sep-07	88.86	19.88	9.4	19.4	79.5	69.5	7.4	6.4
MW-18A	28 03 37.21	81 05 35.16	22348	11-Sep-07	87.56	17.70	7.2	17.2	80.4	70.4	5.2	4.2
MW-19A	28 03 33.40	81 05 39.60	22351	11-Sep-07	87.54	17.65	7.2	17 <i>.</i> 2	80.4	70.4	5.2	4.2
MW-20A	28 03 31.82	81 05 45.45	22354	19-Sep-07	87.12	17.93	7.4	17.4	79.7	69.7	5.4	4.4
MW-21A	28 03 32.10	81 05 52.48	22357	14-Sep-07	87.20	18.04	7.5	17.5	79.7	69.7	5.5	4.5
MW-22A	28 03 32.35	81 05 59,48	22360	14-Sep-07	87.71	18.00	7.5	17.5	80.2	70.2	5.5	4.5
MW-23A	28 03 42.41	81 05 59.79	22363	25-Sep-07	97.90	27.75	17.3	27.3	80.7	70.7	15.3	14.3

Table 1 (2 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet l	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
				-	(feet)		Тор	Bottom	Тор	Bottom		(feet BTOC)
MW-1B	28 03 48.59	81 05 59.89	19901	9-Dec-03	95.0	47.9	37.9	47.9	57.1	47.1	35.6	33.1
MW-2B	28 03 51.94	81 05 59.90	19904	10-Dec-03	95.2	48.3	38.3	48.3	56.9	46.9	36.0	34.6
MW-3B	28 03 55.31	81 05 59.91	19907	11-Dec-03	94.7	47.6	37.6	47.6	57.1	47.1	35.3	33.9
MW-4B	28 03 59.01	81 05 59.92	19910	12-Dec-03	95.2	47.4	37.4	47.4	57.8	47.8	35.1	33.5
MW-5B	28 04 02.88	81 05 59.95	19913	24-Nov-03	95.3	47.1	37.1	47.1	58.2	48.2	34.4	32.7
MW-6B	28 04 06.48	81 05 59.18	19916	25-Nov-03	94.6	47.4	37.4	47.4	57.2	47.2	34.9	33.5
MW-7B	28 04 07.13	81 05 54.81	19919	26-Nov-03	95.3	47.5	37.5	47.5	57.8	47.8	34.5	33.5
MW-8B	28 04 06.19	81 05 50.60	19922	5-Dec-03	94.6	49.6	39.6	49.6	55.0	45.0	37.1	35.6
MW-9B	28 04 04.31	81 05 46.56	19925	4-Dec-03	94.6	49.1	39.1	49.1	55.5	45.5	36.8	35.3
MW-10B	28 04 00.04	81 05 44.75	19928	3-Dec-03	96.2	48.3	38.3	48.3	58.0	48.0	35.9	33.9
MW-11B	28 03 55.40	81 05 43.27	19931	2-Dec-03	93.6	47.9	37.9	47.9	55.7	45.7	35.5	34.0
MW-12B	28 03 52.05	81 05 43.27	19934	1-Dec-03	95.0	49.0	39.0	49.0	56.1	46.1	36.6	35.1
MW-13B	28 03 48.64	81 05 43.24	19937	8-Dec-03	95.1	47,2	37.2	47.2	58.0	48.0	34.8	33.4
MW-14B					Monitoring Well A	abandoned 10 July	2007					
MW-15B					Monitoring Well A	bandoned 10 July	2007					
MW-16B	28 03 44.52	81 05 40.17	22343	21-Sep-07	88.73	38.09	27.6	37.6	61.1	51.1	25.6	24.6
MW-17B	28 03 42.35	81 05 35.36	22346	20-Sep-07	88.79	40.18	29.7	39.7	59.1	49.1	27.7	26.7
MW-18B	28 03 37.16	81 05 35.19	22349	11-Sep-07	87.43	37.80	27.3	37.3	60.1	50.1	25.3	24.3
MW-19B	28 03 33.38	81 05 39.66	22352	11-Sep-07	87.64	37.73	27.2	37.2	60.4	50.4	25.2	24.2
MW-20B	28 03 31.82	81 05 45.51	22355	19-Sep-07	87.27	37.76	27.3	37.3	60.0	50.0	25.3	24.3
MW-21B	28 03 32.09	81 05 52.55	22358	17-Sep-07	87.23	37.63	27.1	37.1	60.1	50.1	25.1	24.1
MW-22B	28 03 32.36	81 05 59.54	22361	14-Sep-07	87.69	37.96	27.5	37.5	60.2	50.2	25.5	24.5
MW-23B	28 03 42.46	81 05 59.79	22364	25-Sep-07	97.91	42.75	32.3	42.3	65.7	55.7	30.3	29.3

Table 1 (3 of 3)

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

								Screen	Setting			
Well Designation	Latitude (NAD 1983)	Longitude (NAD 1983)	WACS ID	Date Installed	Top of Casing Elevation, TOC	Total Depth (feet BTOC)	(feet	втос)	(feet El	evation)	Sand Pack (feet BTOC)	Fine-Grained Sand Seal
	` , , , , , , , , , , , , , , , , , , ,	,			(feet)	,	Тор	Bottom	Тор	Bottom		(feet BTOC)
MW-1C	28 03 48.63	81 05 59.88	19902	9-Dec-03	95.2	75.2	65.2	75.2	30.0	20.0	62.9	61.4
MW-2C	28 03 51.90	81 05 59,89	19905	10-Dec-03	95.3	68.4	58.4	68.4	36.9	26.9	56.1	53.7
MW-3C	28 03 55.28	81 05 59.91	19908	11-Dec-03	94.7	68.7	58.7	68.7	36.0	26.0	56.3	54.8
MW-4C	28 03 59.04	81 05 59.92	19911	12-Dec-03	95.4	72.5	62.5	72.5	32.9	22.9	61.2	59.6
MW-5C	28 04 02.83	81 05 59.95	19914	24-Nov-03	95.4	73.0	63.0	73.0	32.4	22.4	60.7	58.7
MW-6C	28 04 06.46	81 05 59.22	19917	25-Nov-03	94.6	73.2	63.2	73.2	31.4	21.4	60.2	57.7
MW-7C	28 04 07.13	81 05 54.86	19920	25-Nov-03	94.9	73.3	63.3	73.3	31.6	21.6	60.3	59.3
MW-8C	28 04 06.17	81 05 50.55	19923	5-Dec-03	94.5	73.9	63.9	73.9	30.6	20.6	61.6	59.8
MW-9C	28 04 04.29	81 05 46.53	19926	4-Dec-03	94.5	73.8	63.8	73.8	30.8	20.8	61.4	59.4
MW-10C	28 04 00.01	81 05 44.74	19929	3-Dec-03	96.4	73.7	63.7	73.7	32.7	22.7	61.4	60.0
MW-11C	28 03 55.36	81 05 43.26	19932	2-Dec-03	93.7	73.4	63.4	73.4	30.3	20.3	61.0	59.6
MW-12C	28 03 52.01	81 05 43.26	19935	1-Dec-03	95.1	73.6	63.6	73.6	31.5	21.5	60.2	58.7
MW-13C	28 03 48.60	81 05 43.25	19938	8-Dec-03	95.0	73.0	63.0	73.0	32.1	22.1	60.7	58.2
MW-14C					Monitoring Well	Abandoned 10 July	2007					
MW-15C			·		Monitoring Well	Abandoned 10 July	2007					
MW-16C	28 03 44.50	81 05 40.11	22344	21-Sep-07	88.8	67.7	57.2	67.2	31.6	21.6	55.2	54.2
MW-17C	28 03 42.31	81 05 35.31	22347	20-Sep-07	88.9	67.3	56.8	66.8	32.0	22.0	54.8	53.8
MW-18C	28 03 37.10	81 05 35.22	22350	12-Sep-07	87.4	67.2	56.7	66.7	30.8	20.8	54.7	53.7
MW-19C	28 03 33.37	81 05 39.72	22353	10-Sep-07	87.4	66.7	56.2	66.2	31.2	21.2	54.2	53.2
MW-20C	28 03 31.82	81 05 45.57	22356	18-Sep-07	87.4	66.8	56.3	66.3	31.1	21.1	54.3	53.3
MW-21C	28 03 32.10	81 05 52.61	22359	17-Sep-07	87.1	62.6	52.1	62.1	35.1	25.1	50.1	49.1
MW-22C	28 03 32.36	81 05 59.60	22362	13-Sep-07	87.6	67.3	56.8	66.8	30.8	20.8	54.8	53.8
MW-23C	28 03 42.51	81 05 59.80	22365	24-Sep-07	97.9	67.1	56.6	66.6	41.4	31.4	54.6	53.6

SUMMARY OF FINAL FIELD PARAMETER RESULTS AND FIELD DATA 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Monitoring Well	Temperature (°C)	pH (Standard Units)	Specific Conductance (mS/cm) ¹	Turbidity (NTUs) ²	Oxidation- Reduction Potential (mV) ³	DO (mg/L) ⁴	Purging Method
MW-2A	26.30	5.31	0.134	1.1	-127.5	0.18	Peristaltic Pump
MW-3A	26.05	4.81	0.430	0.9	-9.1	0.27	Peristaltic Pump
MW-4A	24.12	5.06	0.261	2.9	-175.9	0.23	Peristaltic Pump
MW-5A	25.62	4.86	0.235	10.4	-132.4	0.26	Peristaltic Pump
MW-7A	24.29	4.92	0.159	0.4	-137.8	0.30	Peristaltic Pump
MW-8A	24.71	4.35	0.285	0.6	-110.0	0.33	Peristaltic Pump
MW-9A	25.17	4.74	0.176	8.8	-106.6	0.90	Peristaltic Pump
MW-10A	24.90	4.53	0.142	12.4	-38.8	0.72	Peristaltic Pump
MW-11A	26.06	4.91	0.203	6.0	-46.1	0.42	Peristaltic Pump
MW-12A	24.75	4.35	0.085	0.4	-109.9	0.28	Peristaltic Pump
MW-13A	24.77	4.77	0.111	2.9	-43.8	0.59	Peristaltic Pump
MW-16A	26.11	5.15	0.061	4.0	61.1	2.62	Peristaltic Pump
MW-17A	25.25	4.23	0.072	2.1	72.6	0.56	Peristaltic Pump
MW-18A	24.58	4.72	0.066	8.1	33.2	0.40	Peristaltic Pump
MW-19A	27.38	5.23	0.147	15.8	-107.8	0.28	Peristaltic Pump
MW-20A	24.98	4.91	0.094	18.7	38.8	1,42	Peristaltic Pump
MW-21A	25.50	4.14	0.105	1.3	152.9	1.58	Peristaltic Pump
MW-22A MW-23A	25.38	4.34	0.093	1.9	119.5	0.41	Peristaltic Pump
	23.55	4.91	0.159	1.5	29.5	0.45	Peristaltic Pump
MW-2B	24.06	4.45	0.048	0.2	100.4	0.44	Submersible Pump
MW-3B	25.31	5.12	0.099	0.7	-120.5	0.13	Submersible Pump
MW-4B MW-5B	23.85 24.65	3.47 4.69	0.844 0.067	0.1 0.6	78.2 -129.0	0.27 0.37	Peristaltic Pump
MW-7B	24.05	4.94	0.089	3.2	-129.0 -140.9	0.37	Peristaltic Pump Submersible Pump
MW-8B	24.04	4.64	0.048	44.4	-140.9 -92.1	0.13	Submersible Pump
MW-9B	24.83	4.59	0.048	8,2	-87.5	0.20	Submersible Pump
MW-10B	24.79	4.82	0.064	0.2	-155.5	0.19	Peristaltic Pump
MW-IIB	25.00	5.02	0.064	6.2	-145.9	0.19	Submersible Pump
MW-12B	24.31	4.59	0.072	8.2	-14.0	0.31	Submersible Pump
MW-13B	24.25	4.86	0.047	10.0	-103.3	0.11	Submersible Pump
MW-16B	24.80	4.96	0.054	57.1	-93.0	0.22	Submersible Pump
MW-17B	24.09	4.93	0.082	11.2	-110.6	0.25	Submersible Pump
MW-18B	23.82	4.51	0.067	6.8	9.9	0.36	Submersible Pump
MW-19B	28.08	4.72	0.086	17.4	21.8	0.19	Submersible Pump
MW-20B	24.49	5.02	0.085	76.2	-75.7	0.30	Submersible Pump
MW-21B	24.46	5.10	0.090	18.8	-114.0	0.18	Submersible Pump
MW-22B	24.79	5.26	0.057	50.2	-138.6	0.30	Submersible Pump
MW-23B	24.41	4.72	0.065	0.5	-103.5	0.47	Submersible Pump
MW-2C	24.88	5.30	0.043	0.6	81.2	0.66	Peristallic Pump
MW-3C	25.27	5.57	0.053	1.6	-124.4	0.35	Peristaltic Pump
MW-4C	23.74	5.33	0.093	17.7	51.7	0.32	Submersible Pump
MW-5C	24.25	4.91	0.071	3.5	-82.1	0.43	Peristaltic Pump
MW-7C	23.40	4.98	0.051	2.2	-83.1	0.51	Peristaltic Pump
MW-8C	23.54	4.66	0.047	1.5	-66.4	0.53	Peristaltic Pump
MW-9C	24.32	5.52	0.081	6.2	-158.3	0.44	Peristaltic Pump
MW-10C	24.16	4.73	0.042	11.6	-126.1	0.10	Submersible Pump
MW-HC	24.74	5.46	0.087	1.0	-158.3	0.21	Peristallic Pump
MW-12C	23.72	4.51	0.046	4.1	-3.6	0.58	Peristaltic Pump
MW-13C	23.82	4.97	0.048	1.7	~78.7	0.45	Peristaltic Pump
MW-16C	24.28	5.11	0.073	6.2	-61.1	0.25	Submersible Pump Submersible Pump
MW-17C	23.68	5.33	0.074	6.9	-93.1	0.18	<u> </u>
MW-18C	23.60	5.21	0.081	19.0	12.2	0.22 0.50	Submersible Pump
MW-19C MW-20C	26.95 23.69	5.15 5.19	0.087	71.0 60.0	16.0 -66.3	0.50	Submersible Pump Submersible Pump
MW-20C MW-21C	23.69	5.42	0.077	72.0	-98.5	0.41	Submersible Pump
MW-21C	23.97	6.99	0.433	2.1	-98.5 -142.5	0.25	Peristaltic Pump
MW-22C MW-23C				 			·
171 17 *Z.JX.	23.92	5.78	0.086	16.8	-128.9	0.26	Submersible Pump

¹ mS/cm = milli Siemens per centimeter

² NTU = Nephelometric Turbidity Units

 $^{^3}$ mV = millivolts

⁴ mg/L = milligram per liter

TABLE 3 (1 of 3)

SUMMARY OF ANALYTICAL RESULTS (<u>TOTAL METALS</u>) 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID GCTL	Туре	Arse (ug/	L)	Bariun (ug/L) 2,000		Berylli (ug/L 4		Chrom (ug/L	-)
MW-2A	В	0.9	•	14		0.2		1.9	1
MW-3A	В	1.2	•	76		0.2	U	1.8	1
MW-4A	В	0.9	•	27		0.2	U	2.1	•
MW-5A	В	1.4	•	2.2		0.2	U	3.7	
MW-7A	D	1.2	•	13		0.2	U	1.8	!!
MW-8A	D	0.9	•	63		0.2	U	1.8	I
MW-9A	D	2.4	•	2.7		0.2	U	2.8	Black Co.
MW-10A	D	1.9	•	2.1		0.2	U	2.6	•
MW-11A	D	19	1	13		0.2	U	4.6	
MW-12A	D	2	•	11		0.2	U	1.6	Įİ.
MW-13A	D	16	•	8.8		0.2	U	3.3	•
MW-16A	D	0.2	U	14		0.2	U	1.1	1
MW-17A	D	0.5	1	22		0.2	U	1.6	1
MW-18A	D	1.3	•	7.4		0.2	U	1.8	1
MW-19A	D	1.9	•	20		0.2	U	5.5	
MW-20A	D	0.2	U	9.9	1	0.2	U	3.5	•
MW-21A	D	0.2	U	26		0.2	U	1.5	ı
MW-22A	В	0.2	I	14		0.2	U	1.9	1
MW-23A	В	0.3	I	10		0.2	U	1.6	I
MW-2B	В	1.4	-	9.9		0.2	U	0.8	U
MW-3B	В	0.2	U	20	ă I	0.2	U	0.8	U
MW-4B	В	1.1		87		1.6		1.2	I
MW-5B	В	0.5		11		0.2	U	0.9	1
MW-7B	D	0.4	1	34		0.2	U	1	1
MW-8B	D	0.3	i	53		0.2	U	3.8	•
MW-9B	D	0.4	Ti Ti	29		0.2	U	1.6	
MW-10B	D	0.4	-li	14		0.2	U	0.9	i
MW-10B	D	0.7	•	24		0.2	U	1.8	
MW-11B MW-12B	D	0.4	i	35		0.2	U	1.3	-li
	D	0.4	-li	12		0.2	U	1.4	- li
MW-13B	D	0.2	U	55		0.2	U	2.6	
MW-16B	D	0.2		29		0.2	U	1.1	1
MW-17B	D	0.2	U	11		0.2	U	1.2	- 1
MW-18B	_			27		0.2	U	1.4	-li
MW-19B	D	0.2	U	AND RESIDENCE OF THE PARTY OF T		0.2	1	9.6	
MW-20B	D	0.3	1	119			U		•
MW-21B	D	0.2		23		0.2		2.3	4
MW-22B	В	0.8		41		0.2	U	4.1	
MW-23B	В	0.2	U	9.2		0.2	U	1	1
MW-2C	В	0.2	U	12		0.2	U	0.8	U
MW-3C	В	0.3		416		0.2	U	2.8	
MW-4C	В	0.2	1	20		0.2	U	2.9	•
MW-5C	В	0.2	U	22		0.2	U	0.8	1
MW-7C	D	0.2	U	28		0.2	U	1	1
MW-8C	D	0.2	U	15		0.2	U	0.9	1
MW-9C	D	0.2	U	39		0.2	U	1.3	1
MW-10C	D	0.6	4	30		0.2	U	1.8	i
MW-11C	D	0.2	U	9.6		0.2	U	1	i
MW-12C	D	0.2	U	25		0.2	U	1.2	i
MW-13C	D	0.2	U	19		0.2	U	1	i
MW-16C	D	0.2	U	20		0.2	U	0.9	1
MW-17C	D	0.2	U	19		0.2	U	1.5	1
MW-18C	D	0.2	U	41		0.2	U	2.1	
(MW-19C)	D	0.2	U	65		0.5	ı	4.9	
MW-20C	D	0.2	I	87		0.2	i	4.1	•
MW-21C	D	0.6		61		0.3	i	3.7	•
MW-21C	В	0.2	U	18		0.2	U	1.4	1
MW-23C	В	0.2	U	10		0.2	U	1.8	i
Dup-1 (MW-9A)		2.0		2.8		0.2	U	2.6	
Dup-1 (MW-9A) Dup-2 (MW-16C)		0.2	U	19		0.2	U	1	

¹ U = Not detected at value represented

 $^{^{2}}$ I = Value is estimated to be between method detection limit and practical quantitation limit.

 $^{^{3}}$ Constituent detections are shown in shaded cells (green color)

⁴ Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

⁵ Well type: (B) Background well (D) Detection well

TABLE 3 (2 of 3)

SUMMARY OF ANALYTICAL RESULTS (TOTAL METALS) 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID	Туре	Cob (ug/	(L)	Cop (ug	/L)	Iron (mg/L)	Lea (ug	/L)
GCTL		14	0	1,0	00	0.3	1:	5
MW-2A	В	1.9		0.5	ı	6.5	0.2	U
MW-3A	В	0.8	1	0.6	I	2.5	0.2	U
MW-4A	В	0.8	1	0.8	1	3.4	0.2	U
MW-5A	В	0.2	U	1.3	I	0.32	1.4	
MW-7A	D	1.1		0.3	U	5.2	0.2	U
MW-8A	D	1.8		0.3	U	2.6	0.2	U
MW-9A	D	0.3	1	1	ı	0.63	0.3	1
MW-10A	D	0.2	U	2.5		0.43	0.6	i
MW-11A	D	1.1		0.4	i	18.0	0.3	i
MW-12A	D	0.8	i	0.3	U	1.0	0.2	U
MW-13A	D	0.8	i	0.3	U	13.8	0.2	U
MW-16A	D	0.2	U	0.4	li l	0.19	0.2	Ī
MW-17A	D	0.5	Ī	0.3	U	0.4	0.2	U
MW-18A	D .	0.3	⊣i —	1.1	li l	1.0	2.1	
	D	0.3	i	1.8	i	2.2	1.0	
MW-19A MW-20A	D	0.6	1	1.8	1	0.89	1.5	-
	D		-					
MW-21A	В	0.3	-	0.3	-	0.18	0.6	╬
MW-22A	В	0.8						-
MW-23A		0.2	U	0.3	U	2.8	0.2	U
MW-2B	В	0.3	1	0.3	U	0.85	0.2	U
MW-3B	В	0.4	ı	0.3	U	1.3	0.2	U
MW-4B	В	1.2	No.	0.3	U	10.4	0.2	U
MW-5B	В	0.2	U	0.3	U	0.28	0.2	U
MW-7B	D	0.2	1	0.3	U	1.5	0.2	1
MW-8B	D	0.2	U	0.8	1	1.0	5.7	
MW-9B	D	0.2	1	0.3	U	1.0	0.8	1
MW-10B	D	0.2	i	0.3	U	0.5	0.2	U
MW-11B	D	0.2	U	0.4	i	0.6	0.7	i
MW-12B	D	0.2	U	0.4	i	1.1	1.0	
MW-13B	D	0.2	U	0.7	i	0.8	1.0	i
MW-16B	D	0.3	1	0.5	1	1.6	3.6	
MW-17B	D	0.3	1	0.5	1	1.4	0.4	1
MW-18B	D	0.2	U	0.3	U	0.46	0.4	1
MW-19B	D	0.2	U	1	1	0.75	1.3	
MW-20B	D	0.3	1	1.6	1	1.7	8.3	
MW-21B	D	0.2	U	1.4	1	1.9	1.4	
MW-22B	В	0.8	1	2.1		1.7	4.0	
MW-23B	В	0.2	I	1.3	ı	0.45	0.3	1
MW-2C	В	0.2	U	0.3	U	0.53	0.2	U
MW-3C	В	0.3	1	9		0.73	2.4	N)
MW-4C	В	0.2	U	0.3	ı	0.83	0.4	1
MW-5C	В	0.2	U	0.9	i	0.92	0.2	U
MW-7C	D	0.2	U	0.3	U	0.68	0.5	ı
MW-8C	D	0.2	U	0.3	U	0.85	0.3	U
MW-8C	D	0.2	U	0.3	U	0.74	0.2	U
MW-9C MW-10C	D	0.2	U	0.3	U	0.89	0.2	i
	D	0.2	U	-	U	0.56	0.3	U
MW-11C	D		U	0.3	U	0.56		i
MW-12C	D	0.2		0.3	_		0.9	
MW-13C		0.2	U	0.3	U	0.58	0.2	U
MW-16C	D	0.2	U	0.3	U	1.1	0.2	U
MW-17C	D	0.2	U	0.3	U	1.1	0.2	U
MW-18C	D	0.2	U	0.3	U	1.3	0.4	
MW-19C	D	0.2	U	0.7	I	1.7	0.7	1
MW-20C	D	0.2	U	0.5	I.	1.8	0.7	1
MW-21C	D	0.2	U	0.5	1	1.9	1.0	1
MW-22C	В	0.2	U	0.3	U	0.50	0.2	U
MW-23C	В	0.2	U	0.3	U	0.50	0.2	1
up-1 (MW-9A)		0.3	1	0.9	1	0.64	0.4	1

¹ U = Not detected at value represented

I = Value is estimated to be between method detection limit and practical quantitation limit.

³ Constituent detections are shown in shaded cells (green color)

⁴ Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

⁵ Well type: (B) Background well (D) Detection well

TABLE 3 (3 of 3)

SUMMARY OF ANALYTICAL RESULTS (TOTAL METALS) EIGHTH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID	Туре	Nick (ug/		Sodium (mg/L)	Vanad (ug/		Zind (ug/L	
GCTL		100		160	49		5,000)
MW-2A	В	1.1	1	13	1.5	ı	4.0	U
MW-3A	В	3.1		46	2.6	Ti Ti	126	
MW-4A	В	1.6		27	1.7	i	11	
MW-5A	В	0.9	i	18	1.9	i	4.0	U
MW-7A	D	1.4	1	15	1.2	U	4.0	U
MW-8A	D	4.1		30	2.8	1	4.0	U
MW-9A	D	1.2		11	1.7	i	4.0	U
MW-10A	D	1.0	i	10	1.2	U	7.0	i i
MW-11A	D	1.3		14	3.9	i	4.0	U
MW-12A	D	2.0	Ti T	11	1.4	i	4.0	U
MW-13A	D	0.7	Ti T	9.3	3.7	i	4.0	U
MW-16A	D	0.5	i	3.1	6.2		5.0	ı
MW-17A	D	1.2	i	5.8	6.0		4.0	i
MW-18A	D	1.0	i i	7.5	4.9	1	4.0	U
MW-19A	D	1.0	1	11	8.4	46	7.0	1
MW-20A	D	1.6	ı	9.1	6.2		5.0	1
MW-21A	D	2.0		7.9	4.3	ı	4.0	U
MW-22A	В	2.1		12	2.8	i	8.0	I I
MW-23A	В	0.9	ı	12	1.5	ı	4.0	U
MW-2B	В	0.3	U	6.1	1.2	U	4.0	U
MW-3B	В	0.3	U	8.3	1.2	U	4.0	U
MW-4B	В	1.2	ı	73	2.7	ı	5.0	1
MW-5B	В	0.4	ı	7.1	1.2	U	15	
MW-7B	D	0.4	1	9.3	1.2	U	4.0	U
MW-8B	D	0.5	1	6.5	9.0		4.0	U
MW-9B	D	0.3	1	10	2.2	1	4.0	U
MW-10B	D	0.3	U	9.1	1.2	U	4.0	U
MW-11B	D	0.3	U	14	2.4	i	4.0	U
MW-12B	D	0.3	U	8.2	1.2	U	4.0	U
MW-13B	D	0.3	U	8.8	1.2	U	4.0	U
MW-16B	D	0.6	1	8.4	3.6	1	4.0	U
MW-17B	D	0.3	U	12	2.5	I	4.0	1
MW-18B	D	0.3	U	17	1.5	1	4.0	U
MW-19B	D	0.3	U	16	1.9	1	4.0	U
MW-20B	D	1.4	1	16	12		5.0	1
MW-21B	D	0.6	1	15	2.9	I	4.0	U
MW-22B	В	1.4	1	9.8	6.8		4.0	U
MW-23B	В	0.4	1	10	1.2	U	9.0	- 1
MW-2C	В	0.3	U	4.7	1.2	U	4.0	U
MW-3C	В	6.9		5	1.7	1	3910	
MW-4C	В	0.5	1	7.8	2.7	I	4.0	1
MW-5C	В	0.3	U	8.6	1.2	U	4.0	U
MW-7C	D	0.3	U	6.1	1.4	I	4.0	U
MW-8C	D	0.3	U	5.9	1.6	1	4.0	U
MW-9C	D	3.8		6.4	2.9	1	4.0	U
MW-10C	D	0.4	i	6.8	2.1	i.	4.0	U
MW-11C	D	0.3	U	11	1.2	U	4.0	U
MW-12C	D	0.3	U	5.7	1.2	U	4.0	U
MW-13C	D	0.3	U	7.7	1.2	U	4.0	U
MW-16C	D	0.3	U	12	2.0	- !-	4.0	U
MW-17C	D	0.3	U	12	2.4	<u> </u>	4.0	U
MW-18C	D	0.4	_!	12	2.8	ı	4.0	U
MW-19C	D	0.6		10	6.4		4.0	U
MW-20C	D	0.6		9.6	4.9	1	5.0	
MW-21C	D	0.6		8.9	4.0	1	4.0	U
MW-22C	B	1.5		6.3	1.2	U	6.0	
MW-23C	В	0.4	1	5.4	1.3	I.	4.0	U
Dup-1 (MW-9A)	1 1	1.0	1	11	1.6	1	4.0	U

¹ U = Not detected at value represented

² I = Value is estimated to be between method detection limit and practical quantitation limit.

³ Constituent detections are shown in shaded cells (green color)

⁴ Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

⁵ Well type: (B) Background well (D) Detection well

TABLE 4 (1 of 2)

SUMMARY OF ANALYTICAL RESULTS (DISSOLVED METALS) 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID	Туре	Arsenic (ug/L)		Barium (ug/L)	Chrom (ug/l		Iron (mg/L)
GCTL		10		2,000	100		0.3
MW-2A	В	NA		NA	l NA		NA
MW-3A	В	NA		NA	NA NA		NA NA
MW-4A	В	NA		NA	NA NA		NA
MW-5A	В	NA		NA	NA NA	\rightarrow	NA
MW-7A	D	NA		NA	NA NA		NA
MW-8A	D	NA		NA	NA		NA
MW-9A	D	NA		NA	NA		NA
MW-10A	D	NA		NA	NA		NA
MW-11A	D	NA		NA	NA		NA
MW-12A	D	NA		NA	NA		NA
MW-13A	D	NA		NA	NA		NA
MW-16A	D	NA		NA	NA		NA
MW-17A	D	NA		NA	NA		NA
MW-18A	D	NA		NA	NA		NA
MW-19A	D	NA		NA	NA		NA
MW-20A	D	NA		NA	NA		NA
MW-21A	D	NA		NA	NA		NA
MW-22A	В	NA		NA	NA NA		NA
MW-23A	В	NA		NA	NA		NA
MW-2B	В	NA		NA	NA		NA
MW-3B	В	NA		NA	NA		NA
MW-4B	В	NA NA		NA	NA NA		NA
MW-5B	В	NA		NA	NA NA		NA .
MW-7B	D	NA		NA 24	NA 1.5		NA 0.8
MW-8B	D	0.3 NA	I	31 NA	1.5 NA		0.8 NA
MW-9B MW-10B	D	NA		NA NA	NA NA		NA
MW-11B	D	NA		NA NA	NA NA		NA NA
MW-11B	D	NA		NA NA	NA NA		NA
MW-12B	D	NA		NA	NA NA		NA
MW-16B	D	0.2	1	19	0.8	U	1.4
MW-17B	D	NA		NA	NA		NA
MW-18B	D	NA		NA	NA		NA
MW-19B	D	NA		NA	NA		NA
MW-20B	D	0.3	1	12	0.8	U	1.4
MW-21B	D	NA		NA	NA		NA
MW-22B	В	0.3	1	11	0.8	U	0.1
MW-23B	В	NA		NA	NA		NA
MW-2C	В	NA		NA	NA		NA
MW-3C	В	NA		NA	NA		NA
MW-4C	В	NA		NA	NA		NA
MW-5C	В	NA		NA	NA		NA
MW-7C	D	NA		NA	NA		NA
MW-8C	D	NA	-	NA	NA		NA
MW-9C	D	NA		NA	NA NA		NA NA
MW-10C	D	NA	-	NA NA	NA NA		NA NA
MW-11C	D	NA		NA NA	NA NA		NA NA
MW-12C MW-13C	D	NA NA		NA NA	NA NA		NA NA
MW-16C	D	NA NA	 -	NA NA	NA NA		NA NA
MW-16C MW-17C	D	NA		NA NA	NA NA		NA NA
MW-17C	D	NA		NA	NA NA		NA NA
MW-19C	D	0.2	U	29	0.8	U	0.9
MW-20C	D	0.2	U	38	0.8	U	1.3
MW-21C	D	0.7		61	3.0		1.5
MW-22C	В	NA		NA	NA		NA
MW-23C	В	NA		NA	NA		NA

¹ U = Not detected at value represented

 $^{^{2}}$ I = Value is estimated to be between method detection limit and practical quantitation limit.

³ Constituent detections are shown in shaded cells (green color)

⁴ Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

⁵ Well type: (B) Background well (D) Detection well

TABLE 4 (2 of 2)

SUMMARY OF ANALYTICAL RESULTS (DISSOLVED METALS) 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID	Туре	Lea (ug/l		Sodium (mg/L)	Zinc (ug/L)
GCTL		15	-/	180	5,000	
MW-2A	В	NA		NA	l NA	
MW-3A	В	NA	-	NA NA	NA NA	-
	В	NA		NA NA	NA NA	_
MW-4A MW-5A	В	NA		NA NA	NA NA	-
	D	NA		NA NA	NA NA	-
MW-7A	D	NA NA		NA NA	NA NA	-
MW-8A	D	NA NA	-	NA NA	NA NA	
MW-9A	D	NA NA		NA NA	NA NA	-
MW-10A	D	NA NA		NA NA	NA NA	-
MW-11A		NA NA		NA NA	NA NA	
MW-12A	D	NA NA		NA NA	NA NA	-
MW-13A	D	NA NA		NA NA	NA NA	-
MW-16A	D	NA NA		NA NA	NA NA	-
MW-17A	D	NA NA		NA NA	NA NA	-
MW-18A	D	NA NA		NA NA	NA NA	
MW-19A MW-20A	D	NA NA		NA NA	NA NA	-
MW-20A MW-21A	D	NA NA		NA NA	NA NA	-
MW-21A MW-22A	В	NA NA		NA NA	NA NA	-
MW-22A MW-23A	В	NA NA		NA NA	NA NA	-
MW-23A MW-2B	В	NA NA	_	NA NA	NA NA	
MW-2B MW-3B	В	NA NA		NA NA	NA NA	
MW-4B	В	NA		NA NA	NA NA	-
MW-4B	В	NA NA	_	NA NA	NA NA	+-
MW-7B	D	NA		NA NA	NA NA	-
MW-8B	D	2.7		6.5	4.0	U
MW-9B	D	NA		NA NA	NA	-
MW-9B	D	NA	_	NA NA	NA NA	_
MW-10B	D	NA		NA NA	NA NA	
MW-11B	D	NA		NA NA	NA NA	-
MW-12B	D	NA		NA NA	NA NA	-
MW-16B	D	0.2	U	8.2	4.0	U
MW-10B	D	NA	- 0	NA	NA NA	
MW-17B	D	NA		NA NA	NA NA	
MW-19B	D	NA		NA NA	NA NA	
MW-20B	D	0.2	U	16.0	12.0	
MW-21B	D	NA		NA	NA	
MW-22B	В	0.2	U	9.7	4.0	U
MW-23B	В	NA		NA	NA	
MW-2C	В	NA		NA	NA	
MW-3C	В	NA		NA NA	NA NA	
MW-4C	В	NA		NA NA	NA	
MW-5C	В	NA		NA	NA	
MW-7C	D	NA		NA	NA	
MW-8C	D	NA		NA	NA	
MW-9C	D	NA		NA	NA	
MW-10C	D	NA		NA	NA	
MW-11C	D	NA		NA	NA	
MW-12C	D	NA		NA	NA	
MW-13C	D	NA		NA	NA	
MW-16C	D	NA		NA	NA	
MW-17C	D	NA		NA	NA	
MW-18C	D	NA		NA	NA	
MW-19C	D	0.2	U	10.0	4.0	U
MW-20C	D	0.2	U	9.4	4.0	U
MW-21C	D	0.9	I	9.6	4.2	1
MW-22C	В	NA		NA	NA	
MW-23C	В	NA		NA	NA	

¹ U = Not detected at value represented

² I = Value is estimated to be between method detection limit and practical quantitation limit.

³ Constituent detections are shown in shaded cells (green color)

⁴ Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

⁵ Well type: (B) Background well (D) Detection well

TABLE 5 (1 of 2)

SUMMARY OF ANALYTICAL RESULTS (VOLATILE COMPOUNDS) 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID Type GCTL		Acetone (ug/L) 6,300		(ug/l	Benzene (ug/L) 1.0		2-Butanone (MEK) (ug/L)		
				1.0			0	30	
MW-2A	В	5.7		0.5	U	0.56	U	0.1	U
MW-3A	В	3.3	1	0.9	1	0.56	U	0.38	1
MW-4A	В	2.7	1	0.5	U	0.56	U	0.19	1
MW-5A	В	2.4	U	0.8	1	0.56	U	0.1	U
MW-7A	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-8A	D	2.4	U	0.5	U	0.56	Ü	0.1	U
MW-9A	D	2.4	U	7.7	U	0.56	U	3.1	U
	D	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND							
MW-10A		3.2	1	1.3		0.56	U	0.1	U
MW-10A (R)	D	2.4	U	1.3	A-9-1	0.56	U	0.1	U
MW-11A	D	2.5	1	1.8		0.56	U	0.1	U
MW-12A	D	2.4	1	0.5	U	0.56	U	0.1	U
MW-13A	D	3.8	1	0.5	U	0.56	U	0.1	U
MW-16A	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-17A	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-18A	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-19A	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-20A	D	13	ı	0.5	U	22	<u> </u>	0.1	U
MW-21A	D	2.4	Ü	0.5	U	0.56	U	0.1	U
	B		U						
MW-22A	B	2.4		0.5	U	0.56	U	0.1	U
MW-23A		2.4	U	0.5	U	0.56	U	0.1	U
MW-2B	В	2.4	U	0.5	U	0.56	U	0.1	U
MW-3B	В	2.4	U	0.5	U	0.56	U	0.1	U
MW-4B	В	2.7	1	0.5	U	0.56	U	0.1	U
MW-5B	В	2.4	U	0.5	U	0.56	U	0.1	U
MW-7B	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-8B	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-9B	D	2.4	U	0.5	U	0.56	U	0.1	U
	D	_	l l						
MW-10B		3.6		0.5	U	0.56	U	0.1	U
MW-11B	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-12B	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-13B	D	120		0.5	U	0.56	U	0.1	U
MW-16B	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-17B	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-18B	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-19B	D	3.7	I	0.5	U	0.56	U	2.0	
MW-20B	D	2.4	Ü	0.5	Ü	0.56	U	0.1	U
MW-21B	D	2.4	U	0.5	U	0.56	U	0.1	U
	В					The state of the s			
MW-22B	B	2.4	U	0.5	U	0.56	U	0.1	U
MW-23B		2.4	U	0.5	U	0.56	U	0.1	U
MW-2C	В	2.4	U	0.5	U	0.56	U	0.1	U
MW-3C	В	3	1	0.5	U	0.56	U	0.1	U
MW-4C	В	3.3	1	0.5	U	0.56	U	0.1	U
MW-5C	В	2.4	U	0.5	U	0.56	U	0.1	U
MW-7C	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-8C	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-9C	D	2.4	U	0.5	U	0.56	U	0.1	U
	D		U				U		U
MW-10C		2.4		0.5	U	0.56		0.1	_
MW-11C	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-12C	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-13C	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-16C	D	2.4	U	0.5	U	0.56	U	0.33	1
MW-17C	D	2.4	U	0.5	U	0.56	U	0.1	. U
MW-18C	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-19C	D	2.4	U	0.5	U	0.56	U	0.1	U
	D	2.4	U	0.5			U		U
MW-20C					U	0.56		0.1	
MW-21C	D	2.4	U	0.5	U	0.56	U	0.1	U
MW-22C	В	2.4	U	0.5	U	0.56	U	0.1	U
MW-23C	В	2.4	U	0.5	U	0.56	U	0.1	U
Dup-1 (MW-9A)		2.4	U	7.8		0.56	U	2.9	
Oup-2 (MW-16C)		2.4	U	0.5	U	0.56	U	0.3	I

¹ U = Not detected at value represented

I = Value is estimated to be between method detection limit and practical quantitation limit.
 Constituent detections are shown in shaded cells (green color)
 Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

⁵ Well type: (B) Background well (D) Detection well

⁶ (R) = Indicate that resampling was performed.

TABLE 5 (2 of 2)

SUMMARY OF ANALYTICAL RESULTS (VOLATILE COMPOUNDS) 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID	Туре	cis-1,2-Dichloroethene (ug/L)		m&p-Xylenes (ug/L)		o-Xylene (ug/L)		Toluene (ug/L)		Vinyl Chloride (ug/L)	
GCTL		70		20		20		40		1.0	-
MW-2A	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-3A	В	0.12	U	0.44	1	0.24	1	0.52	U	0.25	U
MW-4A	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-5A	В	0.12	U	0.22	U	0.1	U	0.52	U	0.53	1
MW-7A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-8A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-9A	D	2.3		7.5		3.3		1.6		2.1	
MW-10A	D	0.94	1	0.22	U	0.1	U	0.52	U	0.64	1
MW-11A	D	0.59	1	0.53	1	0.1	U	0.52	U	0.74	1
MW-12A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.53	1
MW-13A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-16A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-17A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-18A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-19A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-20A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-21A	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-22A MW-23A	B	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
									U	Control of the last of the las	U
MW-2B	В	0.12	U	0.22	U	0.1	U	0.52		0.25	
MW-3B	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-4B	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-5B	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-7B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-8B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-9B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-10B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-11B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-12B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-13B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-16B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-17B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-18B	D	0.12	U	0.22	U	0.1	U	16		0.25	U
MW-19B	D	0.12	U	0.22	U	0.1	U	2.0		0.25	U
MW-20B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-21B	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-21B MW-22B	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-22B MW-23B	B	0.12	U	0.22	U	0.1	U	0.58	li li	0.25	U
THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1	В	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-2C		0.12							U	0.25	U
MW-3C	В	0.12	U	0.22	U	0.1	U	0.52			
MW-4C	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-5C	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-7C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-8C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-9C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-10C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-11C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-12C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-13C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-16C	D	0.12	U	0.22	U	0.1	U	5.2		0.25	U
MW-17C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-18C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-19C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-20C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-21C	D	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-22C	В	0.12	U	0.22	U	0.1	U	0.52	U	0.25	U
MW-23C	В	0.12	U	0.22	Ü	0.1	U	0.52	U	0.25	U
Oup-1 (MW-9A)		2.4		6.8		3.1		1.6		2.2	
up-1 (111 11 -3/1)		THE RESERVE OF THE PARTY OF THE	CONTRACTOR OF THE PARTY OF THE	0.0	U	0.1	NAME OF TAXABLE PARTY.		1000000	6.6	U

¹ U = Not detected at value represented

 $^{^{2}}$ I = Value is estimated to be between method detection limit and practical quantitation limit.

³ Constituent detections are shown in shaded cells (green color)

⁴ Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

⁵ Well type: (B) Background well (D) Detection well

TABLE 6
SUMMARY OF ANALYTICAL RESULTS (MISCELLANEOUS)
9HT SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Well ID	Туре	Ammonia-N (mg/L)	Cloride (mg/L)	Nitrate-N (mg/L)		Total Dissolved Solids (mg/L)		
GCTL		2.8	250	10		500		
MW-2A	В	0.6	30	0.038	U	85		
MW-3A	В	6.1	54	0.038	U	300		
MW-4A	В	4.3	46	0.038	U	200		
MW-5A	В	14	43	0.038	U	210		
MW-7A	D	3.7	27	0.038	U	96		
MW-8A	D	3.0	64	0.038	U	190		
MW-9A	D	16	22	0.038	U	160		
MW-10A	D	12	18	0.038	U	140		
MW-11A	D	8.8	17	0.038	U	200		
MW-12A	D	0.3	9	0.038	U	73		
MW-13A	D	1.5	11	0.038	U	110		
MW-16A	D	0.2	6	0.160	ı	52		
MW-17A	D	0.3	10	0.170	-i	52		
MW-18A	D	1.2	12	0.160	-li	87		
MW-19A	D	3.3	12	0.038	U	230		
MW-20A	D	0.6	6	0.150	ı	130		
MW-20A MW-21A	D	0.02 U	12	0.200		73		
MW-21A MW-22A	В	0.02	14	0.220		67		
MW-22A MW-23A	В	0.4	29	0.038	U	130		
CONTRACTOR OF THE PARTY OF THE	В	0.4	11	0.038	U	46		
MW-2B								
MW-3B	В	0.2	23	0.038	U	61		
MW-4B	В	6.9	100	0.038	U	660		
MW-5B	В	0.2	14.0	0.038	U	51		
MW-7B	D	0.1	21	0.038	U	68		
MW-8B	D	0.2	9.6	0.038	U	110		
MW-9B	D	0.1	17	0.038	U	67		
MW-10B	D	0.1	11	0.038	U	57		
MW-11B	D	0.1	15	0.038	U	63		
MW-12B	D	0.1	18	0.038	U	60		
MW-13B	D	0.1	13	0.038	U	46		
MW-16B	D	0.3	15	0.038	U	65		
MW-17B	D	0.2	29	0.038	U	65		
MW-18B	D	0.03	23	0.038	U	69		
MW-19B	D	0.1	27	0.038	U	34		
MW-20B	D	0.2	29	0.038	U	160		
MW-21B	D	0.2	27	0.150	1	56		
MW-22B	В	0.1	13	0.150	1	62		
MW-23B	В	0.1	17	0.038	U	32		
MW-2C	В	0.1	7.0	0.038	U	34		
MW-3C	В	0.1	7.6	0.038	U	46		
MW-4C	В	0.2	9.4	0.038	U	90		
MW-5C	В	0.1	15	0.038	U	60		
MW-7C	D	0.1	7.6	0.038	U	45		
MW-8C	D	0.1	7.5	0.038	U	44		
MW-9C	D	0.2	9	0.038	U	68		
MW-10C	D	0.2	7.5	0.038	U	39		
MW-11C	D	0.1	17	0.038	U	79		
MW-12C	D	0.1	8.2	0.038	U	41		
MW-13C	D	0.1	12	0.038	U	41		
MW-16C	D	0.2	21	0.038	U	67		
MW-17C	D	0.2	18	0.038	U	78		
MW-18C	D	0.1	21	0.038	U	73		
MW-19C	D	0.2	18	0.038	U	72		
MW-20C	D	0.2	21	0.038	U	75		
MW-21C	D	0.2	20	0.150	1	85		
MW-22C	В	0.1	9.1	0.150	i	300		
MW-23C	В	0.1	8.6	0.038	U	54		
Oup-1 (MW-9A)		16	23	0.038	U	180		
Jub-1 (INI M3H)		0.1	21	0.038	U	41		

¹ U = Not detected at value represented

² I = Value is estimated to be between method detection limit and practical quantitation limit.

³ Constituent detections are shown in shaded cells (green color)

⁴ Constituent detections exceeding the GCTL are shown in shaded cells (tan color)

 $^{^{\}rm 5}$ Well type: (B) Background well (D) Detection well

Table 7

(1 of 3)

GROUNDWATER LEVEL MEASUREMENTS 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Location:	me: JED Solid Waste Management Facility ion: Osceola County, Florida Field Conditions: clear, ~78 F ate: 3-Nov-2008										
Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Obscrvations					
DP-1	Piezometer Abandoned 03 October 2003										
DP-2	Piezometer Abandoned 03 October 2003										
DP-3	Piezometer Abandoned 16 January 2006										
DP-4	Piezometer Abandoned 16 January 2006										
DP-5	Piezometer Abandoned 10 July 2007										
DP-6	Piezometer Abandoned 10 July 2007										
DP-7	Piezometer Abandoned 10 July 2007										
DP-8	Piezometer Abandoned 10 July 2007										
DP-9	Piezometer Abandoned 10 July 2007										
DP-10				Piezometer A	bandoned 10	July 2007					
DP-11	***************************************	.,,,,,	**********************	Piezometer A	bandoned 10	July 2007					
DP-12	Piezometer Abandoned 10 July 2007										
DP-13	Piezometer Abandoned 11 July 2007										
DP-14	13:20	82.0	4.58	18.6	77.39						
DP-15	13:20	82.0	4.53	53.7	77.45	protective easing lid broken					
DP-16	9:48	82.6	3.88	18.5	78.69	protective easing hinge rusted					
DP-17	9:48	82.6	3.95	53.7	78.63	protective easing hinge rusted					
DP-18	8:25	84.4	5.29	52.9	79.09	protective casing rusted, lid broken					
DP-19	8:25	84.3	5,21	18.4	79.13	protective easing lid broken					
DP-20	10:25	83.1	3.03	18.4	80.04	protective casing lid broken					
DP-21	10:25	83.0	3.30	53.7	79.70						
DP-22	10:05	81.0	4.00	18.6	77.00	protective casing lid broken					
DP-23	10:05	81.3	3.81	53.8	77.46						
DP-24	10:20	82.2	3.76	18.6	78.46	protective casing lid broken					
SZ-1				Piezometer A	bandoned 10	July 2007					
SZ-2	10:25	83.2	5.55	75.4	77.61	protective casing lid broken					
SZ-3	10:05	81.3	4.33	78.9	76.94	protective casing lid broken					
MW-IA	7:35	95.1	16.02	23,0	79.10	protective casing rusting inside					
MW-1B	7:35	95.0	15.88	47.9	79.12	protective casing rusting inside and dented					
MW-1C	7:35	95.2	16.15	74.4	79.03	protective casing rusting inside					
MW-2A	7:43	95.2	14.88	22.6	80.33	protective casing rusting inside, lid broken					
MW-2B	7:43	95.2	14.85	48.1	80.32	protective easing rusting inside, lid broken					
MW-2C	7:43	95.3	15.21	68,4	80.11	protective casing rusting inside					
MW-3A	7:48	94.6	14.18	22.8	80.46	protective easing rusting inside					
MW-3B	7:48	94.7	14.19	47.7	80.49	protective casing rusting inside					
MW-3C	7:48	94.7	14.30	68.8	80.36	Lid Broken					

Table 7

(2 of 3)

GROUNDWATER LEVEL MEASUREMENTS 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

 Site Name:
 JED Solid Waste Management Facility
 Sampling Personnel:
 Joe Terry

 Location:
 Osceola County, Florida
 Field Conditions:
 clear, ~78 F

Date: 3-Nov-2008

Date: _	5-110	v-2008							
Well		тос	Depth to	Well	GW				
ID	Time	Elevation	Water (ft)	Depth (ft)	Elevation	Field Observations			
MW-4A	7:52	95.5	15.61	23.1	79.87	protective casing rusting inside, lid broken			
MW-4B	7:52	95.2	15.25	47.4	79.93	protective casing rusting inside, lid broken			
MW-4C	7:52	95.4	15.60	72.6	79.79	protective casing rusting inside			
MW-5A	7:55	95.3	15.90	22.5	79,42	protective casing rusting inside			
MW-5B	7:55	95.3	16.03	47.1	79.27	protective casing rusting inside			
MW-5C	7:55	95.4	16.34	73.0	79.05	protective casing rusting inside			
MW-6A	8:05	94.7	16.13	22.6	78.59	protective casing rusting inside			
MW-6B	8:05	94.6	15.99	47.5	78.61	protective easing rusting inside			
MW-6C	8:05	94.6	16.08	73,1	78.50	protective casing rusting inside			
MW-7A	11:00	95.5	16.70	23.3	78.78	protective casing rusting inside, lid broken			
MW-7B	11:00	95.3	16.48	48.0	78.79	protective easing rusting inside, lid broken			
MW-7C	11:00	94.9	16.35	73.4	78.58	protective easing rusting inside, lid broken			
MW-8A	10:55	94,7	15.83	22.5	78.84	protective casing rusting inside, lid broken			
MW-8B	10:55	94.6	15.79	49.3	78.79	protective casing hinge rusted			
MW-8C	10:55	94.5	15.94	73.8	78.56	protective easing hinge rusted			
MW-9A	10:50	94.7	16.07	22,4	78.59	protective easing hinge rusted			
MW-9B	10:50	94.6	16.08	49.1	78.55	protective casing hinge rusted			
MW-9C	10:50	94.5	16.21	74.7	78.33	protective casing rusting inside			
MW-10A	10:45	96.3	17.73	22.1	78.52	protective casing hinge rusted			
MW-10B	10:45	96.2	17.73	48.3	78.50	protective casing hinge rusted			
MW-10C	10:45	96.4	18.05	74.9	78.31	protective casing hinge rusted			
MW-IIA	10:42	93.6	15.34	22.8	78.22	protective casing rusting inside			
MW-11B	10:42	93.6	15.38	47.9	78.21	protective easing rusting inside			
MW-HC	10:42	93.7	15.47	73.6	78.18	protective casing rusting inside			
MW-12A	10:37	95.1	16.67	23.0	78.43	protective casing rusting inside			
MW-12B	10:37	95.0	16.72	49.0	78.29	protective easing rusting inside			
MW-12C	10:37	95.1	16.84	73.6	78.26	protective easing rusting inside			
MW-13A	10:30	95.2	16.65	22.5	78.54	protective easing rusting inside			
MW-13B	10:30	95.1	16.58	47.3	78.54	protective casing rusting inside			
MW-13C	10:30	95.0	16.57	73.0	78.47	protective casing rusting inside			
MW-14A		1	N	tonitoring Wel	l Abandoned	10 July 2007			
MW-14B			N	Ionitoring Wel	Abandoned	10 July 2007			
MW-14C		Monitoring Well Abandoned 10 July 2007							
MW-15A		Monitoring Well Abandoned 10 July 2007							
MW-15B	Monitoring Well Abandoned 10 July 2007								
MW-15C	Monitoring Well Abandoned 10 July 2007								

Table 7

(3 of 3)

GROUNDWATER LEVEL MEASUREMENTS 9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT J.E.D. SOLID WASTE MANAGEMENT FACILITY

Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
MW-16A	9:10	88.69	9.04	18.63	79.65	
MW-16B	9:10	88.73	9.43	38.09	79.30	
MW-16C	9:10	88.77	9.75	67.65	79.02	
MW-17A	9:05	88.86	9.30	19.88	79.56	
MW-17B	9:05	88.79	9.37	40.18	79.42	
MW-17C	9:05	88.85	9.66	67.33	79.19	
MW-18A	9:00	87.56	8.73	17.70	78.83	
MW-18B	9:00	87.43	8.60	37.80	78.83	
MW-18C	9:00	87.42	8.60	67.15	78.82	
MW-19A	8:40	87.54	8.33	17.65	79.21	
MW-19B	8:40	87.64	8.41	37.73	79.23	
MW-19C	8:40	87.44	8.28	66.70	79.16	
MW-20A	8:35	87.12	7.39	17.93	79.73	
MW-20B	8:35	87.27	7.58	37.76	79.69	
MW-20C	8:35	87.35	7.96	66.75	79.39	
MW-21A	8:30	87.20	8.07	18.04	79.13	
MW-21B	8:30	87.23	8.11	37.63	79.12	
MW-21C	8:30	87.13	8.19	62.57	78.94	
MW-22A	8:15	87.71	9.99	18.00	77.72	
MW-22B	8:15	87.69	10.04	37.96	77.65	
MW-22C	8:15	87.55	9.81	67.25	77.74	
MW-23A	7:30	97.90	23.09	27.75	74.81	
MW-23B	7:30	97.91	23.06	42.75	74.85	
MW-23C	7:30	97.93	23.05	67.05	74.88	

Table 8

SUMMARY OF SURFACE WATER FIELD MEASUREMENTS AND ANALYTICAL RESULTS

9TH SEMI-ANNUAL WATER QUALITY MONITORING REPORT

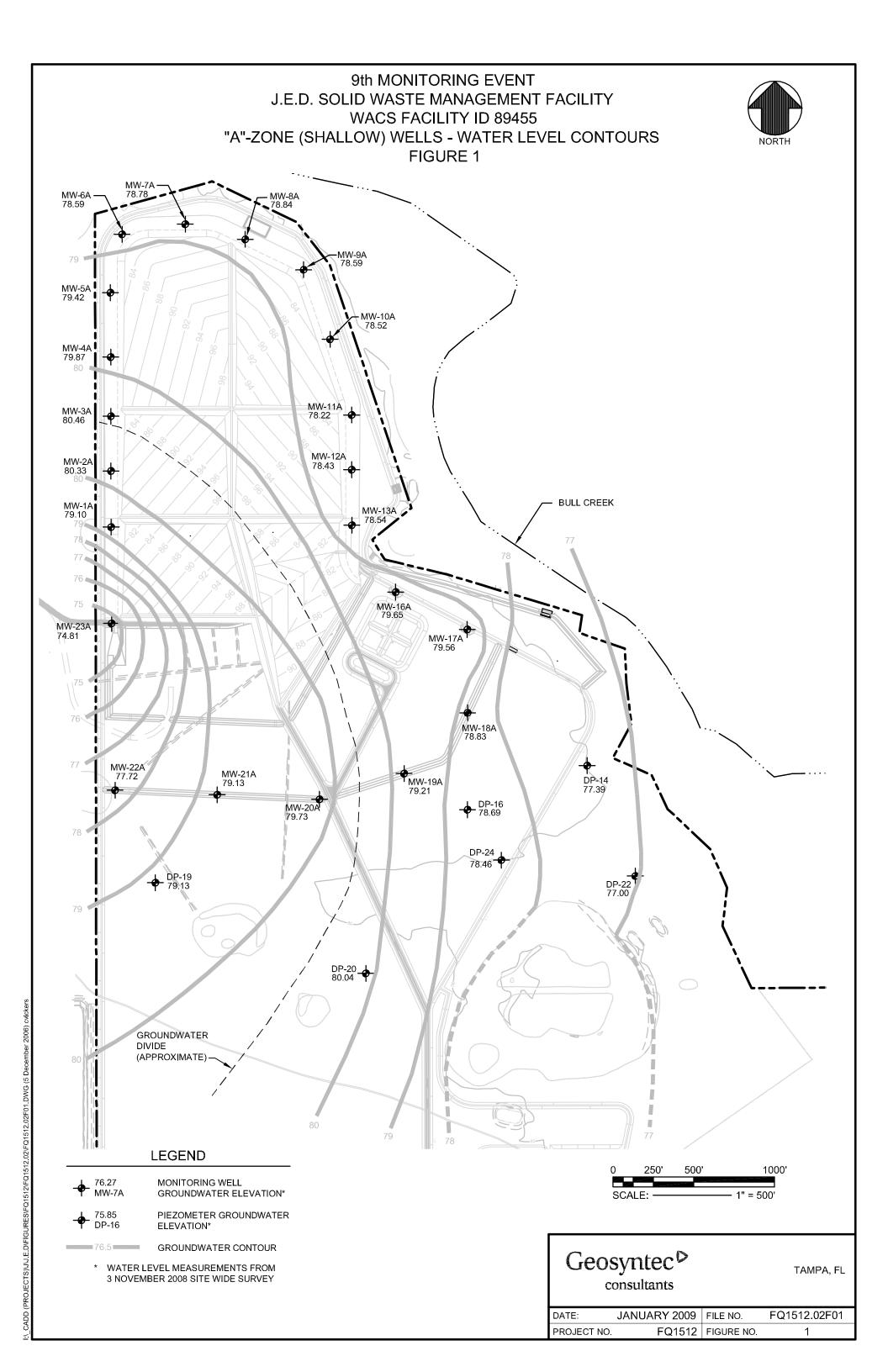
J.E.D. SOLID WASTE MANAGEMENT FACILITY

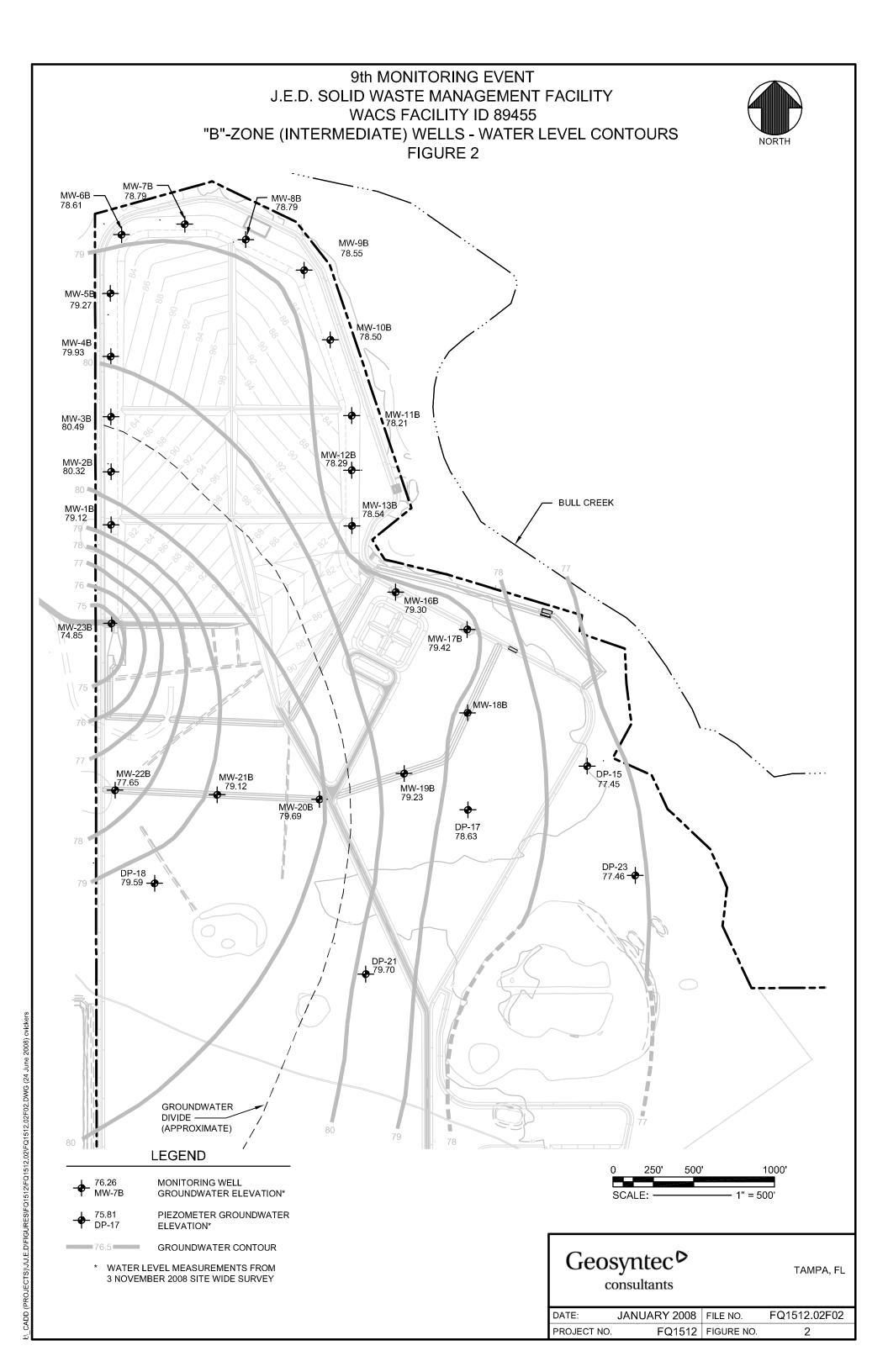
Parameter	Analytical Method	Units	FL-SWQC Class	Monitoring Location			
r arameter	Analytical method	Offics	111	SW-3	SW-4		
Arsenic	6020	ug/L	t 5 440 t	0.61	ND		
Barium	6020	ug/L	_ !	11	12		
COD	410.2	mg/L	-	74	76		
Fecal Coliform	SM 9222D	#/100mL	800	23	460		
Hardness as CaCO3	6010B	mg/L	-	15	13		
lron	6010B	mg/L	1	0.742	0.817		
Nitrogen, Total as N	351.2/300.0	mg/L -		0.78	0.83		
Organic Carbon, Total	415.1	mg/L		29	31		
Phosphorus, Total	365.1	mg/L	-	0.03	0.04		
Total Dissolved Solids	160.1	mg/L	-	87	84		
Dissolved Oxygen	Field Measurement	i mg/L	5	6.8	5.36		
pН	Field Measurement	std units	6-8.5	5.06	4.7		
Temperature	Field Measurement	°C	_	17.56	18.00		
Conductivity	Field Measurement	uS/cm	< 50% above background or 1275, whichever is >	56	55		
Turbidity	Field Measurement	NTU	< 29 above background	0.2	0.2		
Water Elevation ⁽¹⁾	Field Measurement	ft		73.30	77.55		

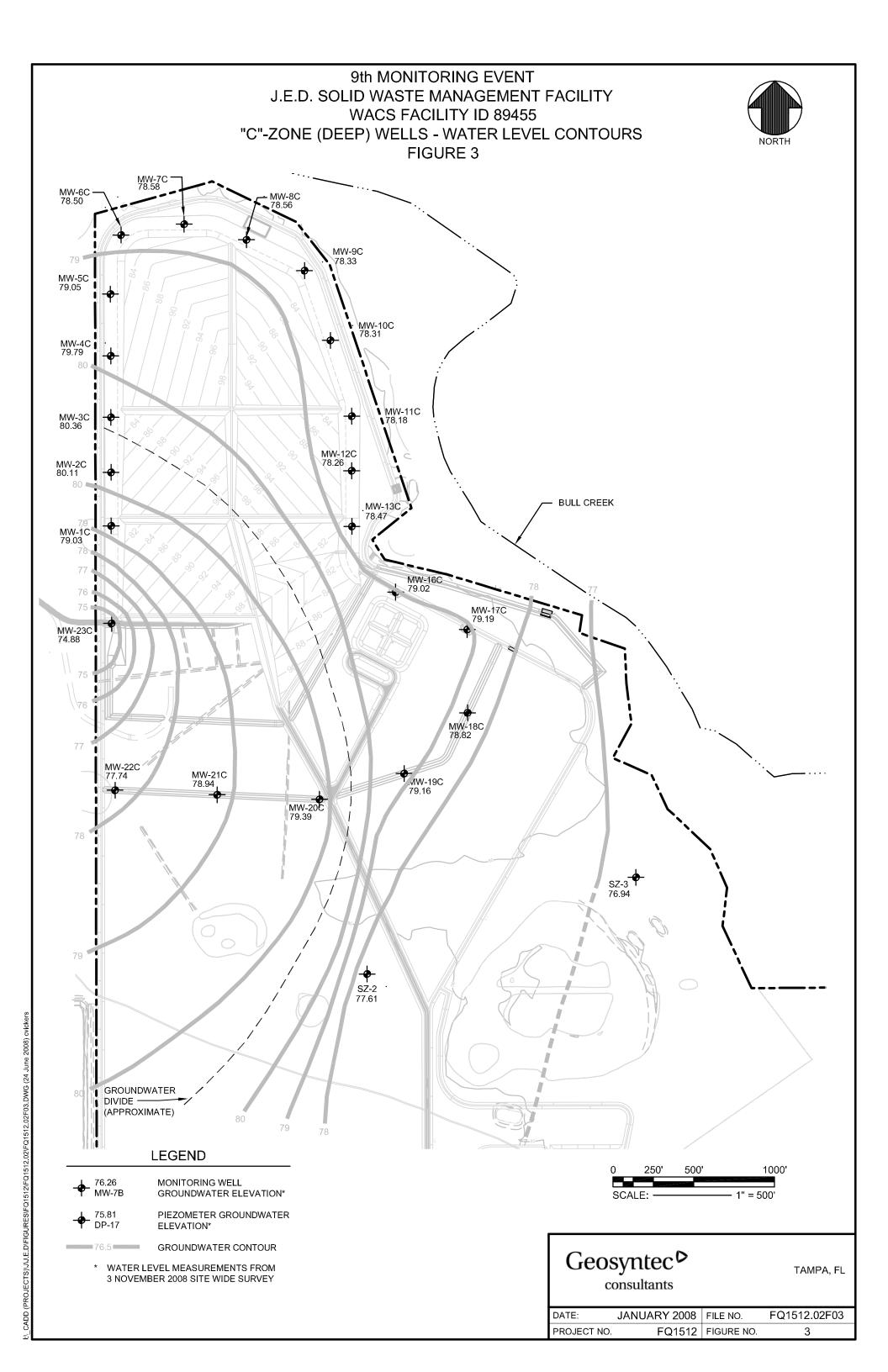
Notes (1): Surface Water Elevations referenced to NGVD 1929

Table 9
SUMMARY OF FIELD MEASUREMENTS AND ANALYTICAL RESULTS FOR LEACHATE SAMPLES
9TH SEMI-ANNUAL WATER QUALITY MONITORING EVENT

Dougnaston	Units	Regulatory				Moni	toring Loc	ation	S			
Parameter	Units	Level 1	L-1		L-2		L-3		L-4		L-5	
			FIELD MI	EASU	REMENTS		808000					
Temperature	°C		28.90		28.79		27.66		33.05		29.86	
рН	Std Units		7.3		6.2		6.5		7.2		5.2	
Conductivity	mS/cm		20.800		11.820		3.415		15.800		6.37	
Turbidity	NTU		5.0		8.3		34.7		0.1		87.7	
ORP	m∨		-194.8		-215.7		-184.1		-111.5		-89.7	
Dissolved Oxygen	mg/L		0.57	************	2.77		1.06	-,,,,,,,,,,,	0.85		2.68	
		,	ANALYT	ICAL	RESULTS							
1,4-Dichlorobenzene	UG/L		7.5		5.7	1	2.8	U	12	**********	6.9	
2-Butanone (MEK)	UG/L	200,000	5.6	U	360	,,	580		5.6	U	24000	
4-methyl-2-pentanone (MIBK)	UG/L		3.7	U	28	ı	7.4	U	3.7	U	260	************
4-Methylphenol	UG/L		2.4		0.86	U	110		2	1	1900	,,,,,,,,,,,,
Acetone	UG/L		31	 	300	ı	420	I	50	l	11000	***************************************
Alkalinity, Total (as CaCO3)	MG/L		2800		570		720		2600		880	
AMMONIA-N	MG/L		720	************	370		190		780		210	
Antimony	UG/L		24		10		5		39	***********	3.4	
Arsenic	UG/L	5,000	24		39	,,,,,,,,,,,,	13		36		13	
Barium	UG/L	100,000	912	*************	305		126	***********	469	**********	244	
Benzene	UG/L	500	5.2	U	11	************	12	1	5.7		16	
Beryllium	UG/L		1.9	,	0.4		0.3	I	1.9	**********	0.4	1
bis(2-chloroethoxy)methane	UG/L		1.1	U	13		1.1	U	1.2	U	26	U
Cadmium	UG/L	1,000	2.8		0.99		0.72		6.1	**********	0.12	U
Chloride	MG/L		4100	************	4700	************	930	***********	2300	************	830	
Chromium	UG/L	5,000	314	*************	97		46		538		24	
Cobalt	UG/L		16	*************	4.6		5.1	************	21		2	
Copper	UG/L		11	************	6.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.7		46		7.6	
Cyanide, Total	MG/L		0.02		0.012		0.013		0.038	***********	0.004	U
Ethylbenzene	UG/L		27		38	***********	30		22		30	
Ethylene dichloride	UG/L		1.5	U	1.5	U	3	U	1.5	U	40	
iron	UG/L		5150		4370	*******	3380		2130		18900	
Lead	UG/L	5,000	73		6.8		5.1		49		2.4	
m&p-Xylenes	UG/L		30		40		35	Ι	26		39	************
Nickel	UG/L		252		58	************	37	**********	110		58	
o-Xylene	UG/L		16		23		16	ı	15	************	17	
Selenium	UG/L	1,000	34		48		18		85	*********	5.1	*************
Sodium	MG/L		2190		1940	***********	481	**************	1290		475	
Sulfide	MG/L		4.4	,	15		4.9		5.2		13	
Tin	UG/L		8.3		1.4		0.5	I	13	*************	0.8	
Toluene	UG/L		13	************	48		54	************	27		490	
Total Dissolved Solids	MG/L	•	13000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8400		2700		11000		3700	
Vanadium	UG/L		472		247		120		691		64	
Zinc	UG/L		26		12	*********	54		39		27	
Notes:	1				<u> </u>		L				ł	


Notes:


¹ Maximum concentration of contaminants for the toxicity characteristic listed in 40 CFR 261.24.


U = Not detected at value represented

I = Value is estimated to be between method detection limit and practical quantitation limit.

Only parameters with detections above the Method Reporting Limit are shown.

					Monitori	ng Well Sar	npling				
Site: J.E.D.	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	6 No	vember 2008	Sampled By	J. Ten	Y
Station (Well	1 No.): <u>MW</u>	1-2A wacs id	19903		'urge Method: Pur	np ⊠ Baile	r □ Pum	p Type: Su	bmersibl e (^	TeflonSS _	Other) X Peristaltic
Pump (Make	& Model): G	eopump IV/ PA Hurric									
Water Level	Meter: Solin	nst	Time @) Start of Pu	rging:	Time @	End of Purg	ing: <u>/53</u>	<u>S</u> Tota	l Purging Time	:_130 nih
Depth of Pur	mp or Intake T	ubing: <u>19.5</u> ft	. (BTOC)								
	ı										
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
	\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			·	·····				

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1520	2.755.7	2.755.75	26.34	5.44	0.134	1.4	-127.7	0.19	clear	15.38	
1527	0.35	3.10 6.10	26.32	5.30	0.134	1,1	-127.9	0.18	cleur	15.38	
1532	0.25	3-356.35		5,31	0,134	1.1	-127.5	0.18	clear	15.38	
2000											
Name of the last o											
CARGO						· · · · · · · · · · · · · · · · · · ·					
WORTH WORTH							-				
500											
7.00				1]				

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:	<u>MW-2A</u>	Time Collected: _	1535	Comments:
------------	--------------	-------------------	------	-----------

Well Type:Flush Mount _X_Stick UpOther
Condition (locked, damaged, etc.): Weil Labeled: Yes No Well Cap: Yes No Well Cap: Tight Loose Comments: (If capped, remove and allow well to stabilize before recording water level) Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft) Depth to Water (initial): 15.20 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth of Well: 22.6 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final): 6.38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Draw down: 0.18 ft. (Depth to Water (initial) – Depth to Water (final)) Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable Detectable Odor: Yes No Describe: Sold Note: NA = Not Applicable Well Volume (WV) = (depth of well – depth to water (milial) x well capacity = (22.6 - 1.7. Z) x 0.16 = 1.2 gal Well Capacity (galfit): 0.75 = 0.02; 1 =0.04; 1.25 =0.06; 2 =0.16; 3 =0.37; 4 =0.65; 5 =1.02; 6 =1.47; 12 =5.88 1 Equipment Volume (EV) = P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.0 z ft) in x (D) 0.0 z ft in x (L) 30 ft.) + (Fc) 0.25 gal = 0.25 gal = 0.75 gal 3 Well/Equipment Volumes = 1.0 gallons Purged Volume (actual): Sample Rate: 0.03 gallons Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other (
Well Labeled:
Well Labeled: Yes No Well Cap: Yes No Well Cap: Yes No Well Cap: Tight Loose Comments: (If capped, remove and allow well to stabilize before recording water level) Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft) Depth to Water (initial): 15.20 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final): 6.38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final): 6.38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final): 6.38 ft. (Depth to Water (initial) – Depth to Water (final)) Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA = Not Applicable Detectable Odor: Yes No Describe: OV Note: NA = Not Applicable 1 Well Volume (WV) = (depth of well – depth to water (inatial)) x well capacity = (22.6 - 15.7 c) x 0.16 = 1.2 gal Well Capacity (gal/ft): 0.75 = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88 1 Equipment Volume (EV) = P + (0.041D x D x L) + Fe Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (D) 0.25 in. x (D) 0.25 gal = 0.25 gal = 0.25 gal 3 Well/Equipment Volumes = 1.0 gallons Purged Volume (actual): 30 ft.) + (Fc) 0.25 gal = 0.25 gal 9 Well Capacity Yes No; Purge Water Discharged to Ground? X Yes No Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 0.05 gpm QA Sample Collected Yes No; Blind Duplicate; EQ Blank; Field Blank; MS/MSD QA Sample ID: QA Sample Time: Filtered: Yes X No Filter Size:
Comments: (If capped, remove and allow well to stabilize before recording water level) Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft) Depth to Water (initial): 15.20 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth of Well: 22.6 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final): 15.38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Draw down: 0.18 ft. (Depth to Water (initial) – Depth to Water (final)) Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable Detectable Odor: X yes No Describe: 50.0 Note: NA = Not Applicable I Well Volume (WV) = (depth of well – depth to water (failall) x well capacity = (22.6 - 1.7.7) x 0.16 = 1.2 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88 I Equipment Volume (EV)= P + (0.041D x D x L) + Fe Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) I EV = (P) 0.0 gal + (0.041 x (D) 0.55 in. x (D) 0.55 in. x (D) 0.55 in. x (D) 0.55 gal = 0.75 gal Well/Equipment Volumes = 1.0 gallons Purged Volume (actual): 255 Gallon Drum Other (1.5 column) Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other (1.5 column) Purge Water Contained? Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD QA Sample ID: QA Sample Time: Filtered: Yes X No Filter Size: 10.7 ghm; All Analyses; Metals Only;
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft) Depth to Water (initial): 15.20 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth of Well: 22.6 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final): 16.38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Draw down: 0.8 ft. (Depth to Water (initial) – Depth to Water (final)) Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable Detectable Odor: Yes No Describe: 0.04 Note: NA = Not Applicable 1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (22.6 - 15.7 c) x 0.16 = 1.2 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88 1 Equipment Volume (EV) = P + (0.041D x D x L) + Fe Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.55 in x (D) 0.25 in x (L) 30 ft.) + (Fc) 0.25 gal = 0.57 yr gal 3 Well/Equipmen Volumes = 10 gallons Purged Volume (actual): 256 gallons Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other (Labeled: Yes No; Purge Water Discharged to Ground? X Yes No Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: 0.03 gpm QA Sample Collected Yes X No; Blind Duplicate; EQ Blank; Field Blank; MS/MSD QA Sample Time: Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Depth to Water (initial):15_20 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth of Well:22 fc ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final):65_38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Draw down:0 fb ft. (Depth to Water (initial) - Depth to Water (final)) Free Product Thickness (if applicable):NA ft.
Depth of Well: 22.6 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Depth to Water (final): /5.38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Draw down: 0./6 ft. (Depth to Water (initial) – Depth to Water (final)) Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable Detectable Odor: X yes No Describe: OW Note: NA = Not Applicable 1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (22.6 - ΔΓ.7) x 0.16 = /.2 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88 1 Equipment Volume (EV) = P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 9.25 in. x (D) 9.25 in. x (L) 30 ft.) + (Fc) 0.25 gal = 0.73 gal 3 Well/Equipment Volumes = /.0 gallons Purged Volume (actual): 255 JT 1/-6-08 gallons Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other (Labeled: Yes No; Purge Water Discharged to Ground? X Yes No Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: 0.05 gpm QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD QA Sample Time: Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Depth to Water (final): 6.38 ft. (measured from mark on top of riser pipe, otherwise measure from North side) Draw down: 0.8 ft. (Depth to Water (initial) – Depth to Water (final)) Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable Detectable Odor: X Yes No Describe: 0.00 Note: NA = Not Applicable 1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (22.6 - 15.7) x 0.16 = 1.2 gal Well Capacity (gal/fi): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88 1 Equipment Volume (EV) = P + (0.041D x D x L) + Fe Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 30 ft.) + (Fc) 0.25 gal = 0.153 gal 3 Well/Equipment Volumes = 10 gallons Purged Volume (actual): 2565 gallons Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other (
Draw down:O/B
Free Product Thickness (if applicable):NA ft. OVM/PID Reading (if applicable):NA ppm. Note: NA = Not Applicable Detectable Odor:X Yes No
Note: NA = Not Applicable Detectable Odor:X_ Yes NoDescribe:
Detectable Odor: X Yes No Describe: Sow 1 Well Volume (WV) = (depth of well – depth to water (iaitiat)) x well capacity = (22.6 - Δ.) x 0.16 = 1.2 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88 1 Equipment Volume (EV) = P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 30 ft.) + (Fc) 0.25 gal = 0.73 gal 3 Well/Equipment Volumes = 10 gallons Purged Volume (actual): 2565 gallons Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other () Labeled: Yes No; Purge Water Discharged to Ground? X Yes No Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 0.05 gpm QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD QA Sample ID: QA Sample Time: Filtered: Yes X No Filter Size: μm; All Analyses; Mctals Only;
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 30 ft.) + (Fc) 0.25 gal = 0.33 gal 3 Well/Equipment Volumes =
Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 30 ft.)+ (Fc) 0.25 gal = 0.33 gal 3 Well/Equipmen Volumes =
Purge Water Contained? Yes X No Container Used:55 Gallon DrumOther (
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: G. O. gpm QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD QA Sample ID: QA Sample Time: Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Sampling Method:Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD QA Sample ID: QA Sample Time: Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
QA Sample ID: QA Sample Time: Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter: NTU
2000-00 2000- 2000- 2000-000-
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:Courier _X UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 6 November 2008 Sampled By: 5. Terry
Station (Well No.): MW-23 WACS ID: 1997 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: 🔀 Submersible (_ Teflon 🔀 SS _ Other) Peristaltic
Pump (Make & Model): Geopump II /PA Hurricane Purge Rate: 0,50 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M
Water Level Meter: Solinst Time @ Start of Purging: 1325 Time @ End of Purging: 16/5 Total Purging Time: 170 A.A.
Depth of Pump or Intake Tubing: 43 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1605	30.00	<i>60-00</i>	241.05	4.47	0.048	0.4	99.8	0.51	clew	15.45	
1608	1.50	81.50	24.06	4.45	0.048	0.5	100-5	0.48	clear	15.45	
16.12	2.00	83.50		4,45	0.048	0,2	100.4	0.44	clear	15,45	
											<u> </u>
					. ,				,		

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-2B Time Collected: 1615 Comments: inthat twhiting 24 NTU

Field Conditions/Observations: p. Cloudy, ~790F
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.11 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 48.3 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 15.45 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA_ft. OVM/PID Reading (if applicable): NA_ppm.
Detectable Odor:Yes _X_No Describe:
I Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(\frac{116.3}{3} - \frac{12.5}{3})$ x $\frac{0.16}{2} = \frac{3.3}{3}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 55 ft.)+ (Fc) 0.25 gal = 0.6 gal
3 Well/Equipment Volumes = 1-8 gallons Purged Volume (actual): 850 gallons
Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X Yes No
Sampling Method:BailerPeristaltic PumpX Submersible Pump Sample Rate:Q/gpm
QA Sample CollectedYes _X No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID	89544) Project No.: <u>FQ 1512</u> Task: <u>(</u>	Date: 6 November 2008 Sample	d By: J. Terry
Station (Well No.): MW-2C WACS ID:	Purge Method: Pump D	☑ Bailer □ Pump Type: Submersible	e (TeflonSSOther) 🗶 Peristaltic
Pump (Make & Model): Geopump ID/PA Hurricane	Purge Rate: <u>0.07</u> gpm Water Qu	aality Meter (Make & Model): YSI 556	S/N or ID: 06A2173A M
Water Level Meter: Solinst	Time @ Start of Purging: 1325	Time @ End of Purging:	Total Purging Time: 140 n.5
Depth of Pump or Intake Tubing: 64 ft. (BTC	OC)		

Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
8.19	8.19	24.98	5.41	0-043	0.7	77,7	0.79	clew	15.77	
0.56	8.75	24.90	5.26	0.043	0.4	78.0	0.69	clew	15.77	
	8.96	24.88	5.30	0.043	0.6	81.2	0.66	clew	15.77	
								1		
							·			
			<u> </u>	·						
	Volume (gal)	Volume (gal) Purge Volume (gal) 8.19 8.19 0.56 8.75 0.21 8.96	Volume (gal) Purge Volume (gal) Temp (°C) 8.19 8.19 24.98 0.56 8.75 24.90 0.21 8.96 24.88	Volume (gal) Purge Volume (CC) PH 8.19 8.19 24.98 5.41 0.56 8.75 24.90 5.26 0.21 8.96 24.88 5.30	Volume (gal) Purge Volume (gal) PH (°C) PH (mS/cm) 8.19 8.19 24.98 5.41 0.043 0.56 8.75 24.99 5.26 0.043 0.21 8.96 24.98 5.30 0.043	Volume (gal) Purge Volume (gal) Temp (°C) PH Condition (mS/cm) Turning (NTU) 8.19 8.19 24.98 5.41 0.043 0.7 0.56 8.75 24.90 5.26 0.043 0.4 0.21 8.96 24.98 5.30 0.043 0.6	Volume (gal) Purge Volume (gal) PH Condition (mS/cm) Turblinty (mV) OKTU 8.19 8.19 24.98 5.41 0.043 0.7 77.7 0.56 8.75 24.90 5.26 0.043 0.4 78.0 0.21 8.96 24.98 5.30 0.043 0.6 81.2	Volume (gal) Purge Volume (gal) PH Condition (mS/cm) Turbully (mV) ORF (mV) DO (mg/L) 8.19 8.19 24.98 5.41 0.043 0.7 77.7 0.79 0.56 8.75 24.90 5.26 0.043 0.4 78.0 0.63 0.21 8.96 24.98 5.30 0.043 0.6 81.2 0.66	Volume (gal) Purge Volume (gal) PH Coldate (mS/cm) PH Coldate (mS/cm)	Volume (gal) Purge Volume (gal) PH (Colductivity (mS/cm)) Turnitity (mV) ORF (mV) ORF (mV) ORF (mV) Water (ft) BTOC 8.19 8.19 24.98 5.41 0.043 0.7 77.7 0.79 clear 15.77 0.56 8.75 24.90 5.26 0.043 0.4 78.0 0.63 Clear 15.77 0.21 8.96 24.88 5.30 0.043 0.6 81.2 0.66 c/cor 15.77

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

$\sim 10^{-10} M_{\odot} M_{\odot} M_{\odot}$

Field Conditions/Observations: f- Cloudy, 170F
Well Inspection:
Well Type: Flush MountX_ Stick Up Other Well Size (ID): _2_ in SteelX_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.55 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 68.4 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 15.77 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor:Yes _X_No Describe:
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (68.4) - 16.55 x 0.16 = 8.5 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 6.25 in. x (L) 7.5 ft.) + (Fc) 0.25 gal = 0.45 gal
3 Well/Equipment Volumes = 1.35 gallons Purged Volume (actual): 9.8 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 0.07 gpm
QA Sample CollectedYes X_No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX_ UPS (Airbill No) Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 6 November 2008 Sampled By: 5.Terry
Station (Well No.): MW-3A WACS ID: 19906 Purge Method: Pump Bailer D Pump Type: Submersible (Teflon SS Other) Peristaltic
Pump (Make & Model): Geopump It / PA Hurricane Purge Rate: 0.05 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M
Water Level Meter: Solinst Time @ Start of Purging: 0945 Time @ End of Purging: 1057 Total Purging Time: 72 Ach
Depth of Pump or Intake Tubing:ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1015	1,50	1.50	25.87	41.92	0.310	4.3	-10.8	0.67	clear	14.81	
1022	0.35	1.85	25.79	4.89	0.326	2.7	-11,8	0-53	clew	14.81	
1050	1.40	3.25	26.05	4,78	0.4/22	1,0	-10.1	0.30	cleur	14,81	
1053	0.15	3.40	26.09	4.81	0.426	1.2	-10.1	0.29	oleur	14.81	
1057	0.20	3.60	26.05	4.81	0.430	0.9	-9.1	0.27	clear	14.8	
									,		
						-					
14 Page 14 Pag											

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID: MW-3A Time Collected: (10) Comments:	
---	--

Field Conditions/Observations: Clew, ~72°F
Well Inspection:
Well Type: Flush MountX_ Stick Up Other Well Size (ID):2_ in S(eelX_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 14.70 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 22.8 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 14.81 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes No Describe: [ancie] Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(22.8 - 1470)$ x $(0.16 = 1.3)$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)=P+(0.041D x D x L)+Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 28 ft.)+ (Fc) 0.25 gal = 0.32 gal
3 Well Equipment Volumes = 10 gallons Purged Volume (actual): 3,6 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: 0.05 gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
<u> </u>
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX_ UPS (Airbill No) Other () Notes:

Monitoring Well Sampling											
Site: <u>J.E.D.</u>	Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 6 November 2008 Sampled By: J. Terry										
Station (Well No.): MW-3B WACS ID: 19907 Purge Method: Pump Bailer Pump Type: Submersible (_ Teflon SS _ Other) Peristaltic											
Pump (Make & Model): Geopump II (PA Hurricane) Purge Rate: 0.60 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173AL											
Water Level	Meter: Solin	nst	Time (② Start of Pu	rging: <u>0945</u>	Time @	End of Purg	ing:	3 Tota	al Purging Time:	93 A.h
Depth of Pur	mp or Intake Ti	ıbing: <u>43</u> ft	t. (BTOC)								
Time	Time Purge Volume (gal) Cumulative Purge Volume (gal) PH Conductivity (mS/cm) Turbidity (mV) DO (mg/L) Color Water (ft) BTOC Comments										
1055	1055 42.00 42.00 25.27 5.37 0.099 1.0 -127-2 0.29 Clear 15.04										
1110											
1115	3.00	54.00	25.31	5.15	0.099	0.4	-120.3	0.13	cleur	15.04	
1118	1.80	55.80	25.31	5,12	0.099	0.7	-170-5	0.13	clear	15.04	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID: _	MW-3B	_ Time Collected: _	1120	Comments:

Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 14.75 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well:ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 15.04 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{\text{(initiat)}}$) x well capacity = $\frac{17.6}{\text{-}}$ - $\frac{147.}{\text{-}}$) x $\frac{0.16}{\text{-}}$ = $\frac{5.3}{\text{-}}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 55 ft.) + (Fc) 0.25 gal = 0.6 gal
3 Well Equipment Volumes = 18 gallons Purged Volume (actual): 55.8 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer Peristaltic Pump X Submersible Pump Sample Rate: gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

	Monitoring Well Sampling										
Site: <u>J.E.D.</u>	Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 6 November 2008 Sampled By: 5. Terry										
Station (Wel	Station (Well No.): MW-3C WACS ID: 19908 Purge Method: Pump \omega Bailer \omega Pump Type: Submersible (Teflon SS Other) Pump Peristaltic										
Pump (Make	& Model):	eopump D/PA Hurric	cane Pur	rge Rate: _ <i>0</i>	.07 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSL5</u>	556S/N	or ID:06	A2173AL
Water Level	Meter: Solin	nst	Time (② Start of Pu	rging: <u>0945</u>	Time @	End of Pur	ging: <u>/04/</u>	O Tota	l Purging Time	55 Ain
Depth of Pur	np or Intake T	ubing: <u>64</u> fi	t. (BTOC)								
	1		1			<u> </u>	I				
Time Purge Volume (gal) Cumulative Purge Volume (gal) PH Conductivity (mS/cm) Turbidity (NTU) ORP (mV) DO (mg/L) Color Water (ft) BTOC Comments								Comments			
	1	1	1								

Time	Volume (gal)	Purge Volume (gal)	(°C)	PH	(mS/cm)	(NTU)	(mV)	(mg/L)	Color	BTOC	Comments
1020	2.45	2.45	25.00	5.64	0-053	1.7	-120.8	0.47	clear	14.57	
1025	0.35	2-80	25.22	5,54	0.052	1.4	-119-0	0.43	cleur	14,99	
1030	0.35	3.15	25.30	5.65	0-053	1.9	-127.0	0.36	clear	14,99	
1035	0.35	3.50	25.27	5.57	0.053	1.6	-124.4	0.35	clear	14.99	
				·					,		

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: _	MW-3C	Time Collected:	1040	Comments	S:
--------------	-------	-----------------	------	----------	----

Field Conditions/Observations: Lew ~72°F
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: K Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 14 00 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 68.7 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 121 99 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA_ft. OVM/PID Reading (if applicable): NA_ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ x well capacity = $\frac{1}{1}$ 1
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 6.25 in. x (D) 6.25 in. x (D) 75 ft.)+ (Fc) 0.25 gal = $(D, 4/5)$ gal
3 Well/Kauipment Volumes =/, gallons Purged Volume (actual): gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: 0.07 gpm
QA Sample Collected Yes KNo; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH < Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

					Monitor	mg Well Sa	mpling				·
Site: <u>J.E.D.</u>	. Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: <u>6</u> No	vember 2008	Sampled By	1. J. Ver	· /
Station (We	II No.): <u>M</u> N	v-リA wacs id	: 19909	F	Purge Method: Pur	np ⊠ Baile	r 🛭 Pum	p Type: Su	bmersible (Teflon SS _	Other) 🔀 Peristaltic
Pump (Make	e & Model) <u>G</u>	eopump II/PA Hurric	zane Pu	rge Rate:	ورم gpm Wat	er Quality Meter	r (Make & Mo	odel): <u>YSI 5</u>	56 S/1	N or ID:06	A2173A ८
Water Level	Meter: Solin	nst	Time	@ Start of Pu	rging: 0715	Time @	End of Purg	ing: <u>080</u> 0	> Tot	al Purging Time	45 nin
		ubing: <u>19.5</u> f									
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0745	1.50	1.50	24.06	5.08	0.261	5.2	-169.6	0.28	clear	15.95	
7 <u>4</u> 5	0.35	1.85	24.10	5.07	0.261	3-8	-171.4	0.25	cleur	15.96	
0758	0.30	2.15	24.12	5.06	0.261	2.9	-175.9	0.73	clear	15.96	
					,						
						,					
. Take	e additional f	ield parameter mea	surements no	sooner tha	n 2 to 3 minutes	apart, must p	ourge minim	um of 3 equ	ipment volu	me + stabilize	ameter measurements. d field parameters for
Note: Whe	n purging a v	vell with well screen	fully submer	ged and pur	mp or intake tubin	g is placed in	water colum	n above the so	reened zone	, purge minimu	om of one well volume
prior Note: Whe	r to collecting n purging we	first field parameter lls with a partially s	measuremen submerged we	ell screen ar	onuonai neio para	g placed within	a submerg	ed screen zon	e, purge a m	inimum of one	e well volume prior to

collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied. Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of

reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID:/	1W-4A	Time Collected:	0800	Comments:	
-------------	-------	-----------------	------	-----------	--

Field Conditions/Observations: Clew, ~580F
Well Inspection:
Well Type: Flush Mount X Stick Up Other Well Size (ID): 2 in. Steel X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.86 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 15-96 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Sow
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (23.1 - 15.86) x 0.16 = 1.2 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= $P + (0.041D \times D \times L) + Fc$ Where: $P=Pump Volume (gal)$; $D=Tubing Diameter (inches)$; $L=Length of Tubing (ft)$; $Fc=Flow Cell Volume (gal)$ 1 $EV=(P)$ 0.0 gal + (0.041 × (D) 0.25 in. × (D) 0.25 in. × (L) 27 ft. + (Fc) 0.25 gal = 0.32 gal
3 Well/Equipment Volumes = 10 gallons Purged Volume (actual): 2.25 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method:BailerX Peristaltic PumpSubmersible Pump Sample Rate:gpm
QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered:Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(· · · · · · · ·)
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D.	Disposal Fa	cility (WACS Facili	ity ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: <u>6</u> No	vember 2008	Sampled By	r: J. Terr	~
Station (Wel	I No.): <u>M</u> W	- LIB WACS ID	19910	I	Purge Method: Pur	mp 🖾 Baile	r 🛭 Pum	ip Type: St	ıbmersible (Teflon SS _	Other) × Peristaltic
	_	eopump II)/ PA Hurrio									
Water Level	Meter: Solin	nst	Time (@ Start of Pu	rging: <u>07/5</u>	Time @	End of Purg	ging: <u>08/S</u>	Tot	al Purging Time:	60 nin
Depth of Pu	mp or Intake T	ubing: <u>43</u> f	t. (BTOC)		<u>,</u>						
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0750	2.10	2.10	23.80	3.48	0.838	0,8	63.2	0.46	clear	15.70	
0754	0.24	2.34	23.79	3.48	0,841	0.4	66.9	0.39	clear	15.70	
08/3	1.14	3,48	23,85	3.47	0.844	0.1	78.2	0.27	clear	15.70	
	,										

											<u> </u>
	,										
Take samt	additional f	ield parameter mea	surements no	sooner tha	in 2 to 3 minutes	apart, must p	ourge minim	num of 3 equ	ipment volu	me + stabilized	ameter measurements. d field parameters for
Note: Whe	n purging a w	vell with well screer first field parameter	ı fully submer	ged and pu	mp or intake tubin	g is placed in	water colum	m above the s	creened zone	, purge minimu	m of one well volume
Note: When	n purging we	lls with a partially s	submerged we	ell screen ar	ad pump or tubing	g placed within	a submerg	ed screen zor	ne, purge a m	inimum of one	e well volume prior to
colle	cting first fiel	ld parameter measur	rements. Take	additional	field parameter m	easurements n	o sooner tha	n 2 to 3 minu	tes apart unti	l purge requirei	ments are satisfied.
		ive readings within greater than 20% sa						C; pH: ±0.2	standard unit	is; Specific Co	nductance: ± 5.0% of
If Do	O or Turbidit	ty measurements ca et the following: DC	nnot meet the	above rec	uirements within	5 well volume	es; Temp, p				ed, however, DO and
		B Ti								-	

Field Conditions/Observations: Clear, ~587=
Well Inspection:
Well Type: Flush Mount X Stick Up Other Well Size (ID): 2 in. Steel X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Yes Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.62 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 47.4 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 15.70 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Slight Suffer like Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(47.4) - \frac{15.62}{2}$ x $\frac{0.16}{2} = \frac{5.1}{2}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 5.3 ft.)+ (Fc) 0.25 gal = $(D, \frac{6}{4})$ gal
3 Well/Equipment Volumes = 1.2 gallons Purged Volume (actual): 3.6 gallons
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:Bailer _X_Peristaltic PumpSubmersible Pump Sample Rate: _0.06 _ gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₁
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(·
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX_UPS (Airbill No) Other () Notes:

					Monitori	mg Wen Sar	npung				
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	<u> 6 No</u>	vember 2008	Sampled By	J. Terr.	٧
Station (Wel	1 No.): <u>MW</u>	-LIC WACS ID	19911	I	Purge Method: Pur	mp ⊠ Bailer	r □ Pum	p Type: 🔀 Su	bmersible (Teflon <u>≭</u> SS _	Other) Peristaltic
Pump (Make	& Model): <u>G</u>	eopump II PA Hurric	cane) Pu	rge Rate:	9.70 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI 5</u>	56S/N	or ID: <u>06</u>	A2173A 🔨
Water Level	Meter: Solin	nst	Time (@ Start of Pu	orging: <u>0725</u>	Time @	End of Pur	ring: <u>08 5</u> .	S Tota	d Purging Time	90mb
Depth of Pur	np or Intake T	ubing: <u>68</u> fi	t. (BTOC)								
								-			
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0845	56,00	56.00	23.74	5.33	0.093	21.0	49.7	0.42	clen	18.30-17	7,30 gT 11-6-08
0851	4,20	60,20	23.75	5-133	0-093	19.8	51.2	0.34	Clear	17.30	
0855	2,80	63.00	23.74	5,33	0.093	17.7	51.7	0.32	clew	17.30	
THE REAL PROPERTY.											
			-								
i	,										
									<u> </u>		

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID:	MW-4C	Time Collected: 0900	Comments:	initial turbidity 162 NTY
------------	-------	----------------------	-----------	---------------------------

Field Conditions/Observations: clew ~58°F
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.93 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 72.15 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final):ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: /.37 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (72.5 - 15.93) x 0.16 = 259.1 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88 97 116.02
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 85 ft.)+ (Fc) 0.25 gal = (D) 74 gal
3 Well/Equipment Volumes = 2.22 gallons Purged Volume (actual): 63.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? X YesNo
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample CollectedYes _X_No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: µm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 500 ml plastic
<u> </u>
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 5 November 2008 Sampled By: J. Terry, J. Euro
Station (Well No.): MW-5A WACS ID: 19912 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: Submersible (TeflonSSOther) 🔀 Peristaltic
Pump (Make & Model): Geopump II / PA Hurricane Purge Rate: 0.05 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A
Water Level Meter: Solinst Time @ Start of Purging: 1425 Time @ End of Purging: 1500 Total Purging Time: 3500
Depth of Pump or Intake Tubing: 19.5 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1450	1.25	1.25	25.71	4.90	0.235	10.8	-129.1	0.33	arber	16.11	
1455	0.25	1.50	25.61	41.87	0.235	10.3	~130.7	95.0	anber	16.11	
1500	0.25	1.75	25.62	4.86	0.235	10.4	-132.4	0.26	arsber	16.11	
						,_,					
				`.							
	-		<u> </u>								
		····									

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID: MW-5A Time Collected: 1505 Comments:	
---	--

Field Conditions/Observations: OVercust, ~65°F
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.85 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 22.5 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final):ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 0.26 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: [Lanci]
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{2}$ (mitial) x well capacity = $\frac{22.5}{2}$ - $\frac{15.85}{2}$ x $\frac{0.16}{2}$ = $\frac{1}{2}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.35 in. x (D) 0.35 in. x (L) 3.2 ft.)+ (Fc) 0.25 gal = (D) 3.5 gal
3 Well/Equipment Volumes = gallons Purged Volume (actual): gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: 6.05 gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes Mo Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:
Notes:

					Monitori	ing Well Sa	mpling				
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ity ID 89544)	Project No	.: <u>FQ 1512</u> Tas	sk: <u>01</u> Date	: <u>5 No</u>	vember 2008	Sampled By	: J. Teny	J. Eug
Station (Well	1 No.): <u>M W</u>	<u>/-53</u> wacs id	19913	I	Purge Method: Pur	mp 🗵 Baile	er 🗆 Pum	р Туре: Su	bmersible (Teflon SS _	Other) X Peristaltic
Pump (Make	: & Model): 🕰	eopump II/PA Hurrio	cane Pur	ge Rate: 💋	9, <i>08</i> gpm Wat	er Quality Mete	r (Make & Mo	odel): <u>YSI :</u>	556SA	or ID: <u>06</u> ,	A2173A
Water Level	Meter: Solin	nst	Time (3) Start of Pu	rging: <u>°/5/0</u>	Time (End of Purg	ing: <u>153</u> 5	Tot	al Purging Time:	25015
Depth of Pur	mp or Intake T	ubing: <u>42 </u>	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1525	1.20	1,20	24.67	4.66	0.062	0.3	-126.3	0.46	clen	16.20	
1530	0.40	1,60	24.62	4.65	0.062	0.8	-126.4	0.42	Gers	16,20	
11/28	A 4/A	200	2415	12/6	0.067	0 /	1740	a 2-7	1/21	11 30	· · · · · · · · · · · · · · · · · · ·

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:/	1W-5B	Ti C_114_3.	1540	Comments:
-------------	-------	-------------	------	-----------

					Monitori	mg Wen Sar	npung				
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	<u> 6 No</u>	vember 2008	Sampled By	J. Terr.	٧
Station (Wel	1 No.): <u>MW</u>	-LIC WACS ID	19911	I	Purge Method: Pur	mp ⊠ Bailer	r □ Pum	p Type: 🔀 Su	bmersible (Teflon <u>≭</u> SS _	Other) Peristaltic
Pump (Make	& Model): <u>G</u>	eopump II PA Hurric	cane) Pu	rge Rate:	9.70 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI 5</u>	56S/N	or ID: <u>06</u>	A2173A 🔨
Water Level	Water Level Meter: Solinst Time @ Start of Purging: 0725 Time @ End of Purging: 0855 Total Purging Time: 9000							90mb			
Depth of Pur	np or Intake T	ubing: <u>68</u> fi	t. (BTOC)								
								-			
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0845	56,00	56.00	23.74	5.33	0.093	21.0	49.7	0.42	clen	18.30-17	7,30 gT 11-6-08
0851	4,20	60,20	23.75	5-133	0-093	19.8	51.2	0.34	Clear	17.30	
0855	2,80	63.00	23.74	5,33	0.093	17.7	51.7	0.32	clew	17.30	
THE REAL PROPERTY.											
			-								
i	,										
									<u> </u>		

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID:	MW-4C	Time Collected: 0900	Comments:	initial turbidity 162 NTY
------------	-------	----------------------	-----------	---------------------------

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 5 November 2008 Sampled By: J. Terry, J. Euro
Station (Well No.): MW-5A WACS ID: 19912 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: Submersible (TeflonSSOther) 🔀 Peristaltic
Pump (Make & Model): Geopump II / PA Hurricane Purge Rate: 0.05 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A
Water Level Meter: Solinst Time @ Start of Purging: 1425 Time @ End of Purging: 1500 Total Purging Time: 3500
Depth of Pump or Intake Tubing: 19.5 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1450	1.25	1.25	25.71	4.90	0.235	10.8	-129.1	0.33	arber	16.11	
1455	0.25	1.50	25.61	41.87	0.235	10.3	~130.7	95.0	anber	16.11	
1500	0.25	1.75	25.62	4.86	0.235	10.4	-132.4	0.26	arsber	16.11	
						,_,					
				`.							
	-		<u> </u>								
		····									

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID: MW-5A Time Collected: 1505 Comments:	
---	--

					Monitori	ing Well Sa	mpling				
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ity ID 89544)	Project No	.: <u>FQ 1512</u> Tas	sk: <u>01</u> Date	: <u>5 No</u>	vember 2008	Sampled By	: J. Teny	J. Eug
Station (Well	1 No.): <u>M W</u>	<u>/-53</u> wacs id	19913	I	Purge Method: Pur	mp 🗵 Baile	er 🗆 Pum	р Туре: Su	bmersible (Teflon SS _	Other) X Peristaltic
Pump (Make	: & Model): 🕰	eopump II/PA Hurrio	cane Pur	ge Rate: 💋	9, <i>08</i> gpm Wat	er Quality Mete	r (Make & Mo	odel): <u>YSI :</u>	556SA	or ID: <u>06</u> ,	A2173A
Water Level	Meter: Solin	nst	Time (3) Start of Pu	rging: <u>°/5/0</u>	Time (End of Purg	ing: <u>153</u> 5	Tot	al Purging Time:	25015
Depth of Pur	mp or Intake T	ubing: <u>42 </u>	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1525	1.20	1,20	24.67	4.66	0.062	0.3	-126.3	0.46	clen	16.20	
1530	0.40	1,60	24.62	4.65	0.062	0.8	-126.4	0.42	Gers	16,20	
11/28	A 4/A	200	2415	12/6	0.067	0 /	1740	a 2-7	1/21	11 30	· · · · · · · · · · · · · · · · · · ·

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:/	1W-5B	Ti C_114_3.	1540	Comments:
-------------	-------	-------------	------	-----------

Field Conditions/Observations: ON WUST, ~70°F
Well Inspection:
Well Type: Flush MountX_ Stick Up Other Well Size (ID):2_ in SteelX_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16,06 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 17.1 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16-20 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Sulfur-like Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{\text{(initial)}}$) x well capacity = $\frac{1}{\text{(H7.)}}$ - $\frac{1}{\text{(6.06)}}$ x $\frac{0.16}{\text{(milial)}}$ = $\frac{1}{\text{(MV)}}$ = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 48 ft.)+ (Fc) 0.25 gal = $(D, 4)$ gal
3 Well Equipment Volumes = 1,20 gallons Purged Volume (actual): 2.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method:Bailer _X Peristaltic PumpSubmersible Pump Sample Rate:OOSgpm
QA Sample Collected Yes XNo; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX UPS (Airbill No) Other () Notes:

					Monitori	mg Wen Sar	npung				
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	<u> 6 No</u>	vember 2008	Sampled By	J. Terr.	٧
Station (Wel	1 No.): <u>MW</u>	-LIC WACS ID	19911	I	Purge Method: Pur	mp ⊠ Bailer	r □ Pum	p Type: 🔀 Su	bmersible (Teflon <u>≭</u> SS _	Other) Peristaltic
Pump (Make	& Model): <u>G</u>	eopump II PA Hurric	cane) Pu	rge Rate:	9.70 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI 5</u>	56S/N	or ID: <u>06</u>	A2173A 🔨
Water Level	Meter: Solin	nst	Time (@ Start of Pu	orging: <u>0725</u>	Time @	End of Pur	ring: <u>08 5</u> .	S Tota	d Purging Time	90mb
Depth of Pur	np or Intake T	ubing: <u>68</u> fi	t. (BTOC)								
								-			
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0845	56,00	56.00	23.74	5.33	0.093	21.0	49.7	0.42	clen	18.30-17	7,30 gT 11-6-08
0851	4,20	60,20	23.75	5-133	0-093	19.8	51.2	0.34	Clear	17.30	
0855	2,80	63.00	23.74	5,33	0.093	17.7	51.7	0.32	clew	17.30	
THE REAL PROPERTY.											
			-								
i	,										
									<u> </u>		

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID:	MW-4C	Time Collected: 0900	Comments:	initial turbidity 162 NTY
------------	-------	----------------------	-----------	---------------------------

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 5 November 2008 Sampled By: J. Terry, J. Euro
Station (Well No.): MW-5A WACS ID: 19912 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: Submersible (TeflonSSOther) 🔀 Peristaltic
Pump (Make & Model): Geopump II / PA Hurricane Purge Rate: 0.05 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A
Water Level Meter: Solinst Time @ Start of Purging: 1425 Time @ End of Purging: 1500 Total Purging Time: 3500
Depth of Pump or Intake Tubing: 19.5 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1450	1.25	1.25	25.71	4.90	0.235	10.8	-129.1	0.33	arber	16.11	
1455	0.25	1.50	25.61	41.87	0.235	10.3	~130.7	95.0	anber	16.11	
1500	0.25	1.75	25.62	4.86	0.235	10.4	-132.4	0.26	arsber	16.11	
						,_,					
				`.							
	-		<u> </u>								
		····									

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID: MW-5A Time Collected: 1505 Comments:	
---	--

	Monitoring Well Sampling										
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ity ID 89544)	Project No	.: <u>FQ 1512</u> Tas	sk: <u>01</u> Date	: <u>5 No</u>	vember 2008	Sampled By	: J. Teny	J. Eug
Station (Well	Station (Well No.): MW-513 WACS ID: 19913 Purge Method: Pump \omega Bailer \omega Pump Type: Submersible (_Teflon _ SS _ Other) \omega Peristaltic										
Pump (Make	: & Model): 🕰	eopump II/PA Hurrio	cane Pur	ge Rate: 💋	9, <i>08</i> gpm Wat	er Quality Mete	r (Make & Mo	odel): <u>YSI :</u>	556SA	or ID: <u>06</u> ,	A2173A
Water Level	Meter: Solin	nst	Time (3) Start of Pu	rging: <u>°/5/0</u>	Time (End of Purg	ing: <u>153</u> 5	Tot	al Purging Time:	25015
Depth of Pur	Depth of Pump or Intake Tubing: 42 ft. (BTOC)										
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1525	1.20	1,20	24.67	4.66	0.062	0.3	-126.3	0.46	clen	16.20	
1530	0.40	1,60	24.62	4.65	0.062	0.8	-126.4	0.42	Gers	16,20	
11/28	A 4/A	200	2415	12/6	0.067	0 /	1740	a 2-7	1/21	11 30	· · · · · · · · · · · · · · · · · · ·

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:/	1W-5B	Ti C_114_3.	1540	Comments:
-------------	-------	-------------	------	-----------

Site: J.E.D. Disposal Facility (WACS Facility ID 8	9544) Project No.: <u>FQ 1512</u> Ta	ask: 01 Date: 5	November 2008 Sampled	By: J Terry	J. Eun
Station (Well No.):	Purge Method: P	Pump ⊠ Bailer □ I	Pump Type: Submersible	(_TeflonSSOt	her) 🗶 Peristaltic
Pump (Make & Model): @eopump IIy PA Hurricane	Purge Rate: <u>0.05</u> gpm W	ater Quality Meter (Make &	ż Model): <u>YSI 556</u>	S/N or ID:06A217	73AM
Water Level Meter: Solinst	Time @ Start of Purging:	Time @ End of I	Purging: <u>/520</u>	Total Purging Time:	50 mis
Depth of Pump or Intake Tubing:ft. (BTO	C)				

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
14:50	(. 0	1.0	24.31	4.91	0.070	4.	-82.3	0.59	Clear	16.59	
15:00	0.5	1.5	24, 30	4. Go	0.371	3.8	-82.4	0-47	Clear	16.59	
15:10	0.5	2	24.25	4.91	0071	3.5	-82.1	0.43	Clear	16-60	
, , ,				1							
300											
	,										
											·
Sale Sale Sale Sale Sale Sale Sale Sale											

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID:	MW-5C	Time Collected:	1520	Comments:
------------	-------	-----------------	------	-----------

Site: J.E.D. Disposal Facility (WACS Facility ID 8	9544) Project No.: <u>FQ 1512</u> To	ask: 01 Date: 5	November 2008 Sampled	By: J Terry	J. Eun
Station (Well No.): MW-5C WACS ID: 10	Purge Method: P	Pump ⊠ Bailer □ I	Pump Type: Submersible	(_TeflonSSOt	her) 🗶 Peristaltic
Pump (Make & Model): @eopump IIy PA Hurricane	Purge Rate: <u>0.05</u> gpm W	/ater Quality Meter (Make &	ż Model): <u>YSI 556</u>	S/N or ID:06A217	73AM
Water Level Meter: Solinst	Time @ Start of Purging:	Time @ End of I	Purging: <u>/520</u>	Total Purging Time:	50 mis
Depth of Pump or Intake Tubing:ft. (BTO	C)				

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
14:50	(. 0	1.0	24. 31	4.91	0.070	4.1	-82.3	0-59	Clear	16.59	
15:00	0.5	1.5	24, 30	4. Go	0.371	3.8	-82.4	0-47	Clear	16.59	
15:10	0.5	2	24.25	4.91	0071	3.5	-82.1	0.43	Clear	16-60	
W. W											
						-					
	-										

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID:	MW-5C	Time Collected:	1520	Comments:
------------	-------	-----------------	------	-----------

Field Conditions/Observations: 6vecust, 2650F
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
,
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.36 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 73.0 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16-60 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 0.34 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable
Detectable Odor: X Yes No Describe: Sultur-like
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{\text{(initial)}}$ x well capacity = $\frac{73.0}{\text{-}0.05}$; x $\frac{0.16}{\text{-}9.1}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.05 in. x (D) 0.05 in. x (L) 0.05 ft.)+ (Fc) 0.05 gal = 0.05 gal
3 Well/Equipment Volumes = 1.35 gallons Purged Volume (actual): 2.5 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:BailerYPeristaltic PumpSubmersible Pump Sample Rate:6.05gpm
QA Sample CollectedYes XNo;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX UPS (Airbill No) Other () Notes:

	Monitoring Well Sampling											
	Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 5 November 2008 Sampled By: 7. Terry											
	Station (Well No.): MW-7A WACS ID: 19918 Purge Method: Pump \(\Bar{\text{D}} \) Bailer \(\Dar{\text{D}} \) Pump Type: Submersible (Teflon SS Other) \(\text{Y} \) Peristaltic											
	Pump (Make & Model): Geopump II) PA Hurricane Purge Rate: 0.05 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A											
	Water Level Meter: Solinst Time @ Start of Purging: 1200 Time @ End of Purging: 1305 Total Purging Time: 65ab											
	Depth of Pump or Intake Tubing:ft. (BTOC)											
			i i									
the state of the s	Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1250	2.50	2.50	24.37	4.98	0.160	0.3	-137,0	0.37	claw	16,90	
کتنه	0.25	2.75	24,28	4.95	0.159	0.5	-138-0	0-31	clew	16-90	
1300	0-25	3.00	24.29	4.92	0.159	0.4	-137.8	0.30	clear	16.90	
											1
									1 .		
						<u> </u>					
		······	_								

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID:	MW-7A	_ Time Collected: 1305	Comments:	
------------	-------	------------------------	-----------	--

Field Conditions/Observations: Overlast, ~654
Well Inspection:
Well Type:Flush Mount _X_Stick UpOther Well Size (ID): _2_ inSteel _X_PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.78 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 23.3 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16.90 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: Yes No Describe: Suffw. 1148 Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ (mitial) x well capacity = $\frac{1}{1}$ x well capacity = $\frac{1}{1}$ x well capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 32 ft.)+ (Fc) 0.25 gal = 0.33 gal
3 Well/Equipment Volumes = 1.0 gallons Purged Volume (actual): 3.25 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample CollectedYes XNo;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
<u> </u>
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

	Monitoring Well Sampling										
Site: <u>J.E.D.</u>	Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 5 November 2008 Sampled By: J. Terry										
Station (Well	Station (Well No.): MW-78 WACS ID: 19919 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: 🔀 Submersible (_ Teflon 🔀 SS _ Other) Peristaltic										
Pump (Make	Pump (Make & Model): Geopump II / RA Hurricane) Purge Rate: O.S.O. gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173AL										
Water Level	Water Level Meter: Solinst Time @ Start of Purging: //55 Time @ End of Purging: /355 Total Purging Time: /20										
Depth of Pur	np or Intake Ti	ubing: <u>43</u> ft	. (BTOC)			•					
		<u> </u>	i			i i i i i i i i i i i i i i i i i i i					
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1330	47.50	47.50	24.08	4.98	0-089	4.7	-141-3	0-29	clear	18.23	
13415	7.50	55,00	24.10	4.93	0.089	3,5	-140.5	0.13	clear	18.27	
1350	2.50	57,50	24.05	4.94	0.089	3.2	-140.9	0.13	clear	18.27	
	1										
						<u> </u>					
						<u> </u>					
TORSAS.											
			I								

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:/	MW-78	Time Collected:	1335	Comments:	indial turbi	dity 56	, NTU	
-------------	-------	-----------------	------	-----------	--------------	---------	-------	--

Field Conditions/Observations: overcust, ~659
Well Inspection:
Well Type: Flush Mount X Stick Up Other Well Size (ID): 2 in. Steel X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: X Tight Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.50 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 47.5 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 18.27 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: X Yes No Describe: Sulfur-1.kx Note: NA = Not Applicable
I Well Volume (WV) = (depth of well – depth to water $\frac{1}{100}$ x well capacity = $\frac{100}{100}$ x $\frac{100}{100}$ x $\frac{100}{100}$ = $\frac{100}{100}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 6.375 in. x (D) 6.375 in. x (L) 5.2 ft.)+ (Fc) 0.25 gal = 6.55 gal
3 Well Equipment Volumes = 1.65 gallons Purged Volume (actual): 60.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 6.09 gpm
QA Sample Collected Yes _X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX UPS (Airbill No) Other () Notes:

Site: J.E.D.	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No.	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: <u>5</u> No	vember 2008	Sampled By	: <u>3.7en</u>	Υ
Station (Wel	I No.): <u>MW</u>	Y-7C WACS ID	19920	F	Purge Method: Pur	mp 🗵 🛚 Baile	r 🗆 Pum	р Туре: Su	bmersible (Teflon SS _	Other) 🔀 Peristaltic
Pump (Make	& Model):@	eopump ID/ PA Hurric									
Water Level	Meter: _Soli	nst	Time (@ Start of Pu	rging: /2/0	Time @	End of Purg	ing: <u>/3/</u> S	Total	al Purging Time	65nh
Depth of Pur	np or Intake T	ubing: <u>68</u> fl	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1245	1.75	1,75	23.45	4,98	0.051	2.1	-83.6	0-7て	clear	16.51	
1252	0.35	2.10	23.43	4.98	0.051	2.3	_ 83.7	0.63	clew	16.51	
1300	0.40	2.50	23.40	41.98	0.051	2.2	-83.1	0.51	Cleur	16.51	
			1								
			<u> </u>								.,,,,
			<u> </u>	<u> </u>							
Take samp Note: Wher prior Note: Wher colle Note: Three readi If Do turbic	additional foling. In purging a vector collecting in purging we cting first fice (3) consecuting; DO is no D or Turbididity must me	field parameter means well with well screens; first field parameter sells with a partially selld parameter measure tive readings within a greater than 20% saty measurements cate the following: DC	surements no a fully subment of measurements submerged we rements. Take specified limit atturation at fie nnot meet the 0 ± 0.2 mg/L of	rged and put tts. Take added screen are additional tts are to be ald measured above request or 10%, whi	mp or intake tubin ditional field para ad pump or tubin field parameter m obtained for samp I temperature; and juirements within chever is greater;	s apart, must pag is placed in ameter measureg placed within teasurements noling. Temperal Turbidity ≤ 2 5 well volumand Turbidity	water column ements every n a submerg to sooner that ature: ± 0.2° 0 NTUs tes; Temp, p ± 5 NTUs or	num of 3 equin above the single well volumed screen zon 2 to 3 minus. C; pH: ±0.2 oH, Conductive 10%, whicher	ipment voluncerened zone ne until purgine, purge a mates apart until standard unit	ne + stabilized, purge minimung requirement inimum of one purge requires; Specific Commain unchangement	e well volume prior to
Sample ID:	\\\\ \ \ \	<u>IC</u> Ti	me Collected	: <u> </u>	Com:	ments:	<u></u>				

					Monitor	mg wen sai	npung				
Site: J.E.D.	ite: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 5 November 2008 Sampled By: 5, Terry										
Station (Wel	1 No.): <u>M</u> M	V-8A wacs id	19921]	Purge Method: Pur	np 🗵 🛚 Baile	□ Pum	p Type: Su	bmersible (Teflon SS _	Other) Peristaltic
Pump (Make	Pump (Make & Model): Geopump II / PA Hurricane Purge Rate: Ocos gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A L										
Water Level	Water Level Meter: Solinst Time @ Start of Purging: 0955 Time @ End of Purging: 1053 Total Purging Time: 5800										
Depth of Pur	np or Intake T	ubing: <u>19.5</u> ft	. (BTOC)								
	1		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			<u></u>	
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Celor	Depth to Water (ft) BTOC	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1015	1.00	1.00	24.62	4.40	0.287	2.1	-96.7	0.46	clew	16.43	
1030	0-75	1.75	24.65	4.37	0.282	1,0	-101.5	0.38	clear	16.50	
1050	1,00	2,75	24.73	4,35	0.284	0.6	-108.8	0.33	clew	16.51	
1053	0.15	2,90	24.71	4.35	0.285	0.6	-110.0	0.33	clear	16.51	
										<u> </u> 	
<u> </u>							<u> </u>				

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID: MW-8/4 Time Collected: 1055 Comments:	
--	--

Field Conditions/Observations: OVECUST, 163°F, 5. Bustry breeze
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.93 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 82.5 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16.51 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA_ft. OVM/PID Reading (if applicable): NA_ppm.
Detectable Odor: X Yes No Describe: Function Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ x well capacity = $\frac{22.5}{1}$ × $\frac{15.93}{1}$ x $\frac{16}{1}$ y = $\frac{1}{1}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.27 in. x (L) 30 ft.)+ (Fc) 0.25 gal = 0.33 gal
3 Well/Equipment Volumes = 1.0 gallons Purged Volume (actual): 2-90 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method:Bailer Peristaltic Pump Submersible Pump Sample Rate: Sample Rate: Sample Rate: Submersible Pump
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered:Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 8	9544) Project No.: <u>FQ 1512</u> Task: <u>01</u>	Date: 5 November 2008 Sample	dBy: J.Terry
Station (Well No.): MW-BB WACS ID: 19	Purge Method: Pump 🗵	Bailer 🛭 Pump Type: 🔀 Submersible	e (Teflon 🔀 SSOther) Peristaltic
Pump (Make & Model): Geopump II / (A Hurricane)	Purge Rate: 0.42 gpm Water Qual	ity Meter (Make & Model): YSI 556	S/N or ID: 06A2173A M
Water Level Meter:Solinst	Time @ Start of Purging: 0950	Time @ End of Purging: 1/30	Total Purging Time: 90 AH
Depth of Pump or Intake Tubing: 45 ft. (BTO)	C)		

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1/10	33.60	33.60	24.10	4.63	0.048	50	-91.5	0.27	Cloudes	18.99	
1115	2.10	35.70	24,06	4.64	0.048	47,4	-91-9	0.26	Cloudy	18.99	
1120	2.10	37,80	24,04	4.64	0.048	44.4	-92.1	0.26	cloudy	18.99	
<u> </u>											
	i										
					· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·									

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:	VARAN - DIL	Time Collected:	1125	Comments:	initial	turbidity	52 NTU	

Field Conditions/Observations: Overwit, ~63°F, seesterly breeze
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2_ in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.87 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 19.6 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 18.99 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Stight Softw. 1, he Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (19.6 - 25.7) x 0.16 = 5.7 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)0.0 _ gal + (0.041 x (D) @.375 in. x (D) @.375 in. x (L) 60ft.) + (Fc)0.25gal =0.6gal
3 Well/Equipment Volumes = 1.8 gallons. Purged Volume (actual): 37.8 gallons
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer Peristaltic Pump X Submersible Pump Sample Rate: 6./0 gpm
QA Sample CollectedYes X No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: X Yes No Filter Size: / μm; All Analyses; X Metals Only;
Turbidity After Filter: 6.9 NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3, dissolved Metals
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D.	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	5 No	vember 2008	Sampled By	: J. Ten	Y
											Other) 🔀 Peristaltic
Pump (Make	: & Model): ₫	eopump II) PA Hurrio	cane Pu	rge Rate:	.05 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI :</u>	556S/N	or ID: <u>06</u> A	A2173AM
Water Level	Meter: Solin	nst	Time (@ Start of Pu	rging: <u>0940</u>	Time @	End of Purg	ing: <u>107</u>	Tot	al Purging Time:	60min
Depth of Pur	mp or Intake To	ubing: <u>69</u> f	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1625	2.25	2.25	23.52	4,66	0-047	1.8	-65.6	0.56	Clear	16.15	
1030	0.25	2.50	23,56	41.66	0.047	1.2	-66.2	0.53	clear	16.15	
1035	0.25	2.75	23.54	4.66	0.047	1.5	-66.4	0.53	clear	16.15	
								·····			
	•										
	ļ										
				<u> </u>							
Take samp Note: Whe prior Note: Whe colle Note: Three read If D turbi	e additional foling. In purging a verto collecting meeting first fice (3) consecuting; DO is no O or Turbidi	field parameter mean well with well screen first field paramete ells with a partially solid parameter measure tive readings within greater than 20% so ity measurements can bet the following: DO	surements not fully submer reasurements submerged we rements. Take specified limitaturation at fie annot meet the 0 ± 0.2 mg/L of	rged and puts. Take acted acte	mp or intake tubir ditional field para nd pump or tubing field parameter mobtained for samp d temperature; and quirements within	s apart, must pag is placed in meter measure g placed within leasurements no ling. Temperat Turbidity ≤ 2 5 well volumand Turbidity:	water columnents every n a submerg o sooner that ature: ± 0.2 ° 0 NTUs es; Temp, p ± 5 NTUs o	an above the so well volunged screen zon an 2 to 3 minus of ; pH: ±0.2 of the conduction of the conduc	creened zone ne until purg- ne, purge a n tes apart unti standard univ	me + stabilized , purge minimu ing requirement sinimum of one I purge requirer ts; Specific Co	well volume prior to
cample 11).	/- / / / /	<u>, , , , , , , , , , , , , , , , , , , </u>									

Field Conditions/Observations: OVE LUST, NG39F, S. CUSTARY breeze
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in SteelX_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.05 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 73.61 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16-15 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: O./O ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Stight Sulfar-1. ke
I Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(73.9 - 16.05)$ x $(3.16 - 9.3)$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well Equipment Volumes = 1.5 gallons Purged Volume (actual): 3.0 gallons
Purge Water Contained?Yes _X_No Container Used:55 Gallon DrumOther ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method:Bailer Peristaltic Pump Submersible Pump
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No) Other () Notes:

					70.444		,			T 700	
Site: J.E.D.	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	sk: <u>01</u> Date	: <u>SNc</u>	ovember 2008	Sampled By	r: J. 1erry	7
Station (Wel	1 No.): _ M	V -9 A wacs id	: 19924	\ 1	Purge Method: Pur	mp 🗵 🛮 Baile	r 🛭 Pum	ıp Type: Sı	ubmersible (Teflon SS _	Other) 🗶 Peristaltic
Pump (Make	e & Model):@	eopump II / PA Hurric	ane Pu	irge Rate: <u>C</u>	9, <i>0</i> 6 gpm Wat	er Quality Meter	r (Make & M	odel): <u>YSI</u>	556 S/N	or ID:06.	A2173A 🔨
Water Level	Meter: Solin	nst	Time	@ Start of Pu	irging: <u>0725</u>	Time @	End of Purg	ging: <u>08/</u>	<u> </u>	al Purging Time	50 Mb
Depth of Pur	mp or Intake T	ubing: <u>20</u> ft	:. (BTOC)	,							
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0800	2.10	2.10	25.07	4.78	0.176	9,5	-111.3	1.38	amber	16.32	
0805	0.30	2.40	25.17	4.75	0.176	9.1	-109.2	1,07	anber	16.37	
08/0	0.30	2.70	25.17	4.74	0.176	8.8	-106.6	0.90	anber	16.32	
;											
				· · · · · · · · · · · · · · · · · · ·							***************************************
						-					
				ļ							-
				<u> </u>				 			
Take samp Note: When prior Note: When	additional foling. In purging a way to collecting a purging we.	ield parameter meas well with well screen first field parameter lls with a partially s	surements no fully submer measuremen ubmerged we	sooner that ged and pu its. Take ad all screen as	an 2 to 3 minutes mp or intake tubin ditional field para and pump or tubing	apart, must p g is placed in meter measure g placed withir	ourge minim water colum ments every n a submerg	num of 3 equent above the solution well volumed screen zone.	nipment volur screened zone me until purgi ne, purge a m	ne + stabilized , purge minimu ng requirement inimum of one	e well volume prior to
corre	cung mist nei	ld parameter measur	ements. 1 ak	s additional	neio barameter m	casurements no	o sooner tha	идиозиппи	uos apart unu	. hm ge rednirei	memis are saustieu.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of

Sample ID: MW-9A Time Collected: 0815 Comments:

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Field Conditions/Observations:overust, ~63°F
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2_ in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.15 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 22.4 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16.32 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor:Yes No Describe:
l Well Volume (WV) = (depth of well – depth to water $\frac{1}{2}$ (mitial) x well capacity = $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ $\frac{1}{2}$ y gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well/Equipment Volumes = 1, 2 gailons Purged Volume (actual): 3.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:Yes No; Purge Water Discharged to Ground? X Yes No w/in cell liner boundary 9711-5-00
Sampling Method: Bailer Yeristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample Collected X Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No) Other () Notes:
Purge worder discharged to ground within cell liner boundary

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FO 1512 Task: 01 Date: 5 November 2008 Sampled By: 5 Terry											
Station (Well No.):											
Pump (Make & Model): Geopump IL/PA Hurricane Purge Rate: 0.30 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M											
Water Level Meter: Solinst Time @ Start of Purging: 0720 Time @ End of Purging: 9905 Total Purging Time: 105000											
Depth of Pump or Intake Tubing: 4/4 ft. (BTOC)											
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0855	28.50	28.50	24.81	4.60	0.069	8.8	-87.9	0.33	clear	18.45	
0900	1.50	30.00	24.84	4.61	0.069	8.2	-88.0	0.92	Clear	18.49	
0904	1.20	31.20	24.83	4.59	0.069	8,2	-87.5	0,32	clau	18.49	
				,							
				·							
	,										
Take samp Note: Whe	Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling. Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.										
INDIE: WIREI	Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to										

collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID:	W-9B	Time Collected: _	0905	Comments:	Tursiday	0, 0740	<u>, 69.3</u>	3 Mu	
------------	------	-------------------	------	-----------	----------	---------	---------------	------	--

Field Conditions/Observations: Overcast, ~63°F
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2_ inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16,17 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: Lich. ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 18.49 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 2.32 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Sulfw-like
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{10000000000000000000000000000000000$
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 6.375 in. x (D) 6.375 in. x (L) 6.2 ft.) + (Fc) 0.25 gal = 6.55 gal
3 Well Equipment Volumes = 1.65 gallons Purged Volume (actual): 31.5 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_ YesNo
Sampling Method: Bailer Peristaltic Pump X Submersible Pump Sample Rate: 6.11 gpm
QA Sample CollectedYes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

Site: <u>J.E.D.</u>	Disposal Fac	cility (WACS Facilit	y ID 89544)	Project No.	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: <u>5</u> No	vember 2008	Sampled By	: <u>J.Tc</u> /	·
Station (Wel	1 No.): <u>MW</u>	VACS ID	19926	F	urge Method: Pur	np ⊠ Baile	r 🗆 Pum	p Type: Su	bmersible (Teflon SS _	Other) X Peristaltic
Pump (Make	: & Model): G	eopump IV/ PA Hurric	ane Pu	rge Rate:	् <i>०</i> ५ gpm Wat	er Quality Meter	r (Make & Mo	odel): <u>YSI 5</u>	56S/N	or ID: <u>06</u> .	A2173A L
	`				rging: <u>0735</u>						
		nst		ay Start Of Pu	rging	1mic @	g End of I dig	,s <u></u>	3 100	ar i arging i mic.	
Depth of Pur	np or Intake Tu	ubing: <u>69</u> ft	. (BTOC)								
-	<u> </u>										<u> </u>
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0000	1.25	1.25	24.38	5.81	0.697	4.5	-/68.7	0.67	clear	16.38	
0800 0805	0-25	1.50	24.40	5.71	0,089	3.2	-/63.7	0.59	clew	16.38	
0830	1.25	2.75	24-29	5.50	0,080	5.2	-155.6	0.48	clau	16.38	
0840	0.50	3.25	24.37	5,52	0.081	6.6	-157.8	0.44	clear	16.38	
0843	0.15	3.40	24.32	5.50	0.081	6,2	-158.3	0.44	clear	16.38	
				:							
Take samp Note: When prior Note: When colle Note: Three readings of the prior of the transfer of the prior of the transfer of	e additional foling. In purging a way to collecting in purging we detring first field (3) consecuting; DO is no O or Turbidit	well with well screen first field parameter alls with a partially sold parameter measure tive readings within a greater than 20% sa	fully submer measurement wibmerged we ements. Take specified limituration at fie nnot meet the	sooner that ged and pur- ts. Take ad- ell screen are additional ts are to be ald measured above req	mp or intake tubir ditional field para and pump or tubing field parameter mobtained for samp I temperature; and purements within	s apart, must pag is placed in ameter measure g placed within a placed within a placed. Temperat Turbidity ≤ 2 5 well volum	water column ements every n a submerg to sooner that ature: ± 0.2° 0 NTUs tes; Temp, p	m above the so well volumed screen zon 2 to 3 minus C; pH: ±0.2	rement volumerement zone are until purgine, purge a metes apart until standard unit	me + stabilized, purge minimum grequirement inimum of one purge required; Specific Commain unchangement of the purge required on the	e well volume prior to
Sample ID:	MW-9	<u>.e</u> Ti	me Collected	0845	Com	ments:					

Field Conditions/Observations: Overcust, ~63%
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.26 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 73.8 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16,38 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
I Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ (initial) x well capacity = $\frac{73.6}{1}$ - $\frac{16.28}{1}$ x $\frac{10.16}{1}$ = $\frac{9.2}{1}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 78 ft.)+ (Fc) 0.25 gal = (D, S) gal
3 Well/Equipment Volumes = 1.5 gallons Purged Volume (actual): 3.5 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer
QA Sample CollectedYes _K_No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter: NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D.	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: 4 No	ovember 2008	Sampled By	: <u>13. Tem</u>	7
Station (Wel	1 No.): <u>M</u> w	-10A wacs id	: 19927	F	Purge Method: Pur	np ⊠ Baile	r 🛭 Pum	np Type: S	ubmersible (Teflon SS _	Other) 🔀 Peristaltic
Pump (Make	e & Model):	eopump D/PA Hurric	cane Pu	rge Rate:	<u>,04 </u>	er Quality Mete	r (Make & M	odel): <u>YSI</u>	556 S/N	or ID: <u>06</u> .	<u>A2173A</u>
Water Level	Meter: Soli	nst	Time (@ Start of Pu	rging: <u>1400</u>	Time @	End of Purg	ging: <u>14/5</u>	O Tota	al Purging Time	50 mh
Depth of Pur	mp or Intake T	ubing: <u>20</u> fi	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1440	1.60	1.60	24.84	4.54	0.141	12.6	-37.8	0.83	yellow	17.81	
1445	0.70	1,80	24.88	4.55	0.141	12.6	-39.41	0.74		17.81	
1448	0.12	1.92	24.90	4.53	0,142	12.4	-38.8	0.72	yellow	17.81	
				<u> </u>							
		***			***************************************						
							-				
				<u> </u>	·····						
Take samp Note: When prior Note: When colle Note: Three reading If Do	e additional foling. In purging a vector to collecting a purging we coting first fice (3) consecuting; DO is no or Turbidi	Tield parameter mean well with well screen first field parameter alls with a partially sold parameter measure tive readings withing greater than 20% sa	surements no fully submer measurement submerged we rements. Take specified limituration at fie nnot meet the	rged and pur tits. Take ad ell screen ar e additional tits are to be eld measured e above req	mp or intake tubin ditional field para and pump or tubing field parameter mobtained for samp I temperature; and purements within	g is placed in meter measure placed within easurements no ling. Temperaturbidity ≤ 2 5 well volum	water columnents every a submerg o sooner that ature: ± 0.2 ° 0 NTUs es; Temp, p	num of 3 equan above the same above the same above the same above the same above to 3 minus of the same above t	uipment volunt screened zone, me until purgine, purge a m ates apart until distandard uniti	ne + stabilized purge minimum ng requiremen inimum of one purge requires s; Specific Co main unchang	e well volume prior to
Sample ID:	_ww-	10 A Ti	me Collected	:_ <u>1450</u>	Com	ments:					

WINE CO.
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2_ in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Yes Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 17.7/ ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 22.1 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final):ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Slightly Sow
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{\text{(initial)}}$ x well capacity = $\frac{20.1}{\text{c}} - \frac{7.71}{\text{c}}$ x $\frac{0.16}{\text{c}} = \frac{0.7}{\text{c}}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 6.25 in. x (L) 30 ft.) + (Fc) 0.25 gal = 0.33 gal
3 Well/Equipment Volumes = 1-0 gallons Purged Volume (actual): 2.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:BailerX Peristaltic PumpSubmersible Pump Sample Rate:O.O^1gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX_UPS (Airbill No) Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project 1	No.: <u>FQ 1512</u> Task: <u>01</u>	Date: 4 November 20	008 Sampled By: J. Ter	cy
Station (Well No.): <u>MW-10B</u> WACS ID: <u>19928</u>	Purge Method: Pump ⊠	Bailer 🗆 Pump Type:	_ Submersible (Teflon SS	Other)Peristaltic
Pump (Make & Model): Geopump N / PA Hurricane Purge Rate:	0.05 gpm Water Qualit	y Meter (Make & Model):Y	<u>YSI 556</u> S/N or ID: <u>0</u> 6	5A2173AL
Water Level Meter: Solinst Time @ Start of	Purging: 355	Time @ End of Purging:	5/0 Total Purging Time	e: 75 _{0.5}
Depth of Pump or Intake Tubing: 43 ft. (BTOC)				

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1443	2.40	2.40	24.88	4.88	0.064	0,4	-156.6	0-23	clew	17-31	
141418	0.25	2.65	24.87	4.87	0-064	0,3	-156.9	0.23	Cleur	17.81	
1505	0.85	3.50	241.79	4.82	0.064	0.1	-/55.5	0.19	clew	17.81	

								······································			
		······································	~				1				

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID:	MW-10B	_ Time Collected:	1510	Comments:
------------	--------	-------------------	------	-----------

Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 17.74 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 48.3 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 7.81 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: 5/3/4/4/50/fix-like
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (46.7 - 17.74) x 0.16 = 5.0 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well/Equipment Volumes = 1.2 gallons Purged Volume (actual): 3.75 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample CollectedYes X No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility II.	289544) Project No.: FO 1512 Task: 01 Date: 4 November 2008 Sampled By: 3. Terry
Station (Well No.): WACS ID: WACS ID:	Purge Method: Pump 🖾 Bailer 🗆 Pump Type: 🔀 Submersible (Teflon 🔀 SSOther) Peristalti
Pump (Make & Model): Geopump II / RA Hurricane	Purge Rate: O.40 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173AL
Water Level Meter: Solinst	Time @ Start of Purging: 14/0 Time @ End of Purging: 1530 Total Purging Time: 8000
Depth of Pump or Intake Tubing: 69 ft. (BI	°OC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1520	29.00	28.00	24.16	41.79	0.042	12.0	-130.8	0.14	Clear	18,40	
1524	1.60	29.60	24.16	4.77	0.042	12.0	-129.1	0.11	clew	18.40	
1527	1.20	30,80	24.16	4.73	0.042	11.6	-176.1	0.10	Clear	18.40	
	,										
											
							<u> </u>				
				<u> </u>			1				

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID: NW-10C Time Collected: 1530 Comments: inrin (turbidly 24 NT4

Field Conditions/Observations: Overcust, ~740F, S. eastory breeze
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): $/\cancel{B} \cdot \cancel{O} \in$ ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 73.7 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final):ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 0.34 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA_ft.</u> OVM/PID Reading (if applicable): <u>NA_ppm.</u>
Note: NA = Not Applicable Detectable Odor: Yes X No Describe:
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (73.7 - 18.06) x 0.16 = 9.0 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 80 ft.)+ (Fc) 0.25 gal = 0.7 gal
3 Well/Equipment Volumes = 2./ gallons Purged Volume (actual): 32.0 gallons
Purge Water Contained?Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? X_YesNo
Sampling Method: Bailer Peristaltic Pump X Submersible Pump Sample Rate: 0.09 gpm
QA Sample CollectedYes _X_No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes K No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D.	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: 4 No	vember 2008	Sampled By	: J. Ten	<u> </u>
											Other) X Peristaltic
Pump (Make	: & Model) (G	eopump l / PA Hurric	ane Pu	rge Rate:	0.05 gpm Wat	er Quality Mete	r (Make & Mo	odel): <u>YSI</u>	556S/N	or ID:06.	A2173A ,^
Water Level	Meter: Solin	nst	Time (@ Start of Pu	arging: //50	Time @	End of Purg	ing: <u>1230</u>) Tota	al Purging Time	40mb
Depth of Pur	np or Intake Ti	ubing: <u>19</u> fi	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1220	1.50	1.50	26.00	4.89	0.203	6,6	-44.6	0.54	yellow	15.51	
1225	0.25	1.75	26.09	4.90	0.204	6.2	-45.6	0.46	yellow yellow	15.51	
1229	0.20	1.95	26.06	4.91	0.203	6.0	-46.1	0.42	yellow	15.51	
				-							
			1								
				<u> </u>							<u></u>
				<u> </u>							
]								
~			<u> </u>								
											
Note: When colle Note: Three reads	e additional foling. In purging a vertice to collecting in purging we exting first field (3) consecuting; DO is not the collection of Turbidical dity must me	well with well screen first field parameter this with a partially sold parameter measure tive readings within greater than 20% saty measurements caset the following: DC	surements no fully submer measurements ubmerged we rements. Take specified limituration at fie mnot meet the 0 ± 0.2 mg/L of	ged and putts. Take additional its are to be above record 10%, while	an 2 to 3 minutes mp or intake tubir Iditional field para nd pump or tubin, field parameter m obtained for samp d temperature; and quirements within ichever is greater;	s apart, must pag is placed in meter measureg placed within the asurements in the placed in the pla	water column ements every n a submerg to sooner that ature: ± 0.2 ° 0 NTUs tes; Temp, p ± 5 NTUs of	num of 3 equents above the set well volumed screen zoon 2 to 3 minutes. PH: ±0.2 PH: ±0.2 PH: ±0.2 PH: ±0.4 PH: ±0.6 nipment volument coreened zone me until purgine, purge a mutes apart until standard unit	ne + stabilize , purge minimung requirement inimum of one purge require s; Specific Commain unchang	e well volume prior to	
Sample ID:		<u>A</u> Ti	me Collected	للاحال	Com	ments:					.,

Field Conditions/Observations: Overlist, ~749F, 5. east-ly breeze
Well Inspection:
Well Type: Flush MountX Stick Up Other Well Size (ID):2 in SteelX PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: X Tight Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): _/5.43 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 22.8 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): _5.51 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: Yes No Describe: Yaxaa Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(22.8 - 15.43)$ x $(0.16 = 1.2)$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 30 ft.)+ (Fc) 0.25 gal = 0.33 gal
3 Well/Equipment Volumes = gallons Purged Volume (actual): gallons
Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? X Yes No w/n cell Inv boundary 87,408
Sampling Method:BailerX_Peristaltic PumpSubmersible Pump Sample Rate:O_OSgpm
QA Sample CollectedYes _x No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter: NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: <u> </u>	vember 2008	Sampled By	:_ I. Ter	Y
Station (Wel	1 No.): <u>///</u> w	(-118 WACS ID	: 19931	I	Purge Method: Pur	np ⊠ Baile	r 🗆 Pum	р Туре: 🗶 Ѕъ	ıbmersible (Teflon 🗶 SS _	Other) Peristaltic
Pump (Make	& Model): <u>G</u>	eopump II PA Hurrid	cane Pu	rge Rate:	<i>9,40</i> gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI</u>	556S/N	or ID:06	A2173A !-
Water Level	Meter: Soli	nst	Time (@ Start of Pu	rging: <u>//30</u>	Time @	End of Purg	ging: <u>13</u> 2	Tota	al Purging Time	115an
Depth of Pur	mp or Intake T	ubing: <u>43</u> f	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
13/5	4/2.00	42.00	24.97	5.05	0.064	6.8	-146.9	0.00	clear	16.20	
1319	1.60	43.60	25.00	5.03	0.064	6.7	-146.0	0.08	clew	16.70	
1324	2.00	45,60	25.00	5,02	0,064	6,2	-145,9		clear	16.20	
							7,7,1				
<u></u>											
	·										
Take samp	additional foling.	ield parameter mea	surements no	sooner tha	n 2 to 3 minutes	apart, must p	ourge minin water colum	num of 3 equ n above the s	ipment volun	ne + stabilize purge minim	ameter measurements. d field parameters for m of one well volume

prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: <u>MW-11B</u> Time Collected: <u>1325</u>	Comments: Turbiding @ 1150 45 NTV
--	-----------------------------------

Field Conditions/Observations: Overast, ~744 S. eastrly breeze
Well Inspection:
Well Type: Flush Mount _X Stick Up Other
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.45 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: Line ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16.30 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor:Yes _X No Describe:
l Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(47.4)^{-}$ - $(5.45)^{-}$ x $(0.16)^{-}$ = $(5.75)^{-}$ x $(0.16)^{-}$
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)0.0 _ gal + (0.041 x (D)0.375 in. x (D)0.375 in. x (L)56ft.) + (Fc)0.25gal =0.6gal
3 Well/Equipment Volumes = 1.8 gallons Purged Volume (actual): gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer Peristaltic Pump X Submersible Pump Sample Rate: 0.12 gpm
QA Sample CollectedYes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No) Other () Notes:
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: 4 No	vember 2008	Sampled By	: J.Te	rry
											Other) _X Peristaltic
Pump (Make	e & Model): &	eopump ID/ PA Hurric	cane Pu	rge Rate:	0.05 gpm Wat	er Quality Mete	r (Make & Mo	odel): <u>YSI</u>	556 S/N	or ID:06A	12173A L
Water Level	Meter: Soli	nst	Time (@ Start of Pu	rging:	Time @	End of Purg	ing: <u>125</u> 7	7 Tota	al Purging Time:	70mm
		ubing: <u>68.5</u> f									M
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1222	2.10	2.10	24.69	5.42	0.084	1.3	-155.4	0.28	clew	15.63	
1227	0.25	2.35	24.81	5.46	0.085	1,5	-156.1	0.76	clew	15.63	
1245	0,90	3.25	24.74	5.46	0.087	1.0	-158.3	0.21	clew	15.63	
~]								
					·						
Take samp Note: Whe prior Note: Wher colle Note: Three readi If Do turbio	e additional foling. In purging a vertex to collecting a purging we cting first field (3) consecuting; DO is no D or Turbidit dity must meet	well with well screen first field parameter first field parameter lls with a partially still parameter measur ive readings within a greater than 20% saty measurements cannot the following: DO	surements no a fully submer measurement submerged we ements. Take specified limituration at fie nnot meet the 0 ± 0.2 mg/L o	ged and pur ts. Take addil screen are additional ts are to be add measured above req or 10%, which	mp or intake tubin ditional field parand pump or tubing field parameter mobtained for samp I temperature; and uirements within chever is greater;	apart, must pag is placed in meter measure placed within easurements nuling. Temperaturbidity $\leq 2^{\circ}$ 5 well volumand Turbidity:	water column ments every in a submerge o sooner than ature: ± 0.2 o 0 NTUs es; Temp, pi ± 5 NTUs or	n above the so well volumed screen zon 2 to 3 minus. C; pH: ±0.2 H, Conductive 10%, whicher	ipment volunce reened zone, ne until purgine, purge a mites apart until standard units wity ranges recever is greater	ne + stabilized purge minimu ng requirement inimum of one purge requiren s; Specific Con main unchange	well volume prior to
Sample ID:	/^W-	NC Ti	me Collected:	1250	Com	nents:					

Field Conditions/Observations: overwit, ~747, 5, eastrly breeze
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: Yight Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 15.53 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 73. 4 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 15.63 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor:Yes _X_ No Describe:
Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(73.4)^{-1}$ - (8.53) x $(0.16)^{-1}$ = $(9.3)^{-1}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well Equipment Volumes = 1.35 gallons Purged Volume (actual): 3.5 gallons
Purge Water Contained?Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:Bailer _X Peristaltic PumpSubmersible Pump Sample Rate: _0.05 gpm
QA Sample CollectedYesNo;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

					HUMIUM	m ₅ 11 cm 5 m	5				
Site: J.E.D	. Disposal Fa	cility (WACS Facilit	<u>y ID 89544)</u>	Project No	o.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	4 No	ovember 2008	Sampled By	: J T	erry
Station (We	ll No.): <u>MW</u>	-12A WACS ID:	19933		Ритде Method: Риг	mp 🗵 Bailer	· 🗆 Pum	p Type: Sul	omersible (Teflon SS _	Other) 🔀 Peristaltic
Pump (Mak	e & Model):	eopump II / PA Hurric	ane Pu	rge Rate:	9.04 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI 5</u>		or ID:061	
Water Level	l Meter: <u>Soli</u> ı	nst	Time (@ Start of P	urging: <u>0935</u>	Time @	End of Purg	ging: <u>/020</u>	<u> </u>	al Purging Time:	45 min
Depth of Pu	ımp or Intake Tı	ıbing: <u>20</u> ft	. (BTOC)								
Time	Purge Volume	Cumulative Purge Volume	Temp	РН	Conductivity	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft)	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1000	1.00	1.00	24.71	4.38	0.084	0.4	-108.1	0.30	clew	16.25	
1003	0.12	1.12	24.72	4.36	0.085	0.5	-112.6	0.29	clear	16.95	
1007	0.16	1.28		41.35	0.085	0.4	-109,9	0.29	clear	16.95	
	<u>'</u>										
	<u> </u>										

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of

reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: _	MW-12A	Time Collected:/	<u> (020</u>	Comments:		
--------------	--------	------------------	--------------	-----------	--	--

·
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2 inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Yes Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.72 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: \$3.0 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16-95 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 6.23 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes No Describe: [ancid Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{\text{(initial)}}$) x well capacity = $\frac{23.0}{\text{c}}$ - $\frac{16.70}{\text{c}}$ x $\frac{0.16}{\text{c}}$ = $\frac{1.0}{\text{c}}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) <u>0.0</u> gal + (0.041 x (D) <u>0.27</u> in. x (D) <u>0.25</u> in. x (L) <u>30</u> ft.)+ (Fc) <u>0.25</u> gal = <u>0.32</u> gal
3 Well/Equipment Volumes = 10 gallons Purged Volume (actual): 18 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample CollectedYes X No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 4 November 2008 Sampled By: 5, Terry
Station (Well No.): MW-12R WACS ID: 19934 Purge Method: Pump M Bailer D Pump Type: Submersible (Teflon X SS Other) Peristaltic
Pump (Make & Model): Geopump II PA Hurricage Purge Rate: 0.30 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173AM
Water Level Meter: Solinst Time @ Start of Purging: 0925 Time @ End of Purging: 1055 Total Purging Time: 90 A15
Depth of Pump or Intake Tubing:ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1040	22.50	22.50	24.23	4.58	0.072	9.4	-13.7	0.42	clear	17.30	
1050	3.00	25.50	24.30	4.58	0.072	8.5	-13-8	0.32	cler	17.30	
1053	0.90	26,40	24.31	4.59	0.072	8.2	.14.0	0.31	clear	17.30	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: <u>MW-12B</u> Time Collected: <u>/055</u>	Comments: initial turbidity 43 NTU. Twb:	iny 8, 10:00, 25NTy.
--	--	----------------------

Field Conditions/Observations: OVETUST, N749 , Soull ensterly breeze
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in SteelX_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.77 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 19.0 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 17-30 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: X Yes No Describe: Sulfw-like
1 Well Volume (WV) = (depth of well – depth to water $_{\text{(initial)}}$) x well capacity = $(\frac{24}{1.0} - \frac{1}{2})$ x $\frac{0.16}{1.00} = \frac{1}{2}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 55 ft.) + (Fc) 0.25 gal = 0.6 gal
3 Well/Equipment Volumes = 1,8 gallons Purged Volume (actual): 27.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer Peristaltic Pump X Submersible Pump Sample Rate: 0.09 gpm
QA Sample CollectedYes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX_ UPS (Airbill No) Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: November 2008 Sampled By: 5. Terry											
Station (Well No.): MW-12C WACS ID: 19435 Purge Method: Pump \Bailer \											
Pump (Make & Model): Geopump IP / PA Hurricane Purge Rate: O. O.S. gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M											
Water Level Meter: Solinst Time @ Start of Purging: 0930 Time @ End of Purging: 1010 Total Purging Time: 10000											
Depth of Pump or Intake Tubing: 69 ft. (BTOC)											
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1000	1.50	1.50	23.64	4.51	0.045	4.1	-1-9	0.71	Clear		
1005	0.25	1.75	23.69	4.51	0.046	4.2	-3.4	0.61	clear	16.98	
1009	0.20	1.95	23,72	4,51	0.046	4.1	-3.6	0.58	Clear	16.98	
		,									
			1								······································
			<u> </u>								
							 				
			-								, , , , , , , , , , , , , , , , , , , ,
Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume ± stabilized field parameters for sampling. Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied. Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied. Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater											
Sample ID: MW-12C Time Collected: 1010 Comments:											

Field Conditions/Observations: overust, ~ 74°F, s. easterly breeze
Well Inspection:
Well Type:Flush Mount _X_Stick UpOther Well Size (ID): _2_ inSteel _X_PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.90 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 73.6 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16-75 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:O_OBft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: X Yes No Describe: Sight Suffer 1. Le
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(73.6 - 16.90)$ x $(3.6 - 10.90)$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)0.0 _ gal + (0.041 x (D)0.25 _ in. x (D)0.25 _ in. x (L)78 _ ft.)+ (Fc)0.25 _ gal =0.5 gal
3 Well (Equipment Volumes =/, 5 gallons Purged Volume (actual): gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: 0.05 gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D.	. Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date	: <u>4</u> No	ovember 2008	Sampled By	: J. Ten	
Station (Well No.): MW-13A WACS ID: 19936 Purge Method: Pump \(\bar{\text{\ticl{\text{\ti}\text{\texi\tiex{\text{\texi\text{\ti}\text{\text{\text{\texi}\text{\text{\text{\text{\text{\ti											
Pump (Make	Pump (Make & Model): Geopump II / PA Hurricane Purge Rate: 0.05 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M										
Water Level	Water Level Meter: Solinst Time @ Start of Purging: 07/5 Time @ End of Purging: 08/5 Total Purging Time: 60/20										
Depth of Pu	mp or Intake T	ubing: <u>20</u> f	t. (BTOC)								×
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0755	2.00	2.00	24.74	4.77	0.///	4.8	-46.5	1.15	clew	16.88	
0800	0.25	2.25	24.76	4.77	0.110	4.8	-46.6	0.93	clear	16.89	
0813	0.65	2-90	24.77	4.77	0.111	2.9	-43.8	0.59	dea	16.89	
		1									
									,		
	<u> </u>			· ·							-
Take sam: Note: Whe prior Note: Whe colle Note: Thre read If D	e additional falling. En purging a various collecting on purging we ecting first field (3) consecuting; DO is not the control of the control	field parameter mean well with well screen first field paramete alls with a partially Id parameter measure tive readings within	a fully subments not fully subment measurement were rements. Take specified limitaturation at fie annot meet the	ged and purits. Take added screen are additional its are to be ald measured above received.	mp or intake tubin ditional field para nd pump or tubin field parameter mobtained for sampd temperature; and purements within	s apart, must pag is placed in ameter measure g placed within a placed within a place. Temperat Turbidity ≤ 2 5 well volum	water colum ments every n a submers o sooner tha ature: ± 0.2° 0 NTUs es; Temp, I	num of 3 equin above the so will well voluinged screen zon an 2 to 3 minu of; pH: ±0.2	creened zone ne until purgine, purge a mates apart until standard university ranges re	me + stabilized, purge minimu ing requiremen ainimum of one I purge requiren ts; Specific Co	e well volume prior to
Sample ID:	:_MW-13.	<i>A</i>	ime Collected	: <u>0815</u>	Com	ments:				***************************************	

Field Conditions/Observations: OVECUST, ~ 73°F, Soundarly breeze
Well Inspection:
Well Type: Flush Mount X Stick Up Other Well Size (ID): 2 in. Steel X PVC
Condition (locked, damaged, etc.):
Well Labeled: _X Yes No Well Cap: _X Yes No Well Cap: _X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.68 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 22.5 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16-89 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: \(\frac{ancid}{}{} \)
I Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (30,5 - 16,65) x 0.16 = 1.0 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well (Equipmen) Volumes = 1.0 gallons Purged Volume (actual): 3-0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method:Bailer _X Peristaltic Pump Submersible Pump Sample Rate:O_O S gpm
QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX_UPS (Airbill No) Other () Notes:
Notes:

					Monitor	ng Well Sai	npling				
Site: <u>J.E.D.</u>	Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 4 November 2008 Sampled By: J. Terry										
Station (Well	Station (Well No.): MW-1313 WACS ID: 19937 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: X Submersible (Teflon XSSOther)Peristaltic										
Pump (Make	Pump (Make & Model): Geopump II LPA Hurricane Purge Rate: 0.32 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A L										
Water Level	Water Level Meter: Solinst Time @ Start of Purging: 0705 Time @ End of Purging: 0845 Total Purging Time: 100000										
Depth of Pur	np or Intake Tu	ıbing: <u>42</u> ft	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0835	28,80	28.80	24.24	4.88	0.047	9.9	-104.2		cler	16.86	
1840	1-60	30.40	241.23	41.87	0.047	10.2	-103.8	0.13	Clew	16.86	
0845	1.60	32.00	24.25	4.86	6-047	10.0	-103.0	0.11	cleur	16.86	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:	MW-13B	Time Collected:	0847	Comments: *in+72	tubidi?	y 44 NT	М			
------------	--------	-----------------	------	------------------	---------	---------	---	--	--	--

Field Conditions/Observations: Overest, ~740t, sourcely breeze
Well Inspection:
Well Type:Flush Mount _X_Stick UpOther Well Size (ID): _2_ inSteel _X_PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.6/ ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 17.2 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16.86 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Suffer-like
1 Well Volume (WV) = (depth of well depth to water $\frac{1}{\text{(initial)}}$) x well capacity = $\frac{27.2 - \text{l.c.}}{\text{l.c.}}$ x $\frac{0.16 - \text{s.c.}}{\text{0.01}}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well/Equipment Volumes = 1.8 gallons Purged Volume (actual): 32.0 gallons
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method:BailerPeristaltic Pump Submersible Pump
QA Sample CollectedYes X No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered:Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: L November 2008 Sampled By: J. Jerry											
Station (Well No.): MW-13C WACS ID: 19938 Purge Method: Pump \(\text{Pump Type:} \) Bailer \(\text{Dump Type:} \) Submersible (_ Teflon _ SS _ Other) \(\text{Y Peristaltic} \)											
Pump (Make & Model) Geopump II / PA Hurricane Purge Rate: 0.05 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A L											
Water Level Meter: Solinst Time @ Start of Purging: 0720 Time @ End of Purging: 0805 Total Purging Time: 4504											
Depth of Pump or Intake Tubing: 68 ft. (BTOC)											
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0745	1,25	1.25	23.62	5.11	0.049	2.1	-61-1	0.66	clew	16,70	
0752	0.35	1.60	23.79	5.01	0.048	2.0	~75.5	0.52	clear	16.71	
0758	0.30	1.90	23.83	41.99	0.048	1.9	-77.8	0.44	clew	16.71	
0802	0.70	2.10	23.82	41.47	0.048	1, 7	-78.7	0.45	clear	16.71	
0 0.0 0.											-
	· ·										•
<u> </u>											
									.,,		
Take samp Note: When prior Note: When colle Note: Three read; If Do turbi	e additional fibling. In purging a we to collecting in purging well acting first field (3) consecuting; DO is no O or Turbidit dity must mee	well with well screen first field parameter fils with a partially still parameter measur ive readings within greater than 20% say measurements cast the following: DO	surements no fully submer measurements where ments. Take specified limituration at fie nnot meet the 0 ± 0.2 mg/L of	ged and puts. Take additional are to be ld measured above record 10%, while	mp or intake tubin ditional field para and pump or tubing field parameter m obtained for samp d temperature; and juirements within chever is greater;	apart, must pag is placed in a meter measure g placed within easurements nothing. Temperaturbidity ≤ 20 5 well volume and Turbidity:	water columnents every a a submerg o sooner tha ature: ± 0.2° O NTUs	num of 3 equination above the single well volumed screen zon 2 to 3 minus (C; pH: ±0.2)	ipment volumereened zone on until purgine, purge a mites apart until standard unit	me + stabilized, purge minimu ing requiremen ninimum of one I purge required s; Specific Co emain unchang	e well volume prior to
Sample ID:	MW-	1 <u>) じ</u> Ti	me Collected:	_0805	Com	nents:					

Field Conditions/Observations: overast, ~740F, southerly breeze
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Yes No Well Cap: Yes Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.61 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 73.0 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 16.71 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: O-10 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable
Detectable Odor: X Yes No Describe: Slight Sulfur-like
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ (mittal) x well capacity = $\frac{73.0}{1.05}$ - $\frac{10.05}{1.05}$ x $\frac{10.16}{1.05}$ = $\frac{9.0}{1.05}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)00 gal + (0.041 x (D)0.25 in. x (D)0.25 in. x (L)80 ft.) + (Fc)0.25gal =05 gal
3 Well/Equipment Volumes = 1-5 gallons Purged Volume (actual): 2.25 gallons
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: 005 gpm
QA Sample CollectedYes X No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered:YesX_No Filter Size: μ m; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: // November 2008 Sample	dBy: J. Terry
Station (Well No.): MW-16A WACS ID: 22342 Purge Method: Pump Macs ID: 22342 Purge Method: Pump Macs ID: 22342	(TeflonSSOther) <u>X</u> Peristaltic
Pump (Make & Model): Geopump II PA Hurricane Purge Rate: 0-07 gpm Water Quality Meter (Make & Model): YSI 556	S/N or ID: <u>06A2173A</u>
Water Level Meter: Solinst Time @ Start of Purging: 1250	Total Purging Time:
Depth of Pump or Intake Tubing:ft. (BTOC)	

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1215	5.60	3.60	26.11	5.27	0.060	6.2	55.6	3,07	clear	10.15	
1220	0.35	5.95	26.10	5.16	0.061	4.2	61-3	2.93	clew	10.15	
1238	1.76	7.21	26,08	5.11	0.061	3.9	63.0	2.62	clean	10.15	
1241	0-21	7:42	26.10	5.15	0.061	4.3	63.2	2.61	clear	10.15	
1245	0.28	7.70	26.11	5.15	0.061	4.0	61.1	2.62	cleur	10.15	
									,		

			,		·····				F		
										i.	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-16A	Time Collected:/2S	Comments:	iniaral toubi	114 173 NTG	juts of delais	in water (ricot?)
	· · · · · · · · · · · · · · · · · · ·			!		1

Field Conditions/Observations: M. Sunny, ~ 80°F, Strong westery wind, dustin the at
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2 inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 9.60 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 18.63 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): _/O./5 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:O. SSft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor:Yes X No Describe:
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{2}$ (initial) x well capacity = $\frac{1}{2}$ 1
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well/Equipment Volumes = 10 gallons Purged Volume (actual): 8.05 gallons
Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:BailerX_Peristaltic PumpSubmersible Pump Sample Rate:O.O.7gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:
Purped >5 well volumes unable to get 100 below 20%; howeve it is with ±0.2 mg/k. (No bubbles in flow cell.)

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: November 2008 Sampled By: J. Terry
Station (Well No.): MW-1613 WACS ID: 22343 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: 🔀 Submersible (Teflon 🔀 SSOther)Peristal
Pump (Make & Model): Geopump II / PA Hurricane Purge Rate: 0.70 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173AM
Water Level Meter: Solinst Time @ Start of Purging: 1035 Time @ End of Purging: 1230 Total Purging Time: 125 mm
Depth of Pump or Intake Tubing:ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1215	70.00	70.00	24.78	4.99	0.054	57.0	-91.3	0.96	cloudy	11.36	
1272	4.90	741.90	24.79	41.98	0-054	56.0	-93.8	0-75	cloudy	11.36	
1225	2.10	77,00	241.80	21,96	0.054	57.1	-93.0	0.77	cloudy	11.36	
			-								
					:						
						-			1		
										-	
							<u> </u>			<u> </u>	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-16B	Time Collected: 1230	Comments: inthat turbi	us 639 NTU	P. 1045	first water that flowed
		was filled w/s	i lif(very guliciti)		

Field Conditions/Observations: M. Suny, 280°F, stong westerly wind, dusitinar
Well Inspection:
Well Type: Flush MountX_ Stick Up Other Well Size (ID):2_ in SteelX_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 9.93 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 38.001 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final):ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: \times Yes No Describe: $\frac{\text{Note: NA = Not Applicable}}{\text{Note: NA = Not Applicable}}$
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ (mitial) x well capacity = $\frac{1}{1}$ (38.69 - $\frac{1}{1}$ - $\frac{1}{1}$ x $\frac{1}{1}$ (25"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well Equipment Volumes = 1.5 gallons Purged Volume (actual): 87.5 gallons
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer Peristaltic Pump _X Submersible Pump Sample Rate: gpm
QA Sample CollectedYes _X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; X Metals Only;
Turbidity After Filter: O.4 NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3, Disselved Metals
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
() 3 PTI-11-00
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

	Monitoring Well Sampling										
Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: // November 2008 Sampled By: J. Terry											
Station (Well No.):MW-16C_ WACS ID: _223-1-1 Purge Method: Pump \overline{\text{W}} Bailer \text{Pump Type: \textsubmersible (_Teflon \textsubseteq SSOther)Peristaltic											
Pump (Make	Pump (Make & Model): Geopump II PA Hurricaite Purge Rate: 0.30 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M										
Water Level	Water Level Meter: Solinst Time @ Start of Purging: 1045 Time @ End of Purging: 1150 Total Purging Time: 65 mm										
Depth of Pur	np or Intake To	ubing: <u>63</u> ft	. (BTOC)								
Time	Time Purge Volume (gal) Cumulative Purge Volume (gal) PH Conductivity (mS/cm) Turbidity (NTU) ORP (mV) Color Water (ft) BTOC Comments										
1135	15.00	15.00	24.26	5.08	0.073	7.1	-60.4	0.31	clear	11.65	***************************************

0.073

0.073

1.50

1.50

16.50

24.78

5.11

18.00

1140

1145

	.						
			 	İ			
			 	<u> </u>			
1		 · ·	 				

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-16C Time Collected: 1150 Comments: initial turbidity 48 MM

Field Conditions/Observations: M. Suny, 1807, Stray Lathy whol, dust in wir
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): // ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 67.7 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 11.65 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA_ft. OVM/PID Reading (if applicable): NA_ppm.
Detectable Odor: Yes No Describe:
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ (initial) x well capacity = $\frac{1}{1}$ (G.7.7 - $\frac{10.21}{1}$) x $\frac{1.16}{1}$ = $\frac{9.7}{1}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 78 ft.)+ (Fc) 0.25 gal = 0.7 gal
3 Well/Equipment Volumes = 2.1 gallons Purged Volume (actual): 19.5 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate:O.//_ gpm
QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: DUP-2 QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T, Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
· · · ·
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

					Monitor	աց Well Sa	mpling				
Site: J.E.D	. Disposal Fa	cility (WACS Facili	ity ID 89544)	Project No	.: <u>FQ 1512</u> Tas	sk: <u>01</u> Date	: <u>// N</u> o	ovember 2008	Sampled By	1. J. Tei	~~
Station (We	ll No.): <u>MW</u>	-17A wacs id	: 22345	<u> </u>	Purge Method: Pur	mp 🗵 Baile	er 🗆 Purr	np Type: Si	ıbmersible (Teflon SS _	_ Other) <u>×_</u> Peristaltic
Pump (Mak	e & Model)	eopump It / PA Hurri	cane Pu	rge Rate: 💆	7_ <i>05</i> gpm Wat	er Quality Mete	r (Make & M	odel): <u>YSI</u>	556S/N	N or ID:062	A2173A L
Water Level	l Meter: <u>Soli</u>	nst	Time (@ Start of Pu	rging: <u>/325</u>	Time @	End of Pur	ging: <u>142</u>	Tot	al Purging Time:	60mm
Depth of Pu	mp or Intake T	ubing: 15 f	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1355	1.50	1.50	25.32	41.23	0.070	4.7	91.7	0.89	clear	10.96	
1400	0.75	1.75	25.23	4.21	0.072	3.2	76.6	0.63	cka	11.01	

0.60

0.56

clear

11.03

11.03

0.072

0.072

25.23

25.25

4.72

4,23

4105

14109

0-25

0.20

2.00

2.20

L		<u> </u>	<u> </u>		ļ			1			<u> </u>	
Note: W	nen purging we	ll with pump or inta	ke tubing with	in a fully	submerged well s	creen, purge mi	inimum of l	l equipment v	olume prior to	first field pa	rameter me	asurements.
Ta	ke additional f	field parameter mea	surements no	sooner th	an 2 to 3 minute	s apart, must p	ourge minir	num of 3 equ	ipment volur	ne + stabilize	ed field par	ameters for
sa	mpling.											

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID:	
------------	--

Field Conditions/Observations: M. Cloudy, ~ 80°E Swang westerly with
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2 inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 9, 49 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 19-86 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): //. 03 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: Yes Yes No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(19.86 - 9.49)$ x $0.16 = 1.7$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 70 ft.) + (Fc) 0.25 gal = 0.33 gal
3 Well/Equipment Volumes = 100 gallons Purged Volume (actual): 30 gallons
Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other (
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method:BailerX Peristaltic Pump Submersible Pump Sample Rate:O_O_Sgpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WA	CS Facility ID 89544) Project 1	No.: <u>FQ 1512</u> Task: <u>01</u>	Date: 1/ November	er 2008 Sampled B	By: J. Terry	/
Station (Well No.): MW-17B	WACS ID: 223-16	Purge Method: Pump 🗵	Bailer Pump Type	:: X Submersible (_	_Teflon 🗴 SSC	Other) Peristaltic
Pump (Make & Model): Geopump II	PA Hurricane Purge Rate:	0.34 gpm Water Qualit	y Meter (Make & Model):	<u>YSI 556</u> S/	N or ID:06A2	173A M
Water Level Meter: Solinst	Time @ Start of	Purging:	Time @ End of Purging:	<i>1415</i> To	otal Purging Time:	60 nm
Depth of Pump or Intake Tubing: 3	ft. (BTOC)					

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1400	15.30	15.30	24,10	4.94	0.087	14.0	-109.9	0.48	clear	11.36	
1405	1.70	17.00	24.09	4.94	0.087	12.7	-110.5	0-31	clear	11.36	
1410	1.70	18.70	241.09	4,93	0.082	11.2	-110.6	0.25	clear	11.36	
	•										
000											
									·		
ACCUMENT OF THE PERSON											
		· · · · · · · · · · · · · · · · · · ·									
7.00											
- Carlo Carlo											
TYPECHET											

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

Sample ID: MW- NB Time Collected: 1415 Con	omments: initial tubility 38 NTU
--	----------------------------------

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Field Conditions/Observations: M. Cloudy, ~809=, 5+rang werthy wind
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2 inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 9.97 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 40.18 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): //- 36 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Sulfu-like Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(40.18 - 9.52)$ x $0.16 = 41.8$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.3% in. x (D) 0.3% in. x (L) 50 ft.) + (Fc) 0.25 gal = 0.5% gal
3 Well Equipment Volumes = 1.67 gallons Purged Volume (actual): 20.4 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample CollectedYes _XNo;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

Monitoring Well Sampling											
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	sk: <u>01</u> Date	: <u>//</u> No	vember 2008	Sampled By	J. Terr	Y
											/ Other) Peristaltic
		eopump II PA Hurrio									
		nst									
Depth of Pur	np or Intake T	ubing: <u>62</u> f	t. (BTOC)								
			1	<u> </u>	<u> </u>						
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1435	36.00	36.00	23.62	5.33	0.674	10.4	-92.8	0.21	c/eu	11.62	
1440	2.25	38.25	23.60	5-31	0,074	8.7	-92.4	0.19	olew	11.66	
1448	2.28	40.50	23.68	5.33	0-074	6.9	-93.1	0.18	c/ec	11.66	
	-										
					:	·					
		-									
Note: When	purging wel	I with more or into	ce tubing with	in a fally a	nhmargad mall co	reen nurge mi	nimum of 1	aquinment ve	lumo arior to	first field	meter measurements.
TAGES ANTIGO	charama wer	r wan bamb or mig	re inome win	пп и ини 8	nomergen well so	ioen, puike iiii	mmum of t	edmbinem A(инис риот и	i institicio para	meter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: <u>MW-17C</u> Time Collected: 1450	Comments: initial twoiding 54 NTV

Field Conditions/Observations: M. Cloudy, ~80°F, Stray worterly wind
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2 inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 16.70 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 67.3 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 11.66 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(67.3 - 10.20)$ x $0.16 = 9.0$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.325 in. x (D) 0.335 in. x (L) 75 ft.) + (Fc) 0.25 gal = 0.7 gal
3 Well/Equipment Volumes = 2./ gallons Purged Volume (actual): 42.75 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 12 November 2008 Sampled By: 5. Terry	
Station (Well No.): MW-(8A WACS ID: 22348 Purge Method: Pump 🗵 Bailer 🗆 Pump Type:Submersible (_Teflon _SS _Other) 🗶 Per	ristaltic
Pump (Make & Model): Geopump II) PA Hurricane Purge Rate: 0.07 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M	<u>.</u>
Water Level Meter: Solinst Time @ Start of Purging: 07/0 Time @ End of Purging: 0820 Total Purging Time: 70/6/5	
Depth of Pump or Intake Tubing:ft. (BTOC)	

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0755	3.15	3./5	24.54	4,82	0.064	11.4	122.41	1.23	slight Yellow tim	9.65	
0807	0.84	3.99	24.53	4,73	6.066	8,8	79.3	0.49	u "1	9.65	
0810	0.21	4,20	24.59	4,73	0.066	8.5	61.5	0.65	26 11	9.65	
0815	0.35	4.55	24.58	4.72	0.066	8.1	33.2	0.40	راد سان	9.65	
				,,,,,,							

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-)9A Time Collected: 0820 Comments:

Field Conditions/Observations: p.cloudy, ~68%
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial):ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 17.70 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 9.65 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes Y No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $_{\text{(initial)}}$) x well capacity = $(\cancel{7.70} - \cancel{9.14})$ x $\underline{0.16} = \cancel{1.32}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 2.25 in. x (D) 0.25 in. x (L) 30 ft.)+ (Fc) 0.25 gal = 0.33 gal
3 Well/Equipment Volumes = 1.0 gallons Purged Volume (actual): 1.4 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:BailerX Peristaltic PumpSubmersible Pump Sample Rate:0.07_ gpm
QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: µm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 12 November 2008 Sampled By: 5. Terry
Station (Well No.): MW-1815 WACS ID: 22349 Purge Method: Pump 🗵 Bailer 🗆 Pump Type: X Submersible (_Teflon x SS _ Other)Peristaltic
Pump (Make & Model): Geopump II (PA Hurricane) Purge Rate: 0.70 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A4
Water Level Meter: Solinst Time @ Start of Purging: 07/0 Time @ End of Purging: 0800 Total Purging Time: 500.5
Depth of Pump or Intake Tubing: 33 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0745	24.50	24.50	23.88	4.74	0.066	14.1	-3.9	0.93	clear	14,68	
0750	3.50	J8.00	23.42	4.60	0.067	8.7	5.9	0.46	cleur	14.77	
0755	3.50	31.50	23,80	4.54	0.067	7.5	8.2	0.39	clear	14.80	
0758	2.10	33,60	23.82	4.51	0.067	6.8	9.9	0.36	clew	14,83	
										<u> </u>	
A COLOR											
N A S A S A S A S A S A S A S A S A S A											
200											
									l l		
					•						

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-18B	Time Collected: 0800	Comments: initial turbidity	101 NTA	

Field Conditions/Observations: 1. Cloudy, 168°F
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: X Tight Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 9.35 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 37.80 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final):ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 5,48 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: X Yes No Describe: Slight suffer like Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{2}$ (mitiat) x well capacity = $\frac{3280 - 935}{2}$ x $\frac{0.16}{2}$ = $\frac{50}{2}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 6.375 in. x (D) 6.375 in. x (L) 45 ft.)+ (Fc) 0.25 gal = 0.5 gal
3 Well/Equipment Volumes = 1.5 gallons Purged Volume (actual): 35.0 gallons
Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 0.10 gpm
QA Sample Collected Yes K No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: µm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

					Monitori	ing Well Sa	mpling				·
Site: <u>J.E.D.</u>	Disposal Fac	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	/2 No	vember 2008	Sampled By	: J.Te	(17
Station (Wel	1 No.): <u>MW</u>	-19C wacs id	: 2235C) F	Purge Method: Pur	np ⊠ Baile	r 🗆 Pum	p Type: 🗶 St	ıbmersible (Teflon <u>×</u> SS _	Other) Peristaltic
Pump (Make	Pump (Make & Model): Geopump II PA Hurricane Purge Rate: 0.60 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A L						A2173A L				
Water Level	Meter: Solir	nst	Time (@ Start of Pu	rging: <u>07/0</u>	Time @	End of Purg	ing: <u>09/0</u>	7 Tot	al Purging Time:	120 004
Depth of Pur	Depth of Pump or Intake Tubing: 62 ft. (BTOC)										
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0855	63-60	63-00	23.67	5.18	0-081	19.7	11-9	0.22	Clear	10.70	
0900	3.00	66.00	23.65		0-081	18.9	16.6	0-21	clear	10.20	
0905	3.60	69-∞	23.60	5.21	0.081	19.0	12,2	0,22	clear	10.70	
		· · · · · · · · · · · · · · · · · · ·	1	1					1		

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-18C	Time Collected: (7910	Comments: initial	turbidity 74	14 NTU	
^					

Field Conditions/Observations: D. Cloudy, ~6397
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 9.33 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 67.2 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 10.70 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: /.37 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: 501fw like
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{100}$ x well capacity = $\frac{67.2}{100}$ x $\frac{9.73}{1000}$ x $\frac{0.16}{1000}$ = $\frac{9.7}{1000}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well/Equipment Volumes = 2. / gallons Purged Volume (actual): 72.0 gallons
Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 0.10 gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

		_				
Site: J.E.D. Disposal Facility (WACS	Facility ID 89544) Project N	o.: <u>FQ 1512</u> Task: <u>01</u>	Date: 12 Novem	aber 2008 Sampled	IBy: J. Terry	
Station (Well No.): MW-19A WA	ACS ID: 22351	Purge Method: Pump 🗵	Bailer Pump Ty	pe:Submersible	TeflonSS	Other) X Peristaltic
Pump (Make & Model): Geopump 117-PA	Hurricane Purge Rate:	∂.0 ≤ gpm Water Quality	y Meter (Make & Model): <u>YSI 556</u>	S/N or ID:06A	2173A M
Water Level Meter: Solinst		urging: 0845	Time @ End of Purging:	0955	Total Purging Time:	70 pm
Depth of Pump or Intake Tubing:	A. (BTOC)					

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0940	2.75	2.75	27.411	5.26	0.146	14.6	-110.0	0.42	51.8ht Yellowtint	9.28	
0950	0.50	3.25	27.410	5.25	0.146	15.5	-109.4	0.31	W //	9,28	
0953	0.15	3.40	27.38	5.23	0.147	15.8	-107.8	v. 29	(1/	4.28	
	-										
			[-								

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-19A Time Collected: 0965 Comments:	
--	--

Field Conditions/Observations: M. Cloudy, ~75°F, strong s. westerly with
Well Inspection:
Well Type: Flush Mount X Stick Up Other Well Size (ID): 2 in. Steel X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Yes Loose
Comments: (If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 8,90 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 17.65 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 9.28 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: X Yes No Describe: Sulfur - 1, re
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(\cancel{7.65} - \cancel{8.9})$ x $\cancel{0.16} = \cancel{1.4}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 32 ft.)+ (Fc) 0.25 gal = 0.53 gal
3 Well/Equipment Volumes = 1,0 gallons Purged Volume (actual): 3-5 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample CollectedYes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes K No Filter Size: µm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
<u> </u>
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS I	acility ID 89544) Project No.: FQ 1512 Task: 01 Date: //	November 2008 Sampled By: _	J. Terry
Station (Well No.): MW-19B WAG	CS ID: <u>32352</u> Purge Method: Pump ⊠ Bailer □	Pump Type: 🔀 Submersible (Te	flon 🔀 SSOther) Peristaltic
Pump (Make & Model): Geopump II(PA)	<u>Jurricane</u> Purge Rate: <u>0.40</u> gpm Water Quality Meter (Mak	e & Model): <u>YSI 556</u> S/N or	r ID:06A2173A i
Water Level Meter: Solinst	Time @ Start of Purging: Time @ End	of Purging: /0/5 Total I	Purging Time: 85 Am
Depth of Pump or Intake Tubing: 33	ft. (BTOC)		

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0945	22.00	J2.150	28.03	41.82	0.085	31.0	18.6	0.25	clew	10.23	
1005	දි.ග	36 <i>.∞</i>	28.10	4.79	0.086	189	20.9	0.20	clear	10.25	
1010	2.00	32.00	28.08	4.72	0.086	17,4	21-8	0.19	clear	10.27	
					<u> </u>						
				1							
			}								
											

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

Sample ID:	MW-19B	Time Collected:	1015	Comments:	initial durbidity	75254		
			,		/	•		

Field Conditions/Observations: M. Cloudy, A 75°F, Strong S. westy with
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2 inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 49 9.07 97 11-12.08 Depth to Water (initial): (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 37.73 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 10.27 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(37.73 - 9.07)$ x $0.16 = 4.6$ gal Well Capacity (gal/ft): 0.75 " = 0.02 ; 1"= 0.04 ; 1.25 "= 0.06 ; 2"= 0.16 ; 3"= 0.37 ; 4"= 0.65 ; 5"= 1.02 ; 6"= 1.47 ; 12"= 5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 6.375 in. x (D) 0.375 in. x (L) 47 ft.)+ (Fc) 0.25 gal = 6.5 gal
3 Well Equipment Volumes = 1.5 gallons Purged Volume (actual): 34.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 6.00 gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered:Yes _X_No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility	/ ID 89544) Project No.: <u>FQ 1512</u>	_ Task: <u>01</u> Date: <u>1</u> 2	November 2008 Sample	1 By: J. Tem	/
Station (Well No.): _MW-19(WACS ID:	22353 Purge Method:	Pump 🖾 Bailer 🗆	Pump Type: 🔀 Submersible	Teflon ≥ SSO	ther)Peristaltic
Pump (Make & Model): Geopump II PA Hurrica	ne Purge Rate: 0.42 gpm	Water Quality Meter (Make	e & Model): <u>YSI 556</u>	S/N or ID: <u>06A2</u>]	73A <u>L</u>
Water Level Meter: Solinst	Time @ Start of Purging: 093	Time @ End o	of Purging: <u>/2/0</u>	Total Purging Time:	160 mm
Depth of Pump or Intake Tubing: 62 ft.	(BTOC)				

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1035	27.30	27.30	27.32	5.35	0-083	139	8.9	0.52	cloudy	11,23	
1050	6.30	33.60	27.40	5.22	0.083	175	11-9	0.72	Claudy	11,23	
1155	27.30	60.90	27.01	5.20	୦.୦୫2	70	15.9	0.57	cloudy	11.23	
1200	2.10	63.00	26.94	5.16	0-682	68	16.2	0.53	Cloudy	11.23	
1205	2.10	65-10	26.95	5.15	0.087	7/	16.0	0.50	Clouds	11.23	
	`										
				,							
						li					

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample II):	11/14/24/97	Time Collected: 121)	Comments: in the working 143 ATU	

Field Conditions/Observations: M. Cloudy, N75°F, Strong S. Westerly Wild. Well Inspection: Sprinkle C 1/45
Well Inspection: Sprinkle C 1/45
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 8-93 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 66.7 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): //. 23 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 2.30 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor: Yes No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ (initial) x well capacity = $\frac{1}{1}$ (G6.7 - $\frac{1}{1}$ - $\frac{1}{1}$ x $\frac{1}{1}$ 9al Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) I EV = (P)
3 Well/Equipment Volumes = 2./ gallons Purged Volume (actual): 67.2 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer Peristaltic Pump _X_ Submersible Pump Sample Rate: gpm
QA Sample Collected Yes _X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: X Yes No Filter Size: / μm; All Analyses; X Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FO 1512 Task: 01 Date: // November 2008 Sampled By: J. Terry
Station (Well No.): <u>MW-204</u> WACS ID: <u>2235-1</u> Purge Method: Pump \(\text{Pump} \) Bailer \(\text{Pump Type:} \) Submersible (_Teflon _SS _Other) \(\text{X} \) Peristaltic
Pump (Make & Model): Géopump D / PA Hurricane Purge Rate: 0,08 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A L
Water Level Meter: Solinst Time @ Start of Purging: 07/0 Time @ End of Purging: 1005 Total Purging Time: 175005
Depth of Pump or Intake Tubing: 13 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0950	12.80	12.80	25.08	4.96	0.094	22.0	35.9	1.62	slight vellow tent	8.21	
0955	0.40	13.20	24.99	41.92	0.094	19.3	38.4	1,58		16.8	
1000	0.40	/3.60	24.98	4.91	0.094	18.7	38.8	1.42	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8.21	
			*****	·-··							
		3.3									
						J				<u> </u>	
					· · · · · · · · · · · · · · · · · · ·						
	-		•			· · · · · · · · · · · · · · · · · · ·					

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: NW-20A	Time Collected: 1005	Comments: initial turbidity	75 NT4
^		7	

Field Conditions/Observations: Clear, 160°F, Strong westary and, dest the yele air
Well Inspection:
Well Type: Flush Mount _X Stick Up Other
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 7.70 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 17. 93 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 8.21 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(17.93 - 7.70)$ x $0.16 = 1.64$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 25 ft.)+ (Fc) 0.25 gal = 0.32 gal
3 Well/Equipment Volumes = 10 gallons Purged Volume (actual): 14.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method:Bailer X Peristaltic PumpSubmersible Pump Sample Rate: 0.08 gpm
QA Sample Collected X Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: Equipment Black QA Sample Time: 0730
Filtered: Yes No Filter Size: µm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:
Heavy truck traffic in area

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: // November 2008 Sampled By: J. Terry
Station (Well No.): MW-208 WACS ID: 22355 Purge Method: Pump \Bailer \Bailer \Pump Type: X Submersible (Teflon XSS Other) Peristaltic
Pump (Make & Model): Geopump II PA Hurricane Purge Rate: 1.2 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M
Water Level Meter: Solinst Time @ Start of Purging: 0655 Time @ End of Purging: 0935 Total Purging Time: 16000
Depth of Pump or Intake Tubing: 33 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0917	170.40	170.40				79.1			cloudy	9.43	
	Red	uced Pwas	Rato 4								
0925	4.00	174.40	24,49	6.03	0.085	75.7	-75.6	1.89	cloudy	8.63	Bubble M. 4124 CEII Nesson for high DO
0930	2.50	176.90	241.49	5.07	0.085	78.6	-75.5	0.31	clouder	8.63	-
0933	1.50	178,40	24.49	5.02	0 - 085	76.2	-75,7	0.30	cloudy	8.63	
					·						

				·							

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-20B Time Collected: 0935	Comments: In 17, 2	I turbiday 683 A	Ma
--	--------------------	------------------	----

Field Conditions/Observations: Clear, ~60°F, strong westerly wind, dust in the cir
Well Inspection:
Well Type:Flush Mount _X Stick UpOther
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 6.19 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 37.76 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 8.63 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:Oft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Solfer - 1. kg
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(77.76 - 8.19)$ x $0.16 = 4.7$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.575 in. x (L) 48 ft.) + (Fc) 0.25 gal = 0.53 gal 3 Well/Equipment Volumes = 1.6 gallons Purged Volume (actual): 42.0 [74.4] 91 11-00
Purge Water Contained?YesX_No Container Used:55 Gallon DrumOther () Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo

91
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: X Yes No Filter Size: μm; All Analyses; X Metals Only;
Turbidity After Filter: 1.3 NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3, dissolved metals
Sample Bottles Filled: 6 40 ml vials ilter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic 3 pr 11-11-00
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: Courier X_UPS (Airbill No) Other () Notes:

Monitora-5 Well Sampling

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: // November 2008 Sampled By: J. Jerry											
Station (Well No.): MW-20C WACS ID: 72356 Purge Method: Pump \(\omega \) Bailer \(\omega \) Pump Type: \(\times \) Submersible (_Teflon \(\times \) SS _ Other) _ Peristaltic											
Pump (Make & Model): Geopump II/PA Hurricane Purge Rate: 0.80 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173AM											
Water Level Meter: Solinst Time @ Start of Purging: 0650 Time @ End of Purging: 0910 Total Purging Time: 14025											
Depth of Pump or Intake Tubing: 62 ft. (BTOC)											
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0845	92.00	92,00				51.4			Stocker Charles	14.13	
		luced Purse	Ruto to	0.40	GPM						
0900	6.00	98.00	23.66	5.21	0.077	62.7	-69.1	0.75	Stoudy	12.10	
0903	1.20	99.20	73.68	5.20	0.077	58.0	-67.4	0.51	Ju /2	12.18	
0908	2.00	101.20	23.69	5.19	0.077	60.0	-66.3	0.41	(i //	12.13	
	·										
									·		
											
			ļ								
	<u> </u>										
Take samp Note: When prior Note: When colle Note: Three reading If Do	e additional foling. In purging a verte to collecting in purging we esting first field (3) consecuting; DO is no O or Turbidit	reld parameter mean well with well screen first field parameter lls with a partially sold ld parameter measure ive readings within greater than 20% sa	surements no fully submer measurement submerged we rements. Take specified limit turation at fiel nnot meet the	ged and pur ts. Take additional additional ats are to be dd measured above req	n 2 to 3 minutes np or intake tubin ditional field para ad pump or tubin field parameter m obtained for samp I temperature; and uirements within	apart, must pag is placed in a meter measure g placed within the assurements nothing. Temperate Turbidity ≤ 2 to well volum	water column water column ments every n a submerg to sooner that ature: ± 0.2° 0 NTUs tes; Temp, p	num of 3 equal above the so what well volumed screen zoon 2 to 3 minus of; pH: ±0.2	nipment volunt creened zone, me until purgin ne, purge a m tes apart until standard units vity ranges re	ne + stabilized purge minimu ng requirement inimum of one purge requirer s; Specific Co main unchang	e well volume prior to
Sample ID:	MW-2	ÚČ Ti	me Collected:	0910	Com	ments: Pari	in two	id, 7-1 140	3 NTG		

Field Conditions/Observations: Clear, ~ 60%, strong westly wind, dust in the air
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: Yes No Well Cap: Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 8.35 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 66.8 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 12.13 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 3.78 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{2}$ well capacity = $\frac{1}{2}$ $\frac{1}{$
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 75 ft.)+ (Fc) 0.25 gal =0.7 gal
3 Well/Equipmen Volumes = 2./ gallons Purged Volume (actual): 102 gallons
Purge Water Contained?Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 0.09 gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: X Yes No Filter Size: μm; All Analyses; X Metals Only;
Turbidity After Filter: NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3, Dissolved hetels
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic 39 ml plastic 39 ml plastic 1 500 ml
39T11-11-08
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment: CourierX_UPS (Airbill No) Other () Notes:

Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FO 1512</u> Tas	k: <u>01</u> Date	: <u>/Ó</u> No	vember 2008	Sampled By	J.Terr	Y
Station (Wel	1 No.): <u>MN</u>	<u>/-21A</u> wacs id	: 2235	7 1	Purge Method: Pur	mp ⊠ Baile	r □ Pum	p Type: Sı	abmersible (Teflon SS _	Other) 🔀 Peristaltic
	_	eopump II / PA Hurric									
Water Level	Meter: Solin	nst	Time (@ Start of Pu	erging: <u>1320</u>	Time @	End of Purg	ing:/	O Tot	al Purging Time:	110 mm
Depth of Pu	mp or Intake T	ubing: <u>/</u> f	t. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1425	3.25	3.25	25.47	4.14	0.104	10.9	158.7	2.67	clear	8.75	
14130	0.25	3,50	25.52	4,23	0.105	5.2	153.0	2.30	clear	8.95	
1509	1.90	5,40	25.50	4.14	0.105	1.3	152.9	1.58	cler	8.95	
			ļ								
				<u> </u>							
			 								
			 	 							
	 										
	-									-	
			<u> </u>								
Take samp Note: Whe prior Note: Whe colle Note: Three read If D	e additional foling. In purging a vertice to collecting in purging we esting first fice (3) consecuting; DO is no O or Turbidi	well with well screen first field parameter lls with a partially sold parameter measure tive readings within	surements not fully submer measurements submerged we rements. Take specified limitaturation at fie monot meet the	rged and pu tts. Take ad ell screen a e additional its are to be eld measure e above rec	mp or intake tubin ditional field para field parameter mobtained for samp d temperature; and puirements within	g is placed in meter measure placed within easurements n ling. Temperal Turbidity ≤ 2 5 well volum	water column ments every a a submerg o sooner tha ature: ± 0.2° 0 NTUs es; Temp, p	in above the solution of 3 equinations o	upment volument work and and another the control of	me + stabilized , purge minimu ing requirement ninimum of one l purge requirer ts; Specific Co emain unchang	s well volume briol to
Commite TO	AANAL).i / m	ima Collected	. 1510	Com	ments: in 1 by	Lackida	y JONT	И		

Field Conditions/Observations: SUMMY ~ BOOF, Southarly Greeze
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 8.62 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 18.04 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 8.95 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:O_33_ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(1/6.0^{2})$ - $1/6.0^{2}$ -
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 28 ft.)+ (Fc) 0.25 gal = 0.32 gal
3 Well Equipment Volumes = 10 gallons Purged Volume (actual): 55 gallons
Purge Water Contained?Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer X Peristaltic Pump Submersible Pump Sample Rate: ODS gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes K No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₁ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

Station (Well Pump (Make Water Level	ll No.): <u>MM</u> e & Model): <u>G</u> Meter: <u>Soli</u> ı	eopump H7PA Hurric	:	P ge Rate:		np ⊠ Baile er Quality Meter	r 🛭 Pumj r (Make & Mo	p Type: <u> </u>	ubmersible (Tefion <u>×</u> SS	Other) Peristaltic
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1500	90.00	90.00				22.0			clear	9.35	
	Redur		0.50	GPM							
1520	10.00	100.00	24.44	5,10	0.090	19.8	-/13.2	0.19	clear	9.08	
1525	2.50	102.50	24,47	5,10	0.090	19.7	-113.6	0.19	clau	9.08	
1528	1.5	104.00	241.46	510	0.090	18.8	-11-120	0-18	clear	9.08	
···											
									1		
	ļ				<u>.</u>						
	-										***************************************
·····											
			<u> </u>		7 7 77			aminmant v	ioliumo prior te	a first field par	ameter measurements
Take samp Note: Whe prior Note: Where colle Note: Three	e additional foling. en purging a verto collecting me purging we ecting first fice (3) consecuting DO is no	Tield parameter mea well with well screen first field parameter tils with a partially s ld parameter measur tive readings within	surements no a fully submerger measurement submerged we ements. Take specified limit	sooner that ged and pur s. Take add il screen ar additional s are to be	n 2 to 3 minutes np or intake tubin ditional field para id pump or tubins field parameter m obtained for samp I temperature: and	apart, must reg is placed in meter measure placed within easurements noting. Temperaturbidity \le 2!	water columnments every a submerg o sooner that thre: ± 0.2° 0 NTUs	n above the s 'W well volus ed screen zo n 2 to 3 minu C; pH: ±0.2	upment volui screened zone, me until purgi ne, purge a m ites apart until ! standard unit	ne + stabilized , purge minimu ng requirement inimum of one I purge requirer s; Specific Co	well volume prior to

Time Collected: 1530 Comments: initial suchidity 58 NTO. Turbidity @ 13:25, 28NTY

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Field Conditions/Observations: SUDAY, NBO°F, southly breeze
Well Inspection:
Well Type:Flush Mount _X_Stick UpOther Well Size (ID): _2_inSteel _X_PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 8.66 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 37. 63 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 9.08 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: O.42 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Sulfur 1, Re Note: NA = Not Applicable
l Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = (37.63 - 8.66) x 0.16 = 4.64 gai Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.377 in. x (L) 45 ft.) + (Fc) 0.25 gal = 0.57 gal 1 Equipment Volumes = 1.53 gallons Purged Volume (actual): 47-0 gallons
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? X_YesNo
Sampling Method:BailerPeristaltic PumpX Submersible Pump Sample Rate:O//gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01 Date: 10 November 2008 Sampled By: J. Terry
Station (Well No.): MW-21C WACS ID: 22356 Purge Method: Pump \Bailer \Bailer \Pump Type: \Submersible (_Teflon \SS_SS_Other)Peristaltic
Pump (Make & Model): Geopump II (PA Hurricane) Purge Rate: 0.50 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A.M
Water Level Meter: Solinst Time @ Start of Purging: 1320 Time @ End of Purging: 1455 Total Purging Time: 95m/4
Depth of Pump or Intake Tubing: 58 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1430	35.00	35.00	23.98	5.43	0.0941	88.8	-98.9	0.89	cloudy	13.37	
14135	2.50	37.50	23.97	6.43	0.094	74.8	-98.8	0.43	cloudy	1	
12140	2.50	40.00	23.97	5.43	0.094	10.4	-98.5	0.29	cloudy	13,37	
14150	5-00	415-00	23.47	5.42	0.094	72.0	-98.5	0.25	cloude	13.37	
<u> </u>											
		· · · · · · · · · · · · · · · · · · ·									
		·									
		· ·			· · · · · · · · · · · · · · · · · · ·			<u> </u>			
									<u> </u>		

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-2/C Time Collected: 1455	Comments: Soitial turbidity 1300 NTM
	,

Field Conditions/Observations: Sunny, N80°F, Southuly breeze
Well Inspection:
Well Type: Flush Mount X Stick Up Other Well Size (ID): 2 in. Steel X PVC
Condition (locked, damaged, etc.):
Well Labeled:XYes No Well Cap:XYes No Well Cap: Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 8.59 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 62.6 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 13.37 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 4.78 ft. (Depth to Water (initial) – Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes No Describe:
1 Well Volume (WV) = (depth of well – depth to water $_{\text{(initial)}}$) x well capacity = (62.6 - 8.59) x $_{\text{0.16}}$ = 8.69 gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 70 ft.) + (Fc) 0.25 gal = 0.65 gal
3 Well Equipment Volumes = 2.0 gallons Purged Volume (actual): 47.5 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? _X_YesNo
Sampling Method: Bailer Peristaltic Pump X Submersible Pump Sample Rate: 0.09 gpm
QA Sample CollectedYes _X_No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: X Yes No Filter Size: μm; All Analyses; X Metals Only;
Turbidity After Filter: NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3, Dissilved metals
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic 3 97 11-10-03
3 gt 11-10-04
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID	89544) Project No.: <u>FQ 1512</u>	_ Task: <u>01</u> Date: <u>/C</u>	November 2008 Sample	dBy: J. Terry	- · · · · · · · · · · · · · · · · · · ·
Station (Well No.): MW-22A WACS ID: 2	2360 Purge Method:	: Pump 🗵 Bailer 🗆	Pump Type: Submersibl	e (TeflonSSOther) 🗽 P	eristaltic
Pump (Make & Model) Geopump II) PA Hurricane	Purge Rate: gpm	Water Quality Meter (Mak	ce & Model): <u>YSI 556</u>	S/N or ID: 06A2173A4	
Water Level Meter: Solinst	Time @ Start of Purging:	35 Time @ End	of Purging:// 3.5	Total Purging Time: 60n4	·
Depth of Pump or Intake Tubing:ft. (BT	OC)				

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1115	2.00	2.00	25.32	4.44	0-093	2.3	124,1	0.67	Clea	10.77	
1/20	0.25	2.25	25.37	4.37	0.094	2.1	123.3	0.51	oler	18.78	
1128	0.40	2.65		4.34	0.093	1.9	119.5	0.41	clear	10.78	
,			-								
			1						[
							1			1	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-22A Time Collected: 1135 Comments:

Well Inspection: Well Type:Flush Mount _X_ Stick UpOther
Well Labeled:
Well Labeled:X_YesNo Well Cap:X_YesNo Well Cap:XTightLoose Comments:
Well Labeled:X Yes No Well Cap:X Yes No Well Cap:X Tight Loose Comments: (If capped, remove and allow well to stabilize before recording water level) Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft) Depth to Water (initial):
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft) Depth to Water (initial):
Depth to Water (initial):
Depth of Well:
Depth of Well:
Draw down:ft. (Depth to Water (initial) – Depth to Water (final)) Free Product Thickness (if applicable):NAft. OVM/PID Reading (if applicable):NAppm. Note: NA = Not Applicable Detectable Odor:Yes
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm. Note: NA = Not Applicable Detectable Odor: Yes X No Describe:
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
Detectable Odor:Yes X No Describe:
I Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(16.00 - 10.47) \times 0.16 = 1.47 \times 0.16 = 1.47$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 30 ft.) + (Fc) 0.25 gal = 0.33 gal
3 Well/Equipment Volumes = 10 gallons Purged Volume (actual): 30 gallons
Purge Water Contained? Yes X No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? X Yes No
Sampling Method: Bailer Yeristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: µm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: <u>I.E.D. Disposal Facility (WACS Facility ID 89544)</u> Project No.: <u>FQ 1512</u> Task: <u>01</u> Date: <u>/O November 2008</u> Sampled By: <u>J-Terry</u>
Station (Well No.): MW-22 B WACS ID: 22361 Purge Method: Pump Bailer D Pump Type: X Submersible (Teflon XSS Other) Peristaltic
Pump (Make & Model): Geopump II PA Hurricane Purge Rate: 0.90 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M
Water Level Meter: Solinst Time @ Start of Purging: 1840 Time @ End of Purging: 1230 Total Purging Time: 110 Purging
Depth of Pump or Intake Tubing: 33 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1200	72.00	72.00				48.7				11.31	
	Reduce	d purge run	le to C	2.36 G	PM						
1213	4.68	76.68	24.77	5.34	0.657	30.7	-130.6	0.84	cloudy	10.81	
1220	2.52	79.20	24.82	5.28	0.057	50,1	-135-9		cloun	10.81	
1275	1.80	81.00	241.79	5.26	0.057	50.2	-138.6	0.30	Cloude	10.31	
				<u> </u>							

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: _	MW-22B	_ Time Collected: _	1230	Comments:	initral	terbookity	1303	NTU	
						;			

Field Conditions/Observations: Sunay, ~774, Southly with
Well Inspection:
Well Type: Flush Mount _X Stick Up Other Well Size (ID): _2 in Steel _X PVC
Condition (locked, damaged, etc.):
·
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 10.57 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 37.96 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 10-81 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Sulfur-1/14 Note: NA = Not Applicable
I Well Volume (WV) = (depth of well – depth to water $\frac{1}{\text{(initial)}}$ x well capacity = $\frac{37.96}{10.57}$ x $\frac{10.57}{10.57}$ x $\frac{10.16}{10.57}$ = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) I EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 45 ft. + (Fc) 0.25 gal = (D) 27 gal
3 Well/Equipment Volumes = 1.53 gallons Purged Volume (actual): 99.082.897 11-10-08
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: 9.12 gpm
QA Sample Collected Yes No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: X Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter: NTU
Analysis Required: 8260, EDB, T. Metals, NH3, TDS, CL, NO3, Disse led notal
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
() 3 9t 11-10-08
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

					MOHITOR	mg wen sai	mbmug				
Site: J.E.D.	Disposal Fa	cility (WACS Facilit	y ID 89544)	Project No	o.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	10 No	ovember 2008	Sampled By	r. J.Te	m
Station (Wel	11 No.): <u>Mu</u>	/-22C_WACS ID:	27362	2	Purge Method: Pur	np 🗵 🛚 Baile	r □ Puπ	ip Type: Su	bmersible (Teflon SS _	Other) <u>X</u> Peristaltic
Pump (Make	e & Model):@	eopump IV/PA Hurric	ane Pu	rge Rate:	7,08 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI 5</u>	56S/1	Й от ID:06.	A2173A <u></u> ∕∕
Water Level	Meter: Solin	nst	Time (@ Start of P	orging:	Time @	End of Pur	ging: <u>//SC</u>	7 Tot	al Purging Time:	75015
Depth of Pu	mp or Intake Ti	ıbing: <u>62</u> ft	. (BTOC)								
Time	Purge Volume	Cumulative Purge Volume	Temp	PH	Conductivity	Turbidity	ORP	DO (mg/I)	Color	Depth to Water (ft)	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1118	3,-14	3.44	2433	6.99	0.434	2.3	-139.1	0.57	clew	12-05	
1123	0,40	3.84	24.32	6.99	0.433	2,4	-136.6	0.54	clew	12.09	
1130	0.56	4.40	241.33	6.99	0.433	2.1	-142.5	0.42	clew	12.17	
								······································			
						····	<u> </u>				

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

1.00	Sample ID: _	MW-22C	_ Time Collected: _	1/50	Comments:
------	--------------	--------	---------------------	------	-----------

Field Conditions/Observations: SUMMY, N774F, Southely wind
Well Inspection:
Well Type: Flush Mount X Stick Up Other Well Size (ID): 2 in. Steel X PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 10.03 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 67.3 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 12.17 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 2.14 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): <u>NA</u> ft. OVM/PID Reading (if applicable): <u>NA</u> ppm.
Detectable Odor:YesX_ No Describe:
1 Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(673 - 0.07)$ x $0.16 = 9.2$ gal Well Capacity (gal/ft): 0.75 " = 0.02 ; 1"= 0.04 ; 1.25 "= 0.06 ; 2"= 0.16 ; 3"= 0.37 ; 4"= 0.65 ; 5"= 1.02 ; 6"= 1.47 ; 12 "= 5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 0.25 in. x (L) 75 ft.)+ (Fc) 0.25 gal =0.45 gal
3 Well Equipment Volumes = 1.4 gallons Purged Volume (actual): 6-0 gallons
Purge Water Contained?Yes _X_No Container Used:55 Gallon DrumOther ()
Labeled:YesNo; Purge Water Discharged to Ground? X YesNo
Sampling Method:Bailer _X Peristaltic PumpSubmersible Pump Sample Rate: _OOB gpm
QA Sample CollectedYes X_No;Blind Duplicate;EQ. Blank;Field Blank;MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No)Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID	89544) Project No.: <u>FQ 1512</u>	_ Task: <u>01</u> Date: <u>/C</u>	November 2008 Sample	dBy: J. Terry	- · · · · · · · · · · · · · · · · · · ·
Station (Well No.): MW-22A WACS ID: 2	2360 Purge Method:	: Pump 🗵 Bailer 🗆	Pump Type: Submersibl	e (TeflonSSOther) 🗽 P	eristaltic
Pump (Make & Model) Geopump II) PA Hurricane	Purge Rate: gpm	Water Quality Meter (Mak	ce & Model): <u>YSI 556</u>	S/N or ID: 06A2173A4	
Water Level Meter: Solinst	Time @ Start of Purging:	35 Time @ End	of Purging:	Total Purging Time: 60n4	·
Depth of Pump or Intake Tubing:ft. (BT	OC)				

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1115	2.00	2.00	25.32	4.44	0-093	2.3	124,1	0.67	Clea	10.77	
1/20	0.25	2.25	25.37	4.37	0.094	2.1	123.3	0.51	oler	18.78	
1128	0.40	2.65		4.34	0.093	1.9	119.5	0.41	clear	10.78	
,			-								
			1						[
							1			1	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and

turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: MW-22A Time Collected: 1135 Comments:

Site: <u>I.E.D. Disposal Facility (WACS Facility ID 89544)</u> Project No.: <u>FQ 1512</u> Task: <u>01</u> Date: <u>/O November 2008</u> Sampled By: <u>J-Terry</u>
Station (Well No.): MW-22 B WACS ID: 22361 Purge Method: Pump Bailer D Pump Type: X Submersible (Teflon XSS Other) Peristaltic
Pump (Make & Model): Geopump II PA Hurricane Purge Rate: 0.90 gpm Water Quality Meter (Make & Model): YSI 556 S/N or ID: 06A2173A M
Water Level Meter: Solinst Time @ Start of Purging: 1840 Time @ End of Purging: 1230 Total Purging Time: 110 Purging
Depth of Pump or Intake Tubing: 33 ft. (BTOC)

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1200	72.00	72.00				48.7				11.31	
	Reduce	d purge run	le to C	2.36 G	PM						
1213	4.68	76.68	24.77	5.34	0.657	30.7	-130.6	0.84	cloudy	10.81	
1220	2.52	79.20	24.82	5.28	0.057	50,1	-135-9		cloun	10.81	
1275	1.80	81.00	241.79	5.26	0.057	50.2	-138.6	0.30	Cloude	10.31	
				<u> </u>							

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: _	MW-22B	_ Time Collected: _	1230	Comments:	initral	terbookity	1303	NTU	
						;			

					MOHITOR	mg wen sai	mbmug				
Site: J.E.D.	Disposal Fa	cility (WACS Facilit	y ID 89544)	Project No	o.: <u>FQ 1512</u> Tas	k: <u>01</u> Date:	10 No	ovember 2008	Sampled By	r. J.Te	m
Station (Wel	11 No.): <u>Mu</u>	/-22C_WACS ID:	27362	2	Purge Method: Pur	np 🗵 🛚 Baile	r □ Puπ	ip Type: Su	bmersible (Teflon SS _	Other) <u>X</u> Peristaltic
Pump (Make	e & Model):@	eopump IV/PA Hurric	ane Pu	rge Rate:	7,08 gpm Wat	er Quality Meter	(Make & M	odel): <u>YSI 5</u>	56S/1	Й от ID:06.	A2173A <u></u> ∕∕
Water Level	Meter: Solin	nst	Time (@ Start of P	orging:	Time @	End of Pur	ging: <u>//SC</u>	7 Tot	al Purging Time:	75015
Depth of Pu	mp or Intake Ti	ıbing: <u>62</u> ft	. (BTOC)								
Time	Purge Volume	Cumulative Purge Volume	Temp	PH	Conductivity	Turbidity	ORP	DO (mg/I)	Color	Depth to Water (ft)	Comments

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
1118	3,-14	3.44	2433	6.99	0.434	2.3	-139.1	0.57	clew	12-05	
1123	0,40	3.84	24.32	6.99	0.433	2,4	-136.6	0.54	clew	12.09	
1130	0.56	4.40	241.33	6.99	0.433	2.1	-142.5	0.42	clew	12.17	
								······································			
						····	<u> </u>				

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/2 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

1.00	Sample ID: _	MW-22C	_ Time Collected: _	1/50	Comments:
------	--------------	--------	---------------------	------	-----------

Site: J.E.D. Disposal Facility (WACS Facility ID	89544) Project No.: <u>FQ 1512</u> Task	:: <u>01</u> Date: <u>/// Novemb</u>	er 2008 Sampled By:	Terry
Station (Well No.): MW-23A WACS ID: 2	2363 Purge Method: Pum	p 🗵 🛮 Bailer 🗆 Pump Type	:: Submersible (Teflon	SS Other) X Peristaltic
Pump (Make & Model) Geopump IVPA Hurricane	Purge Rate: <u>O. O4</u> gpm Water	r Quality Meter (Make & Model):	YSI 556 S/N or ID:	06A2173A/_
Water Level Meter: _Solinst	Time @ Start of Purging:0730	Time @ End of Purging:	0845 Total Purging	Time: 75019
Depth of Pump or Intake Tubing: 25,5 ft. (BT	OC)			

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
08/0	1.60	1.60	23,17	41.92	0.162	1.7	18.3	0.79	clew	23,67	
0825	0.60	2.20	23.46	4.90	0.158	1.2	26.5	0.62	clew-	23-67	
0B30	0-20	2.40	23.58	4,89	0.159	1.1	29.9	0.47	cles	23.67	
0835	0.20	2.60	23.55	4.91	0.159	1.5	29.5	0.45	clear	23.67	
		-									
	·										
										<u> </u>	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

Sample ID: MW-23/7 Time Collected: 0845 Comments:	
---	--

Site: J.E.D. Disposal Facility (WACS Facility ID	89544) Project No.: <u>FQ 1512</u> Task	:: <u>01</u> Date: <u>/// Novemb</u>	er 2008 Sampled By:	Terry
Station (Well No.): MW-23A WACS ID: 2	2363 Purge Method: Pum	p 🗵 🛮 Bailer 🗆 Pump Type	:: Submersible (Teflon	SS Other) X Peristaltic
Pump (Make & Model) Geopump IVPA Hurricane	Purge Rate: <u>O. O4</u> gpm Water	r Quality Meter (Make & Model):	YSI 556 S/N or ID:	06A2173A/_
Water Level Meter: _Solinst	Time @ Start of Purging:0730	Time @ End of Purging:	0845 Total Purging	Time: 75019
Depth of Pump or Intake Tubing: 25,5 ft. (BT	OC)			

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
08/0	1.60	1.60	23,17	41.92	0.162	1.7	18.3	0.79	clew	23,67	
0825	0.60	2.20	23.46	4.90	0.158	1.2	26.5	0.62	clew-	23-67	
0B30	0-20	2.40	23.58	4,89	0.159	1.1	29.9	0.47	cles	23.67	
0835	0.20	2.60	23.55	4.91	0.159	1.5	29.5	0.45	clear	23.67	
		-									
	·										
										<u> </u>	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

Sample ID: MW-23/7 Time Collected: 0845 Comments:	
---	--

Field Conditions/Observations: 15, Suny, 1589
Well Inspection:
Well Type: Flush Mount _X_ Stick Up Other Well Size (ID): _2_ in Steel _X_ PVC
Condition (locked, damaged, etc.):
Well Labeled: X Yes No Well Cap: X Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 23.35 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 27.75 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 23.67 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: X Yes No Describe: Su Hur-1:ke
1 Well Volume (WV) = (depth of well – depth to water $\frac{1}{\text{(initial)}}$ x well capacity = $\frac{27.75}{\text{c}}$ - $\frac{23.35}{\text{c}}$) x $\frac{0.16}{\text{c}}$ = $\frac{0.7}{\text{c}}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.25 in. x (D) 6.25 in. x (L) 36 ft.)+ (Fc) 0.25 gal = 0.35 gal
3 Well Equipment Volumes = 1.1 gallons Purged Volume (actual): 3.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled: Yes No; Purge Water Discharged to Ground? _X_ Yes No
Sampling Method:Bailer Peristaltic Pump Submersible Pump Sample Rate: Spm
QA Sample Collected Yes K No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No) Other () Notes:

Site: J.E.D. Disposal Facility (WACS Facility ID 89544) Project No.: FQ 1512 Task: 01	Date: 10 November 2008 Sample	d By:
Station (Well No.): MW-23B WACS ID: 22364 Purge Method: Pump 🗵	Bailer 🗆 Pump Type: 🗶 Submersible	e (Tefion 🗶 SSOther) Peristaltic
Pump (Make & Model): Geopump II (PA Hurricane) Purge Rate: 0.30 gpm Water Quality	y Meter (Make & Model): YSI 556	S/N or ID: 06A2173A/M
Water Level Meter: Solinst Time @ Start of Purging: 0730	Time @ End of Purging: 0855	Total Purging Time: 250.7
Depth of Pump or Intake Tubing: 36 ft. (BTOC)		

Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0815	13.50	13.50				1.3			clear	23.45	
0930	4.50	13.00	24.39	4.74	0.065	0.6	-106,1	0.57	clew	23.48	
0035	1.50	19.50	24.43	4.72	0.065	0.4	-104.5	0.57	Clear	23,48	
0838	0.90	20.40	24.41	4,72	0.065	0.5	-103.5	0.47	Clear	23.45	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: _	MW-23B	Time Collected:	0855	Comments:	: 1, 7, W	4w6.0		2.2	MTU		<u> </u>	
--------------	--------	-----------------	------	-----------	-----------	-------	--	-----	-----	--	----------	--

Field Conditions/Observations: 1.5477, 2587
Well Inspection:
Well Type:Flush Mount _X Stick UpOther
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 23.34 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 42.75 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 23, 48 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down:ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA_ft. OVM/PID Reading (if applicable): NA_ppm.
Detectable Odor: X Yes No Describe: Sultar-1. Le
I Well Volume (WV) = (depth of well – depth to water (initial)) x well capacity = $(42.75 - 23.34)$ x $0.16 = 3.1$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
I Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P)
3 Well Equipment Volumes = 1.62 gallons Purged Volume (actual): 25.5 gallons
Purge Water Contained? YesX_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? X_YesNo
Sampling Method: Bailer Peristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes No Filter Size: μm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(*
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX_UPS (Airbill No) Other () Notes:

	-				Monitori	ing Well Sa	mpling				
Site: <u>J.E.D.</u>	Disposal Fa	cility (WACS Facili	ty ID 89544)	Project No	.: <u>FO 1512</u> Tas	k: <u>01</u> Date	/O No	vember 2008	Sampled By	J. Terr	7
Station (Wel	1 No.): <u>///</u> W	-23C_wacsid	: 22365	F	Purge Method: Pur	mp ⊠ Baile	r 🗆 Pum	р Туре: 📐 Su	bmersible (Teflon 🔀 SS _	Other) Peristaltic
Pump (Make	e & Model): <u>G</u>	eopump IL PA Hurric	ane Pu	rge Rate: _ <i>U</i>	<u>,40 gp</u> m Wat	er Quality Meter	(Make & M	odel): <u>YSI 5</u>	556S/N	or ID:06	A2173A 🔨
Water Level	Water Level Meter: Solinst Time @ Start of Purging: 0730 Time @ End of Purging: 0930 Total Purging Time: 120 Min										
Depth of Pur	mp or Intake Ti	ıbing: 62 fl	. (BTOC)								
Time	Purge Volume (gal)	Cumulative Purge Volume (gal)	Temp (°C)	PH	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Depth to Water (ft) BTOC	Comments
0915	42.00	42.60	23.84	5.77	0.086	28.0	-121-8	0.35	clear	23.79	
0922	2.80	44,80	23.95	5.78	0.087	20.3	-125.5	0.30	Cleir	23.83	
0930	3,20	48.00	23,92	6.78	0-086	16.8	-128-9	0.26	clear	23.80	

Note: When purging well with pump or intake tubing within a fully submerged well screen, purge minimum of 1 equipment volume prior to first field parameter measurements.

Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ½ well volume until purging requirements are satisfied.

Note: When purging wells with a partially submerged well screen and pump or tubing placed within a submerged screen zone, purge a minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart until purge requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

Sample ID: _	MW-23C	_Time Collected:	135 Commen	ts: Ihilial	turbi luty;	74 NTU		
--------------	--------	------------------	------------	-------------	-------------	--------	--	--

Field Conditions/Observations: M. Suny, ~58°F
Well Inspection:
Well Type:Flush Mount _X Stick UpOther Well Size (ID): _2 inSteel _X PVC
Condition (locked, damaged, etc.):
Well Labeled: Yes No Well Cap: Yes No Well Cap: X Tight Loose
Comments:(If capped, remove and allow well to stabilize before recording water level)
Well Sampling: (Note: Measure Water Levels to Nearest 0.01ft)
Depth to Water (initial): 23.35 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth of Well: 67.1 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Depth to Water (final): 23.80 ft. (measured from mark on top of riser pipe, otherwise measure from North side)
Draw down: 6.45 ft. (Depth to Water (initial) - Depth to Water (final))
Free Product Thickness (if applicable): NA ft. OVM/PID Reading (if applicable): NA ppm.
Detectable Odor: Yes X No Describe: Note: NA = Not Applicable
I Well Volume (WV) = (depth of well – depth to water $\frac{1}{1}$ (initial) x well capacity = $\frac{67.1 - 23.35}{1}$ x $\frac{0.16}{1}$ = $\frac{7.0}{1}$ gal Well Capacity (gal/ft): 0.75" = 0.02; 1"=0.04; 1.25"=0.06; 2"=0.16; 3"=0.37; 4"=0.65; 5"=1.02; 6"=1.47; 12"=5.88
1 Equipment Volume (EV)= P + (0.041D x D x L) + Fc Where: P=Pump Volume (gal); D = Tubing Diameter (inches); L = Length of Tubing (ft); Fc = Flow Cell Volume (gal) 1 EV = (P) 0.0 gal + (0.041 x (D) 0.375 in. x (D) 0.375 in. x (L) 7.5 ft.)+ (Fc) 0.25 gal = 0.7 gal
3 Well Equipment Yolumes = 2.1 gallons Purged Volume (actual): 48.0 gallons
Purge Water Contained? Yes _X_No Container Used: 55 Gallon Drum Other ()
Labeled:YesNo; Purge Water Discharged to Ground? X Yes No
Sampling Method:BailerPeristaltic Pump Submersible Pump Sample Rate: gpm
QA Sample Collected Yes X No; Blind Duplicate; EQ. Blank; Field Blank; MS/MSD
QA Sample ID: QA Sample Time:
Filtered: Yes X No Filter Size: µm; All Analyses; Metals Only;
Turbidity After Filter:NTU
Analysis Required: 8260, EDB, T. Metals, NH ₃ , TDS, CL, NO ₃
Sample Bottles Filled: 6 40 ml vials 1 liter amber glass 2 125 ml plastic 250 ml plastic 1 500 ml plastic
(
pH Verification of Preserved Samples: Analysis Required pH <2 Measured pH
Laboratory Performing Analysis: Columbia Analytical Services
Method of Shipment:CourierX UPS (Airbill No)Other () Notes:

Field Instrument Jalibration Record

Project Name: TED	Project No.: F4/57 Z	Task: 01 Date: 4 Nov 7008
Rental Company: EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

Time: <u>0530</u>

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	4,00	0.00	0.2	У	<i>-</i>	97
P888160	Feb 2010	pH = 7.00	7.00	0.00	0.2	, Y	コ コ	27
P892502	Nov 2009	pH = 10.00	10,00	0.00	0.2	Ý	I	27
P890567	Dec 2009	Turbidity = 0.0 NTU						
***********		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10,00	0.00	10%	N		93
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%	У	T	07
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%	<u> </u>		
	Per Table →	D.O. = 8.30 mg/L @ 24.7°C	8.37	0.061	0.2 mg/l	У	<i>3</i> 5	97_

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	4,00	0.00	0.2	У		97
P888160	Feb 2010	pH = 7.00	7.00	0.00	0.2	У	<u> ブ</u>	97
P892502	Nov 2009	pH = 10.00	10.00	0.00	0.2	- Y	エ	35
P890567	Dec 2009	Turbidity = 0.0 NTU				/		
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	9.98	5.0	10%	N	<u> </u>	97
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%	У	<u> </u>	07
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%	· ·		
	Per Table →	D.O. = & 34 ang/L @ 24.5°C	8.39	0.05	0.2 mg/l	У	<i>ま</i>	97

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

Field Instrument Alibration Record

Project Name: JED	Project No.: FQ/\$12	
Rental Company:EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: <u>06A2173AM</u>
Turbidity Instrument Make: <u>LaMotte</u> Time: /84/5	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
P887599	Jan 2010	pH = 4.00	4,00	0.00	0.2	v	I	27
P888160	Feb 2010	pH = 7.00	7.00	0.00	0.2	ý	エ	97
P892502	Nov 2009	pH = 10.00			0.2	(<u> </u>
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	9,98	0,2	10%	N	C	27
		Turbidity = 50 NTU			6.5%			,
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%	<i>y</i>	エ	97
6068	Nov 2008	Conductivity = 1,000 mS/cm			5%			
	Per Table →	D.O. =8.46 mg/L @ 23.7 °C	8.50	0.034	0.2 mg/l	У	工	97

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	4,00	0.00	0.2	У	エ	97
P888160	Feb 2010	pH = 7.00	7,00	0-00	0.2	У	I	27
P892502	Nov 2009	pH = 10.00			0.2	,		,
P890567	Dec 2009	Turbidity = 0.0 NTU						
	Ì	Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	9.92	0.8	10%	N	<u>C</u>	27
		Turbidity = 50 NTU			6.5%			/
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%			gt.
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%	/		
	Per Table →	D.O. = 8.45 mg/L @ 23.8 °C	8.48	0.00	0.2 mg/l	У	\mathcal{I}	1 27

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH \pm 0.2 of Standard Value; Conductivity \pm 5 % of Standard Value; Salinity \pm 3 % of Standard Value; DO \pm 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

Field Instrument __libration Record

Project Name: ZED	Project No.: <u>F0/572</u>	Task: <u>0/</u> Date: <u>5 Nov 700 &</u>
Rental Company: EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: <u>LaMotte</u> Time: 1900	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

	Calibr	ation Standard			Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value		Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:	
P887599	Jan 2010	pH = 4.00	4.00	0.00	0.2	У	<i>ま</i>	Q-
P888160	Feb 2010	pH = 7.00	7-00	0.00	0.2	У	エ	27
P892502	Nov 2009	pH = 10.00			0.2	,		
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	9.99	0.1	10%	y	C	AT
		Turbidity = 50 NTU			6.5%	7		
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.099	1.0	5%	N	<u>C</u>	21
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%			

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

8,47

0,036

0.2 mg/l

I

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	41.00	0.00	0.2	У	I	91
P888160	Feb 2010	pH = 7.00	7-00	0.00	0.2	V	I	27
P892502	Nov 2009	pH = 10.00			0.2	/		
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.07	0,2	10%	· · · · · · · · · · · · · · · · · · ·	C	27
		Turbidity = 50 NTU			6.5%	· /		
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.099	1.00	5%	N		OT
6068	Nov 2008	Conductivity = 1.000 mS/cm	*		5%			<i>P</i>
	Per Table →	D.O. = 8.434 mg/L @ 23.9 °C	8.47	0.036	0.2 mg/l	У	<i>±</i>	95

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

D.O. = A.434 mg/L @ 23.9 °C

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

 $Turbidity~0.1-10~NTU~\pm~10\%~of~Standard~Value,~11-40~NTU~\pm~8\%~of~Standard~Value,~41-100~NTU~\pm~6.5\%~of~Standard~Value,~2100~NTU~\pm~5\%$

Note (3): Initial, Continual, Final

Per Table →

Field Instrument _alibration Record

Project?	Name:	7 FD		Project No.: FQ/512 Task: Ol Date: 6 Nov 7208						
Rental (Company: _	EPS								
Water (Water Quality Instrument Make: YSI Turbidity Instrument Make: LaMotte Time: 20:30			Instrument Model Number: 556			Instrument Serial Number: 06A2173AM			
Turbidi				ıment Model Numb	er: 2020e	Instrument Serial Number: ME12953				
	Calibration Standard Lot No. Expiration Standard V Date		ation Standard Standard Value	Instrument Response	Percent Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:	
	P887599	Jan 2010	pH = 4.00	4,00	0.00	0.2	У	I	QT.	
	P888160	Feb 2010	pH = 7.00	7.00	0.00	0.2	ý	エ	FT	
	P892502	Nov 2009	pH = 10.00			0.2	/			
	P890567	Dec 2009	Turbidity = 0.0 NTU Turbidity = 1.0 NTU			10%				
	P891234	Feb 2010	Turbidity = 10 NTU Turbidity = 50 NTU	10.02	0.2	10%	N	C	97	

Water Quality Instrument Make	: YSI	Instrument Model Number:	556	Instrument Serial Number: 06	A2173AL
Turbidity Instrument Make:	LaMotte	Instrument Model Number:	2020e	Instrument Serial Number:	ME10404

2.0

0.04

0.102

8.32

5%

5%

0.2 mg/l

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾			
P887599	Jan 2010	pH = 4.00	41.00	0.00	0.2	У		87
P888160	Feb 2010	pH = 7.00	7.00	0.00	0.2	У	I	97
P892502	Nov 2009	pH = 10.00			0.2	,		
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.05	0.5	10%	N	C	27
		Turbidity = 50 NTU	,,		6.5%			/
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%	V	エ	27
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%	,		,
	Per Table →	D.O. = 8.763 mg/L @ 25.0 °C	9.29	0.03	0.2 mg/l	Y	工	gT

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Conductivity = 0.100 mS/cm

D.O. = 8,279 mg/L @ 24,9°C

Conductivity = 1.000 mS/cm

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

7410

6068

Oct. 2009

Nov 2008

Per Table →

Field Instrument calibration Record

Project Name: JED SWAF	Project No.: 1-2/172	_Task: <u>0 </u>
Rental Company: EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

Time: 1600

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated? Yes or No	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	leviation of	Deviation ⁽²⁾		Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	41-00	0.00	0.2	7	エ	Or
P888160	Feb 2010	pH = 7.00	7-00	0.00	0.2	Y	⊅	27
P892502	Nov 2009	pH = 10.00	10.00	0.00	0.2	<u> </u>	エ	<i>D</i>
P890567	Dec 2009	Turbidity = 0.0 NTU				//		,
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.00	0.00	10%	N	C	25
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.60	5%	N		97
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%			
***************************************	Per Table →	D.O. =9.039 mg/L @ 20.3 °C	9,05		0.2 mg/l			

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

	Calibra	ation Standard	Instrument Response	Percent	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration
Lot No.	Expiration Date	Standard Value		Deviation ⁽¹⁾ or Difference				Performed By:
P887599	Jan 2010	pH = 4.00	4,00	0.00	0.2	V	ガ	<i>G</i> r
P888160	Feb 2010	pH = 7.00	7.00	0.00	0.2	<i>y</i>	ナ	27
P892502	Nov 2009	pH = 10.00	10.00	0.00	0.2	<i>'</i> 'y	エ	21
P890567	Dec 2009	Turbidity = 0.0 NTU				•		
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	9,92	6.8	10%	\mathcal{N}	<u> </u>	25
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.099	1.00	5%	N	(27
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%			
	Per Table ->	D.O. = & . (Lomg/L @ 22.5°C	8.60	0.02	0.2 mg/l	У	エ	1

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: $pH \pm 0.2$ of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

Field Instrument Alibration Record

Project Name:	260 G	SWDF			Project No.: <u>Fo</u>	2/577_Tas	k: <u>07</u> Date: _	10 Nov 20	<u> </u>
Rental Company:	EPS								
Water Quality Ins	trument Make:	YSI I	Instrument N	Model Numbe	er: <u>556</u>	Inst	rument Serial N	umber: <u>06A2173</u>	3AM
Turbidity Instrum Time:_	ent Make: 20: 00		Instrument l	Model Numb	er: 2020e	Inst	rument Serial N	umber: <u>M</u>	E12953
	Calibr	ation Standard	Instrument		Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	e	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00		4.00	0.00	0.2	ý	Æ	gr .
P888160	Feb 2010	pH = 7.00		7.00	0.00	0.2	y	I	97
P892502	Nov 2009	pH = 10.00				0.2	/		
P890567	Dec 2009	Turbidity = 0.0 N7	ΓU						

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

0.1

0.00

0.05

4.99

7.93

0,100

10%

10%

6.5%

5%

5%

 $0.2 \, \text{mg/l}$

V

T

 \mathcal{I}

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	41.00	0.00	0.2	У	エ	9-
P888160	Feb 2010	pH = 7.00	7.00	0.00	0.2	<u> </u>	Ī	AT
P892502	Nov 2009	pH = 10.00			0.2	/		-
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	9.95	0.5	10%	N	C	g+
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%	y	I	27
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%	,		
	Per Table →	D.O. = 7,820 mg/L @ 29,7 °C	7,86	0.06	0.2 mg/l	<u> </u>	I	1

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Turbidity = 1.0

Turbidity = 10

Turbidity = 50

NTU

NTU

NTU

Conductivity = 0.100 mS/cm

D.O. = 7.881 mg/L @ 27.6 °C

Conductivity = 1.000 mS/cm

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

P891234 Feb 2010

Oct. 2009

Nov 2008

Per Table →

7410

6068

Field Instrument _alibration Record

Project Name: JED SWDF	Project No.: <u>FQ/577</u>	Task: <u>61</u> Date: <u>// Nov 7.008</u>
Rental Company: EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: <u>LaMotte</u> Time: /830	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

	Calibration Standard		Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	4.00	0.00	0.2	У	I	Q7
P888160	Feb 2010	pH = 7.00	7-00	0.00	0.2	Ý	I	27
P892502	Nov 2009	pH = 10.00			0.2	<u>'</u>		
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.06	0.6	10%	\sim		QT.
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.094	10	5%	N	C	21
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%			
	Per Table ->	D.O. =8.04 mg/L@26.5°C	8.09	0.05	0.2 mg/l	У	<u> </u>	97

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
P887599	Jan 2010	pH = 4.00	41.07	0.07	0.2	N	C	07
P888160	Feb 2010	pH = 7.00	7.01	0-01	0.2	\mathcal{N}	<u> </u>	07
P892502	Nov 2009	pH = 10.00			0.2			
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	9,94	0.6	10%	N	C	27
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%	10	<u> </u>	97
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%			
	Per Table →	D.O. =8,779mg/L@24.9°C	8.32	0.041	0.2 mg/l	У	I	JT JT

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

Field Instrument Alibration Record

Project Name: JEO	Project No.: <u>FQ/5/7</u>	_Task: 01 Date: 12 Nov 2008
Rental Company: EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: <u>LaMotte</u> Time: 22:00	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

	Calibr	ation Standard	Instrument Response	Percent	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value		Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
P887599	Jan 2010	pH = 4.00	4/208	0.00	0.2	N	C	97
P888160	Feb 2010	pH = 7.00	6.99	0.01	0.2	\mathcal{N}	· C	07
P892502	Nov 2009	pH = 10.00			0.2			
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.15	1.5	10%	N	C	01
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.100	0.00	5%	У	F	<i>></i>
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%	,		

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

0.027

0.2 mg/l

8.23

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
P887599	Jan 2010	pH = 4.00	4.09	0.09	0.2	N	C	27
P888160	Feb 2010	pH = 7.00	7.01	0.01	0.2	N	С	07
P892502	Nov 2009	pH = 10.00			0.2			- V
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.02	0.7	10%	N	C	QT.
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm	0.160	0.00	5%	У	/=	Qt.
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%	<u> </u>		
	Per Table →	D.O. = 8.158 mg/L @ 25.7 °C	8.18	17.022	0.2 mg/l	<u> </u>	F	27

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

D.O. =8,203 mg/L @ 35.4 °C

Note (2): Allowable Deviation: pH \pm 0.2 of Standard Value; Conductivity \pm 5 % of Standard Value; Salinity \pm 3 % of Standard Value; DO \pm 0.2 mg/L;

Turbidity 0.1-10 NTU \pm 10% of Standard Value, 11-40 NTU \pm 8% of Standard Value, 41-100 NTU \pm 6.5% of Standard Value, >100 NTU \pm 5% of Standard Value, >100 NT

Note (3): Initial, Continual, Final

Per Table →

Field Instrument _ alibration Record

Project Name:	Project No.: FQ1572	Task: 01 Date: 12 Nov 7000
Rental Company: EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: <u>LaMotte</u> Time:	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

	Calibration Standard		Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00			0.2			
P888160	Feb 2010	pH = 7.00			0.2			
P892502	Nov 2009	pH = 10.00			0.2			
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU			10%			
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm			5%			
	Nov 2008	Conductivity = 1.000 mS/cm			5%			
	Per Table →	D.O. = mg/L@ °C			0.2 mg/l			

Water Quality Instrument Make: YSI	Instrument Model Number:	556	Instrument Serial Number:	06A2173AL
Turbidity Instrument Make: LaMotte	Instrument Model Number:	2020e	Instrument Serial Number:	ME10404

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration Performed By:
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	
P887599	Jan 2010	pH = 4.00	4.09	0.09	0.2	N	С	DT.
P888160	Feb 2010	pH = 7.00	7.01	0.01	0.2	N		QT.
P892502	Nov 2009	pH = 10.00			0.2			
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.02	0.2	10%	N	C	17
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm			5%			
6068	Nov 2008	Conductivity = 1.000 mS/cm	1.000	0.00	5%	7	ガ	(77-
	Per Table →	D.O. = 8,/58 mg/L @ 25,7 °C	පි.18	0.027	0.2 mg/l	Y	شت	94

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

Field Instrument _alibration Record

Project Name: JEN	Project No.: <i>FQ1</i> 572	Task: 01 Date: <u>/ 3 </u>
Rental Company: EPS		
Water Quality Instrument Make: YSI	Instrument Model Number: 556	Instrument Serial Number: 06A2173AM
Turbidity Instrument Make: LaMotte	Instrument Model Number: 2020e	Instrument Serial Number: ME12953

	Calibr	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00			0.2			
P888160	Feb 2010	pH = 7.00			0.2			
P892502	Nov 2009	pH = 10.00			0.2			
P890567	Dec 2009	Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU			10%			

Water Quality Instrument Make: YSI Instrument Model Number: 556 Instrument Serial Number: 06A2173AL

Turbidity Instrument Make: LaMotte Instrument Model Number: 2020e Instrument Serial Number: ME10404

6.5%

5%

5%

0.2 mg/l

	Calibra	ation Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
P887599	Jan 2010	pH = 4.00	4,00	0.00	0.2	У	F	07
P888160	Feb 2010	pH = 7.00	7-00	0.00	0.2	Ú	F	27
P892502	Nov 2009	pH = 10.00	10.00	0.00	0.2	4	F	21
P890567	Dec 2009	Turbidity = 0.0 NTU				/		
		Turbidity = 1.0 NTU			10%			
P891234	Feb 2010	Turbidity = 10 NTU	10.02	0.2	10%	N		01
		Turbidity = 50 NTU			6.5%			
7410	Oct. 2009	Conductivity = 0.100 mS/cm			5%			
6068	Nov 2008	Conductivity = 1.000 mS/cm	1.000	0.00	5%	Y	F	21
	Per Table →	D.O. = 8.04 mg/L@ 265°C	8.11	0.07	0.2 mg/l	V	F	01

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

NTU

°C

Conductivity = 0.100 mS/cm

mg/L@

Conductivity = 1.000 mS/cm

Turbidity = 50

D.O. =

Oct. 2009

Nov 2008

Per Table ->

7410

6068

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L; Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value Note (3): Initial, Continual, Final

Field Instrument _alibration Record

oject Name:				Project No.:	Tas	Task:Date:					
ental Company: _	EPS	and desired.									
ater Quality Inst	rument Make:	YSI Instrumen	t Model Numb	er: <u>556</u>	Instr	ument Serial N	umber: <u>06A2173</u>	BAM			
urbidity Instrume Time:		<u>LaMotte</u> Instrumer	nt Model Numb	er: 2020e	Instr	rument Serial N	umber: <u>M</u>	E12953			
Lot No.	Calibra Expiration Date	Alibration Standard Instrument on Standard Value Response		Percent Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:			
P887599	Jan 2010	pH = 4.00			0.2						
P888160	Feb 2010	pH = 7.00			0.2						
P892502	Nov 2009	pH = 10.00			0.2						
P890567	Dec 2009	Turbidity = 0.0 NTU									
		Turbidity = 1.0 NTU			10%						
P891234	Feb 2010	Turbidity = 10 NTU			10%						
		Turbidity = 50 NTU			6.5%						
7410	Oct. 2009	Conductivity = 0.100 mS/cm			5%						
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%						
	Per Table →	D.O. = mg/L @ °C			0.2 mg/l						
ater Quality Inst		YSI Instrumer					fumber: <u>06A217</u>				
urbidity Instrume	ent Make:	<u>LaMotte</u> Instrumer	nt Model Numb	oer: 2020e	Inst	rument Serial N	fumber: <u> </u>	E10404			

	Calibra	tion Standard	Instrument	Percent	Allowable	Calibrated?	Type of	Calibration	
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:	
P887599	Jan 2010	pH = 4.00			0.2				
P888160	Feb 2010	pH = 7.00			0.2				
P892502	Nov 2009	pH = 10.00			0.2				
P890567	Dec 2009	Turbidity = 0.0 NTU							
,		Turbidity = 1.0 NTU			10%				
P891234	Feb 2010	Turbidity = 10 NTU			10%				
		Turbidity = 50 NTU			6.5%				
7410	Oct. 2009	Conductivity = 0.100 mS/cm			5%				
6068	Nov 2008	Conductivity = 1.000 mS/cm			5%				
	Per Table →	D.O. = mg/L @ °C			0.2 mg/l				

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH ± 0.2 of Standard Value; Conductivity ± 5 % of Standard Value; Salinity ± 3 % of Standard Value; DO ± 0.2 mg/L;

Turbidity 0.1-10 NTU ± 10% of Standard Value, 11-40 NTU ±8% of Standard Value, 41-100 NTU ± 6.5% of Standard Value, >100 NTU ±5% of Standard Value

Note (3): Initial, Continual, Final

CHAIN OF CUSTODY/LABORATORY \NALYSIS REQUEST FORM

SR#	
CAS Contact	

An Employee - Owned Company 9143 Philips Highway, Sie 200 • Jacksonville, PL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE / OF /

Project Number Project Number FQ 1512						Αì	IALYS	IS REC	DUEST	ED (Ir	nclude	Metho	od Nui	mber a	and Co	ontain	er Pres	ervative)	en same s
Project Manager KYE Wills Fig. 11s	é geosper	com	PRES	SERVA	TIVE	1	0	1.	2	3	0	0	8				6.43 3.3			
Geosyntec	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ERS		1	1	1	1	1			1		1	1	1	1	1	1-1-12-1	ervative Key NONE NGL
14055 Riveredge Dis S	<u>4ê 300</u>		NIVINO		/o.		1	/4	/ 35	7 °		73	7	1	/	1	/	/ /	3. I 4. I	HNO3 H2SO4 NaOH Zn, Acetate
Tanga, FC 33637			ROFC	1	رة الإي	<u>.</u> §/	$\mathbb{Q}/$	\. \{i_0	\mathcal{H}	w/	Z.	3		1				Ĭ	6. I 7. I	MeOH √aHSO₄
9/3 558 - 0990 9/3 Samplers Samplers Printed Nat	538-9721	•	NUMBER	/ !	90/ '	7)	Ĭ;	73	ر در لا	}-/~ γ/	7	7	1	1	1	1	1	/ -		Other M.S.D.
	Terry SAMPLING DATE TIME	MĀTRIX		/	/	/				<i>ر</i> ر	/ <u>~</u>	<i>]</i>	/	/	1	/	/: 	ALTI	RNATE E	RKS/ ESCRIPTION
CLIENT SAMPLE ID LAB ID SCO = 3	11-7-08 1030	SW.	12	×	×	×	×	×	×	ж	ж	55 (A								
Tryblick	11-7-08 /000	SW	<i>12</i>	X	×	×	X	×	×	X	×									
	/0-27-03	ر بها	2	Х														0.00		
			2	e ::			100 mg		A S	\$ 92										
X 15																	32.5			
J.A.			2 A	# 3 3 3 3 4											i i	- 1 m		100		
SPECIAL INSTRUCTIONS/COMMENTS (C) <u>p.11</u>					- TU	2. 1900	V-97 1 32	REQUII HARGES	Te (0. 1. 40.4)	anere (REPO	100	QUIRE	MENT	S		INVO	GE INFO	RMATION
560-3 17.56 506	1			X_STANDARD						e de la composition della comp	×	II. Resu (LCS, D								
Sw-41 18.00 4.70				REQUESTED FAX DATE III, Results + QC and Calibration Summaries)) (1)	BILL	TO:								
30 1 10.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			47 % 8-27		REQUI	ESTED)	REPORT	DATE		300 300		14.18.0		on Repo	te Viberio	112 13				
Ses QAPP SAMPLE RECEIPT. CONDITION/COOLER TEMP	onide.	TODY SEA	no. v	ii.		2 2 2						_V. Speid Edata		orms / (
REINQUISHED BY RECEIVED BY	and the second s	INQUISHED	Constant of	9 44 1 3 44 1			RECE	VED B	γ	(m.1/50) (m.1/50) (m.1/50)		74 M F	ELINO	UISHEI	ya c				RECEIVE	D/BY
Signature: Gold Course Signature Signature Signature						Ure					Signature				Signa	iture				
Printed Name Soc Serry Printed Time Printed Name Printed						i Name	(4 () (4) ()				Printe Firm	d Name					Printe Firm	d Name		
Date/Time Date/Time Date/Time 187 187	5 Date/Fine		3. S.		Date/Ta	ime		- (2) - (2)	30 (6 <u>0)</u> Speciel		Date/	Time	5.6 (1)	13 14 15 F 45 15			4. 10.77	Time		SCOC 01/09/0

CHAIN OF CUSTODY/LABORATORY 'NALYSIS REQUEST FORM

FURM SH#

OF CAS Contact

Serv. 9143 Phillips:Hit An Emproyee Gwned Gempany 9143 Phillips:Hit www.castab.oom	hway Ste 200 • Jacksonville, FL 322	56 (904) 739-2277 • 800- 69	95-7222 x	06 • FAX (904) 7	739-2011 PAGE _	OF	CAS Contact
Project Name SEN SWAF	Project Number FQ/S/2			ANAL	YSIS REQUESTED (In	nclude Method Number and Con	tainer Preservative)
and the second control of the contro	Email Address	PF	RESERVA	MIVE /	3/3/2/0/		
Project Manager KV F WA WS Company/Address	1 100 to C 05/29		n	77	7////	11111	Preservative Key 0 NONE
<u>Geasyneet</u>		OP CONTAINERS	É A	111	1 / /sh		/
14055 Rivardige				/ 2/ /			4. NãOH 5. Zn, Acetate 6. MeOH
Phone #	3637		5 /		The Property of the State of th	11111	7. NaHSO4. 8. Other
9/3 - \$58 - 0940 Sampler's Signature	\$2/3-358 - 9 Samplers:Printed Name	72G		777	YA /		
· (be ver	<u>SoeTerry</u> ✓ SAME	PLING	/ / S	641			REMARKS/ ALTERNATE DESCRIPTION
CLIENT SAMPLE ID MW-2A	LABID DATE	TIME MATRIX	7				
Mw-2B	11-6-0	1615					
smarc .		1545					
<u> </u>		1100	20 00 C				
MW-3B MW-3C		1040					
6 MW-44 6		0900					
= Mw-413		0815					
TIM TIME	<u> </u>	0900 V V	7 <u> </u> 3 <i> </i>	W W S	V V		
SPECIAL INSTRUCTIONS/COMMENTS		<u> </u>	2114	A STOLL BELLEVIOLE	ND REQUIREMENTS	REPORT REQUIREMENTS	INVOICE INFORMATION
				RUSH (SI	URCHARGES APPLY)	I. Results Only II. Results + QC Summaries	PO#
				REQUESTED FAX		(LCS, DUP, MS/MSD as required)	BILLTO
again.						III. Results + QC and Calibration Summaries	
				REQUESTED REP	ORT DATE		
See QAPP 🖂	Δ					V. Speicalized Forms / Gustom Rep Edata Yes No	
SAMPLE RECEIPT CONDITION/COOLER REUNQUISHED BY	TEMP! A	GUSTODY SEALS: RELINQUISHED BY	Y/N	RE	CEIVED BY	RELINQUISHED BY	RECEIVED BY
Signature Signature		onalize	\$ 7 60 <u>13 40 4</u>	Signature		Signature	Signature
Printed Name Printed		inted Name		Printed Name		Printed Name	Printed Name
302 18774 Firm First		rm .		Firm		Firm	Eirin'i
Date/Time Date	Time 7.90 1055 D	ate/Time		Date/Time		Date/Time	Date/Time

3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
S 100 100 100 100 100 100 100 100 100 10	Culculate:
	Columb
Command V	Analytic
Zarrian car	Action to the second second

CHAIN OF CUSTODY/LABORATORY 'NALYSIS REQUEST FORM

	SR#	The same with the same of
성 보다 그렇게		e antivarilar latin
All the state of the second	Parabet with branker to be taked as the	
J. 🚺 💮 💮		### AF : 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	lana a la	가게 살아 사람이 사람이 하는 사람이다.

eri.				
G		1		

Project Name JED: SUDF	Project Number	512					3 - Y) -:	ΑN	NALYS	IS RE	QUEST	ED (In	clude	Meth	od Nu	mber .	and Co	ontain	ier Pre	servative)		
Project Manager Live Wills Company/Address Live Syn Fe Email Address ا ارتیکا	se yes	suzh:	w	PRE	SERVA	ΓΙVE	1	()	3	2	Ō	44						1				
Company/Address		7	1		ાટ	10 (A)	1	1	_/		1		1	1	1	1		1	31	/ / / [reservative Key NONE HCL HNO3 H2SO4	5
141035 P.VAPA	. N	. 3/3	Õ		NUMBER OF CONTAINERS		/	\(\bar{\display}\)	\$ P	1	10	r/s	1	1	1	1			1		HNO3 H2SO4	
til	×7477				S O	1	Q/			77	/ Y/		/ /	/)	/	/ ,	/ /	Ι,	/ 2	/ / :	NāOHĪ Zn. Acetate MeOH	
Phone #	FAXE	cea	47	> /	E O	/(%/v	δ .	⋞ ⋛ \$\	<u>0/-</u>	x/	1	1	1	1	1	1	1	1	1 7	NaHSO ₄ Other	1
Phone # FAX# US 558-9776 Sampler's Signature							7	7	/ >	}\@	1	/	/	/	/	1	1	1	1	/ ni	MARKS/ E DESCRIPTION	
	عن ريد LABID	SAMF	PLING				18. 1987 第二条 第二条	7000 常祖				1				/		12 3 2 3 3 4	13.5	/ ALTERNAT	E DESCRIPTION	5 S
CLIENT SAMPLE ID	LABID	DATE 11-6-89		MATRIX So: 1	7	¥	X.	¥	X	X						30.00					<u> </u>	
- 65-2			1470		7	X	- "	Х	X	X				34.5		700 70		46	19. A			
\sim	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4					\$. (i)	57.75		27.00 E						64.3 4	100						
						12 5 27 4 7			\$100 47.489	27 Ves A 67 374 38				2 39 31 - 77 33		1967 M		2.4				
3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4						25.38 s 4.75 s															<u></u>	
100000000000000000000000000000000000000	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1				\$							23	, i	n Harita	5. 1. 1. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		13.8					
								. Š. 19			5 / / / 2 / / /					150 kg 25 20 22 2			# 65 20,0			
$-\lambda_{1}$	\checkmark					\$ 8.00 B - 0.000																
SPECIAL INSTRUCTIONS/COMMENTS							τu	JRNAR	OUND	REQUI	REMEN	TS I		REPO	ORT RI	 EQUIRI	EMENT	S :		INVOICE IN	FORMATION	
										HARGE	S APPLY)		- 1. Sec. 1	I. Resu	\$. O.							
								STAN	IDARD FAX DA	s sel re			X	li. Rest (LCS, I	ilts + Q0 DUP, MS	Summ MSD a	aries s.require	d)	PO	#		
				数字等 5 有每一支			neuoi	ESTEDI	raa da			18.18.49 7.19.19		_III. Res Summa		C and C	alibratio		BIL	LTO:		
							REQUI	ESTED	REPOR	DATE				_ IV. Data	i Validai	tion Rep	ort with	Raw Dal	la .			
See QAPP									i ji ji ji Borda A		V. Spe	calized l	Forms /	Custom	Report							
SAMPLE RECEIPT: CONDITION/COOL	TODY SEA	100 100 100 100 100	N					<u> </u>				<u> 9 113</u>			No							
RELINQUISHED:BY	INQUISHED	BY				RECE	IVED B	Y				RELINC	DUISHE	D BY			RECE	VED BY				
Signature Signature Signature Printed Name Printed Name							Signati	ure			<u>- 100 (100)</u>		Signa	ture					Sig	nature //	V.	
Find Hame Joe Terry Film Geosyste	9.5. 2.5			2.27	Name						Synted Name					Printed Name						
Date/Time	CULU.	است	rm ate/3ime			**************************************	Firm Date/Ti	ime			<u> </u>		Firm Date/Time						Firm Date/Time			
11-7-08/1855	Date/Time Date/T								Securities .								1787					

CHAIN OF CUSTODY/LABORATORY \NALYSIS REQUEST FORM

	Immore some the control of the contr	
are the first than the		
Anna Carlos Company		

nploves-Owned Company 9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE www.caslab.com ANALYSIS REQUESTED (Include Method Number and Container Preservative) てをひ らんしみだ PRESERVATIVE Preservative Key 0. NONE Geosynye NUMBER OF CONTAINERS 1. HCL 2. HNO₃ 3. H₂SO H₂SO₄ NaOH 19055 Kinyedy Di Zn. Acetate 33637 MeOH NaHSO₂ 8. Other REMARKS/ SAMPLING CLIENT SAMPLE ID LAB ID DATE TIME MATRIX 9 MWSIRA 1-4-09 0815 0947 MW-1313 0805 MW-130 MW-IZA 1020 MUNIZIB 1055 MW-12C 1010 MW-11A 1230 MW-113 1325 MW-IIC 1250 140 MW-In A SPECIAL INSTRUCTIONS/COMMENTS TURNÁROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION COC Cor conducts of 2 cooles RUSH (SURCHARGES APPLY) I. Résults Only STANDARD II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE BILL TO: III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP Edata Yes No SAMPLE RECEIPT: CONDITION/GOOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RELINGUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RECEIVED BY Signature Printed Name rinted Name Printed Name Printed Name Printed:Name Firm Firm Date/Time Date/Time Date/Time 'Date/Time Date/Time

CHAIN OF CUSTODY/LABORATORY `NALYSIS REQUEST FORM

4.5
25.25
100
2 Table 1
1777
100

An Employee'- Owned Company 9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE 2 OF 2 www.castab.com ANALYSIS REQUESTED (Include Method Number and Container Preservative) FQ1512 ふをか らしかを PRESERVATIVE Kwillreneosynteren Preservative Key 0. NONE NUMBER OF CONTAINERS 1. HCL 2. HNO₃ 3. H₂SO₄ 4. NaOH 541 300 5. Zn Acetate 6. MeOH 7. NaHSOA 8. Other REMARKS/ ALTERNATE DESCRIPTION Joe Terry SAMPLING CLIENT SAMPLE ID LAB ID DATE TIME MATRIX MW-10B MN,-10C aw 9 Troo Blak SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION RUSH (SURCHARGES APPLY) I. Results Only X STANDARD X II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP Edata Yes No SAMPLE RECEIPT: CONDITION/COOLER/TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY BELINQUISHED BY RECEIVED BY Signature Signature Signature Printed Name Printed Name Printed Name Printed Name Firm Date/Time ---Date/Time Date/Time Date/Time Date/Time

Columb	na j
(Amal	
Serv.	NGC Secretaria

CHAIN OF CUSTODY/LABORATORY `NALYSIS REQUEST FORM

SR##	
	i
CAS Contact	i

Serv. An. Employee - Owned Company 9143 Philips Highwar	y, Ste 200 • Jacksonville, FL 3	2256 (904) 739	i-2277 • 80	0-695-7	7222 x(06 • FA	NX (90	4) 739	-2011	PA	GE_	.]		OF_	2		CAS	S Conta	ıct		
Project Name:	Project Number	y 2 2 2 4 =	120 - 201 - 3 1				Ai	NALY	SIS RE	QUES	TED (I	nclude	e Meth	od Nu	mber i	and Co	ontain	er Pre	servative)	
Project Manager Wilk	Email Address		<u></u> بدخو د	PRES	SERVA	TIVE	<i>j</i>	10	7	Э	0	3					2000 M				
Company/Address 640540466	1 1 VI rac	<u> </u>		S		1	1/) /	/ /			4	1	1	1	1	1	7	1	/ O. N	
14055 Rivveda C	<u>Σ</u>	? <i>n</i> n		CONTAINERS		/_	1	1		/-:	J. z		1	1		1	1		11	/ 2. t	CL NO3 2SO4 TaOH
Tampa FL 336				OF CON		/ G	γ \ Σί	$/_{\sim}$	1 3	I = I	₹	7	/ /	/	/ /	1	//	/ /	1 /	5. Z 6. N	n. Acetate leOH
Phone # +	FAX# ・ き/ブ・Cゴモー	9226		NUMBER O	1	ąγ	3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		J			1	1		1	1	1	1		laHSO ₄ Other
Sample: 9-Signature Will Communication	Sämpler's Printed Name			Ž	/	Ι.	1	1	YI	9 ż	Ž.	/	1	/	/	/	/	1	ALTE	REMAI RNATE DI	RKS/ SCRIPTION
CLIENT SAMPLE ID	LABID SA DATE	MPLING TIME	MATRIX										ž								
	2-4	Ballia de Francisco de	GW	9	X	Х	X	X.	Х				ě,			33		100 E		80.000	
Mw-98		10905		19									15713 1		40.747 40.757						
MW-9C		0842		9	\$ 30 \$ 00						6 (W) 3 - 200			2 ± (3)			15 B				
MW-3A		1055		4	20 de 1 20 de 1						8-21) 5-71										
· · · MW· BTS		1125		10						X											
<u> </u>		1040		9	3 33 20 8 9					# 15 m	2000 A			45678 47.638						And Francis Geograpia	
MW-74		1305		9	ि <i>े</i> । इस्त्री) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			44500 97-400			4			149.22 140.78	100			
MW-78		1/3/55	-	9								,	8746) 1 See								
MW-7C		1315	7	9		1	1	4 35 z			100000 20000		1000	8 - 18 13 2 - 18 13	11-8-6 8-7-8-7-1						<u>3 (f. 19</u> 20) - 1, 193 2 (f. 1921) - 1, 193
MW-SA SPECIAL INSTRUCTIONS/COMMENTS	<u> </u>	1505	Ų V		~ 1 //	A D	RNAF	T/N	RÉQU	IBEMEI	NTS:	1 	BEP	ORT R	EQUIRE	MENT	<u> </u>	<u> </u>	INVOI	CE INFOF	MATION
COC for contents of	f 2 conte							0.000	CHARGE	Sec. Sec.	4		Land Spirit	ilts Only	ar ar billio						
(OC 45)		70.70		e Service		_X	_STAN	NDARD				يد_ ا	⊈II. Res	ults + Q	C Summa	aries		PO#		OWER Store	
						REQU	ESTED	FAX DA	ίΤΕ					# A	S/MSD as		7	BILL	10·		
													_ III. Res Summ		C and C	alibration	n A		<u> </u>		
						REQUI	ESTED	REPOR	T DATE		急急.		_iV. Dat	a Validat	tion Repo	ort with F	Raw Dat	a			
Seë QAPP.□	ato per a									- 夏 - 新 - 新 - 第 -		14	_V. Spei	icalized l	Forms / (Sustom F	Report	5 8.7% 28 979		e vyskaláka e Projektyka e	
SAMPLE RECEIPT: CONDITION/COOLER TEN	TODY SEA	LS: Y	Ń	1					<u> 1918)</u> 194		Edat	a <u></u>	Yes	<u></u> 1	No						
RELINQUISHED BY	INQUISHED					REC	EIVED B	Ya a				RELINC	UISHE) BY				RECEIVED	ВУ		
Signature Signature		Signature				Signati	ure	9) (3) (1) 9-76-3				Signs	iture				3	Sion	afiire		
Printed Marie Printed Name										Signature Printed Name					Signature Printed Name						
Toe Terry Firm Firm		Printed Name Firm		Printed Name Firm					Firm					Firm							
Date/Time Date/Time		Date/Time				1						- Date/fime					Date/Time				
115 08/1630				Date/Time										- Color and							

CHAIN OF CUSTODY/LABORATORY 'NALYSIS REQUEST FORM

- juru	ODG II	20 19 6	1.50
Const. I	SR#		96
	임원 등 경기를 들어 한숨하고 있다.		# P
		- 40	100
de Light	h. 가는 가는 사실 기를 받는다		200
4-11-6		of the bearing	11 85
	A NO CONTRACTOR	process of the second	100

32-113.00	4.60 (2.60 to 100 to 14.60 to 4.60 to 7.60 to		ili i litaiii litaii ilaa ka maka maka maka maka maka maka ka maka maka ka maka maka maka ka maka ka maka ka m	and a series of the control of the c	and the second of the second o	and the state of t	and the first of the control of the first of	(4) 15 ft (1) (2) (2) (4) (5) (1) (2) (2) (2) (4) (4) (4) (4)	and the second of the second o
Sei.	Control of the Contro			Add 11 (2011) 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985	- AV - 1900 PASIO I ARRIVANTA I VALLE ANT DA	era in take a leather at the company of the		付き かたちょう 一般でき しょうみょうか リガー・コ	THE TOTAL TOTAL SECTION AND ADDRESS OF THE PARTY.
**************************************	CONSTRUCTION CONTRACTOR AND AND AND AND AND AND AND AND AND AND			20 (Carl of the Art of the Carl of the C	 And the second of the control of the c			ALC: 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	and the second second
	 Control of the Control /li>			111 av. 30 av. 40 av. 60 av. 60 av.				The 2007 2007 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A	
				AND THE SECOND SECURITION OF THE SECOND	《新聞·新聞·新聞·新聞·新聞·新聞·新聞·新聞·新聞·新聞·新聞·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·斯爾·	All liver to the second of the	a different formation of the complete and a completion	A fine of a Source 1 for the control for	Act of the second secon
Sec. 15. 15. 15. 15. 15. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16		BOLL SECURI SELEVISION ARCHIOLOGICA SI SELEVISION CONTRACTORISTO AND ARCHIOCOMIC SELEVISION CONTRACTORISTO ARCHIOCOMIC SELEVISION ARCHIOC	85 - Barrio Marca (Barrio), a como de la como	MEN STANDARDEN, EINEMEN ANDER LINES STANDARDEN.	TO SEE STEEL SEE THE TANK THE SEE THE			해 45 BM 보기 4000 3 G G C	100 and 20 at 10 at 10
A seed asset to see a fine and of		memory Clay Onn a Salesania	A EL GOODEC (ON N. 700 007	'7 ≥ 0000 20€ 7000 √0€	□ Env (nnx): 70n on 14		조계 發展 기계의 지수는 사람들이	ICAR Control	to the subsect of the State of the
An Employee - Owned C	ORIDZIAY SEMIJAKAN BIROS FILLI	hway, Ste 200 • Jacksonvil	E. FL 02200 (304) 703 ZZ1	7 * GUU-033-1222 XUO	** FMA (309) (1.00 ZU) (PAGE 2		TUAO UURidu	Charlest war and the second
Committee of the second					The state of the s		maning the second secon		

Project Name TEN SUDE	TED SUDF FO1512										ANALYSIS REQUESTED (Include Method Number and Container Preservative)											
Project Manager Fire W. Us	Email Address	10 × 100 %	OSVOYA	escon	PRES	SERVA	TIVE	1	0	3	أرر	0					75. 18 22.33					
Company/Address		- W	ar (marin) ar (marin)		15		1	1	1		1	1	1	1	1	1	1	1	1	Preservative Key 0. NONE 1. HCL		
14055 Rivedge	Nr. SH	:300			OF CONTAINERS		/ o		1	/	/3	ş/.		/		1	1	1.	1	2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH		
	33637				SF CO	1	1,49	$\langle \rangle \rangle$	$\langle \mathcal{A} \rangle$	\ \\ \\			/		1	1	1		/	/ 5. Zn Acetate 6. MeOH 7. NaHSO₄		
Phone # -973 - 558 - 0990	FAX# 813-5	58-5	726		NUMBER (Ŋ.	ď	\emptyset	Ĭ,	J	1	1		1	1	1		1	-8. Other		
Sampler's Signature		∌		1	1	/ `	XX	7 ,	/		/ /	1	1	/ -	1:	1:	REMARKS/ ALTERNATE DESCRIPTION					
CLIENT SAMPLE ID	LABID	SAMP DATE		MATRIX		7.0343 2.0343 2.0343																
MW-513		W-T-03	1540	1.00	Q	X	χ	X	×	×	§ 7			3.73 3.73	200				爱·佐 卷/装			
mw-5C		11-5-96	1520	سي	9	Х	У	У	V	Х		2						3				
i Dur-I		11-5-00		1,00	9	Χ	×	У	V	У									\$ 35			
Try Buck				w	3	Х											137		対象			
					80.7										, di							
							0.00															
λ									es e						6. 15. 17 Tulk (8				建筑			
							7 Q &						35 35 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						2.8			
λ_{ij}		4000														200						
, y		gerigera Starte	*100					36 (g 24) (a								0.8310 53588		10 kg 10 kg 1870, 889	15.50			
SPECIAL INSTRUCTIONS/COMMENTS						TURNAROUND REQUIREMENTS: REPORT REQUIREMENTS INVOIC RUSH (SURCHARGES APPLY) 1. Results Only								INVOICE INFORMATION								
							χ	STAN	DARD					II. Resu	lts + QC	Summ	aries ×		PO			
							148.48		AX DAT	E				(LCS, D	UP, MS	/MSD as	s require	d)				
														III. Resi Summa		C and C	alibration	1	DIL	TO:		
							REQUI	ESTED	REPORT	DATE						ion Rep	ort with F	Raw Dat	a -			
										1 20% 70 2 2				V. Speid								
See QAPP 🗇	ERTEMP:		5.00													20.45.46 20.15.46						
SAMPLE: RECEIPT: CONDITION/COOL RELINQUISHED BY	TODY SEA	400	N	\$.36 g		DECE	VED B	<u> </u>			3.00	-104.0	UISHE				REGEIVED BY					
CCEINGOODEO DI					n gang Mga S	HLUE	7200			137		CLING	o one	100			HEGELFED DJ					
Signature S	Signature	Sig	паште	<u> </u>	<u>orazio</u> Kantin		Signati	nte	vatedi. Vatedi			<u>. 1911 - 1</u> V Jak	Signa	ture			<u>radios</u> Sagradi		Sigr	iature		
	rinted Name	Pri	nted Name			2 9 4 2 3 4	Printed	Name					Printed Name					Prin	ted Name			
Firm Firm Firm							Firm			<u> </u>	<u> </u>	tiones Sp. S. J	Firm	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>		<u> </u>	Fin			
	Date/Time	Da	te/Time		# / A		Date/I	ime		 		17.5	Date/	lime		a iğer			Date	i/Time		
Distribution White: Feture to Organizator, Vallow	The comment than the co			92090 W. 196	100 E							1000	91 (20 m) ₂		e da Kodi Shaktari	JSCOC-01/29/08						

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SA#	
CAS	Contact
ber and Containe	er. Preservative)
]]]	
1 1 1	/ / Preservative Key D. NONE
1 1 1	**************************************
	2. HNO ₃ 3. H-SO ₄ 4. NaOH 5. 70 Acetata
111	7
1 1 1	7. NaHSO ₄
	/ 8. Other
	REMĀRKS/
	REMARKS/ ALTERNATE DESCRIPTION
3/2 8/2 8/2	
UIREMENTS	INVOICE INFORMATION
\$0.83 % 3	
ummaries	PO#
SD as required)	
nd Calibration	BILLTO:
Report with Raw Data	
ns / Custom Report	
YesNo	
SHED BY	RECEIVED BY
	引29.00.00 (2.70) ない アイバモ フェー・ドライト

Project Name ZEN SWDF	Project Number:	,		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																		
Project Manager: Kurk Wills	Email Address		9 4	PRES	SERVAT	IVE	f	0	ζ	2	0	\mathcal{Q}^{\dagger}										
Company/Address	7			켮		1	1	1	1	1	1	J	1	1	1	1	1	1	1	7 1	eservativ NONE HCL	gija ingrij in g
19035 Riverede	<u> Dr 54c.</u>	300		NUMBER OF CONTAINERS		/ /	1	/ /		/3	13 J	7		/	1		/	1	/ ;	/ 2. 3. 4.	HNO3 H2SO4 NãOH	
Tanja FL	37637			9- 03-	1.	ν),	$\mathbb{V}.$	XX.		J	Z.	1	1		/	1	1			5. 6.	Zn. Ace MeOH NaHSC	etate
Phone#- BIJ CTS-0990	8/3 - \$ 5 9 Sampler's Printed Name	<u>-9726 </u>		JMBER	/0	Q θ	/ 1	J. 6	ر/ ر	7 :					1		1	1		8.	Other_	
Sampler's Signature	Joe Terry	/ SAMPLING		Ž	1 7	1/	1	Y	4	9	1	/ 	4	/ - 1	1	/	1	/.	AL	REN TERNATE	IARKS/ DESCRIP	PTION
CLIENT SAMPLE ID		DATE TIME	MATRIX																			
Mw-23A		10:09 0845	<u> </u>	9	<u> </u>	X	X.	$X \mid :$	Z													
MW-23B MW-23C		0355		9														Secretary				
5 MW-27A		11135		S													36.08 S	<u>ay 1001</u>				
MW-228		1230		10						X												
MW-20C		1150		9								3,4		7.7								
- MW-21A		15/0		9.	_																	50 <u>- 300 - 30</u> 50 <u>- 300 - 3</u>
MW-AIB		1530		9						7	(\$2.7) (20.7)					6978 4978		12 (1) (1) (1) (1) (1)	SOME Y			
MW-21C Texx限ML		1/4/55	\ <u>/</u>	<i>10</i>		\$ 1 /2 3	<i>W</i> :	SIZ -	1 /	Х.				6 (4), 2 (2) , 44 (4), 2 (3)			2003 (<u>la nakiri</u> Kabupatèn
SPECIAL INSTRUCTIONS/COMMENTS							54 Sept.	UND RE		37. 37.5 23	TS		REPC	100	QUIRE	MENTS	S g. 4		INVO	DICE INFO	DRMATIC)N
							STAND						II. Resu (LCS, D			aries requirec	n e	PO#				<u></u>
						REQUES	TED FA	X DATE					Translate According	ılts + Q(alibration		BILL	TO:			
						REQUES	TED RE	PORT D	ATE				118,45		on Repo	ort with R	aw Data					
See QAPP 🖭		The state of the s											V. Speic	alized F	orms / C	Sustom A	lèport		, j.,			
SAMPLE RECEIPT: CONDITION/COOLE			TODY SEA	A 100 TO 100 TO 100	N .		52 - 197 - 2 54 - 197 - 2 54 - 197 - 3								· •	۱ <u>ر کے</u> در	Vo .					
RELINQUISHED BY	RECEIVED BY	REL	NOVISHED	BY				RECEIVE	D BY				R	ELINO	UISHEI) BY				RECEIV	ED BY	
when teny	ature:	Signature		0.5		Signature						Signat	Sale 1			eriterija 1988 izv		3000	ature			
Printed Name Printed P	ted Name	Printed Name Firm	10.00			Printed N	ame	9, 95 <mark>v.</mark> & 32,775				222	Name			6			ed Name			
Geosphia Day	a/Time	Date/Time	9 70 M 40.			Firm Date/Tim	8)					Firm Date/T	ime					Firm	//me	andre de Generalie	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
11-10-09/1645	and the second second	Date: 14110		The State		23 J					\$32.38	Dale!	in le A				(1.5v)	Date	ome	STEEN.		7. 2000 ten

CHAIN OF CUSTODY/LABORATORY \NALYSIS REQUEST FORM

Employee - Gwned Company 9143 Phillips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 808-695-7222 x06 • FAX (904) 739-2011 PAGE **CAS** Contact www.caslab.com Project Number F-Q7572 ANALYSIS REQUESTED (Include Method Number and Container Preservative) PRESERVATIVE Preservative Key 0: NONE 1. HCL 2: HNO₃ 3: H₂SO₄ 4: NaOH NUMBER OF CONTAINERS. 055 Riveredge De 5. Zn. Acetate 6. MeOH 7. NaHSO₄ 8. Other REMARKS/ SAMPLING CLIENT SAMPLE ID LAB ID DATE TIME MATRIX Equipment Blank 11.11.09 0730 W 9 3 SPECIAL INSTRUCTIONS/COMMENTS 1 TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION RUSH (SURCHARGES APPLY) I. Results Only X_STANDARD _X_II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See OAPP Yes No SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY Signature Signature Printed Name Printed Name Printed Name Printed Name

Date/Time

Date/Time

Date/Time/

Date/Time

Date/Time

CHAIN OF CUSTODY/LABORATORY *NALYSIS REQUEST FORM

	CD:#	17 - 15 T	
		100	
		1,414	
34,00	在14世界中的一数1967年		그걸 작가 하기
		Same the first of the party	. 10 - 6 - 14
1.00	CAS Contact		

Project Name JEN SWAF:	Project Number F 3/15/1.	2		ANALYSIS REQUESTED (Include Method Number and Container Preservative)									servative)						
Project Manager	Email Address	acosoma.	t on	PRES	SERVAT	IVE	/	0	3	,2	0	2							
Company/Address Georgy 1400		V 1		ည		1	1		/	1	1:	4	1		1		1		Preservative Key 0. NONE 1. HCL 2. HNO ₃ 3. H>SO ₄ 4. NãOH
14055 Riverely Dr		300		CONTAINERS		/~		/	/	13	* 3	# 			1	1			2. HNO ₃ 3. H ₂ SO ₄ 4. NSO ₂ H
Tanya, FL 33				F CON	Ĵ	\ <u>&</u>	\gtrsim	27/ 27/				/	1	/ /	1	/ /	/	/ /	/ 5. Zil. Aceiale 6. MeOH
972 CSB - 0490	TAX#	8-9726		NUMBER OF	/ (D) (Ĭ	,		J		1	1		1		1		7, NaHSO4 8, Other
Sampler's Signature	Sampler's Printed Name			NO.	/ ,	/ /	Ι,	/ /	<i> </i>	95	7	/:	/ ,	/	/	/	/:	1	REMARKS/ ALTERNATE DESCRIPTION
CLIENT SAMPLE ID	LABID	SAMPLING DATE TIME	MATRIX					95 7 <u>0</u> 387 33							2.00 2.00 2.00				
	<u> </u>	11.98 1005	<u>cw</u>	8	$ \mathbf{x} $	X	Х	X	X						76.70				
		0935		10		4				X				- 3					
MW-20C		0910		10						X	. 24		e de la composition della comp	<u>. 1.14</u>			2.6		
<u> </u>		1250		9															
MW-16B MW-16C		1230		10 9						\times				<u> </u>					
MW.TA		1425		9								13.55 13.55	<u>4004</u> 1947)	<u>1842)</u> Žekši d	1100				
7.10.17 иw:17В		14115		9										ar i 1919 Suiditt			200		
MW-ITC		INSO	5 5 6 6 8 3 6 6 8	q															
Nup-2		1		9		1	V	1/					4						
SPECIAL INSTRUCTIONS/COMMENTS :	tents of 2	cooles					2000 300	(SURCE	100	REMEN S APPLY)		1000	I. Resul	ts Only		EMENT laries s require		PO#	INVOICE INFORMATION
						REQUE	STED F	AX DATI						ults + Q		alibratio	원공범	BILL	<u>.</u> TO:
						REQUE	STEDI	REPORT	DATE				e jiriye.		ion Rep	ort with i	Raw Dat	ta	
See QAPP								A.A.					V. Speid	alized l	Forms / I	Custom	Report		
SAMPLE RECEIPT: CONDITION/COOLER	TEMP:	CUS	TODY SEA	LS: Y	N					<u>منطقی کی</u> ارامانی الکان		10 55 25 6-7	Edata	ř. <u>Š.</u> 3. 300	Yes	e <u>re</u> Amerika	No		
- RELINQUISHED BY	#RECEIVED BY	REL	INQUISHED	ВΥ				RECEI	VED B	Y			F	RELINC	VISHE	D BY			RECEIVED BY
Signature Signature Signature	ш(ө	Signature				Signatur	re					Signa	ture					Sign	ature
Printed Name Printed	l Name	2 Printed Name .				Printed 1	Name		. 750 			Printe	d Name	<u>0.877.</u> 6 Aug 41:576	V - 17 A			Print	fed Name
Firm Keonyate Firm		Firm	5735	ŧ.	E/18.5	Firm	1900 A					Firm	J. 18					Firm	
Date/Time Date/T	ime	Date/Time		12 A. A. 125		Date/Tin	пе					Date/	rime	7 V				Date	/Time

CHAIN OF CUSTODY/LABORATORY \NALYSIS REQUEST FORM

An Employee - Owned Company 9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE /

GE		1	C	

e de la companya della companya della companya de la companya della			<u> </u>	<u> </u>			
SR#	3 72 72		ŷ:	3-1.			
			}			1,51	
			S	10	100		ं
CAS	Contac		N 14.5			4	4
34 B. 2 B.	år Killer	1.58% 388°	Ad Os.	45,007	- A	100	
	0.470	- 1355	28 NO.	S 8.	Sec.	16:1	8
and Containe	r Prese	ervative)	1				3
	3	99 2	77 37 2				
1 1		1	/ Pr	eserva	tive F	(ey	
1 1	1	T	/ 0.	NON	野人		3
A = A	1-	1 1	15	HCL		Š.	30
1 1	Jan :	1 4	2.	HNO H ₂ S	3	- 3-	. * 1
1 1 1	/ /	S. J.	4	NãO	⊢ ⁴	777	100
1 1 1	- 4/	100	- 5.		cetat	0	15
1 1	- II.	12	6.	MeQ	H		3.1
1 1	1		7.	NaH		100	-33
1 1 1 1 1	I	1	8.	Othe	r	- 31	3
1 1 1 2	73.	$I \in \mathbb{R}$				4	
	1 1		REN	ARKS	1272		. S. V
/ / /		ALTER	RNATE	DESC	RIPTIC	ON:	
	5 T/2	1 13:37	100 mg (1)	200	<u> </u>		3.0
医医神经乳						. 20°	
8 44 4		<u> </u>		ing raft.			100
	yer in		\$1.00 M			60	1
	S 17 1	1000	(\$), A)-	e de la figura			
		1480.07	S	-	. S.	Ŵ,	
1 第 3 图	3 16	7975	16.12	15.47		Jan	*35
			2.0	ستشخب		-	45
						Ţ.	
	200 CAN (100)					71.77	-
[교회조절]					Sec.		8
					3.5	1.	-
		<u>* 1375 .</u>	, 100 get				
金者等基	(# # 5		4.3		20		7.
	35 <u>24</u> 5	建工業 (4年)				(je.,	
的复数计算工程						As i	4.3
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		<u>557/199343 (4</u> 1970/00/1973	Marine Sell	300 C		نئييد	4
1. 沒有 要可					ere e i		
		an and the	27 - Sept.		-	<u>د. د د.</u> د و د	73
				12 12	<u> 1911.</u>	1,30	
MENTS	1 2 E	INVOIC	F INF	דמאאר	ION	1 1	
	1.30					٠.	24
	le Sel				ing A		
iries	PO#	(12) (14) (14) (16) (17) (16) (17) (18)	er Ph	33.00 <u>(2</u>			
required)	🏋			7. %	1.7		
	BILLTO					12	
alibration	DILLI			6 28			
	ļ					<u></u>	
					: :: .	j.,	
ort with Raw Data		3000			San J	-	
Number Decem			\$ \(\bar{\sqrt{3}} \).	1			
Custom Report							
No	137825		(3,71)			-	
]			17. JÜ	2.1	, i e	
D BY	12.300	a a Bi	ECEIV	ED BY			- 0
	1809		erger og e	4.9	277		

Project Name ンというと	Project Number FQ/5/12	<u>FQISIQ</u>				ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Manager	Email Address Kus (Is Cyeo	syntee.	.013	PRE	SERVA	TIVE		0	3	2	0	a										
EPACUALEC				:#8		1	1	1		/	1		1	1	1	/	1	1	1	/ Presi 0. N 1. H	ervative ONE CL NO3 2SO4 aOH	Key
14055 Riverda B	Sie ?	00	\$ 1.00 m \$ 1.00 m	CONTAINERS		/-	1	1	10	/3)/ J			/	/ /	/ /		1	11	2. H 3. H 4. N	NO3 2SO4 aOH	
14055 Riverdon B. Tanju, FL 33	637				/	() ()		***		J	13/13/				1	1	1		1 / 1	5. Z 6. N	n. Aceta leOH aHSO ₄	110
313 - 558 - 0990 Samplera Signature	Sampler's Printed Name			NUMBER OF	10		6) 0)	٧.	\tilde{z}	ή.	ij		1	/		/	1	1	1		ther	2. Proc. 3 179
Asset 1	Toe Terry			₹	/	<u>/</u>	/	1	12		7	/	/ /	1	/_/			/	ALTE	REMAR RNATE DE	KS/ SCRIPT	ION
	ABID DATE	and a street of the street of the street	MATRIX																			
<u> </u>	the said of the sa	10955	ساري)	9	X	X	-><	×	X	\$. \$ 5												
MW-19B MW-19E	<u> </u>	1015 1210		10						X									2 . 480 <i>a</i> 1 4963		25.3 28.5	
MW-18A		0820		q																		
MW-1873		0300		9									1.7				5.4				<u> </u>	
MW-18C TEBBILA	<u> </u>	0910	دى:	9		\forall	W	V	1/			V 5 1 1 5 1 1 2 2 2 1 2 3 3 4 1 1 1										<u> </u>
					~#_	5/15/12 X																
		04.8					1.15	3/3	15:0								18. T				44	
SPECIAL INSTRUCTIONS/COMMENTS) (#) (#)	JRNAŘ	OLIND	BEOLU	REMEN	TS		BERO	RT RF	QUIREN	MENITO		i I	ikin/oli/	E INFOR	MATICINI	
							RUSI	I (SURC	3.1 July 84	S APPLY	Section 1		I. Result	4 S 15 S								
						948 19	STAN ESTED	2 2 m	re			×)I. Resul (LCS, D		Summari MSD as r			PO#			3-4 -2%	
								1 42 54					III. Resu Summa		and Cali	ibration		BILL	TO:		arije graji	
							ESTED	REPOR	T DATE				IV. Data	Validatio	in Report	with Ra	w Data					
See QAPP ⊡							e vel e E Gaze		<u> </u>			ستستقير	Paka	والأوارا	orms / Cu							
SAMPLE RECEIPT: CONDITION/COOLER TEMP	RECEIVED BY	and the same of th	TODY SEA	/46	N.			RECE	IVED B	Y				5000	Yes JISHED		0		· · · · · ·	RECEIVED	BY	
							1															
Signature Signature Printed Name Printed Name		Signature Printed Name				Signati	ure I Name					Signa Printe	ture d Name					3,360	iture ed Name			
Firm Gentler Firm		Firm				Firm					<u>20%;</u> 14. 24.	Firm	N 40 3	23/15 14-5				Firm				
Date/Time Date/Time Date/Time		Date/Time	4 10 00 00 4 10 00 00 00	er (.Date/T	ime					Date/	ime		(44 <u>-)</u> (4) (4)			Date	Time			

APPENDIX D

COLUMBIA-JACKSONVILLE LABORATORY CERTIFICATIONS

State of Florida

Department of Health, Bureau of Laboratories

This is to certify that

E82502

COLUMBIA ANALYTICAL SERVICES, INC. - FL 8540 BAYCENTER ROAD JACKSONVILLE, FL 32256

has complied with Etorida Administrative Code 64E-1, for the examination of Environmental samples in the following categories

DRINKING WATER - GROUP II UNREGULATED CONTAMINANTS, DRINKING WATER - MICROSIOLOGY, DRINKING WATER - OTHER REGULATED CONTAMINANTS, DRINKING WATER - PRIMABY INORGANIC CONTAMINANTS, DRINKING WATER - SECONDARY INORGANIC CONTAMINANTS, NON-POTABLE WATER - EXTRACTABLE ORGANICS, NON-POTABLE WATER - GENERAL CHEMISTRY, NON-POTABLE WATER - METALS, NON-POTABLE WATER - MICROBIOLOGY, NON-POTABLE WATER - PESTICIDES-HERBICIDES-PCB'S, NON-POTABLE WATER - VOLATILE ORGANICS, SOLID AND CHEMICAL MATERIALS - GENERAL CHEMISTRY, SOLID AND CHEMICAL MATERIALS - METALS, SOLID AND CHEMICAL MATERIALS - PESTICIDES-HERBICIDES-PCB'S, SOLID AND CHEMICAL MATERIALS - VOLATILE ORGANICS

Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 regulations. Specific methods and analytes certified are cited on the Laboratory Scope of Accreditation for this laboratory and are on file at the Bureau of Laboratories, P.O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory's certification status in Florida for particular methods and analytes.

EFFECTIVE July 01, 2007 THROUGH June 30, 2008

Max Salfinger, M.D.
Chief, Bureau of Laboratories
Florida Department of Health
DH Form 1697, 7/04

NON-TRANSFERABLE E82502-07-7/1/2007 Supersedes all previously issued certificates

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Page 1

Expiration Date: 6/30/2008

of 28

Laboratory Scope of Accreditation

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

-Columbia Analytical Services, Inc. - FL-

8540 Baycenter Road

Jacksonville, FL 32256

Matrix: Drinking Water			Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
1,1,1,2-Tetrachloroethane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,1,1-Trichloroethane	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
1,1,2,2-Tetrachloroethane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,1,2-Trichloroethane	EPA 524.2	Other Regulated Contaminants	NBLAP	2/19/2002
1,1-Dichloroethane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,1-Dichloroethylene	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
1,1-Dichloropropenc	BPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,2,3-Trichlorobenzene	EPA 524,2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,2,3-Trichloropropane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,2,4-Trichlorobenzenc	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
1,2,4-Trimethylbenzene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,2-Dichlorobenzene	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
1,2-Dichloroethane	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
1,2-Dichloropropane	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
1,3,5-Trimethylbenzene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,3-Dichlorobenzene	BPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,3-Dichloropropane	EPA 524,2	Group II Unregulated Contaminants	NELAP	2/19/2002
1,4-Dichlorobenzene	BPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
2,2-Dichloropropane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
2-Chlorotoluene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
4-Chlorotoluene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
4-Isopropyltoluene	EPA 524.2	Group II Unregulated Contaminants	NELAP.	2/19/2002
Alkalinity as CaCO3	SM 2320 B	Primary Inorganic Contaminants	NELAP	7/25/2005
Aluminum	EPA 200.7	Secondary Inorganic Contaminants	NBLAP	2/19/2002
Aluminum	EPA 200.8	Secondary Inorganic Contaminants	NBLAP	2/19/2002
Antimony	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002
Arsenic	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002
Barium	EPA 200.7	Primary Inorganic Contaminants	NELAP	2/19/2002
Barium	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002
Benzene	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
Beryllium	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002
Bromobenzene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
Bromochloromethane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
Bromodichloromethane	EPA 524.2	Other Regulated Contaminants, Group II Unregulated Contaminants	NELAP	2/19/2002

Ana M. Vlamonte Ros. M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 2

of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Drinking Water			Certification					
Analyte	Method/Tech	Category	Туре	Effective Date				
Bromoform	EPA 524.2	Other Regulated Contaminants, Group II Unregulated Contaminants	NELAP	2/19/2002				
Cadmium	EPA 200.7	Primary Inorganic Contaminants	NELAP	2/19/2002				
Cadmium	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002				
Calcium	EPA 200.7	Primary Inorganic Contaminants	NELAP	2/19/2002				
Carbon tetrachloride	EPA 524.2	Other Regulated Contaminants	NBLAP	2/19/2002				
Chloride	EPA 300.0	Secondary Inorganic Contaminants	NELAP	2/19/2002				
Chłorobenzene	EPA 524,2	Other Regulated Contaminants	NELAP	2/19/2002				
Chloroethane	EPA 524.2	Group II Unregulated Contaminants	NBLAP	2/19/2002				
Chloroform	BPA 524.2	Other Regulated Contaminants, Group II Unregulated Contaminants	NELAP	2/19/2002				
Chromium	EPA 200.7	Primary Inorganic Contaminants	NELAP	2/19/2002				
Chromium	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002				
cis-1,2-Dichloroethylene	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002				
cis-1,3-Dichloropropene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002				
Color	EPA 110.2	Secondary Inorganic Contaminants	NELAP	2/19/2002				
Conductivity	SM 2510 B	Primary Inorganic Contaminants	NELAP	8/30/2002				
Copper	BPA 200.7	Secondary Inorganic Contaminants, Primary Inorganic Contaminants	NELAP	2/19/2002				
Copper	EPA 200.8	Primary Inorganic Contaminants, Secondary Inorganic Contaminants	NELAP	2/19/2002				
Cyanide	SM 4500CN-E	Primary Inorganic Contaminants	NELAP	2/19/2002				
Dibromochloromethane	EPA 524.2	Other Regulated Contaminants, Group II Unregulated Contaminants	NELAP	2/19/2002				
Dibromomethane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002				
Dichlorodifluoromethane	EPA 524.2	Group II Unregulated Contaminants	NELAP	1/21/2003				
Dichloromethane (DCM, Methylene chloride)	EPA 524,2	Other Regulated Contaminants	NELAP	2/19/2002				
Ethylbenzene	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002				
Fluoride	EPA,300.0	Primary Inorganic Contaminants, Secondary Inorganic Contaminants	NELAP	2/19/2002				
Fluoride	SM 4500 F-C	Primary Inorganic Contaminants, Secondary Inorganic Contaminants	NELAP	2/19/2002				
Heterotrophic plate count	SM 9215 B	Microbiology	NELAP	9/22/2004				
Hexachlorobutadiene	EPA 524.2	Group II Unregulated Contaminants	NELAP	7/25/2005				
Iron	EPA 200.7	Secondary Inorganic Contaminants	NELAP	2/19/2002				

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Vlamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 3

of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Drinking Water Analyte	Method/Tech	Category	Certification Type	Effective Date
Isopropylbenzene	EPA 524.2	Group II Unregulated Contaminants	NELAP	7/25/2005
Lead	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002
Magnesium	EPA 200.7	Primary Inorganic Contaminants	NELAP	2/19/2002
Manganese	EPA 200.7	Secondary Inorganic Contaminants	NELAP	2/19/2002
Manganese	EPA 200.8	Secondary Inorganic Contaminants	NELAP	2/19/2002
Mercury	EPA 245.1	Primary Inorganic Contaminants	NELAP	2/19/2002
Methyl bromide (Bromomethane)	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
Methyl chloride (Chloromethane)	BPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
Acthyl tert-butyl ether (MTBE)	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
Naphthalene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
a-Butylbenzene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
dickel	BPA 200.7	Primary Inorganic Contaminants	NELAP	2/19/2002
Nickel .	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002
Vitrate	EPA 300.0	Primary Inorganic Contaminants	NELAP	2/19/2002
litrate as N	EPA 353.2	Primary Inorganic Contaminants	NELAP	. 7/25/2005
litrite	EPA 300.0	Primary Inorganic Contaminants	NELAP	2/19/2002
litrite as N	EPA 353.2	Primary Inorganic Contaminants	NELAP	7/25/2005
-Propylbenzene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
dor	EPA 140.1	Secondary Inorganic Contaminants	NELAP	2/19/2002
H	EPA 150.1	Secondary Inorganic Contaminants, Primary Inorganic Contaminants	NELAP	2/19/2002
ec-Butylbenzene	EPA 524.2	Group II Unregulated Contaminants	NBLAP	2/19/2002
elenium	EPA 200.8	Primary Inorganic Contaminants	NBLAP	2/19/2002
ilver	EPA 200.7	Secondary Inorganic Contaminants	NBLAP	2/19/2002
ilver	EPA 200.8	Secondary Inorganic Contaminants	NELAP	2/19/2002
odium	EPA 200.7	Primary Inorganic Contaminants	NELAP	2/19/2002
tyrene	BPA 524.2	Other Regulated Contaminants	NBLAP	2/19/2002
ulfate	EPA 300.0	Secondary Inorganic Contaminants, Primary Inorganic Contaminants	NELAP	2/19/2002
urfactants - MBAS	EPA 425.1	Secondary Inorganic Contaminants	NELAP	2/19/2002
rt-Butylbenzene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
etrachloroethylene (Perchloroethylene)	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
hallium	EPA 200.8	Primary Inorganic Contaminants	NELAP	2/19/2002
oluene	BPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
otal coliforms	SM 9222 B	Microbiology	NELAP	2/19/2002
otal coliforms & E. coli	COLITAG	Microbiology	NELAP	7/25/2005

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Vlamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 4

Expiration Date: 6/30/2008

of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Drinking Water			C .10 .1	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Total cyanide	EPA 335.4	Primary Inorganic Contaminants	NELAP	7/25/2005
Total dissolved solids	EPA 160.1	Secondary Inorganic Contaminants	NELAP	2/19/2002
Total nitrate-nitrite	EPA 300.0	Primary Inorganic Contaminants	NELAP	2/19/2002
Total nitrate-nitrite	EPA 353.2	Primary Inorganic Contaminants	NELAP	7/25/2005
Potal trihalomethanes	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
rans-1,2-Dichloroethylene	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
trans-1,3-Dichloropropylene	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
Trichloroethene (Trichloroethylene)	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
Prichlorofluoromethane	EPA 524.2	Group II Unregulated Contaminants	NELAP	2/19/2002
Turbidity	EPA 180.1	Secondary Inorganic Contaminants	NELAP	2/19/2002
Vinyl chloride	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
Xylene (total)	EPA 524.2	Other Regulated Contaminants	NELAP	2/19/2002
Zinc	EPA 200.7	Secondary Inorganic Contaminants	NELAP	2/19/2002
Zinc	EPA 200.8	Secondary Inorganic Contaminants	NELAP	2/19/2002

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 5

of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road

Jacksonville, FL 32256

Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
1,1,1,2-Tetrachloroethane	EPA 8260	Volatile Organics	NBLAP	7/1/2003
1,1,1-Trichloroethane	EPA 624	Volatile Organics	NELAP	2/19/2002
1,1,1-Trichloroethane	EPA 8260	Volatile Organics	NBLAP	7/1/2003
1,1,2,2-Tetrachloroethane	EPA 624	Volatile Organics	NELAP	2/19/2002
1,1,2,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,1,2-Trichloroethane	EPA 624	Volatile Organics	NELAP	2/19/2002
1,1,2-Trichloroethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,1-Dichloroethane	EPA 624	Volatile Organics	NELAP	2/19/2002
1,1-Dichloroethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
,1-Dichloroethylene	EPA 624	Volatile Organics	NELAP	2/19/2002
1,1-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	7/1/2003
, i-Dichloropropene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2,3-Trichtorobenzene	EPA 8260	Volatile Organics	NELAP	7/25/2005
,2,3-Trichloropropane	EPA 8260	Volatile Organics	NELAP	7/1/2003
,2,4,5-Tetrachlorobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
,2,4-Trichlorobenzene	EPA 625	Extractable Organics	NELAP	2/19/2002
,2,4-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
,2,4-Trichlorobenzene	BPA 8270	Extractable Organics	NELAP	7/1/2003
,2,4-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	7/25/2005
,2-Dibromo-3-chloropropane (DBCP)	EPA 8011	Volatile Organics	NELAP	7/1/2003
,2-Dibromo-3-chloropropane (DBCP)	EPA 8260	Volatile Organics	NELAP	7/1/2003
,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8011	Volatile Organics	NELAP	7/1/2003
,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8260	Volatile Organics	NELAP	7/1/2003
,2-Dichtorobenzene	EPA 624	Volatile Organics	NELAP	2/19/2002
,2-Dichlorobenzene	EPA 625	Extractable Organics	NELAP	2/19/2002
,2-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
,2-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
,2-Dichloroethane	EPA 624	Volatile Organics	NELAP	2/19/2002
,2-Dichloroethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
,2-Dichloropropane	BPA 624	Volatile Organics	NELAP	2/19/2002
,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	7/1/2003
,2-Diphenylhydrazine	EPA 8270	Extractable Organics	NELAP	7/1/2003
,3,5-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	7/25/2005
,3,5-Trinitrobenzene (1,3,5-TNB)	EPA 8270	Extractable Organics	NELAP	. 7/1/2003
,3-Dichlorobenzene	EPA 624	Volatile Organics	NELAP	2/19/2002
,3-Dichlorobenzene	EPA 625	Extractable Organics	NELAP	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Page 6

of 28

Laboratory Scope of Accreditation

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

Expiration Date: 6/30/2008

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Dat
1,3-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,3-Dichlorobenzene	BPA 8270	Extractable Organics	NELAP	7/1/2003
,3-Dichloropropane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,3-Dinitrobenzene (1,3-DNB)	EPA 8270	Extractable Organics	NELAP	7/1/2003
1,4-Dichlorobenzene	EPA 624	Volatile Organics	NELAP	2/19/2002
1,4-Dichlorobenzene	EPA 625	Extractable Organics	NELAP	2/19/2002
1,4-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,4-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
4,4-Dioxane (1,4-Diethyleneoxide)	CASF SOC-8270CSIM Rev. 1 (5/23/05)/GC-MS	Extractable Organics	NELAP	8/26/2005
,4-Naphthoquinone	EPA 8270	Extractable Organics	NELAP	7/1/2003
,4-Phenylenediamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
-Chlorohexane	EPA 8260	Volatile Organics	NELAP	7/25/2005
-Chloronaphthalene	EPA 8270	Extractable Organics	NELAP	7/1/2003
-Methylnaphthalene	CASF SOC-SVOAMS Rev. 0 (3/29/04)/GC-MS	Extractable Organics	NELAP .	8/26/2005
-Naphthylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
,2-Dichloropropane	EPA 8260	Volatile Organics	. NELAP	7/1/2003
,3,4,6-Tetrachlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
.4.5-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4,6-Trichlorophenol	BPA 625	Extractable Organics	NELAP	2/19/2002
2,4,6-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-Dichlorophenol	EPA 625	Extractable Organics	NELAP	2/19/2002
2,4-Dichlorophenol	BPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-Dimethylphenol	EPA 625	Extractable Organics	NELAP	2/19/2002
2,4-Dimethylplienol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-Dinitrophenol	BPA 625	Extractable Organics	NELAP	2/19/2002
2,4-Dinitrophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-Dinitrotoluene (2,4-DNT)	EPA 625	Extractable Organics	NELAP	2/19/2002
2,4-Dinitrotoluene (2,4-DNT)	EPA 8270	Extractable Organics	M NELAP	7/1/2003
.6-Dichlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,6-Dinitrotoluene (2,6-DNT)	EPA 625	Extractable Organics	NELAP	2/19/2002
2,6-Dinitrotoluene (2,6-DNT)	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Acetylaminofluorene	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Butanone (Methyl ethyl ketone, MEK)	EPA 8260	Volatile Organics	NELAP	7/1/2003
2-Butanone (Methyl ethyl ketone, MEK)	NCASI 99.01	Volatile Organics	NELAP	4/9/2003
2-Chloroethyl vinyl ether	EPA 624	Volatile Organics	NELAP	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 7

of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

4-Chlorotoluene

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water Certification Effective Date Method/Tech Category Analyte Type 7/1/2003 2-Chloroethyl vinyl ether EPA 8260 Volatile Organics NELAP 2/19/2002 NELAP **EPA 625** Extractable Organics 2-Chloronaphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 2-Chloronaphthalene 2/19/2002 NELAP 2-Chlorophenol **EPA 625** Extractable Organics NELAP 7/1/2003 2-Chlorophenol EPA 8270 Extractable Organics NELAP 7/1/2003 Volatile Organics 2-Chlorotoluene EPA 8260 7/1/2003 **EPA 8260** Volatile Organics NELAP 2-Hexanone 2/19/2002 EPA 625 Extractable Organics NELAP 2-Methyl-4,6-dinitrophenol NELAP 7/1/2003 EPA 8270 Extractable Organics 2-Methyl-4,6-dinitrophenol 7/1/2003 Extractable Organics NELAP EPA 8270 2-Methylnaphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 2-Methylphenol (o-Cresol) NELAP 7/1/2003 **EPA 8270** Extractable Organics 2-Nitroaniline NELAP 2/19/2002 2-Nitrophenol EPA 625 Extractable Organics EPA 8270 Extractable Organics NELAP 7/1/2003 2-Nitrophenol 7/25/2005 EPA 8260 Volatile Organics NELAP 2-Nitropropane **EPA 8270 Extractable Organics** NELAP 7/1/2003 2-Picoline (2-Methylpyridine) 2/19/2002 NELAP 3,3 -Dichlorobenzidine EPA 625 Extractable Organics 7/1/2003 Extractable Organics NELAP 3,3'-Dichlorobenzidine **BPA 8270** Extractable Organics NELAP 7/1/2003 EPA 8270 3,3'-Dimethylbenzidine NELAP 7/1/2003 3-Methylcholanthrene **EPA 8270** Extractable Organics Extractable Organics NELAP 7/1/2003 **EPA 8270** 3-Nitroaniline **EPA 608** Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDD 7/1/2003 EPA 8081 Pesticides-Herbicides-PCB's NELAP 4,4'-DDD Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDE **EPA 608** Pesticides-Herbicides-PCB's NELAP 7/1/2003 EPA 8081 4,4'-DDE Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT **EPA 608** Pesticides-Herbicides-PCB's NELAP 7/1/2003 **EPA 8081** 4,4'-DDT Extractable Organics NELAP 7/1/2003 4-Aminobiphenyl **EPA 8270 EPA 625** Extractable Organics NELAP 2/19/2002 4-Bromophenyl phenyl ether NELAP 7/1/2003 4-Bromophenyl phenyl ether EPA 8270 Extractable Organics NELAP 2/19/2002 4-Chloro-3-methylphenol **BPA 625** Extractable Organics NELAP 7/1/2003 4-Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 7/1/2003 **EPA 8270** Extractable Organics 4-Chloroaniline **EPA 625 Extractable Organics** NELAP 2/19/2002 4-Chlorophenyl phenylether Extractable Organics NELAP 7/1/2003 EPA 8270 4-Chlorophenyl phenylether

Volatile Organics

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2007

EPA 8260

Expiration Date: 6/30/2008

7/1/2003

NELAP

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 8

of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water			Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
4-Dimethyl aminoazobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
4-Methyl-2-pentanone (MIBK)	EPA 8260	Volatile Organics	NELAP	7/1/2003
4-Methylphenol (p-Cresol)	EPA 8270	Extractable Organics	NELAP	7/1/2003
4-Nitroaniline	EPA 8270	Extractable Organics	NBLAP	7/1/2003
4-Nitrophenol	EPA 625	Extractable Organics	NELAP	2/19/2002
4-Nitrophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
5-Nitro-o-toluidine	EPA 8270	Extractable Organics	NELAP	7/1/2003
7,12-Dimethylbenz(a) anthracene	EPA 8270	Extractable Organics	NELAP	7/1/2003
a-a-Dimethylphenethylamine	EPA 8270	Extractable Organics	NELAP	7/25/2005
Acenaphthene	EPA 625	Extractable Organics	NELAP	2/19/2002
Acenaphthene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Acenaphthylene	EPA 625	Extractable Organics	NELAP	2/19/2002
Acenaphthylene	EPA 8270	Extractable Organics	NBLAP	7/1/2003
Acetaldehyde	NCASI 99.01	Volatile Organics	NELAP	4/9/2003
Acetone	EPA 8260	Volatile Organics	NELAP	7/1/2003
Acetonitrile	EPA 8260	Volatile Organics	NELAP	7/1/2003
Acetophenone	EPA 8270	Extractable Organics	NELAP	7/1/2003
Acidity, as CaCO3	EPA 305.1	General Chemistry	NELAP	2/19/2002
Acrolein (Propenal)	EPA 624	Volatile Organics	NELAP	7/25/2005
Acrolein (Propenal)	BPA 8260	Volatile Organics	NELAP	7/1/2003
Acrylonitrile	EPA 624	Volatile Organics	NELAP	7/25/2005
Acrylonitrile	EPA 8260	Volatile Organics	NBLAP	7/1/2003
Aldrin	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Alkalinity as CaCO3	EPA 310.1	General Chemistry	NELAP	2/19/2002
Alkalinity as CaCO3	SM 2320 B	General Chemistry	NELAP	7/25/2005
Allyl chloride (3-Chloropropene)	EPA 8260	Volatile Organics	NELAP	7/1/2003
alpha-BHC (alpha-Hexachiorocyclohexane)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
alpha-BHC (aipha-Hexachiorocyciohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
alpha-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aluminum	BPA 200.7	Metals	NELAP	2/19/2002
Alaminum	EPA 200,8	Metals	NELAP	2/19/2002
Aluminum	EPA 6010	Metals	NELAP	7/1/2003
Aluminum	EPA 6020	Metals	NELAP	7/1/2003
Amenable cyanide	EPA 9012	General Chemistry	NELAP	9/22/2004
Ammonia as N	EPA 350.1	General Chemistry	NELAP	8/30/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Page 9

of 28

Laboratory Scope of Accreditation

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water			Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
Aniline	EPA 8270	Extractable Organics	NELAP	7/1/2003
Anthracene	EPA 625	Extractable Organics	NELAP	2/19/2002
Anthracene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Antimony	BPA 200.7	Metals	NELAP	2/19/2002
Antimony	EPA 200.8	Metals	NELAP	2/19/2002
Antimony	EPA 6010	Metals	NBLAP	7/1/2003
Antimony	EPA 6020	Metals	NELAP	7/1/2003
Aramite	EPA 8270	Extractable Organics	NELAP	7/1/2003
Aroctor-1016 (PCB-1016)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Arocior-1016 (PCB-1016)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1221 (PCB-1221)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1221 (PCB-1221)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1232 (PCB-1232)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1232 (PCB-1232)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1242 (PCB-1242)	BPA 608	Pesticides-Herbicides-PCB's	NBLAP	2/19/2002
Aroclor-1242 (PCB-1242)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Arocior-1248 (PCB-1248)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Arocior-1248 (PCB-1248)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1254 (PCB-1254)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1254 (PCB-1254)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1260 (PCB-1260)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1260 (PCB-1260)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Arsenic	EPA 200.7	Metals	NELAP	2/19/2002
Arsenic	EPA 200.8	Metals	NELAP	2/19/2002
Arsenic	EPA 6010	Metals	NELAP	2/19/2002
Arsenic	EPA 6020	Metals	NELAP	2/19/2002
Barium	EPA 200.7	Metals	NELAP	2/19/2002
Barium	EPA 200.8	Metals	NELAP	2/19/2002
Barium	EPA 6010	Metals	NELAP	7/1/2003
Barium	EPA 6020	Metals	NELAP	7/1/2003
Benzene	EPA 624	Volatile Organics	NELAP	2/19/2002
Benzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Benzidine	EPA 625	Extractable Organics	NBLAP	2/19/2002
Benzidine	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(a)anthracene	EPA 625	Extractable Organics	NELAP	2/19/2002
Benzo(a)anthracene	EPA 8270	Extractable Organics	NELAP	7/1/2003
•				

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 10 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water			Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
Benzo(a)pyrene	EPA 625	Extractable Organics	NELAP	2/19/2002
Benzo(a)pyrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(b)fluoranthenc	EPA 625	Extractable Organics	NELAP	2/19/2002
Benzo(b)fluoranthene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(g,h,i)perylene	EPA 625	Extractable Organics	NELAP	2/19/2002
Benzo(g,h,i)perylene	BPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(k)fluoranthene	BPA 625	Extractable Organics	NELAP	2/19/2002
Benzo(k)fluoranthene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzoie acid	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzyl alcohol	EPA 8270	Extractable Organics	NELAP	7/1/2003
3eryllium	EPA 200.7	Metals	NELAP	2/19/2002
Beryllium	EPA 200.8	Metals	NELAP	2/19/2002
Beryllium	EPA 6010	Metals	NELAP	7/1/2003
Beryllium	EPA 6020	Metals	NELAP	7/1/2003
eta-BHC (beta-Hexachlorocyclohexane)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
eta-BHC (beta-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
cta-Naphthylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
liochemical oxygen demand	BPA 405.1	General Chemistry	NELAP	2/19/2002
is(2-Chloroethoxy)methane	EPA 625	Extractable Organics	NELAP	2/19/2002
ris(2-Chloroethoxy)methane	. EPA 8270	Extractable Organics	NELAP	7/1/2003
ris(2-Chloroethyl) ether	EPA 625	Extractable Organics	NELAP	2/19/2002
is(2-Chloroethyl) ether	EPA 8270	Extractable Organics	NELAP	7/1/2003
sis(2-Chloroisopropyl) ether 2,2'-Oxybis(1-chloropropane))	EPA 625	Extractable Organics	NELAP	2/19/2002
ois(2-Chloroisopropyl) ether 2,2'-Oxybis(1-chloropropane))	EPA 8270	Extractable Organics	NELAP	7/1/2003
is(2-Ethylhexyl) phthalate (DEHP)	EPA 625	Extractable Organics	NELAP	2/19/2002
is(2-Ethylhexyl) phthalate (DEHP)	EPA 8270	Extractable Organics	NELAP	7/1/2003
Boron	EPA 200.7	Metals	NELAP	2/19/2002
Boron	EPA 6010	Metals	NELAP	7/1/2003
Bromide	EPA 300.0	General Chemistry	NELAP	2/19/2002
tromide	EPA 9056	General Chemistry	NELAP	7/1/2003
Bromobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Bromochloromethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Bromodichloromethane	EPA 624	Volatile Organics	NELAP	2/19/2002
Bromodichloromethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Bromoform	EPA 624	Volatile Organics	NELAP	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 11 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

	24 (2. 240)		Certification	Y200
Analyte	Method/Tech	Category	Type	Effective Dat
Bromoform	EPA 8260	Volatile Organics	NELAP	7/1/2003
Butyl benzyl phthalate	EPA 625	Extractable Organics	NELAP	2/19/2002
Butyl benzyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Cadmium	EPA 200.7	Metals	NELAP	2/19/2002
Cadmium	EPA 200.8	Metals	NELAP	2/19/2002
Cadmium	EPA 6010	Metals	NELAP	2/19/2002
Cadmium	EPA 6020	Metals	NELAP	2/19/2002
Calcium	EPA 200.7	Metals	NELAP	2/19/2002
Calcium	EPA 6010	Metals	NELAP	7/1/2003
Carbon disulfide	EPA 8260	Volatile Organics	NELAP	7/1/2003
Carbon tetrachloride	EPA 624	Volatile Organics	NELAP	2/19/2002
Carbon tetrachloride	EPA 8260	Volatile Organics	NELAP	7/1/2003
Carbonaceous BOD (CBOD)	SM 5210 B	General Chemistry	NELAP	2/19/2002
Chemical oxygen demand	EPA 410.2	General Chemistry	NELAP	2/19/2002
Chlordane (tech.)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Inlordane (tech.)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Chloride	EPA 300.0	General Chemistry	NELAP	2/19/2002
Chloride	EPA 9056	General Chemistry	NELAP	7/1/2003
Chlorobenzene	EPA 624	Volatile Organics	NELAP	2/19/2002
Chlorobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Chlorobenzilate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Chloroethane	EPA 624	Volatile Organics	NELAP	2/19/2002
Chloroethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
hloroform	EPA 624	Volatile Organics	NELAP	2/19/2002
Chloroform	EPA 8260	Volatile Organics	NELAP	7/1/2003
Chlorophylls	SM 10200 H	General Chemistry	NELAP	7/25/2005
hloroprene	EPA 8260	Volatile Organics	NELAP	7/1/2003
hromium	EPA 200.7	Metals	NELAP	2/19/2002
Phromium	EPA 200.8	Metals	NELAP	2/19/2002
hromium	EPA 6010	Metals	NELAP	7/1/2003
hromium	EPA 6020	Metals	NELAP .	7/1/2003
hromium VI	EPA 7196	General Chemistry	NELAP	7/1/2003
thromium VI	SM 3500-Cr D (18th/19th Ed.)/COLOR	Metals	NELAP	8/30/2002
Chrysene	EPA 625 .	Extractable Organics	NELAP	2/19/2002
Thrysene	EPA 8270	Extractable Organics	NELAP	7/1/2003
is-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	7/1/2003

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 12 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water		,	Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
cis-1,3-Dichloropropene	EPA 624	Volatile Organics	NELAP	2/19/2002
cis-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Cobalt	EPA 200.7	Metals	NELAP	2/19/2002
Cobalt	EPA 200.8	Metals	NELAP	2/19/2002
Cobalt	EPA 6010	Metals	NELAP	7/1/2003
Cobalt	EPA 6020	Metals	NELAP	7/1/2003
Color	BPA 110.2	General Chemistry	NELAP	2/19/2002
Conductivity	EPA 120.1	General Chemistry	NELAP	2/19/2002
Copper	EPA 200.7	Metals	NELAP	2/19/2002
Copper	EPA 200.8	Metals	NELAP	2/19/2002
Copper	EPA 6010	Metals	NELAP	2/19/2002
Copper	EPA 6020	Metals	NELAP	2/19/2002
Cyanide	SM 4500CN-E	General Chemistry	NELAP	2/19/2002
delta-BHC	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
delta-BHC	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Diallate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Dibenz(a, j) acridine	EPA 8270	Extractable Organics	NELAP	7/1/2003
Dibenz(a,h) anthracene	EPA 625	Extractable Organics	NELAP	2/19/2002
Dibenz(a,h) anthracene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Dibenzofuran	EPA 8270	Extractable Organics	NELAP	7/1/2003
Dibromochloromethane	EPA 624	Volatile Organics	NELAP	2/19/2002
Dibromochloromethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Dibromomethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Dichlorodifluoromethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Dieldrin	BPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Dieldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Diethyl ether	EPA 8260	Volatile Organics	NELAP	7/25/2005
Diethyl phthalate	EPA 625	Extractable Organics	NELAP	2/19/2002
Diethyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Dimethoate	· EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Dimethyl phthalate	EPA 625	Extractable Organics	NELAP	2/19/2002
Dimethyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Di-n-butyl phthalate	EPA 625	Extractable Organics	NELAP	2/19/2002
Di-n-butyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Di-n-octyl phthalate	EPA 625	Extractable Organics	NELAP	2/19/2002
Di-n-octyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
•				

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 13 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lah Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
Diphenylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
Disulfoton	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/25/2005
Endosulfan l	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Endosulfan I	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endosulfan II	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Endosulfan II	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endosulfan sulfate	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Endosulfan sulfate	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Sndrin	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Endrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endrin aldehyde	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Endrin aldehyde	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Ethyl methacrylate	EPA 8260	Volatile Organics	NELAP	7/1/2003
Ethyl methanesulfonate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Ethylbenzene	EPA 624	Volatile Organics	NELAP	2/19/2002
Bthylbenzene	EPA 8260	Volatile Organics	NBLAP	7/1/2003
² amphur	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Pecal coliforms	SM 9222 D	Microbiology	NELAP	2/19/2002
Perrous iron	SM 3500-Fe D (18th/19th Ed.)/COLOR	General Chemistry	NELAP	8/26/2005
Inoranthene	EPA 625	Extractable Organics	NELAP	2/19/2002
Fluoranthene	EPA 8270	Extractable Organics	NBLAP	7/1/2003
luorene	EPA 625	Extractable Organics	NELAP	2/19/2002
luorene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Fluoride	EPA 300.0	General Chemistry	NELAP	2/19/2002
Fluoride	EPA 340.2	General Chemistry	NELAP	2/19/2002
Juoride	BPA 9056	General Chemistry	NELAP	7/1/2003
gamma-BHC (Lindane, gamma-Hexachlorocyclohexane)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
gamma-BHC (Lindane, gamma-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
gamma-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Heptachlor	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
l eptachlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Teptachlor epoxide	BPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
leptachlor epoxide	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Hexachlorobenzene	EPA 625	Extractable Organics	NELAP	2/19/2002
Hexachlorobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 14 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
Hexachlorobutadiene	EPA 625	Extractable Organics	NBLAP	2/19/2002
Hexachlorobutadiene	EPA 8260	Volatile Organics	NELAP	7/1/2003
dexachlorobutadiene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Texachlorocyclopentadiene	EPA 625	Extractable Organics	NELAP	2/19/2002
Hexachlorocyclopentadiene	EPA 8270	Extractable Organics	NELAP	7/1/2003
-lexachloroethane	EPA 625	Extractable Organics	NELAP	2/19/2002
Hexachloroethane	EPA 8270	Extractable Organics	NELAP	7/1/2003
Hexachlorophene	EPA 8270	Extractable Organics	NELAP	7/25/2005
· Texachloropropene	EPA 8270	Extractable Organics	NELAP	7/1/2003
gnitability	EPA 1020	General Chemistry	NELAP	7/1/2003
Indeno(1,2,3-cd)pyrene	EPA 625	Extractable Organics	NELAP	2/19/2002
Indeno(1,2,3-cd)pyrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
odomethane (Methyl iodide)	EPA 8260	Volatile Organics	NELAP	7/1/2003
ron	EPA 200.7	Metals	NELAP	2/19/2002
ron	EPA 6010	Metals	NELAP	7/1/2003
sobutyl alcohol (2-Methyl-1-propanol)	EPA 8260	Volatile Organics	NELAP	7/1/2003
sodrin	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
sophorone	BPA 625	Extractable Organics	NELAP	2/19/2002
sophorone	EPA 8270	Extractable Organics	NELAP	7/1/2003
sopropylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
sosafrole	EPA 8270	Extractable Organics	NELAP	7/1/2003
Cepone	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Cjeldahl nitrogen - total	EPA 351.2	General Chemistry	NELAP	8/30/2002
cad	EPA 200.7	Metals	NELAP	2/19/2002
æad	EPA 200.8	Metals	NELAP	2/19/2002
æad	EPA 6010	Metals	NELAP	2/19/2002
æad	EPA 6020	Metals	NELAP	2/19/2002
1agnesium	EPA 200.7	Metals	NELAP	2/19/2002
/lagnesium	EPA 6010	Metals	NELAP	7/1/2003
langanese	EPA 200.7	Metals	NELAP	2/19/2002
1anganese	BPA 200.8	Metals	NELAP	2/19/2002
fanganese	EPA 6010	Metals	NELAP	7/1/2003
/anganese	EPA 6020	Metals	NELAP	7/1/2003
Mercury	EPA 245.1	Metals	NELAP	2/19/2002
dercury	EPA 7470	Metals	NELAP	2/19/2002
Methacrylonitrile	EPA 8260	Volatile Organics	NELAP	7/1/2003

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros. M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 15 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
Methanol	NCASI 94.03	Volatile Organics	NELAP	4/9/2003
Methanol	NCASI 99,01	Volatile Organics	NELAP	4/9/2003
Methapyrilene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Methoxychlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Methyl bromide (Bromomethane)	EPA 624	Volatile Organics	NELAP	2/19/2002
Methyl bromide (Bromomethane)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Methyl chloride (Chloromethane)	EPA 624	Volatile Organics	NELAP	2/19/2002
Methyl chloride (Chloromethane)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Methyl methacrylate	EPA 8260	Volatile Organics	NELAP	7/1/2003
Methyl methanesulfonate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Methyl parathion (Parathion, methyl)	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Methyl tert-butyl ether (MTBE)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Methylene chloride	EPA 624	Volatile Organics	NELAP	2/19/2002
Methylene chloride	EPA 8260	Volatile Organics	NELAP	7/1/2003
Molybdenum	EPA 200.7	Metals	NELAP	2/19/2002
Molybdenum	EPA 200.8	Metals	NELAP	2/19/2002
Molybdenum	EPA 6010	Metals	NELAP	2/19/2002
Molybdenum	EPA 6020	Metals	NELAP	7/25/2005
Vaplithalene	EPA 625	Extractable Organics	NELAP	2/19/2002
laphthalene	EPA 8260	Volatile Organics	NELAP	7/1/2003
laphthalene	EPA 8270	Extractable Organics	NELAP	7/1/2003
a-Butyl alcohol	EPA 8260	Volatile Organics	NELAP	7/1/2003
-Butylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Vickel	EPA 200.7	Metals	NELAP	2/19/2002
Vickel	EPA 200.8	Metals ·	NELAP	2/19/2002
Vickel	EPA 6010	Metals	NELAP	2/19/2002
vickel .	EPA 6020	Metals	NELAP	2/19/2002
Vitrate -	EPA 9056	General Chemistry	NELAP	7/1/2003
Nitrate as N	EPA 300.0	General Chemistry	NELAP	2/19/2002
Vitrate as N	EPA 353.2	General Chemistry	NBLAP	8/30/2002
Nitrate-nitrite	BPA 300.0	General Chemistry	NELAP	2/19/2002
Nitrite	EPA 9056	General Chemistry	NELAP	7/1/2003
vitrite as N	BPA 300.0	General Chemistry	NELAP	2/19/2002
Vitrite as N	EPA 353.2	General Chemistry	NELAP	8/30/2002
Vitrobenzene	EPA 625	Extractable Organics	NELAP	2/19/2002
Nitrobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Vlamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 16 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water			Confisionation	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Nitroquinoline-1-oxide	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosodiethylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosodimethylamine	EPA 625	Extractable Organics	NELAP	2/19/2002
n-Nitrosodimethylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitroso-di-n-butylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosodi-n-propylamine	EPA 625	Extractable Organics	NELAP	2/19/2002
n-Nitrosodi-n-propylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosodiphenylamine	EPA 625	Extractable Organics	NELAP	2/19/2002
n-Nitrosodiphenylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosomethylethylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosomorpholine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosopiperidine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosopyrrolidine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Propylbenzene	EPA 8260	Volatile Organics	NELAP	7/25/2005
o.o.o-Triethyl phosphorothicate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Oil & Grease	EPA 1664	General Chemistry	NELAP	2/19/2002
Organic nitrogen	EPA 351.2 - EPA 350.1	General Chemistry	NELAP	7/25/2005
Organic nitrogen	BPA 351.4 - EPA 350.3	General Chemistry	NELAP	2/19/2002
Orthophosphate as P	BPA 365.1	General Chemistry	NELAP	8/30/2002
Orthophosphate as P	BPA 365.3	General Chemistry	NELAP	2/19/2002
o-Toluidine	EPA 8270	Extractable Organics	NELAP	7/1/2003
o-Xylene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Parathion, ethyi	EPA 8270	Pesticides-Herbicides-PCB's	NELĄP	7/1/2003
p-Dioxane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Pentachlorobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Pentachloronitrobenzene	EPA 8270	Extractable Organics	NBLAP	7/1/2003
Pentachlorophenol	EPA 625	Extractable Organics	NELAP	2/19/2002
Pentachlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
pН	EPA 150.1	General Chemistry	NELAP	2/19/2002
Phenacetin	EPA 8270	Extractable Organics	NELAP	7/1/2003
Phenanthrene	EPA 625	Extractable Organics	NELAP	2/19/2002
Phenanthrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Phenol	EPA 625	Extractable Organics	NELAP	2/19/2002
Phenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
Phorate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Phosphorus, total	EPA 365.1	General Chemistry	NELAP	8/30/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Vlamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 17 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
Phosphorus, total	EPA 365.3	General Chemistry	NELAP	2/19/2002
p-Isopropyltoluene	EPA 8260	Volatile Organics	NELAP	7/25/2005
Potassium	EPA 200.7	Metals	NELAP	2/19/2002
Potassium	EPA 6010	Metals ·	NELAP	2/19/2002
Pronamide (Kerb)	EPA 8270	Extractable Organics	NELAP	7/1/2003
Propionaldehyde	NCASI 99.01	Volatile Organics	NELAP	4/9/2003
Propionitrile (Ethyl cyanide)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Pyrene	EPA 625	Extractable Organics	NELAP	2/19/2002
yrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Pyridine	EPA 8270	Extractable Organics	NELAP	7/1/2003
Residue-filterable (TDS)	EPA 160.1	General Chemistry	NELAP	2/19/2002
Residue-nonfilterable (TSS)	EPA 160.2	General Chemistry	NELAP	2/19/2002
Residue-settleable	EPA 160.5	General Chemistry	NELAP	2/19/2002
Residue-total	EPA 160.3	General Chemistry	NELAP	2/19/2002
Residue-volatile	EPA 160.4	General Chemistry	NELAP	2/19/2002
Safrole	EPA 8270	Extractable Organics	NELAP	7/1/2003
ec-Butylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
clenium	EPA 200.7	Metals	NELAP	2/19/2002
elenium	EPA 200.8	Metals	NELAP	2/19/2002
Selenium	EPA 6010	Metals	NELAP	2/19/2002
Selenium	EPA 6020	Metals	NELAP	7/25/2005
Silica-dissolved	EPA 370.1	General Chemistry	NELAP	8/30/2002
ilver '	EPA 200.7	Metals	NELAP	2/19/2002
Silver	EPA 200.8	Metals	NELAP	2/19/2002
Silver .	EPA 6010	Metals	NELAP	7/1/2003
Silver	EPA 6020	Metals	NELAP	7/1/2003
Sodium	EPA 200.7	Metals	NELAP	2/19/2002
odium	EPA 6010	Metals .	NELAP	7/1/2003
Styrene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Sulfate	EPA 300.0	General Chemistry	NELAP	2/19/2002
ulfate	BPA 9056	General Chemistry	NELAP	7/1/2003
alfide	EPA 376.1	General Chemistry	NELAP	7/25/2005
Sulfotepp	BPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/25/2005
Surfactants - MBAS	EPA 425.1	General Chemistry	NELAP	2/19/2002
Cannin & Lignin	SM 5550 B	General Chemistry	NELAP	2/19/2002
ert-Butyl alcohol	EPA 8260	Volatile Organics	NELAP	7/1/2003

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Vlamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 18 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

Expiration Date: 6/30/2008

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water Analyte	Method/Tech	Category	Certification Type	Effective Date
ert-Butylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Petrachloroethylene (Perchloroethylene)	EPA 624	Volatile Organics	NELAP	2/19/2002
Tetrachloroethylene (Perchloroethylene)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Thallium	EPA 200.7	Metals	NELAP	2/19/2002
Thallium	EPA 200.8	Metals	NELAP	2/19/2002
Thallium	EPA 6010	Metals	NELAP	7/1/2003
Thallium	EPA 6020	Metals	NELAP	7/1/2003
Thionazin (Zinophos)	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
<u>Cin</u>	EPA 200.7	Metals	NELAP	8/30/2002
rin .	EPA 6010	Metals	NELAP	7/1/2003
l'itanium -	CASF MET-ICPMS Rev. 4 (5/20/05)/ICP-MS	Metals	NELAP	8/26/2005
Fitanium "	EPA 6020	Metals	NELAP	7/25/2005
Poluene Poluene	EPA 624	Volatile Organics	NELAP	2/19/2002
Toluene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Cotal coliforms	SM 9222 B	Microbiology	NELAP	2/19/2002
Total cyanide	EPA 335.4	General Chemistry	NELAP	7/25/2005
Cotal cyanide	BPA 9012	General Chemistry	NELAP	9/22/2004
Total hardness as CaCO3	SM 2340 B	Metals	NELAP	9/30/2002
Total nitrate-nitrite	EPA 353.2	General Chemistry	NELAP	8/30/2002
Total nitrate-nitrite	EPA 9056	General Chemistry	NELAP	7/1/2003
Fotal organic carbon	EPA 415.1	General Chemistry	NELAP	2/19/2002
Total organic carbon	EPA 9060	General Chemistry	NELAP	7/1/2003
Total Petroleum Hydrocarbons (TPH)	EPA 1664	General Chemistry	NELAP	2/19/2002
Total Petroleum Hydrocarbons (TPH)	FL-PRO	Extractable Organics	NELAP	7/1/2003
Total Petroleum Hydrocarbons (TPH)	TX1005	Extractable Organics	NELAP	7/1/2003
Toxaphene (Chlorinated camphene)	EPA 608	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Oxaphene (Chlorinated camphene)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
rans-1,2-Dichloroethylene	EPA 624	Volatile Organics	NBLAP	2/19/2002
rans-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	7/1/2003
rans-1,3-Dichloropropylene	EPA 624	Volatile Organics	NELAP	2/19/2002
rans-1,3-Dichloropropylene	EPA 8260	Volatile Organics	NELAP	7/1/2003
rans-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Trichloroethene (Trichloroethylene)	EPA 624	Volatile Organics	NELAP	2/19/2002
Prichloroethene (Trichloroethylene)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Prichlorofluoromethane	EPA 624	Volatile Organics	NELAP	2/19/2002
Prichloroffuoromethane	EPA 8260	Volatile Organics	NĖLAP	7/1/2003
				•

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 19 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

Expiration Date: 6/30/2008

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Non-Potable Water	2.5		Certification	Effective Date
Analyte	Method/Tech	Category	Type	
Purbidity	EPA 180.1	General Chemistry	NELAP	2/19/2002
Un-ionized Ammonia	DEP SOP 10/03/83	General Chemistry	NELAP	2/19/2002
Vanadium	BPA 200.7	Metals	NELAP	2/19/2002
Vanadium	EPA 200.8	Metals	NELAP	2/19/2002
Vanadium	EPA 6010	Metals	NELAP	7/1/2003
Vanadium	EPA 6020	Metals	NELAP	7/25/2005
Vinyl acetate	EPA 8260	Volatile Organics	NELAP	7/1/2003
/inyl chloride	EPA 624	Volatile Organics	NELAP	2/19/2002
/inyl chloride	BPA 8260	Volatile Organics	NELAP	7/1/2003
(ylene (total)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Zinc	EPA 200.7	Metals	NELAP	2/19/2002
čine	EPA 200.8	Metals	NELAP	2/19/2002
Sinc	EPA 6010	Metals	NELAP	2/19/2002
Zinc	EPA 6020	Metals	NELAP	2/19/2002

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 20 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

.....

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

1,1,2-Tertachloroethane	Matrix: Solid and Chemical Materi	Certification	73.44		
1,1.1-Trichloroethane	Analyte	Method/Fech	Category	Туре	Effective Date
1.1.2,2-Tetrachlorocthane			· ·		
1,1-2-Trichloroethane			40		2/19/2002
1.1-Dichloroethane	1,1,2,2-Tetrachloroethane	EPA 8260	Volatile Organics	NBLAP	2/19/2002
1.1-Dichloroethylene	1,1,2-Trichloroethane	BPA 8260	Volatile Organics	NELAP	2/19/2002
1-Dichloropropeac	I,I-Dichloroethane	EPA 8260	Volatile Organics	NELAP	2/19/2002
1,2,3-Trichloropropame EPA 8260 Volatile Organics NELAP 2/19/2002 1,2,4-5-Tettachlorobenzene BPA 8270 Extractable Organics NELAP 2/19/2002 2,2,4-Trichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 1,2-Dibromo-3-chloropropane (DBCP) EPA 8260 Volatile Organics NELAP 2/19/2002 1,2-Dibromo-2-chloropropane (EDR), Ethylene dibromide) EPA 8260 Volatile Organics NELAP 2/19/2002 1,2-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 1,3-S-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NE	1,1-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	2/19/2002
2,2,4,5-Tetachlorobenzene BPA 8270 Extractable Organics NELAP 2/19/2002 2,4-Trichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 2,4-Trichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 2,2-Dibrono-3-chloropropane (DBCP) EPA 8260 Volatile Organics NELAP 2/19/2002 2,-Dibrhorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Diphenylhydrazine EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002	,1-Dichloropropene	EPA 8260	Volatile Organics	NELAP	2/19/2002
2,4-Trichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 2,4-Trichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 2,2-Dibromo-3-chloropropane (DBCP) EPA 8260 Volatile Organics NELAP 2/19/2002 2,2-Dibromoethane (EDB, Bihylene dibromide) EPA 8260 Volatile Organics NELAP 2/19/2002 2,2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 2,2-Dichlorothane EPA 8260 Volatile Organics NELAP 2/19/2002 2,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 2,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 2,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 3,3-Dichlorobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 3,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 3,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP	,2,3-Trichloropropane	EPA 8260	Volatile Organics	NELAP	2/19/2002
2,4-Trichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 2-Dibromo-3-chloropropane (DBCP) EPA 8260 Volatile Organics NELAP 2/19/2002 2-Dibromo-dhane (EDB, Ethylene dibromide) EPA 8260 Volatile Organics NELAP 2/19/2002 2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 3-Dichlorobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002	,2,4,5-Tetrachlorobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
2Dibromo-3-chloropropane (DBCP) EPA 8260 Volatile Organics NELAP 2/19/2002 2Dibromoethane (EDB, Ethylene dibromide) EPA 8260 Volatile Organics NELAP 2/19/2002 2Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 2Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 2Dichloroptopane EPA 8260 Volatile Organics NELAP 2/19/2002 2Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 2Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 3.5-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 3Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 3Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 3Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 3Dichloropropane EPA 8270 Extractable Organics NELAP 2/1	,2,4-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
,2-Dibromoethane (EDB, Ethylene dibromide) EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloroptropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichloroptropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Diphoplhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2	,2,4-Trichlorobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
,2-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloropenane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 ,3,5-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichloropopane EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichloropopane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichloropopane EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichloropopane EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenzene EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Dibromo-3-chloropropane (DBCP)	EPA 8260	Volatile Organics	NELAP	2/19/2002
2-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloroperbane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 ,3,5-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichloropopane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichlorobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylendiamine EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8260	Volatile Organics	NELAP	2/19/2002
2-Dichloroethane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 ,3,5-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dinitrobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 ,3,5-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dinitrobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Naphthoquinone EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
,2-Diphenylhydrazine EPA 8270 Extractable Organics NELAP 2/19/2002 ,3,5-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dinitrobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Naphthoquinone EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Dichloroethane	EPA 8260	Volatile Organics	NELAP	2/19/2002
,3,5-Trinitrobenzene (1,3,5-TNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dinitrobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Naphthoquinone EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Dichloropropane	EPA 8260	Volatile Organics	NBLAP	2/19/2002
3-Dichlorobenzene BPA 8260 Volatile Organics NELAP 2/19/2002, 3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002, 3-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002, 3-Dinitrobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002, 4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Naphthoquinone EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002, 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Diphenylhydrazine	EPA 8270	Extractable Organics	NELAP	2/19/2002
,3-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,3-Dinitrobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene BPA 8260 Volatile Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Naphthoguinone EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3,4,6-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002	,3,5-Trinitrobenzene (1,3,5-TNB)	EPA 8270	Extractable Organics	NELAP	2/19/2002
,3-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3-Dinitrobenzene (1,3-DNB) EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8260 Volatile Organics NELAP 2/19/2002 ,4-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Naphthoquinone EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3,4,6-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002	,3-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
A-Dichlorobenzene (1,3-DNB) BPA 8270 BY 8270 B	,3-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
,4-Dichlorobenzene BPA 8260 Volatile Organics NELAP 2/19/2002 ,4-Dichlorobenzene BPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Naphthoquinone BPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine BPA 8270 Extractable Organics NELAP 2/19/2002 -Chloronaphthalene BPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine BPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine BPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloropropane BPA 8260 Volatile Organics NELAP 2/19/2002 ,3,4,6-Tetrachlorophenol BPA 8270 Extractable Organics NELAP 2/19/2002 ,4,5-Trichlorophenol BPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Trichlorophenol BPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Trichlorophenol BPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Dichlorophenol BPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol BPA 8270 Extractable Organics NELAP 2/19/2002	,3-Dichloropropane	EPA 8260	Volatile Organics	NELAP	2/19/2002
A-Dichlorobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 A-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 Chloronaphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 Chaphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 Chloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 Chloropropane EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002	,3-Dinitrobenzene (1,3-DNB)	EPA 8270	Extractable Organics	NELAP	2/19/2002
,4-Naphthoquinone EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3,4,6-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	,4-Dichlorobenzene	BPA 8260	Volatile Organics	NELAP	2/19/2002
A-Phenylenediamine EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 -A-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 -A,4,5-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -A,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -A,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -A,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -A,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -A,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -A,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	,4-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Chloronaphthalene EPA 8270 Extractable Organics NELAP 2/19/2002 -Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 2,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 2,3,4,6-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	,4-Naphthoguinone	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Naphthylamine EPA 8270 Extractable Organics NELAP 2/19/2002 ,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3,4,6-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	,4-Phenylenediamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
,2-Dichloropropane EPA 8260 Volatile Organics NELAP 2/19/2002 ,3,4,6-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	-Chloronaphthalene	EPA 8270	Extractable Organics	NELAP	2/19/2002
A,3,4,6-Tetrachlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 A,4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 A,6,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 A,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 A,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 A,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	-Naphthylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	2/19/2002
4,5-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	,3,4,6-Tetrachlorophenol	EPA 8270	Extractable Organics	NELAP	2/19/2002
,4,6-Trichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	,4,5-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	2/19/2002
,4-Dichlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 ,4-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	· ·	EPA 8270	_		
A-Dimethylphenol EPA 8270 Extractable Organics NELAP 2/19/2002	•	EPA 8270	•		
,	•		-		
	4.4-Dinitrophenol	EPA 8270	Extractable Organics	NELAP	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 21 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Analyté Method/Tech Category Type Effective Date 2,4-Dinitroloseae (2,4-DNT) BPA 8270 Extractable Organics NELAP 2/19/2002 2,4-Deliance (Melly) ethyl setore, MEK) BPA 8260 Volatide Organics NELAP 2/19/2002 2,-Chloropallatere EPA 8260 Volatide Organics NELAP 2/19/2002 2,-Chlorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,-Chiorophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,-Hachyl-4,-G-dinitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,-Methyl-4,-G-dinitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 2,-Methyl-4,-G-dinitrophenol EPA 8270 Extractable Organics NELAP	Matrix: Solid and Chemical Ma	terials		Certification	
2.4-Dinitrotophemol EPA 8270 Extractable Organics NELAP 2/19/2002 2.6-Dicihlorophemol EPA 8270 Extractable Organics NELAP 2/19/2002 2.6-Dinitrotophemol EPA 8270 Extractable Organics NELAP 2/19/2002 2Dutationophemol EPA 8270 Extractable Organics NELAP 2/19/2002 2Dutationophemol EPA 8260 Volatile Organics NELAP 2/19/2002 2Chlororaphtalatene EPA 8260 Volatile Organics NELAP 2/19/2002 2Chlororaphtalatene EPA 8270 Extractable Organics NELAP 2/19/2002 2Chlororaphtalatene EPA 8270 Extractable Organics NELAP 2/19/2002 2Chlororaphtalatene EPA 8260 Volatile Organics NELAP 2/19/2002 2Chlororaphtalatene EPA 8260 Volatile Organics NELAP 2/19/2002 2Levery organic EPA 8270 Extractable Organics NELAP 2/19/2002 2Methylaphtalene EPA 8270 Extractable Organics NELAP 2/19/2002	Analyte	Method/Tech	Category		Effective Date
2.6-Dinitrotolane (2,6-DNT) EPA 8270 Extractable Organics NELAP 2/19/2002 2Accylaminofluorene EPA 8270 Extractable Organics NELAP 2/19/2002 2Dutannoe (Methyl chyl ketore, MEK) EPA 8260 Volatile Organics NELAP 2/19/2002 2Chloronal (Methyl chyl ketore, MEK) EPA 8260 Volatile Organics NELAP 2/19/2002 2Chloronal (Methyl) (Methyl chyl ketore) EPA 8270 Extractable Organics NELAP 2/19/2002 2Chloronal (Methyl) (Methyl	2,4-Dinitrotoluenc (2,4-DNT)	EPA 8270	Extractable Organics		2/19/2002
2-Acetylaminofluorene BPA 8270 Extractable Organics NELAP 2/19/2002 2-Butumone (Methyl ethyl setone, MEK) BPA 8260 Volatile Organics NELAP 2/19/2002 2-Chloroschyl vinyl ether BPA 8260 Volatile Organics NELAP 2/19/2002 2-Chloroschyl vinyl ether BPA 8270 Extractable Organics NELAP 2/19/2002 2-Chloroschune BPA 8260 Volatile Organics NELAP 2/19/2002 2-Chloroschune BPA 8260 Volatile Organics NELAP 2/19/2002 2-Methyl-4.6-dinitrophenol BPA 8270 Extractable Organics	2,6-Dichlorophénol	EPA 8270	Extractable Organics	NELAP	2/19/2002
2- Butanone (Methyl etnyl ketone, MEK) EPA \$260 Volatile Organics NELAP 2/19/2002 2- Chlororaphthalene BPA \$250 Volatile Organics NELAP 2/19/2002 2- Chlororaphthalene BPA \$270 Extractable Organics NELAP 2/19/2002 2- Chlororaphthalene BPA \$270 Extractable Organics NELAP 2/19/2002 2- Chlororaphthalene BPA \$260 Volatile Organics NELAP 2/19/2002 2- Hestone BPA \$270 Extractable Organics NELAP 2/19/2002 2- Methyl-4,6-dinitrophenol EPA \$270 Extractable Organics NELAP 2/19/2002 2- Mitrophenol EPA \$270 Extractable Organics NELAP 2/19/2002 2- Nitrophenol EPA \$270 Extractable Organics NELAP 2/	2,6-Dinitrotoluene (2,6-DNT)	EPA 8270	Extractable Organics	NELAP	2/19/2002
2-Chloroethyl vinyl ether	2-Acetylaminofluorene	EPA 8270	Extractable Organics	NELAP	2/19/2002
2-Chloronaphthalene	2-Butanone (Methyl ethyl ketone, MEK)	EPA 8260	Volatile Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 2/19/2002	2-Chloroethyl vinyl ether	EPA 8260	Volatile Organics	NELAP	2/19/2002
2-Chlorotoluene EPA 8260 Volatile Organies NIELAP 2/19/2002 2-Hexanone EPA 8260 Volatile Organies NIELAP 2/19/2002 2-Hexanone EPA 8270 Extractable Organies NIELAP 2/19/2002 2-Methylnaphthalene EPA 8270 Extractable Organies NIELAP 2/19/2002 2-Methylnaphthalene EPA 8270 Extractable Organies NIELAP 2/19/2002 2-Methylnaphthalene EPA 8270 Extractable Organies NIELAP 2/19/2002 2-Mitroanilline EPA 8270 Extractable Organies NIELAP 2/19/2002 2-Nitroanilline EPA 8270 Extractable Organies NIELAP 2/19/2002 2-Nitroanilline EPA 8270 Extractable Organies NIELAP 2/19/2002 2-Nitroanilline EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8881 Pesticides-PCB's NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8881 Pesticides-PCB's NIELAP 2/19/2002 3-Piccoline (2-Methylpyridine) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylphenol EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylphenol EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methylphenol EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organies NIELAP 2/19/2002 3-Piccoline (2-Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organies NIELAP 2/1	2-Chloronaphthalene	EPA 8270	Extractable Organics	NELAP	2/19/2002
2-Hexanone	2-Chlorophenol	EPA 8270	Extractable Organics	NELAP	2/19/2002
PA 8270 Extractable Organics NELAP 2/19/2002	2-Chlorotoluene	EPA 8260	Volatile Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 2/19/2002	2-Hexanone	EPA 8260	Volatile Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 2/19/2002 2-Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 2-Nitrophenol EPA 8270 Extractable Organics NELAP 5/7/2003 3-Picoline (2-Methylpyridine) EPA 8270 Extractable Organics NELAP 2/19/2002 3,3-Dichlorobenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 3,3-Dichlorobenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 3,3-Dichlorobenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 3,3-Dichlorobenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 4-Methylcholanthrene EPA 8270 Extractable Organics NELAP 2/19/2002 4-Methylcholanthrene EPA 8270 Extractable Organics NELAP 2/19/2002 4-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4-DDE EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,5-DT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,5-DT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4-Chloro-Indipoliphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 4-Chloro-Indipoliphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 4-Chloro-Indipoliphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 4-Chlorotophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 4-Chlorotophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 4-Chlorotophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 4-Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 4-Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organics NELAP 2/19/2002 4-Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 4-Methylphenol EPA 8270 Extractable Organics N	2-Methyl-4,6-dinitrophenol	EPA 8270	Extractable Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 2/19/2002	2-Methylnaphthalene	EPA 8270	Extractable Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 5/17/2002	2-Methylphenol (o-Cresol)	EPA 8270	Extractable Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 2/19/2002 3,3'-Dichlorobenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 4,3'-Dimethylbenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 4,4'-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 4,4'-DDT EPA 8270 Extractable Organics	2-Nitroaniline	EPA 8270	Extractable Organics	NELAP	2/19/2002
A3-Dichlorobenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 A,3-Dimethylbenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 A,4-Dimethylbenzidine EPA 8270 Extractable Organics NELAP 2/19/2002 A,4-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 A,4-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 A,4-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 A,4-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 A-Aminobiphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 A-Bromophenyl phenyl ether EPA 8270 Extractable Organics NELAP 2/19/2002 A-Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Chloro-dimine EPA 8270 Extractable Organics NELAP 2/19/2002 A-Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 A-Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 A-Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 A-Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 A-Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 A-Chlorotoluene EPA 8270 Extractable Organics NELAP 2/19/2002 A-Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 A-Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organics NELAP 2/19/2002 A-Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 A-Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002 A-Mitrophienol EPA 8270 Extractable Organics NELAP 2/19/2002	2-Nitrophenol	EPA 8270	Extractable Organics	NELAP	5/7/2003
EPA 8270 Extractable Organics NELAP 2/19/2002 -Methylcholanthrene EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -A'-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 -A'-DDE EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 -A'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 -Aminobiphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 -Bromophenyl phenyl ether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002	2-Picoline (2-Methylpyridine)	EPA 8270	Extractable Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 2/19/2002 A-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 A-DDD EPA 8270 Extractable Organics NELAP 2/19/2002 BPA 8270 Extractable Organics NELAP 2/19/2002 C-Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 C-Chloroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 C-Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 C-Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 C-Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organics NELAP 2/19/2002	3,3'-Dichlorobenzidine	EPA 8270	Extractable Organics	NELAP	2/19/2002
EPA 8270 Extractable Organics NELAP 2/19/2002 A'-DDD EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 A'-DDE EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 A'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 -Aminobiphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 -Bromophenyl phenyl ether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8270 Extractable Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8270 Extractable Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	3,3'-Dimethylbenzidine	EPA 8270	Extractable Organics	NELAP	2/19/2002
## DDD ## A081 Pesticides-PCB's NELAP 2/19/2002 ## DDE ## A081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 ## DDE ## A081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 ## DDT ## DEPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 ## DDT ## DEPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 ## DEPA 8081 Pesticides-PCB's NELAP 2/19/2002 ## DEPA 8081 Pesticides-PCB's NELAP 2/19/2002 ## DEPA 8081 Pesticides-PCB's NELAP 2/19/2002 ## DEPA 8081 Pesti	-Methylcholanthrene	EPA 8270	Extractable Organics	NELAP	2/19/2002
EPA 8081 Pesticides-PCB's NELAP 2/19/2002 A'-DDT EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 -Aminobiphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 -Bromophenyl phenyl ether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	3-Nitroaniline	EPA 8270	Extractable Organics	NELAP	2/19/2002
EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 E-Aminobiphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 E-Bromophenyl phenyl ether EPA 8270 Extractable Organics NELAP 2/19/2002 E-Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8260 Volatile Organics NELAP 2/19/2002 EPA 8270 Extractable Organics NELAP 2/19/2002	1,4'-DDD	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
-Aminobiphenyl EPA 8270 Extractable Organics NELAP 2/19/2002 -Bromophenyl phenyl ether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	,4'-DDE	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Bromophenyl phenyl ether BPA 8270 Extractable Organics NELAP 2/19/2002 -Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8260 Volatile Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	,4'-DDT	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
-Chloro-3-methylphenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Chloroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Aminobiphenyl	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Chloroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Mitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Bromophenyl phenyl ether	BPA 8270	Extractable Organics	NELAP	2/19/2002
-Chlorophenyl phenylether EPA 8270 Extractable Organics NELAP 2/19/2002 -Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Chloro-3-methylphenol	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Chlorotoluene EPA 8260 Volatile Organics NELAP 2/19/2002 -Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Chloroaniline	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Chlorophenyl phenylether	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Dimethyl aminoazobenzene EPA 8270 Extractable Organics NELAP 2/19/2002 -Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Chlorotoluene	EPA 8260	Volatile Organics	NELAP	
-Methyl-2-pentanone (MIBK) EPA 8260 Volatile Organics NELAP 2/19/2002 -Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Dimethyl aminoazobenzene	EPA 8270	Extractable Organics	NELAP	
-Methylphenol (p-Cresol) EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Methyl-2-pentanone (MIBK)	EPA 8260	Volatile Organics	NELAP	
-Nitroaniline EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Methylphenol (p-Cresol)	EPA 8270			
-Nitrophenol EPA 8270 Extractable Organics NELAP 2/19/2002 -Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Nitroaniline	EPA 8270	· ·		
-Nitro-o-toluidine EPA 8270 Extractable Organics NELAP 2/19/2002	-Nitrophenol	EPA 8270	•		
	-Nitro-o-toluidine	EPA 8270	•		_
	,12-Dimethylbenz(a) anthracene	EPA 8270	Extractable Organics	NELAP	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 22 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Analyte	Method/Tech	Category	Certification Type	Effective Date
Acenaphthene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Acenaphthylene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Acetone	BPA 8260	Volatile Organics	NELAP	2/19/2002
Acetonitrile	EPA 8260	Volatile Organics	NELAP	2/19/2002
Acetophenone	EPA 8270	Extractable Organics	NELAP	2/19/2002
Acrolein (Propenal)	EPA 8260	Volatile Organics	NELAP	2/19/2002
Acrylonitrile	EPA 8260	Volatile Organics	NELAP	2/19/2002
Aldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Allyl chloride (3-Chloropropene)	EPA 8260	Volatile Organics	NELAP	2/19/2002
dpha-BHC (alpha-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
dpha-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	8/30/2002
Muminum	EPA 6010	Metals	NELAP	2/19/2002
Muminum	EPA 6020	Metals	NELAP	2/19/2002
Amenable cyanide	EPA 9012	General Chemistry	NELAP	9/22/2004
Aniline	EPA 8270	Extractable Organics	NELAP	2/19/2002
Anthracene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Antimony	EPA 6010	Metals	NELAP	2/19/2002
Antimony	EPA 6020	Metals	NELAP	2/19/2002
Aramite	EPA 8270	Extractable Organics	NELAP	2/19/2002
Aroclor-1016 (PCB-1016)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1221 (PCB-1221)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1232 (PCB-1232)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1242 (PCB-1242)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Aroclor-1248 (PCB-1248)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
aroclor-1254 (PCB-1254)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
roclor-1260 (PCB-1260)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
arsenic	EPA 6010	Metals	NELAP	2/19/2002
arsenic	EPA 6020	Metals	NELAP	2/19/2002
arium .	EPA 6010	Metals	NELAP	2/19/2002
arium	EPA 6020	Metals	NELAP	2/19/2002
enzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
enzidine	EPA 8270	Extractable Organics	NELAP	8/30/2002
enzo(a)anthracene	EPA 8270	Extractable Organics	NELAP	2/19/2002
enzo(a)pyrene	EPA 8270	Extractable Organics	NELAP	2/19/2002
enzo(b)fluoranthene	EPA 8270	Extractable Organics	NELAP	2/19/2002
		v		

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2007

Ana M. Vlamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 23 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Solid and Chemical Mate	erials		O (1/2)	
Analyte "	Method/Tech	Category	Certification Type	Effective Date
Benzo(k)fluoranthene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Benzoic acid	BPA 8270	Extractable Organics	NELAP	2/19/2002
Benzyl alcohol	EPA 8270	Extractable Organics	NELAP	2/19/2002
Berylhum	EPA 6010	Metals	NELAP	2/19/2002
Beryllium	EPA 6020	Metals	NELAP	2/19/2002
beta-BHC (beta-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
beta-Naphthylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
bis(2-Chloroethoxy)methane	EPA 8270	Extractable Organics	NELAP	2/19/2002
bis(2-Chloroethyl) ether	EPA 8270	Extractable Organics	NELAP	2/19/2002
bis(2-Chloroisopropyl) ether (2,2'-Oxybis(1-chloropropane))	EPA 8270	Extractable Organics	NELAP	2/19/2002
bis(2-Ethylhexyl) phthalate (DEHP)	EPA 8270	Extractable Organics	NELAP	2/19/2002
Boron	EPA 6010	Metals	NELAP	2/19/2002
Bromide	EPA 9056	General Chemistry	NELAP	2/19/2002
Bromobenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Bromochloromethane	EPA 8260	Volatile Organics	NELAP	2/19/2002
Bromodichloromethane	EPA 8260	Volatile Organics	NELAP	2/19/2002
Bromoform	EPA 8260	Volatile Organics	NELAP	2/19/2002
Butyl benzyl phthalate	EPA 8270	Extractable Organics	NELAP	2/19/2002
Cadmium	EPA 6010	Metals	NELAP	2/19/2002
Cadmium	EPA 6020	Metals	NBLAP	2/19/2002
Calcium .	EPA 6010	Metals	NELAP	2/19/2002
Carbon disulfide	EPA 8260	Volatile Organics	NELAP	2/19/2002
Carbon tetrachloride	EPA 8260	Volatile Organics	NELAP	2/19/2002
Chlordane (tech.)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Chloride	EPA 9056	General Chemistry	NELAP	2/19/2002
Chlorobenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Chlorobenzilate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Chloroethane	EPA 8260	Volatile Organics	NELAP	2/19/2002
Chloroform	EPA 8260	Volatile Organics	NELAP	2/19/2002
Chloroprene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Chromium	EPA 6010	Metals	NELAP	2/19/2002
Chromium	EPA 6020	Metals	NELAP	2/19/2002
Chromium VI	EPA 7196	General Chemistry	NELAP	2/19/2002
Chrysene	EPA 8270	Extractable Organics	NELAP	2/19/2002
cis-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	2/19/2002
cis-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

P

Page 24 of 28

Laboratory Scope of Accreditation

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Solid and Chemical Materials Certification Effective Date Analyte Method/Tech Category Type NELAP 2/19/2002 EPA 6010 Metals Cobalt 2/19/2002 NELAP EPA 6020 Metals Cobalt 2/19/2002 NELAP EPA 6010 Metals Copper 2/19/2002 NELAP EPA 6020 Metals Copper NELAP 2/19/2002 EPA 8081 Pesticides-Herbicides-PCB's delta-BHC 2/19/2002 NELAP Diallate EPA 8270 Pesticides-Herbicides-PCB's NELAP 2/19/2002 Extractable Organics EPA 8270 Dibenz(a, j) acridine NELAP 2/19/2002 Dibenz(a,h) anthracene EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8270 Dibenzofuran Extractable Organics 2/19/2002 NELAP Volatile Organics Dibromochloromethane EPA 8260 NELAP 2/19/2002 EPA 8260 Volatile Organics Dibromomethane Dichlorodifluoromethane NELAP 2/19/2002 EPA 8260 Volatile Organics 2/19/2002 EPA 8081 Pesticides-Herbicides-PCB's NELAP Dieldrin NELAP 2/19/2002 Extractable Organics **EPA 8015** Diesel range organics (DRO) NELAP 2/19/2002 Diethyl phthaiate EPA 8270 Extractable Organics 2/19/2002 NELAP Dimethoate **EPA 8270** Pesticides-Herbicides-PCB's 2/19/2002 Dimethyl phthalate EPA 8270 Extractable Organics NELAP NELAP 2/19/2002 Di-n-butyl phthalate EPA 8270 Extractable Organics 2/19/2002 NELAP Di-n-octyl phthalate EPA 8270 Extractable Organics NELAP 2/19/2002 EPA 8270 Extractable Organics Diphenylamine 2/19/2002 Pesticides-Herbicides-PCB's NELAP Endosulfan I EPA 8081 Pesticides-Herbicides-PCB's NELAP 2/19/2002 EPA 8081 Endosulfan II Pesticides-Herbicides-PCB's NELAP 2/19/2002 EPA 8081 Endosulfan sulfate Pesticides-Herbicides-PCB's NELAP 2/19/2002 **EPA 8081** Endrin NELAP 2/19/2002 **EPA 8081** Pesticides-Herbicides-PCB's Endrin aldehyde Volatile Organics NELAP 2/19/2002 EPA 8260 Ethyl methacrylate NELAP 2/19/2002 Extractable Organics Ethyl methanesulfonate EPA 8270 EPA 8260 Volatile Organics NELAP 2/19/2002 Ethylbenzene 2/19/2002 NELAP EPA 8270 Pesticides-Herbicides-PCB's Famphur EPA 8270 Extractable Organics NELAP 2/19/2002 Fluoranthene NELAP 2/19/2002 **EPA 8270** Extractable Organics Fluorene 2/19/2002 EPA 9056 General Chemistry NELAP Fluoride 2/19/2002 Pesticides-Herbicides-PCB's NELAP gamma-BHC (Lindane, EPA 8081 gamma-Hexachlorocyclohexane) 8/30/2002 EPA 8081 Pesticides-Herbicides-PCB's NBLAP gamma-Chlordane 2/19/2002 NELAP **BPA 8015** Extractable Organics Gasoline range organics (GRO) 2/19/2002 NELAP Heptachlor **EPA 8081** Pesticides-Herbicides-PCB's

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Ana M. Vlamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 25 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Solid and Chemical Ma			Certification	Effective Date
Analyte		Category	Type	
Heptachlor epoxide	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Hexachlorobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Hexachlorobutadiene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Hexachlorobutadiene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Hexachlorocyclopentadiene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Hexachloroethane	EPA 8270	Extractable Organics	NELAP	2/19/2002
-lexachloropropene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Ignitability	EPA 1020	General Chemistry	NELAP	2/19/2002
ndeno(1,2,3-ed)pyrene	EPA 8270	Extractable Organics	NELAP	2/19/2002
odomethane (Methyl iodide)	EPA 8260	Volatile Organics	NELAP	2/19/2002
ron	EPA 6010	Metals	NELAP	2/19/2002
sobutyl alcohol (2-Methyl-1-propanol)	BPA 8015	Volatile Organics	NELAP	2/19/2002
sobutyl alcohol (2-Methyl-1-propanol)	EPA 8260	Volatile Organics	NELAP	2/19/2002
ísodrin	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
sophorone	EPA 8270	Extractable Organics	NELAP	2/19/2002
sopropylbenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
sosafrole	EPA 8270	Extractable Organics	NELAP	2/19/2002
Kepone	BPA 8270	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
ead	BPA 6010	Metals	NELAP	2/19/2002
ead	EPA 6020	Metals	NELAP	2/19/2002
Magnesium	EPA 6010	Metals	NELAP	2/19/2002
Manganese	EPA 6010	Metals	NELAP	2/19/2002
Manganese	EPA 6020	Metals	NELAP	2/19/2002
Mercury	EPA 7471	Metals	NELAP	2/19/2002
Methacrylonitrile	EPA 8260	Volatile Organics	NELAP	2/19/2002
Methanol	EPA 8015	Volatile Organics	NELAP	2/19/2002
Methapyrilene	EPA 8270	Extractable Organics	NBLAP	2/19/2002
Methoxychlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Methyl bromide (Bromomethane)	EPA 8260	Volatile Organics	NELAP	2/19/2002
Methyl chloride (Chloromethane)	EPA 8260	Volatile Organics	NELAP	2/19/2002
Methyl methacrylate	EPA 8260	Volatile Organics	NELAP	2/19/2002
Methyl methanesulfonate	EPA 8270	Extractable Organics	NELAP	2/19/2002
Methyl parathion (Parathion, methyl)	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Methyl tert-butyl ether (MTBE)	EPA 8260	Volatile Organics	NELAP	8/30/2002
Methylene chloride	EPA 8260	Volatile Organics	NELAP	2/19/2002
Molybdenum	EPA 6010	Metals	NELAP	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Charlie Crist Governor

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Page 26 of 28

Laboratory Scope of Accreditation

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Solid and Chemical I		Carl a manage	Certification	Tiffentine You
Analyte	Method/Tech	Category	Туре	Effective Date
Molybdenum	EPA 6020	Metals	NELAP	7/25/2005
Vaphthalene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Naphthalene	EPA 8270	Extractable Organics	NELAP	2/19/2002
i-Butyl alcohol	EPA 8015	Volatile Organies	NELAP	2/19/2002
1-Butylbenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Nickel	EPA 6010	Metals	NELAP	2/19/2002
Nickel	BPA 6020	Metals	NELAP	2/19/2002
Nitrate	EPA 9056	General Chemistry	NELAP	2/19/2002
Vitrite	EPA 9056	General Chemistry	NELAP	2/19/2002
Vitrobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Nitroquinoline-1-oxide	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitrosodiethylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitrosodimethylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitroso-di-n-butylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitrosodi-n-propylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitrosodiphenylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitrosomethylethylamine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitrosomorpholine	EPA 8270	Extractable Organics	NELAP	8/30/2002
-Nitrosopiperidine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Nitrosopyrrolidine	EPA 8270	Extractable Organics	NELAP	2/19/2002
,o,o-Triethyl phosphorothioate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
-Toluidine	EPA 8270	Extractable Organics	NELAP	2/19/2002
-Xylene	EPA 8260	Volatile Organics	NELAP	8/30/2002
Parathion, ethyl	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
o-Dioxane	EPA 8260	Volatile Organics	NELAP	2/19/2002
Pentachlorobenzene	BPA 8270	Extractable Organics	NELAP	2/19/2002
Pentachloronitrobenzene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Pentachlorophenol	EPA 8270	Extractable Organics	NELAP	2/19/2002
Н	EPA 9045	General Chemistry	NELAP	2/19/2002
Phenacetin	EPA 8270	Extractable Organics	NELAP	2/19/2002
Phenanthrene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Phenol	EPA 8270	Extractable Organics	NELAP	2/19/2002
Phorate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	2/19/2002
Potassium	EPA 6010	Metals	NELAP	2/19/2002
Pronamide (Kerb)	EPA 8270	Extractable Organics	NELAP	2/19/2002
Propionitrile (Ethyl cyanide)	EPA 8260	Volatile Organics	NELAP	2/19/2002
tobiomitte (mult chaude)	LEA 0200	votatile Organics	1 (17/1/1)	11114VA

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program. Issue Date: 7/1/2007

Expiration Date: 6/30/2008

Charlie Crist Governor

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 27 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix: Solid and Chemical Mate	Method/Tech	Cutanam	Certification	7266aadin. 72.4
Analyte		Category	Туре	Effective Date
Pyrene	EPA 8270	Extractable Organics	NELAP	2/19/2002
Pyridine	EPA 8270	Extractable Organics	NELAP	2/19/2002
Safrole	EPA 8270	Extractable Organics	NELAP	2/19/2002
sec-Butylbenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Selenium	EPA 6010	Metals	NELAP	2/19/2002
Selenium	EPA 6020	Metals	NELAP	7/25/2005
Silver	EPA 6010	Metals	NELAP	2/19/2002
Silver	EPA 6020	Metals	NELAP	2/19/2002
Sodium	EPA 6010	Metals	NELAP	2/19/2002
Styrene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Sulfate	EPA 9056	General Chemistry	NELAP	2/19/2002
Synthetic Precipitation Leaching Procedure	EPA 1312	General Chemistry	NELAP	2/19/2002
ert-Butylbenzene	EPA 8260	Volatile Organics	NELAP	2/19/2002
Cetrachloroethylene (Perchloroethylene)	EPA 8260	Volatile Organics	NELAP	2/19/2002
Thallium	EPA 6010	Metals	NELAP	2/19/2002
Challium	EPA 6020	Metals	NELAP	2/19/2002
Thionazin (Zinophos)	EPA 8270	Pesticides-Herbicides-PCB's	NBLAP	2/19/2002
Cin	EPA 6010	Metals	NELAP	8/30/2002
Coluenc	EPA 8260	Volatile Organics	NELAP	2/19/2002
Cotal cyanide	EPA 9012	General Chemistry	NELAP	9/22/2004
Cotal nitrate-nitrite	EPA 9056	General Chemistry	NELAP	2/19/2002
Total organic carbon	EPA 9060	General Chemistry	NELAP	8/30/2002
Total Petroleum Hydrocarbons (TPH)	FL-PRO	Extractable Organics	NELAP	2/19/2002
Cotal Petroleum Hydrocarbons (TPH)	TX1005	Extractable Organics	NELAP	2/19/2002
Coxaphene (Chlorinated camphene)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	5/7/2003
Coxicity Characteristic Leaching Procedure	EPA 1311	General Chemistry	NELAP	2/19/2002
rans-1,2-Dichloroethylene	EPA 8260	Volatile Organics	. NBLAP	2/19/2002
rans-1,3-Dichloropropylene	EPA 8260	Volatile Organics	NELAP	2/19/2002
rans-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	8/30/2002
richloroethene (Trichloroethylene)	EPA 8260	Volatile Organics	NELAP	2/19/2002
richlorofluoromethane	EPA 8260	Volatile Organics	NELAP	2/19/2002
/anadium	EPA 6010	Metals	NELAP	2/19/2002
/anadium	EPA 6020	Metals	NELAP	7/25/2005
/inyl acetate	EPA 8260	Volatile Organics	NELAP	2/19/2002
/inyl chloride	EPA 8260	Volatile Organics	NELAP	2/19/2002
Cylene (total)	EPA 8260		NELAP	2/19/2002
system (total)	EFA 0200	Volatile Organics	NELAY	2/19/2002

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2007

Expiration Date: 6/30/2008

Charlie Crist Governor

Ana M. Viamonte Ros, M.D., M.P.H. Secretary of Health

Laboratory Scope of Accreditation

Page 28 of 28

Attachment to Certificate #: E82502-07, expiration date June 30, 2008. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E82502

EPA Lab Code:

FL00937

(904) 739-2277

E82502

Columbia Analytical Services, Inc. - FL

8540 Baycenter Road Jacksonville, FL 32256

Matrix:	Solid and Chemical Materials			
Analyte	Method/fech	Category	Certification Type	Effective Date
Zinc	EPA 6010	Metals	NELAP	2/19/2002
Zinc	EPA 6020	Metals	NELAP	2/19/2002

November 17, 2008

Service Request No: J0805339

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 5, 2008. For your reference, these analyses have been assigned our service request number J0805339.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of 93

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client: Project:

Sample Matrix:

GeoSyntec Consultants

JED SWDF

Water

Service Request No.:

Date Received:

J0805339 11/5/08

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Twelve water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/5/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4 ± 2 °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

Volatile Organic Compounds by GC-MS

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

Second Source Exceptions

The upper control criterion was exceeded for the following analyte in Second Source Verification (SSV) CAL1649: trans-1,4-Dichloro-2-butene. The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

Continuing Calibration Verification Exceptions

The primary evaluation criterion was exceeded for the following analyte in the Continuing Calibration Verification (CCV) JWG0804215-2: Trichlorofluoromethane. The analyte in question was not detected in the associated field samples. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further action was taken.

Lab Control Sample Exceptions

The spike recovery of Trichlorofluoromethane for the Laboratory Control Sample (LCS) JWG0804213-3 was outside the lower control criterion. The analyte in question was not detected in the associated field samples. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

The spike recovery of trans-1,4-Dichloro-2-butene for the Laboratory Control Sample (LCS) JWG0804213-3 was outside the upper control criterion. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Approved by	Cran RM	McManagamatica (1900) assu-	Date	11/12/08
	9.			

Batch QC Notes and Discussion

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

EDB and **DBCP** by **GC-ECD**

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. The following observations were made regarding this delivery group.

Matrix Spike Recovery Exceptions

The control criteria for matrix spike recoveries of Iron for sample MW-13A are not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Batch QC Notes and Discussion

Quality control samples for Mercury analysis (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

General Chemistry Parameters

The samples were analyzed for Inorganic Parameters using various EPA Methods. No problems were observed.

Approved by	Cran R Min	Date 11/17	los
	\circ		

Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
 - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
 - 2. No known quality control criteria exists for the component.
 - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
 - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
 - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512 Service Request: J0805339

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	DATE	<u>TIME</u>
J0805339-001	MW-13A	11/4/08	08:15
J0805339-002	MW-13B	11/4/08	08:47
J0805339-003	MW-13C	11/4/08	08:05
J0805339-004	MW-12A	11/4/08	10:20
J0805339-005	MW-12B	11/4/08	10:55
J0805339-006	MW-12C	11/4/08	10:10
J0805339-007	MW-11A	11/4/08	12:30
J0805339-008	MW-11B	11/4/08	13:25
J0805339-009	MW-11C	11/4/08	12:50
J0805339-010	MW-10A	11/4/08	14:50
J0805339-011	MW-10B	11/4/08	15:10
J0805339-012	MW-10C	11/4/08	15:30
J0805339-013	Trip Blank	11/4/08	00:00

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-13A J0805339-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	-
Vinyl Chloride	ND U	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	` ,
Acetone	3.8 I	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	***************************************
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	the following section of the property of the section of the sectio
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:04:41 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-13A J0805339-001

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result	Q M	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND	U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	***************************************
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	***************************************
Ethylbenzene	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND	U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND	U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND	U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND 1	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND 1	U	2.0	0.16	1 .	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND 1	U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND 1	U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	ζ- /
1,2-Dibromo-3-chloropropane (DBCP	ND 1	U	5.0	0.26	1 .	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	96	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/05/08	Acceptable	
Dibromofluoromethane	99	82-116	11/05/08	Acceptable	
Toluene-d8	108	88-117	11/05/08	Acceptable	

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-13B J0805339-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Vinyl Chloride	ND U	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	(0)
Acetone	120	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	-
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	ALL
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	V
Toluene	ND U	1.0	0.52	-1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:04:45

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008 **Date Received:** 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-13B J0805339-002

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	***************************************
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1 -	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	-(-)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/05/08	Acceptable	
Dibromofluoromethane	100	82-116	11/05/08	Acceptable	
Toluene-d8	105	88-117	11/05/08	Acceptable	

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008 **Date Received:** 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-13C J0805339-003

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A coll 4 NV					Dilution	Date	Date	Extraction	
Analyte Name	Result	and the same of the same of	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND		1.0	0.17	1	11/05/08	11/05/08	JWG0804213	ALTECORAS MANAGEMENTOS
Vinyl Chloride	ND		1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND	U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND	U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	(-)
Acetone	ND		50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND	U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND		5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND		1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND	U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND		1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND		10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND	U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND		5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND		1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND	U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND		5.0	0.12	1	11/05/08	11/05/08	JWG0804213	***************************************
Bromodichloromethane	ND		1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND		1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND	U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:04:47 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-13C

Extraction Method:

J0805339-003

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND	U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND	U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND	U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND	U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND	U-	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND	U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	(0)
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	92	75-120	11/05/08	Acceptable	
Dibromofluoromethane	101	82-116	11/05/08	Acceptable	
Toluene-d8	107	88-117	11/05/08	Acceptable	

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-12A J0805339-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Vinyl Chloride	0.53 I	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	. ,
Acetone	2.4 I	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	79 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND U	10	0.60	. 1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:04:49

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-12A J0805339-004

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND	U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	COLUMN TO SERVICE SERV
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1 .	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	The second secon
Ethylbenzene	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND	U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	***************************************
Styrene	ND	U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND	U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND	U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND	U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	-(-)
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/05/08	Acceptable	
Dibromofluoromethane	101	82-116	11/05/08	Acceptable	
Toluene-d8	106	88-117	11/05/08	Acceptable	

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-12B J0805339-005

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Vinyl Chloride	ND U	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	***************************************
Trichlorofluoromethane	ND UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	()
Acetone	ND U	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	-
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	***************************************
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:04:51 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic Merged

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339 Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-12B

J0805339-005

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Analyte Name	Result Q	Q MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	J 1.0	0.11	1	11/05/08	11/05/08	JWG0804213	TOTAL CONTROL OF THE PARTY OF T
1,2-Dibromoethane (EDB)	ND U	J 1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	J 1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	J 1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	J 1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	J 2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	J 1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	J 2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	J 1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	J 2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	J 1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND U	JJ 20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	J 1.0	0.17	1	11/05/08	11/05/08	JWG0804213	. (-)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	98	71-122	11/05/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/05/08	Acceptable
Dibromofluoromethane	100	82-116	11/05/08	Acceptable
Toluene-d8	106	88-117	11/05/08	Acceptable

Comments:

Printed: 11/07/2008 10:04:51 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339 Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-12C J0805339-006

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	Market dumantances
Vinyl Chloride	ND U	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	TOTAL Sur Casarian Casarian Casaria
Trichlorofluoromethane	ND UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	- (-)
Acetone	ND U	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Printed: 11/07/2008 10:04:53 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008 **Date Received:** 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-12C

Lab Code:

J0805339-006

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	***************************************
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	- (-)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

%Rec	Control Limits	Date Analyzed	Note	
98	71-122	11/05/08	Acceptable	
93	75-120	11/05/08	Acceptable	
101	82-116	11/05/08	Acceptable	
107	88-117	11/05/08	Acceptable	
	98 93 101	%Rec Limits 98 71-122 93 75-120 101 82-116	%Rec Limits Analyzed 98 71-122 11/05/08 93 75-120 11/05/08 101 82-116 11/05/08	%Rec Limits Analyzed Note 98 71-122 11/05/08 Acceptable 93 75-120 11/05/08 Acceptable 101 82-116 11/05/08 Acceptable

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-11A J0805339-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	Oranie and and Action
Vinyl Chloride	0.74 I	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND UJ	20	0.25	. 1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	. ,
Acetone	2.5 I	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND U	1.0	0.13	. 1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1 .	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	***************************************
Vinyl Acetate	ND U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	0.59 I	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	4 4 4 4 4
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	***************************************
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	1.8	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	0.77 I	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	de files and a second or a g
Toluene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:	
-----------	--

Printed: 11/07/2008 10:04:56 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008 **Date Received:** 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-11A J0805339-007

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	0.53 I	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1,	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	. ()
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	97	71-122	11/05/08	Acceptable
4-Bromofluorobenzene	96	75-120	11/05/08	Acceptable
Dibromofluoromethane	101	82-116	11/05/08	Acceptable
Toluene-d8	105	88-117	11/05/08	Acceptable

Comments:

Printed: 11/07/2008 10:04:56 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

20 Page

2 of 2

SuperSet Reference: RR25447

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-11B J0805339-008

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	ACCOUNT WATER CONTRACT
Vinyl Chloride	ND U	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	()
Acetone	ND U	50	2.4	1	11/05/08	11/05/08	JWG0804213	Area e
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	1
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	14.5
Vinyl Acetate	ND U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	A AMERICA
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Printed: 11/07/2008 10:04:58 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: **Project:**

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-11B J0805339-008

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	-1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	. ,
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	95	75-120	11/05/08	Acceptable	
Dibromofluoromethane	101	82-116	11/05/08	Acceptable	
Toluene-d8	106	88-117	11/05/08	Acceptable	

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-11C

Lab Code:

J0805339-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Analyte Name	Pacult	0	MRL	MDL	Dilution Factor	Date	Date	Extraction	NY 4
Vinyl Chloride		Calminia washinda kaman mara	THE PERSON NAMED IN			MONORAL MATERIAL PROPERTY OF THE PROPERTY OF T				Note
Bromomethane										
Chloroethane										
Trichlorofluoromethane ND UJ 20 0.25 1 11/05/08 11/05/08 JWG0804213 J(3) 1,1-Dichloroethene ND U 1.0 0.16 1 11/05/08 11/05/08 JWG0804213 Acetone ND U 50 2.4 1 11/05/08 11/05/08 JWG0804213 Iodomethane (Methyl Iodide) ND U 50 2.5 1 11/05/08 11/05/08 JWG0804213 Carbon Disulfide ND U 5.0 0.72 1 11/05/08 11/05/08 JWG0804213 Methylene Chloride ND U 1.0 0.84 1 11/05/08 11/05/08 JWG0804213 Acrylonitrile ND U 1.0 0.13 1 11/05/08 11/05/08 JWG0804213 1,1-Dichloroethane ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane ND U 1.0 0.56 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td>									·	
1,1-Dichloroethene										
Acetone										J(3)
Indomethane (Methyl Iodide)						l				
Carbon Disulfide ND U 10 0.84 1 11/05/08 JWG0804213 Methylene Chloride ND U 5.0 0.72 1 11/05/08 11/05/08 JWG0804213 Acrylonitrile ND U 1.0 0.13 1 11/05/08 11/05/08 JWG0804213 1,1-Dichloroethane ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 Vinyl Acetate ND U 1.0 0.66 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 1,1,1-Trichloroethane (TCA) ND U 1.0 0.10						1		11/05/08	JWG0804213	
Methylene Chloride ND U 5.0 0.72 1 11/05/08 11/05/08 JWG0804213 trans-1,2-Dichloroethene ND U 1.0 0.13 1 11/05/08 11/05/08 JWG0804213 Acrylonitrile ND U 10 0.59 1 11/05/08 11/05/08 JWG0804213 1,1-Dichloroethane ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 Vinyl Acetate ND U 1.0 0.66 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 1.0 0.50 1 11/05/08 <td></td> <td></td> <td></td> <td></td> <td></td> <td>. 1</td> <td></td> <td>11/05/08</td> <td>JWG0804213</td> <td></td>						. 1		11/05/08	JWG0804213	
trans-1,2-Dichloroethene ND U 1.0 0.13 1 11/05/08 11/05/08 JWG0804213 Acrylonitrile ND U 10 0.59 1 11/05/08 11/05/08 JWG0804213 1,1-Dichloroethane ND U 1.0 0.56 1 11/05/08 11/05/08 JWG0804213 Vinyl Acetate ND U 10 0.60 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 10 0.56 1 11/05/08 11/05/08 JWG0804213 Bromochloromethane ND U 10 0.56 1 11/05/08 11/05/08 JWG0804213 Chloroform ND U 10 0.56 1 11/05/08 11/05/08 JWG0804213 Chloroform ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 Chloroform ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 </td <td></td> <td>ND</td> <td>U</td> <td>10</td> <td>0.84</td> <td>1 .</td> <td>11/05/08</td> <td>11/05/08</td> <td>JWG0804213</td> <td></td>		ND	U	10	0.84	1 .	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	•	ND	U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane		ND	U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate ND U 10 0.60 1 11/05/08 11/05/08 JWG0804213 cis-1,2-Dichloroethene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 10 0.56 1 11/05/08 11/05/08 JWG0804213 Bromochloromethane ND U 5.0 0.14 1 11/05/08 11/05/08 JWG0804213 Chloroform ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 L1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/	Acrylonitrile	ND	U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate ND U 10 0.60 1 11/05/08 11/05/08 JWG0804213 cis-1,2-Dichloroethene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 10 0.56 1 11/05/08 11/05/08 JWG0804213 Bromochloromethane ND U 5.0 0.14 1 11/05/08 11/05/08 JWG0804213 Chloroform ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U	1,1-Dichloroethane	ND	U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 2-Butanone (MEK) ND U 10 0.56 1 11/05/08 11/05/08 JWG0804213 Bromochloromethane ND U 5.0 0.14 1 11/05/08 11/05/08 JWG0804213 Chloroform ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U	Vinyl Acetate	ND	U							
2-Butanone (MEK) ND U 10 0.56 1 11/05/08 JWG0804213 Bromochloromethane ND U 5.0 0.14 1 11/05/08 JWG0804213 Chloroform ND U 1.0 0.10 1 11/05/08 JWG0804213 1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 <	cis-1,2-Dichloroethene	ND	U	1.0						
Bromochloromethane ND U 5.0 0.14 1 11/05/08 11/05/08 JWG0804213 Chloroform ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 Dibromomethane ND U 5.0 0.12 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U	2-Butanone (MEK)	ND	U	10	0.56	. 1				
Chloroform ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 Trichloroethene (TCE) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK) N	Bromochloromethane									
1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 Trichloroethene (TCE) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 5.0 0.12 1 11/05/08 11/05/08 JWG0804213 Poibromomethane ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK)	Chloroform	ND	U							
Carbon Tetrachloride ND U 1.0 0.18 1 11/05/08 11/05/08 JWG0804213 Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 Trichloroethene (TCE) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 5.0 0.12 1 11/05/08 11/05/08 JWG0804213 Dibromomethane ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK) ND U 25 0.37 1 11/05/08 11/05/08 JWG0804213 Toluene ND U	1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1				
Benzene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 Trichloroethene (TCE) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 Dibromomethane ND U 5.0 0.12 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK) ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U	Carbon Tetrachloride	ND	U							
1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 Trichloroethene (TCE) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 Dibromomethane ND U 5.0 0.12 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) <t< td=""><td>Benzene</td><td>ND</td><td>U</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Benzene	ND	U	1.0						
Trichloroethene (TCE) ND U 1.0 0.15 1 11/05/08 11/05/08 JWG0804213 1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 11/05/08 JWG0804213 Dibromomethane ND U 5.0 0.12 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213	1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane ND U 1.0 0.057 1 11/05/08 JWG0804213 Dibromomethane ND U 5.0 0.12 1 11/05/08 11/05/08 JWG0804213 Bromodichloromethane ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK) ND U 25 0.37 1 11/05/08 11/05/08 JWG0804213 Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213	Trichloroethene (TCE)	ND	U			1				
Bromodichloromethane ND U 1.0 0.10 1 11/05/08 11/05/08 JWG0804213 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK) ND U 25 0.37 1 11/05/08 11/05/08 JWG0804213 Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213	1,2-Dichloropropane	ND	U							
Bromodichloromethane ND U 1.0 0.10 1 11/05/08 JWG0804213 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK) ND U 25 0.37 1 11/05/08 11/05/08 JWG0804213 Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213	Dibromomethane	ND	U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 JWG0804213 4-Methyl-2-pentanone (MIBK) ND U 25 0.37 1 11/05/08 11/05/08 JWG0804213 Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213		ND	U	1.0	0.10	1				
Toluene ND U 1.0 0.52 1 11/05/08 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213	cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08		JWG0804213	
Toluene ND U 1.0 0.52 1 11/05/08 JWG0804213 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/05/08 JWG0804213 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 JWG0804213		ND	U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane ND U 1.0 0.21 1 11/05/08 11/05/08 JWG0804213 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213		ND	U	1.0	0.52	1	11/05/08		JWG0804213	
Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 11/05/08 JWG0804213	trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08		JWG0804213	
Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/05/08 JWG0804213		ND	U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
A XX				1.0	0.22	1	11/05/08		JWG0804213	
	2-Hexanone	ND	U	25	0.36	1	11/05/08		JWG0804213	

Comments:	

Printed: 11/07/2008 10:05:00

Form 1A - Organic

1 of 2

SuperSet Reference: RR25447

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512 Water

Service Request: J0805339 **Date Collected:** 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-11C J0805339-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	· 1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	(0)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/05/08	Acceptable	
Dibromofluoromethane	101	82-116	11/05/08	Acceptable	
Toluene-d8	107	88-117	11/05/08	Acceptable	

Comments:

Printed: 11/07/2008 10:05:00 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-10A J0805339-010

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Vinyl Chloride	0.64		1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND	U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	. ND	U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	()
Acetone	3.2	I	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND		5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND	U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND	U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	A 00 Across and a construction
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND	U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND		1.0	0.56	1	11/05/08	11/05/08	JWG0804213	F-20
Vinyl Acetate	ND		10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	0.94	I	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND		10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND		5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/05/08	11/05/08	JWG0804213	***************************************
Carbon Tetrachloride	ND	U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	1.3		1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND		5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND		1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND	U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	. 1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND	U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:05:02

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25447

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-10A J0805339-010

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	- (-)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/05/08	Acceptable	
Dibromofluoromethane	100	82-116	11/05/08	Acceptable	
Toluene-d8	107	88-117	11/05/08	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-10BJ0805339-011

Units: ug/L Basis: NA

EPA 5030B

Level: Low

Extraction Method: Analysis Method: 8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Vinyl Chloride	ND U	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	(0)
Acetone	3.6 I	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	# Management
Bromodichloromethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:05:04 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

1 of 2

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-10B J0805339-011

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	- Anna Carlotte Carlo
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	0(3)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	100	71-122	11/05/08	Acceptable	Market Market Control
4-Bromofluorobenzene	93	75-120	11/05/08	Acceptable	
Dibromofluoromethane	101	82-116	11/05/08	Acceptable	
Toluene-d8	107	88-117	11/05/08	Acceptable	

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-10C J0805339-012

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND	NAME OF TAXABLE PARTY.	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	Note
Vinyl Chloride	ND		1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND		1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND		5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND		20	0.19	. 1	11/05/08	11/05/08	JWG0804213 JWG0804213	1(2)
1,1-Dichloroethene	ND		1.0	0.23	1	11/05/08	11/05/08	JWG0804213	J(3)
Acetone	ND		50	2.4					
Iodomethane (Methyl Iodide)	ND		5.0	2.4	1 1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND		10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride						11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND		5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND		1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
	ND		10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND		1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND		10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND	U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND		5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	-
Carbon Tetrachloride	ND	U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND	U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND	U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND	U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	, ND	U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND	U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Comments:

Printed: 11/07/2008 10:05:07 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-10C J0805339-012

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	DWW/900000000000000000000000000000000000
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	0(3)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/05/08	Acceptable	**************************************
4-Bromofluorobenzene	94	75-120	11/05/08	Acceptable	
Dibromofluoromethane	101	82-116	11/05/08	Acceptable	
Toluene-d8	106	88-117	11/05/08	Acceptable	

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank J0805339-013

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method: 8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Vinyl Chloride	ND	U	1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND	U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND	U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	- (-)
Acetone	ND	U	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND	U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND	U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND	U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND	U	10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND	U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND	U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND		1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND	U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND		5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND		1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/05/08	11/05/08	JWG0804213	416
Toluene	ND		1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/05/08	11/05/08	JWG0804213	
2-Hexanone	ND	U	25	0.36	1	11/05/08	11/05/08	JWG0804213	

Printed: 11/07/2008 10:05:09 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008 **Date Received:** 11/05/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank J0805339-013

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	Militaria andreas and an and an and
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1 .	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	3(3)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/05/08	Acceptable	
Dibromofluoromethane	100	82-116	11/05/08	Acceptable	
Toluene-d8	107	88-117	11/05/08	Acceptable	

Comments:

Printed: 11/07/2008 10:05:09 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: NA Date Received: NA

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0804213-4

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q_	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND		1.0	0.17	1	11/05/08	11/05/08	JWG0804213	
Vinyl Chloride	ND		1.0	0.25	1	11/05/08	11/05/08	JWG0804213	
Bromomethane	ND	U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroethane	ND	U	5.0	0.19	1	11/05/08	11/05/08	JWG0804213	
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/05/08	11/05/08	JWG0804213	J(3)
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/05/08	11/05/08	JWG0804213	
Acetone	ND	U	50	2.4	1	11/05/08	11/05/08	JWG0804213	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/05/08	11/05/08	JWG0804213	
Carbon Disulfide	ND	U	10	0.84	1	11/05/08	11/05/08	JWG0804213	
Methylene Chloride	ND	U	5.0	0.72	1	11/05/08	11/05/08	JWG0804213	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/05/08	11/05/08	JWG0804213	
Acrylonitrile	ND	U	10	0.59	1	11/05/08	11/05/08	JWG0804213	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/05/08	11/05/08	JWG0804213	
Vinyl Acetate	ND		10	0.60	1	11/05/08	11/05/08	JWG0804213	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	. 1	11/05/08	11/05/08	JWG0804213	
2-Butanone (MEK)	ND	U	10	0.56	1	11/05/08	11/05/08	JWG0804213	
Bromochloromethane	ND	U	5.0	0.14	1	11/05/08	11/05/08	JWG0804213	
Chloroform	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/05/08	11/05/08	JWG0804213	
Carbon Tetrachloride	ND	U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Benzene	ND	U	1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/05/08	11/05/08	JWG0804213	
Dibromomethane	ND	U	5.0	0.12	1	11/05/08	11/05/08	JWG0804213	
Bromodichloromethane	ND	U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/05/08	11/05/08	JWG0804213	
Toluene	ND		1.0	0.52	1	11/05/08	11/05/08	JWG0804213	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/05/08	11/05/08	JWG0804213	

Comments:	
-----------	--

2-Hexanone

1,1,2-Trichloroethane

Tetrachloroethene (PCE)

Printed: 11/07/2008 10:05:11 p:\Stealth\Crystal.rpt\Form1m.rpt

0.21

0.22

0.36

1

1

1

11/05/08

11/05/08

11/05/08

1.0

1.0

25

JWG0804213

JWG0804213

JWG0804213

ND U

ND U

ND U

11/05/08

11/05/08

11/05/08

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: NA Date Received: NA

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0804213-4

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/05/08	11/05/08	JWG0804213	-
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/05/08	11/05/08	JWG0804213	
Chlorobenzene	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	·····
Ethylbenzene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
m,p-Xylenes	ND U	2.0	0.22	1	11/05/08	11/05/08	JWG0804213	
o-Xylene	ND U	1.0	0.10	1	11/05/08	11/05/08	JWG0804213	
Styrene	ND U	1.0	0.051	1	11/05/08	11/05/08	JWG0804213	
Bromoform	ND U	2.0	0.12	. 1	11/05/08	11/05/08	JWG0804213	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/05/08	11/05/08	JWG0804213	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/05/08	11/05/08	JWG0804213	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/05/08	11/05/08	JWG0804213	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/05/08	11/05/08	JWG0804213	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/05/08	11/05/08	JWG0804213	y(0)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/05/08	11/05/08	JWG0804213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/05/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/05/08	Acceptable	
Dibromofluoromethane	100	82-116	11/05/08	Acceptable	
Toluene-d8	108	88-117	11/05/08	Acceptable	

Comments:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-13A

Lab Code:

J0805339-001

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804235	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	118	77-150	11/11/08	Acceptable

Comments:

Printed: 11/12/2008 14:13:29

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR25567

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-13B

Lab Code:

J0805339-002

Units: ug/L

Extraction Method:

METHOD

Basis: NA

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804235	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804235	

Control Date rogate Name %Rec Limits Analyzed Note
1,2-Tetrachloroethane 117 77-150 11/11/08 Accept

Comments:

Printed: 11/12/2008 14:13:30

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

11/04/2009

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-13C

Lab Code:

J0805339-003

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1	11/07/08 11/07/08	11/11/08 11/11/08	JWG0804235 JWG0804235	

urrogate Name %F	Control Rec Limits	Date Analyzed	Note	
,2-Tetrachloroethane 11	19 77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:13:32

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 1

SuperSet Reference: RR25567

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008 **Date Received:** 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-12A

Lab Code:

J0805339-004

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Dilution Date Date Extraction **Analyte Name Factor** Result Q **MRL MDL Extracted** Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 0.020 11/11/08 JWG0804235 0.0070 1 11/07/08 1,2-Dibromo-3-chloropropane (DBCP ND U 0.0200.0057 1 11/07/08 11/11/08 JWG0804235

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	122	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:13:33 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Form 1A - Organic

1 of

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008 **Date Received:** 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-12B

Lab Code:

J0805339-005

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1	11/07/08 11/07/08	11/11/08 11/11/08	JWG0804235 JWG0804235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
1,1,1,2-Tetrachloroethane	119	77-150	11/11/08	Acceptable		Maritima di Maria de Caldida de Maria d

Comments:

Printed: 11/12/2008 14:13:34

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR25567

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-12C

Lab Code:

J0805339-006

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804235	William Company of the Company of th
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
,1,1,2-Tetrachloroethane	119	77-150	11/11/08	Acceptab

Comments:

Printed: 11/12/2008 14:13:35

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

RR25567 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-11A

Lab Code:

J0805339-007

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804235	D. AMERICAN DESCRIPTION
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804235	
	IND C	0.020	0.0057	1	11/0//00	11/11/00	J 11 00007255	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	114	77-150	11/11/08	Acceptable	

Comments:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-11B

Lab Code:

J0805339-008

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804235	MINISTER TO THE PROPERTY OF TH
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	120	77-150	11/11/08	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

Date

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-11C

Lab Code:

J0805339-009

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Dilution **Analyte Name** Result Q **MRL** MDL **Factor** ND U 0.020

ND U

0.0070 1 0.0057 1 Extracted **Analyzed** 11/07/08 11/11/08 11/07/08 11/11/08

Date

Extraction Lot Note JWG0804235 JWG0804235

1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP

0.020

Date

Note

1,1,1,2-Tetrachloroethane

Surrogate Name

118

%Rec

Limits 77-150

Control

Analyzed 11/11/08

Acceptable

Comments:

Printed: 11/12/2008 14:13:39 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

RR25567 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-10A

Lab Code:

J0805339-010

Units: ug/L

Basis: NA

Extraction Method:

METHOD

ND U

Level: Low

JWG0804235

Analysis Method:

8011

Dilution Date Date Extraction **Analyte Name** Result Q MRL **MDL Factor** Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) JWG0804235 ND U 0.020 0.0070 1 11/07/08 11/11/08 1,2-Dibromo-3-chloropropane (DBCP

0.0057

1

11/07/08

11/11/08

0.020

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	117	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:13:40 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-10B

Lab Code:

J0805339-011

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804235	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804235	

Surrogate Name %Rec	Control Date Limits Analyzed N	Note			%Rec	Surrogate Name
1,1,1,2-Tetrachloroethane 133	77-150 11/11/08 A	Acceptable	50 11/11	77-150	133	1,1,1,2-Tetrachloroethane

Comments:

Printed: 11/12/2008 14:13:42

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR25567

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-10C

Lab Code:

J0805339-012

Units: ug/L

Extraction Method:

METHOD

Basis: NA

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804235	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804235	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	133	77-150	11/11/08	Acceptable

Comments:

Printed: 11/12/2008 14:13:43

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $^{46}_{
m Page}$

SuperSet Reference: RR25567

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Collected: NA

Date Received: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804235-3

Units: ug/L

1,2-Dibromo-3-chloropropane (DBCP

ND U

Basis: NA

Extraction Method:

METHOD

Level: Low

JWG0804235

Analysis Method:

8011

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	, 1	11/07/08	11/10/08	JWG0804235	·

0.0057

1

11/07/08

11/10/08

0.020

Comments:

Printed: 11/12/2008 14:13:44 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Form 1A - Organic

Merged

1 of 1

SuperSet Reference: RR25567

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:

J0805339

Date Collected: Date Received: 11/4/2008 11/5/2008

Total Metals

Sample Name:

MW-13A

Lab Code:

J0805339-001

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	0.6	i
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	16	•
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	8.8	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	3.3	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.8	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	Ù	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	13800	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.7	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	3.7	i
Zinc	EPA 3020A	6020	10.	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request: Date Collected:

J0805339 11/4/2008

Date Received:

11/5/2008

Total Metals

Sample Name:

MW-13B

Lab Code:

J0805339-002

Units: ug/L Basis: N/A

								, -	
Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	· U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	0.20	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	12	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	\mathbf{U}	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.4	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.7	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	836	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	1.0	i '
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	0.08	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	Ü	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805339

Date Collected:

11/4/2008

Date Received:

11/5/2008

Total Metals

Sample Name:

MW-13C

Lab Code:

Units: Basis:

ug/L N/A

MW-13C
10805339-003

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	19	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.0	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	· U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	576	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805339

Date Collected:

11/4/2008

Date Received:

11/5/2008

Total Metals

Sample Name:

MW-12A

Lab Code:

J0805339-004

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020Å	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	2.4	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	11	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.6	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.8	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	1030	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	2.0	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	1.4	i
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:

J0805339

Date Collected:

11/4/2008

Date Received: 11/5/2008

Total Metals

Sample Name:

MW-12B

Lab Code:

J0805339-005

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	0.41	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	35	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.3	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.4	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	1070	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	1.0	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805339

Date Collected:

11/4/2008

Date Received:

11/5/2008

Total Metals

Sample Name:

MW-12C

Lab Code:

J0805339-006

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U-	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	25	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.2	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	704	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.9	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	. 10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805339

Date Collected:

11/4/2008

Date Received:

11/5/2008

Total Metals

Sample Name:

MW-11A

Lab Code:

J0805339-007

Units: Basis:

ug/L N/A

			w	* *					
Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	19	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	13	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	4.6	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	1.1	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.4	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	18000	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.3	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	1.3	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	3.9	i
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:** JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805339

Date Collected:

11/4/2008

Date Received:

11/5/2008

Total Metals

Sample Name:

MW-11B

Lab Code:

J0805339-008

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	0.67	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	24	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	$_{_{0}}\mathbf{U}$	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.4	i
Iron	EPA 3010A	6010B	50 .	4.0	1.0	11/11/2008	11/12/2008	570	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.7	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1,0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	2.4	i
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805339

Date Collected: Date Received: 11/4/2008 11/5/2008

Total Metals

Sample Name:

MW-11C

Lab Code:

Units: Basis: ug/L Ň/A

J0805339-009

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	9.6	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.0	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	•
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	560	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	Π	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:

J0805339

Date Collected: Date Received:

11/4/2008 11/5/2008

Total Metals

Sample Name: Lab Code:

MW-10A

J0805339-010

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	1.9	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	2.1	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	· U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	2.6	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	2.5	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	432	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.6	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	0.09	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	1.0	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	0.7	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	7	· i

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number:

Matrix:

FQ1512 WATER

JED SWDF

Total Metals

Sample Name:

MW-10B

Lab Code:

J0805339-011

Units: ug/L Basis: N/A

Date Received: 11/5/2008

J0805339

11/4/2008

Service Request:

Date Collected:

			Section 2						
Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	0.35	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	14	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	0.9	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.2	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	534	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U .	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:

J0805339

Date Collected:

11/4/2008

Date Received:

11/5/2008

Total Metals

Sample Name:

MW-10C

Lab Code:

J0805339-012

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	0.58	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	30	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	886	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.3	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.4	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	2.1	i
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	· U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:

J0805339

Date Collected:

Date Received: N/A

Total Metals

Sample Name: Lab Code:

Method Blank MB2-1111

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	U	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/11/2008	11/12/2008	U	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/10/2008	11/10/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805339

Date Collected:

11/04/2008

Date Received:

11/05/2008

Total Metals Sodium

Prep Method:

EPA 3010A

Analysis Method: 6010B

Test Notes:

Units: mg/L Basis: N/A

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-13A	J0805339-001	0.50	0.02	1.0	11/11/2008	11/12/2008	9.3	
MW-13B	J0805339-002	0.50	0.02	1.0	11/11/2008	11/12/2008	8.8	
MW-13C	J0805339-003	0.50	0.02	1.0	11/11/2008	11/12/2008	7.7	
MW-12A	J0805339-004	0.50	0.02	1.0	11/11/2008	11/12/2008	11	
MW-12B	J0805339-005	0.50	0.02	1.0	11/11/2008	11/12/2008	8.2	
MW-12C	J0805339-006	0.50	0.02	1.0	11/11/2008	11/12/2008	5.7	
MW-11A	J0805339-007	0.50	0.02	1.0	11/11/2008	11/12/2008	14	
MW-11B	J0805339-008	0.50	0.02	1.0	11/11/2008	11/12/2008	14	
MW-11C	J0805339-009	0.50	0.02	1.0	11/11/2008	11/12/2008	11	
MW-10A	J0805339-010	0.50	0.02	1.0	11/11/2008	11/12/2008	10	
MW-10B	J0805339-011	0.50	0.02	1.0	11/11/2008	11/12/2008	9.1	
MW-10C	J0805339-012	0.50	0.02	1.0	11/11/2008	11/12/2008	6.8	
Method Blank	MB1-1111	0.50	0.02	1.0	11/11/2008	11/12/2008	II.	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-13A

Lab Code:

J0805339-001

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	. 1	11/05/08 15:02	1.5	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	11	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 17:17	U	
Solids, Total Dissolved (TDS)	mg/L (nnm)	160.1	10	4.8	1	11/06/08 14:15	110	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-13B

Lab Code:

J0805339-002

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.13	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	13	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 18:32	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	46	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-13C

Lab Code:

J0805339-003

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.13	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	12	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 18:47	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	41	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-12A

Lab Code:

J0805339-004

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.29	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	9.2	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 19:02	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	73	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-12B

Lab Code:

J0805339-005

Test Notes:

Analyte	Units	Analysis Method	NATOT	Man	Dilution	Date/Time	D	Result Notes
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	TAULES
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.14	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	18	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 19:17	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	60	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-12C

Lab Code:

J0805339-006

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.12	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	8.2	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 19:32	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	. 1	11/06/08 14:15	41	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-11A

Lab Code:

J0805339-007

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	. 1	11/05/08 15:02	8.8	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	17	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 19:47	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	200	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number:

FQ1512

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-11B

Lab Code:

J0805339-008

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.055	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	15	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 20:02	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	63	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:** FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-11C

Lab Code:

J0805339-009

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.090	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	17	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 21:31	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	79	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-10A

Lab Code:

J0805339-010

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.1	0.04	2	11/05/08 15:02	12	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	18	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 21:46	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	140	

Analytical-Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:** FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08 Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-10B

Lab Code:

J0805339-011

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.12	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	11	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 22:01	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:30	57	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Inorganic Parameters

Sample Name:

MW-10C

Lab Code:

J0805339-012

Test Notes:

		Analysis		Dilution	Date/Time		Result	
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	0.15	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	7.5	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 22:16	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:30	39	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: NA

Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

J0805339-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/05/08 15:02	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	. 1	11/05/08 15:02	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/05/08 15:02	Ú	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/05/08 15:02	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:15	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/06/08 14:30	U	

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Surrogate Recovery Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3	Sur4
MW-13A	J0805339-001	96	94	99	108
MW-13B	J0805339-002	98	93	100	105
MW-13C	J0805339-003	99	92	101	107
MW-12A	J0805339-004	97	94	101	106
MW-12B	J0805339-005	98	94	100	106
MW-12C	J0805339-006	98	93	101	107
MW-11A	J0805339-007	97	96	101	105
MW-11B	J0805339-008	97	95	101	106
MW-11C	J0805339-009	99	94	101	107
MW-10A	J0805339-010	98	93	100	107
MW-10B	J0805339-011	100	93	101	107
MW-10C	J0805339-012	98	94	101	106
Trip Blank	J0805339-013	98	94	100	107
Method Blank	JWG0804213-4	97	94	100	108
Lab Control Sample	JWG0804213-3	96	94	99	106

Surrogate Recovery Control Limits (%)

Sur1 =	1,2-Dichloroethane-d4	71-122
Sur2 =	4-Bromofluorobenzene	75-120
Sur3 =	Dibromofluoromethane	82-116
Sur4 =	Toluene-d8	88-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/06/2008 19:01:06 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339 Date Extracted: 11/05/2008

Date Analyzed: 11/05/2008

Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: JWG0804213

Lab Control Sample JWG0804213-3 Lab Control Spike

	Lab Control Spike		%Rec		
Analyte Name	Result	Expected	%Rec	Limits	
Chloromethane	25.7	20.0	128	67-135	
Vinyl Chloride	20.6	20.0	103	78-132	
Bromomethane	18.7	20.0	93	79-130	
Chloroethane	22.9	20.0	114	74-126	
Trichlorofluoromethane	10.1	20.0	50 *	74-134	
1,1-Dichloroethene	20.8	20.0	104	78-130	
Acetone	104	100	104	67-133	
Iodomethane (Methyl Iodide)	103	100	103	68-134	
Carbon Disulfide	94.4	100	94	76-138	
Methylene Chloride	21.2	20.0	106	72-124	
trans-1,2-Dichloroethene	20.8	20.0	104	77-124	
Acrylonitrile	109	100	109	77-127	
1,1-Dichloroethane	20.7	20.0	103	80-128	
Vinyl Acetate	98.4	100	98	61-148	
cis-1,2-Dichloroethene	21.3	20.0	106	80-126	
2-Butanone (MEK)	96.6	100	97	73-127	
Bromochloromethane	21.7	20.0	109	79-129	
Chloroform	21.0	20.0	105	83-124	
1,1,1-Trichloroethane (TCA)	21.6	20.0	108	79-124	
Carbon Tetrachloride	20.7	20.0	103	81-125	
Benzene	20.6	20.0	103	79-119	
1,2-Dichloroethane (EDC)	22.0	20.0	110	80-124	
Trichloroethene (TCE)	21.0	20.0	105	76-124	
1,2-Dichloropropane	20.8	20.0	104	79-123	
Dibromomethane	20.5	20.0	102	83-123	
Bromodichloromethane	20.7	20.0	104	81-123	
cis-1,3-Dichloropropene	21.4	20.0	107	86-123	
4-Methyl-2-pentanone (MIBK)	99.3	100	99	72-136	
Toluene	21.2	20.0	106	86-117	
trans-1,3-Dichloropropene	21.2	20.0	106	83-124	
1,1,2-Trichloroethane	20.6	20.0	103	86-114	
Tetrachloroethene (PCE)	21.4	20.0	107	80-121	
2-Hexanone	98.7	100	99	71-138	
Dibromochloromethane	21.8	20.0	109	82-121	
1,2-Dibromoethane (EDB)	20.3	20.0	102	88-117	
Chlorobenzene	20.9	20.0	104	86-113	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/06/2008 19:01:10 p:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

1 of 2

SuperSet Reference: RR25430

QA/QC Report

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805339 Date Extracted: 11/05/2008

Date Analyzed: 11/05/2008

Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: JWG0804213

Lab Control Sample JWG0804213-3 Lab Control Spike

,	Lau	Control Spik	E	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	and the second of the second o
1,1,1,2-Tetrachloroethane	21.9	20.0	109	85-117	
Ethylbenzene	21.5	20.0	108	90-118	
m,p-Xylenes	42.2	40.0	105	86-121	
o-Xylene	21.3	20.0	107	89-119	
Styrene	21.9	20.0	110	89-122	
Bromoform	22.0	20.0	110	68-129	
1,1,2,2-Tetrachloroethane	21.3	20.0	107	83-120	
1,2,3-Trichloropropane	21.2	20.0	106	83-123	
1,4-Dichlorobenzene	20.5	20.0	103	83-113	
trans-1,4-Dichloro-2-butene	32.4	20.0	162 *	53-143	
1,2-Dichlorobenzene	20.6	20.0	103	84-115	
1,2-Dibromo-3-chloropropane (DBCP	19.7	20.0	98	62-123	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/06/2008 19:01:10 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Surrogate Recovery Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method:

METHOD

Units: PERCENT

Analysis Method:

Method Blank

Lab Control Sample

Duplicate Lab Control Sample

8011

Level: Low

		2	
Sample Name		Lab Code	Sur1
MW-13A		J0805339-001	118
MW-13B		J0805339-002	117
MW-13C		J0805339-003	119
MW-12A		J0805339-004	122
MW-12B		J0805339-005	119
MW-12C		J0805339-006	119
MW-11A		J0805339-007	114
MW-11B		J0805339-008	120
MW-11C	 Tr	J0805339-009	118
MW-10A		J0805339-010	117
MW-10B		J0805339-011	133
MW-10C		J0805339-012	133

JWG0804235-3

JWG0804235-1

JWG0804235-2

126

119

123

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/12/2008 14:13:49

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

1 of 1

SuperSet Reference: RR25567

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805339

Date Extracted: 11/07/2008

Date Analyzed: 11/10/2008

Lab Control Spike/Duplicate Lab Control Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method:

METHOD

Analysis Method:

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804235

Lab Control Sample

JWG0804235-1

Duplicate Lab Control Sample

JWG0804235-2

	Lab	Control Spike	2	Duplicate	Lab Control	Spike	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Result Expected %Rec		Limits RPD		Limit	
1,2-Dibromoethane (EDB)	0.293	0.250	117	0.290	0.250	116	70-130	1	20	
1,2-Dibromo-3-chloropropane (DBCP	0.259	0.250	104	0.254	0.250	102	70-130	2	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/12/2008 14:13:53 p:\Stealth\Crystal.rpt\Form3DLC.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008 **Date Extracted:** 11/11/2008 **Date Analyzed:** 11/14/2008

Matrix Spike/Matrix Spike Duplicate Summary **Total Metals**

Sample Name:

MW-13B

Lab Code:

J0805339-002

J0805339-002S

Units: ug/L Basis: N/A

	Prep	Analysis		Spike	e Level	Sample	Snike	Result	Percent	Recovery		% Rec Acceptance	Result
Analy		Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Antim	iony EPA 3020	6020	2.0	50.0	50.0	U	52.6	49.5	105	99	6	75 - 125	
Arsen	ic EPA 3020	6020	0.50	50.0	50.0	0.20	48.00	47.80	96	95	<1	75 - 125	
Bariu	n EPA 3020	6020	2.0	50.0	50.0	11.6	59.5	61.5	96	100	3	75 - 125	
Beryll	ium EPA 3020	6020	1.0	50.0	50.0	U	48.9	49.5	98	99	1	75 - 125	
Cadm	ium EPA 3020	6020	0.50	50.0	50.0	U	50.60	48.40	101	97	4	75 - 125	
Chron	nium EPA 3020	6020	2.0	50.0	50.0	1.4	49.7	49.6	97	96	<1	75 - 125	
Cobal	EPA 3020	6020	1.0	50.0	50.0	0.2	49.2	50.2	98	100	2	75 - 125	
Coppe	er EPA 3020	6020	2.0	50.0	50.0	0.7	49.1	49.3	97	97	<1	75 - 125	
Lead	EPA 3020	6020	1.0	50.0	50.0	1.0	49.5	48.9	97	96	1	75 - 125	
Nicke	EPA 3020	6020	2.0	50.0	50.0	Ų	48.0	47.8	96	96	<1	75 - 125	
Seleni	um EPA 3020	6020	2.0	50.0	50.0	U	46.3	44.2	93	88	5	75 - 125	
Silver	EPA 3020	6020	0.50	50.0	50.0	U	55.90	55.50	112	111	1	75 - 125	
Thalli	um EPA 3020	6020	1.0	50.0	50.0	U	45.6	44.8	91	90	2	75 - 125	
Vanad	lium EPA 3020	6020	5.0	50.0	50.0	1.2	51.2	51.2	100	100	<1	75 - 125	
Zinc	EPA 3020	6020	10.0	100	100	U	97.4	94.6	97	95	3	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008 **Date Extracted:** 11/11/2008

Date Analyzed: 11/12/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-13A

Lab Code:

J0805339-001

J0805339-001S

Units: ug/L

												% Rec	*
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery		Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Iron	EPA 3010	6010B	50	2000	2000	13800	15500	15300	NC	NC	1	75 - 125	

QA/QC Report

Client:

Matrix:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 WATER Service Request: J0805339

Date Collected: N/A Date Received: N/A

Date Extracted: 11/11/2008 **Date Analyzed:** 11/14/2008

Laboratory Control Sample Summary Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS2-1111

Units: ug/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	54.7	109	80 - 120	
Arsenic	EPA 3020A	6020	50.0	50.6	101	80 - 120	
Barium	EPA 3020A	6020	50.0	46.3	93	80 - 120	
Beryllium	EPA 3020A	6020	50.0	49.8	100	80 - 120	
Cadmium	EPA 3020A	6020	50.0	53.3	107	80 - 120	
Chromium	EPA 3020A	6020	50.0	49.8	100	80 - 120	
Cobalt	EPA 3020A	6020	50.0	51.1	102	80 - 120	
Copper	EPA 3020A	6020	50.0	51.5	103	80 - 120	
Iron	EPA 3010A	6010B	2000	1960	98	80 - 120	
Lead	EPA 3020A	6020	50.0	48.1	96	80 - 120	
Mercury	METHOD	7470A	5.00	4.60	92	80 - 120	
Nickel	EPA 3020A	6020	50.0	50.5	101	80 - 120	
Selenium	EPA 3020A	6020	50.0	52.7	105	80 - 120	
Silver	EPA 3020A	6020	50.0	58.4	117	80 - 120	
Thallium	EPA 3020A	6020	50.0	46.1	92	80 - 120	
Vanadium	EPA 3020A	6020	50.0	50.4	101	80 - 120	
Zinc	EPA 3020A	6020	100	98.9	99	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/2008

Date Received: 11/05/2008 **Date Extracted:** 11/11/2008

Date Analyzed: 11/12/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-13A

Lab Code:

J0805339-001

J0805339-001S

Units: mg/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	7	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Sodium	EPA 3010	6010B	0.5	10.0	10.0	9.3	18.8	19.2	95	99	2	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Matrix:

Project Number: FQ1512

WATER

Service Request: J0805339

Date Collected: N/A

Date Received: N/A

Date Extracted: 11/11/2008

Date Analyzed: 11/12/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS1-1111

Units: mg/L

		* 17				CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	Recovery Acceptance Limits	Result Notes
Sodium	EPA 3010A	6010B	10.0	9.9	99	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Date Extracted: NA

Date Analyzed: 11/05,06/08

Duplicate Summary Inorganic Parameters

Sample Name:

MW-11A

Lab Code:

J0805339-007DUP

Test Notes:

Analyte	Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result		Relative Percent Difference	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	8.8	8.8	8.8	<1	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	200	200	200	<1	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Date Extracted: NA

Date Analyzed: 11/05/08

Matrix Spike Summary

Inorganic Parameters

Sample Name:

MW-11A

Lab Code:

J0805339-007MS

Test Notes:

								CAS Percent	
Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result		Percent Recovery	Recovery Acceptance Limits	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0:1	10.0	8.8	17.9	91	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Date Extracted: NA

Date Analyzed: 11/05/08

Duplicate Summary Inorganic Parameters

Sample Name:

MW-11B

Lab Code:

J0805339-008DUP

Test Notes:

					Duplicate		Relative	
Analyte	Units	Analysis Method	MRL	Sample Result	Sample Result	Average	Percent Difference	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	15	15	15	<1	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	U	U	U	-	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805339

Date Collected: 11/04/08

Date Received: 11/05/08

Date Extracted: NA

Date Analyzed: 11/05/08

Matrix Spike Summary **Inorganic Parameters**

Sample Name:

MW-11B

Lab Code:

J0805339-008MS

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	100	15	109	94	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	U	5.03	101	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

Project Number: Sample Matrix:

FQ1512

JED SWDF

WATER

Service Request:

J0805339

Date Collected:

NA

Date Received: Date Extracted:

NA NA

Date Analyzed:

11/05,06/08

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Laboratory Control Sample

Lab Code:

J0805339-LCS

Basis: NA

Test Notes:

Analyte	Units	Analysis Method	True Value		Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	5.00	5.19	104	90-110	
Chloride	mg/L (ppm)	300.0	5.00	5.25	105	90-110	
Chloride	mg/L (ppm)	300.0	100	97.6	98	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	5.0	5.11	102	90-110	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	300	299	100	85-115	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	300	303	101	85-115	

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

Client: Project:	Geosynt JED S	WDF	Service Re	quest#		g08338	· ·
Cooler rece	ived on 11/5/08		and opened	d on 11/5/0	8 by	701	
COURIER:	AN	FEDEX	DHL CLIENT	Tracking	#		
1	Were custody seals or	outside of co	oler?		Yes	No	N/A
2	Were seals intact, sign			((Yes)	No	N/A
3	Were custody papers			,	Yes	No	N/A
4	Temperature of cooler(s)	• • •		1,1	1.3		
5	Correct Temperature?				Yes	No	N/A
6	Were Ice or Ice Packs	present			Yes	No	N/A
7	Did all bottles arrive	*	ion (unbroken, etc)?	Yes	No	N/A
8	Were all bottle labels	complete (san	aple ID, preservation	n, etc)?	Yes	No	N/A
9	Did all bottle labels a	- '			Yes	No	N/A
10	Were the correct bott	es used for the	e tests indicated?		Yes	No	N/A
11	Were all of the preserved-	bottles received	with the appropriate pres	servative?	Yes	No	N/A
12 13 14	HNO3 pH<2 H2SO4 Preservative additions noted bel Were all samples rece Were VOA vials checked Where did the bottles	rived within an	nalysis holding time	s?	Yes CAS	No No Client	N/A N/A
	Sample ID	Reagent	Manuf. Lot # or C	CAS ml add	ed	Inititials	nadromanio arcing
					· ·	***************************************	
			÷			·····	
				White said			
ا شاعلة المراد	0 0 10 10 0 0 1 t = 0 - 1 t	motion of -11	Li a a ra				
additional i	comments and/or expla	шаноп от ан с	uscrepancies noted a	auove:			

sr#: J 0805339

Date: 115/08

Initials: TOK

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise notes on cooler receipt form.

													Bott	le Coc	de															1
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		21	22	23	24	25	26	27	28	29	30
	40mL	40mL	40mL	40mL			125mL	125ml	250ml.		250mL		250mL				500mL				1L		1L.			8oz	16oz		100mL	Misc
Container	G	G	Ğ	G	Р	Р	P	Р	Р	Р	P	Р	Р	G	G	Р	P	Р	Р	Р	G	G	G	G	G	G	G	ENC	Р	Misc
	i i i i		Sodium						4. 11.6			ZnAcetate		v Nillaggiagg		Maries Maries]	130					J			胡椒		Sodium	
Pres.		HCI <2	Thiosulfate N/A	H2SO4		HCI <2	H2SO4	HNO3		H2SO4	HNO3	NaOH >9	NaOH >12	N/A	HNO3	N/A		HNO3	N/A	HNO:			H2SO-		61/6	N/A	KI/A	N/A	Thiosultate N/A	N/A
Req. pH Sample #	N/A		A NIA	1 -2	N/A	-	-	-	N/A		-		- 12	N/A:		- IV/A	-	1	14/7		NIA			INIA	INA	INIA	-NV/A	. NO.A	~	1100
	3	3					1	-	1	 	-				3.			1	+	-	-			┼──	\vdash					1
-001	2	4		 		<u> </u>	-								32		 	-	 	-	-	-		 	├	-				
-002	+			-		-													+		-			-	-					-
-003	4			 		ļ	-	-			ļ						 	 	┼	-	-			 	-	-				├
-004				ļ							<u> </u>							╂	├		-									├
-005		1									ļ		ļ				ļ	 	├	ļ	_			-	<u> </u>					
-006											<u> </u>							 		ļ				<u> </u>						↓
-007		1																		ļ										
-008	and the same			1																										<u> </u>
-009																														
-010																								Π						
-011	1				<u> </u>												T		Г	1										
-012	J					-	V	V	V		1								T				***************************************	1	1					
-013	~	W		 				- 494	- 480		l						l	1	1											
-013				1			ļ	111		·							1	†	1	†				†						
-015				 	_												 	1	1					1						
	-			 			 										 	 	-	 				 	 					t^-
-016						_					1				-		 	 	 -	 				├─	1					
-017						-	 										-	 	+		-			-						\vdash
-018				 		_	 							-	-		 	 	-					 	├					\vdash
-019				 													ļ		\vdash	 	-			-		-				+-
-020				ļ		-	ļ								-			 	┼		-	-		 	 					\vdash
-021		-					<u> </u>				ļ				 		 	 	-		-									
-022				<u> </u>			ļ											 			-									┼
-023																	<u> </u>	ļ	 					-						├
-024																		ļ	<u> </u>	ļ				<u> </u>	<u> </u>					↓
-025				<u> </u>														ļ	ļ	ļ				ļ	<u> </u>					<u> </u>
-026																		l												1
-027							- 3								1 22															<u> </u>
-028																			T											<u> </u>
-029																														
-030																			Ī											
-031					-												i —										-			
-032						_	_													<u> </u>			~~~~							
-033																			1					_			-			
-033 -034																		 	1		\vdash			_				-		
																	 	 	t-					-						t
-035																		 	-	 			~	-						-
-036														-					-					-		$\vdash\vdash$				-
-037																		-	-				***************************************		<u> </u>					1
-038																			-					-	_					-
-039																			-						_					
-040																	<u> </u>	<u> </u>		<u> </u>										<u></u>

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#		
	Jul 5339	

www.caslab.com

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE ____/ OF ____

CAS Contact

Project Name TED SUDF Project Manager Project Manager Project Manager Project Manager Project Manager Project Manager				ANALYSIS REQUESTED (Include Method Number and O															
Project Manager Wills	Email Address	y eosyntec. (on	PRE	SER	VATIVE		0	7	7	\wedge									
Company/Address	- Rwills &	y cosynyec. (on		_			0	3	2	0	ļ)								
Geosynter	· ·		S		/	/ /	/	/	′ /	/		/		- /	/				
14055 R.V.vec	ge Dr. Ste	300	NUMBER OF CONTAINERS						3									1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	
Tansa, FL	33637)F CO				X	10		/ /	/ /	/ /	/			' ' /	/	5. Zn. Ace 6. MeOH 7. NaHSC	etate
Phone # FAX# 8/3 - 558 - 0990 FAX# 8/3 - 558 - 9726 Sampler's Printed Name			ABER (/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(D)	1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	<u>3</u> 5/	2									8. Other_	
Sampler's Printed Name Joe Lerry							/ <	12	7	/	/ .	/ /	/	/ ,	/: ,			REMARKS/ ALTERNATE DESCRIF	PTION
CLIENT SAMPLE ID	LABID	SAMPLING DATE TIME MATRIX											j						
MW-13A	· · · · · · · · · · · · · · · · · · ·	4.08 0815 GW	q	X	1 1/2	X	X	X											
MW-13B		0847		1	,		Ì	ĺ											
MW-13C		0805					o reconstruction of the second				*************	·						· 	
MW-12A		1020		- A			rectoration												
MW-12B		1055																	
MW-12C		1810		-				De la constante de la constant									-		
MW-11A		1230		100				Document											
MW-11B		1325											-		-				
MW-IIC		1250																	
MW-10A	<u> </u>	1 1450 J	V	4	4	V	V	V											
SPECIAL INSTRUCTIONS/COMMENTS					T	URNAR	DUND	REQU	REMEN	TS		REPOR	RT RE	QUIREN	MENTS		T	INVOICE INFORMATION	N
COC for contest	s ot 2 cooles					_		HARGE	S APPLY)			I. Results	Only						
					- *	STAN	DARD					II. Result: (LCS, DL				,	PO#		
					REQU	JESTED I	AX DAT	E				III. Result	s + QC				BILL	TO:	
					REQU	JESTED F	REPORT	DATE				IV. Data \	/alidatio	n Report	t with Ra	w Data			
See QAPP					-							V. Speica	lized Fo	rms / Cu	istom Re	eport			
SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEA			S: Y	N								Edata	-	Yes _	N	0			
RELINQUISHED BY	RECEIVED BY	RELINQUISHED I					RECEI	VED B	Y			RE	LINQU	ISHED	BY			RECEIVED BY	
N		Street Control	:	-											,076444				
Signature Ale Tery Printed Name	Signature Cural Ligarian	Signature	. :		Signa						Signatu						Signa		
Joe lemy	Fire Kisshae					d Name			-		Printed Name				Printed Name				
Geosynter	CAS, J	Firm Date/Time	:		Firm	Timo					Firm Data/Ti	mo			P		Firm	· .	
11-41-08/1700	Date/Ime 5/08 940	Date/Time			Date/	iiiie					Date/Ti	nie					Date/	ime	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#

J0805339 CAS Contact

An Employee - Owned Company 9143 Phillips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE 2 OF 2 www.caslab.com

Project Name SED SWDF	Froject Number FQ/5/2					ANALYSIS REQUESTED (Include Method Number and Continued on the Continued o															
Project Manager Kick Wills	Email Address	g eosynte	.com	PRE	SERV	'ATIVE	1	0	3	Z	0										
Company/Address CDECSYNYEC				SF.		/	/ . /	/ · /	' /	' /			' /		' <u> </u>					J. NO.	VE .
14055 Rivedse	De. Ste	300		NUMBER OF CONTAINERS					/ in	1	34									1. HCI 2. HNO 3. H ₂ S 4. NaC	D3 604 DH
Tangu, FL	33637			9F.C(1		00/	12/2	1 letal	\\ \mathref{T}	/	/ /	/ /	/	/ /	/ /	/ /	/ , ,	/ / ,	5. Zn. 6. Me0 7. Nal-	
013-228 -0296	/ <i>\&\\S^-</i> \$\$ 8	3-9726		/BER	/	V	ω	<i>b</i> ,	\sqrt{e}					/-				: /		8. Oth	•
Sampler Signature	Sampler's Printed Name	/Y] §				/ 1	/人	.)									ALTE	REMARKS	S/
CLIENT SAMPLE ID		SAMPLING DATE TIME	MATRIX					1	1	ĺ	,	/		/					ALIE	HIVALE DESC	RIPTION
MW-10B	j	1-4-08 151		9	X	X	×	×	×												
MW-10C	ì	1-4-09/53		9	×	×	×	X	X											,	
Tr. p Black			W	3	X							-									
				ļ		ļ	ļ	ļ													
				-	ļ																
	,						ļ											-		·	
																		ļ			
N/		-		<u> </u>																	
SPECIAL INSTRUCTIONS/COMMENTS				1	<u> </u>	TL	JRNAR	OUND	REQUI	REMEN'	TS		REPC	RT RE	QUIRE	MENT	S S	1	INVOIC	E INFORMA	TION
							RUSH	(SURC	HARGES	S APPLY)			I. Result								,,,,,,,
						×	_ STAN	IDARD				X	II. Resul	lts + QC	Summa MSD as	ries required	4)	PO#			
						REQUI	ESTED I	FAX DAT	Έ				III. Resu			•	•	BILL	TO:	//	
									-				Summai								
						REQUI	ESTED	REPORT	DATE			l	IV. Data					`			
See QAPP							· · · · · · · · · · · · · · · · · · ·					 	V. Speic					-			
SAMPLE RECEIPT: CONDITION/COC	DLER TEMP:		USTODY SEA		N			RECEI	VED BY	,		<u> </u>			_Yes		40 	_	Pag		
93			- COOKED	. · ·				nevel	v EU Bì	1	•		Hi	ELINQ	JISHED	BY			ŖI	CEIVED BY	
Signature Lens -	Signature //	Signature	-			Signatu	ire				*****	Signati	ure				***************************************	Signa	ature		
rinted Name Joe Ferry	Printed Name D. RISS UNG	Printed Name				Printed	Name					Printed	Name					Print	ed Name		
Geosyotec .	CAS J					Firm						Firm					<u>.</u>	Firm			
Date/Time 1-41-08 / 1700	Date(11/5/08 940	Date/Time				Date/Ti	me		1			Date/T	ime					Date	Time		

November 20, 2008

Service Request No: J0805378

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 6, 2008. For your reference, these analyses have been assigned our service request number **J0805378**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of <u>10</u>+

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF

Water

Service Request No.: Date Received:

J0805378

11/6/08

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Thirteen water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/6/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4 ± 2 °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

Volatile Organic Compounds by GC-MS

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

Second Source Exceptions

The upper control criterion was exceeded for the following analytes in Second Source Verification (SSV) CAL1649: trans-1,4-Dichloro-2-butene. The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

Continuing Calibration Verification Exceptions

The primary evaluation criterion was exceeded for the following analyte in the Continuing Calibration Verification (CCV) JWG0804228-2: Trichlorofluoromethane. The analyte in question was not detected in the associated field samples. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further action was taken.

Lab Control Sample Exceptions

The spike recovery of Trichlorofluoromethane for the Laboratory Control Sample (LCS) JWG0804226-3 was outside the lower control criterion. The analyte in question was not detected in the associated field samples. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

Batch QC Notes and Discussion

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG).

Approved by	Crank	h	Date	(1)	20	108
	_ O.	Q				

The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

EDB and **DBCP** by GC-ECD

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total and Dissolved Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

General Chemistry Parameters

The samples were analyzed for Inorganic Parameters using various EPA Methods. No problems were observed.

Approved by	Oran R My	Date	11/20/08	
	0 1		1 1	

Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
 - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
 - 2. No known quality control criteria exists for the component.
 - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
 - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
 - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Service Request: J0805378

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	DATE	<u>TIME</u>
J0805378-001	MW-9A	11/5/08	08:15
J0805378-002	MW-9B	11/5/08	09:05
J0805378-003	MW-9C	11/5/08	08:45
J0805378-004	MW-8A	11/5/08	10:55
J0805378-005	MW-8B	11/5/08	11:25
J0805378-006	MW-8C	11/5/08	10:40
J0805378-007	MW-7A	11/5/08	13:05
J0805378-008	MW-7B	11/5/08	13:55
J0805378-009	MW-7C	11/5/08	13:15
J0805378-010	MW-5A	11/5/08	15:05
J0805378-011	MW-5B	11/5/08	15:40
J0805378-012	MW-5C	11/5/08	15:20
J0805378-013	DUP-1	11/5/08	00:00
J0805378-014	Trip Blank	11/5/08	00:00

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-9A

Lab Code:

J0805378-001

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	0.65 I	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND ₁ U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	7.7	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1 -	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1.	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	2.3	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	3.1	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	,

Printed: 11/07/2008 15:10:44

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

7_{Page} 1 of 2

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512 Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-9A

Lab Code:

J0805378-001

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND	U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND	U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	1.6		1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND	U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` /
Vinyl Chloride	2.1		1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/06/08	Acceptable	
Dibromofluoromethane	102	82-116	11/06/08	Acceptable	
Toluene-d8	107	88-117	11/06/08	Acceptable	

Comments:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-9B

Lab Code:

J0805378-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND	U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND		1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND		2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND		5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND		1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1 .	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND		1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND		10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND	U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND		50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND	U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND		1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND		5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND	U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND		2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND		1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND	U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND		1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND		1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND	U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND		1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND		1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND		1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND		1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND	U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND	U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:46 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25469

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-9B

Lab Code:

J0805378-002

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	*
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` /
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	-

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/06/08	Acceptable	
Dibromofluoromethane	100	82-116	11/06/08	Acceptable	
Toluene-d8	107	88-117	11/06/08	Acceptable	

Comments:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-9C

Lab Code:

J0805378-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	. 1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	,
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:48

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR25469

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-9C

Lab Code:

J0805378-003

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	- 1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	. ,
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	96	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	92	75-120	11/06/08	Acceptable	
Dibromofluoromethane	101	82-116	11/06/08	Acceptable	
Toluene-d8	105	88-117	11/06/08	Acceptable	

Comments:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-8A

Lab Code:

J0805378-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		J						
Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	***************************************
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226 JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226 JWG0804226	
Benzene								
Bromochloromethane	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	***************************************
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	***************************************
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:50

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

RR25469

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-8A

Lab Code:

J0805378-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	. 1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	()
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/06/08	Acceptable	
Dibromofluoromethane	102	82-116	11/06/08	Acceptable	
Toluene-d8	106	88-117	11/06/08	Acceptable	

Comments:

Printed: 11/07/2008 15:10:50

p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-8B

Lab Code:

J0805378-005

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	***************************************
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	***************************************
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	• 1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	. 1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	Y#/YAL/PLANALANA
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:52 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-8B

Lab Code:

J0805378-005

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	. ,
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/06/08	Acceptable	
Dibromofluoromethane	101	82-116	11/06/08	Acceptable	
Toluene-d8	105	88-117	11/06/08	Acceptable	

Comments:

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-8C

Lab Code:

J0805378-006

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	'ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	r
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	The state of the s
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	. 1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:53

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-8C

Lab Code:

J0805378-006

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	. 1	11/06/08	11/06/08	JWG0804226	· · · · · · · · ·
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` '
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/06/08	Acceptable	
Dibromofluoromethane	101	82-116	11/06/08	Acceptable	
Toluene-d8	106	88-117	11/06/08	Acceptable	

Comments:

Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-7A

Lab Code:

J0805378-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result (MRL MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	***************************************
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U		0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U		0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U		0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U		0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U		0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U		0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U		0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U		2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U		0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U		0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U		0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U		0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U		0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U		0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	• 1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	***************************************
Dibromochloromethane	ND U		0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:55

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-7A

Lab Code:

J0805378-007

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

JWG0804226

Analysis Method:

Vinyl Chloride

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` /

0.25

1

11/06/08

11/06/08

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	92	75-120	11/06/08	Acceptable	
Dibromofluoromethane	101	82-116	11/06/08	Acceptable	
Toluene-d8	106	88-117	11/06/08	Acceptable	

1.0

Comments:

Printed: 11/07/2008 15:10:55

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

ND U

Form 1A - Organic

2 of 2

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-7B

Lab Code:

J0805378-008

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	° 11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	. 10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	***************************************
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:57

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project; Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-7B

Lab Code:

J0805378-008

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND	U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND	U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND	U .	1.0	0.52	. 1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	**************
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND	\mathbf{U}	10	0.60	1	11/06/08	11/06/08	JWG0804226	. ,
Vinyl Chloride	ND	U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	98	71-122	11/06/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/06/08	Acceptable
Dibromofluoromethane	102	82-116	11/06/08	Acceptable
Toluene-d8	107	88-117	11/06/08	Acceptable

Comments:

Printed: 11/07/2008 15:10:57

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

2 of 2

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-7C

Lab Code:

J0805378-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	4.4
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	·1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	 -
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	·
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	***************************************
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	***************************************
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:10:59

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512...

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-7C

Lab Code:

J0805378-009

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1.	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	\
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/06/08	Acceptable	
Dibromofluoromethane	- 101	82-116	11/06/08	Acceptable	
Toluene-d8	105	88-117	11/06/08	Acceptable	

Comments:

Printed: 11/07/2008 15:10:59

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

RR25469

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-5A

Lab Code:

J0805378-010

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	11000
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	0.76 I	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:11:01

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378 **Date Collected:** 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-5A

Lab Code:

J0805378-010

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method: Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	143.
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1.	11/06/08	11/06/08	JWG0804226	` /
Vinyl Chloride	0.53 I	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/06/08	Acceptable	
Dibromofluoromethane	101	82-116	11/06/08	Acceptable	
Toluene-d8	106	88-117	11/06/08	Acceptable	

Comments:

Printed: 11/07/2008 15:11:01

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-5B

Lab Code:

J0805378-011

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	ATTEMPORAL TOTAL MARKET
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	•
1,1,2-Trichloroethane	ND	U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND		2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND		1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND		1.0	0.14	1	11/06/08	11/06/08	JWG0804226	* * .
2-Butanone (MEK)	ND		10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND	U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND		50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND	U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND		1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND		5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND	U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND	U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	***************************************
Bromomethane		U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND	U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND		1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene			1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND	U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND		1.0	0.10	. 1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND		1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND	U	1.0	0.11	1 -	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND	U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND	U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:11:03

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-5B

Lab Code:

J0805378-011

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND	U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND	U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND	U	1.0	0.52	1 .	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND	U	1.0	0.15	1 .	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND	U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` '
Vinyl Chloride	ND	U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/06/08	Acceptable	
Dibromofluoromethane	100	82-116	11/06/08	Acceptable	
Toluene-d8	107	88-117	11/06/08	Acceptable	

Comments:

Printed: 11/07/2008 15:11:03

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-5C

Lab Code:

J0805378-012

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	ni vales manuscini no no nu ame
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	 -
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:11:05

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client: **Project:**

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-5C

Lab Code:

J0805378-012

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND	U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND	U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND	U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND	UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND	U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` /
Vinyl Chloride	ND	U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	***************************************

%Rec	Control Limits	Date Analyzed	Note	
99	71-122	11/06/08	Acceptable	
92	75-120	11/06/08	Acceptable	
101	82-116	11/06/08	Acceptable	
105	88-117	11/06/08	Acceptable	
	99 92 101	%Rec Limits 99 71-122 92 75-120 101 82-116	%Rec Limits Analyzed 99 71-122 11/06/08 92 75-120 11/06/08 101 82-116 11/06/08	%Rec Limits Analyzed Note 99 71-122 11/06/08 Acceptable 92 75-120 11/06/08 Acceptable 101 82-116 11/06/08 Acceptable

Comments:

Printed: 11/07/2008 15:11:05

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

30_{Page 2 of 2}

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

DUP-1

Lab Code:

J0805378-013

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	. 1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	0.71 I	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	7.8	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	2.4	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	2.9	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:11:06

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

DUP-1

Lab Code:

J0805378-013

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1 .	11/06/08	11/06/08	JWG0804226	
Toluene	1.6	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	. ,
Vinyl Chloride	2.2	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	PORT - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	101	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/06/08	Acceptable	
Dibromofluoromethane	102	82-116	11/06/08	Acceptable	
Toluene-d8	106	88-117	11/06/08	Acceptable	

Comments:

Printed: 11/07/2008 15:11:06

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

32_{Page 2 of 2}

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: a 11/05/2008 **Date Received:** 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank J0805378-014

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	-
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	. 10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	a **
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:11:08 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Trip Blank

Lab Code:

J0805378-014

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` /
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	100	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/06/08	Acceptable	
Dibromofluoromethane	101	82-116	11/06/08	Acceptable	· ·
Toluene-d8	107	88-117	11/06/08	Acceptable	

Comments:

Printed: 11/07/2008 15:11:08

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 2

Analytical Results

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: NA Date Received: NA

Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0804226-4

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	**************************************
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/06/08	11/06/08	JWG0804226	:
1,1-Dichloroethane	ND U	1.0	0.56	1	11/06/08	11/06/08	JWG0804226	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/06/08	11/06/08	JWG0804226	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/06/08	11/06/08	JWG0804226	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
2-Butanone (MEK)	ND U	10	0.56	1	11/06/08	11/06/08	JWG0804226	
2-Hexanone	ND U	25	0.36	1	11/06/08	11/06/08	JWG0804226	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/06/08	11/06/08	JWG0804226	
Acetone	ND U	50	2.4	1	11/06/08	11/06/08	JWG0804226	
Acrylonitrile	ND U	10	0.59	1	11/06/08	11/06/08	JWG0804226	
Benzene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
Bromochloromethane	ND U	5.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Bromodichloromethane	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Bromoform	ND U	2.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Bromomethane	ND U	1.0	0.14	1	11/06/08	11/06/08	JWG0804226	
Carbon Disulfide	ND U	10	0.84	1	11/06/08	11/06/08	JWG0804226	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/06/08	11/06/08	JWG0804226	
Chlorobenzene	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Chloroethane	ND U	5.0	0.19	1	11/06/08	11/06/08	JWG0804226	
Chloroform	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	
Chloromethane	ND U	1.0	0.17	1	11/06/08	11/06/08	JWG0804226	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Dibromochloromethane	ND U	1.0	0.11	1	11/06/08	11/06/08	JWG0804226	
Dibromomethane	ND U	5.0	0.12	1	11/06/08	11/06/08	JWG0804226	
Ethylbenzene	ND U	1.0	0.10	1	11/06/08	11/06/08	JWG0804226	

Comments:

Printed: 11/07/2008 15:11:10

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Date Collected: NA Date Received: NA

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0804226-4

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/06/08	11/06/08	JWG0804226	
Methylene Chloride	ND U	5.0	0.72	1	11/06/08	11/06/08	JWG0804226	
Styrene	ND U	1.0	0.051	1	11/06/08	11/06/08	JWG0804226	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/06/08	11/06/08	JWG0804226	
Toluene	ND U	1.0	0.52	1	11/06/08	11/06/08	JWG0804226	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/06/08	11/06/08	JWG0804226	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/06/08	11/06/08	JWG0804226	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/06/08	11/06/08	JWG0804226	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/06/08	11/06/08	JWG0804226	
Trichlorofluoromethane	ND UJ	20	0.25	1	11/06/08	11/06/08	JWG0804226	J(3)
Vinyl Acetate	ND U	10	0.60	1	11/06/08	11/06/08	JWG0804226	` /
Vinyl Chloride	ND U	1.0	0.25	1	11/06/08	11/06/08	JWG0804226	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/06/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/06/08	Acceptable	
Dibromofluoromethane	100	82-116	11/06/08	Acceptable	
Toluene-d8	107	88-117	11/06/08	Acceptable	

Comments:

Printed: 11/07/2008 15:11:10

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 2

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix: V

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-9A

Lab Code:

J0805378-001

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	130	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:24

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

)/page

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-9B

Lab Code:

J0805378-002

Units: ug/L Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	133	77-150	11/11/08	Acceptable

Comments:

Printed: 11/12/2008 14:06:25 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512 Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-9C

Lab Code:

J0805378-003

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

			Dilution	Date	Date	Extraction	
Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	***************************************
ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	
	ND U	ND U 0.020	ND U 0.020 0.0070	Result Q MRL MDL Factor ND U 0.020 0.0070 1	Result Q MRL MDL Factor Extracted ND U 0.020 0.0070 1 11/07/08	Result Q MRL MDL Factor Extracted Analyzed ND U 0.020 0.0070 1 11/07/08 11/11/08	Result Q MRL MDL Factor Extracted Analyzed Lot ND U 0.020 0.0070 1 11/07/08 11/11/08 JWG0804236

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	136	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:26

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference:

A.C.

RR25566

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-8A

Lab Code:

J0805378-004

Units: ug/L Basis: NA

Extraction Method:

METHOD

Analysis Method

Level: Low

Allalysis	memou:	0011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	133	77-150	11/11/08	Acceptable	

Comments:

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-8B

Lab Code:

J0805378-005

Units: ug/L

Basis: NA

Extraction Method:

Analysis Method:

METHOD 8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	132	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:29 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008 **Date Received:** 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-8C

Lab Code:

J0805378-006

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Dilution Extraction

Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name %Rec	Control Limits	8	Dutt	Note
1,1,1,2-Tetrachloroethane 135	77-150	1,2-Tetrachloroethane	50 11/11/08	Acceptable

Comments:

Printed: 11/12/2008 14:06:30

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Date Collected: 11/05/2008

Service Request: J0805378

Sample Matrix:

Water

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-7A

Lab Code:

J0805378-007

Units: ug/L

Extraction Method:

METHOD

Basis: NA

Analysis Method:

8011

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

urrogate Name %Rec
1,1,2-Tetrachloroethane 134

Comments:

Printed: 11/12/2008 14:06:31

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-7B

Lab Code:

J0805378-008

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	136	77-150	11/11/08	Acceptable	

Comments:

 $\begin{array}{lll} Printed: & 11/12/2008 & 14:06:33 \\ p:\Stealth\Crystal.rpt\Form\Im.rpt & \end{array}$

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-7C

Lab Code:

J0805378-009

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Extraction

Note

Analysis Method:

8011

Dilution Date Date **Analyte Name** Result Q **MRL MDL Factor**

Extracted **Analyzed** Lot 1,2-Dibromoethane (EDB) ND U 0.0070 11/11/08 0.020 1 11/07/08 JWG0804236

1,2-Dibromo-3-chloropropane (DBCP ND U 0.020 0.0057 1 11/07/08 11/11/08 JWG0804236

Control Date Surrogate Name %Rec Limits Analyzed Note 1,1,1,2-Tetrachloroethane 133 77-150 11/11/08 Acceptable

Comments:

Printed: 11/12/2008 14:06:34 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-5A

Lab Code:

J0805378-010

Units: ug/L

Extraction Method:

Basis: NA

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1 .	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	134	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:35

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

RR25566 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-5B

Lab Code:

J0805378-011

Units: ug/L

Basis: NA

Extraction Method:

METHOD

ND U

Level: Low

JWG0804236

Analysis Method:

1,2-Dibromo-3-chloropropane (DBCP

8011

Dilution Date Date Extraction **Analyte Name** Result Q **MRL MDL Factor** Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 0.020 0.0070 1 11/07/08 11/11/08 JWG0804236

0.0057

1

11/07/08

11/11/08

0.020

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	136	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:36

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-5C

Lab Code:

J0805378-012

Units: ug/L Basis: NA

Extraction Method:

METHOD 8011

Level: Low

Analysis Method:

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	135	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:38 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

DUP-1

Lab Code:

J0805378-013

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1 1	11/07/08 11/07/08	11/11/08 11/11/08	JWG0804236 JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	135	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:39

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Collected: NA

Date Received: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804236-3

Units: ug/L

Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/07/08	11/11/08	JWG0804236	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/07/08	11/11/08	JWG0804236	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	134	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 14:06:40 $p:\label{lem:pt} p:\label{lem:pt} Torm \ lm.rpt$

Form 1A - Organic

1 of 1

RR25566 SuperSet Reference:

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:
Date Received:

11/5/2008 11/6/2008

Total Metals

Sample Name:

MW-9A

Lab Code:

J0805378-001

Units: Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	0.5	i .
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	2.4	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	2.7	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	2.8	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.3	, i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	1.0	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	632	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.3	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	1.2	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	0.9	í
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	1.7	i
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

Matrix:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number:

FQ1512 WATER Service Request: J0805378

Date Collected: 11/5/2008 Date Received:

11/6/2008

Total Metals

Sample Name:

MW-9B

Lab Code:

Units: Basis:

ug/L N/A

J0805378-002

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	0.40	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	29	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	1.6	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.2	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	1020	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.8	i ,
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.3	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	1.1	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	2.2	i
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected: Date Received:

11/5/2008 11/6/2008

Total Metals

Sample Name:

MW-9C

Lab Code:

J0805378-003

Units:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	39	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	1.3	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	739	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	3.8	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U s	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	2.9	·i
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected: Date Received: 11/5/2008 11/6/2008

Total Metals

Sample Name:

MW-8A

Lab Code:

J0805378-004

Units:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	0.93	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	63	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	1.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	1.8	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	2610	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	, 1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	4.1	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	2.8	i
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:

11/5/2008 **Date Received:** 11/6/2008

Total Metals

Sample Name:

MW-8B

Lab Code:

J0805378-005

Units:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	0.32	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	53	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	3.8	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.8	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	980	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	5.7	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.5	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	0.8	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	9.0	
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805378

Date Collected: Date Received:

11/5/2008 11/6/2008

Total Metals

Sample Name:

MW-8C

Lab Code:

J0805378-006

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	U	•
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	15	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	0.9	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	Ü	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	854	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	1.6	i
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378 11/5/2008 -

Date Collected: Date Received:

11/6/2008

Total Metals

Sample Name:

Lab Code:

MW-7A

J0805378-007

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	1.2	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	13	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	1.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	1.1	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	5220	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	Ų	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	1.4	· i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER

Service Request: J0805378 Date Collected: 11/5/2008

Date Received:

11/6/2008

Total Metals

Sample Name:

MW-7B

Lab Code:

J0805378-008

Units: Basis:

	* * *									
Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes	
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U		
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	0.36	i	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	34		
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U		
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U		
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	1.0	i	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.2	i	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U		
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	1470		
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.2	i	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U		
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.4	i	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U		
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U		
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U		
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	U		
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U		

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805378

Date Collected:

11/5/2008

Date Received:

11/6/2008

Total Metals

Sample Name:

MW-7C

Lab Code:

J0805378-009

Units:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	28	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	1.0	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	676	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.5	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	1.4	i
Zinc	EPA 3020A	6020	10	. 4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:

11/5/2008

Date Received: 11/6/2008

Total Metals

Sample Name:

MW-5A

Lab Code:

J0805378-010

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	1.4	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008.	2.2	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	3.7	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	1.3	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	323	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	1.4	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.9	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	1.0	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	1.9	i
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:

11/5/2008

Date Received:

11/6/2008

Total Metals

Sample Name:

MW-5B

Lab Code:

J0805378-011

Units: Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	0.50	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	11	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	0.9	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	280	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	Ü	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U ·	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.4	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	0.9	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	15	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected: Date Received:

11/5/2008 11/6/2008

Total Metals

Sample Name:

MW-5C

Lab Code:

J0805378-012

Units: Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	22	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	0.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.9	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	918	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	· U	
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:
Date Collected:

J0805378 11/5/2008

Date Received:

11/6/2008

Total Metals

Sample Name:

DUP-1

Lab Code:

J0805378-013

Units: Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U.	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	2.0	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	2.8	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	2.6	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	0.9	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/12/2008	11/13/2008	643	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	0.4	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	1.0	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	1.6	i
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:

N/A Date Received: N/A

Total Metals

Method Blank

Units: ug/L Basis: N/A

Sample Name: Lab Code:

MB5-1112

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/12/2008	11/18/2008	U	- a ² /2
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/12/2008	11/18/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/12/2008	11/18/2008	U	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/12/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/12/2008	11/18/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/12/2008	11/13/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/13/2008	11/14/2008	U	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	u U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/12/2008	11/18/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/12/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/12/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/12/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/12/2008	11/18/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/12/2008	11/18/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:

11/5/2008 11/6/2008

Date Received:

Dissolved Metals

Sample Name:

MW-8B

Lab Code:

J0805378-005

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/13/2008	11/17/2008	1.3	i
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/13/2008	11/17/2008	0.30	i
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/13/2008	11/17/2008	31	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/13/2008	11/17/2008	0.17	i
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/13/2008	11/17/2008	1.5	i
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	0.2	i
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	0.5	i
Iron	EPA 3005A	6010B	50	4.0	1.0	11/13/2008	11/13/2008	786	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	2.7	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	0.5	i
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/13/2008	11/17/2008	U	
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/13/2008	11/17/2008	0.14	i
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U .	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/13/2008	11/17/2008	2.8	i
Zinc	EPA 3005A	6020	10	4.0	1.0	11/13/2008	11/17/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:

N/A N/A

Date Received:

Dissolved Metals

Sample Name: Lab Code: Method Blank

MB3-1113

Units: Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/13/2008	11/17/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/13/2008	11/17/2008	U	
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/13/2008	11/17/2008	U	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/13/2008	11/17/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/13/2008	11/17/2008	U	÷ 2,
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	U	
Iron	EPA 3005A	6010B	50.0	4.0	1.0	11/13/2008	11/13/2008	U	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/13/2008	11/17/2008	U	* * *
Silver	EPA 3005A	6020	0.5	0.1	1.0	11/13/2008	11/17/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/13/2008	11/17/2008	U	
Zinc	EPA 3005A	6020	10.0	4.0	1.0	11/13/2008	11/17/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805378

Date Collected:

11/05/2008

Date Received:

11/06/2008

Total Metals

Prep Method:

Test Notes:

EPA 3010A

Analysis Method:

6010B

Sodium

Units: Basis:

mg/L N/A

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-9A	J0805378-001	0.50	0.02	1.0	11/12/2008	11/13/2008	11	
MW-9B	J0805378-002	0.50	0.02	1.0	11/12/2008	11/13/2008	10	
MW-9C	J0805378-003	0.50	0.02	1.0	11/12/2008	11/13/2008	6.4	
MW-8A	J0805378-004	0.50	0.02	1.0	11/12/2008	11/13/2008	30	
MW-8B	J0805378-005	0.50	0.02	1.0	11/12/2008	11/13/2008	6.5	
MW-8C	J0805378-006	0.50	0.02	1.0	11/12/2008	11/13/2008	5.9	
MW-7A	J0805378-007	0.50	0.02	1.0	11/12/2008	11/13/2008	15	
MW-7B	J0805378-008	0.50	0.02	1.0	11/12/2008	11/13/2008	9.3	
MW-7C	J0805378-009	0.50	0.02	1.0	11/12/2008	11/13/2008	6.1	
MW-5A	J0805378-010	0.50	0.02	1.0	11/12/2008	11/13/2008	18	
MW-5B	J0805378-011	0.50	0.02	1.0	11/12/2008	11/13/2008	7.1	
MW-5C	J0805378-012	0.50	0.02	1.0	11/13/2008	11/14/2008	8.6	
DUP-1	J0805378-013	0.50	0.02	1.0	11/12/2008	11/13/2008	11	
Method Blank	MB4-1112	0.50	0.02	1.0	11/12/2008	11/13/2008	U	
Method Blank	MB4-1113	0.50	0.02	1.0	11/13/2008	11/14/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Dissolved Metals

Sodium

Units:

mg/L N/A

Prep Method: Analysis Method: 6010B

EPA 3005A

Test Notes:

Basis:

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-8B	J0805378-005	0.50	0.020	1.0	11/13/2008	11/13/2008	6.5	
Method Blank	MB2-1113	0.50	0.020	1.0	11/13/2008	11/13/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-9A

Lab Code:

J0805378-001

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.25	0.1	5	11/07/08 09:50	16	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	22	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 14:32	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	160	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-9B

Lab Code:

J0805378-002

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.13	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	17	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 15:17	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	67	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378 Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-9C

Lab Code:

J0805378-003

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.20	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	9.2	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 15:32	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	68	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-8A

Lab Code:

J0805378-004

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	3.0	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	64	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 15:47	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	190	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:** FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-8B

Lab Code:

J0805378-005

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.15	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	9.6	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 16:02	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	110	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-8C

Lab Code:

J0805378-006

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.11	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	7.5	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 17:02	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	44	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: JED SWDF

Project Number: FQ1512

Sample Matrix: WATER Service Request: J0805378 Date Collected: 11/05/08

Date Received: 11/06/08

Basis: NA

Inorganic Parameters

Sample Name:

MW-7A

Lab Code:

J0805378-007

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	3.7	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	27	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 17:17	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	96	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-7B

Lab Code:

J0805378-008

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.14	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	21	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 17:32	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	68	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08 Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-7C

Lab Code:

J0805378-009

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.096	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	7.6	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 17:47	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	45	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-5A

Lab Code:

J0805378-010

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.25	0.1	5	11/07/08 09:50	14	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	43	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 18:02	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	210	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix: WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-5B

Lab Code:

J0805378-011

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.20	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	14	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 18:17	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	51	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

MW-5C

Lab Code:

J0805378-012

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	0.094	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	15	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 19:02	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	, 60	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Inorganic Parameters

Sample Name:

DUP-1

Lab Code:

J0805378-013

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.25	0.1	5	11/07/08 09:50	16	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	23	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 19:17	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	180	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: NA

Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

J0805378-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/07/08 09:50	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/06/08 12:33	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/06/08 12:33	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	U	

QA/QC Report

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805378

Surrogate Recovery Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3	Sur4
MW-9A	J0805378-001	98	94	102	107
MW-9B	J0805378-002	97	94	100	107
MW-9C	J0805378-003	96	92	101	105
MW-8A	J0805378-004	99	94	102	106
MW-8B	J0805378-005	97	94	101	105
MW-8C	J0805378-006	97	93	101	106
MW-7A	J0805378-007	• 98	92	101	106
MW-7B	J0805378-008	98	94	102	107
MW-7C	J0805378-009	97	94	101	105
MW-5A	J0805378-010	97	93	101	106
MW-5B	J0805378-011	98	93	100	107
MW-5C	J0805378-012	99	92	101	105
DUP-1	J0805378-013	101	93	102	106
Trip Blank	J0805378-014	100	94	101	107
Method Blank	JWG0804226-4	98	93	100	107
Lab Control Sample	JWG0804226-3	98	94	101	105

Surrogate Recovery Control Limits (%)

Sur1 =	1,2-Dichloroethane-d4	71-122
Sur2 =	4-Bromofluorobenzene	75-120
Sur3 =	Dibromofluoromethane	82-116
Sur4 =	Toluene-d8	88-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/07/2008 15:11:16 $p:\Stealth\Crystal.rpt\Form2.rpt$

QA/QC Report

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Extracted: 11/06/2008

Date Analyzed: 11/06/2008

Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: JWG0804226

Lab Control Sample JWG0804226-3 Lab Control Spike

	Liau	Control Spik		%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
1,1,1,2-Tetrachloroethane	21.4	20.0	107	85-117	****	 ARATTA PORTO DE PARE ARATTA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA
1,1,1-Trichloroethane (TCA)	21.4	20.0	107	79-124		
1,1,2,2-Tetrachloroethane	20.9	20.0	104	83-120		
1,1,2-Trichloroethane	20.3	20.0	101	86-114		
1,1-Dichloroethane	20.9	20.0	105	80-128		
1,1-Dichloroethene	20.2	20.0	101	78-130		
1,2,3-Trichloropropane	20.4	20.0	102	83-123		
1,2-Dibromo-3-chloropropane (DBCP	19.0	20.0	95	62-123		
1,2-Dibromoethane (EDB)	20.0	20.0	100	88-117		
1,2-Dichlorobenzene	20.1	20.0	100	84-115		
1,2-Dichloroethane (EDC)	21.5	20.0	108	80-124		
1,2-Dichloropropane	20.3	20.0	102	79-123		
1,4-Dichlorobenzene	20.5	20.0	103	83-113		
2-Butanone (MEK)	99.0	100	99	73-127		+*, ,
2-Hexanone	97.8	100	98	71-138		
4-Methyl-2-pentanone (MIBK)	98.8	100	99	72-136		
Acetone	106	100	106	67-133		
Acrylonitrile	100	100	100	77-127		
Benzene	20.7	20.0	103	79-119		
Bromochloromethane	21.2	20.0	106	79-129		
Bromodichloromethane	20.4	20.0	102	81-123		
Bromoform	20.2	20.0	101	68-129		
Bromomethane	22.5	20.0	113	79-130		
Carbon Disulfide	105	100	105	76-138		
Carbon Tetrachloride	20.2	20.0	101	81-125		
Chlorobenzene	20.6	20.0	103	86-113		
Chloroethane	21.4	20.0	107	74-126		
Chloroform	20.9	20.0	105	83-124		
Chloromethane	22.6	20.0	113	67-135		
cis-1,2-Dichloroethene	21.2	20.0	106	80-126		
cis-1,3-Dichloropropene	20.6	20.0	103	86-123		
Dibromochloromethane	20.3	20.0	102	82-121		
Dibromomethane	20.5	20.0	102	83-123		
Ethylbenzene	20.9	20.0	104	90-118		
Iodomethane (Methyl Iodide)	103	100	103	68-134		
Methylene Chloride	21.2	20.0	106	72-124		
-						

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/07/2008 15:11:19 $p:\Stealth\Crystal.rpt\Form3LCS.rpt$

Form 3C - Organic

1 of 2

SuperSet Reference: RR25469

QA/QC Report

Client: **Project:** GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Extracted: 11/06/2008

Date Analyzed: 11/06/2008

Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804226

Lab Control Sample JWG0804226-3

	Lab Control Spike			%Rec			
Analyte Name	Result	Expected	%Rec	Limits			
Styrene	20.5	20.0	102	89-122	 	 	
Tetrachloroethene (PCE)	20.7	20.0	103	80-121	. **		
Toluene	20.6	20.0	103	86-117			
trans-1,2-Dichloroethene	21.5	20.0	107	77-124			
trans-1,3-Dichloropropene	20.8	20.0	104	83-124			
trans-1,4-Dichloro-2-butene	17.2	20.0	86	53-143			
Trichloroethene (TCE)	20.6	20.0	103	76-124			
Trichlorofluoromethane	9.54	20.0	48 *	74-134			
Vinyl Acetate	98.9	100	99	61-148			
Vinyl Chloride	21.5	20.0	107	78-132			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/07/2008 15:11:19 $p:\Stealth\Crystal.rpt\Form3LCS.rpt$

SuperSet Reference:

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Surrogate Recovery Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method:

METHOD

Units: PERCENT

Analysis Method:

8011

Level: Low

Sample Name	Lab Code	Sur1
MW-9A	J0805378-001	130
MW-9B	J0805378-002	133
MW-9C	J0805378-003	136
MW-8A	J0805378-004	133
MW-8B	J0805378-005	132
MW-8C	J0805378-006	135
MW-7A	J0805378-007	134
MW-7B	J0805378-008	136
MW-7C	J0805378-009	133
MW-5A	J0805378-010	134
MW-5B	J0805378-011	136
MW-5C	J0805378-012	135
DUP-1	J0805378-013	135
Method Blank	JWG0804236-3	134
Lab Control Sample	JWG0804236-1	129
Duplicate Lab Control Sample	JWG0804236-2	135

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/12/2008 14:06:45

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

1 of 1

SuperSet Reference: RR25566

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805378

Date Extracted: 11/07/2008

Date Analyzed: 11/11/2008

Lab Control Spike/Duplicate Lab Control Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method:

METHOD

Analysis Method:

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804236

Lab Control Sample

JWG0804236-1

Duplicate Lab Control Sample

JWG0804236-2

Lab Control Spike **Duplicate Lab Control Spike** %Rec **RPD RPD** Limit **Analyte Name** %Rec Limits Result **Expected** Result %Rec Expected 1,2-Dibromoethane (EDB) 0.288 0.250 115 0.294 0.250 118 70-130 2 20 1,2-Dibromo-3-chloropropane (DBCP 0.269 0.250 108 0.317 0.250 127 70-130 16 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/12/2008 14:06:49 p:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

SuperSet Reference: RR25566

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008 **Date Extracted:** 11/12/2008

Date Analyzed: 11/13/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-9A

Lab Code:

J0805378-001

J0805378-001S

Units: ug/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	7	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Iron	EPA 3010	6010B	50	2000	2000	632	2540	2520	95	94	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008

Date Extracted: 11/12/2008 **Date Analyzed:** 11/12/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-7A

Lab Code:

J0805378-007

J0805378-007S

Units: ug/L

Aurica Aurica	4											% Rec	
To AMPA	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	y	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Mercury	METHOD	7470A	0.50	5.00	5.00	U	4.48	4.51	90	90	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805378

Date Collected: N/A Date Received: N/A

Date Extracted: 11/12/2008

Date Analyzed: 11/18/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS5-1112

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	51.1	102	80 - 120	
Arsenic	EPA 3020A	6020	50.0	47.6	95	80 - 120	
Barium	EPA 3020A	6020	50.0	51.2	102	80 - 120	
Beryllium	EPA 3020A	6020	50.0	46.3	93	80 - 120	
Cadmium	EPA 3020A	6020	50.0	47.9	96	80 - 120	
Chromium	EPA 3020A	6020	50.0	49.3	99	80 - 120	
Cobalt	EPA 3020A	6020	50.0	47.6	95	80 - 120	
Copper	EPA 3020A	6020	50.0	46.1	92	80 - 120	
Iron	EPA 3010A	6010B	2000	1950	98	80 - 120	
Iron	EPA 3010A	6010B	2000	1960	98	80 - 120	
Lead	EPA 3020A	6020	50.0	49.6	99	80 - 120	
Mercury	METHOD	7470A	5.00	4.84	97	80 - 120	
Nickel	EPA 3020A	6020	50.0	47.4	95	80 - 120	
Selenium	EPA 3020A	6020	50.0	45.2	90	80 - 120	
Silver	EPA 3020A	6020	50.0	52.7	105	80 - 120	
Thallium	EPA 3020A	6020	50.0	49.0	98	80 - 120	
Vanadium	EPA 3020A	6020	50.0	49.6	99	80 - 120	
Zinc	EPA 3020A	6020	100	87.6	88	80 - 120	

QA/QC Report

Client:

Matrix:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

WATER

JED SWDF

Service Request: J0805378 Date Collected: N/A Date Received: N/A

Date Extracted: 11/13/2008 **Date Analyzed:** 11/17/2008

Laboratory Control Sample Summary Dissolved Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS3-1113

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3005A	6020	50.0	53.3	107	80 - 120	
Arsenic	EPA 3005A	6020	50.0	48.5	97	80 - 120	
Barium	EPA 3005A	6020	50.0	49.4	99	80 - 120	
Beryllium	EPA 3005A	6020	50.0	50.6	101	80 - 120	
Cadmium	EPA 3005A	6020	50.0	48.8	98	80 - 120	
Chromium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Cobalt	EPA 3005A	6020	50.0	49.8	100	80 - 120	
Copper	EPA 3005A	6020	50.0	49.5	99	80 - 120	
Iron	EPA 3005A	6010B	2000	2010	100	80 - 120	
Lead	EPA 3005A	6020	50.0	50.4	101	80 - 120	
Mercury	METHOD	7470A	5.00	4.84	97	80 - 120	
Nickel	EPA 3005A	6020	50.0	50.3	101	80 - 120	
Selenium	EPA 3005A	6020	50.0	48.9	98	80 - 120	
Silver	EPA 3005A	6020	50.0	52.9	106	80 - 120	
Thallium	EPA 3005A	6020	50.0	49.1	98	80 - 120	
Vanadium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Zinc	EPA 3005A	6020	100	101.0	101	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/2008

Date Received: 11/06/2008 **Date Extracted:** 11/12/2008

Date Analyzed: 11/13/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-9A

Lab Code:

J0805378-001

J0805378-001S

Units: mg/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	1	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Sodium	EPA 3010	6010B	0.5	10.0	10.0	10.8	20.5	20.6	97	98	<1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805378

Date Collected: N/A

Date Received: N/A

Date Extracted: 11/13/2008

Date Analyzed: 11/14/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS4-1113

Basis: N/A

Units: mg/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Sodium	EPA 3010A	6010B	10.0	10.1	101	80 - 120	
Sodium	EPA 3010A	6010B	10.0	10.0	100	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Matrix:

WATER

Service Request: J0805378

Date Collected: N/A Date Received: N/A

Date Extracted: 11/13/2008

Date Analyzed: 11/13/2008

Laboratory Control Sample Summary

Dissolved Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS2-1113

Units: mg/L

Basis: N/A

CAS Percent

Prep Method Analyte

Analysis Method True Value 10.0

Percent Recovery Results 10.1

Recovery Acceptance Limits

Result Notes

Sodium

EPA 3005A

6010B

101

80 - 120

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/06/08

Duplicate Summary Inorganic Parameters

Sample Name:

MW-9A

Lab Code:

J0805378-001DUP

Test Notes:

					Duplicate		Relative	
Analyte	Units	Analysis Method	MRL	Sample Result	Sample Result	Average	Percent Difference	Result Notes
Chloride Nitrate as Nitrogen	mg/L (ppm) mg/L (ppm)	300.0 300.0	0.2 0.2	22 U	23 U	22.5 U	4	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/06/08

Basis: NA

Matrix Spike Summary **Inorganic Parameters**

Sample Name:

MW-9A

Lab Code:

J0805378-001MS

Test Notes:

CAS Percent Spiked Recovery **Analysis** Spike Sample Percent Acceptance Result Sample Analyte Units Method MRL Result Result Recovery Limits Level Notes Chloride mg/L (ppm) 300.0 0.2 100 22 97 119 90-110 Nitrate as Nitrogen mg/L (ppm) 300.0 0.2 5.0 U 5.09 102 90-110

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/11/08

Basis: NA

Duplicate Summary Inorganic Parameters

Sample Name:

MW-9B

Lab Code:

J0805378-002DUP

Test Notes:

Analyte	Units	Analysis Method	MRL	Sample Result			Percent Difference	Result Notes
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	67	61	64	9	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/07/08

Duplicate Summary Inorganic Parameters

Sample Name:

MW-8A

Lab Code:

J0805378-004DUP

Test Notes:

Analyte

Basis: NA

Duplicate Relative Sample Sample **Analysis** Percent Result Method Result Average Difference Notes MRL Result

Ammonia as Nitrogen

mg/L (ppm)

Units

350.1

0.05

3.0

3.0

3

<1

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/07/08

Matrix Spike Summary Inorganic Parameters

Sample Name:

MW-8A

Lab Code:

J0805378-004MS

Test Notes:

								CAS Percent	
Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	_	Percent Recovery	Recovery Acceptance Limits	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	5.00	3.0	8.12	102	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/06/08

Duplicate Summary Inorganic Parameters

Sample Name:

MW-5B

Lab Code:

J0805378-011DUP

Test Notes:

Analyte	Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result		Relative Percent Difference	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	14	14	14	<1	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	U	U	U	-	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Sample Matrix:

Project Number: FQ1512 WATER Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/06/08

Matrix Spike Summary Inorganic Parameters

Sample Name:

MW-5B

Lab Code:

J0805378-011MS

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	100	14	110	96	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	U	5.16	103	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805378

Date Collected: 11/05/08

Date Received: 11/06/08

Date Extracted: NA

Date Analyzed: 11/11/08

Duplicate Summary **Inorganic Parameters**

Sample Name:

MW-5C

Lab Code:

J0805378-012DUP

Test Notes:

					Duplicate	;	Relative		
Analyte	Units	Analysis Method	MRL		Sample Result	Average	Percent Difference	Result Notes	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	60	63	61.5	5		

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number:

FQ1512

Sample Matrix:

WATER

Service Request:

J0805378

Date Collected:

NA

Date Received:

NA NA

Date Extracted: Date Analyzed:

11/06-11/08

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Laboratory Control Sample

Lab Code: Test Notes:

Basis: NA J0805378-LCS

₩						CAS Percent Recovery	
Analyte	Units	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	5.00	5.07	101	90-110	
Chloride	mg/L (ppm)	300.0	5.00	5.20	104	90-110	
Chloride	mg/L (ppm)	300.0	100	92.8	93	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	5.0	5.09	102	90-110	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	300	303	101	85-115	

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

111162121	Geosyn te	MI	Service Reques	t#-	J0805378	· ·
roject: Cooler rece	ived on 1/16	108	and opened on	11/6/08	by 11)K
COURIER:		FEDEX	DHL CLIENT	Tracking #	Uy /	
	The second secon		•	Tracking "	2	3.74
1	Were custody seals or				Ýes No	N/A
2	Were seals intact, sign				Yes No	N/A
3	Were custody papers			31	Yes No	N/A
4.	Temperature of cooler(s)		(Should be 4 +/- 2 degrees C)	3		
5	Correct Temperature?				Yes No	N/A
6	Were Ice or Ice Packs	•		S	Yes No	N/A
7		-	on (unbroken, etc)?	$\mathcal{L}_{\mathbf{u}}$	Yes No	N/A
8			iple ID, preservation, etc	c)?	Yes No	N/A
9	Did all bottle labels a			\mathcal{L}	Yes No	N/A
10	Were the correct bott			>	Yes No	N/A
11	Were all of the preserved	bottles received v	vith the appropriate preservat	tive?	Yes No	N/A
14	Where did the bottles	originate?			CAS Clien	nt
		u video politica in mislado da destin di resconse antivisti con destina interdedente con ence de conse	Manuf Lot # or CAS			STEAMBROOKS AS THRES FOR SE
	Sample ID	Reagent	Manuf. Lot # or CAS Chem ID	ml added	Inititials	Ottom Productivit as of mass from the
	Sample ID	Reagent	i e	ml added	Inititials	
	Sample ID	Reagent	i e	ml added	Inititials	
	Sample ID	Reagent	i e	ml added	Inititials	
	Sample ID	Reagent	i e	ml added	Inititials	
	Sample ID	Reagent	i e	ml added	Inititials	
	Sample ID	Reagent	i e	ml added	Inititials	
	Sample ID	Reagent	i e	ml added	Inititials	
	Sample ID	Reagent	i e	ml added	Inititials	
\dditional			i e		Inititials	
Additional			Chem ID		Inititials	
Additional			Chem ID		Inititials	

SR#: J 0305378

Date: 1/6/08

Initials:

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

	Bottle Code													<u>L</u>																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25		27	28	29	30
	40mL	40mL	40mL	40mL	125mL	125ml	125mL	125ml.	250mL	250mL	250mL	250mL	250ml.					500mL		1L	1L	1L	1L	2oz	40z	8oz	16oz		100ml.	Misc.
Container	G	G	G	G	Р	Р	Р	Р	Р	Р	Ρ	Р	Р	G	G	Р	Р	P	P	Р	G	G	G	G	G	G	G	ENC	Р	Misc.
_	1502.5		Sodium									ZnAcetate			1	4.1	lunco.	Luna	3 275		25		LIDCO.	11.5					Sodium Thiosulfate	- AMIN
Pres.	-151	HCI <2	Thiosulfate N/A	H2SO/ <2	N/A	HCI <2	H2SO4	<2	N/A	H2SO4	HNO3	NaOH >9	NaOH >12	N/A	HNO3	N/A	M2502	HNO3 <2	N/A	HNO3 <2	NIA	HCI ≤2	H2SO4 <2		ALZA		N/A	N/A	N/A	N/A
Req. pH Sample #	N/A	~	- INIA	-	N/A		-		N/A		-	-	- 12	19774		14774		 ~~	1400	-	1417-			1977	19/25	INA	314774	1,19774	-	1-14/0
	3	3		 	 -	 	 	1	ž				 		 			1	+-					 	-			_		
-001	-3	2000		 				1	-	<u> </u>	-				 	 	<u> </u>		╁					 		-				+-
-002	333	3333		-											 				┼	<u> </u>	-						-			-
-003	حر	-3		ļ	 	ļ	1	1					-		 		 	<u> </u>	1-		-			┨		-				
-004	2	2000			ļ			1	- (ļ		ļ		<u> </u>		-			ļ				-		├
-005	2	3					1	2	l						<u> </u>			ļ	<u> </u>									ļ		
-006	3	3					1)	1						<u> </u>			ļ	<u> </u>											
-007	3	3					1	j	1								<u> </u>		<u> </u>	L										
-008	3	Z						3	S.									l	l											
-009	3733	22		I			Ĩ	8	1																					
-010	2	3				<u> </u>	ì	l'i	í																					
-011	3333	3					1	1	1																					
-012	2	3		1			1	Î	Ī								Γ	T									- 1			
-013	12						1	i	Ī																					
-014	Lucido	3		1				1									l													
-015				 	 				-						 		i						Mark was marked and a second	1					,	
-016				 	 										†			 	1		1			 						1
-017					 		 																	t						
-017				 	 		 								 		<u> </u>		\vdash					1		-		 		1
1					-										-			-	1					1						
-019								l							ļ			 		_				 				\vdash		t -
-020																	 		 		-									1
-021	-				ļ						-				 		 		-		-									t
-022																			 -		-									
-023																			├		-					_				
-024				<u> </u>											ļ			<u> </u>	<u> </u>		_									<u> </u>
-025																	ļ		ļ											<u> </u>
-026															ļ			<u> </u>												<u> </u>
-027																	L		_											ļ
-028		1																												
-029																_														
-030																														
-031	$\neg \neg$																													
-032																														
-033		i		-																										
-034																			Г		\Box									
-035																			\vdash											
																			-		\vdash									
-036																		 			\vdash			-					-	
-037																					\vdash				_					-
-038																		ļ												-
039																			-				-	-	_					-
-040				L				L					L					L								نــــا				<u> </u>

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FOR

An Employee - Owned Company www.caslab.com

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE ____/ OF

M SR #	J0805378
amber (0. NONE
QUIREMENTS	INVOICE INFORMATION
Summaries MSD as required) C and Calibration on Report with Raw Data	PO# BILL TO:
orms / Custom Report	
	RECEIVED BY
, , , , , , , , , , , , , , , , , , ,	Signature
<i>e</i>	Printed Name Firm
MSD as required) C and Calibration on Report with Raw Data orms / Custom ReportYes No JISHED BY	PO# BILL TO: RECEIVED BY Signature Printed Name

Project Name JEDSWDF	·	Ī		-	Al	NALY	SIS RI	EQUES	TED (I	nclude	e Meth	od Nu	mber									
Project Manager Kirk Wilk	Email Address Fwills@g		2.600	PRE	SERVA	TIVE	1	0	3	2	0	7										
Company/Agdress		3y 11-4		T		\rightarrow		/ _ /	/ _)	//	7	' 	\rightarrow							or varivo	Ney
Geosyntec				ERS			/	/	/		/*	27/	/			7		/		/ 0. 1 1. H	NONE ICL	
14055 Rivered	ilge D. Ste Z	700		NTAIN		/0			/	3/2		<u>\$</u>							/ /	/ 2. F 3. F 4. N	1NO3 12SO4 NaOH	
Tarpu, FL	33637			NUMBER OF CONTAINERS	/		00	4	nergle				/ /	′ /	/ *	/ /	/ /	/ /	′ /	5. Z 6. N	Zn. Aceta MeOH NaHSO ₄	te
813-558 -0990	FAX# 813 - 558 -	-9776		BER	/ 4	D) (00/	1/2	$\sqrt{\epsilon}$	5	Vool Veel		. /			/					Other	
Sample Scignature Cong	Sampler's Printed Name] N		7			$\forall z$		7		. /	/ L					/	REMAI		
you ley	Joe Temy	AMPLING	-	-	/ /	<u>'</u>		_	/^	7 21	Υ		/ 	' 	/ 	/ 	<u>/</u>	/ /	ALTE	REMAI RNATE DI	ESCRIPT	ON
CLIENT SAMPLE ID	LAB ID DATI		MATRIX								- 7											
MW-9A	11-5-	08 <i>(1815</i>	GW	9	X	X	X	X	X									-		, , , , , , , , , , , , , , , , , , , ,		
MW-9B		0905	Î-	9			-	1														***
MW-9C	The state of the s	0845		19						†												
MW-8A		1055		19		\top			-	+	\vdash									•		
MW-873		1125		10		+		+		1	\vdash	$\vdash \lnot$	 			-						
MW-8C		1040	_	9		Spelville			- denta		\vdash		+			-	\dashv	-			***************************************	
_				9	- standar	SQL I	$\vdash \vdash \vdash$	\vdash	- Indiana	1	 		 									1000
MW-7A MW-7B		1305	- India	1	H	+			- Otopia	+	-					-	-					
		1355		9		+			+	+	\vdash											
MW-7C		1315		9		+	1,	H.,	1	-												
MW-5A		1505	<u> </u>		4	\mathcal{U}	\mathcal{V}	V	V	لبيل												
SPECIAL INSTRUCTIONS/COMMENTS	nts of 2 cooler	€				ŢU				IIREMÉN					QUIRE	MENTS	3	-	INVOIC	CE INFOR	MATION	
COC for conter	nr of 2 cooler	7			ľ				HARGE	ES APPLY)	1	_ I. Result									
					1		STANI						II. Resul			ries required)	ì	PO#				
						REQUE	ESTED F	FAX DA1	TE			1			and Cal			BILL T	Ō:			
						-			_			. —	Summar									
						REQUE	ESTED R	REPORT	Γ DATE				IV. Data	Validatic	n Repor	rt with Ra	ıw Data					
See QAPP													•			ustom Re			· · · · · · · · · · · · · · · · · · ·			
SAMPLE RECEIPT: CONDITION/COO	DLER TEMP:	CUST	TODY SEAL	LS: Y	N							1	Edata		_Yes _	No	0					
RELINQUISHED BY	RECEIVED BY	RELI	NQUISHED I	BY				RECE	IVED B	ŝΥ			RI	ELINQL	JISHED	BY			R	RECEIVED	BY	
Signature	Signature A	Signature				Signatur	re				***************************************	Signati	ure					Signatu	Iro			
Printed Name	Printed Name	Printed Name				Printed I						Ľ	d Name								-	
Joe Ferry	From D. Kissinge	Firm				Firm		***					raile						d Name			
いんのシェットも	C17-7						70					Firm	12.5					Firm				
Date/Time /1-5.08/1630	Date Find 108 950	Date/Time				Date/Tin	ne					Date/T	ıme					Date/T	ime:			
Dietribution: White - Return to Originates Valley	w. Lak Conv. Pink - Potained by Olicet																				ISCOC-0	11/20/00

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1	ISH#		
	~~~ °		
	J0801	[7	$\gamma$
	9 0 0 0	1.1	1 11

JSCOC-01/29/08

An Employee - Owned Company www.caslab.com 9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE 2 OF 2

Project Name JED SWDF	Project Number Email Address	1(-17)		T				NALY:	SIS RE	EQUES	TED (I	Includ	e Meth	nod Nu	ımber	aı			
Project Manager Wills	Email Address	1		PRE	ESERV	ATIVE				7	T .								
Company/Address	Kur	(lse yeasyn	Lec-Cor			-	1.	0	3	2	0	ļ,	ļ,	J	Ĺ,		)		Proceguative Key
breusynter	A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR			BRS			' /		/	'. /	/								Preservative Key  0. NONE  1. HCL
14055 Rivered	Dr. SX	e.300		OF CONTAINERS		/(	)/0			1	3								1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH
Targa, FL	33637			OF CO		/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	80°	12/2	グイング	\\ \(\sigma\)	! /	/ /	/ /	/ /	/	/. /	/ /	/ /	5. Zn. Acetate 6. MeOH 7. NaHSO₄
Phone # 813-558-0990	7 PAX#813-S	58-972	5	NUMBER		4	00/	4	\$\display(\frac{\pi}{2})\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right										8. Other
Sampler's Signature	Sampler's Printed Nam	erry		] ≦				1	$\sqrt[3]{1}$				/-						REMARKS/ ALTERNATE DESCRIPTION
CLIENT SAMPLE ID	LAB ID	SAMPLING DATE TIME	34 ATDIV		1			ĺ					ĺ · · · · ·		/			1	7 ALTERIVATE DESCRIPTION
MW-5B	LABID	11-5-08 1540		9	X	X	X	×	X								<u> </u>		
MW-5C		11-5-03 157		9	X	×	<del>V</del>	×	×	-				-				<del>                                     </del>	
Dur-I		11-5-08	600	9	X	×	×	X	×	-									
Trip Blank			w	3	×														
																	-		
					ļ														
			-																, vanadalalan
				-			<u> </u>												
CDECIAL INCEDITIONO/COMMENTO									<u> </u>			1							,
SPECIAL INSTRUCTIONS/COMMENTS						Tt				IREMEN S APPLY		-	REPC I. Resu	ORT RE	QUIRE	MENT	S		INVOICE INFORMATION
						X	STAN				,		_	ılts + QC	Summa	aries		PO#	-
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon						REQU	ESTED	FAX DAT	ΓE			'		UP, MS/				BILL	TO
	) }					<u> </u>						-	III. Res Summa	ults + QC iries	and Ca	alibration	1	DILL	10.
						REQU	ESTED	REPORT	DATE				IV. Data	Validatio	on Repo	rt with F	law Data		
See QAPP													V. Speid	alized Fo	orms / C	Sustom F	Report		ć .
SAMPLE RECEIPT: CONDITION/CO		C	JSTODY SEA	LS: Y	N						"		Edata		_Yes	1	No		
RELINQUISHED BY	RECEIVED BY	F	ELINQUISHED	BY				RECE	IVED B	Y			F	ELINQU	JISHED	) BY			RECEIVED BY
Signature Dec Cers	Signature Sillissin	Signature	·	***************************************	***	Signatu	ure					Signat	ure	***************************************			***************************************	Signa	ature
Printed Name Joe Terry	Printed Name	Printed Name				Printed	d Name					Printed	l Name	***************************************				Printe	ed Name
Geosynte	Firm CAS	Firm		***************************************		Firm			-			Firm				c		Firm	
Date/Time 5-08 / 1630	Date/Tirge / 6/08 95	Date/Time				Date/T	ime					Date/T	ime					Date/	Time
Distribution: White - Return to Originator; Yello	ow - Lab Copy; Pink - Retained by Cli	ent																•	JSCOC-01/29/0



November 21, 2008

Service Request No: J0805417

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

# Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 7, 2008. For your reference, these analyses have been assigned our service request number **J0805417**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client:

GeoSyntec Consultants

**Project:** JED SWDF

Sample Matrix: Water **Service Request No.:** 

Date Received:

J0805417

11/7/08

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Nine water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/7/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4±2°C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

#### Second Source Exceptions

The upper control criterion was exceeded for the following analyte in Second Source Verification (SSV) CAL1659: trans-1,4-Dichloro-2-butene. The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

#### Matrix Spike Recovery Exceptions

The matrix spike recoveries of Bromomethane and Chloroethane for sample MW-2A were outside the control criterion. Recoveries in the Laboratory Control Sample (LCS) were acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

## Lab Control Sample Exceptions

The spike recovery of 1,2-Dibromo-3-chloropropane (DBCP) for Laboratory Control Sample (LCS) JWG0804303-3 was outside the upper control criterion. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

#### EDB and DBCP by GC-ECD

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

Approved by	Crankly	Date
	0, (1)	

### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

#### Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA Methods. No problems were observed.

#### Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

Approved by	range	2	My	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	Date	11/21	08
	()		. (1	\			

# Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

a . V ...

## Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project: GeoSyntec Consultants

JED SWDF/FQ1512

Service Request: J0805417

## SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
J0805417-001	MW-2A	11/6/08	15:35
J0805417-002	MW-2B	11/6/08	16:15
J0805417-003	MW-2C	11/6/08	15:45
J0805417-004	MW-3A	11/6/08	11:00
J0805417-005	MW-3B	11/6/08	11:20
J0805417-006	MW-3C	11/6/08	10:40
J0805417-007	MW-4A	11/6/08	08:00
J0805417-008	MW-4B	11/6/08	08:15
J0805417-009	MW-4C	11/6/08	09:00
J0805417-010	Trip Blank	11/6/08	00:00

Analytical Results

**Client:** 

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008 **Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2A

Lab Code:

J0805417-001

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	CONTRACTIVO CONTRACTOR III
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	5.7 I	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	- 1000
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1 .	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	10000
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:

Printed: 11/14/2008 05:25:09

 $p:\Stealth\Crystal.rpt\Form1\,m.rpt$ 

Merged

Form 1A - Organic

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2A

Lab Code:

J0805417-001

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	` /
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	102	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	102	75-120	11/12/08	Acceptable	
Dibromofluoromethane	102	82-116	11/12/08	Acceptable	
Toluene-d8	101	88-117	11/12/08	Acceptable	

Comments:

 $\begin{array}{lll} Printed: & 11/14/2008 & 05:25:09 \\ p:\Stealth\Crystal.rpt\Form1m.rpt & \end{array}$ 

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Collected: 11/06/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2B

Lab Code:

J0805417-002

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	ND U	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	****
Acrylonitrile	ND U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1 .	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

**Comments:** 

Printed: 11/14/2008 05:25:11 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page

1 of 2

**Analytical Results** 

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008 **Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2B

Lab Code:

J0805417-002

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Dilution Date Date Extraction Analyte Name Result Q **MRL MDL** Factor Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 1.0 0.18 1 11/12/08 11/12/08 JWG0804303 Chlorobenzene ND U 1.0 0.15 1 11/12/08 JWG0804303 11/12/08 1,1,1,2-Tetrachloroethane ND U 1.0 0.10 1 JWG0804303 11/12/08 11/12/08 Ethylbenzene ND U 1.0 0.10 1 11/12/08 11/12/08 JWG0804303 m,p-Xylenes ND U 2.0 0.22 1 JWG0804303 11/12/08 11/12/08 o-Xylene ND U 1.0 0.10 1 11/12/08 JWG0804303 11/12/08 Styrene ND U 1.0 0.051 1 11/12/08 11/12/08 JWG0804303 Bromoform ND U 2.0 0.12 1 11/12/08 JWG0804303 11/12/08 1,1,2,2-Tetrachloroethane ND U 1.0 0.15 1 11/12/08 11/12/08 JWG0804303 1,2,3-Trichloropropane ND U 2.0 0.16 1 11/12/08 JWG0804303 11/12/08 1,4-Dichlorobenzene ND U 1.0 0.14 1 11/12/08 11/12/08 JWG0804303 trans-1,4-Dichloro-2-butene ND UJ 20 1.1 1 11/12/08 11/12/08 JWG0804303 J(3)1,2-Dichlorobenzene ND U 1.0 0.17 1 11/12/08 JWG0804303 11/12/08 1,2-Dibromo-3-chloropropane (DBCP ND UJ 5.0 0.26 1 11/12/08 11/12/08 JWG0804303 J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	102	71-122	11/12/08	Acceptable	MONTH CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTR
4-Bromofluorobenzene	100	75-120	11/12/08	Acceptable	
Dibromofluoromethane	102	82-116	11/12/08	Acceptable	
Toluene-d8	99	88-117	11/12/08	Acceptable	

Comments:

Printed: 11/14/2008 05:25:11

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

**Analytical Results** 

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2C

Lab Code:

J0805417-003

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	ND U	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	*
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:

Printed: 11/14/2008 05:25:13

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25592

**Analytical Results** 

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Service Request: J0805417 **Date Collected:** 11/06/2008

Sample Matrix:

Water

**Date Received:** 11/07/2008

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2C

Lab Code:

J0805417-003

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	97	71-122	11/12/08	Acceptable
4-Bromofluorobenzene	100	75-120	11/12/08	Acceptable
Dibromofluoromethane	98	82-116	11/12/08	Acceptable
Toluene-d8	97	88-117	11/12/08	Acceptable

Comments:

Printed: 11/14/2008 05:25:13  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-3A

Lab Code:

J0805417-004

**Extraction Method:** 

EPA 5030B

Units: ug/L Basis: NA

Level: Low

**Analysis Method:** 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	. 1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	_ 20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	<b>3.3</b> I	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	- Transmission W
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	<b>0.88</b> I	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	. 1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:

Printed: 11/14/2008 05:25:15

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25592

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-3A

Lab Code:

J0805417-004

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	<b>0.38</b> I	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	<b>0.44</b> I	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	0.24 I	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	- (- )
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	102	71-122	11/12/08	Acceptable
4-Bromofluorobenzene	101	75-120	11/12/08	Acceptable
Dibromofluoromethane	102	82-116	11/12/08	Acceptable
Toluene-d8	100	88-117	11/12/08	Acceptable

**Comments:** 

Printed: 11/14/2008 05:25:15

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 2

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Collected: 11/06/2008

**Date Received:** 11/07/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-3B

Lab Code:

J0805417-005

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND	U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND	U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND	U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND		20	0.25	. 1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	ND	U	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND		5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND	U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND		5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND		1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND	U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND		1.0	0.56	. 1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND		10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND	U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND		5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND	U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND		1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND	U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND		5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND		1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND		1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND	U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND	U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND	U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:	
-----------	--

Printed: 11/14/2008 05:25:17

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 2

**Analytical Results** 

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008 **Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-3B

Lab Code:

J0805417-005

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	` /
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	100	75-120	11/12/08	Acceptable	
Dibromofluoromethane	101	82-116	11/12/08	Acceptable	
Toluene-d8	100	88-117	11/12/08	Acceptable	
				•	

Comments:

Printed: 11/14/2008 05:25:17 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

**Analytical Results** 

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-3C

Lab Code:

J0805417-006

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	3.0 I	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:

Printed: 11/14/2008 05:25:19

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED₂SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-3C

Lab Code:

J0805417-006

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	<del></del> -
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	( )
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	104	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	100	75-120	11/12/08	Acceptable	
Dibromofluoromethane	102	82-116	11/12/08	Acceptable	
Toluene-d8	98	88-117	11/12/08	Acceptable	

Comments:

Printed: 11/14/2008 05:25:19

 $p:\Stealth\Crystal.rpt\Form I\,m.rpt$ 

Merged

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008 **Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-4A

Lab Code:

J0805417-007

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	!
Acetone	<b>2.7</b> I	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	- TOTAL COLOR

Comments:

Printed: 11/14/2008 05:25:21

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-4A

Lab Code:

J0805417-007

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	<b>0.19</b> I	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	***************************************
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	• •
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	101	75-120	11/12/08	Acceptable	
Dibromofluoromethane	99	82-116	11/12/08	Acceptable	
Toluene-d8	100	88-117	11/12/08	Acceptable	

Comments:

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-4B

Lab Code:

J0805417-008

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND	U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND	U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND	U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND	U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	2.7	I	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND	U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND		5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND		1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND	U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND		1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND	U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1.	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND	U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND	U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND	U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND		1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND	U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND	U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND	U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND	U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND	U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND	U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND	U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:
-----------

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008 **Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-4B

Lab Code:

J0805417-008

**Extraction Method:** 

EPA 5030B

Units: ug/L Basis: NA

Analysis Method:

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	111
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	` /
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	100	71-122	11/12/08	Acceptable
4-Bromofluorobenzene	99	75-120	11/12/08	Acceptable
Dibromofluoromethane	99	82-116	1·1/12/08	Acceptable
Toluene-d8	101	88-117	11/12/08	Acceptable

Comments:

Printed: 11/14/2008 05:25:23

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Collected: 11/06/2008

**Date Received:** 11/07/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-4C

Lab Code:

J0805417-009

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	***************************************
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	3.3 I	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1 -	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	***************************************
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

**Comments:** 

Printed: 11/14/2008 05:25:24

 $p:\Stealth\Crystal.rpt\Form1\,m.rpt$ 

Merged

Analytical Results

Client:

GeoSyntec Consultants

**Project:** Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805417

**Date Collected:** 11/06/2008 **Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-4C

Lab Code:

J0805417-009

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	CNGC Programme transmissionship
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	. ,
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	101	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	100	75-120	11/12/08	Acceptable	
Dibromofluoromethane	101	82-116	11/12/08	Acceptable	
Toluene-d8	99	88-117	11/12/08	Acceptable	. ··

**Comments:** 

Printed: 11/14/2008 05:25:24

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

**Analytical Results** 

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Trip Blank

Lab Code:

J0805417-010

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	***************************************
Vinyl Chloride	ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	ND U	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND U	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND U	10	0.59	1 .	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:

Printed: 11/14/2008 05:25:26  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

**Analytical Results** 

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008 **Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank

J0805417-010

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	. ,
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	103	75-120	11/12/08	Acceptable	
Dibromofluoromethane	99	82-116	11/12/08	Acceptable	
Toluene-d8	97	88-117	11/12/08	Acceptable	
Toluche-do	. J1	00-117	11/12/06	Acceptable	

**Comments:** 

Printed: 11/14/2008 05:25:26

p:\Stealth\Crystal.rpt\Formlm.rpt

Merged

**Analytical Results** 

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Collected: NA Date Received: NA

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0804303-4

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND		1.0	0.17	1	11/12/08	11/12/08	JWG0804303	
Vinyl Chloride	ND		1.0	0.25	1	11/12/08	11/12/08	JWG0804303	
Bromomethane	ND	U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroethane	ND	U	5.0	0.19	1	11/12/08	11/12/08	JWG0804303	
Trichlorofluoromethane	ND	U	20	0.25	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/12/08	11/12/08	JWG0804303	
Acetone	ND	U	50	2.4	1	11/12/08	11/12/08	JWG0804303	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/12/08	11/12/08	JWG0804303	
Carbon Disulfide	ND	$\mathbf{U}$	10	0.84	1	11/12/08	11/12/08	JWG0804303	
Methylene Chloride	ND	U	5.0	0.72	1	11/12/08	11/12/08	JWG0804303	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/12/08	11/12/08	JWG0804303	
Acrylonitrile	ND	U	10	0.59	1	11/12/08	11/12/08	JWG0804303	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/12/08	11/12/08	JWG0804303	
Vinyl Acetate	ND	U	10	0.60	1	11/12/08	11/12/08	JWG0804303	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
2-Butanone (MEK)	ND	U	10	0.56	1	11/12/08	11/12/08	JWG0804303	
Bromochloromethane	ND	U	5.0	0.14	1	11/12/08	11/12/08	JWG0804303	
Chloroform	ND	U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Carbon Tetrachloride	ND	U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Benzene	ND	U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/12/08	11/12/08	JWG0804303	
Dibromomethane	ND	U	5.0	0.12	1	11/12/08	11/12/08	JWG0804303	
Bromodichloromethane	ND	U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	4.
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/12/08	11/12/08	JWG0804303	
Toluene	ND	U	1.0	0.52	1	11/12/08	11/12/08	JWG0804303	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2-Trichloroethane	ND	U	1.0	0.21	1	11/12/08	11/12/08	JWG0804303	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/12/08	11/12/08	JWG0804303	
2-Hexanone	ND	U	25	0.36	1	11/12/08	11/12/08	JWG0804303	
Dibromochloromethane	ND	U	1.0	0.11	1	11/12/08	11/12/08	JWG0804303	

Comments:

Printed: 11/14/2008 05:25:28

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Collected: NA Date Received: NA

Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0804303-4

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804303	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804303	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804303	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804303	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804303	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804303	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804303	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804303	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804303	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804303	( )
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804303	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	100	71-122	11/12/08	Acceptable
4-Bromofluorobenzene	99	75-120	11/12/08	Acceptable
Dibromofluoromethane	99	82-116	11/12/08	Acceptable
Toluene-d8	99	88-117	11/12/08	Acceptable

**Comments:** 

Printed: 11/14/2008 05:25:28

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-2A

Lab Code:

J0805417-001

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Comments:

Printed: 11/12/2008 15:12:01

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805417

**Date Collected: 11/06/2008** 

**Date Received:** 11/07/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-2B

Lab Code:

J0805417-002

Units: ug/L

Basis: NA

**Extraction Method: Analysis Method:** 

**METHOD** 8011

Level: Low

Analyte Name	
1,2-Dibromoethane (EDB)	

1,2-Dibromo-3-chloropropane (DBCP

Result Q ND U ND U

%Rec

128

**MRL** 0.020 0.020

**MDL** 0.0070 0.0057

**Factor** 1 1

Dilution

Extracted 11/08/08 11/08/08

Date

Analyzed 11/11/08 11/11/08 JWG0804237

Date

Extraction Lot Note JWG0804237

Surrogate Name	

1,1,1,2-Tetrachloroethane

Control Limits 77-150

Date Analyzed 11/11/08

Note

Acceptable

Comments:

Printed: 11/12/2008 15:12:02  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Collected: 11/06/2008

**Date Received:** 11/07/2008

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-2C

Lab Code:

J0805417-003

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	***************************************
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Control Date me %Rec Limits Analyzed No
chloroethane 128 77-150 11/11/08 Ac

Comments:

Printed: 11/12/2008 15:12:04 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $31_{\text{Page}}$ 

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-3A

Lab Code:

J0805417-004

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	MANUFACTURE CONTRACTOR
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	132	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 15:12:05

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805417 **Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-3B

Lab Code:

J0805417-005

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	132	77-150	11/11/08	Acceptable

Comments:

Printed: 11/12/2008 15:12:06

Merged

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

**Date Collected:** 11/06/2008

Service Request: J0805417

Sample Matrix:

Water

**Date Received:** 11/07/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-3C

Lab Code:

J0805417-006

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	127	77-150	11/11/08	Acceptable	

**Comments:** 

Printed: 11/12/2008 15:12:08

p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix: Water

Service Request: J0805417

Date Collected: 11/06/2008

**Date Received:** 11/07/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-4A

Lab Code:

J0805417-007

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	120	77-150	11/11/08	Acceptable

**Comments:** 

Printed: 11/12/2008 15:12:09

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805417

Date Collected: 11/06/2008

**Date Received:** 11/07/2008

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-4B

Lab Code:

J0805417-008

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	123	77-150	11/11/08	Acceptable	***************************************

Comments:

Printed: 11/12/2008 15:12:10

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

 $36_{\text{Page}}$ 1 of 1

RR25572 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

**Date Collected:** 11/06/2008

Service Request: J0805417

**Date Received:** 11/07/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-4C

Lab Code:

J0805417-009

Units: ug/L Basis: NA

**Extraction Method:** 

Level: Low

**Analysis Method:** 

8011

**METHOD** 

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	119	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 15:12:11

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference:

RR25572

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Collected: NA Date Received: NA

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804237-3

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Dilution Date Date Extraction

**Analyte Name** Result Q MRL **MDL Factor** Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 0.020 0.0070 JWG0804237 1 11/08/08 11/11/08 1,2-Dibromo-3-chloropropane (DBCP ND U 0.020 0.0057 1 11/08/08 11/11/08 JWG0804237

Surrogate Name %Rec	Control Date Limits Analyzed	l Note
1,1,1,2-Tetrachloroethane 135	77-150 11/11/08	Acceptable

Comments:

Printed: 11/12/2008 15:12:13

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

 $38_{\text{Page}}$ 

1 of 1

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805417

Date Collected: 11/6/2008

**Date Received:** 11/7/2008

Total Metals

Sample Name:

MW-2A

Lab Code:

Units: Basis:

ug/L N/A

J0805417-001

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	0.93	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	14	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	0.2	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	0.12	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	1.9	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	1.9	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	0.5	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	6460	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	1.1	i
Selenium	EPA 3020Å	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	0.9	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	1.5	i
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	U	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805417

**Date Collected:** 

11/6/2008

Date Received:

11/7/2008

**Total Metals** 

Sample Name:

MW-2B

Lab Code:

J0805417-002

Units:

ug/L

			Basis:	N/A
Dilution	Date	Date		

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	1.4	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	9.9	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	Ú	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	850	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	$\mathbf{U}$	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	U	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805417 11/6/2008

Date Collected: Date Received:

11/7/2008

ug/L

N/A

**Total Metals** 

Sample Name:

Lab Code:

MW-2C

J0805417-003

Units: Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	12	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	534	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	$\mathbf{U}$	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	U	

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805417

Date Collected: Date Received: 11/6/2008 11/7/2008

**Total Metals** 

Sample Name:

MW-3A

Lab Code:

J0805417-004

U

Units:	ug/L
Basis:	N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	1.2	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	76	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	1.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	0.8	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	0.6	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	2510	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0,3	1.0	11/17/2008	11/18/2008	3.1	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	2.6	i
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	126	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name: Project Number:**  JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805417

**Date Collected:** Date Received: 11/6/2008 11/7/2008

Total Metals

Sample Name:

MW-3B

Lab Code:

J0805417-005

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	20	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	0.4	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	1320	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	U	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number:

JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805417

Date Collected: Date Received: 11/6/2008 11/7/2008

Total Metals

Sample Name:

MW-3C

Lab Code:

J0805417-006

Units: Basis: ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	∴6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	0.33	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	416	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	2.8	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	9.0	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	727	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	2.4	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	6.9	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	1.7	i
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	3910	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805417

Date Collected: Date Received:

11/6/2008 11/7/2008

Total Metals

Sample Name:

MW-4A

Lab Code:

J0805417-007

Units: ug/L

Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	0.87	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	27	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	2.1	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	0.8	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	0.8	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	3390	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	1.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	1.7	i
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	11	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805417

Date Collected: Date Received: 11/6/2008 11/7/2008

Total Metals

Sample Name:

MW-4B

Lab Code:

J0805417-008

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	1.1	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	87	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	1.6	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	1.2	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	1.2	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	10400	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	1.2	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	2.7	i
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	5	i

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request: J0805417 **Date Collected:** 11/6/2008

Date Received:

11/7/2008

**Total Metals** 

Sample Name:

MW-4C

Lab Code:

J0805417-009

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	0.23	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	20	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	2.9	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	0.3	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/13/2008	11/14/2008	825	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	0.4	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	0.5	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	2.7	i
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	4	i

Analytical Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:**  JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805417

Date Collected: Date Received:

N/A N/A

Total Metals

Sample Name: Lab Code:

Method Blank

MB3-1117

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/17/2008	11/18/2008	0.5	i
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/17/2008	11/18/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/17/2008	11/18/2008	U	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/17/2008	11/18/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/17/2008	11/18/2008	1.0	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	0.4	i
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/13/2008	11/14/2008	U	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/17/2008	11/18/2008	0.7	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/17/2008	11/18/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/17/2008	11/18/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/17/2008	11/18/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/17/2008	11/18/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/17/2008	11/18/2008	U	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER

Service Request:

J0805417

Date Collected: Date Received: 11/06/2008 11/07/2008

**Total Metals** Sodium

Prep Method:

EPA 3010A

Analysis Method: 6010B

**Test Notes:** 

Units: mg/L Basis: N/A

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-2A	J0805417-001	0.50	0.02	1.0	11/13/2008	11/14/2008	13	
MW-2B	J0805417-002	0.50	0.02	1.0	11/13/2008	11/14/2008	6.1	
MW-2C	J0805417-003	0.50	0.02	1.0	11/13/2008	11/14/2008	4.7	
MW-3A	J0805417-004	0.50	0.02	1.0	11/13/2008	11/14/2008	46	
MW-3B	J0805417-005	0.50	0.02	1.0	11/13/2008	11/14/2008	8.3	
MW-3C	J0805417-006	0.50	0.02	1.0	11/13/2008	11/14/2008	5.0	
MW-4A	J0805417-007	0.50	0.02	1.0	11/13/2008	11/14/2008	27	
MW-4B	J0805417-008	0.50	0.02	1.0	11/13/2008	11/14/2008	73	
MW-4C	J0805417-009	0.50	0.02	1.0	11/13/2008	11/14/2008	7.8	
Method Blank	MB4-1113	0.50	0.02	1.0	11/13/2008	11/14/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/08

Date Received: 11/07/08

Inorganic Parameters

Sample Name:

MW-2A

Lab Code:

J0805417-001

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	0.61	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	30	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 16:25	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	85	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/08

Date Received: 11/07/08

**Inorganic Parameters** 

Sample Name:

MW-2B

Lab Code:

J0805417-002

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	0.14	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	11	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 17:10	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	46	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/08

Date Received: 11/07/08

Inorganic Parameters

Sample Name:

MW-2C

Lab Code:

J0805417-003

Test Notes:

	Analysis				Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	0.10	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	7.0	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 17:25	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	34	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/08

Date Received: 11/07/08

**Inorganic Parameters** 

Sample Name:

MW-3A

Lab Code:

J0805417-004

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	6.1	
Chloride	mg/L (ppm)	300.0	0.2	0.031	, 1	11/07/08 15:40	54	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 17:40	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	300	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805417

Date Collected: 11/06/08

**Date Received:** 11/07/08

Inorganic Parameters

Sample Name:

MW-3B

Lab Code:

J0805417-005

Test Notes:

Analysta	II	Analysis Method	MDI	NATA I	Dilution Factor	Date/Time	D14	Result Notes
Analyte	Units	Method	MRL	MDL	ractor	Analyzed	Result	110163
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	0.17	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	23	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 17:55	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	61	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/08

Date Received: 11/07/08

Basis: NA

Inorganic Parameters

Sample Name:

MW-3C

Lab Code:

J0805417-006

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	0.094	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	7.6	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 18:55	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	46	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805417

Date Collected: 11/06/08 Date Received: 11/07/08

Basis: NA

**Inorganic Parameters** 

Sample Name:

MW-4A

Lab Code:

Test Notes:

J0805417-007

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	4.3	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	46	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 19:10	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	200	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805417

Date Collected: 11/06/08

Date Received: 11/07/08

Inorganic Parameters

Sample Name:

MW-4B

Lab Code:

J0805417-008

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	6.9	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	100	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 19:25	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	660	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/08

Date Received: 11/07/08

Inorganic Parameters

Sample Name : Lab Code :

MW-4C

J0805417-009

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	0.15	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	9.4	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 19:40	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	90	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805417

Date Collected: NA

Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

J0805417-MB

Test Notes:

A 1. (	<b>X</b> Y *.	Analysis	***	****	Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/10/08 10:09	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/07/08 15:40	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 15:40	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 15:25	U	

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

### **Surrogate Recovery Summary** Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** EPA 5030B **Analysis Method:** 

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
MW-2A	J0805417-001	102	102	102	101
MW-2B	J0805417-002	102	100	102	99
MW-2C	J0805417-003	97	100	98	97
MW-3A	J0805417-004	102	101	102	100
MW-3B	J0805417-005	99	100	101	100
MW-3C	J0805417-006	104	100	102	98
MW-4A	J0805417-007	98	101	99	100
MW-4B	J0805417-008	100	99	99	101
MW-4C	J0805417-009	101	100	101	99
Trip Blank	J0805417-010	98	103	99	97
Method Blank	JWG0804303-4	100	99	99	99
MW-2AMS	JWG0804303-1	100	99	97	98
MW-2ADMS	JWG0804303-2	99	97	99	99
Lab Control Sample	JWG0804303-3	97	98	94	100

#### Surrogate Recovery Control Limits (%)

Sur1	=	1,2-Dichloroethane-d4	71-122
Sur2	=	4-Bromofluorobenzene	75-120
Sur3	=	Dibromofluoromethane	82-116
Sur4	=	Toluene-d8	88-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/14/2008 05:25:34 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417 Date Extracted: 11/12/2008

**Date Analyzed:** 11/12/2008

## Matrix Spike/Duplicate Matrix Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2A

Lab Code:

J0805417-001

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low Extraction Lot: JWG0804303

MW-2AMS TWG0804303-1 MW-2ADMS

	Sample	JWG0804303-1  Matrix Spike				VG0804303-2 cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Chloromethane	ND	21.6	20.0	108	21.3	20.0	107	73-139	1	30
Vinyl Chloride	ND	22.8	20.0	114	22.6	20.0	113	78-141	1	30
Bromomethane	ND	15.2	20.0	76 *	15.8	20.0	79	78-129	4	30
Chloroethane	ND	26.4	20.0	132 *	28.5	20.0	143 *	76-129	8	30
Trichlorofluoromethane	ND	24.7	20.0	123	24.1	20.0	120	81-133	3	30
1,1-Dichloroethene	ND	23.1	20.0	116	23.0	20.0	115	79-133	1	30
Acetone	5.7	109	100	104	110	100	104	56-139	1	30
Iodomethane (Methyl Iodide)	ND	108	100	108	126	100	126	74-134	15	30
Carbon Disulfide	ND	121	100	121	120	100	120	71-146	1	30
Methylene Chloride	ND	21.1	20.0	105	21.2	20.0	106	75-123	1	30
trans-1,2-Dichloroethene	ND	22.4	20.0	112	22.2	20.0	111	76-125	1	30
Acrylonitrile	ND	99.9	100	100	103	100	103	68-131	3	30
1,1-Dichloroethane	ND	22.0	20.0	110	22.1	20.0	110	78-125	0	30
Vinyl Acetate	ND	101	100	101	101	100	101	43-163	0	30
cis-1,2-Dichloroethene	ND	21.2	20.0	106	21.3	20.0	107	75-127	1	30
2-Butanone (MEK)	ND	100	100	100	103	100	103	63-134	3	30
Bromochloromethane	ND	22.5	20.0	112	22.4	20.0	112	80-124	0	30
Chloroform	ND	22.3	20.0	112	22.1	20.0	110	81-124	1	30
1,1,1-Trichloroethane (TCA)	ND	22.6	20.0	113	22.7	20.0	113	76-130	0	30
Carbon Tetrachloride	ND	22.5	20.0	113	22.3	20.0	112	76-131	1	30
Benzene	ND	21.6	20.0	108	21.5	20.0	108	78-123	1	30
1,2-Dichloroethane (EDC)	ND	21.3	20.0	106	21.2	20.0	106	74-126	0	30
Trichloroethene (TCE)	ND	22.0	20.0	110	21.4	20.0	107	77-128	3	30
1,2-Dichloropropane	ND	21.8	20.0	109	22.0	20.0	110	77-122	1	30
Dibromomethane	ND	21.1	20.0	106	21.2	20.0	106	78-124	0	30
Bromodichloromethane	ND	21.2	20.0	106	20.7	20.0	104	79-125	2	30
cis-1,3-Dichloropropene	ND	20.6	20.0	103	20.8	20.0	104	77-117	1	30
4-Methyl-2-pentanone (MIBK)	ND	100	100	100	104	100	104	65-138	4	30
Toluene	ND	21.5	20.0	107	21.9	20.0	109	86-119	2	30
trans-1,3-Dichloropropene	ND	20.1	20.0	101	20.4	20.0	102	75-120	2	30
1,1,2-Trichloroethane	ND	20.4	20.0	102	20.5	20.0	103	77-124	1	30
Tetrachloroethene (PCE)	ND	21.1	20.0	105	21.0	20.0	105	79-123	1	30
2-Hexanone	ND	102	100	102	105	100	105	63-142	3	30
Dibromochloromethane	ND	19.9	20.0	100	20.5	20.0	102	78-124	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/14/2008 05:25:37 p:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

SuperSet Reference: RR25592

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Extracted:** 11/12/2008

**Date Analyzed:** 11/12/2008

### Matrix Spike/Duplicate Matrix Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-2A

Lab Code:

J0805417-001

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804303

MW-2AMS

**MW-2ADMS** 

JWG0804303-2

JWG0804303-1

Matrix Spike **Duplicate Matrix Spike** Sample %Rec **RPD** Result **Analyte Name** Result **Expected** %Rec Limits **RPD** Limit Result **Expected** %Rec 1,2-Dibromoethane (EDB) ND 20.4 20.0 102 20.4 20.0 102 81-119 0 30 Chlorobenzene ND 20.4 20.0 102 20.6 20.0 103 81-120 1 30 1,1,1,2-Tetrachloroethane 20.6 ND 20.0 103 20.7 20.0 104 82-118 1 30 Ethylbenzene ND 21.6 20.0 108 21.7 20.0 109 87-122 30 1 m,p-Xylenes ND 42.5 40.0 106 42.6 40.0 107 82-120 0 30 o-Xylene ND 21.0 20.0 105 21.1 20.0 105 85-119 0 30 Styrene ND 20.6 20.0 103 21.1 20.0 105 84-126 2 30 Bromoform ND 18.6 20.0 93 19.7 20.0 99 70-129 6 30 1,1,2,2-Tetrachloroethane ND 19.2 20.0 72-127 96 20.8 20.0 104 8 30 ND 19.8 20.0 1,2,3-Trichloropropane 99 20.0 20.0 100 76-123 30 1 1,4-Dichlorobenzene ND 20.1 20.0 101 20.7 20.0 103 75-115 3 30 trans-1,4-Dichloro-2-butene ND 18.1 20.0 90 16.6 20.0 83 22-135 8 30 1,2-Dichlorobenzene ND 20.1 20.0 101 20.5 20.0 103 2 77-116 30 1,2-Dibromo-3-chloropropane (DBCP ND 17.6 20.0 88 19.5 20.0 98 54-120 11 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/14/2008 05:25:37 p:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Extracted: 11/12/2008

**Date Analyzed:** 11/12/2008

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: JWG0804303

Lab Control Sample JWG0804303-3 Lab Control Spike

	Lau	Control Spike	е	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Chloromethane	18.5	20.0	92	67-135	 
Vinyl Chloride	20.7	20.0	103	78-132	
Bromomethane	24.0	20.0	120	79-130	
Chloroethane	20.4	20.0	102	74-126	
Trichlorofluoromethane	21.1	20.0	106	74-134	
1,1-Dichloroethene	21.3	20.0	107	78-130	
Acetone	106	100	106	67-133	
Iodomethane (Methyl Iodide)	108	100	108	68-134	
Carbon Disulfide	105	100	105	76-138	
Methylene Chloride	20.5	20.0	103	72-124	
trans-1,2-Dichloroethene	21.2	20.0	106	77-124	
Acrylonitrile	105	100	105	77-127	
1,1-Dichloroethane	20.2	20.0	101	80-128	
Vinyl Acetate	107	100	107	61-148	
cis-1,2-Dichloroethene	19.9	20.0	100	80-126	
2-Butanone (MEK)	107	100	107	73-127	
Bromochloromethane	21.0	20.0	105	79-129	
Chloroform	20.1	20.0	101	83-124	
1,1,1-Trichloroethane (TCA)	21.1	20.0	106	79-124	
Carbon Tetrachloride	21.2	20.0	106	81-125	
Benzene	20.3	20.0	101	79-119	
1,2-Dichloroethane (EDC)	20.3	20.0	101	80-124	
Trichloroethene (TCE)	20.8	20.0	104	76-124	
1,2-Dichloropropane	20.1	20.0	100	79-123	
Dibromomethane	20.4	20.0	102	83-123	
Bromodichloromethane	19.5	20.0	98	81-123	
cis-1,3-Dichloropropene	21.0	20.0	105	86-123	
4-Methyl-2-pentanone (MIBK)	108	100	108	72-136	
Toluene	21.5	20.0	108	86-117	
trans-1,3-Dichloropropene	21.2	20.0	106	83-124	
1,1,2-Trichloroethane	21.0	20.0	105	86-114	
Tetrachloroethene (PCE)	20.1	20.0	100	80-121	
2-Hexanone	115	100	115	71-138	
Dibromochloromethane	19.5	20.0	98	82-121	
1,2-Dibromoethane (EDB)	20.8	20.0	104	88-117	
Chlorobenzene	20.1	20.0	101	86-113	
	<i>2</i> <b>∪.1</b>	۷.0	101	00-113	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/14/2008 05:25:41 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

Date Extracted: 11/12/2008 **Date Analyzed:** 11/12/2008

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804303

Lab Control Sample JWG0804303-3 Lah Control Snike

	Lab Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
1,1,1,2-Tetrachloroethane	20.8	20.0	104	85-117	
Ethylbenzene	20.9	20.0	104	90-118	
m,p-Xylenes	42.0	40.0	105	86-121	
o-Xylene	20.9	20.0	105	89-119	
Styrene	21.0	20.0	105	89-122	
Bromoform	20.5	20.0	103	68-129	
1,1,2,2-Tetrachloroethane	22.2	20.0	111	83-120	
1,2,3-Trichloropropane	21.4	20.0	107	83-123	
1,4-Dichlorobenzene	21.3	20.0	107	83-113	
trans-1,4-Dichloro-2-butene	20.2	20.0	101	53-143	
1,2-Dichlorobenzene	22.1	20.0	110	84-115	
1,2-Dibromo-3-chloropropane (DBCP	26.6	20.0	133 *	62-123	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/14/2008 05:25:41 p:\Stealth\Crystal.rpt\Form3LCS.rpt

RR25592

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Surrogate Recovery Summary** 

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

Units: PERCENT

Analysis Method:

8011

Level: Low

Sample Name	Lab Code	Sur1
MW-2A	J0805417-001	129
MW-2B	J0805417-002	128
MW-2C	J0805417-003	128
MW-3A	J0805417-004	132
MW-3B	J0805417-005	132
MW-3C	J0805417-006	127
MW-4A	J0805417-007	120
MW-4B	J0805417-008	123
MW-4C	J0805417-009	119
Method Blank	JWG0804237-3	135
Lab Control Sample	JWG0804237-1	132
Duplicate Lab Control Sample	JWG0804237-2	126

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/12/2008 15:12:17

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

1 of 1

SuperSet Reference: RR25572

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805417

**Date Extracted:** 11/08/2008

**Date Analyzed:** 11/11/2008

Lab Control Spike/Duplicate Lab Control Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804237

Lab Control Sample

JWG0804237-1

Duplicate Lab Control Sample

JWG0804237-2

	Lab	Control Spike	2	Duplicate	e Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	0.266 0.265	0.250 0.250	106 106	0.262 0.261	0.250 0.250	105 104	70-130 70-130	2 2	20 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/12/2008 15:12:20 p:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

1 of 1

RR25572

SuperSet Reference:

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

Date Extracted: 11/13/2008

**Date Analyzed:** 11/14/2008

Matrix Spike/Matrix Spike Duplicate Summary

**Total Metals** 

Sample Name:

MW-2A

Lab Code:

J0805417-001

J0805417-001S

Units: ug/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	7	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Iron	EPA 3010	6010B	50	2000	2000	6460	8290	8200	92	87	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

**Date Extracted:** 11/14/2008 **Date Analyzed:** 11/14/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-2B

Lab Code:

J0805417-002

J0805417-002S

Units: ug/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	,	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Mercury	METHOD	7470A	0.50	5.00	5.00	U	4.90	4.99	98	100	2	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Matrix:

WATER

Service Request: J0805417

Date Collected: N/A Date Received: N/A

**Date Extracted:** 11/17/2008

**Date Analyzed:** 11/18/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS3-1117

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	47.8	96	80 - 120	
Arsenic	EPA 3020A	6020	50.0	46.6	93	80 - 120	
Barium	EPA 3020A	6020	50.0	46.0	92	80 - 120	
Beryllium	EPA 3020A	6020	50.0	52.4	105	80 - 120	
Cadmium	EPA 3020A	6020	50.0	46.8	94	80 - 120	
Chromium	EPA 3020A	6020	50.0	50.3	101	80 - 120	
Cobalt,	EPA 3020A	6020	50.0	48.0	96	80 - 120	
Copper	EPA 3020A	6020	50.0	48.3	97	80 - 120	
Iron	EPA 3010A	6010B	2000	1960	98	80 - 120	
Lead	EPA 3020A	6020	50.0	47.3	95	80 - 120	
Mercury	METHOD	7470A	5.00	4.85	97	80 - 120	
Nickel	EPA 3020A	6020	50.0	49.0	98	80 - 120	
Selenium	EPA 3020A	6020	50.0	44.9	90	80 - 120	
Silver	EPA 3020A	6020	50.0	50.6	101	80 - 120	
Thallium	EPA 3020A	6020	50.0	47.1	94	80 - 120	
Vanadium	EPA 3020A	6020	50.0	45.2	90	80 - 120	
Zinc	EPA 3020A	6020	100	91.2	91	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/2008

**Date Received:** 11/07/2008

Date Extracted: 11/13/2008

**Date Analyzed:** 11/14/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-2A

Lab Code:

J0805417-001

J0805417-001S

Units: mg/L

						6						% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	7	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Sodium	EPA 3010	6010B	0.5	10.0	10.0	12.7	22.5	22.2	98	95	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Matrix:

WATER

Service Request: J0805417

Date Collected: N/A

Date Received: N/A

**Date Extracted:** 11/13/2008

**Date Analyzed:** 11/14/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS4-1113

Units: mg/L

Basis: N/A

**CAS Percent** 

Recovery Acceptance

Result Notes

Analyte Sodium

Prep Method EPA 3010A

Method 6010B

Analysis

True Value 10.0

Results 10.1

Recovery 101

Percent

Limits

80 - 120

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805417

**Date Collected:** 11/06/08

Date Received: 11/07/08

Date Extracted: NA

Date Analyzed: 11/07/08

Basis: NA

U

U

**Duplicate Summary Inorganic Parameters** 

300.0

mg/L (ppm)

Sample Name:

MW-2A

Lab Code:

J0805417-001DUP

Test Notes:

Analyte

Chloride

Nitrate as Nitrogen

Duplicate Relative Analysis Sample Sample Percent Result Units Method **MRL** Result Result Average Difference Notes mg/L (ppm) 300.0 0.2 30 30 30 <1

U

0.2

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Sample Matrix:

**Project Number:** FQ1512 WATER Service Request: J0805417

**Date Collected:** 11/06/08 Date Received: 11/07/08

Date Extracted: NA

Date Analyzed: 11/07/08

Matrix Spike Summary **Inorganic Parameters** 

Sample Name:

MW-2A

Lab Code:

J0805417-001MS

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	•	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	100	30	127	97	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	U	5.19	104	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

**Project Number:** 

Sample Matrix:

FQ1512 WATER Service Request :

J0805417

Date Collected:

NA

Date Received:

NA Date Extracted: NA

**Date Analyzed:** 11/07-11/08

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Laboratory Control Sample

Lab Code:

J0805417-LCS

Basis: NA

Test Notes:

Avaluta		Analysis			Percent	Percent Recovery Acceptance	Result
Analyte	Units	Method	True Value	Result	Recovery	Limits	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	5.00	5.24	105	90-110	
Chloride	mg/L (ppm)	300.0	5.00	5.15	103	90-110	
Chloride	mg/L (ppm)	300.0	100	95.3	95	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	5.0	5.00	100	90-110	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	300	287	96	85-115	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	300	303	101	85-115	

## Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

Client:	6-054	intee			Service Reque	est#	303	5417	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
Project:	JEL	SUDI	Selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the select		•			1/	16
Cooler rece	ived on	11-7-	-e8		and opened or	11-7-08	by	H	U_
COURIER:	(CAS)	UPS	FEDEX	DHL	CLIENT	Tracking #	4700 may	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	
· 1	Were custo	ody seals on	outside of co	ooler?			Yes	No	N/A
2	Were seals	intact, sign	ed and dated	?			Ces	No	N/A
3	Were custo	ody papers p	properly filled	d out?		وسعدد ومست	(es)	No	N/A
4	Temperature	of cooler(s) u	pon receipt	(Should b	e 4 +/- 2 degrees C)	5.1	***************************************		
5	Correct Te	mperature?	No. 10			(	Yes	No	N/A
6	Were Ice o	r Ice Packs	present			`	/ esi	No	N/A
7	Did all bot	tles arrive in	n good condi	tion (un	broken, etc)?		(Tes)	No	N/A
8	Were all b	ottle labels o	complete (sar	nple ID	, preservation, e	etc)?	163	No	N/A
9	Did all bot	tle labels an	d tags agree	with cus	stody papers?		(es)	No	N/A
10	Were the c	orrect bottle	es used for th	e tests i	ndicated?		Ces	No	N/A
11	Werealtofi	he preserred b	oules received	with the a	ppropriate preserv	ative?	Yes	No	N/A
12 13 14	Were VOA v	-	or absence of a	•	nolding times? ? If present, note b	pelow	Yes Yes CAS	No No Client	N/A N/A
	gresswithing reserves dependently in the towns. Investored	BOOKER S MONTHS FORMAN CHARLY WENT TO THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SE	COMMUNICATION OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHEST OF CHES	Manu	f. Lot # or CAS	X	ANGENIERS PRINC WE BUILDING SENDER PRINCE PRINCE PRINCE	nah yan da sangan karangan da sangan da s	Party Annual Market
	Sam	ole ID	Reagent		Chem ID	ml added	LI II	nititials	
	-								
		-							
		***************************************							
A 3 7 T		SOMEONIC CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO		1.			COLOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	nvaramen <b>a</b> a <del>renderame</del> nacy zer sich saks	
Additional c	omments a	nd/or explar	nation of all c	liscrepa	ncies noted abo	ve:			
		on the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of	······································	-100-00-00-00-00-00-00-00-00-00-00-00-00		***************************************		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
		······································		· · · · · · · · · · · · · · · · · · ·					
Client appro	val to run s	amples if di	screpancies i	noted:				Date:7	<i>-</i>

SR#: J 0805417

Date: 1 -7.00

Initials:

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

ſ													Bott	le Coc	ie															1
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	1 24	25	26	27	28	29	30
	40mL		40mL				125mL				250ml.						500ml			1L	1L	1L	1L	202	4oz	Boz	16oz	5g	100ml.	Misc.
Container	G	G	G	G	Р	P	P	P	P	Р	Р	Р	р	G	G	Р	Р	Р	Р	P	G	G	G	G	G	G	G	ENC	Р	Misc.
			Sodium		N. S. V.							ZnAcetate		1000							1				1113		49,169		Sodium	105
Pres.			Thiosulfate				H2SO4					NaOH	NaOH		HNO3			HNO3		HNO:		+Ci	H2SO				N/A		Thiosultate N/A	N/A
Req. pH	N/A	<2	N/A	<2	⊪N/A	<2	<2	<2	N/A	<2	<2 -	>9	>12	N/A	<2	N/A	<2	<2	N/A		NIA		-	INVA	N/A	N/A	N/A	N/A	-	1N//X
Sample #	-2	3			<del> </del> -			1		<del> </del>			-		-			<del> </del>	-	<del> </del>				+	1	<del>                                     </del>				_
-001	-						-	***************************************		-			-		ļ	-	<del> </del>							1-	<del> </del>					-
-002		- i											_								$\vdash$			-						-
-003		-			<u> </u>		<b>├</b> ─- <b>├</b>									<del> </del>		ļ			-			<del> </del>						
-004							-								ļ			ļ	ļ		-				-					-
-005															ļ		ļ	-	ļ		_			-						
-006	de la constante														ļ		ļ				_			ļ	ļ					ļ
-007															<u> </u>									<u> </u>		ļ				
-008	.1/	17					1			1									<u> </u>					1						ļ
-009	V	V					V	V	V									<u></u>						1						
-010		3																						1		<u> </u>				<u> </u>
-011																														ļ
-012																		<u> </u>												
-013																		<u> </u>												
-014																														
-015																	1									ĺ				
-016																														
-017																														
018																														
-019							1																							
-020							·					-												T						Ī
-021									1																					
-022										1														T						
-023							t			l															1					
-024									-	l					†		1	<del> </del>		i				†						
7-							<del> </del>		-						l		İ	-	-		+-			$\vdash$						
-025															<del> </del>	-	<del> </del>	$\vdash$			1			-						-
-026															-		-		-		$\vdash$			-						-
-027							<del> </del>											<del> </del>			+-+			┼──	-					<b></b>
-028															<del> </del>				-		$\vdash$				-					
-029							ļ											<del> </del>		-	$\vdash$			+	-					
-030																	<del> </del>	<del> </del>			$\vdash$			+-						-
-031																	ļ				$\vdash$				-					<del> </del>
-032							-								ļ															
-033															ļ				<u> </u>		$\vdash$			-						
-034													L					<u> </u>	ļ		1			-						
-035													<u> </u>				<u> </u>	ļ						<b> </b>						ļ
-036																														
-037																														
-038																														
-039	[																													
-040																	1													



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#		
7	0805417	
CAS Contact		

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE \ OF An Employee - Owned Company www.caslab.com

SR#		
Jolo547 CAS Contact		

Project Name SED SCUDE	Project Number FQ/S1	2						Δ	NALYS	SIS RE	QUES	TED (I	nclude	e Metho	od Nu	ımb			· .		1
Project Manager Kirk Wills	Email Address				PRE	SERV	ATIVE	1	0	3	2	0									$\vdash$
Company/Address	kw:160	z gecsy	yrjxer.c	<u> </u>		T	/	//		<u> </u>					-					j	у
Greosyntei				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ERS															1. HCL	
141055 R. voeds	e Dr. SA	<u>e 300</u>	2		NTAIN		/5			/ (6		) )								1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH, 5. Zn. Acetate	
Tanga, FL	33637				NUMBER OF CONTAINERS		\000 \000 \000 \000 \000 \000 \000 \00	/=/	5, 2 Z,	Meral.	CAN	* /	/	/ /	. /	/ /	/ /	/	/ _/	5. Zn. Acetate 6. MeOH 7. NaHSO ₄	
Phone # 813-558-0990	8/3-53	8 - 9	8726		BER (		$\infty$	08	1/9	20/ 1									, /	8. Other	
Sampler's Signature Cen	Sampler's Printed Nam	ie	-							Y		/ /								REMARKS/ ALTERNATE DESCRIPTION	_
CLIENT SAMPLE ID		SAN	/IPLING		T	-			f			/	/							ALTERNATE DESCRIPTION	1
MW-2A	LAB ID	DATE	TIME 1535	MATRIX	9	×	X	×	X	X					-						
MW-2B		11-6 /	1615	50						~											
Mn-2C	-		1545							- Indiana		····							,	1 244 244 24	
MW-3A			1100			-		- Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction		A CARLON COLOR								-			
MW-38			1120	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S										-							***************************************
MW-3C		and the second	1040							Graneng											
MW-4A		The same	0800			T T T T T T T T T T T T T T T T T T T			Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Sa												
MW-4B	,		0815			Blodge/ddg		dangyawas	200000000000000000000000000000000000000												
MW-4C		V	0900	V	J	Total Manager of	V	V	V	V											
Try Black				W	3	V															
SPECIAL INSTRUCTIONS/COMMENTS							ΤL	JRNAR	OUND	REQUI	IREMEN	TS		REPO	RT RE	QUIRE	MENT	3	T	INVOICE INFORMATION	
									,	HARGE	S APPLY)			I. Results	Only						
							_X	STAN	IDARD				X	II. Result	s + QC	Summa	aries	n ·	PO#		
							REQU	ESTED	FAX DAT	Έ								1)	BILL	.TO:	
								***						III. Resul Summari		J and Ca	aibration		-		
							REQUI	ESTED	REPORT	DATE				IV. Data V	/alidatio	on Repo	rt with R	aw Data	· L		
See QAPP	<b>N</b>								· · · · ·	***************************************			l	V. Speica	lized Fo	orms / C	ustom F	eport		•	
SAMPLE RECEIPT: CONDITION/COOL			cus:	TODY SEA	LS: Y	N				****	*******		İ	Edata		_ Yes		lo		•	
RELINQUISHED BY	FECEIVED BY		REL	NQUISHED	BY				RECEI	VED B	Y			RE	LINQU	JISHED	) BY			RECEIVED BY	
	Signature Allut	<b>Z</b> s	ignature	***************************************			Signatu	ure				******	Signati	ure	<del></del>				Signa	ature	
Printed Mame Joe Terry P	Printed Name	P	rinted Name				Printed	Name	***************************************				Printed	Name					Printe	ed Name	
Firm Geosynter F	CA)		irm	*1			Firm	1112					Firm			-	r		Firm	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	
Date/Time //1/08 - 1355 C	Date/Tippe 7-C8 125	2 0	ate/Time				Date/Ti	ime					Date/T	ime				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. Date/	Time	



November 24, 2008

Service Request No: J0805418

Mr. Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

Laboratory Results for: JED SWDF/FQ1512

Dear Mr. Wills:

Enclosed are the results of the sample(s) submitted to our laboratory on November 7, 2008. For your reference, these analyses have been assigned our service request number **J0805418**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of _________

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

1

Client:

GeoSyntec Consultants

Project: Sample Matrix:

JED SWDF

Water

Service Request No.: Date Received:

J0805418

11/7/08

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Two water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/7/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2$ °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

### Second Source Exceptions

The upper control criterion was exceeded for the following analyte in Second Source Verification (SSV) CAL1655: trans-1,4-Dichloro-2-butene. The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

#### **Lab Control Sample Exceptions**

The spike recoveries of 1,2-Dibromo-3-chloropropane (DBCP) for Laboratory Control Sample (LCS) JWG0804295-1 and Chloroethane for Duplicate Laboratory Control Sample (DLCS) JWG0804295-2 were outside the upper control criterion. The analytes in question were not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

### **EDB and DBCP by GC-ECD**

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

#### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

Approved by	Cran R	Marin	Date ///24	flor
	$\bigcirc$ .	( )		l

### **Batch QC Notes and Discussion**

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA and Standard Methods. The following observations were made regarding this delivery group.

#### Sample Notes and Discussion

The fecal coliform result for sample SW-3 is based on colony counts outside the optimal colony range of 20-60 CFU. The data has been qualified. This is an informational flag and it does not impact the quality of the data.

#### **Batch QC Notes and Discussion**

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

Approved by Date 1/24/08

## Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project:

GeoSyntec Consultants

JED SWDF/FQ1512

Service Request: J0805418

### SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
SW-3	11/7/08	10:30
SW-4	11/7/08	10:00
Trip Blank	11/7/08	00:00
	SW-3 SW-4	SW-3 11/7/08 SW-4 11/7/08

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805418

**Date Collected:** 11/07/2008

**Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

SW-3

Lab Code:

J0805418-001

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyta Nama			Dilution	Date	Date	Extraction	
Analyte Name Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804295	
Vinyl Chloride ND U	1.0	0.25	1	11/12/08	11/12/08	JWG0804295	
Bromomethane ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804295	
Chloroethane ND UJ	5.0	0.19	1	11/12/08	11/12/08	JWG0804295	J(3)
Trichlorofluoromethane ND U	20	0.25	1 .	11/12/08	11/12/08	JWG0804295	
1,1-Dichloroethene ND U	1.0	0.16	1	11/12/08	11/12/08	JWG0804295	
Acetone ND U	50	2.4	1	11/12/08	11/12/08	JWG0804295	
Iodomethane (Methyl Iodide) ND U	5.0	2.5	1	11/12/08	11/12/08	JWG0804295	
Carbon Disulfide ND U	10	0.84	1	11/12/08	11/12/08	JWG0804295	
Methylene Chloride ND U	5.0	0.72	1	11/12/08	11/12/08	JWG0804295	
trans-1,2-Dichloroethene ND U	1.0	0.13	1	11/12/08	11/12/08	JWG0804295	
Acrylonitrile ND U	10	0.59	1	11/12/08	11/12/08	JWG0804295	
1,1-Dichloroethane ND U	1.0	0.56	1	11/12/08	11/12/08	JWG0804295	
Vinyl Acetate ND U	10	0.60	1	11/12/08	11/12/08	JWG0804295	
cis-1,2-Dichloroethene ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
2-Butanone (MEK) ND U	10	0.56	1	11/12/08	11/12/08	JWG0804295	*******************
Bromochloromethane ND U	5.0	0.14	1	11/12/08	11/12/08	JWG0804295	
Chloroform ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
1,1,1-Trichloroethane (TCA) ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804295	
Carbon Tetrachloride ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804295	
Benzene ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804295	
1,2-Dichloroethane (EDC) ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
Trichloroethene (TCE) ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,2-Dichloropropane ND U	1.0	0.057	1	11/12/08	11/12/08	JWG0804295	
Dibromomethane ND U	5.0	0.12	1	11/12/08	11/12/08	JWG0804295	
Bromodichloromethane ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
cis-1,3-Dichloropropene ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
4-Methyl-2-pentanone (MIBK) ND U	25	0.37	1	11/12/08	11/12/08	JWG0804295	
Toluene ND U	1.0	0.52	1	11/12/08	11/12/08	JWG0804295	
trans-1,3-Dichloropropene ND U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
1,1,2-Trichloroethane ND U	1.0	0.21	1	11/12/08	11/12/08	JWG0804295	
Tetrachloroethene (PCE) ND U	1.0	0.22	1	11/12/08	11/12/08	JWG0804295	
2-Hexanone ND U	25	0.36	1	11/12/08	11/12/08	JWG0804295	

**Comments:** 

Printed: 11/12/2008 16:05:16

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $7_{\text{Page}}$ 1 of 2

SuperSet Reference: RR25579

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

**Date Collected:** 11/07/2008 **Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

SW-3

Lab Code:

J0805418-001

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804295	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804295	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804295	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	The second second second second
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804295	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804295	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804295	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804295	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804295	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804295	- (-)
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804295	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	100	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	99	75-120	11/12/08	Acceptable	
Dibromofluoromethane	99	82-116	11/12/08	Acceptable	
Toluene-d8	100	88-117	11/12/08	Acceptable	

**Comments:** 

Printed: 11/12/2008 16:05:16

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

 $8_{Page}$ 2 of 2

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

**Date Collected:** 11/07/2008 **Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

SW-4

Lab Code:

J0805418-002

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				•					
Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/12/08	11/12/08	JWG0804295	
Vinyl Chloride	ND	U	1.0	0.25	1	11/12/08	11/12/08	JWG0804295	
Bromomethane	ND	U	1.0	0.14	1	11/12/08	11/12/08	JWG0804295	
Chloroethane	ND	UJ	5.0	0.19	1	11/12/08	11/12/08	JWG0804295	J(3)
Trichlorofluoromethane	ND	U	20	0.25	1	11/12/08	11/12/08	JWG0804295	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/12/08	11/12/08	JWG0804295	
Acetone	ND		50	2.4	1	11/12/08	11/12/08	JWG0804295	***************************************
Iodomethane (Methyl Iodide)	ND		5.0	2.5	1	11/12/08	11/12/08	JWG0804295	
Carbon Disulfide	ND	U	10	0.84	1	11/12/08	11/12/08	JWG0804295	
Methylene Chloride	ND	U ·	5.0	0.72	1	11/12/08	11/12/08	JWG0804295	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/12/08	11/12/08	JWG0804295	
Acrylonitrile	ND	U	10	0.59	1	11/12/08	11/12/08	JWG0804295	
1,1-Dichloroethane	ND		1.0	0.56	1	11/12/08	11/12/08	JWG0804295	and the first of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence
Vinyl Acetate	ND		10	0.60	1	11/12/08	11/12/08	JWG0804295	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
2-Butanone (MEK)	ND		10	0.56	1	11/12/08	11/12/08	JWG0804295	
Bromochloromethane	ND		5.0	0.14	1	11/12/08	11/12/08	JWG0804295	
Chloroform	ND	U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/12/08	11/12/08	JWG0804295	
Carbon Tetrachloride	ND		1.0	0.18	1	11/12/08	11/12/08	JWG0804295	
Benzene	ND	U	1.0	0.52	1	11/12/08	11/12/08	JWG0804295	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/12/08	11/12/08	JWG0804295	
Dibromomethane	ND		5.0	0.12	1	11/12/08	11/12/08	JWG0804295	
Bromodichloromethane	ND		1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/12/08	11/12/08	JWG0804295	
Toluene	ND		1.0	0.52	1	11/12/08	11/12/08	JWG0804295	
trans-1,3-Dichloropropene	ND		1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/12/08	11/12/08	JWG0804295	The second section and section in a section of the section is a section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the se
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/12/08	11/12/08	JWG0804295	
2-Hexanone	ND	U	25	0.36	1	11/12/08	11/12/08	JWG0804295	

Printed: 11/12/2008 16:05:19

Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805418

**Date Collected:** 11/07/2008

**Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

SW-4

Lab Code:

J0805418-002

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804295	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804295	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804295	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804295	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804295	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804295	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804295	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804295	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804295	` /
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804295	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	96	71-122	11/12/08	Acceptable
4-Bromofluorobenzene	100	75-120	11/12/08	Acceptable
Dibromofluoromethane	93	82-116	11/12/08	Acceptable
Toluene-d8	102	88-117	11/12/08	Acceptable

**Comments:** 

Printed: 11/12/2008 16:05:19  $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805418

Date Collected: 11/07/2008 **Date Received:** 11/07/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Trip Blank

Lab Code:

J0805418-003

**Extraction Method:** 

EPA 5030B

Units: ug/L

Basis: NA

Level: Low

Analysis Method:	8260B	
Analyte Name		

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/12/08	11/12/08	JWG0804295	
Vinyl Chloride	ND	U	1.0	0.25	1	11/12/08	11/12/08	JWG0804295	
Bromomethane	ND	U	1.0	0.14	1	11/12/08	11/12/08	JWG0804295	
Chloroethane	ND	UJ	5.0	0.19	1	11/12/08	11/12/08	JWG0804295	J(3)
Trichlorofluoromethane	ND	U	20	0.25	1	11/12/08	11/12/08	JWG0804295	- (- )
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/12/08	11/12/08	JWG0804295	
Acetone	ND	U	50	2.4	1	11/12/08	11/12/08	JWG0804295	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/12/08	11/12/08	JWG0804295	
Carbon Disulfide	ND	U	10	0.84	1	11/12/08	11/12/08	JWG0804295	
Methylene Chloride	ND	U	5.0	0.72	1	11/12/08	11/12/08	JWG0804295	
trans-1,2-Dichloroethene	ND		1.0	0.13	1	11/12/08	11/12/08	JWG0804295	
Acrylonitrile	ND	U	10	0.59	1	11/12/08	11/12/08	JWG0804295	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/12/08	11/12/08	JWG0804295	
Vinyl Acetate	ND	U	10	0.60	1	11/12/08	11/12/08	JWG0804295	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
2-Butanone (MEK)	ND	U	10	0.56	1	11/12/08	11/12/08	JWG0804295	
Bromochloromethane	ND		5.0	0.14	1	11/12/08	11/12/08	JWG0804295	
Chloroform	ND	U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/12/08	11/12/08	JWG0804295	-
Carbon Tetrachloride	ND		1.0	0.18	1	11/12/08	11/12/08	JWG0804295	
Benzene	ND	U	1.0	0.52	1	11/12/08	11/12/08	JWG0804295	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/12/08	11/12/08	JWG0804295	
Dibromomethane	ND		5.0	0.12	1	11/12/08	11/12/08	JWG0804295	
Bromodichloromethane	ND		1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/12/08	11/12/08	JWG0804295	
Toluene	ND		1.0	0.52	1	11/12/08	11/12/08	JWG0804295	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/12/08	11/12/08	JWG0804295	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/12/08	11/12/08	JWG0804295	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/12/08	11/12/08	JWG0804295	
2-Hexanone	ND	U	25	0.36	1	11/12/08	11/12/08	JWG0804295	

Comments:	

Printed: 11/12/2008 16:05:21 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805418

**Date Collected:** 11/07/2008 **Date Received:** 11/07/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Trip Blank

Lab Code:

J0805418-003

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/12/08	11/12/08	JWG0804295	CONTRACTOR ASSESSMENT
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/12/08	11/12/08	JWG0804295	
Chlorobenzene	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	P P Block Assessment Committee Committee
Ethylbenzene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
m,p-Xylenes	ND U	2.0	0.22	1	11/12/08	11/12/08	JWG0804295	
o-Xylene	ND U	1.0	0.10	1	11/12/08	11/12/08	JWG0804295	
Styrene	ND U	1.0	0.051	1	11/12/08	11/12/08	JWG0804295	
Bromoform	ND U	2.0	0.12	1	11/12/08	11/12/08	JWG0804295	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/12/08	11/12/08	JWG0804295	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/12/08	11/12/08	JWG0804295	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/12/08	11/12/08	JWG0804295	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/12/08	11/12/08	JWG0804295	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/12/08	11/12/08	JWG0804295	- (- )
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/12/08	11/12/08	JWG0804295	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	96	71-122	11/12/08	Acceptable	
4-Bromofluorobenzene	100	75-120	11/12/08	Acceptable	
Dibromofluoromethane	97	82-116	11/12/08	Acceptable	
Toluene-d8	100	88-117	11/12/08	Acceptable	

Comments:

Printed: 11/12/2008 16:05:21 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $12_{\text{Page}}$  2 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805418

Date Collected: NA Date Received: NA

# Appendix I Volatile Organic Compounds by GC/MS

**Sample Name:** 

Method Blank

Lab Code:

JWG0804295-3

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/11/08	11/11/08	JWG0804295	
Vinyl Chloride	ND U	1.0	0.25	1	11/11/08	11/11/08	JWG0804295	
Bromomethane	ND U	1.0	0.14	1	11/11/08	11/11/08	JWG0804295	
Chloroethane	ND UJ	5.0	0.19	1	11/11/08	11/11/08	JWG0804295	J(3)
Trichlorofluoromethane	ND U	20	0.25	1	11/11/08	11/11/08	JWG0804295	. ,
1,1-Dichloroethene	ND U	1.0	0.16	1	11/11/08	11/11/08	JWG0804295	
Acetone	ND U	50	2.4	1	11/11/08	11/11/08	JWG0804295	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/11/08	11/11/08	JWG0804295	
Carbon Disulfide	ND U	10	0.84	1	11/11/08	11/11/08	JWG0804295	
Methylene Chloride	ND U	5.0	0.72	1	11/11/08	11/11/08	JWG0804295	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/11/08	11/11/08	JWG0804295	
Acrylonitrile	ND U	10	0.59	1	11/11/08	11/11/08	JWG0804295	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/11/08	11/11/08	JWG0804295	TWO In the West William the Section of the section of
Vinyl Acetate	ND U	10	0.60	1	11/11/08	11/11/08	JWG0804295	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/11/08	11/11/08	JWG0804295	
2-Butanone (MEK)	ND U	10	0.56	1	11/11/08	11/11/08	JWG0804295	PROPERTY SAF and other consequents as a second
Bromochloromethane	ND U	5.0	0.14	1	11/11/08	11/11/08	JWG0804295	
Chloroform	ND U	1.0	0.10	1	11/11/08	11/11/08	JWG0804295	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/11/08	11/11/08	JWG0804295	And the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio
Carbon Tetrachloride	ND U	1.0	0.18	1	11/11/08	11/11/08	JWG0804295	
Benzene	ND U	1.0	0.52	1	11/11/08	11/11/08	JWG0804295	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/11/08	11/11/08	JWG0804295	Standard State Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/11/08	11/11/08	JWG0804295	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/11/08	11/11/08	JWG0804295	
Dibromomethane	ND U	5.0	0.12	1	11/11/08	11/11/08	JWG0804295	and the second second second second second
Bromodichloromethane	ND U	1.0	0.10	1	11/11/08	11/11/08	JWG0804295	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/11/08	11/11/08	JWG0804295	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/11/08	11/11/08	JWG0804295	
Toluene	ND U	1.0	0.52	1	11/11/08	11/11/08	JWG0804295	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/11/08	11/11/08	JWG0804295	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/11/08	11/11/08	JWG0804295	Access to the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/11/08	11/11/08	JWG0804295	
2-Hexanone	ND U	25	0.36	1	11/11/08	11/11/08	JWG0804295	

**Comments:** 

Printed: 11/12/2008 16:05:23

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $13_{Page}$  1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805418

Date Collected: NA Date Received: NA

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0804295-3

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/11/08	11/11/08	JWG0804295	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/11/08	11/11/08	JWG0804295	
Chlorobenzene	ND U	1.0	0.15	1	11/11/08	11/11/08	JWG0804295	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/11/08	11/11/08	JWG0804295	
Ethylbenzene	ND U	1.0	0.10	1	11/11/08	11/11/08	JWG0804295	
m,p-Xylenes	ND U	2.0	0.22	1	11/11/08	11/11/08	JWG0804295	
o-Xylene	ND U	1.0	0.10	1	11/11/08	11/11/08	JWG0804295	
Styrene	ND U	1.0	0.051	1	11/11/08	11/11/08	JWG0804295	
Bromoform	ND U	2.0	0.12	1	11/11/08	11/11/08	JWG0804295	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/11/08	11/11/08	JWG0804295	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/11/08	11/11/08	JWG0804295	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/11/08	11/11/08	JWG0804295	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/11/08	11/11/08	JWG0804295	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/11/08	11/11/08	JWG0804295	ζ- /
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	11/11/08	11/11/08	JWG0804295	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	96	71-122	11/11/08	Acceptable	
4-Bromofluorobenzene	100	75-120	11/11/08	Acceptable	
Dibromofluoromethane	93	82-116	11/11/08	Acceptable	
Toluene-d8	101	88-117	11/11/08	Acceptable	

**Comments:** 

Printed: 11/12/2008 16:05:23 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805418

Date Collected: 11/07/2008

**Date Received:** 11/07/2008

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

SW-3

Lab Code:

J0805418-001

Result Q

ND U

ND U

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Level: Low

Analyte Name	
1,2-Dibromoethane (EDB)	

1,2-Dibromo-3-chloropropane (DBCP

MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	<u> </u>
1,1,1,2-Tetrachloroethane	111	77-150	11/11/08	Acceptable	

Comments:

Printed: 11/12/2008 15:15:19  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Form 1A - Organic

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

**Date Collected:** 11/07/2008 **Date Received:** 11/07/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

SW-4

Lab Code:

J0805418-002

Units: ug/L Basis: NA

**Extraction Method:** 

METHOD

**Analysis Method:** 

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	110	77-150	11/11/08	Acceptable	

**Comments:** 

Printed: 11/12/2008 15:15:20  $p:\Stealth\Crystal.rpt\Form1\,m.rpt$ 

Merged

Form 1A - Organic

 $16_{\text{Page}}$  1 of 1

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

Date Collected: NA Date Received: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804237-3

**Extraction Method: Analysis Method:** 

**METHOD** 

8011

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/08/08	11/11/08	JWG0804237	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/08/08	11/11/08	JWG0804237	

Surrogate Name %F	Control Date Limits Analyzed	%Rec	Date Analyzed Note
	77-150 11/11/08	e 135	11/11/08 Acceptable

**Comments:** 

Printed: 11/12/2008 15:15:21

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Form 1A - Organic Merged

SuperSet Reference: RR25573

 $17_{\text{Page}}$  1 of 1

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF FQ1512

Matrix:

WATER

Service Request:

J0805418

Date Collected:

11/7/2008 **Date Received:** 11/7/2008

ug/L

Total Metals

Sample Name:

SW-3

Lab Code:

J0805418-001

Units: Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	0.61	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	11	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.2	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.2	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.6	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	742	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.3	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020Å	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.7	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	7	i

Analytical Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:** 

JED SWDF FQ1512

Matrix:

WATER

Service Request:

J0805418

**Date Collected: Date Received:** 11/7/2008

11/7/2008

Total Metals

Sample Name:

SW-4

Lab Code:

J0805418-002

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	0.50	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	12	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	1.1	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.2	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.6	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/11/2008	11/12/2008	817	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	0.3	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	0.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	6	i

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF FQ1512

Matrix:

WATER

Service Request: J0805418

Date Collected: Date Received: N/A

N/A

**Total Metals** 

Sample Name:

Method Blank

Lab Code:

MB2-1111

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/11/2008	11/14/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/11/2008	11/14/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/11/2008	11/14/2008	U	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/11/2008	11/14/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/11/2008	11/14/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/11/2008	11/12/2008	U	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/12/2008	11/12/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/11/2008	11/14/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/11/2008	11/14/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/11/2008	11/14/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/11/2008	11/14/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/11/2008	11/14/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/11/2008	11/14/2008	U	

## Analytical Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

Date Collected: 11/7/2008

**Date Received:** 11/7/2008

Hardness, Total

Prep Method:

**METHOD** 

Analysis Method: SM 2340B

Units: mg/L (ppm) Basis: NA

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
SW-3	J0805418-001	1.7	0.08	1	11/11/2008	11/12/2008	15	
SW-4	J0805418-002	1.7	0.08	1	11/11/2008	11/12/2008	13	
Method Blank	J081111-MB	1.7	0.08	1	11/11/2008	11/12/2008	0.11	i

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805418

Basis: NA

Date Collected: 11/07/08 Date Received: 11/07/08

**Inorganic Parameters** 

Sample Name:

SW-3

Lab Code:

J0805418-001

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as N, Unionized	mg/L (ppm)	FDEP	0.05	0.008	1	11/19/08 11:15	U	
Biochemical Oxygen Demand (BOD)	mg/L (ppm)	405.1	4	0.86	1	11/07/08 16:30	U	
Carbon, Total Organic	mg/L (ppm)	415.1	1	0.41	1	11/14/08 12:49	29	
Chemical Oxygen Demand	mg/L (ppm)	410.2	5	1.5	1	11/12/08 18:00	74	
Chlorophyll a (Monochromatic)	mg/m3	SM 10200 H	2.2	2.2	2.2	11/21/08 14:44	U	
Coliform, Fecal	CFU/100mL	SM 9222D	1.6	1.6	1.6	11/07/08 15:15	23	В
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 19:55	U	
Nitrogen, Total as Nitrogen	mg/L (ppm)	300.0 + 351.2	0.5	0.097	1	11/19/08 10:45	0.78	
Phosphorus, Total	mg/L (ppm)	365.1	0.01	0.006	1	11/12/08 09:41	0.030	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	87	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	1.4	1	11/11/08 16:45	U	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805418

**Date Collected:** 11/07/08

Date Received: 11/07/08

Basis: NA

**Inorganic Parameters** 

Sample Name:

SW-4

Lab Code:

J0805418-002

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as N, Unionized	mg/L (ppm)	FDEP	0.05	0.008	1	11/19/08 11:15	U .	
Biochemical Oxygen Demand (BOD)	mg/L (ppm)	405.1	4	0.86	1	11/07/08 16:30	1.2	i
Carbon, Total Organic	mg/L (ppm)	415.1	1	0.41	1	11/14/08 12:49	31	
Chemical Oxygen Demand	mg/L (ppm)	410.2	5	1.5	1	11/12/08 18:00	76	
Chlorophyll a (Monochromatic)	mg/m3	SM 10200 H	2.0	2.0	2.0	11/21/08 14:44	U	
Coliform, Fecal	CFU/100mL	SM 9222D	10	10	10	11/07/08 15:15	460	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 20:10	U	
Nitrogen, Total as Nitrogen	mg/L (ppm)	300.0 + 351.2	0.5	0.097	1	11/19/08 10:45	0.83	
Phosphorus, Total	mg/L (ppm)	365.1	0.01	0.006	1	11/12/08 09:41	0.040	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	84	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	1.4	1	11/11/08 16:45	3.3	i

#### Analytical Report

Service Request: J0805418 Date Collected: NA

Basis: NA

Date Received: NA

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

**Inorganic Parameters** 

Sample Name:

Method Blank

Lab Code:

J0805418-MB

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as N, Unionized	mg/L (ppm)	FDEP	0.05	0.008	1	11/19/08 11:15	U	
Biochemical Oxygen Demand (BOD)	mg/L (ppm)	405.1	4	0.86	1	11/07/08 16:30	U	
Carbon, Total Organic	mg/L (ppm)	415.1	1	0.41	1	11/14/08 12:49	U	
Chemical Oxygen Demand	mg/L (ppm)	410.2	5	1.5	1	11/12/08 18:00	U	
Chlorophyll a (Monochromatic)	mg/m3	SM 10200 H	1	1	1	11/21/08 14:44	U	
Coliform, Fecal	CFU/100mL	SM 9222D	1	1	1	11/07/08 11:15	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/07/08 15:40	U	
Nitrogen, Total as Nitrogen	mg/L (ppm)	300.0 + 351.2	0.5	0.097	1	11/19/08 10:45	U	
Phosphorus, Total	mg/L (ppm)	365.1	0.01	0.006	1	11/12/08 09:41	U .	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	U	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	1.4	1	11/11/08 16:45	U	

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

## **Surrogate Recovery Summary** Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
SW-3	J0805418-001	100	99.	99	100
SW-4	J0805418-002	96	100	93	102
Trip Blank	J0805418-003	96	100	97	100
Method Blank	JWG0804295-3	96	100	93	101
Lab Control Sample	JWG0804295-1	96	99	99	102
Duplicate Lab Control Sample	JWG0804295-2	97	101	96	99

## Surrogate Recovery Control Limits (%)

Sur1 = 1,2-Dichloroethane-d4	71-122	
Sur2 = 4-Bromofluorobenzene	75-120	
Sur3 = Dibromofluoromethane	82-116	
Sur4 = Toluene-d8	88-117	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/12/2008 16:05:29

 $p:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic

1 of 1

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

Date Extracted: 11/11/2008 **Date Analyzed:** 11/11/2008

# Lab Control Spike/Duplicate Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804295

Lab Control Sample
JWG0804295-1

Duplicate Lab Control Sample JWG0804295-2

	Lab Control Spike				G0804295-2 Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Chloromethane	18.1	20.0	91	19.1	20.0	95	67-135	5	30
Vinyl Chloride	18.9	20.0	94	21.8	20.0	109	78-132	14	30
Bromomethane	19.4	20.0	97	18.6	20.0	93	79-130	4	30
Chloroethane	22.5	20.0	112	26.3	20.0	131 *	74-126	16	30
Trichlorofluoromethane	20.6	20.0	103	21.7	20.0	109	74-134	5	30
1,1-Dichloroethene	19.9	20.0	100	20.7	20.0	104	78-130	4	30
Acetone	105	100	105	103	100	103	67-133	2	30
Iodomethane (Methyl Iodide)	104	100	104	119	100	119	68-134	-13	30
Carbon Disulfide	101	100	101	109	100	109	76-138	8	30
Methylene Chloride	19.4	20.0	97	19.8	20.0	99	72-124	2	30
trans-1,2-Dichloroethene	19.7	20.0	98	20.7	20.0	103	77-124	5	30
Acrylonitrile	99.1	100	99	103	100	103	77-127	4	30
1,1-Dichloroethane	19.6	20.0	98	20.7	20.0	104	80-128	6	30
Vinyl Acetate	100	100	100	102	100	102	61-148	2	30
cis-1,2-Dichloroethene	19.2	20.0	96	20.2	20.0	101	80-126	5	30
2-Butanone (MEK)	102	100	102	101	100	101	73-127	1	30
Bromochloromethane	20.1	20.0	100	21.4	20.0	107	79-129	7	30
Chloroform	19.5	20.0	98	19.6	20.0	98	83-124	0	30
1,1,1-Trichloroethane (TCA)	20.2	20.0	101	20.7	20.0	104	79-124	3	30
Carbon Tetrachloride	19.6	20.0	98	20.7	20.0	104	81-125	5	30
Benzene	18.5	20.0	92	19.4	20.0	97	79-119	5	30
1,2-Dichloroethane (EDC)	19.7	20.0	99	20.1	20.0	100	80-124	2	30
Trichloroethene (TCE)	18.8	20.0	94	19.7	20.0	98	76-124	4	30
1,2-Dichloropropane	19.0	20.0	95	20.2	20.0	101	79-123	6	30
Dibromomethane	19.9	20.0	100	20.5	20.0	102	83-123	3	30
Bromodichloromethane	19.5	20.0	98	19.8	20.0	99	81-123	1	30
cis-1,3-Dichloropropene	20.8	20.0	104	20.2	20.0	101	86-123	3	30
4-Methyl-2-pentanone (MIBK)	108	100	108	101	100	101	72-136	7	30
Toluene	20.0	20.0	100	19.9	20.0	99	86-117	1	30
trans-1,3-Dichloropropene	20.5	20.0	102	20.2	20.0	101	83-124	1	30
1,1,2-Trichloroethane	19.8	20.0	99	20.3	20.0	102	86-114	3	30
Tetrachloroethene (PCE)	19.3	20.0	96	19.3	20.0	97	80-121	0	30
2-Hexanone	111	100	111	102	100	102	71-138	9	30
Dibromochloromethane	19.8	20.0	99	20.0	20.0	100	82-121	1	30
1,2-Dibromoethane (EDB)	20.0	20.0	100	20.4	20.0	102	88-117	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/12/2008 16:05:33  $p:\Stealth\Crystal.rpt\Form3DLC.rpt$ 

Form 3C - Organic

 $26_{\,Page} \quad {\scriptstyle 1\ of\quad 2}$ 

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

**Date Extracted:** 11/11/2008

**Date Analyzed:** 11/11/2008

# Lab Control Spike/Duplicate Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804295

Lab Control Sample JWG0804295-1

Duplicate Lab Control Sample

JWG0804295-2

	Lab	Lab Control Spike			Lab Control	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Chlorobenzene	19.5	20.0	97	20.2	20.0	101	86-113	4	30
1,1,1,2-Tetrachloroethane	19.9	20.0	100	20.3	20.0	102	85-117	2	30
Ethylbenzene	20.3	20.0	101	20.7	20.0	103	90-118	2	30
m,p-Xylenes	40.1	40.0	100	41.4	40.0	104	86-121	3	30
o-Xylene	20.3	20.0	102	21.2	20.0	106	89-119	4	30
Styrene	20.4	20.0	102	21.5	20.0	108	89-122	6	30
Bromoform	19.6	20.0	98	19.6	20.0	98	68-129	0	30
1,1,2,2-Tetrachloroethane	21.6	20.0	108	19.8	20.0	99	83-120	9	30
1,2,3-Trichloropropane	21.4	20.0	107	19.5	20.0	97	83-123	9	30
1,4-Dichlorobenzene	20.7	20.0	103	20.3	20.0	101	83-113	2	30
trans-1,4-Dichloro-2-butene	19.5	20.0	98	18.3	20.0	92	53-143	6	30
1,2-Dichlorobenzene	21.6	20.0	108	21.1	20.0	106	84-115	2	30
1,2-Dibromo-3-chloropropane (DBCP	25.1	20.0	126 *	20.1	20.0	100	62-123	22	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/12/2008 16:05:33  $p:\Stealth\Crystal.rpt\Form3DLC.rpt$ 

QA/QC Report

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

**Surrogate Recovery Summary** 

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** Analysis Method:

**METHOD** 

8011

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
SW-3	J0805418-001	111
SW-4	J0805418-002	110
Method Blank	JWG0804237-3	135
Lab Control Sample	JWG0804237-1	132
Duplicate Lab Control Sample	JWG0804237-2	126

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/12/2008 15:15:25  $p:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic

 $28_{Page}$  1 of 1

QA/QC Report

**Client:** Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805418

Date Extracted: 11/08/2008

**Date Analyzed:** 11/11/2008

Lab Control Spike/Duplicate Lab Control Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804237

Lab Control Sample

JWG0804237-1

Duplicate Lab Control Sample

JWG0804237-2

	Lab Control Spike			Duplicate	e Lab Control	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	0.266	0.250	106	0.262	0.250	105	70-130	2	20
1,2-Dibromo-3-chloropropane (DBCP	0.265	0.250	106	0.261	0.250	104	70-130	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/12/2008 15:15:28  $p:\Stealth\Crystal.rpt\Form3DLC.rpt$ 

Form 3C - Organic

1 of 1

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Matrix:

Project Number: FQ1512

WATER

Service Request: J0805418

**Date Collected:** 11/07/2008

**Date Received:** 11/07/2008

**Date Extracted:** 11/12/2008 **Date Analyzed:** 11/12/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

SW-3

Lab Code:

J0805418-001

J0805418-001S

Units: ug/L

	Prep	Analysis		Spike	e Level	Sample Spike Result Percer			Percent	Recovery	7	% Rec	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Mercury	METHOD	7470A	0.50	5.00	5.00	U	4.71	4.64	94	93	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: JED SW. Project Number: FQ1512

JED SWDF

Project N Matrix:

WATER

Service Request: J0805418

Date Collected: N/A
Date Received: N/A

**Date Extracted:** 11/11/2008 **Date Analyzed:** 11/14/2008

Laboratory Control Sample Summary

Total Metals

Sample Name: Lab Code: Lab Control Sample

LCS2-1111

Units: ug/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	54.7	109	80 - 120	
Arsenic	EPA 3020A	6020	50.0	50.6	101	80 - 120	
Barium	EPA 3020A	6020	50.0	46.3	93	80 - 120	
Beryllium	EPA 3020A	6020	50.0	49.8	100	80 - 120	
Cadmium	EPA 3020A	6020	50.0	53.3	107	80 - 120	
Chromium	EPA 3020A	6020	50.0	49.8	100	80 - 120	
Cobalt	EPA 3020A	6020	50.0	51.1	102	80 - 120	
Copper	EPA 3020A	6020	50.0	51.5	103	80 - 120	
Iron	EPA 3010A	6010B	2000	1960	98	80 - 120	
Lead	EPA 3020A	6020	50.0	48.1	96	80 - 120	
Mercury	METHOD	7470A	5.00	5.00	100	80 - 120	
Nickel	EPA 3020A	6020	50.0	50.5	101	80 - 120	
Selenium	EPA 3020A	6020	50.0	52.7	105	80 - 120	
Silver	EPA 3020A	6020	50.0	58.4	117	80 - 120	
Thallium	EPA 3020A	6020	50.0	46.1	92	80 - 120	
Vanadium	EPA 3020A	6020	50.0	50.4	101	80 - 120	
Zinc	EPA 3020A	6020	100	98.9	99	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

LCS Matrix:

Water

Service Request: J0805418 Date Collected: NA

Date Received: NA

Date Extracted: 11/11/2008

Date Analyzed: 11/12/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

J081111-LCS

Test Notes:

Analyte

Units: mg/L (ppm)

Result

Notes

Basis: NA

CAS

Percent Recovery Analysis Prep True Percent Acceptance Method Method Value Limits Result Recovery

Hardness as CaCO3, Total **METHOD** SM 2340B 91.1 90.1 99 85-115

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805418

**Date Collected:** 11/07/08

Date Received: 11/07/08 Date Extracted: 11/07/08

**Date Analyzed:** 11/11-21/08

**Duplicate Summary** Inorganic Parameters

Sample Name:

SW-3

Lab Code:

J0805418-001DUP

Test Notes:

Analyte	Units	Analysis Method	MRL	Sample Result			Relative Percent Difference	Result Notes
Chlorophyll a (Monochromatic) Phosphorus, Total Solids, Total Dissolved (TDS)	mg/m3 mg/L (ppm) mg/L (ppm)	SM 10200 H 365.1 160.1	2.2 0.01 10	U 0.030 87	U 0.026 99	U 0.028 93	14 13	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805418

**Date Collected:** 11/07/08

Date Received: 11/07/08

Date Extracted: 11/11/08 Date Analyzed: 11/12/08

Basis: NA

Matrix Spike Summary Inorganic Parameters

Sample Name:

SW-3

Lab Code:

J0805418-001MS

Test Notes:

CAS Percent Spiked Recovery Analysis Sample Percent Acceptance Result Spike Sample Analyte Units Method Result Recovery Limits MRL Level Result Notes Phosphorus, Total mg/L (ppm) 365.1 0.01 0.500 0.030 0.541 102 90-110

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805418

**Date Collected:** 11/07/08 Date Received: 11/07/08

Date Extracted: NA

**Date Analyzed:** 11/07-12/08

**Duplicate Summary** Inorganic Parameters

Sample Name:

SW-4

Lab Code:

J0805418-002DUP

Test Notes:

					Duplicate		Relative	
Analyte	Units	Analysis Method	MRL	Sample Result	Sample Result	Average	Percent Difference	Result Notes
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	U	U	U	-	
Phosphorus, Total	mg/L (ppm)	365.1	0.01	0.040	0.045	0.0425	12	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	84	95	89.5	12	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	3.30	2.0	2.65	49	i

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:** FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805418

**Date Collected:** 11/07/08 Date Received: 11/07/08

Date Extracted: NA

**Date Analyzed:** 11/07-12/08

Matrix Spike Summary Inorganic Parameters

Sample Name:

SW-4

Lab Code:

J0805418-002MS

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	-	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	U	5.15	103	90-110	
Phosphorus, Total	mg/L (ppm)	365.1	0.01	0.500	0.040	0.552	102	90-110	

## QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number:

FQ1512

Sample Matrix:

WATER

Service Request: J0805418

Date Collected: NA

Date Received: NA Date Extracted: NA

**Date Analyzed:** 11/07-14/08

**Laboratory Control Sample Summary Inorganic Parameters** 

Sample Name: Lab Code:

Laboratory Control Sample

J0805418-LCS

Test Notes:

Analyte	Units	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Biochemical Oxygen Demand (BOD)	mg/L (ppm)	405.1	198	200	101	85-115	
Carbon, Total Organic	mg/L (ppm)	415.1	50	51.0	102	90-110	
Chemical Oxygen Demand	mg/L (ppm)	410.2	85.8	80.0	93	85-115	
Nitrate as Nitrogen	mg/L (ppm)	300.0	5.0	5.00	100	90-110	
Phosphorus, Total	mg/L (ppm)	365.1	0.500	0.521	104	90-110	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	300	287	96	85-115	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	80	74.0	93	85-115	

Columbia Analytical Services, Inc.
Cooler Receipt and Preservation Form

Y	Geosphtec	ME		Service Reque	st#	_ 丁。	30548	111
Project: Cooler rece	rived on	7-08		and opened on	11-7-08	by	D	M
COURIER:	: CAS UPS	FEDEX	DHL	CLIENT	Tracking	#		
1	Were custody seals	on outside of co	ooler?			Yes	No	N/A
2	Were seals intact, sig	gned and dated	?			Yes	No	N/A
3	Were custody papers	s properly filled	d out?			(Yes)	No	N/A
4	Temperature of cooler(s	) upon receipt	(Should b	e 4 +/- 2 degrees C)	5-3			
5 ~	Correct Temperature	e?				Yes	No	N/A
6	Were Ice or Ice Pacl	ks present				Yes	No	N/A
7	Did all bottles arrive	e in good condi	tion (un	broken, etc)?		Yes	No	N/A
8	Were all bottle label	s complete (sar	nple ID	, preservation, e	tc)?	(Yes)	No	N/A
9	Did all bottle labels	and tags agree	with cu	stody papers?		(Y'es)	No	N/A
10	Were the correct bot	ttles used for th	e tests	indicated?		Ves	No	N/A
11	Were all of the preserve	d bottles received	with the a	ippropriate preserva	itive?	(Yes)	No	N/A
12	Were VOA vials checke	d for absence of a	-	0	elow	Yes	No No	N/A N/A
	•	d for absence of a	-	0	elow	Yes		
13	Were VOA vials checke Where did the bottle	d for absence of a	r bubbles	0	and the matter of the Victorian and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and	(AS)	No Client	
13	Were VOA vials checke	d for absence of a	r bubbles	? If present, note be	essynian hadron and V-One-transcen Additional day do to	(AS)	No	
13	Were VOA vials checke Where did the bottle	d for absence of a	r bubbles	? If present, note be	and the matter of the Victorian and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and	(AS)	No Client	
13	Were VOA vials checke Where did the bottle	d for absence of a	r bubbles	? If present, note be	and the matter of the Victorian and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and	(AS)	No Client	
13	Were VOA vials checke Where did the bottle	d for absence of a	r bubbles	? If present, note be	and the state of the Victorian and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and A	(AS)	No Client	
13	Were VOA vials checke Where did the bottle	d for absence of a	r bubbles	? If present, note be	and the state of the Victorian and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and A	(AS)	No Client	
13	Were VOA vials checke Where did the bottle	d for absence of a	r bubbles	? If present, note be	and the state of the Victorian and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and A	(AS)	No Client	
13	Were VOA vials checke Where did the bottle	d for absence of a	r bubbles	? If present, note be	and the state of the Victorian and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and Alexandria and A	(AS)	No Client	
13 14	Were VOA vials checke Where did the bottle  Sample ID	d for absence of a ses originate?  Reagent	Manu	? If present, note be	ml adde	(AS)	No Client	
13 14	Were VOA vials checke Where did the bottle	d for absence of a ses originate?  Reagent	Manu	? If present, note be	ml adde	(AS)	No Client	
13	Were VOA vials checke Where did the bottle  Sample ID	d for absence of a ses originate?  Reagent	Manu	? If present, note be	ml adde	(AS)	No Client	
13	Were VOA vials checke Where did the bottle  Sample ID	d for absence of a ses originate?  Reagent	Manu	? If present, note be	ml adde	(AS)	No Client	

SR#: JO80548

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

1													Rott	le Coc	6				-											1
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	40ml.		40mL	40mL	125ml			125mL		250mL	250ml.		250mL			500ml				1L	1L	1L	1L	202	4oz	80z	16oz	5g	100mL	Misc.
Container	G	G	G	G	P	P	Р	P	P	P	P	Р	Р	G	G	Р	Р	Р	P	P	G	G	G	G	G	G	G	ENC	P	Misc.
		-	Sodium		14 15/17							ZnAcetate									100			1. 1				1324	Sodium	
Pres.			Thiosulfate			HCI					HNO3		NaOH		HN03			HN03		HNOS			H2SO4		188	3 1 Ca			Thiosultate	
Req. pH	N/A	<2	N/A	<2	N/A	<2	<2	<2	N/A	<2	<2	>9	>12	N/A	<2	N/A	<2	<2			NIA	<2				N/A	N/A:	N/A	N/A	N/A
Sample #	-	-	-	-	-	-	-	-,	-		-	-		-	-		1	<u> </u>	-	-	<u>  -</u>		-	-	-				-	
-001	3	3				1		1											1		1				L					
-002	3	3				1		1									1		ě		1								- /	
-003		333		~																										
-004		aaandlan															1													
-005																	1													
-006																														
-007					<b></b>																									
-008											·																			
-009																														
-010					T																									
-011																														
-012																	1				_									
-013																													ļ	
-014																					<u></u>								ļ	
-015		,																												
-016																													<u> </u>	
-017																		ļ	<u> </u>		<u> </u>									ļ
018																					_			<u> </u>						
-019																	-		ļ		ļ									
-020																	<u> </u>		ļ											ļ
-021																														
-022																														
-023																														
-024																	1													
-025																														
-026																														
-027																														
-028																														
-029																														
-030																														
-031																				-										
-032																														
-033																														
-034																														
-035																														
-036																														
-037										************																				
-038																														
-039																														
-040																														



www.caslab.com

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR # 50805418 CAS Contact

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

	,		
PAGE		OF	4

JED SWAF	JEN SWAF  Project Number FQ 1572						ANALYSIS REQUESTED (Include Method Number a									an						
Project Manager  Kyk Wills	Email Address	@ geo	synte	r.con	PRE	SERV	ATIVE		0	1	2	3_	0	0	8							
Company/Address GEOSYN XEC					S		/	/ /	/ /	/ /	/	\S	S	/ /	/	/ /						
14055 Riverade	e Dr C	10 30	0		NUMBER OF CONTAINERS						27.72		24	X/~	رخ/ م						1. HC 2. HN 3. H ₂ 4. Na	Σ 103 2504
14055 Rivereds	27/77	4C JU			CONT		0		/	year,	1/2	1/35/1/	3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	:/					/ /	5. Zn	i. Acetate
Phone #	FAX#				R OF	/	82	80/	00/	(2) (2)		/ks/	1902/	\\ \( \)	/	/ /	/ /	/ /	/		6. Me 7. Na	aHSO ₄
8/3-558-0990 Sampler Sanature	0 8/5-0	)	7100	6	UMBE		40/		K/,	2/3	773	" / "	2	] 2								her N. S. D.3
Gue Cin	Sampler's Printed Nan			i .	Z	/	/			1	S/F	3/ c	1/4	<u> </u>	_		_	/	/_	ALTE	REMARK ERNATE DES	(S/ 3CRIPTION
CLIENT SAMPLE ID	LAB ID	DATE	PLING TIME	MATRIX																		
Su-3		11-7-08	1	Su	12	×		×	×		X			<u> </u>	ļ							
Scv-41 Trip black		11-7-08	+*	SW	12	-	×	×	X	×	×	×	×									
Trip black		11-7-03		w	3	X		-								ļ						
		30			-			-					-					-	-			
																-			+			
	,										-								-		***************************************	
																			1			
	W																				~~~~	
31	1																					
SPECIAL INSTRUCTIONS/COMMENTS	C) alt				A. Horison		Τι			REQU			Τ			EQUIRI	EMENT	S	Т	INVOI	CE INFORM	ATION
54.3	6.06 5.06									CHARGE	S APPL)	()		_ I. Resu								
17.00							'	STAN		T			~	II. Resi (LCS, I	ults + Q DUP, MS	C Summ S/MSD a	aries s require	d)	PO#			
11 10 00	1170						heQu	ESTED	FAX DA	11 =			l	_ III. Res		C and C	alibratio	n	BILL	TO:	×	
Sw-4 18.00	41.70						REQU	ESTED	REPOR	T DATE						tion Repo	ort with F	Raw Data	a —			
0 0 0 0 0 0 0														_		Forms / 0						
See QAPP   SAMPLE RECEIPT: CONDITION/COOLE	ER TEMB		CUIS	STODY SEAL	C. V	NI	<u> </u>	×			***********		-	Edata	ı	Yes		No				
RELINQUISHED BY	HECEIVED BY			INQUISHED I		IN			RECE	IVED B	Y		<del> </del>	F	RELINC	UISHE	D BY	***************************************	+-	F	RECEIVED B'	Y
A O Signature		7										WW										
Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signat	gnative will Ccl	· ·	nature				Signatu	ure d Name					Signa	ture d Name					Signa			
=	// <b>/</b>	Firr					Firm	ı maille					Firm	u ivame						ed Name		
1 geosynter 1	14 may -08 1259		te/Time				Date/Ti	ime					Date/	Time					Firm Date/	Time		
11-1-00/ 1353	11 / -00 10												1						Date	THE		



November 25, 2008

Service Request No: J0805457

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

# Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 11, 2008. For your reference, these analyses have been assigned our service request number **J0805457**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of 82

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client:

GeoSyntec Consultants

**Service Request No.:** 

J0805457

Project:

JED SWDF

Date Received:

11/11/08

Sample Matrix:

Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Nine water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/11/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2$ °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

#### **Second Source Exceptions**

The upper control criterion was exceeded for the following analyte in Second Source Verification (SSV) CAL1659: trans-1,4-Dichloro-2-butene. The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

#### Matrix Spike Recovery Exceptions

The matrix spike recoveries of Bromomethane, Chloroethane and trans-1,4-Dichloro-2-butene for sample MW-23A were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) were acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

#### EDB and DBCP by GC-ECD

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

#### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total and Dissolved Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

Approved by	San	2Mm	Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of th	_Date	11/25	108
	$\sim$ $\circ$ .	, , (				1

#### Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA Methods. No problems were observed.

Approved by	Canlly	Date( <i>l</i>	25	08
	( ), ( )			,

# Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Service Request: J0805457

# SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
J0805457-001	MW-23A	11/10/08	08:45
J0805457-002	MW-23B	11/10/08	08:55
J0805457-003	MW-23C	11/10/08	09:35
J0805457-004	MW-22A	11/10/08	11:35
J0805457-005	MW-22B	11/10/08	12:30
J0805457-006	MW-22C	11/10/08	11:50
J0805457-007	MW-21A	11/10/08	15:10
J0805457-008	MW-21B	11/10/08	15:30
J0805457-009	MW-21C	11/10/08	14:55
J0805457-010	Trip Blank	11/10/08	00:00

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23A

8260B

Lab Code:

J0805457-001

**Extraction Method: Analysis Method:** 

EPA 5030B

Basis: NA Level: Low

Units: ug/L

Dilution Date Date Extraction **Analyte Name MRL** Result Q **MDL Factor** Extracted Analyzed Lot Note Chloromethane ND U 1.0 0.17 1 11/14/08 11/14/08 JWG0804378 Vinyl Chloride ND U 1.0 0.25 1 11/14/08 11/14/08 JWG0804378 Bromomethane ND U 1.0 0.14 1 JWG0804378 11/14/08 11/14/08 Chloroethane ND U 5.0 0.19 11/14/08 11/14/08 JWG0804378 Trichlorofluoromethane ND U 20 0.25 1 JWG0804378 11/14/08 11/14/08 1,1-Dichloroethene ND U 1.0 0.16 1 JWG0804378 11/14/08 11/14/08 Acetone ND U 50 2.4 1 11/14/08 11/14/08 JWG0804378 Iodomethane (Methyl Iodide) ND U 5.0 2.5 1 11/14/08 11/14/08 JWG0804378 Carbon Disulfide ND U 10 0.84 1 11/14/08 11/14/08 JWG0804378 Methylene Chloride ND U 1 5.0 0.72 11/14/08 11/14/08 JWG0804378 trans-1,2-Dichloroethene ND U 1.0 0.13 1 11/14/08 11/14/08 JWG0804378 Acrylonitrile ND U 0.59 10 1 11/14/08 11/14/08 JWG0804378 1,1-Dichloroethane ND U 1.0 0.56 1 11/14/08 11/14/08 JWG0804378 Vinyl Acetate ND U 10 0.60 1 11/14/08 11/14/08 JWG0804378 cis-1,2-Dichloroethene ND U 1.0 0.12 1 11/14/08 11/14/08 JWG0804378 2-Butanone (MEK) 10 1 ND U 0.56 11/14/08 11/14/08 JWG0804378 Bromochloromethane ND U 5.0 0.14 1 11/14/08 11/14/08 JWG0804378 Chloroform ND U 1.0 0.10 1 11/14/08 11/14/08 JWG0804378 1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/14/08 11/14/08 JWG0804378 Carbon Tetrachloride ND U 1.0 0.18 1 11/14/08 11/14/08 JWG0804378 Benzene ND U 1.0 0.52 1 11/14/08 11/14/08 JWG0804378 1,2-Dichloroethane (EDC) ND U 1.0 0.15 1 11/14/08 11/14/08 JWG0804378 Trichloroethene (TCE) ND U 1.0 0.15 1 11/14/08 11/14/08 JWG0804378 1,2-Dichloropropane ND U 1.0 0.057 1 11/14/08 JWG0804378 11/14/08 Dibromomethane ND U 5.0 0.12 1 11/14/08 11/14/08 JWG0804378 Bromodichloromethane ND U 1.0 0.10 1 11/14/08 11/14/08 JWG0804378 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/14/08 11/14/08 JWG0804378 4-Methyl-2-pentanone (MIBK) ND U 25 1 0.37 11/14/08 11/14/08 JWG0804378 Toluene ND U 1.0 0.52 1 11/14/08 11/14/08 JWG0804378 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/14/08 11/14/08 JWG0804378

Comments:

2-Hexanone

1,1,2-Trichloroethane

Tetrachloroethene (PCE)

Dibromochloromethane

Printed: 11/17/2008 13:37:42

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

ND U

ND U

ND U

ND U

Form 1A - Organic

0.21

0.22

0.36

0.11

1

1

1

1

11/14/08

11/14/08

11/14/08

11/14/08

1.0

1.0

25

1.0

JWG0804378

JWG0804378

JWG0804378

JWG0804378

1 of

RR25641 SuperSet Reference:

11/14/08

11/14/08

11/14/08

11/14/08

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008 **Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23A

Lab Code:

J0805457-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND	U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND	U	2.0	0.22	1 -	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND	U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND	U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND	U	2.0	0.16	. 1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND	$\mathbf{U}$	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

4-Bromofluorobenzene 101 75-120 11/14/08 Acceptable Dibromofluoromethane 95 82-116 11/14/08 Acceptable	Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane 95 82-116 11/14/08 Acceptable	1,2-Dichloroethane-d4	98	71-122	11/14/08	Acceptable
	4-Bromofluorobenzene	101	75-120	11/14/08	Acceptable
T-1 10 00 117 11/14/00 1	Dibromofluoromethane	95	82-116	11/14/08	Acceptable
101uene-d8 9/ 88-11/ 11/14/08 Acceptable	Toluene-d8	97	88-117	11/14/08	Acceptable

Comments:

Printed: 11/17/2008 13:37:42

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 2

Analytical Results

**Client:** Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008 **Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23B

Lab Code:

J0805457-002

**Extraction Method:** 

EPA 5030B

Units: ug/L Basis: NA

Level: Low

**Analysis Method:** 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	. 1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	. 1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	.1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	<b>0.58</b> I	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	_
2-Hexanone	ND U	25	0.36	. 1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 13:37:44

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008 **Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23B

Lab Code:

J0805457-002

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	· 1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	<del></del>
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	. 1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	( )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	97	71-122	11/14/08	Acceptable
4-Bromofluorobenzene	99	75-120	11/14/08	Acceptable
Dibromofluoromethane	92	82-116	11/14/08	Acceptable
Toluene-d8	98	88-117	11/14/08	Acceptable

Comments:

Printed: 11/17/2008 13:37:44

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008 **Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23C

Lab Code:

J0805457-003

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	No.4a
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	Note
Vinyl Chloride	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.19	1	11/14/08	11/14/08	JWG0804378 JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50				×***		
Iodomethane (Methyl Iodide)	ND U		2.4	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
	AND VALUE AND AND AND AND AND AND AND AND AND AND	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	•
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	. 1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

**Comments:** 

Printed: 11/17/2008 13:37:46

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23C

Lab Code:

J0805457-003

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	<b>\</b> /
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	100	71-122	11/14/08	Acceptable
4-Bromofluorobenzene	95	75-120	11/14/08	Acceptable
Dibromofluoromethane	98	82-116	11/14/08	Acceptable
Toluene-d8	96	88-117	11/14/08	Acceptable

Comments:

Printed: 11/17/2008 13:37:46

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

RR25641

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008 **Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-22A

Lab Code:

J0805457-004

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

				TS 17				
Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date	Extraction Lot	NT - 4 -
Chloromethane					_	Analyzed		Note
Vinyl Chloride	ND U	1.0	0.17	.,1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U ND U	1.0 1.0	0.25 0.14	1	11/14/08	11/14/08	JWG0804378	
	######################################			1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.25	1 "	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1.	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	î	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	THE PERSON NAMED IN COLUMN

**Comments:** 

Printed: 11/17/2008 13:37:47

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

13_{Page}

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-22A

Lab Code:

J0805457-004

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	CHROCOLOGIC CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	. 1	11/14/08	11/14/08	JWG0804378	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1 -	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	(-)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	100	71-122	11/14/08	Acceptable
4-Bromofluorobenzene	97	75-120	11/14/08	Acceptable
Dibromofluoromethane	99	82-116	11/14/08	Acceptable
Toluene-d8	97	88-117	11/14/08	Acceptable

Comments:

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-22B

Lab Code:

J0805457-005

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	·
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	. 1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

Commen	4

Printed: 11/17/2008 13:37:49

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008 **Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-22B

Lab Code:

J0805457-005

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	***************************************
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1:	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	V/////////
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	- (- )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	94	71-122	11/14/08	Acceptable
4-Bromofluorobenzene	96	75-120	11/14/08	Acceptable
Dibromofluoromethane	93	82-116	11/14/08	Acceptable
Toluene-d8	95	88-117	11/14/08	Acceptable

Comments:

Printed: 11/17/2008 13:37:49

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-22C

Lab Code:

J0805457-006

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q MR	L MDL	Dilutio Factor		Date Analyzed	Extraction Lot	Note
Chloromethane	ND	U 1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND	U 1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND '	U 1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND	U 5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND	U 20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND	U 1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND	U 50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND '	U 5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND	U 10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND		0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND	U 1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND '	U 10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND	U 1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND '	U 10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND '	U 1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND		0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND T		0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND T	U 1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND.			1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND 1	U - 1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND T	U 1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND '		0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND T		0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND T	U 1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND			1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND 1		0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND	U 1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND		0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND 1			1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND 1	U 1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND 1		0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND 1		0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND 1	U 25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND	U 1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 13:37:51

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-22C

Lab Code:

J0805457-006

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND U	1.0	0.10	. 1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/14/08	Acceptable	
Dibromofluoromethane	97	82-116	11/14/08	Acceptable	
Toluene-d8	90	88-117	11/14/08	Acceptable	

Comments:

Printed: 11/17/2008 13:37:51

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008 **Date Received:** 11/11/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-21A

Lab Code:

J0805457-007

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA,

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	***************************************
Vinyl Chloride	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1 -	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

**Comments:** 

Printed: 11/17/2008 13:37:53

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008 **Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-21A

Lab Code:

J0805457-007

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	<del></del>
Chlorobenzene	ND	U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND	U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND	U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND	U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND T	U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND 1	U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	( )
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	101	71-122	11/14/08	Acceptable
4-Bromofluorobenzene	99	75-120	11/14/08	Acceptable
Dibromofluoromethane	99	82-116	11/14/08	Acceptable
Toluene-d8	97	88-117	11/14/08	Acceptable

Comments:

Printed: 11/17/2008 13:37:53

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

RR25641

Analytical Results

**Client: Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-21B

Lab Code:

J0805457-008

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	11010
Vinyl Chloride	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	MARY TRACKS
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	. 1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	. 1	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 13:37:54

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-21B

Lab Code:

J0805457-008

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	` /
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	93	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	95	75-120	11/14/08	Acceptable	
Dibromofluoromethane	93	82-116	11/14/08	Acceptable	
Toluene-d8	96	88-117	11/14/08	Acceptable	

Comments:

Printed: 11/17/2008 13:37:54

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-21C

Lab Code:

J0805457-009

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	T-TAMESON FORM
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1.	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	<del> </del>
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 13:37:56

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-21C

Lab Code:

J0805457-009

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	***************************************
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	( )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	100	71-122	11/14/08	Acceptable
4-Bromofluorobenzene	97	75-120	11/14/08	Acceptable
Dibromofluoromethane	95	82-116	11/14/08	Acceptable
Toluene-d8	94	88-117	11/14/08	Acceptable

**Comments:** 

Printed: 11/17/2008 13:37:56

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

24_{Page 2 of 2}

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Trip Blank

Lab Code:

J0805457-010

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND	U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND	U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND	U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND	U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND	U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND	U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND	U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND	U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND	U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND	U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND	U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND	U	1.0	0.10	1 ·	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND		1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND	U	1.0	0.52	. 1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/14/08	11/14/08	JWG0804378	7
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND		5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND		1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	- 1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND		1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	. 1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND	U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND	U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

**Comments:** 

Printed: 11/17/2008 13:37:58

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

**Analytical Results** 

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008

**Date Received:** 11/11/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Trip Blank

Lab Code:

J0805457-010

Extraction Method:

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	,
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	97	75-120	11/14/08	Acceptable	
Dibromofluoromethane	98	82-116	11/14/08	Acceptable	
Toluene-d8	95	88-117	11/14/08	Acceptable	

Comments:

Printed: 11/17/2008 13:37:58

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

26 Page

2 of 2

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: NA
Date Received: NA

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0804378-4

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND	_	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	Note
Vinyl Chloride	ND		1.0	0.25	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND		1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND	U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	77.77
Trichlorofluoromethane	ND	U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND		50	2.4	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND		5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND	U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND		5.0	0.72	1	11/14/08	11/14/08	JWG0804378	***************************************
trans-1,2-Dichloroethene	ND		1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND	U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND		1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND		10	0.60	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND		10	0.56	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND		5.0	0.14	- 1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND		1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND	U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND		5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND		1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND		1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND	U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND	U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 13:38:00

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

27 Page

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805457

Date Collected: NA Date Received: NA

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0804378-4

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	- (- )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	96	75-120	11/14/08	Acceptable	
Dibromofluoromethane	96	82-116	11/14/08	Acceptable	
Toluene-d8	96	88-117	11/14/08	Acceptable	

Comments:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008

**Date Received:** 11/11/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-23A

Lab Code:

J0805457-001

Units: ug/L

**Extraction Method:** 

Basis: NA

Analysis Method:

**METHOD** 8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/17/08	JWG0804354	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/17/08	JWG0804354	

**Comments:** 

Printed: 11/19/2008 11:51:45

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008

**Date Received:** 11/11/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-23B

Lab Code:

J0805457-002

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/17/08	JWG0804354	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/17/08	JWG0804354	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	128	77-150	11/17/08	Acceptable	

Comments:

Printed: 11/19/2008 11:51:46

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $30_{\text{Page}}$ 

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Service Request: J0805457 Date Collected: 11/10/2008

Water

**Date Received:** 11/11/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-23C

Lab Code:

J0805457-003

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/17/08	JWG0804354	<del></del>
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/17/08	JWG0804354	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,2-Tetrachloroethane	115	77-150	11/17/08	Acceptable

Comments:

Printed: 11/19/2008 11:51:47 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

 $31_{\text{Page}}$ 

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-22A

Lab Code:

J0805457-004

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1	11/16/08 11/16/08	11/17/08 11/17/08	JWG0804354 JWG0804354	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	128	77-150	11/17/08	Acceptable	

Comments:

Printed: 11/19/2008 11:51:48

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

RR25706 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008 **Date Received:** 11/11/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-22B

Lab Code:

J0805457-005

Units: ug/L

Basis: NA

**Extraction Method: Analysis Method:** 

**METHOD** 8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804354	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804354	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	134	77-150	11/18/08	Acceptable

Comments:

Printed: 11/19/2008 11:51:50

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $33_{\text{Page}}$ 

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-22C

Lab Code:

J0805457-006

Units: ug/L

**Extraction Method:** 

**METHOD** 

Basis: NA

**Analysis Method:** 

Level: Low

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804354	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804354	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	130	77-150	11/18/08	Acceptable	

Comments:

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix: Water

Service Request: J0805457 **Date Collected:** _11/10/2008

**Date Received:** 11/11/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-21A

Lab Code:

J0805457-007

Units: ug/L

**Extraction Method:** 

Basis: NA

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804354	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804354	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	125	77-150	11/18/08	Acceptable

**Comments:** 

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: 11/10/2008

**Date Received:** 11/11/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-21B

Lab Code:

J0805457-008

Units: ug/L

**Extraction Method:** 

Basis: NA

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1	11/16/08 11/16/08	11/18/08 11/18/08	JWG0804354 JWG0804354	
1,2-Dioronio-5-entoropropane (DDC)	ND U	0.020	0.0057	1	11/10/00	11/10/00	J W C0004554	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	130	77-150	11/18/08	Acceptable	

Comments:

Printed: 11/19/2008 11:51:53

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-21C

Lab Code:

J0805457-009

Units: ug/L

Basis: NA

**Extraction Method:** 

ND U

**Analysis Method:** 

**METHOD** 

Level: Low

JWG0804354

8011

1,2-Dibromo-3-chloropropane (DBCP

Dilution Date Date Extraction Analyte Name Result Q **MDL MRL** Factor Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 0.020 0.00701 11/16/08 11/18/08 JWG0804354

0.020

Control Date %Rec **Surrogate Name** Limits Note Analyzed 1,1,1,2-Tetrachloroethane 128 77-150 11/18/08 Acceptable

0.0057

1

11/16/08

11/18/08

**Comments:** 

Printed: 11/19/2008 11:51:55 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Collected: NA

Date Received: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804354-3

Units: ug/L

**Extraction Method:** 

Basis: NA

**METHOD** 

Level: Low

**Analysis Method:** 

8011

	<b>.</b>			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/17/08	JWG0804354	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/17/08	JWG0804354	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	127	77-150	11/17/08	Acceptable	

Comments:

Printed: 11/19/2008 11:51:56

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 1

RR25706 SuperSet Reference:

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805457 11/10/2008

Date Collected: Date Received:

11/11/2008

Total Metals

Sample Name:

MW-23A

Lab Code:

J0805457-001

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	0.30	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	10	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.17	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	1.6	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	2800	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	0.9	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	1.5	i
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	U	

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:

J0805457

Date Collected: Date Received: 11/10/2008 11/11/2008

Total Metals

Sample Name:

MW-23B

Lab Code:

J0805457-002

Units: Basis:

ug/L N/A

Analyte \	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	9.2	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	1.0	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.2	i
Copper	EPA 3020A	6020	2.0.	0.3	1.0	11/19/2008	11/20/2008	1.3	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	452	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.3	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	0.4	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	9	i

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805457

Date Collected: Date Received:

11/10/2008 11/11/2008

**Total Metals** 

Sample Name:

MW-23C

Lab Code:

J0805457-003

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	10	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.13	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	1.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	. U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	496	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.2	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	0.4	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	1.3	i
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	U	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected: Date Received: 11/10/2008 11/11/2008

Total Metals

Sample Name:

MW-22A

Lab Code:

J0805457-004

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	0.21	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	14	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.27	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	1.9	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.8	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	1.3	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	291	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.3	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	2.1	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	0.22	i
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	2.8	i
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	8	i

#### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected: Date Received: 11/10/2008 11/11/2008

Total Metals

Sample Name:

MW-22B

Lab Code:

J0805457-005

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	0.77	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	41	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.35	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	4.1	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.8	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	2.1	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	1650	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	4.0	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	• •
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	1.4	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	1.1	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	6.8	
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	U	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request:

J0805457

Date Collected:

11/10/2008 **Date Received:** 11/11/2008

Total Metals

Sample Name:

MW-22C

Lab Code:

J0805457-006

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	18	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.14	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	1.4	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	496	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	1.5	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	6	·i

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected: Date Received: 11/10/2008 11/11/2008

Total Metals

Sample Name:

MW-21A

Lab Code:

J0805457-007

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	26	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.44	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	1.5	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	0.3	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	181	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.6	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	2.0	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U .	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	4.3	i
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	U	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name: Project Number:**  JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457 11/10/2008

Date Collected: Date Received:

11/11/2008

Total Metals

Sample Name:

MW-21B

Lab Code:

J0805457-008

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	0.23	i
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	23	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.16	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	2.3	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	1.4	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	1900	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	1.4	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	0.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	2.9	i
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	U	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected: Date Received: 11/10/2008 11/11/2008

Total Metals

Sample Name:

MW-21C

Lab Code:

J0805457-009

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	0.58	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	61	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	0.3	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	0.25	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	3.7	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	0.5	į
Iron	EPA 3010A	6010B	50	4.0	1.0	11/17/2008	11/18/2008	1920	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	1.0	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	0.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/21/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	4.0	i
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	U	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected: N/A Date Received: N/A

Total Metals

Sample Name:

Method Blank

Lab Code:

MB3-1119

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/19/2008	11/20/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/19/2008	11/20/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/19/2008	11/20/2008	0.6	i
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/19/2008	11/20/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/19/2008	11/20/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/17/2008	11/18/2008	U	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/19/2008	11/20/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/19/2008	11/20/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/19/2008	11/20/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/19/2008	11/20/2008	U.	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/19/2008	11/20/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/19/2008	11/20/2008	U	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:**  JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected: Date Received: 11/10/2008 11/11/2008

**Total Metals** Sodium

Prep Method: Analysis Method:

**Test Notes:** 

EPA 3010A

6010B

Units: Basis:

mg/L N/A

				Dilution	Date	Date	n 1	Result Notes
Sample Name:	Lab Code:	MRL	MDL	Factor	Extracted	Analyzed	Result	Notes
MW-23A	J0805457-001	0.50	0.02	1.0	11/17/2008	11/18/2008	12	
MW-23B	J0805457-002	0.50	0.02	1.0	11/17/2008	11/18/2008	10	
MW-23C	J0805457 <b>-</b> 003	0.50	0.02	1.0	11/17/2008	11/18/2008	5.4	
MW-22A	J0805457-004	0.50	0.02	1.0	11/17/2008	11/18/2008	12	
MW-22B	J0805457-005	0.50	0.02	1.0	11/17/2008	11/18/2008	9.8	
MW-22C	J0805457-006	0.50	0.02	1.0	11/17/2008	11/18/2008	6.3	
MW-21A	J0805457-007	0.50	0.02	1.0	11/17/2008	11/18/2008	7.9	
MW-21B	J0805457-008	0.50	0.02	1.0	11/17/2008	11/18/2008	15	
MW-21C	J0805457-009	0.50	0.02	1.0	11/17/2008	11/18/2008	8.9	
Method Blank	MB2-1117	0.50	0.02	1.0	11/17/2008	11/18/2008	11	

#### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected:

11/10/2008

Date Received:

11/11/2008

Dissolved Metals

Sample Name:

MW-22B

Lab Code:

J0805457-005

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	- 6020	2.0	0.4	1.0	11/13/2008	11/17/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/13/2008	11/17/2008	0.28	i
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/13/2008	11/17/2008	11	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/13/2008	11/17/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/13/2008	11/17/2008	U	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	0.3	i
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	0.4	i
Iron	EPA 3005A	6010B	50	4.0	1.0	11/13/2008	11/13/2008	1310	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/13/2008	11/17/2008	U	
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/13/2008	11/17/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/13/2008	11/17/2008	U	
Zinc	EPA 3005A	6020	10	4.0	1.0	11/13/2008	11/17/2008	U	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: Matrix:

FQ1512 WATER Service Request: Date Collected:

J0805457 11/10/2008

Date Received:

11/11/2008

Dissolved Metals

Sample Name:

MW-21C

Lab Code:

J0805457-009

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/13/2008	11/17/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/13/2008	11/17/2008	0.67	
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/13/2008	11/17/2008	61	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	0.3	i
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/13/2008	11/17/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/13/2008	11/17/2008	3.0	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	0.4	i
Iron	EPA 3005A	6010B	50	4.0	1.0	11/13/2008	11/13/2008	1480	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	0.9	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	0.4	i
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/13/2008	11/17/2008	U	
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/13/2008	11/17/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	, U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/13/2008	11/17/2008	3.3	i
Zinc	EPA 3005A	6020	10	4.0	1.0	11/13/2008	11/17/2008	4.2	i

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805457

Date Collected: Date Received: N/A

N/A

Dissolved Metals

Sample Name: Lab Code:

Method Blank

MB3-1113

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/13/2008	11/17/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/13/2008	11/17/2008	U	
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/13/2008	11/17/2008	U	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/13/2008	11/17/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/13/2008	11/17/2008	U	÷
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	U	
Iron	EPA 3005A	6010B	50.0	4.0	1.0	11/13/2008	11/13/2008	U .	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/14/2008	11/14/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/13/2008	11/17/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/13/2008	11/17/2008	U	
Silver	EPA 3005A	6020	0.5	0.1	1.0	11/13/2008	11/17/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/13/2008	11/17/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/13/2008	11/17/2008	U	
Zinc	EPA 3005A	6020	10.0	4.0	1.0	11/13/2008	11/17/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request: J0805457

Date Collected: Date Received: 11/10/2008 11/11/2008

**Dissolved Metals** 

Sodium

Prep Method: Analysis Method: 6010B

EPA 3005A

Units: mg/L

Basis: N/A

**Test Notes:** 

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-22B	J0805457-005	0.50	0.02	1.0	11/13/2008	11/13/2008	9.7	
MW-21C	J0805457-009	0.50	0.02	1.0	11/13/2008	11/13/2008	9.6	
Method Blank	MB2-1113	0.50	0.02	1.0	11/13/2008	11/13/2008	U	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/08

Date Received: 11/11/08

Inorganic Parameters

Sample Name:

MW-23A

Lab Code:

J0805457-001

Test Notes:

Analysis Dilution Date/Time Result										
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes		
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.40			
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	29			
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/11/08 22:08	U			
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	130			

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/08

Date Received: 11/11/08

**Inorganic Parameters** 

Sample Name:

MW-23B

Lab Code:

J0805457-002

Test Notes:

	***	Analysis	* ***		Dilution	Date/Time	<b>7</b> 5. <b>1</b> 7.	Result Notes
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.080	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	17	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/11/08 22:53	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	32	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/08

Date Received: 11/11/08

**Inorganic Parameters** 

Sample Name:

MW-23C

Lab Code:

J0805457-003

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.10	
Chloride	mg/L (ppm)	300.0	0.2	0.031	- 1	11/11/08 21:23	8.6	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/11/08 23:08	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	54	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/08

Date Received: 11/11/08

**Inorganic Parameters** 

Sample Name:

MW-22A

Lab Code:

J0805457-004

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.069	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	14	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/11/08 23:23	0.22	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	67	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/08

**Date Received:** 11/11/08

**Inorganic Parameters** 

Sample Name:

MW-22B

Lab Code:

J0805457-005

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.13	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	13	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/11/08 23:38	0.15	i
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	,11/11/08 16:15	62	

#### Analytical Report

Client:

GeoSyntec Consultants

JED SWDF

**Project Name:** Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805457

Date Collected: 11/10/08

Date Received: 11/11/08

**Inorganic Parameters** 

Sample Name:

MW-22C

Lab Code:

J0805457-006

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.11	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	9.1	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 00:37	0.15	i
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	300	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/08

Date Received: 11/11/08

Inorganic Parameters

Sample Name:

MW-21A

Lab Code:

J0805457-007

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	12	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 00:52	0.20	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	73	

#### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805457

Date Collected: 11/10/08

Date Received: 11/11/08

**Inorganic Parameters** 

Sample Name:

MW-21B

Lab Code:

J0805457-008

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.17	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	27	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	- 1	11/12/08 01:07	0.15	i
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	56	

#### Analytical Report

Client:

GeoSyntec Consultants
JED SWDF

**Project Name:** 

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/08

Date Received: 11/11/08

**Inorganic Parameters** 

Sample Name:

MW-21C

Lab Code:

J0805457-009

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	0.22	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	20	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 01:22	0.15	i
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	85	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix: WATER

WATER

Service Request: J0805457 Date Collected: NA

Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

J0805457-MB

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/13/08 10:55	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	$\Pi$	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/11/08 21:23	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/11/08 21:23	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/11/08 16:15	U	

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512°

Sample Matrix:

Water

Service Request: J0805457

# Surrogate Recovery Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
MW-23A	J0805457-001	98	101	95	97
MW-23B	J0805457-002	97	99	92	98
MW-23C	J0805457-003	100	95	98	96
MW-22A	J0805457-004	100	97	99	97
MW-22B	J0805457-005	94	96	93	95
MW-22C	J0805457-006	99	94	97	90
MW-21A	J0805457-007	101	99	99	97
MW-21B	J0805457-008	93	95	93	96
MW-21C	J0805457-009	100	97	95	94
Trip Blank	J0805457-010	98	97	98	95
Method Blank	JWG0804378-4	98	96	-96	96
MW-23AMS	JWG0804378-1	96	98	94	95
MW-23ADMS	JWG0804378-2	100	94	97	96
Lab Control Sample	JWG0804378-3	95	97	94	95

#### Surrogate Recovery Control Limits (%)

Sur1 = 1,2-Dichloroethane-d4	71-122
Sur2 = 4-Bromofluorobenzene	75-120
Sur3 = Dibromofluoromethane	82-116
Sur4 = Toluene-d8	88-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/17/2008 13:38:05

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

b4 Page 1 of 1

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457 **Date Extracted:** 11/14/2008

**Date Analyzed:** 11/14/2008

#### Matrix Spike/Duplicate Matrix Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23A

Lab Code:

J0805457-001

**Extraction Method:** Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: JWG0804378

MW-23AMS IWG0804378-1

MW-23ADMS IWG0804378-2

	Sample		VG0804378-1 Matrix Spike			VG0804378-2 cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Chloromethane	ND	25.0	20.0	125	25.3	20.0	127	73-139	1	30
Vinyl Chloride	ND	24.4	20.0	122	25.8	20.0	129	78-141	5	30
Bromomethane	ND	14.2	20.0	71 *	16.1	20.0	81	78-129	13	30
Chloroethane	ND	24.2	20.0	121	30.8	20.0	154 *	76-129	24	30
Trichlorofluoromethane	ND	25.0	20.0	125	25.7	20.0	129	81-133	3	30
1,1-Dichloroethene	ND	24.8	20.0	124	25.4	20.0	127	79-133	2	30
Acetone	ND	104	100	104	110	100	110	56-139	6	30
Iodomethane (Methyl Iodide)	ND	88.1	100	88	111	100	111	74-134	23	30
Carbon Disulfide	ND	120	100	120	122	100	122	71-146	2	30
Methylene Chloride	ND	21.9	20.0	109	22.4	20.0	112	75-123	2	30
trans-1,2-Dichloroethene	ND	21.5	20.0	108	23.1	20.0	116	76-125	7	30
Acrylonitrile	ND	110	100	110	113	100	113	68-131	3	30
1,1-Dichloroethane	ND	21.6	20.0	108	22.6	20.0	113	78-125	5	30
Vinyl Acetate	ND	89.7	100	90	93.2	100	93	43-163	4	30
cis-1,2-Dichloroethene	ND	21.0	20.0	105	21.8	20.0	109	75-127	4	30
2-Butanone (MEK)	ND	97.3	100	97	105	100	105	63-134	8	30
Bromochloromethane	ND	22.7	20.0	114	23.6	20.0	118	80-124	4	30
Chloroform	ND	23.2	20.0	116	23.2	20.0	116	81-124	0	30
1,1,1-Trichloroethane (TCA)	ND	23.2	20.0	116	23.8	20.0	119	76-130	3	30
Carbon Tetrachloride	ND	22.9	20.0	115	23.5	20.0	118	76-131	3	30
Benzene	ND	21.3	20.0	106	22.7	20.0	113	78-123	6	30
1,2-Dichloroethane (EDC)	ND	21.6	20.0	108	22.6	20.0	113	74-126	5	30
Trichloroethene (TCE)	ND	21.3	20.0	106	22.3	20.0	112	77-128	5	30
1,2-Dichloropropane	ND	22.0	20.0	110	23.1	20.0	115	77-122	5	30
Dibromomethane	ND	21.1	20.0	106	21.8	20.0	109	78-124	3	30
Bromodichloromethane	ND	20.4	20.0	102	21.5	20.0	107	79-125	5	30
cis-1,3-Dichloropropene	ND	19.2	20.0	96	20.5	20.0	102	77-117	6	30
4-Methyl-2-pentanone (MIBK)	ND	98.3	100	98	105	100	105	65-138	7	30
Toluene	ND	21.2	20.0	106	21.8	20.0	109	86-119	3	30
trans-1,3-Dichloropropene	ND	19.3	20.0	96	20.1	20.0	100	75-120	4	30
1,1,2-Trichloroethane	ND	19.9	20.0	99	21.1	20.0	105	77-124	6	30
Tetrachloroethene (PCE)	ND	21.1	20.0	106	21.2	20.0	106	79-123	0	30
2-Hexanone	ND	99.6	100	100	107	100	107	63-142	7	30
Dibromochloromethane	ND	20.2	20.0	101	20.6	20.0	103	78-124	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 13:38:09 p:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

SuperSet Reference: RR25641

QA/QC Report

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Extracted:** 11/14/2008 **Date Analyzed:** 11/14/2008

Matrix Spike/Duplicate Matrix Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-23A

Lab Code:

J0805457-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804378

MW-23AMS JWG0804378-1 MW-23ADMS JWG0804378-2

Matrix Spike **Duplicate Matrix Spike** Sample %Rec **RPD** Result **Analyte Name** Result Expected Limits **RPD** Limit %Rec Result **Expected** %Rec 1,2-Dibromoethane (EDB) ND 20.1 20.0 100 20.6 20.0 103 81-119 2 30 Chlorobenzene ND 20.3 20.0 102 21.1 20.0 106 81-120 4 30 1,1,1,2-Tetrachloroethane ND 19.8 20.0 99 20.7 20.0 103 82-118 4 30 Ethylbenzene ND 22.5 20.0 113 22.4 20.0 112 87-122 0 30 m,p-Xylenes ND 42.5 40.0 106 43.6 40.0 109 82-120 3 30 o-Xylene ND 21.4 20.0 107 22.3 20.0 111 85-119 4 30 Styrene ND 21.4 20.0 107 21.5 20.0 108 84-126 1 30 Bromoform ND 18.3 20.0 91 19.0 20.0 95 70-129 4 30 1,1,2,2-Tetrachloroethane ND 20.5 20.0 103 22.0 20.0 110 7 30 72-127 1,2,3-Trichloropropane ND 19.3 20.0 97 20.2 20.0 101 76-123 5 30 1,4-Dichlorobenzene ND 20.4 20.0 102 21.0 20.0 105 75-115 3 30 trans-1,4-Dichloro-2-butene ND 28.7 20.0 144 * 27.9 20.0 139 * 22-135 3 30 1,2-Dichlorobenzene ND 20.9 20.0 104 21.2 20.0 106 77-116 2 30 1,2-Dibromo-3-chloropropane (DBCP ND 16.8 20.0 84 19.6 20.0 98 54-120 15 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 13:38:09 p:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Extracted: 11/14/2008

**Date Analyzed:** 11/14/2008

#### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low Extraction Lot: JWG0804378

Lab Control Sample JWG0804378-3

Lab Control Spike %Rec **Analyte Name** Limits Result **Expected** %Rec Chloromethane 15.3 20.0 76 67-135 Vinvl Chloride 17.5 20.0 87 78-132 Bromomethane 21.3 20.0 106 79-130 Chloroethane 21.4 20.0 107 74-126 Trichlorofluoromethane 21.1 20.0 106 74-134 1,1-Dichloroethene 19.9 20.0 99 78-130 97.7 100 98 67-133 91.4 100 91 68-134 90.7 100 91 76-138

Acetone Iodomethane (Methyl Iodide) Carbon Disulfide Methylene Chloride 20.3 20.0 102 72-124 trans-1,2-Dichloroethene 19.1 20.0 96 77-124 Acrylonitrile 105 105 100 77-127 1,1-Dichloroethane 19.4 20.0 97 80-128 Vinyl Acetate 94.9 100 95 61-148 cis-1,2-Dichloroethene 19.9 20.0 99 80-126 2-Butanone (MEK) 94.1 100 94 73-127 Bromochloromethane 20.6 20.0 103 79-129 Chloroform 20.0 20.0 100 83-124 1,1,1-Trichloroethane (TCA) 20.1 20.0 100 79-124 Carbon Tetrachloride 19.9 20.0 99 81-125 Benzene 19.4 20.0 97 79-119 1,2-Dichloroethane (EDC) 20.0 20.0 100 80-124 Trichloroethene (TCE) 18.6 20.0 93 76-124 1,2-Dichloropropane 19.7 20.0 99 79-123 Dibromomethane 19.8 20.0 99 83-123 Bromodichloromethane 19.7 20.0 98 81-123 cis-1,3-Dichloropropene 19.7 20.0 99 86-123 4-Methyl-2-pentanone (MIBK) 102 100 102 72-136 Toluene 19.7 20.0 98 86-117 trans-1,3-Dichloropropene 20.2 20.0 101 83-124 1,1,2-Trichloroethane 19.8 20.0 99 86-114 Tetrachloroethene (PCE) 19.6 20.0 98 80-121 2-Hexanone 102 100 102 71-138 Dibromochloromethane 19.5 20.0 98 82-121 1,2-Dibromoethane (EDB) 20.4 20.0 102 88-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

20.0

99

19.9

Printed: 11/17/2008 13:38:13 p:\Stealth\Crystal.rpt\Form3LCS.rpt

Chlorobenzene

Form 3C - Organic

86-113

SuperSet Reference: RR25641

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Date Extracted:** 11/14/2008

**Date Analyzed:** 11/14/2008

#### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804378

Lab Control Sample JWG0804378-3 Lab Control Spike

		e onti or opini	%Rec		
Analyte Name	Result	Expected	%Rec	Limits	
1,1,1,2-Tetrachloroethane	20.6	20.0	103	85-117	
Ethylbenzene	20.3	20.0	102	90-118	
m,p-Xylenes	40.7	40.0	102	86-121	
o-Xylene	20.1	20.0	100	89-119	
Styrene	19.9	20.0	100	89-122	
Bromoform	19.5	20.0	98	68-129	
1,1,2,2-Tetrachloroethane	21.4	20.0	107	83-120	
1,2,3-Trichloropropane	21.3	20.0	106	83-123	
1,4-Dichlorobenzene	20.8	20.0	104	83-113	
trans-1,4-Dichloro-2-butene	17.8	20.0	89	53-143	
1,2-Dichlorobenzene	21.2	20.0	106	84-115	
1,2-Dibromo-3-chloropropane (DBCP	23.7	20.0	119	62-123	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 13:38:13 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

**Surrogate Recovery Summary** 

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method: METHOD

Units: PERCENT

Analysis Method:

8011

Level: Low

Sample Name	Lab Code	Sur1
MW-23A	J0805457-001	126
MW-23B	J0805457-002	128
MW-23C	J0805457-003	115
MW-22A	J0805457-004	128
MW-22B	J0805457-005	134
MW-22C	J0805457-006	130
MW-21A	J0805457-007	125
MW-21B	J0805457-008	130
MW-21C	J0805457-009	128
Method Blank	JWG0804354-3	127
Lab Control Sample	JWG0804354-1	131
Duplicate Lab Control Sample	JWG0804354-2	123

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/19/2008 11:52:00 p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR25706

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805457

Date Extracted: 11/16/2008

**Date Analyzed:** 11/17/2008

Lab Control Spike/Duplicate Lab Control Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804354

Lab Control Sample

JWG0804354-1

Duplicate Lab Control Sample

JWG0804354-2

Lab Control Spike **Duplicate Lab Control Spike** %Rec **RPD RPD** Limits Limit **Analyte Name** Result **Expected** %Rec Result **Expected** %Rec 1,2-Dibromoethane (EDB) 0.322 0.250 129 0.310 0.250 124 70-130 4 20 1,2-Dibromo-3-chloropropane (DBCP 0.304 0.250 122 0.277 0.250 70-130 9 20 111

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/19/2008 11:52:03  $p:\Stealth\Crystal.rpt\Form3DLC.rpt$ 

Form 3C - Organic

SuperSet Reference: RR25706

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/2008 **Date Received:** 11/11/2008

Date Extracted: 11/17/2008 **Date Analyzed:** 11/18/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-23A

Lab Code:

J0805457-001

J0805457-001S

Units: ug/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	7	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Iron	EPA 3010	6010B	50	2000	2000	2800	4710	4840	96	102	3	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805457

Date Collected: N/A Date Received: N/A

**Date Extracted:** 11/19/2008 Date Analyzed: 11/20/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS3-1119

Units: ug/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	50.5	101	80 - 120	
Arsenic	EPA 3020A	6020	50.0	43.6	87	80 - 120	
Barium	EPA 3020A	6020	50.0	48.6	97	80 - 120	
Beryllium	EPA 3020A	6020	50.0	45.0	90	80 - 120	
Cadmium	EPA 3020A	6020	50.0	46.3	93	80 - 120	
Chromium	EPA 3020A	6020	50.0	48.4	97	80 - 120	
Cobalt	EPA 3020A	6020	50.0	48.6	97	80 - 120	
Copper	EPA 3020A	6020	50.0	47.4	95	80 - 120	
Iron	EPA 3010A	6010B	2000	1970	98	80 - 120	
Lead	EPA 3020A	6020	50.0	50.5	101	80 - 120	
Mercury	METHOD	7470A	5,00	4.78	96	80 - 120	
Nickel	EPA 3020A	6020	50.0	48.4	97	80 - 120	
Selenium	EPA 3020A	6020	50.0	41.4	83	80 - 120	
Silver	EPA 3020A	6020	50.0	51.6	103	80 - 120	
Thallium	EPA 3020A	6020	50.0	49.9	100	80 - 120	
Vanadium	EPA 3020A	6020	50.0	48.2	96	80 - 120	
Zinc	EPA 3020A	6020	100	89.4	89	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805457

**Date Collected:** 11/10/2008

**Date Received:** 11/11/2008 **Date Extracted:** 11/17/2008 **Date Analyzed:** 11/18/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-23A

Lab Code:

J0805457-001

J0805457-001S

Units: mg/L

			* .		•							% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	/	Acceptance	e Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Sodium	EPA 3010	6010B	0.5	10.0	10.0	11.8	21.2	22.0	94	102	4	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Matrix:

WATER

Service Request: J0805457

Date Collected: N/A

Date Received: N/A

**Date Extracted:** 11/17/2008

**Date Analyzed:** 11/18/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS2-1117

Units: mg/L

Basis: N/A

CAS Percent

Prep Method Analyte

Analysis Method

True Value

10.0

Percent Recovery Results

Recovery Acceptance Limits

Result Notes

Sodium

EPA 3010A

6010B

10.2

80 - 120 102

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512 Matrix:

WATER

Service Request: J0805457

Date Collected: N/A Date Received: N/A

Date Extracted: 11/13/2008

**Date Analyzed:** 11/17/2008

Laboratory Control Sample Summary

Dissolved Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS3-1113

Units: ug/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3005A	6020	50.0	53.3	107	80 - 120	
Arsenic	EPA 3005A	6020	50.0	48.5	97	80 - 120	
Barium	EPA 3005A	6020	50.0	49.4	99	80 - 120	
Beryllium	EPA 3005A	6020	50.0	50.6	101	80 - 120	
Cadmium	EPA 3005A	6020	50.0	48.8	98	80 - 120	
Chromium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Cobalt	EPA 3005A	6020	50.0	49.8	100	80 - 120	
Copper	EPA 3005A	6020	50.0	49.5	99	80 - 120	
Iron	EPA 3005A	6010B	2000	2010	100	80 - 120	
Lead	EPA 3005A	6020	50.0	50.4.	101	80 - 120	
Mercury	METHOD	7470A	5.00	4.78	96	80 - 120	
Nickel	EPA 3005A	6020	50.0	50.3	101	80 - 120	
Selenium	EPA 3005A	6020	50.0	48.9	98	80 - 120	
Silver	EPA 3005A	6020	50.0	52.9	106	80 - 120	
Thallium	EPA 3005A	6020	50.0	49.1	98	80 - 120	
Vanadium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Zinc	EPA 3005A	6020	100	101.0	101	80 - 120	

QA/QC Report

Client:

Matrix:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

WATER

Service Request: J0805457

Date Collected: N/A

Date Received: N/A

Date Extracted: 11/13/2008

Recovery

Acceptance

Limits

80 - 120

**Date Analyzed:** 11/13/2008

Laboratory Control Sample Summary

Dissolved Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS2-1113

Units: mg/L

Result

Notes

Basis: N/A

**CAS** Percent

True Percent Analysis Prep Value Recovery Method Method Analyte Results 6010B 10.1 101 Sodium EPA 3005A 10.0

76

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805457

Date Collected: 11/10/08

Date Received: 11/11/08

Date Extracted: NA

Date Analyzed: 11/11/08

Basis: NA

**Duplicate Summary Inorganic Parameters** 

Sample Name:

MW-23A

Lab Code:

J0805457-001DUP

Test Notes:

**Duplicate** Relative Analysis Sample Percent Sample Result Analyte Result Average Difference Notes Units Method MRL Result Chloride mg/L (ppm) 300.0 0.2 29 29 29 <1 Nitrate as Nitrogen mg/L (ppm) 300.0 0.2 U U U

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Sample Matrix:

**Project Number:** FQ1512 WATER Service Request: J0805457

**Date Collected:** 11/10/08

Date Received: 11/11/08

Date Extracted: NA

Date Analyzed: 11/11/08

Matrix Spike Summary **Inorganic Parameters** 

Sample Name:

MW-23A

Lab Code:

J0805457-001MS

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	100	29	130	101	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	U	5.47	109	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

**Project Number:** 

FQ1512

Sample Matrix: WATER

Service Request: JO

J0805457

Date Collected:

: NA

Date Received :
Date Extracted :

: NA : NA

Date Analyzed:

11/11-13/08

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Laboratory Control Sample

Lab Code:

J0805457-LCS

Test Notes:

Basis: NA

CAS Percent Recovery Acceptance **Analysis** Percent Result Limits Analyte Units Method True Value Result Recovery Notes Ammonia as Nitrogen 99 mg/L (ppm) 350.1 5.00 4.96 90-110 Chloride mg/L (ppm) 300.0 5.00 5.19 104 90-110 Chloride mg/L (ppm) 300.0 100 104 104 90-110 Nitrate as Nitrogen mg/L (ppm) 300.0 5.0 5.17 103 90-110 Solids, Total Dissolved (TDS) mg/L (ppm) 160.1 300 287 96 85-115

Columbia Analytical Services, Inc.
Cooler Receipt and Preservation Form

Service Request #   Table #	Client: Project:	Geosynte	SWDF	Ser	vice Reques	st #	JUSO	5487	
Were custody seals on outside of cooler?  Were seals intact, signed and dated?  Were seals intact, signed and dated?  Temperature of cooler(s) upon receipt (Sheeld be 4 ++ 2 degrees C)  Correct Temperature?  Were Ice or Ice Packs present  Did all bottles arrive in good condition (unbroken, etc)?  Were all bottle labels complete (sample ID, preservation, etc)?  Did all bottle labels and tags agree with custody papers?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were all samples received with the appropriate preservative?  HNO3 pH=2   H2SOH pH=2   ZnAc2/NuOH pH=9   NaOH pH=12   HCI pH=2    Were all samples received within analysis holding times?  Were VOA vials checked for absence of air bubbles? If present, note below  Mere did the bottles originate?  Manuf. Lot # or CAS   Client  Manuf. Lot # or CAS   Client		eived on $\frac{1}{I}$	11/08	anc	l opened on	11/11/08	by /	DK	
Were seals intact, signed and dated?  Were custody papers properly filled out?  Temperature of cooler(s) upon receipt (Should be 4 +/- 2 degrees C)  Correct Temperature?  Were Ice or Ice Packs present  Did all bottles arrive in good condition (unbroken, etc)?  Were all bottle labels complete (sample ID, preservation, etc)?  Did all bottle labels and tags agree with custody papers?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were all samples received with the appropriate preservative?  HNO3 pH<2 H2SO4 pH<2 ZnAc2/NaOH pH>9 NaOH pH>12 HCI pH<3  Were VOA vials checked for absence of air bubbles? If present, note below  No N/A  Where did the bottles originate?  Manuf. Lot # or CAS  Chem ID ml added Inititials	COURIER	: CAS (UPS	y FEDEX	DHL CL	IENT	Tracking #			
Were seals intact, signed and dated?  Were custody papers properly filled out?  Temperature of cooler(s) upon receipt (Should be 4 +/- 2 degrees C)  Correct Temperature?  Ves No N/A  Were lee or Ice Packs present  Did all bottles arrive in good condition (unbroken, etc)?  Were all bottle labels complete (sample ID, preservation, etc)?  Did all bottle labels and tags agree with custody papers?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were fill bythe preserved bottles received with the appropriate preservative?  HNO3 pH<2 H2SO4 pH<2 ZnAc2/NaOII pH>9 NaOH pH>12 HCl pH>3  Were VOA vials checked for absence of air bubbles? If present, note below  Where did the bottles originate?  Sample ID Reagent Chem ID ml added Inititials  Manuf. Lot # or CAS Chem ID ml added Inititials	1.	Were custody seals	on outside of co	oler?		general constitution of the second	Yes	No	N/A
Were custody papers properly filled out?  Temperature of cooler(s) upon receipt: (Should be 4 ± 2 degrees C)  Correct Temperature?  Were Ice or Ice Packs present  Did all bottles arrive in good condition (unbroken, etc)?  Were all bottle labels complete (sample ID, preservation, etc)?  Did all hottle labels and tags agree with custody papers?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were firstly preserved bottles received with the appropriate preservative?  HNO3 pH<2	2	•					a surregular de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la co		
Temperature of cooler(s) upon receipt (Should be 4 Hr. 2 degrees C)  Correct Temperature?  Were Ice or Ice Packs present  Did all bottles arrive in good condition (unbroken, etc)?  Were all bottle labels complete (sample ID, preservation, etc)?  Did all bottle labels and tags agree with custody papers?  Were the correct bottles used for the tests indicated?  Were aft of the preserved bottles received with the appropriate preservative?  HNO3 pH=2 H2SO4 pH<2 ZBAC2/NaOH pH>9 NaOH pH>12 HCI pH=3  Were all samples received within analysis holding times?  Were all samples received within analysis holding times?  Were VOA vials checked for absence of air bubbles? If present, note below  No N/A  Where did the bottles originate?  Manuf. Lot # or CAS  Sample ID Reagent Chem ID ml added Inititials	3	Were custody pape	rs properly filled	l out?		7			***************************************
Were Ice or Ice Packs present    Yes   No   N/A	4	Temperature of cooler(	s) upon receipt	(Should be 4 +/-	2 degrees C)	~ / \ \	· · · · · · · · · · · · · · · · · · ·		
Did all bottles arrive in good condition (unbroken, etc)?  Were all bottle labels complete (sample ID, preservation, etc)?  Did all bottle labels and tags agree with custody papers?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were the preserved bottles received with the appropriate preservative?  HNO3 pH<2 H2SO4 pH-2 ZnAc2/NaOH pH>9 NaOH pH>12 HCl pH<2  Were all samples received within analysis holding times?  Were VOA vials checked for absence of air bubbles? If present, note below  Where did the bottles originate?  Manuf. Lot # or CAS  Client  Sample ID Reagent Chem ID ml added Inititials	5	Correct Temperatur	:e?			(	Yes	No	N/A
Were all bottle labels complete (sample ID, preservation, etc)?  Ves No N/A  Did all bottle labels and tags agree with custody papers?  Were the correct bottles used for the tests indicated?  Were the correct bottles received with the appropriate preservative?  HNO3 pH-2 H2SO4 pH-2 ZnAc2/NaOH pH>9 NaOH pH>12 HCl pH-3  Preservative additions feetbed to a see the flux of the preservative and the preservative additions feetbed to a see the flux of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon of the photon	6	Were Ice or Ice Pac	eks present			7	Yes	No	N/A
Were all bottle labels complete (sample ID, preservation, etc)?  Were the correct bottles used for the tests indicated?  Were the correct bottles used for the tests indicated?  Were the correct bottles received with the appropriate preservative?  HNO3 pH<2 H2S04 pH<2 ZnAc2/NaOH pH>9 NaOH pH>12 HCl pH>  Were all samples received within analysis holding times?  Were VOA vials checked for absence of air bubbles? If present, note below  Where did the bottles originate?  Sample ID Reagent Chem ID ml added Inititials  Sample ID Reagent Chem ID ml added Inititials	7	Did all bottles arriv	e in good condit	ion (unbroke	en, etc)?	X	Yes	No	N/A
Were the correct bottles used for the tests indicated?  Were aft Totale preserved bottles received with the appropriate preservative?  HNO3 pH<2  H2SO4 pH<2  ZnAc2/NaOH pH>9  NaOH pH>12  HCl pH<3  Were all samples received within analysis holding times?  Were VOA vials checked for absence of air bubbles? If present, note below  YNO  N/A  Where did the bottles originate?  CAS  Client  Sample ID  Reagent  Chem ID  ml added  Inititials	. 8	Were all bottle labe	els complete (san	nple ID, pres	ervation, et	c)?		No	N/A
Were all samples received within analysis holding times?  Were all samples received within analysis holding times?  Were VOA vials checked for absence of air bubbles? If present, note below  Where did the bottles originate?  Manuf. Lot # or CAS  Sample ID  Reagent  Chem ID  ml added  Inititials	9	Did all bottle labels	and tags agree	with custody	papers?		Yes)	No	N/A
HNO3 pH<2 H2SO4 pH<2 ZnAc2/NaOH pH>9 NaOH pH>12 HCl pH   12 Were all samples received within analysis holding times? Yes No N/A   13 Were VOA vials checked for absence of air bubbles? If present, note below Yo No N/A   14 Where did the bottles originate? CAS Client    Sample ID  Reagent  Chem ID  ml added  Inititials	10	Were the correct bo	ottles used for the	e tests indic	ated?		Yes	No	N/A
Were all samples received within analysis holding times?  Were VOA vials checked for absence of air bubbles? If present, note below  Where did the bottles originate?  No N/A  Where did the bottles originate?  CAS Client  Sample ID Reagent Chem ID ml added Inititials	11	Were all of the preserve	ed bottles received v	with the approp	oriate preserva:	tive?	Yes	No	N/A
Sample ID Reagent Chem ID ml added Inititials				r ouddies? If pr	esent, note be	10/4		<del></del>	N/A
		gentimber and all the children cold size that zinner in which he had been committed even committee and an account	into all control de paga toma de control de control de control de paga toma de control de control de control d I	Manuf. Lo	ot#orCAS	THE RESIDENCE OF A PARTICULAR PROPERTY AND A CONTRACT STATE OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF	APPARTOCOLOGICO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONTO CONT	kan nika minimum minimum minimum nika sa	RESISTANCE VALUE
Iditional comments and/or explanation of all discrepancies noted above:		Sample ID	Reagent	Che	m ID	ml added	Initi	tials	
Iditional comments and/or explanation of all discrepancies noted above:									
Iditional comments and/or explanation of all discrepancies noted above:							-		
Iditional comments and/or explanation of all discrepancies noted above:									
Iditional comments and/or explanation of all discrepancies noted above:								de de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	
Iditional comments and/or explanation of all discrepancies noted above:									
dditional comments and/or explanation of all discrepancies noted above:									449-44134222Cin-
Iditional comments and/or explanation of all discrepancies noted above:									
	Additional	comments and/or exi	lanation of all d	liscrepancies	noted abov	Co.	COLUMN CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	MANTEN ANTENNA COMPANY ENCLAS COMPANY ANTENNA EN ENCLAS COMPANY ANTENNA EN ENCLAS COMPANY ANTENNA EN EN ENCLAS	į
								***************************************	
								-	
								<del>4. 1. M. J </del>	***************************************
ient approval to run samples if discrepancies noted:  Date: 80						·			

sr#: JOB)5459

Date: 1/1/08

Initials:

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

1	Bottle Code												1																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	40ml.	40ml	40mL		125ml			. 125ml.		250mt.	250ml.			250ml			500mt			1L	11	1L	1L	202	40Z	8oz		5g	100mL	Misc.
Container	G	G	G	G	P	P	P	P	Р	Р	Р	P	Р	G	G	Р	Р	P	Р	Р	G	G	G	G	G	G	G	ENC	Ρ	Misc.
	1 200		Soditim		2347							ZnAcetato		18.79							14.			157	1.15	425			Sodium	Sing.
Pres.		HCI	Thiosulfate	H2SO4	1		H2SO4			H2SO4			NaOH		HNO3		H2SO4	HN03	18.E	HNO			H2SO4	4	144	N. E	yêK		Thiosultate N/A	
Req pH	N/A	<2	N/A	<2	N/A	<2	<2	<2	N/A	<2	<2	>9	>12	N/A	<2	N/A	<2		N/A		NIA	<2				N/A	N/A	N/A		N/A
Sample #	-	-	-	-	<u> </u>	-		<u> </u>	<u> </u>			-				-			<u> </u>		ļ-			-	-	<del> </del>				
-001	-3	3		ļ			1 1		_/_								<u> </u>	ļ	ļ	ļ	ļ			<u> </u>	-					
-002	くかろうろうろ	52 50 50 50 50 50 50 50 50 50 50 50 50 50						1	<u> </u>									<u> </u>		<u> </u>	I			ļ						
-003	-2	3						1													1			<u> </u>		]				
-004	-13	3		1				1																					`	
-005	-2	2		<del>                                     </del>	<del>                                     </del>			7																						
		6		<del> </del>			1	1											1		1			<u> </u>		<u> </u>			-	
-006	33733	2		-			<del>                                     </del>	1				ļ					<del> </del>	<del> </del>	<del> </del>		-	l		-	1					
-007	2	3		ļ	ļ			1 1			ļ				-	<b></b>	-				-			-	┼	<del>                                     </del>				-
-008	2	2				ļ	12/	4 /	1									<u> </u>	ļ		-	-		┼—	-	<del> </del>				-
-009	3	3			ļ		V	2	V									<b> </b>		-					-					<del> </del>
-010		3																ļ	ļ	ļ	L-	<u> </u>		-	-					ļ
-011					1												ļ	ļ			<u> </u>			ļ	ļ	L				
-012																			<u> </u>		<u></u>									
-013								T									1	<u> </u>								L				
-014	-						1														1	İ								1
-015																			1											
-016					1		†										1													
-017				1			<del> </del>								-		-		1											
ì								-	-								<b> </b>	1												
018				<del> </del>				-									1	1	1	1	$\vdash$	ļ		1						
-019		-			<del> </del>										<del> </del>			<del> </del>	<del> </del>		t			-	<u> </u>	$\vdash$				
-020				<del> </del>											-			<del> </del>	<del> </del>	-	-			+	1-					
-021					<del> </del>	ļ	-	<u> </u>										<del> </del>	-		-			-	-					-
-022							ļ														ļ			├						
-023					ļ													ļ	-	ļ	-			<u> </u>						ļ
-024																					<u> </u>									
-025																									<u> </u>					
-026																														
-027																				-										
-028					<b> </b>												1							T						
-029					1		İ											1	1	1				T						
-029							-										T			t				1	1					
1				<b></b>	<del></del>			<del> </del>	-								<del> </del>				-			-	<del> </del>					<del> </del>
-031				ļ			<del> </del>	<b></b>	-								<del> </del>	-			-			-	<del> </del>	-				
-032				ļ	<u> </u>		<del> </del>										ļ		-	ļ										<del> </del>
-033					L											-			-					-	ļ					ļ
-034																	ļ			ļ	_			<u> </u>						
-035					<u></u>																_									
-036																														
-037	T																			l							7			
-038																	l													
-039																														
-040																		<b>-</b>			-			1	1					<b> </b>
-040 [	1				ــــــــــــــــــــــــــــــــــــــ		1											1		L	1	LI		<u> </u>						L



www.caslab.com

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

JUD 5457

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____ OF ____

CAS Contact

Project Name SED SWDF	b SWDF Project Number FQ1572						ANALYSIS REQUESTED (Include Method Number a														
Project Manager Kirk Wills	Email Address		· .	PRE	SER	/ATIVE	1	0	7	7	0	2				Ī					
Company/Address	Kwillsog	cosymum.	CON		T		//		12	2		2	L)		<del>                                     </del>						
Geosynta				82		/	/	' /	/ /	′ /	/.	4				7		$\overline{}$		/ 1 HCL	
14055 Rived	ge Dr. Ste.	300		NUMBER OF CONTAINERS		//				13	1 2 2 2 2 3	37/mg/s								1. HCL 2. HNC 3. H ₂ S 4. NaO	) О ₄ Н
lampa, FL	33637			OF CO		1 1 5	/ 🔪	6 X	Jehn L			/ /	/ /	/	/ /	/ /	/	/ /	/ /	5. Zn. A 6. MeO 7. NaH	Acetate )H
813-558-0990	FAX# B13 558	-9726		ABER (	/	60	%)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	19	رتع		) "   O'S									8. Othe	•
Sampler Signature	Sampler's Printed Name			7 🗟	/			/ `	1		7			/						REMARKS RNATE DESC	/
	300 1817	SAMPLING		+	1	$\overline{}$	f	$\leftarrow$	<del>//</del>	<del>'</del> /	7	<del> </del>	<del>/                                    </del>		<i>/</i>	/	/	<u>/</u>	/ ALTE	RNATE DESC	RIPTION
CLIENT SAMPLE ID		DATE TIME	MATRIX		<u> </u>			<u></u>	<u> </u>												
MW-23A		10.08 0845	GW	9	X	×	X	X	X									-			
MW-23B		1 0855	- 1	9		andlrow,	- Carried Control	1	i												
MW-23C		0935		9	and the same	- Company															
MW-22A		1135		9	-		- Control	-													
MW-22B		1230	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA	10		100				X										V-	-
MW-22C		1150		9		o annual a	100											-			
MW-21A		1510		9		SCHOOL STATES			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s					~							***************************************
MW-21B		1530	3	9		- Approximately								·							
MW-210	1	1455		10		V	V	V	1	X											
Tr. P Black			W	3	1	"		T									~~~			****	
SPECIAL INSTRUCTIONS/COMMENTS				1-	<u> </u>	TI	URNAF	ROUND	REQU	IREMEN	ITS	Τ	REPO	RT RE	QUIRE	MENTS	 }		INVOIC	CE INFORMAT	ION
						l	RUSI	H (SUR	CHARGE	S APPLY	)	l	I. Result								
						X	STAN	IDARD							Summa			PO#		*******	
						REQU	ESTED	FAX DA	TE.				(LCS, D	UP, MS	MSD as	required	)	BILL.	TO		
												. —	III. Resu Summar		C and Ca	alibration		BILL	10.		
						REQU	ESTED	REPOR	T DATE				IV. Data	Validati	on Repor	rt with R	aw Data				
															orms / C						
See QAPP						<u> </u>							•		_Yes						
SAMPLE RECEIPT: CONDITION/COOL RELINQUISHED BY	OOLER TEMP: CUSTODY SE				N	· · · · · · · ·		DEOF	-11/ED D												
82	RECEIVED BY HELINQUISH							MECE	EIVED B	T			H	ELINQI	JISHED	BY			R	ECEIVED BY	
	ignature // / / / / / / / / / / / / / / / / /	Signature		;		Signati	ure					Signatu	ıre					Signa	ture		
PrinterName Printerry Printerry	inted Name DKISS IN 1	Printed Name		:		Printed	i Name					Printed Name					Printe	d Name	-		
Geosynte Firm (15) Firm					Firm Firm					ç.			Firm								
Date/Time 11-10-09/16/15	ate/Finge/11/08 94	Date/Time		,		Date/T	ime				••	Date/Ti	me					Date/1	īme		
Distribution: White Botus to Originator, Vollage	stufa to Originator: Vollays I ah Capus Phys. Batained by Ollast																			107	COC-01/20/09



December 02, 2008

Service Request No: J0805492

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 12, 2008. For your reference, these analyses have been assigned our service request number J0805492.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF

Sample Matrix:

Water

**Service Request No.:** 

J0805492

Date Received:

11/12/08

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Eleven water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/12/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2$ °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

### Second Source Exceptions

The upper control criterion was exceeded for the following analyte in Second Source Verification (SSV) CAL1659: trans-1,4-Dichloro-2-butene. The field sample analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

### Batch QC Notes and Discussion

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

### **EDB** and **DBCP** by **GC-ECD**

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

#### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total and Dissolved Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

Approved by	Crawl	lla	Date	12	2	108
	O'	U		1		,

#### **Batch QC Notes and Discussion**

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA Methods. No problems were observed.

#### Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

Approved by Date 12/2/08

# Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- i The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Service Request: J0805492

# SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	TIME
J0805492-001	MW-20A	11/11/08	10:05
J0805492-002	MW-20B	11/11/08	09:35
J0805492-003	MW-20C	11/11/08	09:10
J0805492-004	MW-16A	11/11/08	12:50
J0805492-005	MW-16B	11/11/08	12:30
J0805492-006	MW-16C	11/11/08	11:50
J0805492-007	MW-17A	11/11/08	14:25
J0805492-008	MW-17B	11/11/08	14:15
J0805492-009	MW-17C	11/11/08	14:50
J0805492-010	DUP-2	11/11/08	00:00
J0805492-011	Equipment Blank	11/11/08	07:30
J0805492-012	Trip Blank	11/11/08	00:00

**Analytical Results** 

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-20A J0805492-001

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result (	Q MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U		0.17	1	11/15/08	11/15/08	JWG0804376	
Vinyl Chloride	ND U		0.25	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	J 1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	J 5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	J 20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	J 1.0	0.16	1 '	11/15/08	11/15/08	JWG0804376	
Acetone	13 I	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	J 5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	J 10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	J 5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND U	J 1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	J 10	0.59	1	11/15/08	11/15/08	JWG0804376	,
1,1-Dichloroethane	ND U	J 1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND U	J 10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	J 1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	. 22	10	0.56	1	11/15/08	11/15/08	JWG0804376	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Bromochloromethane	ND U	J 5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	J 1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	J 1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND U	J 1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	J 1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	J 1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND U	J 1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	J 1.0	0.057	1	11/15/08	11/15/08	JWG0804376	•
Dibromomethane	ND U	J 5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	J 1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	J 1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	J 25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	ND U	J 1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	J 1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	J 1.0	0.21	1	11/15/08	11/15/08	JWG0804376	*****
Tetrachloroethene (PCE)	ND U	J 1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	J 25	0.36	1	11/15/08	11/15/08	JWG0804376	
, , , , , , , , , , , , , , , , , , ,					· · · · · · · · · · · · · · · · · · ·			

Printed: 11/17/2008 16:16:55  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

19.

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-20A J0805492-001

Extraction Method

EPA 5030B

Units: ug/L Basis: NA

Level: Low

extraction	on Method:	EPA 303
Analysis	Method:	8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND	U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND	U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND	U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND	U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND	U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND	U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	. (. )
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/15/08	Acceptable	
4-Bromofluorobenzene	98	75-120	11/15/08	Acceptable	
Dibromofluoromethane	96	82-116	11/15/08	Acceptable	
Toluene-d8	96	88-117	11/15/08	Acceptable	

Comments:

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-20B

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

J0805492-002

Analysis Method:

8260B

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	(ARSONAISERCEOCHEUSE)
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	The second second second
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	***************************************
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1 .	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

Con	ments:	
COH	iments.	

Printed: 11/17/2008 16:16:58

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

RR25635 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-20B

Lab Code:

J0805492-002

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	770-1740-1411/2719-1411-1411-1411
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	( )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	99	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	96	75-120	11/15/08	Acceptable
Dibromofluoromethane	96	82-116	11/15/08	Acceptable
Toluene-d8	97	88-117	11/15/08	Acceptable

**Comments:** 

Printed: 11/17/2008 16:16:58

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR25635

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008 **Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-20C

Lab Code:

J0805492-003

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
Vinyl Chloride	ND U	1.0	0.25	. 1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	*
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

**Comments:** 

Printed: 11/17/2008 16:17:01

 $p:\Stealth\Crystal.rpt\Form 1m.rpt$ 

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25635

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-20C

Lab Code:

J0805492-003

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND	U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	-
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND T	U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND	U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND	U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND	U	2.0	0.16	. 1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND 1	U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	0(3)
1,2-Dibromo-3-chloropropane (DBCP	ND 1	U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	71-122	11/15/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/15/08	Acceptable	
Dibromofluoromethane	93	82-116	11/15/08	Acceptable	
Toluene-d8	94	88-117	11/15/08	Acceptable	

**Comments:** 

RR25635

SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805492 **Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-16A J0805492-004

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date	Date	Extraction	
Chloromethane	ND U				Extracted	Analyzed	Lot	Note
Vinyl Chloride	ND U	1.0	0.17	1 .	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	1.0 1.0	0.25	1	11/15/08	11/15/08	JWG0804376	
was a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a			0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	20	0.25	1 .	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	-
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	. 1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	had of the common parameters are not
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

Comments:

Printed: 11/17/2008 16:17:03

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $13_{\text{Page}}$ 

1 of 2

SuperSet Reference: RR25635

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-16A J0805492-004

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	YY-YH
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	*(0)
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	71-122	11/15/08	Acceptable	
4-Bromofluorobenzene	98	75-120	11/15/08	Acceptable	
Dibromofluoromethane	93	82-116	11/15/08	Acceptable	
Toluene-d8	98	88-117	11/15/08	Acceptable	

Comments:

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

Pate Collected: 11/11/200

**Date Collected:** 11/11/2008 **Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: MW-16B J0805492-005

Lab Code.

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	. 1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1 .	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	Marchael and a section of the
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	-
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

**Comments:** 

Printed: 11/17/2008 16:17:05

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

5_{Page}

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805492 **Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-16B J0805492-005

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	MINISTRAL PROPERTY.
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1,1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	( )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	100	71-122	11/15/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/15/08	Acceptable	
Dibromofluoromethane	97	82-116	11/15/08	Acceptable	
Toluene-d8	92	88-117	11/15/08	Acceptable	

Comments:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805492

Date Collected: 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-16C

Lab Code:

J0805492-006

Extraction Method: EPA 5030B Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor		Date	Extraction	N
Chloromethane	ND U		0.17		Extracted	Analyzed	Lot	Note
Vinyl Chloride	ND U	1.0	0.17	1 1	11/15/08 11/15/08	11/15/08 11/15/08	JWG0804376 JWG0804376	
Bromomethane	ND U	1.0	0.23		11/15/08			
				1		11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U		0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	PTTT 1.7 MILLION MILLION IN
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	***************************************
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	5.2	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	· · · · 11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

**Comments:** 

Printed: 11/17/2008 16:17:08

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

SuperSet Reference: RR25635

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-16C

Lab Code:

J0805492-006

Units: ug/L Basis: NA

Extraction Method: EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	<b>0.33</b> I	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	( )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	96	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	93	75-120	11/15/08	Acceptable
Dibromofluoromethane	96	82-116	11/15/08	Acceptable
Toluene-d8	98	88-117	11/15/08	Acceptable

**Comments:** 

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008 **Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-17A J0805492-007

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	-
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	
		***************************************						

Comments:
-----------

Printed: 11/17/2008 16:17:10

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25635

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-17A

Lab Code:

J0805492-007

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND	U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND	U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND	U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND	U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND	U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND	U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	. (-)
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1 .	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	103	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/15/08	Acceptable
Dibromofluoromethane	100	82-116	11/15/08	Acceptable
Toluene-d8	98	88-117	11/15/08	Acceptable

Comments:

Printed: 11/17/2008 16:17:10

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $20_{\text{Page}}$ 2 of 2

SuperSet Reference: RR25635

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-17B J0805492-008

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Dilution Date Date Extraction **Analyte Name** Result O **Factor** MRL **MDL** Extracted Analyzed Lot Note Chloromethane ND U JWG0804376 1.0 0.17 1 11/15/08 11/15/08 Vinyl Chloride ND U 1.0 0.25 1 JWG0804376 11/15/08 11/15/08 Bromomethane ND U 1.0 0.14 1 11/15/08 11/15/08 JWG0804376 Chloroethane ND U 5.0 0.19 1 11/15/08 11/15/08 JWG0804376 Trichlorofluoromethane ND U 20 0.25 1 11/15/08 11/15/08 JWG0804376 1.1-Dichloroethene ND U 1.0 0.16 1 11/15/08 11/15/08 JWG0804376 Acetone ND U 50 2.4 1 11/15/08 11/15/08 JWG0804376 Iodomethane (Methyl Iodide) ND U 5.0 2.5 1 11/15/08 11/15/08 JWG0804376 Carbon Disulfide ND U 10 0.84 1 JWG0804376 11/15/08 11/15/08 Methylene Chloride ND U 5.0 0.72 1 11/15/08 11/15/08 JWG0804376 trans-1,2-Dichloroethene ND U 1.0 0.13 1 11/15/08 11/15/08 JWG0804376 Acrylonitrile ND U 10 0.59 1 11/15/08 11/15/08 JWG0804376 1,1-Dichloroethane ND U 1.0 0.56 1 11/15/08 11/15/08 JWG0804376 Vinyl Acetate ND U 10 0.60 1 11/15/08 11/15/08 JWG0804376 cis-1,2-Dichloroethene ND U 1.0 JWG0804376 0.12 1 11/15/08 11/15/08 2-Butanone (MEK) ND U 10 1 0.56 11/15/08 11/15/08 JWG0804376 Bromochloromethane ND U 5.0 0.14 1 11/15/08 11/15/08 JWG0804376 Chloroform ND U 1.0 0.10 1 11/15/08 11/15/08 JWG0804376 1,1,1-Trichloroethane (TCA) ND U 1.0 1 0.21 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloride ND U 0.18 JWG0804376 1.0 1 11/15/08 11/15/08 Benzene ND U 1.0 0.52 1 11/15/08 11/15/08 JWG0804376 1,2-Dichloroethane (EDC) ND U 1.0 1 JWG0804376 0.15 11/15/08 11/15/08 Trichloroethene (TCE) ND U 1.0 0.15 1 JWG0804376 11/15/08 11/15/08 1,2-Dichloropropane ND U 1.0 0.057 1 11/15/08 11/15/08 JWG0804376 Dibromomethane ND U 5.0 0.12 1 11/15/08 11/15/08 JWG0804376 ND U Bromodichloromethane 1.0 0.10 1 11/15/08 11/15/08 JWG0804376 cis-1,3-Dichloropropene ND U 1.0 0.12 1 11/15/08 11/15/08 JWG0804376 4-Methyl-2-pentanone (MIBK) ND U 25 0.37 1 11/15/08 JWG0804376 11/15/08 Toluene ND U 1.0 0.52 1 11/15/08 11/15/08 JWG0804376 trans-1,3-Dichloropropene ND U 1.0 0.12 1 JWG0804376 11/15/08 11/15/08 1.1.2-Trichloroethane ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Tetrachloroethene (PCE) ND U 1.0 0.22 JWG0804376 1 11/15/08 11/15/08 2-Hexanone ND U 25 0.36 1 11/15/08 11/15/08 JWG0804376

Comments:

Printed: 11/17/2008 16:17:12

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

21_{Page}

1 of 2

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-17B J0805492-008

Units: ug/L Basis: NA

**Extraction Method:** 

Level: Low

EPA 5030B

**Analysis Method:** 8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	18 18 18 18 18 18 18 18 18 18 18 18 18 1
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	( )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	101	71-122	11/15/08	Acceptable	ACCOUNTS NAMED IN COLUMN
4-Bromofluorobenzene	96	75-120	11/15/08	Acceptable	
Dibromofluoromethane	94	82-116	11/15/08	Acceptable	
Toluene-d8	92	88-117	11/15/08	Acceptable	

Comments:

Printed: 11/17/2008 16:17:12

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

 $22_{\,Page}\quad {}_{2}\ of\quad {}_{2}$ 

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008 **Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-17C

Lab Code:

J0805492-009

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	Note
Vinyl Chloride	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1 .	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	######################################
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	PPA-Williams a parameter son so
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

Com	men	te.
CUM	шеп	us:

Printed: 11/17/2008 16:17:14

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: MW-17C

J0805492-009

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	. (- )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	104	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	98	75-120	11/15/08	Acceptable
Dibromofluoromethane	101	82-116	11/15/08	Acceptable
Toluene-d8	99	88-117	11/15/08	Acceptable

Comments:

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

DUP-2

Lab Code:

J0805492-010

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	THE RESERVE AND DESCRIPTION OF THE PERSON NAMED IN	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND		1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
Vinyl Chloride	ND		1.0	0.25	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND	U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND		5.0	0.19	1	11/15/08	11/15/08	JWG0804376	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Trichlorofluoromethane	ND		20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND	U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND	U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND	U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	***************************************
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND	U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	14-1 Andrewson house
Vinyl Acetate	ND	U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND	U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND		5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND		1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND	U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND	U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND		1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	4.3		1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND	U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

Com			40.
Com	me	n	ts.

Printed: 11/17/2008 16:17:17

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

#### Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected: 11/11/2008** 

**Date Received:** 11/12/2008

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

DUP-2

Lab Code:

J0805492-010

**Extraction Method:** 

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Attuction	ii ivicinou.	
nalysis	Method:	8260B

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND	U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	0.30	I	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND	U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND	U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND	U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	***************************************
1,2,3-Trichloropropane	ND	U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND	U	1.0	0.14	. 1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND	U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	. ,
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	97	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/15/08	Acceptable
Dibromofluoromethane	100	82-116	11/15/08	Acceptable
Toluene-d8	96	88-117	11/15/08	Acceptable

Comments:

Merged

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

Date Collected: 11/11/2008

**Date Received:** 11/12/2008

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Equipment Blank

Lab Code:

J0805492-011

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND U	50	2.4	. 1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND U	10	0.84	1.	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	,
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	<b>0.62</b> I	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	***************************************
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

Comments:

Printed: 11/17/2008 16:17:19

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

 $27_{\mathrm{Page}}$ 

1 of 2

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805492

Date Collected: 11/11/200

**Date Collected:** 11/11/2008 **Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: Equipment Blank

J0805492-011

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	. (- )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

1,2-Dichloroethane-d4       102       71-122       11/15/08       Acceptable         4-Bromofluorobenzene       93       75-120       11/15/08       Acceptable         Dibromofluoromethane       96       82-116       11/15/08       Acceptable         Toluene-d8       98       88-117       11/15/08       Acceptable	Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane 96 82-116 11/15/08 Acceptable	1,2-Dichloroethane-d4	102	71-122	11/15/08	Acceptable
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	4-Bromofluorobenzene	93	75-120	11/15/08	Acceptable
Toluene-d8 98 88-117 11/15/08 Acceptable	Dibromofluoromethane	96	82-116	11/15/08	Acceptable
	Toluene-d8	98	88-117	11/15/08	Acceptable

Comments:

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank J0805492-012

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Analyta Nama	D 14 . O	3 4 Y Y	****	Dilution	Date	Date	Extraction	
Vinyl Chloride         ND         U         1.0         0.25         1         11/15/08         11/15/08         JWG0804376           Bromomethane         ND         U         1.0         0.14         1         11/15/08         11/15/08         JWG0804376           Chloroethane         ND         U         5.0         0.19         1         11/15/08         11/15/08         JWG0804376           Trichlorofluoromethane         ND         U         20         0.25         1         11/15/08         11/15/08         JWG0804376           Acetone         ND         U         50         2.4         1         11/15/08         JWG0804376           Lodomethane (Methyl Iodide)         ND         U         50         2.4         1         11/15/08         JWG0804376           Carbon Disulfide         ND         U         50         2.5         1         11/15/08         JWG0804376           Methylene Chloride         ND         U         5.0         0.72         1         11/15/08         JWG0804376           Methylene Chloride         ND         U         1.0         0.13         11/15/08         JWG0804376           Acrylonitrile         ND         U         1									Note
Bromomethane									
Chloroethane	•								
Trichlorofluoromethane					1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene         ND         U         1.0         0.16         1         11/15/08         11/15/08         JWG0804376           Acetone         ND         U         50         2.4         1         11/15/08         11/15/08         JWG0804376           Iodomethane (Methyl Iodide)         ND         U         5.0         2.5         1         11/15/08         11/15/08         JWG0804376           Carbon Disulfide         ND         U         10         0.84         1         11/15/08         11/15/08         JWG0804376           Methylene Chloride         ND         U         1.0         0.13         1         11/15/08         11/15/08         JWG0804376           Methylene Chloride         ND         U         1.0         0.13         1         11/15/08         11/15/08         JWG0804376           Acrylonitrile         ND         U         1.0         0.59         1         11/15/08         11/15/08         JWG0804376           Acrylonitrile         ND         U         1.0         0.56         1         11/15/08         11/15/08         JWG0804376           Acrylonitrile         ND         U         1.0         0.56         1         11/15/08					1	11/15/08	11/15/08	JWG0804376	
Acetone					1	11/15/08	11/15/08	JWG0804376	
Indomethane (Methyl Iodide)	1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide         ND U         10         0.84         1         11/15/08         11/15/08         WG0804376           Methylene Chloride         ND U         5.0         0.72         1         11/15/08         11/15/08         JWG0804376           trans-1,2-Dichloroethene         ND U         1.0         0.13         1         11/15/08         11/15/08         JWG0804376           Acrylonitrile         ND U         10         0.59         1         11/15/08         11/15/08         JWG0804376           1,1-Dichloroethane         ND U         10         0.56         1         11/15/08         11/15/08         JWG0804376           Vinyl Acetate         ND U         10         0.60         1         11/15/08         11/15/08         JWG0804376           cis-1,2-Dichloroethene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           2-Butanone (MEK)         ND U         10         0.56         1         11/15/08         11/15/08         JWG0804376           Carbon Tertachloride         ND U         1.0         0.14         1         11/15/08         11/15/08         JWG0804376           Carbon Tetrachloride         ND U		ND U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride         ND         U         5.0         0.72         1         11/15/08         11/15/08         JWG0804376           dcrans-1,2-Dichloroethene         ND         U         1.0         0.13         1         11/15/08         11/15/08         JWG0804376           Acrylonitrile         ND         U         1.0         0.59         1         11/15/08         11/15/08         JWG0804376           1,1-Dichloroethane         ND         U         1.0         0.56         1         11/15/08         11/15/08         JWG0804376           Vinyl Acetate         ND         U         1.0         0.60         1         11/15/08         11/15/08         JWG0804376           Vinyl Acetate         ND         U         1.0         0.60         1         11/15/08         11/15/08         JWG0804376           2-Butanone (MEK)         ND         U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           2-Butanone (MEK)         ND         U         1.0         0.56         1         11/15/08         11/15/08         JWG0804376           2-Butanone (MEK)         ND         U         1.0         0.14         1         11/15/08 <td></td> <td>ND U</td> <td>5.0</td> <td>2.5</td> <td>1</td> <td>11/15/08</td> <td>11/15/08</td> <td>JWG0804376</td> <td></td>		ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene         ND         U         1.0         0.13         1         11/15/08         11/15/08         JWG0804376           Acrylonitrile         ND         U         10         0.59         1         11/15/08         11/15/08         JWG0804376           1,1-Dichloroethane         ND         U         1.0         0.56         1         11/15/08         11/15/08         JWG0804376           Vinyl Acetate         ND         U         1.0         0.60         1         11/15/08         11/15/08         JWG0804376           Cis-1,2-Dichloroethene         ND         U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           2-Butanone (MEK)         ND         U         1.0         0.56         1         11/15/08         11/15/08         JWG0804376           Bromochloromethane         ND         U         5.0         0.14         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND         U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND         U         1.0         0.18         1         11/15/08	Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene         ND         U         1.0         0.13         1         11/15/08         11/15/08         JWG0804376           Acrylonitrile         ND         U         10         0.59         1         11/15/08         11/15/08         JWG0804376           1,1-Dichloroethane         ND         U         1.0         0.56         1         11/15/08         11/15/08         JWG0804376           Vinyl Acetate         ND         U         1.0         0.60         1         11/15/08         11/15/08         JWG0804376           cis-1,2-Dichloroethene         ND         U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           2-Butanone (MEK)         ND         U         10         0.56         1         11/15/08         11/15/08         JWG0804376           Bromochloromethane         ND         U         1.0         0.16         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND         U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND         U         1.0         0.18         1         11/15/08		ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	W = 1 = 1
1,1-Dichloroethane		ND U	1.0	0.13	1				
Vinyl Acetate         ND U         10         0.60         1         11/15/08         11/15/08         JWG0804376           cis-1,2-Dichloroethene         ND U         1.0         0.12         1         11/15/08         JWG0804376           2-Butanone (MEK)         ND U         10         0.56         1         11/15/08         JWG0804376           Bromochloromethane         ND U         5.0         0.14         1         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.10         1         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.10         1         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.10         1         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.21         1         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.18         1         11/15/08         JWG0804376           Carbon Tetrachloride         ND U         1.0         0.15         1         11/15/08         JWG0804376           Benzene         ND U         1.0         0.15         1         1	Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           2-Butanone (MEK)         ND U         10         0.56         1         11/15/08         11/15/08         JWG0804376           Bromochloromethane         ND U         5.0         0.14         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Carbon Tetrachloride         ND U         1.0         0.18         1         11/15/08         11/15/08         JWG0804376           Benzene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloroethane (EDC)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloropropane         ND U         1.0 <t< td=""><td>**</td><td>ND U</td><td>1.0</td><td>0.56</td><td>1</td><td>11/15/08</td><td>11/15/08</td><td>JWG0804376</td><td></td></t<>	**	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK) ND U 10 0.56 1 11/15/08 11/15/08 JWG0804376 Bromochloromethane ND U 5.0 0.14 1 11/15/08 11/15/08 JWG0804376 Chloroform ND U 1.0 0.10 1 11/15/08 11/15/08 JWG0804376  1,1,1-Trichloroethane (TCA) ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloride ND U 1.0 0.18 1 11/15/08 11/15/08 JWG0804376 Benzene ND U 1.0 0.52 1 11/15/08 11/15/08 JWG0804376  1,2-Dichloroethane (EDC) ND U 1.0 0.52 1 11/15/08 11/15/08 JWG0804376 Trichloroethene (TCE) ND U 1.0 0.15 1 11/15/08 11/15/08 JWG0804376 1,2-Dichloropropane ND U 1.0 0.057 1 11/15/08 11/15/08 JWG0804376 1,2-Dichloropropane ND U 1.0 0.057 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloride (EDC) ND U 1.0 0.057 1 11/15/08 11/15/08 JWG0804376 Trichloroethane (TCE) ND U 1.0 0.057 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloride (EDC) ND U 1.0 0.057 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.057 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.10 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.12 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.52 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.52 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.12 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloropropane ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloroethane ND U 1.0 0.22 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloroethane ND U 1.0 0.22 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloroethane ND U 1.0 0.22 1 11/15/08 11/15/08 JWG0804376 Carbon Tetrachloroethane ND U 1.0 0.22 1 11/15/08 JWG0804376 Carbon Tetrachloroethane ND U 1.0 0.22 1 11/15/08 JWG0804376 Carbon Tetrachloroethane ND U 1.0 0.22 1 11/15/08 JWG0804376	•	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane         ND U         5.0         0.14         1         11/15/08         11/15/08         JWG0804376           Chloroform         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           I,1,1-Trichloroethane (TCA)         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Carbon Tetrachloride         ND U         1.0         0.18         1         11/15/08         11/15/08         JWG0804376           Benzene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloroethane (EDC)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           Trichloroethane (TCE)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           Trichloropropane         ND U         1.0         0.057         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloropropane         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           Bromodichloromethane         ND U	cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Chloroform         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           I,1,1-Trichloroethane (TCA)         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Carbon Tetrachloride         ND U         1.0         0.18         1         11/15/08         11/15/08         JWG0804376           Benzene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           I,2-Dichloroethane (EDC)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           Trichloroethane (TCE)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloropropane         ND U         1.0         0.057         1         11/15/08         11/15/08         JWG0804376           Dibromomethane         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           Bromodichloromethane         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           4-Methyl-2-pentanone (MIBK)         ND U </td <td></td> <td>ND U</td> <td>10</td> <td>0.56</td> <td>1</td> <td>11/15/08</td> <td>11/15/08</td> <td>JWG0804376</td> <td></td>		ND U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)		ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride         ND U         1.0         0.18         1         11/15/08         11/15/08         JWG0804376           Benzene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloroethane (EDC)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           Trichloroethane (TCE)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloropropane         ND U         1.0         0.057         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloropropane         ND U         5.0         0.12         1         11/15/08         11/15/08         JWG0804376           Dibromomethane         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           Bromodichloromethane         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           4-Methyl-2-pentanone (MIBK)         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           Toluene         ND U	Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Benzene   ND U   1.0   0.52   1   11/15/08   11/15/08   JWG0804376     1,2-Dichloroethane (EDC)   ND U   1.0   0.15   1   11/15/08   11/15/08   JWG0804376     1,2-Dichloroethene (TCE)   ND U   1.0   0.15   1   11/15/08   11/15/08   JWG0804376     1,2-Dichloropropane   ND U   1.0   0.057   1   11/15/08   11/15/08   JWG0804376     1,2-Dichloropropane   ND U   1.0   0.057   1   11/15/08   11/15/08   JWG0804376     1,2-Dichloropropane   ND U   1.0   0.12   1   11/15/08   11/15/08   JWG0804376     1,1-State   State   · · · · · · · · · · · · · · · · · · ·	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376		
1,2-Dichloroethane (EDC)       ND U       1.0       0.15       1       11/15/08       11/15/08       JWG0804376         Trichloroethene (TCE)       ND U       1.0       0.15       1       11/15/08       11/15/08       JWG0804376         1,2-Dichloropropane       ND U       1.0       0.057       1       11/15/08       JWG0804376         1,2-Dichloropropane       ND U       5.0       0.12       1       11/15/08       JWG0804376         Dibromomethane       ND U       5.0       0.12       1       11/15/08       JWG0804376         Bromodichloromethane       ND U       1.0       0.10       1       11/15/08       JWG0804376         cis-1,3-Dichloropropene       ND U       1.0       0.12       1       11/15/08       JWG0804376         4-Methyl-2-pentanone (MIBK)       ND U       1.0       0.52       1       11/15/08       JWG0804376         Toluene       ND U       1.0       0.52       1       11/15/08       JWG0804376         trans-1,3-Dichloropropene       ND U       1.0       0.12       1       11/15/08       JWG0804376         1,1,2-Trichloroethane       ND U       1.0       0.21       1       11/15/08       JWG0804376	Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)         ND U         1.0         0.15         1         11/15/08         11/15/08         JWG0804376           1,2-Dichloropropane         ND U         1.0         0.057         1         11/15/08         11/15/08         JWG0804376           Dibromomethane         ND U         5.0         0.12         1         11/15/08         11/15/08         JWG0804376           Bromodichloromethane         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           cis-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           4-Methyl-2-pentanone (MIBK)         ND U         25         0.37         1         11/15/08         11/15/08         JWG0804376           Toluene         ND U         1.0         0.52         1         11/15/08         JWG0804376           trans-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         JWG0804376           1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1	Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane         ND U         1.0         0.057         1         11/15/08         11/15/08         JWG0804376           Dibromomethane         ND U         5.0         0.12         1         11/15/08         11/15/08         JWG0804376           Bromodichloromethane         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           cis-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           4-Methyl-2-pentanone (MIBK)         ND U         25         0.37         1         11/15/08         11/15/08         JWG0804376           Toluene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           trans-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1         11/15/08         JVG0804376		ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane         ND U         5.0         0.12         1         11/15/08         11/15/08         JWG0804376           Bromodichloromethane         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           cis-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           4-Methyl-2-pentanone (MIBK)         ND U         25         0.37         1         11/15/08         11/15/08         JWG0804376           Toluene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           trans-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1         11/15/08         11/15/08         JWG0804376		ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane         ND U         1.0         0.10         1         11/15/08         11/15/08         JWG0804376           cis-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           4-Methyl-2-pentanone (MIBK)         ND U         25         0.37         1         11/15/08         11/15/08         JWG0804376           Toluene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           trans-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1         11/15/08         11/15/08         JWG0804376	1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           4-Methyl-2-pentanone (MIBK)         ND U         25         0.37         1         11/15/08         11/15/08         JWG0804376           Toluene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           trans-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1         11/15/08         11/15/08         JWG0804376		ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)         ND U         25         0.37         1         11/15/08         11/15/08         JWG0804376           Toluene         ND U         1.0         0.52         1         11/15/08         11/15/08         JWG0804376           trans-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1         11/15/08         11/15/08         JWG0804376			1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Toluene ND U 1.0 0.52 1 11/15/08 11/15/08 JWG0804376 trans-1,3-Dichloropropene ND U 1.0 0.12 1 11/15/08 11/15/08 JWG0804376 1,1,2-Trichloroethane ND U 1.0 0.21 1 11/15/08 11/15/08 JWG0804376 Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/15/08 11/15/08 JWG0804376	cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene         ND U         1.0         0.12         1         11/15/08         11/15/08         JWG0804376           1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1         11/15/08         11/15/08         JWG0804376		ND U	25	0.37	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane         ND U         1.0         0.21         1         11/15/08         11/15/08         JWG0804376           Tetrachloroethene (PCE)         ND U         1.0         0.22         1         11/15/08         11/15/08         JWG0804376		ND Ü	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE) ND U 1.0 0.22 1 11/15/08 11/15/08 JWG0804376	trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
A YY		ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804376	***************************************
2-Hexanone ND U 25 0.36 1 11/15/08 11/15/08 JWG0804376		ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
	2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

Comments:	
-----------	--

Printed: 11/17/2008 16:17:21

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

Date Collected: 11/11/2008

**Date Received:** 11/12/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank J0805492-012

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	***************************************
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	- (- )
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	103	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/15/08	Acceptable
Dibromofluoromethane	97	82-116	11/15/08	Acceptable
Toluene-d8	97	88-117	11/15/08	Acceptable

Comments:

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

Date Collected: NA

Date Received: NA

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0804376-4

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 5030
Analysis Method:	8260B

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	<b>Factor</b>	Extracted	Analyzed	Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
Vinyl Chloride	ND	U	1.0	0.25	1	11/15/08	11/15/08	JWG0804376	
Bromomethane	ND	U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroethane	ND	U	5.0	0.19	1	11/15/08	11/15/08	JWG0804376	
Trichlorofluoromethane	ND	U	20	0.25	1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/15/08	11/15/08	JWG0804376	
Acetone	ND	U	50	2.4	1	11/15/08	11/15/08	JWG0804376	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/15/08	11/15/08	JWG0804376	
Carbon Disulfide	ND	U	10	0.84	1	11/15/08	11/15/08	JWG0804376	
Methylene Chloride	ND	U	5.0	0.72	1	11/15/08	11/15/08	JWG0804376	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/15/08	11/15/08	JWG0804376	
Acrylonitrile	ND	U	10	0.59	. 1	11/15/08	11/15/08	JWG0804376	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/15/08	11/15/08	JWG0804376	
Vinyl Acetate	ND	U	10	0.60	1	11/15/08	11/15/08	JWG0804376	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
2-Butanone (MEK)	ND	U	10	0.56	1	11/15/08	11/15/08	JWG0804376	
Bromochloromethane	ND	U	5.0	0.14	1	11/15/08	11/15/08	JWG0804376	
Chloroform	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
1,1,1-Trichloroethane (TCA)	ND		1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Carbon Tetrachloride	ND		1.0	0.18	1	11/15/08	11/15/08	JWG0804376	
Benzene	ND	U	1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloroethane (EDC)	ND		1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
Trichloroethene (TCE)	ND		1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/15/08	11/15/08	JWG0804376	
Dibromomethane	ND		5.0	0.12	1	11/15/08	11/15/08	JWG0804376	
Bromodichloromethane	ND		1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/15/08	11/15/08	JWG0804376	
Toluene	ND		1.0	0.52	1	11/15/08	11/15/08	JWG0804376	
trans-1,3-Dichloropropene	ND		1.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/15/08	11/15/08	JWG0804376	
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/15/08	11/15/08	JWG0804376	
2-Hexanone	ND	U	25	0.36	1	11/15/08	11/15/08	JWG0804376	

**Comments:** 

Printed: 11/17/2008 16:17:24

p:\Stealth\Crystal.rpt\Form1m.rpt Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805492

Date Collected: NA

Date Received: NA

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0804376-4

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	. 1	11/15/08	11/15/08	JWG0804376	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Ethylbenzene	ND U	1.0	0.10	. 1	11/15/08	11/15/08	JWG0804376	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804376	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804376	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804376	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804376	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804376	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804376	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804376	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/15/08	11/15/08	JWG0804376	J(3)
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804376	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804376	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	101	71-122	11/15/08	Acceptable	enter minimum proprie del proceso de como
4-Bromofluorobenzene	92	75-120	11/15/08	Acceptable	
Dibromofluoromethane	96	82-116	11/15/08	Acceptable	
Toluene-d8	97	88-117	11/15/08	Acceptable	

Comments:

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name: Lab Code:

MW-20A

J0805492-001

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	***************************************
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	128	77-150	11/18/08	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-20B

Lab Code:

J0805492-002

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	133	77-150	11/18/08	Acceptable

**Comments:** 

Printed: 12/03/2008 17:55:50

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR26005

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-20C

Lab Code:

J0805492-003

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	117	77-150	11/18/08	Acceptable	

**Comments:** 

Printed: 12/03/2008 17:55:52

p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Merged

1 of 1

SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-16A

Units: ug/L

Lab Code:

J0805492-004

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	132	77-150	11/18/08	Acceptable	

**Comments:** 

Printed: 12/03/2008 17:55:54

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-16B

Lab Code:

J0805492-005

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Dilution Date Date Extraction

**Analyte Name** Result Q MRL **MDL Factor** Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 0.020 0.0070 1 11/16/08 11/18/08 JWG0804358 1,2-Dibromo-3-chloropropane (DBCP ND U 0.020 0.0057 1 JWG0804358 11/16/08 11/18/08

Control Date Surrogate Name %Rec Limits Note Analyzed 1,1,1,2-Tetrachloroethane 130 77-150 11/18/08 Acceptable

Comments:

Printed: 12/03/2008 17:55:55 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name: Lab Code:

MW-16C

J0805492-006

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	130	77-150	11/18/08	Acceptable	processors:

**Comments:** 

Printed: 12/03/2008 17:55:57

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name: Lab Code:

MW-17A

J0805492-007

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	TO THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	125	77-150	11/18/08	Acceptable	ruinements

**Comments:** 

Printed: 12/03/2008 17:55:59

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR26005

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name: Lab Code:

MW-17B

J0805492-008

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1 1	11/16/08 11/16/08	11/18/08 11/18/08	JWG0804358 JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	130	77-150	11/18/08	Acceptable	

Comments:

Printed: 12/03/2008 17:56:00 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-17C

Lab Code:

J0805492-009

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	127	77-150	11/18/08	Acceptable	

Comments:

Printed: 12/03/2008 17:56:02 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

DUP-2

Lab Code:

J0805492-010

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	129	77-150	11/18/08	Acceptable

**Comments:** 

Printed: 12/03/2008 17:56:03 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Equipment Blank

Units: ug/L

Basis: NA

Lab Code:

J0805492-011

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Dilution Date Date **Extraction** 

**Analyte Name** Result Q MRL **MDL Factor** Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 0.020 0.0070 11/16/08 11/18/08 JWG0804358 1 1,2-Dibromo-3-chloropropane (DBCP ND U 0.020 0.0057 1 11/16/08 11/18/08 JWG0804358

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	126	77-150	11/18/08	Acceptable	

Comments:

Printed: 12/03/2008 17:56:05  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

Date Collected: NA

Date Received: NA

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name: Lab Code:

Method Blank

JWG0804358-4

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

Level: Low

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	l	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	132	77-150	11/18/08	Acceptable

Comments:

Printed: 12/03/2008 17:56:07

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

Total Metals

Sample Name: Lab Code:

MW-20A

J0805492-001

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	0.1	1.0	11/19/2008	11/21/2008	9.9	i
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	3.5	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.6	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	1.0	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/21/2008	888	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	1.5	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	1.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	Ü	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	6.2	
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	5 -	i

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Project No Matrix: FQ1512 WATER Service Request:
Date Collected:

J0805492

Date Received:

11/11/2008 11/12/2008

Total Metals

Sample Name: Lab Code: MW-20B J0805492-002

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	0.30	i
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/21/2008	119	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.3	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	9.6	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	1.6	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/21/2008	1670	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	8.3	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	1.4	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	12	
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	5	i

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805492

Date Collected: Date Received: 11/11/2008 11/12/2008

Total Metals

Sample Name:

MW-20C

Lab Code:

J0805492-003

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	0.20	i
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/21/2008	87.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.2	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	0.12	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	4.1	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	0.5	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/21/2008	1820	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.7	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U .	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	0.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	4.9	i
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	5	i

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805492

Date Collected:

11/11/2008 **Date Received:** 11/12/2008

Total Metals

Sample Name: Lab Code:

MW-16A J0805492-004

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/21/2008	14.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	1.1	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	0.4	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/21/2008	185	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.2	. i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	0.5	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	6.2	
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	5	i

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

Total Metals

Sample Name: Lab Code:

MW-16B

J0805492-005

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/21/2008	55.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	2.6	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	0.5	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/21/2008	1610	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	3.6	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	0.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	3.6	i
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	U	

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805492

11/11/2008

Date Collected:

Date Received: 11/12/2008

Total Metals

Sample Name: Lab Code:

MW-16

J080549

6C	Units:	ug/L
92-006	Basis:	N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/21/2008	20.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	0.9	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/21/2008	1130	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	2.0	i
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	U	

### Analytical Report

Client:

Matrix:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number:

FQ1512

WATER

Service Request:

J0805492

Date Collected: Date Received:

11/11/2008 11/12/2008

Total Metals

Sample Name:

MW-17A

Lab Code:

J0805492-007

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	0.47	i
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/22/2008	22.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	0.12	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	1.6	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.5	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/22/2008	415	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	1.2	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	6.0	
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	4	i

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER

Service Request: Date Collected:

J0805492 11/11/2008

Date Received:

11/12/2008

Total Metals

Sample Name:

MW-17B

Lab Code:

J0805492-008

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	0.22	i
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/22/2008	29.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	1.1	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	0.5	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/22/2008	1430	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	0.4	i
Mercury	METHOD	.7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	2.5	i
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	4	i

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805492

Date Collected: Date Received:

11/11/2008 11/12/2008

Total Metals

Sample Name:

MW-17C

Lab Code:

J0805492-009

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/22/2008	19.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	1.5	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	· U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/22/2008	1050	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	· U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	2.4	i
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805492

Date Collected:
Date Received:

11/11/2008 11/12/2008

ug/L

N/A

Total Metals

Sample Name:

DUP-2

Lab Code:

J0805492-010

Units: Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/22/2008	19.0	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	1.0	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/22/2008	1170	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	2.2	i
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	8	· i

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805492

Date Collected: Date Received: 11/11/2008 11/12/2008

Total Metals

Sample Name: Lab Code:

Equipment Blank J0805492-011

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/22/2008	U	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/19/2008	11/22/2008	7.8	i
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	$\mathbf{U}_{\mathbf{u}}$	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request:

J0805492

Date Collected: Date Received: N/A

N/A

Total Metals

Sample Name:

Method Blank

Lab Code:

MB7-1120

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/20/2008	11/29/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/20/2008	11/26/2008	U	
Barium	EPA 3010A	6010B	10.0	1.0	1.0	11/19/2008	11/21/2008	U	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/20/2008	11/26/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/20/2008	11/26/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/19/2008	11/21/2008	U	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/20/2008	11/26/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/20/2008	11/26/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/20/2008	11/26/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/20/2008	11/26/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/20/2008	11/26/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/20/2008	11/26/2008	5	i

Analytical Report

Client:

GeoSyntec Consultants

Lab Code:

J0805492-001

J0805492-002

J0805492-003

J0805492-004

J0805492-005

J0805492-006

J0805492-007

J0805492-008

J0805492-009

J0805492-010

J0805492-011

MB5-1119

Project Name: Project Number: JED SWDF

Matrix:

WATER

FQ1512

Service Request:

J0805492

Date Collected: Date Received: 11/11/2008 11/12/2008

**Total Metals** Sodium

MDL

0.02

0.02

0.02

0.02

0.02

1.0

MRL

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

Prep Method:

EPA 3010A

Analysis Method: 6010B

**Test Notes:** 

Sample Name:

MW-20A

MW-20B

MW-20C

MW-16A

MW-16B

MW-16C

MW-17A

MW-17B

MW-17C

MB5-1119

Equipment Blank

DUP-2

Units: mg/L Basis: N/A

Dilution Date Date Result Extracted Analyzed Notes Factor Result 1.0 11/19/2008 11/21/2008 9.1 11/19/2008 1.0 11/21/2008 16 1.0 11/19/2008 11/21/2008 9.6 11/19/2008 1.0 11/21/2008 3.1

11/21/2008

0.07

i

11/19/2008 0.02 1.0 11/21/2008 8.4 0.02 1.0 11/19/2008 11/21/2008 12 11/19/2008 0.02 1.0 11/22/2008 5.8 11/19/2008 0.02 1.0 11/22/2008 12 11/19/2008 0.02 1.0 11/22/2008 12 11/19/2008 0.02 1.0 11/22/2008 12 0.02 1.0 11/19/2008 11/22/2008 U

11/19/2008

57

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805492 Date Collected:

11/11/2008

Date Received:

11/12/2008

Dissolved Metals

Sample Name:

MW-20B

Lab Code:

J0805492-002

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/20/2008	11/21/2008	0.9	i
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/20/2008	11/21/2008	0.33	i
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/20/2008	11/21/2008	12	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/20/2008	11/21/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/20/2008	11/21/2008	U	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	0.4	i
Iron	EPA 3005A	6010B	50	4.0	1.0	11/13/2008	11/13/2008	1400	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	0.3	i
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/20/2008	11/21/2008	U	
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/20/2008	11/21/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/20/2008	11/21/2008	U	
Zinc	EPA 3005A	6020	10	4.0	1.0	11/20/2008	11/21/2008	12	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER

Service Request: J0805492 Date Collected:

11/11/2008

Date Received:

11/12/2008

Dissolved Metals

Sample Name:

MW-20C

Lab Code:

J0805492-003

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/20/2008	11/21/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/20/2008	11/21/2008	U	
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/20/2008	11/21/2008	38	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/20/2008	11/21/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/20/2008	11/21/2008	U	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Iron	EPA 3005A	6010B	50	4.0	1.0	11/13/2008	11/13/2008	1290	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/20/2008	11/21/2008	U	
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/20/2008	11/21/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/20/2008	11/21/2008	U	
Zinc	EPA 3005A	6020	10	4.0	1.0	11/20/2008	11/21/2008	U	

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805492

Date Collected:

11/11/2008 **Date Received:** 11/12/2008

#### Dissolved Metals

Sample Name:

MW-16B

Lab Code:

J0805492-005

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/20/2008	11/21/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/20/2008	11/21/2008	0.20	i
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/20/2008	11/21/2008	19	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/20/2008	11/21/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/20/2008	11/21/2008	U	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	0.3	i
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Iron	EPA 3005A	6010B	50	4.0	1.0	11/13/2008	11/13/2008	1400	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/20/2008	11/21/2008	U	
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/20/2008	11/21/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/20/2008	11/21/2008	U	
Zinc	EPA 3005A	6020	10	4.0	1.0	11/20/2008	11/21/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805492

Date Collected: N/A Date Received: N/A

Dissolved Metals

Sample Name: Lab Code:

Method Blank

MB5-1120

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/20/2008	11/21/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/20/2008	11/21/2008	U	
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/20/2008	11/21/2008	U	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/20/2008	11/21/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/20/2008	11/21/2008	U	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Iron	EPA 3005A	6010B	50.0	4.0	1.0	11/13/2008	11/13/2008	U	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/17/2008	11/17/2008	U	
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/20/2008	11/21/2008	U	
Silver	EPA 3005A	6020	0.5	0.1	1.0	11/20/2008	11/21/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/20/2008	11/21/2008	U	
Zinc	EPA 3005A	6020	10.0	4.0	1.0	11/20/2008	11/21/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

**Dissolved Metals** 

Sodium

Prep Method:

EPA 3005A

Analysis Method: 6010B

Test Notes:

Units: mg/L

Basis: N/A

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-20B	J0805492-002	0.50	0.02	1.0	11/13/2008	11/13/2008	16	
MW-20C	J0805492-003	0.50	0.02	1.0	11/13/2008	11/13/2008	9.4	
MW-16B	J0805492-005	0.50	0.02	1.0	11/13/2008	11/13/2008	8.2	
Method Blank	MB2-1113	0.50	0.02	1.0	11/13/2008	11/13/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: Sample Matrix: FQ1512

WATER

Service Request: J0805492

**Date Collected:** 11/11/08

Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

MW-20A

Lab Code:

J0805492-001

Test Notes:

Basis: NA

**Analysis** Dilution Date/Time Result Analyte Units Method Notes MRL MDL Factor Analyzed Result Ammonia as Nitrogen mg/L (ppm) 350.1 0.05 0.02 1 11/17/08 13:11 0.62 Chloride mg/L (ppm) 300.0 0.2 0.031 1 11/12/08 16:12 5.6 Nitrate as Nitrogen mg/L (ppm) 300.0 0.2 0.038 1 11/12/08 17:11 0.15 i Solids, Total Dissolved (TDS) mg/L (ppm) 160.1 4.8 10 1 11/13/08 17:30 130

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Inorganic Parameters

Sample Name:

MW-20B

Lab Code:

J0805492-002

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.24	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	29	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 17:56	$\mathbf{U}$	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/13/08 17:30	160	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Inorganic Parameters

Sample Name:

MW-20C

Lab Code:

J0805492-003

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.21	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	21	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	.1	11/12/08 18:11	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	75	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

MW-16A

Lab Code:

J0805492-004

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.17	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	5.6	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1 .	11/12/08 18:26	0.16	i
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	, 1	11/14/08 16:40	52	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

MW-16B

Lab Code:

J0805492-005

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.27	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	15	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 18:41	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	65	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

MW-16C

Lab Code:

J0805492-006

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.15	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	21	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 19:41	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	67	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

MW-17A

Lab Code:

J0805492-007

Test Notes:

	Analysis				Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.30	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1 .	11/12/08 16:12	9.6	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 19:56	0.17	i
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	52	

### Analytical Report

Client:

GeoSyntec Consultants

Service Request: J0805492

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix :

WATER

**Date Collected:** 11/11/08 Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

MW-17B

Lab Code:

J0805492-008

Basis: NA

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.20	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	29	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	. 1	11/12/08 20:11	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	65	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805492 Date Collected: 11/11/08

Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

MW-17C

Lab Code:

J0805492-009

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.20	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	18	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 20:26	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	78	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805492

**Date Collected:** 11/11/08

Date Received: 11/12/08

**Inorganic Parameters** 

Sample Name:

DUP-2

Lab Code:

J0805492-010

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.14	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	21	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 20:56	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	41	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: **Project Number:** FQ1512

JED SWDF

Sample Matrix:

WATER

**Inorganic Parameters** 

Sample Name:

Equipment Blank

Lab Code:

J0805492-011

Test Notes:

Basis: NA

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 20:56	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	U	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: NA

Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

J0805492-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/12/08 16:12	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/12/08 16:12	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/14/08 16:40	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/13/08 17:30	U	

QA/QC Report

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805492

### **Surrogate Recovery Summary** Appendix I Volatile Organic Compounds by GC/MS

Extraction Method: EPA 5030B **Analysis Method:** 

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>	<u>Sur4</u>
MW-20A	J0805492-001	97	98	96	96
MW-20B	J0805492-002	99	96	96	97
MW-20C	J0805492-003	97	94	93	94
MW-16A	J0805492-004	99	98	93	98
MW-16B	J0805492-005	100	94	97	92
MW-16C	J0805492-006	96	93	96	98
MW-17A	J0805492-007	103	94	100	98
MW-17B	J0805492-008	101	96	94	92
MW-17C	J0805492-009	104	98	101	99
DUP-2	J0805492-010	97	94	100	96
Equipment Blank	J0805492-011	102	93	96	98
Trip Blank	J0805492-012	103	94	97	97
Method Blank	JWG0804376-4	101	92	96	97
Lab Control Sample	JWG0804376-3	96	95	96	97

### Surrogate Recovery Control Limits (%)

Sur1 = 1,2-Dichloroethane-d4	71-122	
Sur2 = 4-Bromofluorobenzene	75-120	
Sur3 = Dibromofluoromethane	82-116	
Sur4 = Toluene-d8	88-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/17/2008 16:17:30

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

1 of 1

SuperSet Reference: RR25635

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492 Date Extracted: 11/15/2008

**Date Analyzed:** 11/15/2008

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804376

Lab Control Sample JWG0804376-3

Lab Control Spike %Rec **Analyte Name** Limits Result Expected %Rec Chloromethane 19.5 20.0 98 67-135 Vinyl Chloride 20.7 20.0 103 78-132 Bromomethane 19.8 20.0 99 79-130 Chloroethane 16.9 20.0 84 74-126 Trichlorofluoromethane 22.3 20.0 111 74-134 1,1-Dichloroethene 20.5 20.0 102 78-130 Acetone 108 100 108 67-133 Iodomethane (Methyl Iodide) 98.3 100 98 68-134 Carbon Disulfide 112 100 112 76-138 Methylene Chloride 19.6 20.0 98 72-124 trans-1,2-Dichloroethene 20.8 20.0 104 77-124 Acrylonitrile 107 100 107 77-127 1,1-Dichloroethane 19.5 20.0 97 80-128 Vinyl Acetate 109 100 109 61-148 cis-1,2-Dichloroethene 19.6 20.0 98 80-126 2-Butanone (MEK) 111 100 111 73-127 Bromochloromethane 20.6 20.0 103 79-129 Chloroform 18.9 20.0 94 83-124 1,1,1-Trichloroethane (TCA) 20.8 20.0 104 79-124 Carbon Tetrachloride 20.4 20.0 102 81-125 Benzene 19.2 20.0 96 79-119 1,2-Dichloroethane (EDC) 20.4 20.0 102 80-124 Trichloroethene (TCE) 19.7 20.0 98 76-124 1,2-Dichloropropane 19.9 99 20.0 79-123 Dibromomethane 20.4 102 20.0 83-123 Bromodichloromethane 18.6 20.0 93 81-123 cis-1,3-Dichloropropene 19.2 20.0 96 86-123 4-Methyl-2-pentanone (MIBK) 114 100 114 72-136 Toluene 20.1 20.0 100 86-117 trans-1,3-Dichloropropene 19.0 20.0 95 83-124 1,1,2-Trichloroethane 18.9 20.0 95 86-114 Tetrachloroethene (PCE) 18.4 20.0 92 80-121 2-Hexanone 110 100 110 71-138 Dibromochloromethane 18.3 20.0 91 82-121 1,2-Dibromoethane (EDB) 19.3 20.0 96 88-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed: 11/17/2008 16:17:34 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805492

Date Extracted: 11/15/2008

**Date Analyzed:** 11/15/2008

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804376

Lab Control Sample JWG0804376-3 Lab Control Spike

	Lau	Control Spiki	C	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Chlorobenzene	19.0	20.0	95	86-113
1,1,1,2-Tetrachloroethane	19.6	20.0	98	85-117
Ethylbenzene	19.6	20.0	98	90-118
m,p-Xylenes	40.1	40.0	100	86-121
o-Xylene	19.7	20.0	98	89-119
Styrene	19.9	20.0	99	89-122
Bromoform	17.8	20.0	89	68-129
1,1,2,2-Tetrachloroethane	21.0	20.0	105	83-120
1,2,3-Trichloropropane	20.8	20.0	104	83-123
1,4-Dichlorobenzene	19.9	20.0	99	83-113
trans-1,4-Dichloro-2-butene	17.1	20.0	86	53-143
1,2-Dichlorobenzene	21.2	20.0	106	84-115
1,2-Dibromo-3-chloropropane (DBCP	22.1	20.0	110	62-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 16:17:34 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805492

**Surrogate Recovery Summary** 

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method: Analysis Method:

**METHOD** 

8011

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
MW-20A	J0805492-001	128
MW-20B	J0805492-002	133
MW-20C	J0805492-003	117
MW-16A	J0805492-004	132
MW-16B	J0805492-005	130
MW-16C	J0805492-006	130
MW-17A	J0805492-007	125
MW-17B	J0805492-008	130
MW-17C	J0805492-009	127
DUP-2	J0805492-010	129
Equipment Blank	J0805492-011	126
Method Blank	JWG0804358-4	132
Lab Control Sample	JWG0804358-3	131

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/03/2008 17:56:11 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805492

Date Extracted: 11/16/2008

**Date Analyzed:** 11/18/2008

Lab Control Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804358

Lab Control Sample JWG0804358-3

Lab Control Spike

%Rec **Analyte Name** Result Expected %Rec Limits 1,2-Dibromoethane (EDB) 0.322 - 0.250 129 70-130 1,2-Dibromo-3-chloropropane (DBCP 0.303 0.250 121 70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/03/2008 17:56:15 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

Matrix:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF WATER

Service Request: J0805492

**Date Collected:** 11/11/2008 **Date Received:** 11/12/2008

Date Extracted: 11/19/2008 **Date Analyzed:** 11/21/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

MW-20B

Lab Code:

J0805492-002

J0805492-002S

Units: ug/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	7	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Barium	EPA 3010	6010B	10.0	4000	4000	119.0	4070.0	4140.0	99	101	2	75 - 125	
Iron	EPA 3010	6010B	50	2000	2000	1670	3620	3670	98	100	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Matrix:

WATER

Service Request: J0805492

Date Collected: N/A Date Received: N/A

**Date Extracted:** 11/20/2008

**Date Analyzed:** 11/29/2008

Laboratory Control Sample Summary Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS7-1120

Units: ug/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	53.9	108	80 - 120	
Arsenic	EPA 3020A	6020	50.0	45.0	90	80 - 120	
Barium	EPA 3010A	6010B	4000	3960	99	80 - 120	
Beryllium	EPA 3020A	6020	50.0	42.9	86	80 - 120	
Cadmium	EPA 3020A	6020	50.0	44.7	89	80 - 120	
Chromium	EPA 3020A	6020	50.0	47.5	95	80 - 120	
Cobalt	EPA 3020A	6020	50.0	47.3	95	80 - 120	
Copper	EPA 3020A	6020	50.0	46.9	94	80 - 120	
Iron	EPA 3010A	6010B	2000	1900	95	80 - 120	
Lead	EPA 3020A	6020	50.0	47.1	94	80 - 120	
Mercury	METHOD	7470A	5.00	4.81	96	80 - 120	
Nickel	EPA 3020A	6020	50.0	47.4	95	80 - 120	
Selenium	EPA 3020A	6020	50.0	43.4	87	80 - 120	
Silver	EPA 3020A	6020	50.0	46.9	94	80 - 120	
Thallium	EPA 3020A	6020	50.0	46.8	94	80 - 120	
Vanadium	EPA 3020A	6020	50.0	47.1	94	80 - 120	
Zinc	EPA 3020A	6020	100	89.9	90	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008 Date Extracted: 11/19/2008

**Date Analyzed:** 11/21/2008

Matrix Spike/Matrix Spike Duplicate Summary Total Metals

Sample Name:

MW-20B

Lab Code:

J0805492-002

J0805492-002S

Units: mg/L

												% Rec	
	Prep	Analysis		Spike	e Level	Sample	Spike	Result	Percent	Recovery	y	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Sodium	EPA 3010	6010B	0.5	10.0	10.0	16.1	25.7	25.9	96	98	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Matrix:

Project Number: FQ1512

WATER

Service Request: J0805492

Date Collected: N/A

Date Received: N/A

Date Extracted: 11/19/2008

**Date Analyzed:** 11/21/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

LCS5-1119

Units: mg/L

Basis: N/A

Lab Code:

LCS5-1119

**CAS Percent** 

Recovery Acceptance

Result Notes

Analyte Sodium

Method EPA 3010A

Prep

Method 6010B

Analysis

Value 10.0

True

Results 10.0

Recovery 100

Percent

Limits

80 - 120

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Matrix:

Project Number: FQ1512

WATER

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

**Date Extracted:** 11/13/2008 **Date Analyzed:** 11/13/2008

Matrix Spike/Matrix Spike Duplicate Summary

Dissolved Metals

Sample Name:

MW-20B

Lab Code:

J0805492-002

J0805492-002S

Units: ug/L

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spiko	Result	Percent	Recover	y	Acceptance	e Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Iron	EPA 3005	6010B	50	2000	2000	1400	3500	3230	105	92	8	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008 **Date Extracted:** 11/20/2008

**Date Analyzed:** 11/21/2008

Matrix Spike/Matrix Spike Duplicate Summary Dissolved Metals

Sample Name:

MW-20C

Lab Code:

J0805492-003

J0805492-003S

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	Spiko MS	e Level DMS	Sample Result	Spike MS	Result DMS	Percent MS	Recovery DMS	y RPD	% Rec Acceptance Limits	e Result Notes
Antimony	EPA 3005	6020	2.0	50.0	50.0	U	49.5	51.3	99	103	4	75 - 125	
Arsenic	EPA 3005	6020	0.5	50.0	50.0	U	48.9	50.9	98	102	4	75 - 125	
Barium	EPA 3005	6020	2.0	50.0	50.0	38.4	84.7	86.6	93	96	2	75 - 125	
Beryllium	EPA 3005	6020	1.0	50.0	50.0	U	48.4	50.5	97	101	4	75 - 125	
Cadmium	EPA 3005	6020	0.5	50.0	50.0	U	47.9	49.7	96	99	4	75 - 125	
Chromium	EPA 3005	6020	2.0	50.0	50.0	U	47.2	48.2	94	96	2	75 - 125	
Cobalt	EPA 3005	6020	1.0	50.0	50.0	U	46.8	48.7	94	97	4	75 - 125	
Copper	EPA 3005	6020	2.0	50.0	50.0	U	46.3	48.3	93	97	4	75 - 125	
Lead	EPA 3005	6020	1.0	50.0	50.0	U	48.4	48.9	. 97	98	1	75 - 125	
Nickel	EPA 3005	6020	2.0	50.0	50.0	U	46.9	48.2	94	96	3	75 - 125	
Selenium	EPA 3005	6020	2.0	50.0	50.0	U	48.7	50.3	97	101	3	75 - 125	
Silver	EPA 3005	6020	0.5	50.0	50.0	U	49.4	51.7	99	103	5	75 - 125	
Thallium	EPA 3005	6020	1.0	50.0	50.0	U	46.9	48.3	94	97	3	75 - 125	
Vanadium	EPA 3005	6020	5.0	50.0	50.0	U	47.7	49.4	95	99	4	75 - 125	
Zinc	EPA 3005	6020	10.0	100	100	U	99.1	102.0	99	102	3	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Matrix:

WATER

Service Request: J0805492

Date Collected: N/A

Date Received: N/A Date Extracted: 11/20/2008

**Date Analyzed:** 11/21/2008

Laboratory Control Sample Summary Dissolved Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS5-1120

Units: ug/L

			112			CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	Recovery Acceptance Limits	Result Notes
Antimony	EPA 3005A	6020	50.0	50.5	101	80 - 120	
Arsenic	EPA 3005A	6020	50.0	49.2	98	80 - 120	
Barium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Beryllium	EPA 3005A	6020	50.0	47.2	94	80 - 120	
Cadmium	EPA 3005A	6020	50.0	47.2	94	80 - 120	
Chromium	EPA 3005A	6020	50.0	47.8	96	80 - 120	
Cobalt	EPA 3005A	6020	50.0	48.0	96	80 - 120	
Copper	EPA 3005A	6020	50.0	47.6	95	80 - 120	
Iron	EPA 3005A	6010B	2000	2010	100	80 - 120	
Lead	EPA 3005A	6020	50.0	48.4	97	80 - 120	
Mercury	METHOD	7470A	5.00	4.81	96	80 - 120	
Nickel	EPA 3005A	6020	50.0	48.4	97	80 - 120	
Selenium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Silver	EPA 3005A	6020	50.0	51.4	103	80 - 120	
Thallium	EPA 3005A	6020	50.0	47.6	95	80 - 120	
Vanadium	EPA 3005A	6020	50.0	47.9	96	80 - 120	
Zinc	EPA 3005A	6020	100	101.0	101	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805492

**Date Collected:** 11/11/2008

**Date Received:** 11/12/2008

Date Extracted: 11/13/2008 **Date Analyzed:** 11/13/2008

Matrix Spike/Matrix Spike Duplicate Summary

Dissolved Metals

Sample Name:

MW-20B

Lab Code:

J0805492-002

J0805492-002S

Units: mg/L

												% Rec	
t was	Prep	Analysis		Spike	e Level	Sample	Spike	Result	Percent	Recovery	y	Acceptance	e Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Sodium	EPA 3005	6010B	0.5	10.0	10.0	16.2	25.6	25.3	94	91	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Matrix:

WATER

Service Request: J0805492

Date Collected: N/A

Date Received: N/A

**Date Extracted:** 11/13/2008

**Date Analyzed:** 11/13/2008

Laboratory Control Sample Summary

Dissolved Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS2-1113

Units: mg/L

Basis: N/A

**CAS Percent** 

Prep Method

Analysis Method

True Value 10.0

Results 10.1

Recovery Percent Acceptance Recovery Limits

Result Notes

Analyte Sodium

EPA 3005A

6010B

101

. . .

80 - 120

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Date Extracted: NA

Date Analyzed: 11/12/08

**Duplicate Summary** Inorganic Parameters

Sample Name:

MW-20A

Lab Code:

J0805492-001DUP

Test Notes:

					<b>Duplicate</b>		Relative	
Analyte	Units	Analysis Method	MRL	Sample Result	Sample Result	Average	Percent Difference	Result Notes
Chloride Nitrate as Nitrogen	mg/L (ppm) mg/L (ppm)	300.0 300.0	0.2 0.2	5.6 0.15	5.7 0.15	5.65 0.15	2 <1	i

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Sample Matrix:

Project Number: FQ1512 WATER Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Date Extracted: NA

Date Analyzed: 11/12/08

Matrix Spike Summary Inorganic Parameters

Sample Name:

MW-20A

Lab Code:

J0805492-001MS

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	•	Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	100	5.6	108	102	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	0.15	5.58	109	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Date Extracted: NA

Date Analyzed: 11/17/08

**Duplicate Summary Inorganic Parameters** 

Sample Name:

MW-16A

Lab Code:

J0805492-004DUP

Test Notes:

					<b>Duplicate</b>		Relative	
Analyte	Units	Analysis Method	MRL	Sample Result	Sample Result	Average	Percent Difference	
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.17	0.17	0.17	<1	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

**Project Number:** FQ1512 Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Date Extracted: NA

Date Analyzed: 11/17/08

Matrix Spike Summary Inorganic Parameters

Sample Name:

MW-16A

Lab Code:

J0805492-004MS

Test Notes:

								CAS Percent	
Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	-	Percent Recovery	Recovery Acceptance Limits	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	5.00	0.17	5.38	104	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

**Project Number:** FQ1512

Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08

Date Extracted: NA

Date Analyzed: 11/12/08

**Duplicate Summary Inorganic Parameters** 

Sample Name:

DUP-2

Lab Code:

J0805492-010DUP

Test Notes:

					<b>Duplicate</b>		Relative	
Analyte	Units	Analysis Method	MRL	Sample Result	Sample Result	Average	Percent Difference	Result Notes
Chloride Nitrate as Nitrogen	mg/L (ppm) mg/L (ppm)	300.0 300.0	0.2 0.2	21 U	<b>21</b> U	21 U	<1 -	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805492

Date Collected: 11/11/08

Date Received: 11/12/08 Date Extracted: NA

Date Analyzed: 11/12/08

Matrix Spike Summary **Inorganic Parameters** 

Sample Name:

DUP-2

Lab Code:

J0805492-010MS

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	_	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Chloride	mg/L (ppm)	300.0	0.2	100	<b>21</b>	123	102	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	U	5.39	108	90-110	

### QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

**Project Number:** 

FQ1512

Sample Matrix:

WATER

Service Request:

J0805492

Date Collected:

NA

Date Received:

NA NA

Date Extracted: Date Analyzed:

11/12-17/08

Laboratory Control Sample Summary **Inorganic Parameters** 

Sample Name:

Solids, Total Dissolved (TDS)

Lab Code:

J0805492-LCS

Test Notes:

Laboratory Control Sample

Basis: NA

CAS Percent Recovery Acceptance **Analysis** Percent Result Limits Analyte Units Method True Value Result Recovery Notes Ammonia as Nitrogen 5.00 mg/L (ppm) 350.1 5.22 104 90-110 Chloride mg/L (ppm) 300.0 100 103 103 90-110 mg/L (ppm) Chloride 300.0 5.00 5.40 108 90-110 Nitrate as Nitrogen mg/L (ppm) 5.0 300.0 5.27 105 90-110 Solids, Total Dissolved (TDS) mg/L (ppm)

160.1

160.1

mg/L (ppm)

300

300

295

282

98

94

85-115

85-115

### Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

roject:	Geosyntec	Ph. 'manages	Servic	e Reques	st#		5492				
roject.	$3=\frac{y}{y}$	5W01			11/1/2	• 40	- A /				
Cooler rece	ived on	1408	and o _l	pened on	11/12/08	by .	IDIC	Script.			
COURIER:	CAS UPS	FEDEX	DHL CLIE	NT	Tracking #						
1	Were custody seals of	n outside of co	oler?			Yes	No	N/A			
2	Were seals intact, sig	ned and dated?				Yes	No	N/A			
3	Were custody papers	properly filled	out?		(	Yes	No	N/A			
4	Temperature of cooler(s)	upon receipt	(Should be 4 +/- 2 de	grees C)	1.1	2.3					
5	Correct Temperature	?				Yes	No	N/A			
6 .	Were Ice or Ice Pack	s present			(	Yes	No	N/A			
7	Did all bottles arrive	in good conditi	on (unbroken,	etc)?		Yes	No	N/A			
8	Were all bottle labels	complete (sam	ple ID, preserv	vation, et	c)?	Yes	No	N/A			
9	Did all bottle labels a	ind tags agree v	vith custody pa	pers?		Yes)	No	N/A			
10	Were the correct bottles used for the tests indicated?  Yes  No N/A										
11	Were all of the preserved bottles received with the appropriate preservative?  Yes  No  N/A										
13 14	Were VOA vials checked Where did the bottles					Yes CAS	No Client	N/A			
	Sample ID	Reagent	Manuf. Lot # Chem l		ml added	Init	itials	MAGON TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TO			
ļ								-			
							***************************************				
lditional c	omments and/or expla	anation of all di	screpancies no	ted abov	e:						
lditional c	omments and/or expla	anation of all di	screpancies no	ted abov	e:						
ditional c	omments and/or expla	anation of all di	screpancies no	ited abov	e:						

SR#: J & 805497

Date: 11/12/08

Initials:

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

	Bottle Code							1																						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
г			1. 40mL				125ml.			250mL			250mL								1L			202	402		16oz	5g	100mL	Misc.
Contain		G		G	P	Р	Р	P	Р	Р	P	Р	Р	G	G	Р	Р	P	Р		G	G	G	G	G	G	G	ENC	Р	Misc.
	538 755 537 752		Sodium		A CHE				V. 3136			ZnAcetate		757, 2-128					100		200			110	#1Q	74.		10	Sodium	
Pres.			I Thiosulfate			HCI	H2SO4					NaOH	NaOH		HN03		H2SO4			HNO			H2SO4				1114		Thiosultate N/A	
Req. p		<2	N/A	<2	N/A	<2	<2	<2	N/A	<2	<2	>9	>12	N/A	<2	N/A	<2	<2	N/A	<2	N/A	<2		N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sample	# -	13		<del> </del>	<del> </del>	<del> </del>			<del>-</del>				-		<del> </del>	<del></del>		<del> </del> -	-	<del>-</del> -	+	-			-					
-001	-	Same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o	<u> </u>	<del> </del>	-	<del> </del>		<del>-/</del>	1-1,									<del> </del>	-	-	-			-	-					
-002	12/2/2	3		-	<del> </del>		-4-	2								<u> </u>	<del> </del>	-			-			-						-
-003	3	3	ļ	<del> </del>			-l.	2					<u> </u>				<del> </del> -	ļ	<del> </del>		-			├						-
-004	3	333			-	-	į	1	$\perp I$						<del> </del>		ļ	-						<del> </del>	-					
-005	3	3		<u> </u>			1	2	1								ļ		ļ		-			-						
-006	3	1					L		1							ļ	ļ		<u> </u>		<u> </u>			ļ						
-007	13	13					-9		1						ļ		ļ	<u></u>	ļ		ļ			ļ						<u> </u>
-008	3	1		1			1	l	1						ļ			ļ	ļ											
-009	3	1000000					i	1	1							<u></u>				ļ <u>.</u>									·	$\sqcup$
-010	3	2					1	1	1							<u> </u>			L											
-011	3	3					1	1	1											<u></u>										$oxed{oxed}$
-012		13					· · ·	,							l															
-013		Sometra															<u> </u>													
-014					1																									
-015					T																									
-016																														
-017																			I											
-018																														
-019			1																	Π										<u> </u>
-020				1	1														T											
-021																														
-022		1		1	1				i								1		T				-							
-023	-	+	<b>-</b>	1		<b></b>			<del>                                     </del>						1	<b> </b>	l													
-024		+		1	<del>                                     </del>	<del> </del>			<del> </del>						<del> </del>				1					<del>                                     </del>						
-025	-	+-	+	<del> </del>	<del>                                     </del>				-						<del> </del>	<del></del>		<del> </del>	1	-	<del>  -</del>									
	-	+-	-	+	<del> </del>											<del> </del>		<u> </u>	+	7	-			<del>                                     </del>	-					
-026		+	+	+	+	<del> </del>					-					-	<del> </del>		1.	-	-			<del>                                     </del>						$\vdash \vdash \vdash$
-027		+		<del> </del>		<del> </del>									<del> </del>	<b> </b>			1-	-	-					-				-
-028	-	-	<del> </del>	+	-	<del> </del>									<del> </del>				<del> </del>		$\vdash$					$\vdash$				-
-029		-	+		-										-		-		-	-	$\vdash$	-								++
-030	-	+-		<del> </del>	+										-			<del> </del>	-		-					$\vdash$				-
-031	-	-	+	<del> </del>		<del> </del>											<u> </u>	<del> </del>			-			-						$\vdash$
-032	-	+	-	<del> </del>											<del>  </del>	4.		<del> </del>			-									
-033		+	-		<del> </del>												ļ		<del> </del>	<u> </u>	-									$\vdash$
-034	ļ	-		-		-											ļ				-			-						
-035	-	<del> </del>		ļ	ļ													<u> </u>	ļ											$\vdash$
-036		1	-	ļ	ļ										-			ļ		L				<u></u>						1
-037		<del> </del>		<u> </u>	<u> </u>																									
-038																														
-039																														
-040					L												l				1									



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#	
0805492	
CAS Contact	

An Employee - Owned Company www.caslab.com

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

Project Number FQ/S/12							1	А	NALY	SIS RE	QUES	TED (	Includ	e Meth	od N	umber	and					
Project Manager	Email Address	D wens	and ex	f 0 m	PRE	SERV	ATIVE	1	0	3	2	0	2									
Company/Address		C gus	y mee.	COM				/		<del>)                                    </del>	/ /	/	/ · /	<del>}</del>	J	/						
Geosyntec					RS		/		. /	/	/~	. /	2						$\overline{}$		0. NONE 1. HCL	
14055 Riverdye	Dr. St	2-300		-	NUMBER OF CONTAINERS			, /		الرنب		Vissolme / Li	25/								2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	ļ
Tanpa, FL	33637				)F CO	,		(), (), (), (), (), (), (), (), (), (),	4 7.	تعديد له		* 3	7	/ /	/	/ · ,	/ /	/ /	/ /		<ol> <li>Zn. Ace</li> <li>MeOH</li> <li>NaHSC</li> </ol>	etate
813 - 558 -0990	FAX# 813-5	38-9	726		IBER (		00/	ص/ ص	6	17	4	200									8. Other_	′4 
Sampler's Gignature Cury	Sampler's Printed Nam	9			N S					/J	9 č	$\sqrt[n]{}$		:/	. /					/ -	BEMARKS/	Vicina Policy and Address of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con
yac us	Jue 161	SAMPI	LING	I	1	/				_		/	/	7		_	/	/	<del>/                                    </del>	ALTERN	REMARKS/ ATE DESCRIF	PTION
CLIENT SAMPLE ID	LAB ID	DATE	TIME	MATRIX																		
MW-20A	·	11.11.08	1005	GW	8	X	X	X	X	X		***************************************										
MW-20B			0935	í	10	Distance La	1	1	ſ	1	X					,					-	
MW-20C			0910		10					- Colorador	X				-							
MW-16A	-	3	1250	or the second	9	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	- Characteristics	Department										***************************************		
MW-16B			1230		10	ACCUPATION OF THE PERSONS ASSESSMENT			Total Cale		×											
MW-16C			1150		9		$\Box$		Total Control													***************************************
MW-17A			1425	·	9	CERTIFICATION CO.	T in the second															
MW-17B			14115	-	9		200															
MW-17C			1450		9	- Constitution																***************************************
DUP-2		V		\/	9	J	1	V		V												
SPECIAL INSTRUCTIONS/COMMENTS							TL	JRNAR	OUND	REQUI	REMEN	ITS	Π	REPO	ORT RE	EQUIRE	EMENTS	3	$T^{\perp}$	INVOICE I	NFORMATIO	N
CAC Sec C	ontents of 2	CG0/e						RUSH	(SURC	HARGES	S APPLY)	)		I. Resul								
COC 45, C	)=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	000,0					_X	STAN	DARD				X	_II. Resu	lts + Q0	C Summa	aries		PO#	ATT		
							REQUI	ESTED	AX DAT	E			'				requirec	1)	BILL 1	ro-		***************************************
							<b> </b>							III. Resu Summa		C and C	alibration		DIE.	· · ·	×	
							REQUE	ESTED F	REPORT	DATE				IV. Data	Validati	ion Repo	ort with R	aw Data				
See QAPP									-					V. Speic	alized F	=orms / C	Custom R	eport		494-15-1944-1		
SAMPLE RECEIPT: CONDITION/COO	LER TEMP:		CUS	TODY SEA	LS: Y	N	L					···········	1	Edata		Yes	N	lo				***************************************
RELINQUISHED BY	RECEIVED BY			INQUISHED			1		RECEI	VED BY	<u> </u>			R	ELINQ	UISHED	D BY		-	RECI	EIVED BY	<del></del>
9.8	- N 1/												ŀ									
Signature Jol Cerry	Signature / hssu	Signa		-			Signatu	ire					Signat	ure	,				Signat	ure		
Printed Name Joe Terry	Om D. KISSING	Printe	ed Name				Printed	Name					Printed	Name				*	Printed	d Name		
CLEUSYNE	TOAS (	Firm		***************************************			Firm				,		Firm		j	-			Firm			
Date/Time //- / 1 - 09 / 1600	Date/111/12/08 900	一水池	Time				Date/Ti	me					Date/T	Date/Time Date/Time								
Distribution: White - Return to Originator; Yellow	- Lab Copy; Rink - Retained by Chie	int		***************************************			•														JSCOO	C-01/29/08



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Tos
0400===================================

An Employee - Owned Company www.caslab.com

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____OF _____

SR# 305492 CAS Contact

JED SWDF	Project Number	12	***			-		Δ	NALYS	SIS RE	QUES	TED (	Includ	le Meti	hod N	umber	and						
Project Manager Kirk Wills	Email Address	(000	20		PRE	SERV	ATIVE	)	0	3	2	0											
Company/Address	ICW; II	<u>se ga</u>	synter	- Cury	<del>                                     </del>				)	) <del>-</del>			<del>                                     </del>	<del>/ /</del>	-	<del>                                     </del>		Ł.			/ Pr	servativ	e Kev
Company/Address Company/Address	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				RS					- /	/.	/						$\overline{}$	/	'· / ·	0.	Servative NONE HCI	·
14055 Rivere Tampa, FL	edge Dr. S	te.30	0		NUMBER OF CONTAINERS			)/				\$\range{2}{\range}_{\range}								·	2. 3. 4.	HCL HNO ₃ H ₂ SO ₄ NaOH	
Tampa, FL	33637				)F C0	/	\ \ \ \ \ \ \ \ \ \	00/	/ 24	T.	¹ J/	Α,	/ ,	/ /	/: ,	/ ,	/ /	/ /	/ ,	/ /	5. 6.	Zn. Acet MeOH NaHSO	tate
Phone # 813 - 558 - 0990	1 - A X #				BER (	/	$\mathscr{O}_{\lambda}$	8	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\langle e_{i} \rangle$												Other _	4
Sampler's Signature	Sampler's Printed Nam	10			NOM				7	1/5	?/									/ 413	REM, ERNATE I	ARKS/	
CLIENT SAMPLE ID	LAB ID	SAMF DATE	PLING TIME	MATRIX						ĺ			ĺ	1		1				1	ERNAIE	DESCRIP	TION
			0730	-	9	×	×	×	×	X						1				+			
Equipment Blank Trip Blank		11.11.00	0120	W	3	X	/							-									
1117 000010					3					<u> </u>										+			
													1		<u> </u>	-							
																1							
									<del> </del>							1				_			www.esserververververververververververververve
																1							-
									<u> </u>											1			
W 9																					<del></del>		
SPECIAL INSTRUCTIONS/COMMENTS				<del></del>	•		Tl	JRNAR	OUND	REQUI	REMEN	ITS	Τ	REPO	ORT R	EQUIRE	EMENT	S		INVO	ICE INFO	RMATION	1
							-		1 (SURC	HARGE	S APPLY	)		_ I. Resu									
							X	STAN	IDARD				X	_ II. Resu (LCS, E		C Summa S/MSD as		d) .	PO#				
Annual Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Cont							REQU	ESTED	FAX DAT	E				III Resi	ults + O	C and C	alibration		BILL	L TO:			
														Summa		o ano o	a		1				
STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE							REQU	ESTED	REPORT	DATE				_ IV. Data	a Validat	tion Repo	ort with F	aw Data	1 .				
See QAPP													<b> </b>	_V. Speid	calized I	Forms / 0	Dustom F	Report					
SAMPLE RECEIPT: CONDITION/COO	DLER TEMP:		cus	TODY SEAL	_S: Y	N							1	Edata	ı	Yes	1	10	-				
RELINQUISHED BY	RECEIVED BY		REL	INQUISHED	BY			agun i	RECEI	VED B	7			R	RELING	UISHE	) BY				RECEIVE	D BY	
Signature Ope Term	Signature / /hss	Sign	nature				Signatu	ure		***************************************			Signa	ture					Sign	ature			
Printed Name Joe Terry	Printed Name Kissing	Prin	nted Name				Printed	l Name			·	***************************************	Printe	d Name	************				Print	ted Name			-
Firm Gevsynter	Fig. 45	Firm	n				Firm				***************************************		Firm		-				Firm				
Date/Time 11 - 11 - 08 / 1600	Date/Time/12/08 94	C Date	te/Time				Date/Ti	ime		***************************************			Date/	Time					Date	/Time			
Distribution: White - Return to Originator; Yellov	w - Lab Copy; Fink - Retained by Cli	ent											1									JSCOC	C-01/29/08



December 01, 2008

Service Request No: J0805543

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 13, 2008. For your reference, these analyses have been assigned our service request number J0805543.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of 70

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client:

GeoSyntec Consultants

Service Request No.:

J0805543

Project:

JED SWDF

Date Received:

11/13/08

Sample Matrix:

Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Two water samples and two trip blanks were received for analysis at Columbia Analytical Services on 11/13/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2$ °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

#### Second Source Exceptions

The upper control criterion was exceeded for the following analytes in Second Source Verification (SSV) CAL1659: Ethyl Methacrylate and trans-1,4-Dichloro-2-butene. The field samples analyzed in this sequence did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

#### Lab Control Sample Exceptions

The spike recovery of Dichlorodifluoromethane for Laboratory Control Sample (LCS) JWG0804378-3 was outside the lower control criterion. The analyte in question was not detected in the associated field samples. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

The spike recovery of Naphthalene for Laboratory Control Sample (LCS) JWG02804378-3 was outside the upper control criterion. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

#### **Elevated Method Reporting Limits**

The reporting limits are elevated for all analytes in samples L-2 and L-3. The samples were diluted prior to instrumental analysis due to the foaming nature of the matrix. The reporting limits are adjusted to reflect the dilution.

Approved by	Clarkhy	Date12/1/08
	0 ()	

#### Batch QC Notes and Discussion

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### EDB and DBCP by GC-ECD

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

#### Organochlorine Pesticides by GC-ECD

The samples were analyzed for Organochlorine Pesticides using EPA Method 8081. The following observations were made regarding this delivery group.

#### Surrogate Exceptions

The control criterion was exceeded for the following surrogates in sample L-2 due to suspected matrix interferences: Decachlorobiphenyl and Tetrachloro-m-xylene. The sample formed an emulsion during the extraction procedure, preventing adequate recovery of the surrogates. No further corrective action was appropriate.

#### **PCB Aroclors by GC-ECD**

The samples were analyzed for PCB Aroclors using EPA Method 8082. The following observations were made regarding this delivery group.

#### Surrogate Exceptions

The control criterion was exceeded for the following surrogate in sample L-2 due to suspected matrix interferences: Decachlorobiphenyl. The sample formed an emulsion during the extraction procedure, preventing adequate recovery of the surrogate. No further corrective action was appropriate.

#### Semivolatile Organics by GC-MS

The samples were analyzed for Semivolatile Organics using EPA Method 8270. The following observations were made regarding this delivery group.

#### Second Source Exceptions

The control criterion was exceeded for the following analytes in Second Source Verification (SSV) CAL1652: 2-Methyl-4,6-dinitrophenol and 3,3'-Dimethylbenzidine. The field samples analyzed in this sequence did not contain the analytes in question. Since the analytes were detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

#### Lab Control Sample Exceptions

The spike recovery of Benzo(b)fluoranthene for Laboratory Control Sample (LCS) JWG0804427-2 was outside the lower control criterion. The analyte in question was not detected in the associated field sample. The error associated with reduced recovery equates to a potential low bias. Since the analyte was detected in the MRL check standard,

Approved by	Crax PM	Date 12/1/08
	0	

instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

#### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

#### Batch QC Notes and Discussion

Quality control samples (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA and Standard Methods. No problems were observed.

### **Batch QC Notes and Discussion**

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **Subcontracted Analytical Parameters**

The samples were delivered to ENCO Labs in Jacksonville, FL on 11/14/08 for EPA Method 8151 determination. The certified analytical report has been included in its entirety in Appendix A: Subcontracted Analytical Results.

Approved by Clark Date 12/108

# Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Service Request: J0805543

# SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	$\underline{\text{DATE}}$	<u>TIME</u>
J0805543-001	L-2	11/12/08	13:20
J0805543-002	Trip Blank	11/12/08	00:00
J0805543-003	L-3	11/12/08	14:40
J0805543-004	Trip Blank	11/12/08	00:00

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-2

Lab Code:

J0805543-001

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND	U	10	1.0	10	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND	U	10	2.1	10	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND	U	10	1.5	.10	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND	U	10	2.1	10	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND	U	10	5.6	10	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND	U	10	1.6	10	11/14/08	11/14/08	JWG0804378	
1,1-Dichloropropene	ND	U	50	1.3	10	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND	U	20	1.6	10	11/14/08	11/14/08	JWG0804378	
1,2,4-Trichlorobenzene	ND	U	100	3.0	10	11/14/08	11/14/08	JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP	ND	U	50	2.6	10	11/14/08	11/14/08	JWG0804378	
1,2-Dibromoethane (EDB)	ND	U	10	1.8	10	11/14/08	11/14/08	JWG0804378	
1,2-Dichlorobenzene	ND	U	10	1.7	10	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND	U	10	1.5	10	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND		10	0.57	10	11/14/08	11/14/08	JWG0804378	
1,3-Dichlorobenzene	ND	U	10	1.4	10	11/14/08	11/14/08	JWG0804378	
1,3-Dichloropropane	ND	U	10	1.0	10	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	5.7	I	10	1.4	10	11/14/08	11/14/08	JWG0804378	
2,2-Dichloropropane	ND	U	10	2.2	10	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	360		100	5.6	10	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND		250	3.6	10	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	28	I	250	3.7	10	11/14/08	11/14/08	JWG0804378	
Acetone	300	I	500	24	10	11/14/08	11/14/08	JWG0804378	
Acetonitrile	ND	U	250	33	10	11/14/08	11/14/08	JWG0804378	
Acrolein	ND	U	500	96	10	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND		100	5.9	10	11/14/08	11/14/08	JWG0804378	; .
Allyl Chloride	ND	U	50	1.3	10	11/14/08	11/14/08	JWG0804378	
Benzene	11		10	5.2	10	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND		50	1.4	10	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND		10	1.0	10	11/14/08	11/14/08	JWG0804378	
Bromoform	ND	U	20	1.2	10	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND		10	1.4	10	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND	U	100	8.4	10	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND	U	10	1.8	10	11/14/08	11/14/08	JWG0804378	

**Comments:** 

Printed: 11/17/2008 17:46:23

 $p:\Stealth\Crystal.rpt\Form\1m.rpt$ 

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-2

Lab Code:

J0805543-001

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chlorobenzene	ND U	10	1.5	10	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	50	1.9	10	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	10	1.0	10	11/14/08	11/14/08	JWG0804378	
Chloromethane	ND U	10	1.7	10	11/14/08	11/14/08	JWG0804378	
Chloroprene	ND U	10	2.4	10	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	10	1.2	10	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	10	1.2	10	11/14/08	11/14/08	JWG0804378	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
Dibromochloromethane	ND U	10	1.1	10	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	50	1.2	10	11/14/08	11/14/08	JWG0804378	
Dichlorodifluoromethane	ND UJ	200	2.3	10	11/14/08	11/14/08	JWG0804378	J(3)
Ethyl Methacrylate	ND UJ	10	1.4	10	11/14/08	11/14/08	JWG0804378	J(3)
Ethylbenzene	38	10	1.0	10	11/14/08	11/14/08	JWG0804378	
Hexachlorobutadiene	ND U	100	6.1	10	11/14/08	11/14/08	JWG0804378	***************************************
Iodomethane (Methyl Iodide)	ND U	50	25	10	11/14/08	11/14/08	JWG0804378	
Isobutyl Alcohol	ND U	1000	46	10	11/14/08	11/14/08	JWG0804378	
Methacrylonitrile	ND U	50	2.0	10	11/14/08	11/14/08	JWG0804378	**************************************
Methyl Methacrylate	ND U	10	2.1	10	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	50	7.2	10	11/14/08	11/14/08	JWG0804378	
Naphthalene	ND UJ	100	2.5	10	11/14/08	11/14/08	JWG0804378	J(3)
m,p-Xylenes	40	20	2.2	10	11/14/08	11/14/08	JWG0804378	
o-Xylene	23	10	1.0	10	11/14/08	11/14/08	JWG0804378	
Propionitrile	ND U	250	8.7	10	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	10	0.51	10	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	10	2.2	10	11/14/08	11/14/08	JWG0804378	
Toluene	48	10	5.2	10	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	10	1.3	10	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	10	1.2	10	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	200	11	10	11/14/08	11/14/08	JWG0804378	J(3)
Trichloroethene (TCE)	ND U	10	1.5	10	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	200	2.5	.10	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	100	6.0	10	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND U	10	2.5	10	11/14/08	11/14/08	JWG0804378	

**Comments:** 

Printed: 11/17/2008 17:46:23

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 3

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805543 Date Collected: 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-2

Lab Code:

J0805543-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	97	75-120	11/14/08	Acceptable	
Dibromofluoromethane	96	82-116	11/14/08	Acceptable	
Toluene-d8	97	88-117	11/14/08	Acceptable	

**Comments:** 

Printed: 11/17/2008 17:46:23  $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Trip Blank J0805543-002

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	Note
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378 JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378 JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.36	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloropropene	ND U	5.0	0.13		11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.15	1 1	11/14/08	11/14/08	JWG0804378 JWG0804378	
1,2,4-Trichlorobenzene	ND U	10	0.10	1	11/14/08	11/14/08	JWG0804378 JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP						·····		
• • •	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
1,3-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
1,3-Dichloropropane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
2,2-Dichloropropane	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	***************************************
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Acetonitrile	ND U	25	3.3	1	11/14/08	11/14/08	JWG0804378	
Acrolein	ND U	50	9.6	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
Allyl Chloride	ND U	5.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	1.5
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	

Comments:
-----------

Printed: 11/17/2008 17:43:14 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543 **Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Trip Blank

Lab Code:

J0805543-002

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Chloroprene	ND U	1.0	0.24	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Dichlorodifluoromethane	ND UJ	20	0.23	1	11/14/08	11/14/08	JWG0804378	J(3)
Ethyl Methacrylate	ND UJ	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	J(3)
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	- (- )
Hexachlorobutadiene	ND U	10	0.61	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Isobutyl Alcohol	ND U	100	4.6	1	11/14/08	11/14/08	JWG0804378	
Methacrylonitrile	ND U	5.0	0.20	1	11/14/08	11/14/08	JWG0804378	
Methyl Methacrylate	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
Naphthalene	ND UJ	10	0.25	1	11/14/08	11/14/08	JWG0804378	J(3)
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	` /
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Propionitrile	ND U	25	0.87	1	11/14/08	11/14/08	JWG0804378	4.4
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	<b>(</b> )
Trichlorofluoromethane	ND U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	

Comments:
-----------

Printed: 11/17/2008 17:43:14

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $12_{\text{Page}}$  2 of 3

SuperSet Reference:

RR25662

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Trip Blank J0805543-002

Units: ug/L

Basis: NA

%Rec	Control Limits	Date Analyzed	Note	
97	71-122	11/14/08	Acceptable	
97	75-120	11/14/08	Acceptable	5 · 4
97	82-116	11/14/08	Acceptable	
100	88-117	11/14/08	Acceptable	
	97 97 97	%Rec         Limits           97         71-122           97         75-120           97         82-116	%Rec         Limits         Analyzed           97         71-122         11/14/08           97         75-120         11/14/08           97         82-116         11/14/08	%Rec         Limits         Analyzed         Note           97         71-122         11/14/08         Acceptable           97         75-120         11/14/08         Acceptable           97         82-116         11/14/08         Acceptable

**Comments:** 

Printed: 11/17/2008 17:43:14 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Merged

3 of 3

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-3

Lab Code:

J0805543-003

**Extraction Method: Analysis Method:** 

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	20	2.0	20	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	20	4.2	20	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	20	3.0	20	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	20	4.2	20	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	20	12	20	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	20	3.2	20	11/14/08	11/14/08	JWG0804378	
1,1-Dichloropropene	ND U	100	2.6	20	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	40	3.2	20	11/14/08	11/14/08	JWG0804378	
1,2,4-Trichlorobenzene	ND U	200	6.0	20	11/14/08	11/14/08	JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP	ND U	100	5.2	20	11/14/08	11/14/08	JWG0804378	
1,2-Dibromoethane (EDB)	ND U	20	3.6	20	11/14/08	11/14/08	JWG0804378	
1,2-Dichlorobenzene	ND U	20	3.4	20	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	20	3.0	20	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	20	1.2	20	11/14/08	11/14/08	JWG0804378	
1,3-Dichlorobenzene	ND U	20	2.8	20	11/14/08	11/14/08	JWG0804378	
1,3-Dichloropropane	ND U	20	2.0	20	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	20	2.8	20	11/14/08	11/14/08	JWG0804378	
2,2-Dichloropropane	ND U	20	4.4	20	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	580	200	12	20	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	500	7.2	20	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	500	7.4	20	11/14/08	11/14/08	JWG0804378	
Acetone	<b>420</b> I	1000	48	. 20	11/14/08	11/14/08	JWG0804378	***************************************
Acetonitrile	ND U	500	66	20	11/14/08	11/14/08	JWG0804378	
Acrolein	ND U	1000	200	20	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	200	12	20	11/14/08	11/14/08	JWG0804378	
Allyl Chloride	ND U	100	2.6	20	11/14/08	11/14/08	JWG0804378	
Benzene	12 I	20	. 11	20	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	100	2.8	20	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	20	2.0	20	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	40	2.4	20	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	20	2.8	20	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	200	17	20	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	20	3.6	20	11/14/08	11/14/08	JWG0804378	

Comments:
-----------

Printed: 11/17/2008 17:43:17

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Form 1A - Organic

Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543 **Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-3

Lab Code:

J0805543-003

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chlorobenzene	ND U	20	3.0	20	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	100	3.8	20	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	20	2.0	20	11/14/08	11/14/08	JWG0804378	
Chloromethane	ND U	20	3.4	20	11/14/08	11/14/08	JWG0804378	
Chloroprene	ND U	20	4.8	20	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	20	2.4	20	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	20	2.4	20	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	20	2.2	20	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	100	2.4	20	11/14/08	11/14/08	JWG0804378	
Dichlorodifluoromethane	ND UJ	400	4.6	20	11/14/08	11/14/08	JWG0804378	J(3)
Ethyl Methacrylate	ND UJ	20	2.8	20	11/14/08	11/14/08	JWG0804378	J(3)
Ethylbenzene	30	20	2.0	20	11/14/08	11/14/08	JWG0804378	, ,
Hexachlorobutadiene	ND U	200	13	20	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	100	50	20	11/14/08	11/14/08	JWG0804378	
Isobutyl Alcohol	ND U	2000	92	20	11/14/08	11/14/08	JWG0804378	
Methacrylonitrile	ND U	100	4.0	20	11/14/08	11/14/08	JWG0804378	
Methyl Methacrylate	ND U	20	4.2	20	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	100	15	20	11/14/08	11/14/08	JWG0804378	
Naphthalene	ND UJ	200	5.0	20	11/14/08	11/14/08	JWG0804378	J(3)
m,p-Xylenes	<b>35</b> I	40	4.4	20	11/14/08	11/14/08	JWG0804378	
o-Xylene	<b>16</b> I	20	2.0	20	11/14/08	11/14/08	JWG0804378	
Propionitrile	ND U	500	18	20	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	20	1.1	20	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	20	4.4	20	11/14/08	11/14/08	JWG0804378	
Toluene	54	20	11	20	11/14/08	11/14/08	JWG0804378	Telleman
trans-1,2-Dichloroethene	ND U	. 20	2.6	20	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	20	2.4	20	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	400	22	20	11/14/08	11/14/08	JWG0804378	J(3)
Trichloroethene (TCE)	ND U	20	3.0	20	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	400	5.0	20	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	200	12	20	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND U	20	5.0	20	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 17:43:17

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-3

Lab Code:

J0805543-003

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	103	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	97	75-120	11/14/08	Acceptable	
Dibromofluoromethane	100	82-116	11/14/08	Acceptable	
Toluene-d8	95	88-117	11/14/08	Acceptable	

Comments:

Printed: 11/17/2008 17:43:17

Merged

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Trip Blank J0805543-004

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloropropene	ND U	5.0	0.13	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,2,4-Trichlorobenzene	ND U	10	0.30	1	11/14/08	11/14/08	JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	. 1	11/14/08	11/14/08	JWG0804378	
1,3-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
1,3-Dichloropropane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
2,2-Dichloropropane	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Acetonitrile	ND U	25	3.3	1	11/14/08	11/14/08	JWG0804378	
Acrolein	ND U	50	9.6	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
Allyl Chloride	ND U	5.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	TOTAL CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE CONTRACTOR AND ADDRESS OF THE
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 17:43:19 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 3

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

Date Collected: 11/12/2008°

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Trip Blank

J0805543-004

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution	Date	Date	Extraction	DAT . A
Chlorobenzene				_	Factor	Extracted	Analyzed	Lot	Note
Chloroethane	ND ND	U	1.0 5.0	$0.15 \\ 0.19$	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND ND				1	11/14/08	11/14/08	JWG0804378	
			1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Chloromethane	ND		1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Chloroprene	ND		1.0	0.24	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND		1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane		U	1.0	0.11	1	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND	U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Dichlorodifluoromethane	ND	UJ	. 20	0.23	1	11/14/08	11/14/08	JWG0804378	J(3)
Ethyl Methacrylate	ND	UJ	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	J(3)
Ethylbenzene	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	( )
Hexachlorobutadiene	ND	U	10	0.61	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Isobutyl Alcohol	ND	U	100	4.6	1	11/14/08	11/14/08	JWG0804378	
Methacrylonitrile	ND	U	5.0	0.20	1	11/14/08	11/14/08	JWG0804378	***************************************
Methyl Methacrylate	ND	U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND	U	5.0	0.72	1.	11/14/08	11/14/08	JWG0804378	
Naphthalene	ND	UJ	10	0.25	1	11/14/08	11/14/08	JWG0804378	J(3)
m,p-Xylenes	ND	U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	` ′
o-Xylene	ND	U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Propionitrile	ND	U	25	0.87	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND	U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND	U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	, ,
Trichlorofluoromethane	ND	U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND	U	10	0.60	1	11/14/08	11/14/08	JWG0804378	· · · · · · · · · · · · · · · · · · ·
Vinyl Chloride	ND	U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	

Printed: 11/17/2008 17:43:19

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

 $18_{\text{Page}}$ 

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Trip Blank

J0805543-004

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	96	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	102	75-120	11/14/08	Acceptable	A Comment
Dibromofluoromethane	96	82-116	11/14/08	Acceptable	
Toluene-d8	99	88-117	11/14/08	Acceptable	

Comments:

Printed: 11/17/2008 17:43:19 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA

Date Received: NA

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Method Blank JWG0804378-4

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basiş: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	West Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the C
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,1-Dichloropropene	ND U	5.0	0.13	1	11/14/08	11/14/08	JWG0804378	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/14/08	11/14/08	JWG0804378	
1,2,4-Trichlorobenzene	ND U	10	0.30	1	11/14/08	11/14/08	JWG0804378	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/14/08	11/14/08	JWG0804378	***************************************
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/14/08	11/14/08	JWG0804378	
1,3-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
1,3-Dichloropropane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
2,2-Dichloropropane	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
2-Butanone (MEK)	ND U	10	0.56	1	11/14/08	11/14/08	JWG0804378	
2-Hexanone	ND U	25	0.36	1	11/14/08	11/14/08	JWG0804378	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/14/08	11/14/08	JWG0804378	
Acetone	ND U	50	2.4	1	11/14/08	11/14/08	JWG0804378	
Acetonitrile	ND U	25	3.3	1	11/14/08	11/14/08	JWG0804378	
Acrolein	ND U	50	9.6	1	11/14/08	11/14/08	JWG0804378	
Acrylonitrile	ND U	10	0.59	1	11/14/08	11/14/08	JWG0804378	
Allyl Chloride	ND U	5.0	0.13	1	11/14/08	11/14/08	JWG0804378	
Benzene	ND U	1.0	0.52	1,	11/14/08	11/14/08	JWG0804378	
Bromochloromethane	ND U	5.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Bromodichloromethane	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Bromoform	ND U	2.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Bromomethane	ND U	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	
Carbon Disulfide	ND U	10	0.84	1	11/14/08	11/14/08	JWG0804378	
Carbon Tetrachloride	ND U	1.0	0.18	11	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 17:43:21

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 3

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA
Date Received: NA

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code: Method Blank JWG0804378-4

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chlorobenzene	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Chloroethane	ND U	5.0	0.19	1	11/14/08	11/14/08	JWG0804378	
Chloroform	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Chloromethane	ND U	1.0	0.17	1	11/14/08	11/14/08	JWG0804378	
Chloroprene	ND U	1.0	0.24	1	11/14/08	11/14/08	JWG0804378	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Dibromochloromethane	ND U	1.0	0.11	1 .	11/14/08	11/14/08	JWG0804378	
Dibromomethane	ND U	5.0	0.12	1	11/14/08	11/14/08	JWG0804378	
Dichlorodifluoromethane	ND UJ	20	0.23	1	11/14/08	11/14/08	JWG0804378	J(3·)
Ethyl Methacrylate	ND UJ	1.0	0.14	1	11/14/08	11/14/08	JWG0804378	J(3)
Ethylbenzene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Hexachlorobutadiene	ND U	10	0.61	1	11/14/08	11/14/08	JWG0804378	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/14/08	11/14/08	JWG0804378	
Isobutyl Alcohol	ND U	100	4.6	1	11/14/08	11/14/08	JWG0804378	
Methacrylonitrile	ND U	5.0	0.20	1	11/14/08	11/14/08	JWG0804378	
Methyl Methacrylate	ND U	1.0	0.21	1	11/14/08	11/14/08	JWG0804378	
Methylene Chloride	ND U	5.0	0.72	1	11/14/08	11/14/08	JWG0804378	
Naphthalene	ND UJ	10	0.25	1	11/14/08	11/14/08	JWG0804378	J(3)
m,p-Xylenes	ND U	2.0	0.22	1	11/14/08	11/14/08	JWG0804378	
o-Xylene	ND U	1.0	0.10	1	11/14/08	11/14/08	JWG0804378	
Propionitrile	ND U	25	0.87	1	11/14/08	11/14/08	JWG0804378	
Styrene	ND U	1.0	0.051	1	11/14/08	11/14/08	JWG0804378	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/14/08	11/14/08	JWG0804378	
Toluene	ND U	1.0	0.52	1	11/14/08	11/14/08	JWG0804378	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/14/08	11/14/08	JWG0804378	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/14/08	11/14/08	JWG0804378	
trans-1,4-Dichloro-2-butene	ND UJ	20	1.1	1	11/14/08	11/14/08	JWG0804378	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/14/08	11/14/08	JWG0804378	
Trichlorofluoromethane	ND U	20	0.25	1	11/14/08	11/14/08	JWG0804378	
Vinyl Acetate	ND U	10	0.60	1	11/14/08	11/14/08	JWG0804378	
Vinyl Chloride	ND U	1.0	0.25	1	11/14/08	11/14/08	JWG0804378	

Comments:

Printed: 11/17/2008 17:43:21 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page

2 of 3

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA

Date Received: NA

Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804378-4

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	71-122	11/14/08	Acceptable	
4-Bromofluorobenzene	96	75-120	11/14/08	Acceptable	
Dibromofluoromethane	96	82-116	11/14/08	Acceptable	
Toluene-d8	96	88-117	11/14/08	Acceptable	

Comments:

Printed: 11/17/2008 17:43:21 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Service Request: J0805543

Date Collected: 11/12/2008

Sample Matrix:

Water

**Date Received:** 11/13/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

L-2

Lab Code:

J0805543-001

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	117	77-150	11/18/08	Acceptable

Comments:

Printed: 11/20/2008 13:16:27

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: 11/12/2008

Date Concercu.

**Date Received:** 11/13/2008

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

L-3

Lab Code:

J0805543-003

Units: ug/L

Basis: NA

Extraction Method: Analysis Method:

METHOD 8011 Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1 1	11/16/08 11/16/08	11/18/08 11/18/08	JWG0804358 JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	111	77-150	11/18/08	Acceptable	

Comments:

Printed: 11/20/2008 13:16:28

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page

1 of 1

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA Date Received: NA

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804358-4

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020	0.0070 0.0057	1	11/16/08	11/18/08	JWG0804358 JWG0804358	Landeduction
1,2-Dioromo-5-emoropropane (DBCF	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804338	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	132	77-150	11/18/08	Acceptable

Comments:

Printed: 11/20/2008 13:16:29

Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-2

Lab Code:

J0805543-001

Units: ug/L

Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND U	5.6	0.82	1	11/18/08	11/20/08	JWG0804427	11010
N-Nitrosomethylethylamine	ND U	5.6	0.92	1	11/18/08	11/20/08	JWG0804427	
Methyl Methanesulfonate	ND U	5.6	0.63	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosodiethylamine	ND U	5.6	0.70	1	11/18/08	11/20/08	JWG0804427	
Ethyl Methanesulfonate	ND U	5.6	0.73	1	11/18/08	11/20/08	JWG0804427	
Phenol	ND U	5.6	0.47	1	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroethyl) Ether	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
2-Chlorophenol	ND U	5.6	0.84	1	11/18/08	11/20/08	JWG0804427	
1,3-Dichlorobenzene	ND U	5.6	0.78	1	11/18/08	11/20/08	JWG0804427	
1,4-Dichlorobenzene	ND U	5.6	1.4	1	11/18/08	11/20/08	JWG0804427	
1,2-Dichlorobenzene	ND U	5.6	0.83	1	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroisopropyl) Ether	ND U	5.6	0.64	1	11/18/08	11/20/08	JWG0804427	
Benzyl alcohol	ND U	5.6	0.77	1	11/18/08	11/20/08	JWG0804427	
2-Methylphenol	ND U	5.6	0.72	1	11/18/08	11/20/08	JWG0804427	
Acetophenone	ND U	12	1.5	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosopyrrolidine	ND U	5.6	0.78	1	11/18/08	11/20/08	JWG0804427	
Hexachloroethane	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosodi-n-propylamine	ND U	5.6	0.76	1	11/18/08	11/20/08	JWG0804427	
o-Toluidine	ND U	5.6	0.99	1	11/18/08	11/20/08	JWG0804427	
4-Methylphenol†	ND U	5.6	0.86	1	11/18/08	11/20/08	JWG0804427	
Nitrobenzene	ND U	5.6	0.82	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosopiperidine	ND U	5.6	1.8	1	11/18/08	11/20/08	JWG0804427	
Isophorone	ND U	5.6	0.89	1	11/18/08	11/20/08	JWG0804427	
2-Nitrophenol	ND U	23	0.67	1	11/18/08	11/20/08	JWG0804427	
2,4-Dimethylphenol	ND U	5.6	0.88	1	11/18/08	11/20/08	JWG0804427	
O,O,O-Triethyl Phosphorothioate	ND U	23	0.58	1	11/18/08	11/20/08	JWG0804427	
bis(2-Chloroethoxy)methane	13	5.6	0.99	1	11/18/08	11/20/08	JWG0804427	
2,4-Dichlorophenol	ND U	5.6	0.56	1	11/18/08	11/20/08	JWG0804427	
1,2,4-Trichlorobenzene	ND U	5.6	0.87	1	11/18/08	11/20/08	JWG0804427	
Naphthalene	ND U	5.6	0.88	1	11/18/08	11/20/08	JWG0804427	
2,6-Dichlorophenol	ND U	12	0.80	1	11/18/08	11/20/08	JWG0804427	
Hexachloropropene	ND U	5.6	2.2	1	11/18/08	11/20/08	JWG0804427	
4-Chloroaniline	ND U	5.6	0.59	1	11/18/08	11/20/08	JWG0804427	
Hexachlorobutadiene	ND U	5.6	0.68	1	11/18/08	11/20/08	JWG0804427	

Comments:

Printed: 11/25/2008 19:30:06 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543 **Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-2

Lab Code:

J0805543-001

Extraction Method: EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodi-n-butylamine	ND U	5.6	0.75	1	11/18/08	11/20/08	JWG0804427	HATTI BERTHANNIA SHI SHI SHI SHI
p-Phenylenediamine	ND U	23	1.3	1	11/18/08	11/20/08	JWG0804427	
4-Chloro-3-methylphenol	ND U	5.6	0.84	1	11/18/08	11/20/08	JWG0804427	Processor and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and
2-Methylnaphthalene	ND U	5.6	0.83	1	11/18/08	11/20/08	JWG0804427	
Hexachlorocyclopentadiene	ND U	5.6	0.46	1	11/18/08	11/20/08	JWG0804427	
1,2,4,5-Tetrachlorobenzene	ND U	5.6	0.62	1	11/18/08	11/20/08	JWG0804427	
Safrole	ND U	5.6	0.79	1	11/18/08	11/20/08	JWG0804427	
2,4,6-Trichlorophenol	ND U	5.6	0.82	1	11/18/08	11/20/08	JWG0804427	
2,4,5-Trichlorophenol	ND U	5.6	0.73	1	11/18/08	11/20/08	JWG0804427	
Isosafrole	ND U	5.6	0.84	1	11/18/08	11/20/08	JWG0804427	
2-Chloronaphthalene	ND U	5.6	0.79	1	11/18/08	11/20/08	JWG0804427	
2-Nitroaniline	ND U	5.6	0.62	1	11/18/08	11/20/08	JWG0804427	
1,4-Naphthoquinone	ND U	- 12	1.6	1	11/18/08	11/20/08	JWG0804427	
1,3-Dinitrobenzene	ND U	12	1.7	1	11/18/08	11/20/08	JWG0804427	
Acenaphthylene	ND U	5.6	0.65	1	11/18/08	11/20/08	JWG0804427	
Dimethyl Phthalate	ND U	5.6	0.85	1	11/18/08	11/20/08	JWG0804427	
2,6-Dinitrotoluene	ND U	5.6	0.93	1	11/18/08	11/20/08	JWG0804427	
Acenaphthene	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
3-Nitroaniline	ND U	5.6	0.84	1	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrophenol	ND U	23	0.60	1	11/18/08	11/20/08	JWG0804427	
Pentachlorobenzene	ND U	5.6	2.7	1	11/18/08	11/20/08	JWG0804427	
Dibenzofuran	ND U	5.6	0.88	1	11/18/08	11/20/08	JWG0804427	
4-Nitrophenol	ND U	23	1.1	1	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrotoluene	ND U	5.6	4.6	1	11/18/08	11/20/08	JWG0804427	
2-Naphthylamine	ND U	5.6	1.3	1	11/18/08	11/20/08	JWG0804427	
2,3,4,6-Tetrachlorophenol	ND U	5.6	1.4	1	11/18/08	11/20/08	JWG0804427	
1-Naphthylamine	ND U	5.6	1.3	1	11/18/08	11/20/08	JWG0804427	
Fluorene	ND U	5.6	0.98	1	11/18/08	11/20/08	JWG0804427	
4-Chlorophenyl Phenyl Ether	ND U	5.6	0.68	1	11/18/08	11/20/08	JWG0804427	
Thionazin	ND U	12	0.90	1	11/18/08	11/20/08	JWG0804427	
Diethyl Phthalate	ND U	5.6	4.6	1	11/18/08	11/20/08	JWG0804427	
5-Nitro-o-toluidine	ND U	5.6	1.2	1	11/18/08	11/20/08	JWG0804427	
4-Nitroaniline	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
2-Methyl-4,6-dinitrophenol	ND UJ	23	0.72	1	11/18/08	11/20/08	JWG0804427	J(3)

**Comments:** 

Printed: 11/25/2008 19:30:06 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $27_{\text{Page}}$  2 of 4

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-2

Lab Code:

J0805543-001

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodiphenylamine†	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
Diallate	ND U	5.6	1.2	1	11/18/08	11/20/08	JWG0804427	
Phorate	ND U	5.6	0.98	1	11/18/08	11/20/08	JWG0804427	
1,3,5-Trinitrobenzene	ND U	5.6	1.3	1	11/18/08	11/20/08	JWG0804427	
4-Bromophenyl Phenyl Ether	ND U	5.6	0.75	1	11/18/08	11/20/08	JWG0804427	
Phenacetin	ND U	5.6	0.99	1	11/18/08	11/20/08	JWG0804427	
Hexachlorobenzene	ND U	5.6	0.70	1	11/18/08	11/20/08	JWG0804427	
Dimethoate	ND U	5.6	1.0	1	11/18/08	11/20/08	JWG0804427	
4-Aminobiphenyl	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
Pentachlorophenol	ND U	23	0.75	1	11/18/08	11/20/08	JWG0804427	
Pentachloronitrobenzene	ND U	5.6	1.7	1	11/18/08	11/20/08	JWG0804427	
Pronamide	ND U	23	0.95	1	11/18/08	11/20/08	JWG0804427	
Phenanthrene	ND U	5.6	0.78	1	11/18/08	11/20/08	JWG0804427	
Disulfoton	ND U	5.6	0.58	1	11/18/08	11/20/08	JWG0804427	
Dinoseb	ND U	5.6	0.68	1	11/18/08	11/20/08	JWG0804427	
Anthracene	ND U	5.6	0.79	1	11/18/08	11/20/08	JWG0804427	
Methyl Parathion	ND U	12	1.3	1	11/18/08	11/20/08	JWG0804427	
Di-n-butyl Phthalate	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
Parathion	ND U	23	1.1	1	11/18/08	11/20/08	JWG0804427	
Methapyrilene	ND U	5.6	1.7	1	11/18/08	11/20/08	JWG0804427	
Isodrin	ND U	12	0.79	1	11/18/08	11/20/08	JWG0804427	
Fluoranthene	ND U	5.6	0.74	1	11/18/08	11/20/08	JWG0804427	
Pyrene	ND U	5.6	0.94	1	11/18/08	11/20/08	JWG0804427	
Chlorobenzilate	ND U	12	0.94	1	11/18/08	11/20/08	JWG0804427	
3,3'-Dimethylbenzidine	ND UJ	23	2.6	1	11/18/08	11/20/08	JWG0804427	J(3)
Famphur	ND U	12	0.77	1	11/18/08	11/20/08	JWG0804427	TOTAL TO A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE O
p-Dimethylaminoazobenzene	ND U	5.6	0.99	1	11/18/08	11/20/08	JWG0804427	
Butyl Benzyl Phthalate	ND U	12	1.3	1 .	11/18/08	11/20/08	JWG0804427	
2-Acetylaminofluorene	ND U	5.6	1.0	1	11/18/08	11/20/08	JWG0804427	
Kepone	ND U	56	4.7	1	11/18/08	11/20/08	JWG0804427	
3,3'-Dichlorobenzidine	ND U	23	0.99	1	11/18/08	11/20/08	JWG0804427	
Benz(a)anthracene	ND U	5.6	0.96	· 1	11/18/08	11/20/08	JWG0804427	
Chrysene	ND U	5.6	0.97	1	11/18/08	11/20/08	JWG0804427	
Bis(2-ethylhexyl) Phthalate	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	

Comments:

Printed: 11/25/2008 19:30:06

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

 $2\$_{age} \quad {}_{3} \ of \quad {}_{4}$ 

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-2

Lab Code:

J0805543-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 

8270C

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Di-n-octyl Phthalate	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	11000
Benzo(b)fluoranthene	ND UJ	5.6	0.97	1.	11/18/08	11/20/08	JWG0804427	J(3)
Benzo(k)fluoranthene	ND U	5.6	0.60	1	11/18/08	11/20/08	JWG0804427	- (-)
7,12-Dimethylbenz(a)anthracene	ND U	5.6	0.97	1	11/18/08	11/20/08	JWG0804427	
Benzo(a)pyrene	ND U	5.6	0.70	1	11/18/08	11/20/08	JWG0804427	
3-Methylcholanthrene	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	
Indeno(1,2,3-cd)pyrene	ND U	5.6	0.62	1	11/18/08	11/20/08	JWG0804427	
Dibenz(a,h)anthracene	ND U	5.6	0.69	1	11/18/08	11/20/08	JWG0804427	
Benzo(g,h,i)pervlene	ND U	5.6	1.1	1	11/18/08	11/20/08	JWG0804427	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	26	10-77	11/20/08	Acceptable	
Phenol-d6	21	10-51	11/20/08	Acceptable	
Nitrobenzene-d5	64	32-106	11/20/08	Acceptable	
2-Fluorobiphenyl	49	30-102	11/20/08	Acceptable	
2,4,6-Tribromophenol	62	30-143	11/20/08	Acceptable	
Terphenyl-d14	39	23-165	11/20/08	Acceptable	

## † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

N-Nitrosodiphenylamine

This analyte can not be separated from Diphenylamine.

**Comments:** 

Printed: 11/25/2008 19:30:06

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-3

Lab Code:

J0805543-003

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodimethylamine	ND U	. 5.8	0.84	1	11/18/08	11/21/08	JWG0804427	0.440000000000000000000000000000000000
N-Nitrosomethylethylamine	ND U	5.8	0.95	1	11/18/08	11/21/08	JWG0804427	
Methyl Methanesulfonate	ND U	5.8	0.65	1	11/18/08	11/21/08	JWG0804427	
N-Nitrosodiethylamine	ND U	5.8	0.73	1	11/18/08	11/21/08	JWG0804427	
Ethyl Methanesulfonate	ND U	5.8	0.75	1	11/18/08	11/21/08	JWG0804427	
Phenol	ND U	5.8	0.49	1	11/18/08	11/21/08	JWG0804427	
Bis(2-chloroethyl) Ether	ND U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	
2-Chlorophenol	ND U	5.8	0.87	1	11/18/08	11/21/08	JWG0804427	
1,3-Dichlorobenzene	ND U	5.8	0.81	1	11/18/08	11/21/08	JWG0804427	
1,4-Dichlorobenzene	2.0 I	5.8	1.4	1	11/18/08	11/21/08	JWG0804427	
1,2-Dichlorobenzene	ND U	5.8	0.86	1	11/18/08	11/21/08	JWG0804427	
Bis(2-chloroisopropyl) Ether	ND U	5.8	0.66	1	11/18/08	11/21/08	JWG0804427	
Benzyl alcohol	ND U	5.8	0.80	1	11/18/08	11/21/08	JWG0804427	
2-Methylphenol	<b>4.2</b> I	5.8	0.74	1	11/18/08	11/21/08	JWG0804427	
Acetophenone	ND U	12	1.5	1	11/18/08	11/21/08	JWG0804427	
N-Nitrosopyrrolidine	ND U	5.8	0.81	1	11/18/08	11/21/08	JWG0804427	
Hexachloroethane	ND U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
N-Nitrosodi-n-propylamine	ND U	5.8	0.79	1	11/18/08	11/21/08	JWG0804427	
o-Toluidine	ND U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
4-Methylphenol†	110	5.8	0.89	1	11/18/08	11/21/08	JWG0804427	
Nitrobenzene	ND U	5.8	0.84	1	11/18/08	11/21/08	JWG0804427	
N-Nitrosopiperidine	ND U	5.8	1.9	1	11/18/08	11/21/08	JWG0804427	
Isophorone	ND U	5.8	0.92	1	11/18/08	11/21/08	JWG0804427	
2-Nitrophenol	ND U	23	0.69	1	11/18/08	11/21/08	JWG0804427	
2,4-Dimethylphenol	ND U	5.8	0.91	1	11/18/08	11/21/08	JWG0804427	
O,O,O-Triethyl Phosphorothioate	ND U	23	0.60	1	11/18/08	11/21/08	JWG0804427	
bis(2-Chloroethoxy)methane	ND U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
2,4-Dichlorophenol	ND U	5.8	0.58	1	11/18/08	11/21/08	JWG0804427	
1,2,4-Trichlorobenzene	ND U	5.8	0.90	1	11/18/08	11/21/08	JWG0804427	
Naphthalene	<b>2.5</b> I	5.8	0.91	1	11/18/08	11/21/08	JWG0804427	
2,6-Dichlorophenol	ND U	12 '	0.83	1	11/18/08	11/21/08	JWG0804427	
Hexachloropropene	ND U	5.8	2.2	1	11/18/08	11/21/08	JWG0804427	
4-Chloroaniline	ND U	5.8	0.61	1	11/18/08	11/21/08	JWG0804427	
Hexachlorobutadiene	ND U	5.8	0.71	1	11/18/08	11/21/08	JWG0804427	·····

Comments:

Printed: 11/25/2008 19:30:10

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-3

Lab Code:

J0805543-003

**Extraction Method:** 

EPA 3510C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodi-n-butylamine	ND U	5.8	0.78	1	11/18/08	11/21/08	JWG0804427	
p-Phenylenediamine	ND U	23	1.3	1	11/18/08	11/21/08	JWG0804427	
4-Chloro-3-methylphenol	ND U	5.8	0.87	1	11/18/08	11/21/08	JWG0804427	
2-Methylnaphthalene	ND U	5.8	0.86	1	11/18/08	11/21/08	JWG0804427	
Hexachlorocyclopentadiene	ND U	5.8	0.48	1	11/18/08	11/21/08	JWG0804427	
1,2,4,5-Tetrachlorobenzene	ND U	5.8	0.64	1	11/18/08	11/21/08	JWG0804427	
Safrole	ND U	5.8	0.82	,1	11/18/08	11/21/08	JWG0804427	
2,4,6-Trichlorophenol	ND U	5.8	0.84	1	11/18/08	11/21/08	JWG0804427	
2,4,5-Trichlorophenol	ND U	5.8	0.75	1	11/18/08	11/21/08	JWG0804427	
Isosafrole	ND U	5.8	0.87	1	11/18/08	11/21/08	JWG0804427	
2-Chloronaphthalene	ND U	5.8	0.82	1	11/18/08	11/21/08	JWG0804427	
2-Nitroaniline	ND U	5.8	0.64	1	11/18/08	11/21/08	JWG0804427	
1,4-Naphthoquinone	ND U	12	1.7	1	11/18/08	11/21/08	JWG0804427	
1,3-Dinitrobenzene	ND U	12	1.8	1	11/18/08	11/21/08	JWG0804427	
Acenaphthylene	ND U	5.8	0.67	1	11/18/08	11/21/08	JWG0804427	
Dimethyl Phthalate	ND U	5.8	0.88	1	11/18/08	11/21/08	JWG0804427	
2,6-Dinitrotoluene	ND U	5.8	0.96	1	11/18/08	11/21/08	JWG0804427	
Acenaphthene	ND U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	***************************************
3-Nitroaniline	ND U	5.8	0.87	1	11/18/08	11/21/08	JWG0804427	
2,4-Dinitrophenol	ND U	23	0.63	1	11/18/08	11/21/08	JWG0804427	
Pentachlorobenzene	ND U	5.8	2.8	1	11/18/08	11/21/08	JWG0804427	
Dibenzofuran	ND U	5.8	0.91	1	11/18/08	11/21/08	JWG0804427	
4-Nitrophenol	ND U	23	1.1	1	11/18/08	11/21/08	JWG0804427	
2,4-Dinitrotoluene	ND U	5.8	4.8	1	11/18/08	11/21/08	JWG0804427	
2-Naphthylamine	ND U	5.8	1.3	1	11/18/08	11/21/08	JWG0804427	
2,3,4,6-Tetrachlorophenol	ND U	5.8	1.4	1	11/18/08	11/21/08	JWG0804427	
1-Naphthylamine	ND U	5.8	1.3	1	11/18/08	11/21/08	JWG0804427	
Fluorene	ND U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
4-Chlorophenyl Phenyl Ether	ND U	5.8	0.71	1	11/18/08	11/21/08	JWG0804427	
Thionazin	ND U	12	0.94	1	11/18/08	11/21/08	JWG0804427	
Diethyl Phthalate	ND U	5.8	4.8	1	11/18/08	11/21/08	JWG0804427	
5-Nitro-o-toluidine	ND U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	
4-Nitroaniline	ND U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
2-Methyl-4,6-dinitrophenol	ND UJ	23	0.74	1	11/18/08	11/21/08	JWG0804427	J(3)

Comments:

Printed: 11/25/2008 19:30:10

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $31_{\text{Page}}$ 

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-3

Lab Code:

J0805543-003

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

**DU**SIS: 1(11

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodiphenylamine†	ND	U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	
Diallate	ND	U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	
Phorate	ND	U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
1,3,5-Trinitrobenzene	ND	U	5.8	1.3	1	11/18/08	11/21/08	JWG0804427	
4-Bromophenyl Phenyl Ether	ND	U	5.8	0.78	1	11/18/08	11/21/08	JWG0804427	
Phenacetin	ND	U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
Hexachlorobenzene	ND	U	5.8	0.73	1	11/18/08	11/21/08	JWG0804427	
Dimethoate	ND	U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
4-Aminobiphenyl	ND	U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	
Pentachlorophenol	ND	U	23	0.78	1	11/18/08	11/21/08	JWG0804427	
Pentachloronitrobenzene	ND	U	5.8	1.8	1	11/18/08	11/21/08	JWG0804427	
Pronamide	ND	U	23	0.98	1	11/18/08	11/21/08	JWG0804427	
Phenanthrene	ND	U	5.8	0.81	1	11/18/08	11/21/08	JWG0804427	
Disulfoton	ND	U	5.8	0.60	1	11/18/08	11/21/08	JWG0804427	
Dinoseb	ND	U	5.8	0.71	1	11/18/08	11/21/08	JWG0804427	
Anthracene	ND	U	5.8	0.82	1	11/18/08	11/21/08	JWG0804427	
Methyl Parathion	ND	U	12	1.3	1	11/18/08	11/21/08	JWG0804427	
Di-n-butyl Phthalate	ND	U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	
Parathion	ND	U	23	1.1	1	11/18/08	11/21/08	JWG0804427	
Methapyrilene	ND	U	5.8	1.8	1	11/18/08	11/21/08	JWG0804427	
Isodrin	ND	U	12	0.82	1	11/18/08	11/21/08	JWG0804427	
Fluoranthene	ND	U	5.8	0.76	1	11/18/08	11/21/08	JWG0804427	
Pyrene	ND	U	5.8	0.97	1	11/18/08	11/21/08	JWG0804427	
Chlorobenzilate	ND	U	12	0.97	1	11/18/08	11/21/08	JWG0804427	
3,3'-Dimethylbenzidine	ND	UJ	23	2.7	1	11/18/08	11/21/08	JWG0804427	J(3)
Famphur	. ND	U	12	0.80	1	11/18/08	11/21/08	JWG0804427	
p-Dimethylaminoazobenzene	ND	U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
Butyl Benzyl Phthalate	ND	U	12	1.3	1	11/18/08	11/21/08	JWG0804427	
2-Acetylaminofluorene	ND	U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
Kepone	ND	U	58	4.9	1	11/18/08	11/21/08	JWG0804427	
3,3'-Dichlorobenzidine	ND	U	23	1.1	1	11/18/08	11/21/08	JWG0804427	
Benz(a)anthracene	ND	U	5.8	0.99	1	11/18/08	11/21/08	JWG0804427	
Chrysene	ND		5.8	1.0	1	11/18/08	11/21/08	JWG0804427	
Bis(2-ethylhexyl) Phthalate	ND	U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	

**Comments:** 

Printed: 11/25/2008 19:30:10

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $32_{\text{Page}}$ 

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-3

Lab Code:

J0805543-003

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Di-n-octyl Phthalate	ND U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	
Benzo(b)fluoranthene	ND UJ	5.8	1.0	1	11/18/08	11/21/08	JWG0804427	J(3)
Benzo(k)fluoranthene	ND U	5.8	0.63	1	11/18/08	11/21/08	JWG0804427	
7,12-Dimethylbenz(a)anthracene	ND U	5.8	1.0	1	11/18/08	11/21/08	JWG0804427	
Benzo(a)pyrene	ND U	5.8	0.73	1	11/18/08	11/21/08	JWG0804427	
3-Methylcholanthrene	ND U	5.8	1.2	1	11/18/08	11/21/08	JWG0804427	
Indeno(1,2,3-cd)pyrene	ND U	5.8	0.64	1	11/18/08	11/21/08	JWG0804427	
Dibenz(a,h)anthracene	ND U	5.8	0.72	1	11/18/08	11/21/08	JWG0804427	
Benzo(g,h,i)perylene	ND U	5.8	1.1	1	11/18/08	11/21/08	JWG0804427	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	24	10-77	11/21/08	Acceptable	
Phenol-d6	24	10-51	11/21/08	Acceptable	
Nitrobenzene-d5	57	32-106	11/21/08	Acceptable	
2-Fluorobiphenyl	40	30-102	11/21/08	Acceptable	
2,4,6-Tribromophenol	53	30-143	11/21/08	Acceptable	
Terphenyl-d14	28	23-165	11/21/08	Acceptable	

## † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

N-Nitrosodiphenylamine

This analyte can not be separated from Diphenylamine.

Comments:

Printed: 11/25/2008 19:30:10

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $33_{\text{Page}}$  4 of 4

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA

Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804427-1

**Analysis Method:** 

Extraction Method: EPA 3510C

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND		5.0	0.73	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosomethylethylamine	ND		5.0	0.82	î	11/18/08	11/19/08	JWG0804427	
Methyl Methanesulfonate	ND		5.0	0.56	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosodiethylamine	ND	U	5.0	0.63	1	11/18/08	11/19/08	JWG0804427	
Ethyl Methanesulfonate	ND	U	5.0	0.65	1	11/18/08	11/19/08	JWG0804427	
Phenol	ND	U	5.0	0.42	1	11/18/08	11/19/08	JWG0804427	
Bis(2-chloroethyl) Ether	ND	U	5.0	0.96	1	11/18/08	11/19/08	JWG0804427	
2-Chlorophenol	ND	U .	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
1,3-Dichlorobenzene	ND	U	5.0	0.70	1	11/18/08	11/19/08	JWG0804427	
1,4-Dichlorobenzene	ND		5.0	1.2	1	11/18/08	11/19/08	JWG0804427	
1,2-Dichlorobenzene	ND	U	5.0	0.74	1	11/18/08	11/19/08	JWG0804427	
Bis(2-chloroisopropyl) Ether	ND	U	5.0	0.57	1	11/18/08	11/19/08	JWG0804427	
Benzyl alcohol	ND		5.0	0.69	1	11/18/08	11/19/08	JWG0804427	***************************************
2-Methylphenol	ND	U	5.0	0.64	1	11/18/08	11/19/08	JWG0804427	
Acetophenone	ND	U	10	1.3	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosopyrrolidine	ND		5.0	0.70	1	11/18/08	11/19/08	JWG0804427	
Hexachloroethane	ND		5.0	0.92	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosodi-n-propylamine	ND	U	5.0	0.68	1	11/18/08	11/19/08	JWG0804427	
o-Toluidine	ND		5.0	0.89	1	11/18/08	11/19/08	JWG0804427	
4-Methylphenol†	ND		5.0	0.77	1	11/18/08	11/19/08	JWG0804427	
Nitrobenzene	ND	U	5.0	0.73	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosopiperidine	ND		5.0	1.6	1	11/18/08	11/19/08	JWG0804427	
Isophorone	ND		5.0	0.80	1	11/18/08	11/19/08	JWG0804427	
2-Nitrophenol	ND	U	20	0.60	1	11/18/08	11/19/08	JWG0804427	
2,4-Dimethylphenol	ND		5.0	0.79	1	11/18/08	11/19/08	JWG0804427	
O,O,O-Triethyl Phosphorothioate	ND	U	20	0.52	1	11/18/08	11/19/08	JWG0804427	
bis(2-Chloroethoxy)methane	ND	U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427	
2,4-Dichlorophenol	ND	U	5.0	0.50	1	11/18/08	11/19/08	JWG0804427	
1,2,4-Trichlorobenzene	ND	U	5.0	0.78	1	11/18/08	11/19/08	JWG0804427	
Naphthalene	ND	U	5.0	0.79	1	11/18/08	11/19/08	JWG0804427	
2,6-Dichlorophenol	ND		10	0.72	1	11/18/08	11/19/08	JWG0804427	
Hexachloropropene	ND		5.0	1.9	1	11/18/08	11/19/08	JWG0804427	
4-Chloroaniline	ND	U	5.0	0.53	1	11/18/08	11/19/08	JWG0804427	
Hexachlorobutadiene	ND	U	5.0	0.61	1	11/18/08	11/19/08	JWG0804427	

**Comments:** 

Printed: 11/25/2008 19:30:13

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804427-1

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodi-n-butylamine	ND U	5.0	0.67	1	11/18/08	11/19/08	JWG0804427	Samuel and a section of section
p-Phenylenediamine	ND U	20	1.1	1	11/18/08	11/19/08	JWG0804427	
4-Chloro-3-methylphenol	ND U	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
2-Methylnaphthalene	ND U	5.0	0.74	1	11/18/08	11/19/08	JWG0804427	
Hexachlorocyclopentadiene	ND U	5.0	0.41	1	11/18/08	11/19/08	JWG0804427	
1,2,4,5-Tetrachlorobenzene	ND U	5.0	0.55	1	11/18/08	11/19/08	JWG0804427	
Safrole	ND U	5.0	0.71	1	11/18/08	11/19/08	JWG0804427	
2,4,6-Trichlorophenol	ND U	5.0	0.73	1	11/18/08	11/19/08	JWG0804427	
2,4,5-Trichlorophenol	ND U	5.0	0.65	1	11/18/08	11/19/08	JWG0804427	
Isosafrole	ND U	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
2-Chloronaphthalene	ND U	5.0	0.71	1	11/18/08	11/19/08	JWG0804427	
2-Nitroaniline	ND U	5.0	.0.55	1	11/18/08	11/19/08	JWG0804427	
1,4-Naphthoquinone	ND U	10	1.4	1	11/18/08	11/19/08	JWG0804427	
1,3-Dinitrobenzene	ND U	10	1.5	1	11/18/08	11/19/08	JWG0804427	
Acenaphthylene	ND U	5.0	0.58	1	11/18/08	11/19/08	JWG0804427	
Dimethyl Phthalate	ND U	5.0	0.76	1	11/18/08	11/19/08	JWG0804427	
2,6-Dinitrotoluene	ND U	5.0	0.83	1	11/18/08	11/19/08	JWG0804427	
Acenaphthene	ND U	5.0	0.99	1	11/18/08	11/19/08	JWG0804427	
3-Nitroaniline	ND U	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
2,4-Dinitrophenol	ND U	20	0.54	1	11/18/08	11/19/08	JWG0804427	
Pentachlorobenzene	ND U	5.0	2.4	1	11/18/08	11/19/08	JWG0804427	
Dibenzofuran	ND U	5.0	0.79	1	11/18/08	11/19/08	JWG0804427	
4-Nitrophenol	ND U	20	0.93	1	11/18/08	11/19/08	JWG0804427	
2,4-Dinitrotoluene	ND U	5.0	4.1	1	11/18/08	11/19/08	JWG0804427	
2-Naphthylamine	ND U	5.0	1.1	1	11/18/08	11/19/08	JWG0804427	
2,3,4,6-Tetrachlorophenol	ND U	5.0	1.2	1	11/18/08	11/19/08	JWG0804427	
1-Naphthylamine	ND U	5.0	1.1	1	11/18/08	11/19/08	JWG0804427	
Fluorene	ND U	5.0	0.88	1	11/18/08	11/19/08	JWG0804427	
4-Chlorophenyl Phenyl Ether	ND U	5.0	0.61	1	11/18/08	11/19/08	JWG0804427	
Thionazin	ND U	10	0.81	1	11/18/08	11/19/08	JWG0804427	
Diethyl Phthalate	ND U	5.0	4.1	1	11/18/08	11/19/08	JWG0804427	
5-Nitro-o-toluidine	ND U	5.0	1.0	1	11/18/08	11/19/08	JWG0804427	
4-Nitroaniline	ND U	5.0	0.92	1	11/18/08	11/19/08	JWG0804427	Property Control of the Audion
2-Methyl-4,6-dinitrophenol	ND UJ	20	0.64	1	11/18/08	11/19/08	JWG0804427	J(3)

Comments:

Printed: 11/25/2008 19:30:13 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804427-1

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodiphenylamine†	ND U	5.0	0.96	1	11/18/08	11/19/08	JWG0804427	11010
Diallate	ND U	5.0	1.0	1	11/18/08	11/19/08	JWG0804427	
Phorate	ND U	5.0	0.88	1	11/18/08	11/19/08	JWG0804427	
1,3,5-Trinitrobenzene	ND U	5.0	1.1	î	11/18/08	11/19/08	JWG0804427	
4-Bromophenyl Phenyl Ether	ND U	5.0	0.67	1	11/18/08	11/19/08	JWG0804427	
Phenacetin	ND U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427	•
Hexachlorobenzene	ND U	5.0	0.63	1	11/18/08	11/19/08	JWG0804427	
Dimethoate	ND U	5.0	0.90	1	11/18/08	11/19/08	JWG0804427	
4-Aminobiphenyl	ND U	5.0	0.99	1	11/18/08	11/19/08	JWG0804427	
Pentachlorophenol	ND U	20	0.67	1	11/18/08	11/19/08	JWG0804427	•
Pentachloronitrobenzene	ND U	5.0	1.5	1	11/18/08	11/19/08	JWG0804427	
Pronamide	ND U	20	0.85	1	11/18/08	11/19/08	JWG0804427	
Phenanthrene	ND U	5.0	0.70	1	11/18/08	11/19/08	JWG0804427	
Disulfoton	ND U	5.0	0.52	1	11/18/08	11/19/08	JWG0804427	
Dinoseb	ND U	5.0	0.61	1	11/18/08	11/19/08	JWG0804427	
Anthracene	ND U	5.0	0.71	1	11/18/08	11/19/08	JWG0804427	
Methyl Parathion	ND U	10	1.1	1	11/18/08	11/19/08	JWG0804427	
Di-n-butyl Phthalate	ND U	5.0	0.97	1	11/18/08	11/19/08	JWG0804427	
Parathion	ND U	20	0.93	1 .	11/18/08	11/19/08	JWG0804427	
Methapyrilene	ND U	5.0	1.5	1	11/18/08	11/19/08	JWG0804427	
Isodrin	ND U	10	0.71	1	11/18/08	11/19/08	JWG0804427	
Fluoranthene	ND U	5.0	0.66	1	11/18/08	11/19/08	JWG0804427	
Pyrene	ND U	5.0	0.84	1	11/18/08	11/19/08	JWG0804427	
Chlorobenzilate	ND U	10	0.84	1	11/18/08	11/19/08	JWG0804427	
3,3'-Dimethylbenzidine	ND UJ	20	2.3	1	11/18/08	11/19/08	JWG0804427	J(3)
Famphur	ND U	10	0.69	1	11/18/08	11/19/08	JWG0804427	***
p-Dimethylaminoazobenzene	ND U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427	
Butyl Benzyl Phthalate	ND U	10	1.1	1	11/18/08	11/19/08	JWG0804427	
2-Acetylaminofluorene	ND U	5.0	0.90	1	11/18/08	11/19/08	JWG0804427	
Kepone	ND U	50	4.2	1	11/18/08	11/19/08	JWG0804427	
3,3'-Dichlorobenzidine	ND U	20	0.89	1	11/18/08	11/19/08	JWG0804427	
Benz(a)anthracene	ND U	5.0	0.86	1	11/18/08	11/19/08	JWG0804427	
Chrysene	ND U	5.0	0.87	1	11/18/08	11/19/08	JWG0804427	
Bis(2-ethylhexyl) Phthalate	ND U	5.0	0.98	. 1	11/18/08	11/19/08	JWG0804427	

Comments:

Printed: 11/25/2008 19:30:13

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

3 of 4

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA

Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804427-1

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Analysis Method:

8270C

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Di-n-octyl Phthalate	ND U	5.0	0.95	1	11/18/08	11/19/08	JWG0804427	
Benzo(b)fluoranthene	ND UJ	5.0	0.87	1	11/18/08	11/19/08	JWG0804427	J(3)
Benzo(k)fluoranthene	ND U	5.0	0.54	1	11/18/08	11/19/08	JWG0804427	( )
7,12-Dimethylbenz(a)anthracene	ND U	5.0	0.87	1	11/18/08	11/19/08	JWG0804427	
Benzo(a)pyrene	ND U	5.0	0.63	1	11/18/08	11/19/08	JWG0804427	
3-Methylcholanthrene	ND U	5.0	0.97	1	11/18/08	11/19/08	JWG0804427	
Indeno(1,2,3-cd)pyrene	ND U	5.0	0.55	1	11/18/08	11/19/08	JWG0804427	
Dibenz(a,h)anthracene	ND U	5.0	0.62	1	11/18/08	11/19/08	JWG0804427	
Benzo(g,h,i)perylene	ND U	5.0	0.91	,1	11/18/08	11/19/08	JWG0804427	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	25	10-77	11/19/08	Acceptable	
Phenol-d6	20	10-51	11/19/08	Acceptable	
Nitrobenzene-d5	68	32-106	11/19/08	Acceptable	
2-Fluorobiphenyl	55	30-102	11/19/08	Acceptable	
2,4,6-Tribromophenol	74	30-143	11/19/08	Acceptable	
Terphenyl-d14	73	23-165	11/19/08	Acceptable	

#### † Analyte Comments

4-Methylphenol N-Nitrosodiphenylamine This analyte cannot be separated from 3-Methylphenol.

This analyte can not be separated from Diphenylamine.

Comments:

Printed: 11/25/2008 19:30:13  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

# Organochlorine Pesticides by GC-ECD

Sample Name:

L-2

Lab Code:

J0805543-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 

8081A

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
alpha-BHC	ND U	0.023	0.0090	1	11/12/08	11/21/08	JWG0804348	WENT WATER
gamma-BHC (Lindane)	ND U	0.023	0.0094	1	11/12/08	11/21/08	JWG0804348	
beta-BHC	ND U	0.023	0.0097	1	11/12/08	11/21/08	JWG0804348	
delta-BHC	ND U	0.023	0.013	1	11/12/08	11/21/08	JWG0804348	
Heptachlor	ND U	0.023	0.011	1	11/12/08	11/21/08	JWG0804348	
Aldrin	ND U	0.023	0.0078	1	11/12/08	11/21/08	JWG0804348	
Heptachlor Epoxide	ND U	0.023	0.0090	1	11/12/08	11/21/08	JWG0804348	
gamma-Chlordane	ND U	0.023	0.0086	1	11/12/08	11/21/08	JWG0804348	
alpha-Chlordane	ND U	0.023	0.0075	1	11/12/08	11/21/08	JWG0804348	
4,4'-DDE	ND U	0.023	0.0096	1	11/12/08	11/21/08	JWG0804348	
Endosulfan I	ND U	0.023	0.011	1	11/12/08	11/21/08	JWG0804348	
Dieldrin	ND U	0.023	0.0083	1	11/12/08	11/21/08	JWG0804348	
Endrin	ND U	0.023	0.011	1	11/12/08	11/21/08	JWG0804348	
4,4'-DDD	ND U	0.023	0.0090	1	11/12/08	11/21/08	JWG0804348	
Endosulfan II	ND U	0.23	0.23	1	11/12/08	11/21/08	JWG0804348	
4,4'-DDT	ND U	0.023	0.015	1	11/12/08	11/21/08	JWG0804348	
Endrin Aldehyde	ND U	0.023	0.0097	1	11/12/08	11/21/08	JWG0804348	
Methoxychlor	ND U	0.046	0.013	1	11/12/08	11/21/08	JWG0804348	
Endosulfan Sulfate	ND U	0.023	0.011	1	11/12/08	11/21/08	JWG0804348	
Endrin Ketone	ND U	0.023	0.0061	1	11/12/08	11/21/08	JWG0804348	
Toxaphene	ND U	0.57	0.57	1	11/12/08	11/21/08	JWG0804348	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	. 8	32-92	11/21/08	Outside Control Limits
Decachlorobiphenyl	4	13-104	11/21/08	Outside Control Limits

Comments:

p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

# Organochlorine Pesticides by GC-ECD

Sample Name:

L-3

Lab Code:

J0805543-003

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8081A

Units: ug/L Basis: NA

Level: Low

Dilution

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.023	0.0088	1	11/12/08	11/21/08	JWG0804348	
gamma-BHC (Lindane)	ND	U	0.023	0.0092	1	11/12/08	11/21/08	JWG0804348	
beta-BHC	ND	U	0.023	0.0095	1	11/12/08	11/21/08	JWG0804348	
delta-BHC	ND	U	0.023	0.013	1	11/12/08	11/21/08	JWG0804348	
Heptachlor	ND	U	0.023	0.011	1	11/12/08	11/21/08	JWG0804348	
Aldrin	ND	U	0.023	0.0076	1	11/12/08	11/21/08	JWG0804348	
Heptachlor Epoxide	ND	U	0.023	0.0088	1	11/12/08	11/21/08	JWG0804348	
gamma-Chlordane	ND	U	0.023	0.0084	1	11/12/08	11/21/08	JWG0804348	
alpha-Chlordane	ND	U	0.023	0.0074	1	11/12/08	11/21/08	JWG0804348	
4,4'-DDE	ND	U	0.023	0.0094	1	11/12/08	11/21/08	JWG0804348	
Endosulfan I	ND	U	0.023	0.0099	1	11/12/08	11/21/08	JWG0804348	
Dieldrin	ND	U	0.023	0.0082	1	11/12/08	11/21/08	JWG0804348	
Endrin	ND	U	0.023	0.010	1	11/12/08	11/21/08	JWG0804348	
4,4'-DDD	ND	U	0.023	0.0088	1	11/12/08	11/21/08	JWG0804348	
Endosulfan II	ND	U	0.23	0.23	1	11/12/08	11/21/08	JWG0804348	
4,4'-DDT	ND	U	0.023	0.015	1	11/12/08	11/21/08	JWG0804348	
Endrin Aldehyde	ND	U	0.023	0.0095	1.	11/12/08	11/21/08	JWG0804348	
Methoxychlor	ND	U	0.045	0.013	1	11/12/08	11/21/08	JWG0804348	
Endosulfan Sulfate	ND	U	0.023	0.011	1	11/12/08	11/21/08	JWG0804348	
Endrin Ketone	ND		0.023	0.0059	1	11/12/08	11/21/08	JWG0804348	
Toxaphene	ND	U	0.56	0.56	1	11/12/08	11/21/08	JWG0804348	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	25	32-92	11/21/08	Outside Control Limits
Decachlorobiphenyl	16	13-104	11/21/08	Acceptable

**Comments:** 

Printed: 11/24/2008 23:21:38

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $39_{\text{Page}}$ 

1 of 1

SuperSet Reference:

RR25819

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA Date Received: NA

### Organochlorine Pesticides by GC-ECD

Sample Name: Lab Code:

Method Blank

Units: ug/L Basis: NA

**Extraction Method:** 

JWG0804348-3

**Analysis Method:** 

EPA 3510C 8081A

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.020	0.0079	1	11/12/08	11/20/08	JWG0804348	and the second second
gamma-BHC (Lindane)	ND U	0.020	0.0082	1	11/12/08	11/20/08	JWG0804348	
beta-BHC	ND U	0.020	0.0085	· 1	11/12/08	11/20/08	JWG0804348	
delta-BHC	ND U	0.020	0.011	1	11/12/08	11/20/08	JWG0804348	
Heptachlor	ND U	0.020	0.0096	1	11/12/08	11/20/08	JWG0804348	
Aldrin	ND U	0.020	0.0068	1	11/12/08	11/20/08	JWG0804348	
Heptachlor Epoxide	ND U	0.020	0.0079	1	11/12/08	11/20/08	JWG0804348	
gamma-Chlordane	ND U	0.020	0.0075	1	11/12/08	11/20/08	JWG0804348	
alpha-Chlordane	ND U	0.020	0.0066	1	11/12/08	11/20/08	JWG0804348	
4,4'-DDE	ND U	0.020	0.0084	1	11/12/08	11/20/08	JWG0804348	
Endosulfan I	ND U	0.020	0.0089	1	11/12/08	11/20/08	JWG0804348	
Dieldrin	ND U	0.020	0.0073	1	11/12/08	11/20/08	JWG0804348	
Endrin	ND U	0.020	0.0090	1	11/12/08	11/20/08	JWG0804348	
4,4'-DDD	ND U	0.020	0.0079	1	11/12/08	11/20/08	JWG0804348	
Endosulfan II	ND U	0.20	0.20	1	11/12/08	11/20/08	JWG0804348	
4,4'-DDT	ND U	0.020	0.013	1	11/12/08	11/20/08	JWG0804348	
Endrin Aldehyde	ND U	0.020	0.0085	1	11/12/08	11/20/08	JWG0804348	
Methoxychlor	ND U	0.040	0.011	1	11/12/08	11/20/08	JWG0804348	
Endosulfan Sulfate	ND U	0.020	0.0092	1	11/12/08	11/20/08	JWG0804348	
Endrin Ketone	ND U	0.020	0.0053	1	11/12/08	11/20/08	JWG0804348	
Toxaphene	ND U	0.50	0.50	1	11/12/08	11/20/08	JWG0804348	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	68	32-92	11/20/08	Acceptable
Decachlorobiphenyl	85	13-104	11/20/08	Acceptable

Comments:

Printed: 11/24/2008 23:21:40

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $40_{\text{Page}}$ 

1 of 1

SuperSet Reference: RR25819

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543 **Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

### Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

L-2

Lab Code:

J0805543-001

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8082

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	· MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.57	0.15	. 1	11/12/08	11/21/08	JWG0804349	
Aroclor 1221	ND U	0.57	0.25	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1232	ND U	0.57	0.27	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1242	ND U	0.57	0.14	1	11/12/08	11/21/08	JWG0804349	THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T
Aroclor 1248	ND U	0.57	0.30	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1254	ND U	0.57	0.43	1 .	11/12/08	11/21/08	JWG0804349	
Aroclor 1260	ND U	0.57	0.20	1	11/12/08	11/21/08	JWG0804349	*

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	4	24-120	11/21/08	Outside Control Limits

Comments:

SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

### Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

L-3

Lab Code:

J0805543-003

Units: ug/L Basis: NA

**Extraction Method:** EPA 3510C

Level: Low

**Analysis Method:** 

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.56	0.15	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1221	ND U	0.56	0.25	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1232	ND U	0.56	0.26	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1242	ND U	0.56	0.14	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1248	ND U	0.56	0.29	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1254	ND U	0.56	0.42	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1260	ND U	0.56	0.19	1	11/12/08	11/21/08	JWG0804349	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	21	24-120	11/21/08	Outside Control Limits

Comments:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543

Date Collected: NA

Date Received: NA

### Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name: Lab Code:

Method Blank JWG0804349-2

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

Analysis Method: 8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.50	0.13	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1221	ND U	0.50	0.22	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1232	ND U	0.50	0.23	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1242	ND U	0.50	0.12	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1248	ND U	0.50	0.26	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1254	ND U	0.50	0.37	1	11/12/08	11/21/08	JWG0804349	
Aroclor 1260	ND U	0.50	0.17	1	11/12/08	11/21/08	JWG0804349	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	89	24-120	11/21/08	Acceptable	***************************************

Comments:

Printed: 12/01/2008 16:03:50  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512

WATER

Service Request: Date Collected:

J0805543 11/12/2008

Date Received:

11/13/2008

Total Metals

Sample Name: Lab Code:

L-2

J0805543-001

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/24/2008	10	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/24/2008	39	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/24/2008	305	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/24/2008	0.4	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/24/2008	0.99	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/24/2008	97	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/24/2008	4.6	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/24/2008	6.8	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	4370	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	6.8	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.09	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/24/2008	58	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/24/2008	48	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Tin	EPA 3020A	6020	5.0	0.3	1.0	11/21/2008	11/24/2008	1.4	i
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/24/2008	247	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/24/2008	12	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

**Project Number:** Matrix:

FQ1512

WATER

Service Request: Date Collected:

J0805543 11/12/2008

Date Received:

11/13/2008

Total Metals

Sample Name:

Lab Code:

L-3

J0805543**-**003

Unite

omis:	ug/L
Basis:	N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/24/2008	5.0	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/24/2008	13	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/24/2008	126	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/24/2008	0.3	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/24/2008	0.72	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/24/2008	46	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/24/2008	5.1	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/24/2008	4.7	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	3380	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	5.1	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.10	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/24/2008	37	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/24/2008	18	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Tin	EPA 3020A	6020	5.0	0.3	1.0	11/21/2008	11/24/2008	0.5	i
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/24/2008	120	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/24/2008	54	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number:

Matrix:

FQ1512 WATER

JED SWDF

Total Metals

Sample Name:

Method Blank

Lab Code:

MB21121

Units: Basis:

Service Request:

Date Collected:

Date Received:

ug/L N/A

J0805543

N/A

N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/24/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/24/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/24/2008	U	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/24/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/24/2008	0.14	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/24/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/24/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/24/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/21/2008	11/21/2008	Ų	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.08	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/24/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/24/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Tin	EPA 3020A	6020	5.0	0.3	1.0	11/21/2008	11/24/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/24/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/24/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number:

FQ1512

Matrix:

WATER

EPA 3010A

Service Request:

J0805543

Date Collected: Date Received: 11/12/2008 11/13/2008

**Total Metals** 

Sodium

Units: Basis:

mg/L N/A

Test Notes:

Prep Method:

Analysis Method: 6010B

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
L-2	J0805543-001	5.0	0.20	10.0	11/21/2008	11/25/2008	1940	
L-3	J0805543-003	0.50	0.02	1.0	11/21/2008	11/21/2008	481	
Method Blank	MB1-1121	0.50	0.02	1.0	11/21/2008	11/21/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: FQ1512

JED SWDF

Sample Matrix:

WATER

Service Request: J0805543

**Date Collected:** 11/12/08

Date Received: 11/13/08

Inorganic Parameters

Sample Name:

L-2

Lab Code:

J0805543-001

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	10	3.2	2.5	11/24/08 14:00	570	
Ammonia as Nitrogen	mg/L (ppm)	350.1	5	2	100	11/17/08 13:11	370	
Chloride	mg/L (ppm)	300.0	20	3.1	100	11/22/08 13:05	4700	
Cyanide, Total	mg/L (ppm)	335.4	0.01	0.004	1	11/26/08 14:28	0.012	
Nitrate as Nitrogen	mg/L (ppm)	300.0	2	0.38	10	11/14/08 03:01	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	8400	
Sulfide	mg/L (ppm)	376.1	2	0.38	1	11/18/08 18:30	15	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805543

**Date Collected:** 11/12/08

Date Received: 11/13/08

**Inorganic Parameters** 

Sample Name:

L-3

Lab Code:

J0805543-003

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	10	3.2	2	11/24/08 14:00	720	
Ammonia as Nitrogen	mg/L (ppm)	350.1	5	2	100	11/17/08 13:11	190	
Chloride	mg/L (ppm)	300.0	2	0.31	10	11/13/08 17:03	930	
Cyanide, Total	mg/L (ppm)	335.4	0.01	0.004	1 -	11/26/08 14:28	0.013	
Nitrate as Nitrogen	mg/L (ppm)	300.0	2	0.38	10	11/14/08 03:16	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	2700	
Sulfide	mg/L (ppm)	376.1	2	0.38	1	11/18/08 18:30	4.9	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805543

Date Collected: NA

Date Received: NA

**Inorganic Parameters** 

Sample Name:

Method Blank

Lab Code:

J0805543-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	5	1.6	1	11/24/08 14:00	U	
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/13/08 17:03	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/22/08 13:05	U	
Cyanide, Total	mg/L (ppm)	335.4	0.01	0.004	1	11/26/08 14:28	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/13/08 17:03	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	U	
Sulfide	mg/L (ppm)	376.1	2	0.38	1	11/18/08 18:30	U	

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805543

**Surrogate Recovery Summary** 

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Volatile Organic Compounds by GC/MS (Appendix II)

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
L-2	J0805543-001	98	97	96	97
Trip Blank	J0805543-002	97	97	97	100
L-3	J0805543-003	103	97	100	95
Trip Blank	J0805543-004	96	102	96	99
Method Blank	JWG0804378-4	98	96	96	96
Lab Control Sample	JWG0804378-3	95	97	94	95

### **Surrogate Recovery Control Limits (%)**

Sur1 = 1,2-Dichloroethane-d4	71-122	
Sur2 = 4-Bromofluorobenzene	75-120	
Sur3 = Dibromofluoromethane	82-116	
Sur4 = Toluene-d8	88-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/17/2008 15:00:29 p:\Stealth\Crystal.rpt\Form2.rpt

SuperSet Reference:

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

Date Extracted: 11/14/2008

**Date Analyzed:** 11/14/2008

### Lab Control Spike Summary Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: JWG0804378

Lab Control Sample JWG0804378-3 Lab Control Spike

	Lab	Lab Control Spike		%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Dichlorodifluoromethane	12.5	20.0	62 *	69-138	
Chloromethane	15.3	20.0	76	67-135	
Vinyl Chloride	17.5	20.0	87	78-132	
Bromomethane	21.3	20.0	106	79-130	
Chloroethane	21.4	20.0	107	74-126	
Trichlorofluoromethane	21.1	20.0	106	74-134	
Acrolein	88.5	100	89	61-137	
1,1-Dichloroethene	19.9	20.0	99	78-130	
Acetone	97.7	100	98	67-133	
Iodomethane (Methyl Iodide)	91.4	100	91	68-134	
Carbon Disulfide	90.7	100	91	76-138	
Acetonitrile	101	100	101	67-132	
Allyl Chloride	20.1	20.0	101	68-128	
Methylene Chloride	20.3	20.0	102	72-124	
Acrylonitrile	105	100	105	77-127	
trans-1,2-Dichloroethene	19.1	20.0	96	77-124	
1,1-Dichloroethane	19.4	20.0	97	80-128	
Vinyl Acetate	94.9	100	95	61-148	
Chloroprene	19.8	20.0	99	81-132	
cis-1,2-Dichloroethene	19.9	20.0	99	80-126	
2,2-Dichloropropane	20.1	20.0	101	72-136	
1,1-Dichloropropene	19.6	20.0	98	85-124	
2-Butanone (MEK)	94.1	100	94	73-127	
Propionitrile	105	100	105	77-131	
Bromochloromethane	20.6	20.0	103	79-129	
Methacrylonitrile	20.7	20.0	104	77-129	
Chloroform	20.0	20.0	100	83-124	
1,1,1-Trichloroethane (TCA)	20.1	20.0	100	79-124	
Carbon Tetrachloride	19.9	20.0	99	81-125	
Benzene	÷ 19.4	20.0	97	79-119	
1,2-Dichloroethane (EDC)	20.0	20.0	100	80-124	
Isobutyl Alcohol	500	400	125	62-139	
Trichloroethene (TCE)	18.6	20.0	93	76-124	
1,2-Dichloropropane	19.7	20.0	99	79-123	
Dibromomethane	19.8	20.0	99.	83-123	
Methyl Methacrylate	20.2	20.0	101	79-128	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 15:00:32 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805543

**Date Extracted:** 11/14/2008

**Date Analyzed:** 11/14/2008

### **Lab Control Spike Summary** Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804378

Lab Control Sample JWG0804378-3 Lab Control Spike

	Lab	Control Spike	e	%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
Bromodichloromethane	19.7	20.0	98	81-123		
cis-1,3-Dichloropropene	19.7	20.0	: 299	86-123		
4-Methyl-2-pentanone (MIBK)	102	100	102	72-136		
Toluene	19.7	20.0	98	86-117		
trans-1,3-Dichloropropene	20.2	20.0	101	83-124		
Ethyl Methacrylate	20.8	20.0	104	78-127		
1,1,2-Trichloroethane	19.8	20.0	99	86-114		
Tetrachloroethene (PCE)	19.6	20.0	98	80-121		
1,3-Dichloropropane	20.1	20.0	101	88-117		
2-Hexanone	102	100	102	71-138		
Dibromochloromethane	19.5	20.0	98	82-121		·
1,2-Dibromoethane (EDB)	20.4	20.0	102	88-117		
Chlorobenzene	19.9	20.0	99	86-113		
1,1,1,2-Tetrachloroethane	20.6	20.0	103	85-117		
Ethylbenzene	20.3	20.0	102	90-118		
m,p-Xylenes	40.7	40.0	102	86-121		
o-Xylene	20.1	20.0	100	89-119		
Styrene	19.9	20.0	100	89-122		
Bromoform	19.5	20.0	98	68-129		
1,1,2,2-Tetrachloroethane	21.4	20.0	107	83-120		
1,2,3-Trichloropropane	21.3	20.0	106	83-123		
trans-1,4-Dichloro-2-butene	17.8	20.0	89	53-143		
1,3-Dichlorobenzene	20.5	20.0	103	83-112		
1,4-Dichlorobenzene	20.8	20.0	104	83-113		
1,2-Dichlorobenzene	21.2	20.0	106	84-115		A Comment
1,2-Dibromo-3-chloropropane (DBCP	23.7	20.0	119	62-123		
1,2,4-Trichlorobenzene	22.7	20.0	113	72-123		
Hexachlorobutadiene	21.5	20.0	107	73-140		
Naphthalene	27.4	20.0	137 *	59-135		

### Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 15:00:32 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Surrogate Recovery Summary** 

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method: METHOD

Units: PERCENT

Level: Low

Extraction Method.	METHOL
Analysis Method:	8011

Sample Name	Lab Code	Sur1
L-2	J0805543-001	117
L-3	J0805543-003	111
Method Blank	JWG0804358-4	132
Lab Control Sample	JWG0804358-3	131

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/01/2008 15:34:13 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Extracted:** 11/16/2008

**Date Analyzed:** 11/18/2008

Lab Control Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804358

Lab Control Sample JWG0804358-3

Lab Control Spike %Rec **Analyte Name** Result Expected %Rec Limits 1,2-Dibromoethane (EDB) 0.322 0.250 129 70-130 1,2-Dibromo-3-chloropropane (DBCP 70-130 0.303 0.250 121

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/01/2008 15:34:17 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Surrogate Recovery Summary** 

Semi-Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 3510C

Units: PERCENT

Analysis Method:

8270C

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3	Sur4	Sur5	Sur6
L-2	J0805543-001	26	21	64	49	62	39
L-3	J0805543-003	24	24	57	40	53	28
Method Blank	JWG0804427-1	25	20	68	55	74	73
Lab Control Sample	JWG0804427-2	28	21	69	64	81	72

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	10-77	Sur5 = 2,4,6-Tribromophenol	30-143
Sur2 = Phenol-d6	10-51	Sur6 = Terphenyl-d14	23-165
Sur3 = Nitrobenzene-d5	32-106		
Sur4 = 2-Fluorobiphenyl	30-102		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/25/2008 19:30:21 p:\Stealth\Crystal.rpt\Form2.rpt

RR25855

QA/QC Report

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805543 Date Extracted: 11/18/2008

**Date Analyzed:** 11/19/2008

### Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Extraction Method: EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Extraction Lot: JWG0804427

Lab Control Sample JWG0804427-2 Lab Control Spike

	Lab	Control Spik	e	%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
Phenol	15.4	50.0	31	12-54		
Bis(2-chloroethyl) Ether	29.8	50.0	60	41-99		
2-Chlorophenol	26.7	50.0	53	35-101		
1,3-Dichlorobenzene	23.5	50.0	47	30-119		
1,4-Dichlorobenzene	24.6	50.0	49	31-119		
1,2-Dichlorobenzene	26.1	50.0	52	32-123		
Bis(2-chloroisopropyl) Ether	28.9	50.0	58	31-94		
Benzyl alcohol	25.8	50.0	52	32-110		
2-Methylphenol	25.9	50.0	52	21-100		
Hexachloroethane	25.6	50.0	51	19-113		
N-Nitrosodi-n-propylamine	37.8	50.0	76	43-103	·	
4-Methylphenol	51.8	75.0	69	15-93		
Nitrobenzene	33.7	50.0	67	36-116		
Isophorone	39.5	50.0	79	46-106		
2-Nitrophenol	30.8	50.0	62	40-120		
2,4-Dimethylphenol	32.3	50.0	65	38-110		
bis(2-Chloroethoxy)methane	37.4	50.0	75	47-100		
2,4-Dichlorophenol	36.8	50.0	74	36-117		
1,2,4-Trichlorobenzene	26.8	50.0	54	50-120		
Naphthalene	27.4	50.0	55	44-97		
4-Chloroaniline	26.8	50.0	54	39-110		
Hexachlorobutadiene	25.1	50.0	50	20-110		
4-Chloro-3-methylphenol	37.9	50.0	76	36-117		
2-Methylnaphthalene	28.4	50.0	57	46-110		
Hexachlorocyclopentadiene	22.1	50.0	44	23-115		
2,4,6-Trichlorophenol	36.4	50.0	73	41-115		
2,4,5-Trichlorophenol	38.3	50.0	77	47-113		
2-Chloronaphthalene	30.2	50.0	60	47-106		
2-Nitroaniline	35.2	50.0	70	33-94		
Acenaphthylene	32.6	50.0	65	45-99		
Dimethyl Phthalate	38.5	50.0	77	32-119		
2,6-Dinitrotoluene	35.4	50.0	71	55-121		
Acenaphthene	31.7	50.0	63	42-106		
3-Nitroaniline	27.0	50.0	54	25-91		
2,4-Dinitrophenol	34.5	50.0	69	27-128		
Dibenzofuran	31.8	50.0	64	49-103		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/25/2008 19:30:25 p:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

 $57_{\text{Page}}$  1 of 2

SuperSet Reference: RR25855

QA/QC Report

Client: « Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543 **Date Extracted:** 11/18/2008

**Date Analyzed:** 11/19/2008

### Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Extraction Method: EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L

Basis: NA Level: Low

Extraction Lot: JWG0804427

Lab Control Sample JWG0804427-2 Lab Control Spike

	Lau	Control Spik	e	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
4-Nitrophenol	12.6	50.0	25	10-86	
2,4-Dinitrotoluene	36.6	50.0	73	54-121	
2,3,4,6-Tetrachlorophenol	45.5	50.0	91	50-150	
Fluorene	33.2	50.0	66	54-97	
4-Chlorophenyl Phenyl Ether	39.2	50.0	78	53-108	
Diethyl Phthalate	36.0	50.0	72	56-108	
4-Nitroaniline	32.9	50.0	66	44-102	
2-Methyl-4,6-dinitrophenol	41.5	50.0	83	46-117	
N-Nitrosodiphenylamine	16.8	50.0	34	30-122	
4-Bromophenyl Phenyl Ether	43.1	50.0	86	63-123	
Hexachlorobenzene	36.6	50.0	73	55-110	
Pentachlorophenol	34.5	50.0	69	44-120	
Phenanthrene	32.7	50.0	65	52-110	
Anthracene	32.7	50.0	65	52-104	
Di-n-butyl Phthalate	34.4	50.0	69	57-118	
Fluoranthene	34.8	50.0	70	52-110	
Pyrene	36.9	50.0	74	53-110	
Butyl Benzyl Phthalate	34.5	50.0	69	47-117	
3,3'-Dichlorobenzidine	30.7	50.0	61	32-112	
Benz(a)anthracene	34.1	50.0	68	49-114	
Chrysene	33.8	50.0	68	50-113	
Bis(2-ethylhexyl) Phthalate	36.1	50.0	72	48-127	
Di-n-octyl Phthalate	34.6	50.0	69	35-139	
Benzo(b)fluoranthene	26.9	50.0	54 *	56-110	
Benzo(k)fluoranthene	38.8	50.0	78	48-110	
Benzo(a)pyrene	29.1	50.0	58	56-110	
` ' · · ·					
Dibenz(a,h)anthracene					
* * *					
Indeno(1,2,3-cd)pyrene	40.1 38.9 43.3	50.0 50.0 50.0 50.0	58 80 78 87	54-115 51-125 53-116	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805543

**Surrogate Recovery Summary** Organochlorine Pesticides by GC-ECD

**Extraction Method:** EPA 3510C

**Analysis Method:** 

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1		Sur2				
L-2	J0805543-001	8	#	4	#			
L-3	J0805543-003	25	#	16				
Method Blank	JWG0804348-3	68		85				
Lab Control Sample	JWG0804348-1	68		81				
Duplicate Lab Control Sample	JWG0804348-2	52		75				

**Surrogate Recovery Control Limits (%)** 

Sur1 = Tetrachloro-m-xylene 32-92 Sur2 = Decachlorobiphenyl 13-104

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/24/2008 23:21:44

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

1 of 1

SuperSet Reference: RR25819

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Extracted:** 11/12/2008

**Date Analyzed:** 11/20/2008

### Lab Control Spike/Duplicate Lab Control Spike Summary Organochlorine Pesticides by GC-ECD

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8081A

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804348

Lab Control Sample JWG0804348-1

Duplicate Lab Control Sample

JWG0804348-2

		Control Spik	e		e Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	0.312	0.400	78	0.266	0.400	67	56-104	16	30
gamma-BHC (Lindane)	0.316	0.400	79	0.273	0.400	68	57-101	15	30
beta-BHC	0.298	0.400	75	0.266	0.400	67	55-97	11	30
delta-BHC	0.247	0.400	62	0.220	0.400	55	31-105	12	30
Heptachlor	0.306	0.400	77	0.262	0.400	66	52-100	15	30
Aldrin	0.312	0.400	78	0.266	0.400	67	45-108	16	30
Heptachlor Epoxide	0.290	0.400	73	0.253	0.400	63	59-103	14	30
gamma-Chlordane	0.317	0.400	79	0.283	0.400	71	53-107	11	30
alpha-Chlordane	0.319	0.400	80	0.284	0.400	71	54-104	12	30
4,4'-DDE	0.327	0.400	82	0.296	0.400	74	58-114	10	30
Endosulfan I	0.321	0.400	80	0.287	0.400	72	61-104	11	30
Dieldrin	0.344	0.400	86	0.310	0.400	78	57-111	10	30
Endrin	0.302	0.400	76	0.269	0.400	67	57-117	12	30
4,4'-DDD	0.329	0.400	82	0.300	0.400	75	56-116	9	30
Endosulfan II	0.310	0.400	78	0.287	0.400	72	50-106	8	30
4,4'-DDT	0.354	0.400	89	0.324	0.400	81	41-115	9	30
Endrin Aldehyde	0.313	0.400	78	0.291	0.400	73	51-108	7	30
Methoxychlor	0.341	0.400	85	0.313	0.400	78	43-123	9	30
Endosulfan Sulfate	0.341	0.400	85	0.312	0.400	78	56-107	9	30
Endrin Ketone	0.356	0.400	89	0.330	0.400	83	46-101	8	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/24/2008 23:21:47  $p:\Stealth\Crystal.rpt\Form3DLC.rpt$ 

QA/QC Report

**Client:** 

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Surrogate Recovery Summary** Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

**Extraction Method: Analysis Method:** 

EPA 3510C

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	
L-2	J0805543-001	4	#
L-3	J0805543-003	21	#
Method Blank	JWG0804349-2	89	
Lab Control Sample	JWG0804349-1	57	

Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

24-120

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/24/2008 23:48:09

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR25824

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805543

**Date Extracted:** 11/12/2008

**Date Analyzed:** 11/21/2008

### Lab Control Spike Summary Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

**Extraction Method:** 

EPA 3510C

Analysis Method:

8082

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804349

Lab Control Sample JWG0804349-1

	Lab	%Rec			
Analyte Name	Result	Expected	%Rec	Limits	
Aroclor 1016	2.35	4.00	59	39-116	
Aroclor 1260	2.52	4.00	63	41-118	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/24/2008 23:48:12 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805543

Date Collected: N/A Date Received: N/A

**Date Extracted:** 11/21/2008

**Date Analyzed:** 11/24/2008

Laboratory Control Sample Summary Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS21121

Units: ug/L

	Duan	Analysis	True		Percent	CAS Percent Recovery	Result
Analyte	Prep Method	Analysis Method	Value	Results	Recovery	Acceptance Limits	Notes
Antimony	EPA 3020A	6020	50.0	45.7	91	80 - 120	
Arsenic	EPA 3020A	6020	50.0	45.8	92	80 - 120	
Barium	EPA 3020A	6020	50.0	45.8	92	80 - 120	
Beryllium	EPA 3020A	6020	50.0	47.0	94	80 - 120	
Cadmium	EPA 3020A	6020	50.0	47.1	94	80 - 120	
Chromium	EPA 3020A	6020	50.0	48.7	97	80 - 120	
Cobalt	EPA 3020A	6020	50.0	47.9	96	80 - 120	
Copper	EPA 3020A	6020	50.0	49.4	99	80 - 120	
Iron	EPA 3010A	6010B	2000	1970	98	80 - 120	
Lead	EPA 3020A	6020	50.0	50.5	101	80 - 120	
Mercury	METHOD	7470A	5.00	5.21	104	80 - 120	
Nickel	EPA 3020A	6020	50.0	49.4	99	80 - 120	
Selenium	EPA 3020A	6020	50.0	45.2	90	80 - 120	
Silver	EPA 3020A	6020	50.0	49.6	99	80 - 120	
Thallium	EPA 3020A	6020	50.0	49.0	98	80 - 120	
Tin	EPA 3020A	6020	50.0	46.4	93	80 - 120	
Vanadium	EPA 3020A	6020	50.0	49.1	98	80 - 120	
Zinc	EPA 3020A	6020	100	90.0	90	80 - 120	

QA/QC Report

Client:

Matrix:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

WATER

Service Request: J0805543

Date Collected: N/A

Date Received: N/A

**Date Extracted:** 11/21/2008

Date Analyzed: 11/21/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

Sodium

LCS1-1121

Units: mg/L

Basis: N/A

**CAS Percent** 

Analyte

Prep Method

EPA 3010A

Analysis Method 6010B

True Value 10.0

Results 10.0

Percent Recovery 100

Recovery Result Acceptance Notes Limits

80 - 120

### QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number:

FQ1512

Sample Matrix:

WATER

Service Request:

J0805543

Date Collected: NA

Date Received: NA

Date Extracted: NA

**Date Analyzed:** 11/13-26/08

~ . ~

Laboratory Control Sample Summary

**Inorganic Parameters** 

Sample Name:

Lab Code:

J0805543-LCS

Test Notes:

Laboratory Control Sample

Perce Recov	ery
Analyte Analyte Units Method True Value Result Recovery Limit	
Alkalinity as CaCO3, Total mg/L (ppm) SM2320 B 250 247 99 85-1	15
Ammonia as Nitrogen mg/L (ppm) 350.1 5.00 5.20 104 90-1	10
Chloride mg/L (ppm) 300.0 100 100 90-1	i <b>0</b>
Chloride mg/L (ppm) 300.0 100 99.6 100 90-1	10
Cyanide, Total mg/L (ppm) 335.4 0.100 0.108 108 90-1	ι0
Nitrate as Nitrogen mg/L (ppm) 300.0 5.0 5.11 102 90-1	10
Solids, Total Dissolved (TDS) mg/L (ppm) 160.1 300 341 114 85-1	15
Sulfide mg/L (ppm) 376.1 10.7 10.7 100 85-1	15

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

**Project Number:** 

Sample Matrix:

FQ1512

WATER

Service Request:

J0805543

Date Collected: NA

Date Received: NA

Date Extracted: NA

**Date Analyzed:** 11/18/08

Laboratory Control Sample Summary **Inorganic Parameters** 

Sample Name:

Laboratory Control Sample Duplicate

Basis: NA

Lab Code:

J0805543-LCSD

Test Notes:

						CAS Percent	
Analyte	Units	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Sulfide	mg/L (ppm)	376.1	10.7	10.7	100	85-115	

## Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

	Geos	intee_	MAAAAA MAAAAA MAAAAA		Service Reque	st#	ي ت	25543	
Project:	JEP	SWDF	narry No.						
Cooler recei	ived on	11-13-	08		and opened on	11.13.0	8 by	80	4
COURIER:	CAS	(UPS)	FEDEX	DHL	CLIENT	Tracking	#J70	8151	2410
1	Were cus	tody seals of	n outside of c	ooler?			(Yes)	No	N/A
2	Were sea	ls intact, sig	ned and dated	!?			Yes.)	No	N/A
3	Were cus	tody papers	properly fille	d out?			(Yes)	No	N/A
4	Temperatur	re of cooler(s)	upon receipt	(Should b	e 4 +/- 2 degrees C)	6.0			
5	Correct T	`emperature'	?				(Yes)	No	N/A
6	Were Ice	🔊r Ice Packs	s present				Yes	No	N/A
7	Did all bo	ottles arrive	in good condi	tion (unl	oroken, etc)?	•	Yes	No	N/A
8	Were all 1	bottle labels	complete (sar	mple ID,	preservation, et	tc)?	(Yes)	No	N/A
9	Did all bo	ottle labels a	nd tags agree	with cus	stody papers?		Yes	No	N/A
10	Were the	correct bott	les used for th	ne tests i	ndicated?		(es-)	No	N/A
- 11	Were all of	the preserved	bottles received	with the a	ppropriate preserva	itive?	XES.)	No	N/A
14	Where die	d the bottles	originate?				(CAS)	Client	
				Manu	f. Lot#or CAS		MOLERALIZATION POR PROGRAMMENT STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET ST	<del>nda Francis di Nacional producti del Cistalia de Loca</del>	
		nple ID	Reagent		Chem ID	ml adde	d I	nititials	
	V. Z		Reagent HUO3			ml adde	d I	nititials	
			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Chem ID	ml adde	d I	nititials Y	
	V. Z		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Chem ID	ml adde	d I	nititials Y	
	V. Z		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Chem ID	ml adde	d I	nititials Y	
	V. Z		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Chem ID	ml adde	d I	nititials Y	
	V. Z		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Chem ID	ml adde	d I	nititials Y	
	V. Z		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Chem ID	ml adde	d I	nititials	
lditional c	L-3		HIVO3 HIVO3	463	Chem ID	ml adde	d I	nititials	
lditional c	L-3		HIVO3 HIVO3	463	Chem ID	ml adde	Sh	<i>y</i> -	Vode
lditional c	L-3		HIVO3 HIVO3	463	Chem ID	ml adde	d I	<i>y</i> -	VOAs.
lditional c	L-3		HIVO3 HIVO3	463	Chem ID	ml adde	Sh	<i>y</i> -	VOAs

SR #: J & SSS43 Date: ( S. O. Initials: SPP) Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

	30	Misc.		N/A	,			T	1										Ī				T			Γ	<u> </u>		T											<u> </u>		Γ	Γ	_
	23	9	Sodium	N/A																								T	Ī															1
	28	NC.		N/A																																								-
	5 27	5 6 6 6		N/A N/A N/A	-			_	_							_				-	-	-	-	-	-	-	-	-	-	_	_							_	_			_	_	+
	25 2	70	3	Z/Z	,															L								L					_					_						
	3 24	0 0		¥ Z													-	<u> </u>	-	-	-	_	-	-	-	-	-	-	-	-								_		_			_	1
	22 23	10	2	2	-			-								_	-	-	-	L	-	-	-	-	-		-	$\vdash$	-	-	_									_	_		_	-
1 1		9 1	162	Ž		9	). 	V	)		_	_	_		_	-		_	$\perp$	_		_		_					$\perp$															-
Ιŧ		- 1 0	1 5	N/A				4		_						_		_	-	-	-	-	-	-	-	-	-	-	-	-								-		_	_	_	L	-
l t	18	1	Darry.	2 Q	ŀ						L				H	-	-	$\vdash$					-	-	-	T	-	+	-										-	-	-	-	-	
	17	10 A	CONT. FOSCI	5 V	-							_			-		<u> </u>		-	-	-	-	-	+	-	-	-	-	+	-	_								-					1
	16	D d			H	¢ pmp							-		-	-	-	-	-	$\vdash$	<del> </del>	+	-	$\dagger$	-	+	+	1	$\parallel$		-							_	-	-		-		+
	15	e III.o			-							-				-		-	-				-	$\dagger$	-	-		$\dagger$	-															+
Bottle Code	44	Some Some Some Some Some	19.00	ĕ Z	,																						T	T		T														-
Bottl	3	TIMOC7	. 3	>12		1		~~																																				1
	12	ZDUML.	ZnAcetate	100 g/		,		ette																																				
		1	2	300	-	7	3/				-	_					-	-	-	+	-	-	+		+			$\dagger$	-									_		-	-		_	-
	2	20mLZ	- 8	42 42 42 42 42 42 42 42 42 42 42 42 42 4		1	アルトルか	Į,	1	11.52	-		-	-			+		1				T	-	-	-	1	-		-	-							-		-	-			-
	o i	ZSUMIL ZSUML ZSUML		۱ ۲ ۲	ļ-	<u>                                     </u>			-7,	"	1	<u></u>				-	T	-	-	1	Ť	-	-	-	-		$\dagger$																	-
	80	D G	- 3	200	-	-	-				-	l		-		H		$\mid$	+		+	+	+				$\dagger$		-										-					-
	7	175mL 175mL 2	- 0	42504 HNU3		**		reit.											1																									t
	9	175m	-	<u> </u>																																								
	ហ	40ml, 125ml	10000	X Z	ŀ												-			-		_	1		-	_		-	_		,												_	-
	-			00 C	ŀ							_	_								-	_			-			_											_	_	_		_	-
		40ml,	Sodium	Thiosulfate H2504																																								
	2	og C				ļ	M	6	c																I	-	$\prod$																_	
	-	40mC	38.57	¥ Z		M	<u> </u>	5				<u></u>			_	L	-		<u></u>						<u>L</u>			<u>L</u> .			L	Ļ						<u> </u>					<u></u>	
		Container	Collida	Red. pH	Sample #	-001	-002	~003	-004	-005	-006	-007	-008	600-	-010	5	543	2 5	2 5	5 6	5 6	2 6	-017	5 5	2 0	22.0	1020	220	0.27	-025	-026	-027	-028	-029	-030	-031	-032	-033	-034	-035	-036	-037	-038	

**S** Columbia Analytical Services

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

CAS Contact

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION 23450°C BILL TO: IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report X II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration ANALYSIS REQUESTED (Include Method Number an X X I. Results Only TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) X X REQUESTED REPORT DATE REQUESTED FAX DATE X STANDARD PRESERVATIVE 0 × NUMBER OF CONTAINERS Learnak externesces when his actil preserved bookles 11:12:08 1320 Lewholk MATRIX Email Address 1/50 geosynya can I had to those vork winds out whomple reschart to 3 Sampler's Printed Name

Sampler's Printed Name

SAMPLING

TIME

N 9 226 - 825 - 218 14055 RIVERAL Dr. Ste 300 33637 account FL SPECIAL INSTRUCTIONS/COMMENTS Project Manager R Wills 013-55-6-090 CLIENT SAMPLE ID Trip Blad CLOSY 17EX Store C このようしゃん

3-08 (OCC) Date/Time Distribution: White - Refurn to Originator; Yellow - Lab  $oldsymbol{b}$ opy; Pink - Retained by Client 009/ Date/Time 200

Firm Creckyoff

Date/Time

Date/Time

Date/Time

Printed Name

Printed Name

Printed Name

Yes

Edata

RECEIVED BY

CUSTODY SEALS: Y N

SAMPLE RECEIPT: CONDITION/COOLER TEMP:

See QAPP

RELINQUISHED BY

RELINQUISHED BY

S Columbia Analytical Services

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

CAS Contact

P

HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION RECEIVED BY Printed Name BILL TO: Firm IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report LI. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration ANALYSIS REQUESTED (Include Method Number and X 1. Results Only X Printed Name X X TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) X R RECEIVED BY d REQUESTED REPORT DATE REQUESTED FAX DATE 0 X X STANDARD Printed Name PRESERVATIVE CUSTODY SEALS: Y NUMBER OF CONTAINERS RELINQUISHED BY 11.70% 1440 Leader MATRIX Email Address | 150 yeasynker con 3 S'AMPLING DATE TIME B13-538-9726 Printed Name Signature 33637 RECEIVED BY LAB ID SAMPLE RECEIPT: CONDITION/COOLER TEMP: 14055 Riverely Dr 813-5-58-0990 SPECIAL INSTRUCTIONS/COMMENTS AND A SIL Tarra, FL CLIENT SAMPLE ID にかられ レキットSOAD RELINQUISHED BY CESSAL See QAPP

Distribution: White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client

009/

Date/Time | - 12 - 062 |

Date/Time

Date/Time

Date/Time



Columbia Analytical Services 9143 Philips Highway, Suite 200 Jacksonville, FL 32256 Tel 904-739-2277 Fax 904-739-2011

## **Appendix A**Subcontracted Analytical Results

### **Environmental Conservation Laboratories, Inc.**

10775 Central Port Drive

Orlando FL, 32824 Phone: 407.826.5314

FAX: 407.850.6945



Friday, November 21, 2008

Columbia Analytical Svcs. (CO009)

Attn: Craig Myers

9143 Philips Highway, Suite 200

Jacksonville, FL 32256

RE: Laboratory Results for

Project Number: J0805543, Project Name/Desc: J0805543

**ENCO Workorder: A805835** 

Dear Craig Myers,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Saturday, November 15, 2008.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

(and

Sincerely,

David Camacho For Ronald Wambles

Project Manager

Enclosure(s)



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: L-2	Lab ID	: A805835-01 Sample	d: 11/12/08 13:20 Received: 11/15/08 08:00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8151A	11/19/08 12/27/08	11/17/08 19:38	11/20/2008 22:20

Client ID: L-3	Lab ID:	A805835-02 Sampled:	: 11/12/08 14:40 Received: 11/15/08 08:00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8151A	11/19/08 12/27/08	11/17/08 19:38	11/20/2008 22:58



### SAMPLE DETECTION SUMMARY

No positive results detected.



### **ANALYTICAL RESULTS**

Description: L-2

**Lab Sample ID:** A805835-01

Received: 11/15/08 08:00

Matrix: Ground Water

Sampled: 11/12/08 13:20

Work Order: A805835

Project: J0805543

Sampled By:

### **Chlorinated Herbicides by GC**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	Method	<u>Analyzed</u>	Ву	Notes
2,4,5-T [93-76-5] ^	0.080	U	ug/L	1	0.080	0.50	8K17021	EPA 8151A	11/20/08 22:20	RC	
2,4,5-TP (Silvex) [93-72-1] ^	0.087	U	ug/L	1	0.087	0.50	8K17021	EPA 8151A	11/20/08 22:20	RC	
2,4-D [94-75-7] ^	0.13	U	ug/L	1	0.13	0.50	8K17021	EPA 8151A	11/20/08 22:20	RC	
Dinoseb [88-85-7] ^	0.10	U	ug/L	. 1	0.10	0.50	8K17021	EPA 8151A	11/20/08 22:20	RC	
Pentachlorophenol [87-86-5] ^	0.056	U	ug/L	1	0.056	0.50	8K17021	EPA 8151A	11/20/08 22:20	RC	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Limits		s Batch	Method	Analyzed	Ву	Notes
2,4-DCAA	2.5	1	2.00	125 %	77	191	8K17021	EPA 8151A	11/20/08 22:20	RC	



Description: L-3

Lab Sample ID: A805835-02

Received: 11/15/08 08:00

Matrix: Ground Water

Sampled: 11/12/08 14:40

Work Order: A805835

Project: J0805543

Sampled By:

#### **Chlorinated Herbicides by GC**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Fina	Unito	DE	MDL	DΟI	Batch	Method	Annhmad	D.	Notos
	Results	Flag	<u>Units</u>	DF		POL		Methou	<u>Analyzed</u>	By	<u>Notes</u>
2,4,5-T [93-76-5] ^	0.080	U	ug/L	1	0.080	0.50	8K17021	EPA 8151A	11/20/08 22:58	RC	
2,4,5-TP (Silvex) [93-72-1] ^	0.087	U	ug/L	1	0.087	0.50	8K17021	EPA 8151A	11/20/08 22:58	RC	
2,4-D [94-75-7] ^	0.13	U.	ug/L	1	0.13	0.50	8K17021	EPA 8151A	11/20/08 22:58	RC	
Dinoseb [88-85-7] ^	0.10	U	ug/L	1	0.10	0.50	8K17021	EPA 8151A	11/20/08 22:58	RC	
Pentachlorophenol [87-86-5] ^	0.056	Ū	ug/L	1	0.056	0.50	8K17021	EPA 8151A	11/20/08 22:58	RC	
Surrogates	Results	DF.	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
2,4-DCAA	2.4	1	2.00	120 %	77-	191	8K17021	EPA 8151A	11/20/08 22:58	RC	



#### **QUALITY CONTROL**

#### **Chlorinated Herbicides by GC - Quality Control**

Batch 8K17021 - EPA 3510C

Blank (8K17021-BLK1)

Prepared: 11/17/2008 19:38 Analyzed: 11/20/2008 12:59

			4 . I . I		Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
2,4-D	0.13	U	0.50	ug/L							
Pentachlorophenol	0.056	U	0.50	ug/L							
2,4,5-TP (Silvex)	0.087	U	0.50	ug/L							
2,4,5-T [2C]	0.080	U	0.50	ug/L							
Dinoseb [2C]	0.10	U	0.50	ug/L							
Surrogate: 2,4-DCAA	2.0	mand accessed of the blacks a state the title		ug/L	2.00		102	77-191			

LCS (8K17021-BS1)

Prepared: 11/17/2008 19:38 Analyzed: 11/20/2008 13:37

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
2,4-D	1.8	;	0.50	ug/L	2.00		88	85-140	**************************************		
2,4,5-TP (Silvex)	1.9		0.50	ug/L	2.00		96	74-177			
Surrogate: 2,4-DCAA	 2.1			ug/L	2.00		104	77-191		,	

Matrix Spike (8K17021-MS1)

Source: A805838-01

Prepared: 11/17/2008 19:38 Analyzed: 11/20/2008 14:14

Analyte	Result Flag	PQL	Units	Spike Level	Source Result	%REC	%REC RPD Limits RPD Limit Notes
2,4-D	1.8	0.50	ug/L	2.00	0.13 U	92	85-140
2,4,5-TP (Silvex)	2.0	0.50	ug/L	2.00	0.087 U	99	74-177
Surrogate: 2,4-DCAA	 2.0		ug/L	2.00	***************************************	. 98	77-191



#### FLAGS/NOTES AND DEFINITIONS

PQL	PQL: Practical Quantitation Limit.
В	Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
I	The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
J K	Estimated value. The associated sample note or project narrative indicate the causative reason.  Off-scale low; Actual value is known to be less than the value given.
L	Off-scale high; Actual value is known to be greater than value given.
М	Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
N	Presumptive evidence of presence of material.
0	Sampled, but analysis lost or not performed.
Q	Sample exceeded the accepted holding time.
T: "	Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
U	Indicates that the compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.
Υ	The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
Z	Too many colonies were present (TNTC); the numeric value represents the filtration volume.
?	Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
*	Not reported due to interference.



# Columbia Analytical Services, Inc. Chain of Custody 9143 França Ilighway - Jack sonvolle, 14 32256 - 904-739-2277 - FAX 904-739-2011

CAS Contact: Craig Myers

Project Number: 10805343

Project Manager: Craig Myers

						**** \$65
				Sample		
Lab Code	Sample ID	# of L mit.	Matrix	Date Tim	Lah ID	
- Assumed Administration	magnetic desired to the second					
10805543-001	1.2	1	Waler .	11/12/08 13	20 HAN EVER	X
10805543-003	1.3	· · · · · · · · · · · · · · · · · · ·	Water	11/12/08 14	n Hall Edge	V

Test Comments HERB - 8151A

100015543-001

Repeat Appendix B U.S. Send to ENCO Jux.

Invoice Information Report Requirements Turnian annd Respuir ements Special Instructions/Comments T. Results Only PLEASE SERG RUSH (Sandiarpes Apply) → If Results + OC Stammaries. PLEASE CRICLE WORK DAYS RESULTS TO 1 1 1 4 3 III Results + QC and Calibration Summaries 30805543 MANDY SULCIVAR  $_{\omega}$  STANDARD IV Data Validation Report with Raw Data Poll to POL/MINU Requested FAN Date Requested Report Date 44 1447 Relinquished By: Recovering V

Page 8 of 8

Page 1



December 01, 2008

Service Request No: J0805544

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

## Laboratory Results for: JED Waste Facility LF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 13, 2008. For your reference, these analyses have been assigned our service request number **J0805544**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client:

GeoSyntec Consultants

Project:

Sample Matrix:

JED SWDF

Water

**Service Request No.:** 

Date Received:

J0805544

11/13/08

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Six water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/13/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2$ °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. No problems were observed.

#### Batch QC Notes and Discussion

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### EDB and DBCP by GC-ECD

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

#### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total and Dissolved Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

#### Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

Approved by	Cran PM	Date [2]108
	$\circ$ . $0$	

General	Chemistry	<b>Parameters</b>

The samples were analyzed for Inorganic Parameters using various EPA Methods. No problems were observed.

Approved by Date 12/1/08

# Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Service Request: J0805544

# SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	TIME
J0805544-001	MW-19A	11/12/08	09:55
J0805544-002	MW-19B	11/12/08	10:15
J0805544-003	MW-19C	11/12/08	12:10
J0805544-004	MW-18A	11/12/08	08:20
J0805544-005	MW-18B	11/12/08	08:00
J0805544-006	MW-18C	11/12/08	09:10
J0805544-007	Trip Blank	11/12/08	00:00

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-19A J0805544-001

**Extraction Method:** Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	F-W-14
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804373	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804373	***************************************
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	***************************************
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	NYPY II I Vincilia anno antono a maria
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804373	
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

Comments:
-----------

Printed: 11/17/2008 10:00:44 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

1 of 2

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-19A J0805544-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	***************************************
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	***************************************
Styrene	ND U	1.0	0.051	. 1	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	*
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	95	71-122	11/15/08	Acceptable	THE PERSON NAMED AND POST OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN COLUMN 2 IS NOT T
4-Bromofluorobenzene	92	75-120	11/15/08	Acceptable	
Dibromofluoromethane	99	82-116	11/15/08	Acceptable	
Toluene-d8	107	88-117	11/15/08	Acceptable	

Comments:

Printed: 11/17/2008 10:00:44 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-19B J0805544-002

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	NY o.4 o
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	Note
Vinyl Chloride	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	3.7 I	50	2.4	1	11/15/08	11/15/08	JWG0804373	7.00
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804373	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	7.00
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804373	
Toluene	2.0	1.0	0.52	. 1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

Comments:

Printed: 11/17/2008 10:00:49 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-19B

Lab Code:

J0805544-002

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	2.0	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	95	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/15/08	Acceptable
Dibromofluoromethane	99	82-116	11/15/08	Acceptable
Toluene-d8	107	88-117	11/15/08	Acceptable

Comments:

Printed: 11/17/2008 10:00:49

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR25627

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-19C

**Extraction Method:** 

J0805544-003

**Analysis Method:** 

8260B

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	COTTON CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTR
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804373	W-M
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND U	10	0.59	~ 1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804373	-
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804373	~~
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

Comments:

Printed: 11/17/2008 10:00:52

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25627

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-19C

Lab Code:

J0805544-003

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	94	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/15/08	Acceptable
Dibromofluoromethane	99	82-116	11/15/08	Acceptable
Toluene-d8	108	88-117	11/15/08	Acceptable

**Comments:** 

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-18A

Lab Code:

J0805544-004

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	11000
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND U	1.0	0.14	. 1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804373	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804373	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804373	
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND U	1.0	0.12	. 1	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1 .	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

Comments:

Printed: 11/17/2008 10:00:55

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

SuperSet Reference: RR25627

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-18A

Lab Code:

J0805544-004

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	The Henry Landson
1,2,3-Trichloropropane	ND U	2.0	0.16	. 1	11/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	96	71-122	11/15/08	Acceptable
4-Bromofluorobenzene	92	75-120	11/15/08	Acceptable
Dibromofluoromethane	99	82-116	11/15/08	Acceptable
Toluene-d8	107	88-117	11/15/08	Acceptable

**Comments:** 

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-18B J0805544-005

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804373	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	American Laurence
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804373	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	**************************************
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804373	
Toluene	16	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	***************************************
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

Printed: 11/17/2008 10:00:59 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-18B

Lab Code:

J0805544-005

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ŇD U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	95	71-122	11/15/08	Acceptable	C
4-Bromofluorobenzene	91	75-120	11/15/08	Acceptable	
Dibromofluoromethane	. 99	82-116	11/15/08	Acceptable	
Toluene-d8	107	88-117	11/15/08	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MW-18C J0805544-006

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
Vinyl Chloride	ND U	1.0	0.25	1	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	ND U	50	2.4	. 1	11/15/08	11/15/08	JWG0804373	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND U	10	0.59	. 1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804373	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	W/s in commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commence of the commenc
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804373	
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	1.0 k/9 d mode and
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

**Comments:** 

Printed: 11/17/2008 10:01:02

 $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

 $17_{\mathrm{Page}}$ 

1 of 2

SuperSet Reference: RR25627

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-18C

Lab Code:

J0805544-006

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Analysis Method:

Level: Low

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	w
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	. 1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	95	71-122	11/15/08	Acceptable	
4-Bromofluorobenzene	92	75-120	11/15/08	Acceptable	
Dibromofluoromethane	99	82-116	11/15/08	Acceptable	
Toluene-d8	107	88-117	11/15/08	Acceptable	

Comments:

Printed: 11/17/2008 10:01:02

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

#### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank J0805544-007

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

A se se lenda Nivers	<b>75</b>			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
Vinyl Chloride	ND U	1.0	0.25	1 ·	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	
Trichlorofluoromethane	ND U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	ND U	50	2.4	1	11/15/08	11/15/08	JWG0804373	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND U	10	0.59	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	
Vinyl Acetate	ND U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND U	10	0.56	1	11/15/08	11/15/08	JWG0804373	
Bromochloromethane	ND U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	- 1	11/15/08	11/15/08	JWG0804373	
Carbon Tetrachloride	ND U	1.0	0.18	- 1	11/15/08	11/15/08	JWG0804373	
Benzene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	
Bromodichloromethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/15/08	11/15/08	JWG0804373	
Toluene	ND U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

**Comments:** 

Printed: 11/17/2008 10:01:05

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

## Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Trip Blank

J0805544-007

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 5030B

Level: Low

**Analysis Method:** 

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Styrene	ND U	1.0	0.051	1.	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	94	71-122	11/15/08	Acceptable	
4-Bromofluorobenzene	93	75-120	11/15/08	Acceptable	
Dibromofluoromethane	100	82-116	11/15/08	Acceptable	· · · · · · · · · · · · · · · · · · ·
Toluene-d8	107	88-117	11/15/08	Acceptable	

**Comments:** 

Printed: 11/17/2008 10:01:05

Merged

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Date Collected: NA

Date Received: NA

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0804373-2

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND	U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
Vinyl Chloride	ND	U	1.0	0.25	1	11/15/08	11/15/08	JWG0804373	
Bromomethane	ND	U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroethane	ND	U	5.0	0.19	1	11/15/08	11/15/08	JWG0804373	
Trichlorofluoromethane	ND	U	20	0.25	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/15/08	11/15/08	JWG0804373	
Acetone	ND	U	50	2.4	1	11/15/08	11/15/08	JWG0804373	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/15/08	11/15/08	JWG0804373	
Carbon Disulfide	ND	U	10	0.84	1	11/15/08	11/15/08	JWG0804373	
Methylene Chloride	ND	U	5.0	0.72	1	11/15/08	11/15/08	JWG0804373	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/15/08	11/15/08	JWG0804373	
Acrylonitrile	ND	U	10	0.59	1	11/15/08	11/15/08	JWG0804373	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/15/08	11/15/08	JWG0804373	many of the state of
Vinyl Acetate	ND	U	10	0.60	1	11/15/08	11/15/08	JWG0804373	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
2-Butanone (MEK)	ND	U	10	0.56	1	11/15/08	11/15/08	JWG0804373	
Bromochloromethane	ND	U	5.0	0.14	1	11/15/08	11/15/08	JWG0804373	
Chloroform	ND	U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/15/08	11/15/08	JWG0804373	FV 6000
Carbon Tetrachloride	ND		1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Benzene	ND	U	1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
Trichloroethene (TCE)	ND		1,0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/15/08	11/15/08	JWG0804373	
Dibromomethane	ND	U	5.0	0.12	1	11/15/08	11/15/08	JWG0804373	
Bromodichloromethane	ND		1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/15/08	11/15/08	JWG0804373	
4-Methyl-2-pentanone (MIBK)	ND		25	0.37	1	11/15/08	11/15/08	JWG0804373	
Toluene	ND		1.0	0.52	1	11/15/08	11/15/08	JWG0804373	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	ļ	11/15/08	11/15/08	JWG0804373	
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/15/08	11/15/08	JWG0804373	PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPA
Tetrachloroethene (PCE)	ND		1.0	0.22	1	11/15/08	11/15/08	JWG0804373	
2-Hexanone	ND	U	25	0.36	1	11/15/08	11/15/08	JWG0804373	

Comments:	
-----------	--

Printed: 11/17/2008 10:01:09

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 2

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Date Collected: NA

Date Received: NA

# Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0804373-2

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND U	1.0	0.11	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/15/08	11/15/08	JWG0804373	
Chlorobenzene	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Ethylbenzene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
m,p-Xylenes	ND U	2.0	0.22	1	11/15/08	11/15/08	JWG0804373	
o-Xylene	ND U	1.0	0.10	1	11/15/08	11/15/08	JWG0804373	
Styrene	ND U	1.0	0.051	1	11/15/08	11/15/08	JWG0804373	
Bromoform	ND U	2.0	0.12	1	11/15/08	11/15/08	JWG0804373	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/15/08	11/15/08	JWG0804373	
1,2,3-Trichloropropane	ND U	2.0	, 0.16	1	1.1/15/08	11/15/08	JWG0804373	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/15/08	11/15/08	JWG0804373	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	11/15/08	11/15/08	JWG0804373	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/15/08	11/15/08	JWG0804373	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/15/08	11/15/08	JWG0804373	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	93	71-122	11/15/08	Acceptable	
4-Bromofluorobenzene	92	75-120	11/15/08	Acceptable	
Dibromofluoromethane	98	82-116	11/15/08	Acceptable	
Toluene-d8	108	88-117	11/15/08	Acceptable	

Comments:

Printed: 11/17/2008 10:01:09

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 2

SuperSet Reference: RR25627

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-19A

Lab Code:

J0805544-001

Units: ug/L Basis: NA

**Date Received:** 11/13/2008

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Dilution Date Date Extraction

Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/19/08	JWG0804359	ACTOO MI BOOK MARKETON
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	. 1	11/16/08	11/19/08	JWG0804359	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	115	77-150	11/19/08	Acceptable	

Comments:

Printed: 12/01/2008 16:13:20

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $23_{\text{Page}}$ 

1 of 1

SuperSet Reference: RR25761

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008

**Date Received:** 11/13/2008

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-19B

Lab Code:

J0805544-002

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/19/08	JWG0804359	***************************************
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/19/08	JWG0804359	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	118	77-150	11/19/08	Acceptable	

Comments:

Printed: 12/01/2008 16:13:21  $p:\Stealth\Crystal.rpt\Form\Im.rpt$ 

Merged

Form 1A - Organic

RR25761 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-19C

Lab Code:

J0805544-003

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

8011

**Analysis Method:** 

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/19/08	JWG0804359	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/19/08	JWG0804359	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	116	77-150	11/19/08	Acceptable	

Comments:

Printed: 12/01/2008 16:13:23  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Analytical Results

Client:

GeoSyntec Consultants

**Project:** 

JED Waste Facility LF/FQ1512

ND U

Sample Matrix:

Water

Service Request: J0805544

11/19/08

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-18A

Lab Code:

J0805544-004

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

JWG0804359

Analysis Method:

8011

Dilution Date Date Extraction **Analyte Name** Result Q MRL **MDL** Factor **Extracted Analyzed** Lot Note 1,2-Dibromoethane (EDB) ND U JWG0804359 0.020 0.0070 1 11/16/08 11/19/08 1,2-Dibromo-3-chloropropane (DBCP

0.0057

1

11/16/08

0.020

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	125	77-150	11/19/08	Acceptable	

**Comments:** 

Printed: 12/01/2008 16:13:25  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Date Collected: 11/12/2008

**Date Received:** 11/13/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name: Lab Code:

MW-18B

J0805544-005

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/19/08	JWG0804359	(WESTEROPHINE TOWNS CO.
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/19/08	JWG0804359	

Comments:

Printed: 12/01/2008 16:13:26

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR25761

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Collected:** 11/12/2008 **Date Received:** 11/13/2008

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MW-18C

Lab Code:

J0805544-006

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Dilution Date Date **Extraction** 

**Analyte Name** Result Q **MRL MDL Factor** Extracted Analyzed Lot Note 1,2-Dibromoethane (EDB) ND U 0.020 0.0070 11/19/08 JWG0804359 1 11/16/08 1,2-Dibromo-3-chloropropane (DBCP ND U 0.020 0.0057 1 11/16/08 JWG0804359 11/19/08

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	120	77-150	11/19/08	Acceptable	

Comments:

Printed: 12/01/2008 16:13:28 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Date Collected: NA

Date Received: NA

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name: Lab Code:

Method Blank

JWG0804359-3

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

Level: Low

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804359	MACOUNT COMMENTS AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804359	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
1,1,1,2-Tetrachloroethane	131	77-150	11/18/08	Acceptable	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA	

**Comments:** 

Printed: 12/01/2008 16:13:30 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

1 of 1

Merged

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED Waste Facility LF

Matrix:

FQ1512 WATER Service Request:

J0805544

Date Collected: Date Received: 11/12/2008 11/13/2008

Total Metals

Sample Name:

MW-19A

Lab Code:

J0805544-001

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/25/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/25/2008	1.9	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/25/2008	20	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/25/2008	0.14	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/25/2008	5.5	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	1.8	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	2230	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	1.0	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.09	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	1.0	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/25/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	0.2	í
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/25/2008	8.4	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/25/2008	7	i

#### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED Waste Facility LF

Matrix:

FQ1512 WATER Service Request:

J0805544

Date Collected:
Date Received:

11/12/2008 11/13/2008

Total Metals

Sample Name:

MW-19B

Lab Code:

Units: Basis:

ts: ug/L is: N/A

J0805544-002

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/25/2008	0.8	i
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/25/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/25/2008	27	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/25/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/25/2008	1.4	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	1.0	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	752	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	1.3	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.10	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/25/2008	Ū	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/25/2008	1.9	i
Zinc	EPA 3020A	6020	10°	4	1.0	11/21/2008	11/25/2008	U	

## Analytical Report

Client:

**Project Name:** Project Number: GeoSyntec Consultants
JED Waste Facility LF

Matrix:

FQ1512 WATER Service Request:

J0805544

Date Collected: Date Received:

11/12/2008 11/13/2008

Total Metals

Sample Name:

MW-19C

Lab Code:

J0805544**-**003

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/25/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/25/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/25/2008	65	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	0.5	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/25/2008	0.17	i
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/25/2008	4.9	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	0.7	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	1650	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	0.7	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.09	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	0.6	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/25/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/25/2008	6.4	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/25/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED Waste Facility LF

Matrix:

FQ1512 WATER Service Request:

J0805544

Date Collected: Date Received: 11/12/2008 11/13/2008

Total Metals

Sample Name:

MW-18A

Lab Code:

J0805544-004

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/25/2008	U ·	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/25/2008	1.3	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/25/2008	7.4	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/25/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/25/2008	1.8	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	0.3	i
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	1.1	i
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	992	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	2.1	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.10	i .
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	1.0	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/25/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U,	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/25/2008	4.9	i
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/25/2008	U	,

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED Waste Facility LF

Matrix:

FQ1512 WATER Service Request: Date Collected:

J0805544 11/12/2008

Date Received:

11/13/2008

Total Metals

Sample Name:

MW-18B

Lab Code:

J0805544-005

Units:

ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/25/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/25/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/25/2008	11	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/25/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/25/2008	1.2	i
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	462	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	0.4	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.08	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/25/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/25/2008	1.5	i
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/25/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED Waste Facility LF

Matrix:

FQ1512 WATER Service Request: J0805544

J0805544 11/12/2008

Date Collected:
Date Received:

11/13/2008

### Total Metals

Sample Name:

MW-18C

Lab Code:

J0805544-006

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/25/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/25/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/25/2008	41	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/25/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/25/2008	2.1	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	U	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/21/2008	11/21/2008	1260	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	0.4	i
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.08	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	0.4	i
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/25/2008	U	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	11/25/2008	2.8	$_{i}$ $_{i}$
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/25/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED Waste Facility LF

Project Nu Matrix: FQ1512 WATER

FO1512

Sample Name: Lab Code: Method Blank MB31121 Total Metals

Units: ug/L Basis: N/A

J0805544

N/A

Service Request:

Date Collected:

Date Received: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	11/25/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	11/25/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	11/25/2008	1.0	i
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	11/25/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	11/25/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U-	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/21/2008	11/21/2008	U	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.08	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	11/25/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	11/25/2008	U	* * *
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	11/25/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	11/25/2008	U	
Vanadium	EPA 3020A	6020	5,0	1.2	1.0	11/21/2008	11/25/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	11/25/2008	U	
Mercury Nickel Selenium Silver Thallium Vanadium	METHOD EPA 3020A EPA 3020A EPA 3020A EPA 3020A	7470A 6020 6020 6020 6020 6020	0.50 2.0 2.0 0.50 1.0 5.0	0.08 0.3 0.7 0.08 0.2 1.2	1.0 1.0 1.0 1.0 1.0	11/18/2008 11/21/2008 11/21/2008 11/21/2008 11/21/2008 11/21/2008	11/18/2008 11/25/2008 11/25/2008 11/25/2008 11/25/2008 11/25/2008	0.08 U U U U	i ~ ***.

Analytical Report

Client:

GeoSyntec Consultants
JED Waste Facility LF

Project Name:

Project Number: Matrix:

WATER

FQ1512

Service Request: Date Collected: Date Received:

J0805544 11/12/2008 11/13/2008

**Total Metals** 

Sodium

EPA 3010A

Analysis Method: 6010B

Units: mg/L

Basis: N/A

Test Notes:

Prep Method:

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-19A	J0805544-001	0.50	0.02	1.0	11/21/2008	11/21/2008	11	
MW-19B	J0805544-002	0.50	0.02	1.0	11/21/2008	11/21/2008	16	
MW-19C	J0805544-003	0.50	0.02	1.0	11/21/2008	11/21/2008	10	
MW-18A	J0805544-004	0.50	0.02	1.0	11/21/2008	11/21/2008	7.5	
MW-18B	J0805544-005	0.50	0.02	1.0	11/21/2008	11/21/2008	17	
MW-18C	J0805544-006	0.50	0.02	1.0	11/21/2008	11/21/2008	12	
Method Blank	MB1-1121	0.50	0.02	1.0	11/21/2008	11/21/2008	U	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED Waste Facility LF

Matrix:

FQ1512 WATER Service Request:

J0805544

Date Collected: Date Received: 11/12/2008 11/13/2008

Dissolved Metals

Sample Name:

MW-19C

Lab Code:

J0805544-003

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/20/2008	11/21/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/20/2008	11/21/2008	U	
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/20/2008	11/21/2008	29	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/20/2008	11/21/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/20/2008	11/21/2008	U	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Iron	EPA 3005A	6010B	50	4.0	1.0	11/20/2008	11/21/2008	924	
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.09	i
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/20/2008	11/21/2008	U	•
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/20/2008	11/25/2008	U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/20/2008	11/21/2008	U	
Zinc	EPA 3005A	6020	10	4	1.0	11/20/2008	11/21/2008	U	

Analytical Report

Client:

**Project Name:** 

GeoSyntec Consultants JED Waste Facility LF

Project Number: Matrix:

FQ1512 WATER. Service Request:

J0805544

Date Collected: Date Received: N/A

N/A

### Dissolved Metals

Sample Name: Lab Code:

Method Blank

MB5-1120

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3005A	6020	2.0	0.4	1.0	11/20/2008	11/21/2008	U	
Arsenic	EPA 3005A	6020	0.50	0.20	1.0	11/20/2008	11/21/2008	U	
Barium	EPA 3005A	6020	2.0	0.5	1.0	11/20/2008	11/21/2008	U	
Beryllium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Cadmium	EPA 3005A	6020	0.50	0.12	1.0	11/20/2008	11/21/2008	U	
Chromium	EPA 3005A	6020	2.0	0.8	1.0	11/20/2008	11/21/2008	U	
Cobalt	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Copper	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Iron	EPA 3005A	6010B	50.0	4.0	1.0	11/20/2008	11/21/2008	5.5	i
Lead	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.08	i
Nickel	EPA 3005A	6020	2.0	0.3	1.0	11/20/2008	11/21/2008	U	
Selenium	EPA 3005A	6020	2.0	0.7	1.0	11/20/2008	11/21/2008	U	
Silver	EPA 3005A	6020	0.50	0.08	1.0	11/20/2008	11/21/2008	- U	
Thallium	EPA 3005A	6020	1.0	0.2	1.0	11/20/2008	11/21/2008	U	
Vanadium	EPA 3005A	6020	5.0	1.2	1.0	11/20/2008	11/21/2008	U	
Zinc	EPA 3005A	6020	10	4	1.0	11/20/2008	11/21/2008	U	

Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED Waste Facility LF

Project Number:

FQ1512

Matrix:

WATER

Service Request:

J0805544

Date Collected: Date Received: 11/12/2008 11/13/2008

**Dissolved Metals** 

Sodium

Prep Method: Analysis Method:

EPA 3005A 6010B

Test Notes:

Units: mg/L Basis: N/A

Dilution Date Date Result Extracted Notes Lab Code: MRL MDL Factor Analyzed Result Sample Name: MW-19C 0.50 11/20/2008 J0805544-003 1.0 10 0.02 11/21/2008 Method Blank MB4-1120 0.50 11/20/2008 11/21/2008 U 0.02 1.0

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number: Sample Matrix:

FQ1512 WATER Service Request: J0805544

**Date Collected:** 11/12/08

Date Received: 11/13/08

**Inorganic Parameters** 

Sample Name:

MW-19A

Lab Code:

Test Notes:

J0805544-001

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/18/08 12:01	3.3	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 03:46	12	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/14/08 05:16	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	230	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number: Sample Matrix:

FQ1512 WATER Service Request: J0805544

**Date Collected:** 11/12/08

**Date Received:** 11/13/08

**Inorganic Parameters** 

Sample Name:

MW-19B

Lab Code:

J0805544-002

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.11	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 03:46	27	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/14/08 06:01	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	34	

### Analytical Report

Client:

GeoSyntec Consultants

Project Name:

JED Waste Facility LF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805544

**Date Collected:** 11/12/08

Date Received: 11/13/08

Inorganic Parameters

Sample Name:

MW-19C

Lab Code:

J0805544-003

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.16	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 03:46	18	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/14/08 06:16	A	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	72	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

**Project Number:** FQ1512 Sample Matrix:

WATER

Service Request: J0805544

**Date Collected:** 11/12/08

Date Received: 11/13/08

Inorganic Parameters

Sample Name:

MW-18A

Lab Code:

J0805544-004

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	1.2	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 03:46	12	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/14/08 06:31	0.16	i ·
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	87	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805544 Date Collected: 11/12/08

Date Received: 11/13/08

Inorganic Parameters

Sample Name:

MW-18B

Lab Code:

J0805544-005

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.032	i
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 03:46	23	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/14/08 06:46	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	69	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number: FQ1512 Sample Matrix :

WATER

Service Request: J0805544

**Date Collected:** 11/12/08

Date Received: 11/13/08

**Inorganic Parameters** 

Sample Name:

MW-18C

Lab Code:

J0805544-006

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	0.13	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 03:46	21	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	· 1	11/14/08 07:01	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	. 10	4.8	1	11/17/08 18:00	73	

### Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805544

Basis: NA

Date Collected: NA

Date Received: NA

**Inorganic Parameters** 

Sample Name:

Solids, Total Dissolved (TDS)

Method Blank

Lab Code:

J0805544-MB

Test Notes:

		Analysis			Dilution	Date/Time		Result
Analyte	Units	Method	MRL	MDL	Factor	Analyzed	Result	Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	$\Pi$	
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/18/08 12:01	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 03:46	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/14/08 03:46	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/17/08 18:00	U	

mg/L (ppm)

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Surrogate Recovery Summary
Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

-ppointed to the original compounds by Gennis

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
MW-19A	J0805544-001	95	92	99	107
MW-19B	J0805544-002	95	94	99	107
MW-19C	J0805544-003	94	94	99	108
MW-18A	J0805544-004	96	92	99	107
MW-18B	J0805544-005	95	91	99	107
MW-18C	J0805544-006	95	92	99	107
Trip Blank	J0805544-007	94	93	100	107
Method Blank	JWG0804373-2	93	92	98	108
Lab Control Sample	JWG0804373-1	94	92	98	105

#### Surrogate Recovery Control Limits (%)

Sur1 = 1,2-Dichloroethane-d4	71-122	
Sur2 = 4-Bromofluorobenzene	75-120	
Sur3 = Dibromofluoromethane	82-116	
Sur4 = Toluene-d8	88-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/17/2008 10:01:16 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805544

**Date Extracted:** 11/15/2008

**Date Analyzed:** 11/15/2008

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low **Extraction Lot:** JWG0804373

Lab Control Sample JWG0804373-1

Lab Control Spike

	Day Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Chloromethane	21.9	20.0	110	67-135	
Vinyl Chloride	21.4	20.0	107	78-132	era e
Bromomethane	21.2	20.0	106	79-130	
Chloroethane	19.8	20.0	99	74-126	
Trichlorofluoromethane	20.9	20.0	105	74-134	
1,1-Dichloroethene	20.6	20.0	103	78-130	
Acetone	102	100	102	67-133	
Iodomethane (Methyl Iodide)	99.2	100	99	68-134	
Carbon Disulfide	98.8	100	99	76-138	
Methylene Chloride	19.7	20.0	98	72-124	
trans-1,2-Dichloroethene	20.4	20.0	102	77-124	
Acrylonitrile	103	100	103	77-127	
1,1-Dichloroethane	20.3	20.0	101	80-128	
Vinyl Acetate	94.6	100	95	61-148	
cis-1,2-Dichloroethene	20.7	20.0	103	80-126	
2-Butanone (MEK)	102	100	102	73-127	
Bromochloromethane	21.0	20.0	105	79-129	
Chloroform	20.1	20.0	101	83-124	
1,1,1-Trichloroethane (TCA)	20.6	20.0	103	79-124	
Carbon Tetrachloride	21.1	20.0	106	81-125	
Benzene	20.0	20.0	100	79-119	
1,2-Dichloroethane (EDC)	19.8	20.0	99	80-124	
Trichloroethene (TCE)	20.0	20.0	100	76-124	
1,2-Dichloropropane	20.3	20.0	102	79-123	
Dibromomethane	20.9	20.0	104	83-123	
Bromodichloromethane	20.7	20.0	103	81-123	
cis-1,3-Dichloropropene	20.1	20.0	100	86-123	
4-Methyl-2-pentanone (MIBK)	101	100	101	72-136	
Toluene	20.2	20.0	101	86-117	
trans-1,3-Dichloropropene	20.6	20.0	103	83-124	
1,1,2-Trichloroethane	20.7	20.0	103	86-114	
Tetrachloroethene (PCE)	20.2	20.0	101	80-121	
2-Hexanone	103	100	103	71-138	
Dibromochloromethane	21.5	20.0	107	82-121	
1,2-Dibromoethane (EDB)	20.5	20.0	102	88-117	

Results flagged with an asterisk (*) indicate values outside control criteria,

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 10:01:20  $p:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

Form 3C - Organic

SuperSet Reference: RR25627

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

**Date Extracted:** 11/15/2008

**Date Analyzed:** 11/15/2008

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

Extraction Method: EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804373

Lab Control Sample JWG0804373-1 Lab Control Spike

			-	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Chlorobenzene	19.9	20.0	100	86-113
1,1,1,2-Tetrachloroethane	20.7	20.0	103	85-117
Ethylbenzene	20.3	20.0	102	90-118
m,p-Xylenes	40.5	40.0	101	86-121
o-Xylene	20.3	20.0	101	89-119
Styrene	20.2	20.0	101	89-122
Bromoform	22.1	20.0	111	68-129
1,1,2,2-Tetrachloroethane	20.1	20.0	101	83-120
1,2,3-Trichloropropane	21.4	20.0	107	83-123
1,4-Dichlorobenzene	19.6	20.0	98	83-113
trans-1,4-Dichloro-2-butene	19.1	20.0	95	53-143
1,2-Dichlorobenzene	19.8	20.0	99	84-115
1,2-Dibromo-3-chloropropane (DBCP	20.9	20.0	105	62-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/17/2008 10:01:20 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

Sample Matrix:

Water

Service Request: J0805544

Surrogate Recovery Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method: Analysis Method:** 

**METHOD** 

8011

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
MW-19A	J0805544-001	115
MW-19B	J0805544-002	118
MW-19C	J0805544-003	116
MW-18A	J0805544-004	125
MW-18B	J0805544-005	122
MW-18C	J0805544-006	120
Method Blank	JWG0804359-3	131
Lab Control Sample	JWG0804359-1	120
Duplicate Lab Control Sample	JWG0804359-2	128

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/01/2008 16:13:34 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED Waste Facility LF/FQ1512

0.293

Sample Matrix:

Water

Service Request: J0805544

Date Extracted: 11/16/2008

**Date Analyzed:** 11/18/2008

Lab Control Spike/Duplicate Lab Control Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

**Analyte Name** 

1,2-Dibromo-3-chloropropane (DBCP

8011

Units: ug/L

Basis: NA

0

Level: Low

70-130

Extraction Lot: JWG0804359

20

Lab Control Sample JWG0804359-1

0.250

117

Duplicate Lab Control Sample

JWG0804359-2

0.250

117

**Duplicate Lab Control Spike** Lab Control Spike %Rec **RPD** Result Expected %Rec Limits RPD Limit Result **Expected** %Rec 1,2-Dibromoethane (EDB) 0.272 0.250 109 0.313 0.250 125 70-130 14 20

0.292

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/01/2008 16:13:38 p:\Stealth\Crystal.rpt\Form3DLC.rpt

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED Waste Facility LF

Matrix:

Project Number: FQ1512 WATER Service Request: J0805544

Date Collected: 11/12/2008 **Date Received:** 11/13/2008

**Date Extracted:** 11/21/2008 **Date Analyzed:** 11/25/2008

### Matrix Spike/Matrix Spike Duplicate Summary Total Metals

Sample Name:

MW-19A

Lab Code:

J0805544-001

J0805544-001S

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	Percent MS	Recovery DMS	RPD	% Rec Acceptance F Limits I	Result Notes
Antimony	EPA 3020	6020	2.0	50.0	50.0	U	49.8	50.6	100	101	2	75 - 125	
Arsenic	EPA 3020	6020	0.50	50.0	50.0	1.95	48.30	47.70	93	92	1	75 - 125	
Barium	EPA 3020	6020	2.0	50.0	50.0	19.7	67.2	68.1	95	97	1	75 - 125	
Beryllium	EPA 3020	6020	1.0	50.0	50.0	0.2	46.3	44.7	92	89	4	75 - 125	
Cadmium	EPA 3020	6020	0.50	50.0	50.0	0.14	45.10	44.80	90	89	1	75 - 125	
Chromium	EPA 3020	6020	2.0	50.0	50.0	5.5	55.2	54.4	99	98	1	75 - 125	
Cobalt	EPA 3020	6020	1.0	50.0	50.0	0.3	49.2	48.2	98	96	2	75 - 125	
Copper	EPA 3020	6020	2.0	50.0	50.0	1.8	47.2	45.8	91	88	3	75 - 125	
Lead	EPA 3020	6020	1.0	50.0	50.0	1.0	49.7	49.3	97	97	1	75 - 125	
Nickel	EPA 3020	6020	2.0	50.0	50.0	1.0	47.9	47.8	94	94	<1	75 - 125	
Selenium	EPA 3020	6020	2.0	50.0	50.0	U	42.2	41.5	84	. 83	2	75 - 125	
Silver	EPA 3020	6020	0.50	50.0	50.0	U	43.70	44.40	87	89	2	75 - 125	
Thallium	EPA 3020	6020	1.0	50.0	50.0	0.2	48.6	48.6	97	. 97	<1	75 - 125	
Vanadium	EPA 3020	6020	5.0	50.0	50.0	8.4	58.7	57.5	101	98	2	75 - 125	
Zinc	EPA 3020	6020	10.0	100	100	6.5	94.1	93.3	88	87	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Matrix:

Project Number: FQ1512 WATER Service Request: J0805544

Date Collected: N/A Date Received: N/A

**Date Extracted:** 11/21/2008

**Date Analyzed:** 11/25/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS31121

Units: ug/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	49.2	98	80 - 120	
Arsenic	EPA 3020A	6020	50.0	47.0	94	80 - 120	
Barium	EPA 3020A	6020	50.0	48.8	98	80 - 120	
Beryllium	EPA 3020A	6020	50.0	43.7	87	80 - 120	
Cadmium	EPA 3020A	6020	50.0	46.3	93	80 - 120	
Chromium	EPA 3020A	6020	50.0	49.1	98	80 - 120	
Cobalt	EPA 3020A	6020	50.0	48.4	97	80 - 120	
Copper	EPA 3020A	6020	50.0	47.8	96	80 - 120	
Iron	EPA 3010A	6010B	2000	1970	98	80 - 120	
Lead	EPA 3020A	6020	50.0	48.6	97	80 - 120	4
Mercury	METHOD	7470A	5.00	5.21	104	80 - 120	
Nickel	EPA 3020A	6020	50.0	48.5	97	80 - 120	
Selenium	EPA 3020A	6020	50.0	43.6	87	80 - 120	
Silver	EPA 3020A	6020	50.0	45.4	91	80 - 120	
Thallium	EPA 3020A	6020	50.0	47.5	95	80 - 120	
Vanadium	EPA 3020A	6020	50.0	49.1	98	80 - 120	
Zinc	EPA 3020A	6020	100	92.4	92	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED Waste Facility LF

Project Number: FQ1512

Matrix:

WATER

Service Request: J0805544

Date Collected: N/A

Date Received: N/A

**Date Extracted:** 11/21/2008

**Date Analyzed:** 11/21/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS1-1121

Units: mg/L

Basis: N/A

**CAS** Percent

Analysis True Percent

Recovery Acceptance Limits

Result Notes

Analyte Sodium

Method EPA 3010A

Prep

Method 6010B

Value 10.0

Results 10.0

Recovery 100

80 - 120

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED Waste Facility LF

Matrix:

Project Number: FQ1512 WATER

Service Request: J0805544

Date Collected: N/A Date Received: N/A

Date Extracted: 11/20/2008

**Date Analyzed:** 11/21/2008

Laboratory Control Sample Summary Dissolved Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS5-1120

Units: ug/L

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3005A	6020	50.0	50.5	101	80 - 120	
Arsenic	EPA 3005A	6020	50.0	49.2	98	80 - 120	
Barium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Beryllium	EPA 3005A	6020	50.0	47.2	94	80 - 120	
Cadmium	EPA 3005A	6020	50.0	47.2	94	80 - 120	
Chromium	EPA 3005A	6020	50.0	47.8	96	80 - 120	
Cobalt	EPA 3005A	6020	50.0	48.0	96	80 - 120	
Copper	EPA 3005A	6020	50.0	47.6	95	80 - 120	
Iron	EPA 3005A	6010B	2000	1910	96	80 - 120	
Lead	EPA 3005A	6020	50.0	48.4	97	80 - 120	
Mercury	METHOD	7470A	5.00	5.21	104	80 - 120	
Nickel	EPA 3005A	6020	50.0	48.4	97	80 - 120	
Selenium	EPA 3005A	6020	50.0	49.7	99	80 - 120	
Silver	EPA 3005A	6020	50.0	51.7	103	80 - 120	
Thallium	EPA 3005A	6020	50.0	47.6	95	80 - 120	
Vanadium	EPA 3005A	6020	50.0	47.9	96	80 - 120	
Zinc	EPA 3005A	6020	100	101.0	101	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number: FQ1512 Matrix:

WATER

Date Received: N/A Date Extracted: 11/20/2008

Service Request: J0805544

Date Collected: N/A

Date Analyzed: 11/21/2008

Laboratory Control Sample Summary

Dissolved Metals

Sample Name:

Lab Control Sample

Units: mg/L

Basis: N/A

Lab Code:

LCS4-1120

**CAS Percent** Recovery Prep Analysis True Percent Result Acceptance Method Method Value Recovery Notes Analyte Results Limits 80 - 120 10.1 101 Sodium EPA 3005A 6010B 10.0

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805544

**Date Collected:** 11/12/08

Date Received: 11/13/08

Date Extracted: NA

**Date Analyzed:** 11/14-18/08

Basis: NA

**Duplicate Summary** Inorganic Parameters

Sample Name:

MW-19A

Lab Code:

J0805544-001DUP

Test Notes:

Analyte	Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result		Relative Percent Difference	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	3.3	3.3	3.3	<1	
Chloride	mg/L (ppm)	300.0	0.2	12	12	12	<1	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	U	U	U	-	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED Waste Facility LF

Project Number:

FQ1512

Sample Matrix:

WATER

Service Request: J0805544

**Date Collected:** 11/12/08

Date Received: 11/13/08

Date Extracted: NA

**Date Analyzed:** 11/14-18/08

Matrix Spike Summary Inorganic Parameters

Sample Name:

MW-19A

Lab Code:

J0805544-001MS

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	5.00	3.3	7.95	93	90-110	
Chloride	mg/L (ppm)	300.0	0.2	100	12	110	98	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5.0	U	5.26	105	90-110	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED Waste Facility LF

**Project Number:** Sample Matrix:

FQ1512 WATER Service Request:

J0805544

Date Collected:

NA

Date Received:

NA Date Extracted: NA

NA

Basis:

Date Analyzed:

11/14-18/08

Laboratory Control Sample Summary **Inorganic Parameters** 

Sample Name:

Laboratory Control Sample

Lab Code:

J0805544-LCS

Test Notes:

CAS Percent Recovery Acceptance **Analysis** Percent Result Limits Units Method True Value Result Recovery Notes

Analyte Ammonia as Nitrogen mg/L (ppm) 350.1 5.00 5.20 104 90-110 Ammonia as Nitrogen mg/L (ppm) 5.00 90-110 350.1 5.31 106 Chloride mg/L (ppm) 90-110 300.0 100 101 101 Nitrate as Nitrogen mg/L (ppm) 300.0 105 90-110 5.0 5.24 Solids, Total Dissolved (TDS) mg/L (ppm) 160.1 300 276 92 85-115

# Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

Client:	Geosy	intec	Private and a second second		Service Reque	st#	Ja	805544	9
Project:	JED'	SWDF			-				
Cooler recei	ived on	11.13.0	08		and opened on	11.13.08	by	Sy	
COURIER:	CAS	(UPS)	FEDEX	DHL	CLIENT	Tracking	#		
1	Were cu	stody seals or	outside of c	cooler?			(Yes)	No	N/A
2	Were sea	als intact, sign	ed and dated	d?			(Yes)	No	N/A
3	Were cu	stody papers j	properly fille	ed out?			(Yes)	No	N/A
4	Temperatu	re of cooler(s)	pon receipt	(Should b	e 4 +/- 2 degrees C)	4.78			
5	Correct (	Temperature?					(Yes)	No	N/A
6	Were Ice	or Ice Packs	present				(Yes)	No	N/A
7	Did all b	ottles arrive i	n good cond	ition (unl	oroken, etc)?		(Yes)	No	N/A
8	Were all	bottle labels	complete (sa	mple ID,	preservation, et	tc)?	(Yes)	No	N/A
9	Did all b	ottle labels ar	nd tags agree	with cus	tody papers?		Yes	No	N/A
10	Were the	correct bottl	es used for th	he tests i	ndicated?		(Yes)	No	N/A
11	Were all o	f the preserved b	ottles received	l with the a	ppropriate preserva	ıtive?	(Yes)	No	N/A
13 14		id the bottles		ar bubbles	? If present, note be	elow	(Yes) (CAS)	No Client	N/A
·	netického mocho dost come kopungunya pydysty.	Microsophia markata markata kata kata kata kata kata kata kat		Manu	f. Lot#or CAS				1
	Sar	mple ID	Reagent		Chem ID	ml added	<u>I</u>	nititials	
					2006 p. 16-16-16-16-16-16-16-16-16-16-16-16-16-1				
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				_
									-
									C.C.San
1									
								,	_
dditional co	omments	and/or explai	nation of all	discrepar	ncies noted aboy	/e:		<del>andrik isalana isalah fadi dalam sadana sa</del> na	
				I I			:		was the Marie and the market and an arrange and the first
			24-3-1		· ·				de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la
ent approv	/al to run	samples if di	screpancies	noted:				Date: 61	

SR#: J 0805544

Date: 11.13.08

Initials: <u>GM</u>

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

Į	Bottle Code									l																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	40ml		40mL				125mL					250mL		250ml			500mL	500mL	1L	1L	1L		1L	2oz	4oz	8oz	16oz		100mL	Misc.
Container	G	G	G	G	P	P	P	Ρ.	Р	Р	P	Р	Р	G	G	Р	Р	P.	P	Р	G	Ğ	G	G	G	G	G	ENC	Р	Misc.
			Sodium						760,000			ZnAcetate				#Min			1130		300			25	4.6			100	Sodium	
Pres.			Thiosulfate				H2SO4	HNO3		H2SO4		NaOH			ниоз		H2SO4	HN03		HNO3		HCI	H2SO4			Line			Thiosulfate	
Req. pH	N/A	<2	N/A	<2	N/A	<2	<2	<2	N/A	<2	<2	>9	>12	N/A		N/A	<2	<2	N/A	<2		<2		N/A		N/A	N/A	N/A	N/A	N/A
Sample #	-	-	-	-		-		-	-		-	-	<u> </u>	-		-	-		<del>  -</del>	<u> </u>	-			-	-	<del>  -  </del>				
-001	3	3	<u> </u>				1	€.							ļ	<u> </u>	<u> </u>	<b> </b>	ļ	<u> </u>						_				
-002	3	3					€	1											<del> </del>	ļ	-									$\vdash$
-003	7	3	<u> </u>	<u> </u>			í	2	1								<u> </u>		ļ											$\vdash$
-004	N O	3			1		1	1	2									· .	<u> </u>	<u> </u>										
-005	19	3					- 5	q	100									·												
-006	3	3		1				ì											T											
-007	5-98	3	l						<b></b>			·····							1											
-008				i	1			<b></b>									<u> </u>	-	1						_					
			<del> </del>	<del> </del>			<del>                                     </del>								l				1-	-										
-009			-	-	-		<del> </del>						l		<del> </del>		<del>                                     </del>	<del> </del>	+	t						t				$\vdash$
-010				<b>-</b>	-							····			<del> </del>		<del></del>	<del> </del>	+-		$\vdash$					-				
-011				ļ	-	ļ									<del> </del>		-		┼		$\vdash$									$\vdash$
-012			-	<u> </u>	<u> </u>	-	<del> </del>	-									<del> </del>		┼	-	-			-		-		-		$\vdash$
-013			ļ <u>.</u>	-	ļ		<u> </u>										<del> </del>	-	-	<del> </del>	-	-							<u></u>	$\vdash$
-014			ļ		-		ļ		<u> </u>						<del> </del>			<del> </del>	┼		-									
-015				ļ		ļ											-		-		-					-				
-016				ļ	ļ										<u> </u>		ļ .	-		<del> </del>				-		-				
-017							<u> </u>		<u> </u>									ļ	—	ļ	-									
-018																	-		ļ.,											ļl
-019							<u> </u>		<u> </u>									ļ	<u> </u>	ļ						<u></u>			ļ	<u> </u>
-020									l						<u> </u>		1	<u> </u>												
-021			1												<u> </u>			l	1											
-022															1															
-023			1																											
-024															T				T											
-025			<del> </del>														T		1							-				
-026			-	<del>                                     </del>	<del> </del> -	<b></b>	1.		<del> </del> -						1				<del> </del>	<del>                                     </del>										$\Box$
-028	-		<b> </b>		<del> </del>										<del>                                     </del>		1		+	<del> </del>	$\vdash$									$\vdash$
		<b></b>	<del> </del>	-	<del>                                     </del>		<del> </del>	-	<del> </del>					-	<del> </del>	-	<del> </del>	<del>                                     </del>	+	<del> </del>										$\vdash$
-028			<del> </del>	<del> </del>	<del> </del>	ļ	<del> </del>										<del>                                     </del>	<del> </del>	<del> </del>	<del>                                     </del>	-					-		-		
-029			-		-	<del> </del>			-								-		+	<del> </del>	-					-				<del>  </del>
-030			-	-	<u> </u>		-										<del> </del>	<del> </del>	+	<del> </del>	$\vdash$					<u> </u>				<del>├</del> ─┤
-031			<del> </del>		ļ										ļ		ļ	<b></b>	-		-					<u> </u>				
-032				ļ <u>.</u>	ļ													<b></b>	<del> </del> —											
-033			ļ	ļ															ļ											<u> </u>
-034															ļ		ļ													
-035							l					-																		$oxed{oxed}$
-036																														1
-037																														
-038			Ī	1																										
-039																	1	<b>-</b>		<b></b>										$\Box$
-040				<b></b>	<del>                                     </del>			-											1	-										$\vdash$
-040		L	1	1	<u>i</u>	L			L								1	I		1				L			l			



www.caslab.com

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#		
	Jo 805549	
CAS	Contact	

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE ____/

SR #		
Jo 805549		
CAS Contact		

Project Name	Project Number	_		T	***													·····				
JED SWAF FQ1572						ANALYSIS REQUESTED (Include Method Number and																
Project Manager  Kirk Wills  Company/Address	Email Address  Kurills @	yeosyntec.	0/3	PRE	SERVA	ATIVE,		0	3	2	0	2			-	-						
Geosyntec	· ·	,		S	1			/	/		/-	\mathrew{5}/	- 1/-									
	edge Dr. S	e 300		NUMBER OF CONTAINERS					1	Jen Jen	The Man I sell the									/ 1. H 2. H 3. H 4. N	CL NO ₃ ₂ SO ₄ aOH	
14055 Riveredge Dr. Ste 300 Tanja, FL 33637 Phone#							0)/	1/2 XX	16/2/		13/	1 /	/ /		/ /		/ /	/ /	/. / .	5. Z 6. M	n. Acetate	Э .
813-558-099	0 813-538	3-9726		/BER	/_^	${\mathbb R}/{\mathbb Q}$	ก/	13	Z .		25/		/ /			. /				8. O	ther	
Sampler's Signature	Sampler's Printed Name			Į Š	/ ^ख		7		Yz	3/2	$\check{j}$	/	/ /	/	/		/			REMAF	RKS/	
	300 1019	SAMPLING			1	/	<u>/</u>	/	/ //	·/ 	<del>/                                    </del>	<u>/</u> /	<del>/ /</del>		<del>-                                    </del>	<u>′</u>		<del>/                                    </del>	/ ALTE	REMAP RNATE DE	SCRIPTIO	)N
CLIENT SAMPLE ID	LAB ID	DATE TIME	MATRIX																			
MW-19 A		n. 8 0955	GW	9	X	X	X	×	X													
MW-19B		1015	- Second	9					1													
MW-190		1210	- 20	10		San San San San San San San San San San				X											٠	
MW-18A		0820		9		200	No.															
MW-18B		0800	and the second	9	To an and	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th														***		
MW-18C		1 0910	V	9		V	V	V	V													
Trip Bluk		-	w	3	1																	
<u> </u>																						
																						***************************************
Jai													-							***************************************		
SPECIAL INSTRUCTIONS/COMMENTS						TU	IRNAR	OUND	REQUI	REMEN	TS	T .	REPOR	T RE	QUIREI	MENTS		$T^{\perp}$	INVOIC	E INFORM	/ATION	
										S APPLY)		<b></b>	I. Results									
						X STANDARD						II. Results + QC Summaries						PO#				***************************************
·						REQUE	STED F	AX DAT	Έ				(LCS, DU	R, MS/N	MSD as i	required)	)					
													III. Results Summarie		and Cal	ibration		BILL	10:			
						REQUE	STED F	REPORT	DATE				IV. Data V		n Renor	t with Ro	nw Data		· · · · · · · · · · · · · · · · · · ·			
													V. Speicali					-		-		
See QAPP					i i								Edata					_		********		
SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEAL:  RELINQUISHED BY RECEIVED BY RELINQUISHED B					N			DEOE		,											·	
63	hey tonk		NQUISHED	) T				RECEI	VED BY				HE	.INQU	IISHED	BA			Ri	ECEIVED I	3Y	
Signature Jue Cerry &	Porce Jordan	Signature				Signatur	re					Signatu	ire	******				Signat	iure			
Printed Mamo Joe Terry	Frinted Name OR 100					Printed	Name	*******				Printed	Name					Printe	d Name			
Geosynter	CAS	Firm				Firm		***************************************				Firm		******		c.		Firm				
Date/Time 11 · 12 · 09 / 15 30 Date/Time Date/Time					Date/Time Date/Time							Date/Time .										



December 10, 2008

Service Request No: J0805551

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

### Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on November 14, 2008. For your reference, these analyses have been assigned our service request number **J0805551**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of 96

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/08; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/08; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/08.

Client:

GeoSyntec Consultants

Project:

JED SWDF

Sample Matrix:

Water

Service Request No.:

Date Received:

J0805551

11/14/08

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

### Sample Receipt

Three water samples and one trip blank were received for analysis at Columbia Analytical Services on 11/14/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2$ °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

#### Second Source Exceptions

The upper control criterion was exceeded for the following analytes in Second Source Verification (SSV) CAL1659: Ethyl Methacrylate and trans-1,4-Dichloro-2-butene. The field samples analyzed in this sequence did not contain the analytes in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

#### Lab Control Sample Exceptions

The spike recoveries of Isobutyl Alcohol, Ethyl Methacrylate and trans-1,4-Dichloro-2-butene for Laboratory Control Sample (LCS) JWG0804446-3 were outside the upper control criterion. The analytes in question were not detected in the associated field samples above the method reporting limits. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

### **Elevated Method Reporting Limits**

The reporting limits are elevated for all analytes in samples L-1, L-4, and L-5. The samples were diluted prior to instrumental analysis due to the foaming nature of the matrix. The reporting limits are adjusted to reflect the dilution.

#### Batch QC Notes and Discussion

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG).

Approved by	Crank	Mr.	Date (	2/10/08	
	()	( )			

The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **EDB** and **DBCP** by GC-ECD

The samples were analyzed for EDB and DBCP using EPA Method 8011. No problems were observed.

### Organochlorine Pesticides by GC-ECD

The samples were analyzed for Organochlorine Pesticides using EPA Method 8081. The following observations were made regarding this delivery group.

#### Surrogate Exceptions

The control criteria were exceeded for the following surrogates in samples L-1 and L-4 due to suspected matrix interferences: Tetrachloro-m-xylene and Decachlorobiphenyl. The samples formed a large emulsion during the extraction procedure resulting in reduced recovery. No further corrective action was appropriate.

#### Batch QC Notes and Discussion

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### PCB Aroclors by GC-ECD

The samples were analyzed for PCB Aroclors using EPA Method 8082. The following observations were made regarding this delivery group.

#### Surrogate Exceptions

The control criteria were exceeded for the following surrogate in samples L-1 and L-4 due to suspected matrix interferences: Decachlorobiphenyl. The samples formed a large emulsion during the extraction procedure resulting in reduced recovery. No further corrective action was appropriate.

#### **Batch QC Notes and Discussion**

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### Semivolatile Organics by GC-MS

The samples were analyzed for Semivolatile Organics using EPA Method 8270. The following observations were made regarding this delivery group.

Approved by	Cur 2 M	Date [2/10/08
	0, 4	<b>1</b>

### Second Source Exceptions

The control criterion was exceeded for the following analyte in Second Source Verification (SSV) CAL1652: 2-Methyl-4,6-dinitrophenol. The field sample analyzed in this sequence did not contain the analyte in question. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

### Surrogate Exceptions

The control criterion for the following surrogate in sample L-5 is not applicable: 2,4,6-Tribromophenol. The analysis of the sample required a dilution, which resulted in a surrogate concentration below the Method Reporting Limit (MRL). No further corrective action was appropriate.

The control criteria were exceeded for the following surrogate in sample L-1 due to suspected matrix interferences: Terphenyl-d14. The sample formed an emulsion during the extraction procedure, preventing adequate recovery of the surrogate. No further corrective action was appropriate.

#### **Lab Control Sample Exceptions**

The spike recovery of Benzo(b)fluoranthene for Laboratory Control Sample (LCS) JWG0804427-2 was outside the lower control criterion. The analyte in question was not detected in the associated field sample. The error associated with reduced recovery equates to a potential low bias. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

#### **Elevated Method Reporting Limits**

Sample L-5 required a dilution due to the presence of elevated levels of non-target analytes. The reporting limits are adjusted to reflect the dilution.

#### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. The following observations were made regarding this delivery group.

#### Matrix Spike Recovery Exceptions

The control criteria for matrix spike recoveries of Sodium for sample L-1 are not applicable. The analyte concentrations in the samples were significantly higher than the added spike concentrations, preventing accurate evaluation of the spike recoveries.

#### Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

Approved by	Cran R Min	Date 12/10/08
	0''(	

### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA and Standard Methods. The following observations were made regarding this delivery group.

### **Elevated Method Reporting Limits**

The reporting limit is elevated for Nitrate in samples L-1, L-4, and L-5. The chromatogram indicated the presence of non-target background components. In addition, the samples had a high concentration of Chloride. The matrix interference prevented adequate resolution of the target analyte at the reporting limit.

### Batch QC Notes and Discussion

Quality control samples for some parameters (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **Subcontracted Analytical Parameters**

The samples were delivered to ENCO Labs in Jacksonville, FL on 11/14/08 for EPA Method 8151 determination. The certified analytical report has been included in its entirety in Appendix A: Subcontracted Analytical Results.

Approved by Date 12/10/08

## Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- i The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project: GeoSyntec Consultants

JED SWDF/FQ1512

Service Request: J0805551

## SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
J0805551-001	L-1	11/13/08	08:00
J0805551-002	L-4	11/13/08	09:40
J0805551-003	L-5	11/13/08	11:00
J0805551-004	Trip Blank	11/13/08	00:00

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-1

Lab Code:

J0805551-001

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	200	2.3	10	11/19/08	11/19/08	JWG0804466	
Chloromethane	ND U	10	1.7	10	11/19/08	11/19/08	JWG0804466	
Vinyl Chloride	ND U	10	2.5	10	11/19/08	11/19/08	JWG0804466	
Bromomethane	ND U	10	1.4	10	11/19/08	11/19/08	JWG0804466	
Chloroethane	ND U	50	1.9	10	11/19/08	11/19/08	JWG0804466	
Trichlorofluoromethane	ND U	200	2.5	10	11/19/08	11/19/08	JWG0804466	
Acrolein	ND U	500	96	10	11/19/08	11/19/08	JWG0804466	
1,1-Dichloroethene	ND U	10	1.6	10	11/19/08	11/19/08	JWG0804466	
Acetone	<b>31</b> I	500	24	10	11/19/08	11/19/08	JWG0804466	
Iodomethane (Methyl Iodide)	ND U	50	25	10	11/19/08	11/19/08	JWG0804466	
Carbon Disulfide	ND U	100	8.4	10	11/19/08	11/19/08	JWG0804466	
Acetonitrile	ND U	250	33	10	11/19/08	11/19/08	JWG0804466	
Allyl Chloride	ND U	50	1.3	10	11/19/08	11/19/08	JWG0804466	
Methylene Chloride	ND U	50	7.2	10	11/19/08	11/19/08	JWG0804466	
Acrylonitrile	ND U	100	5.9	10	11/19/08	11/19/08	JWG0804466	
trans-1,2-Dichloroethene	ND U	10	1.3	10	11/19/08	11/19/08	JWG0804466	~~~~
1,1-Dichloroethane	ND U	10	5.6	10	11/19/08	11/19/08	JWG0804466	
Vinyl Acetate	ND U	100	6.0	10	11/19/08	11/19/08	JWG0804466	
Chloroprene	ND U	10	2.4	10	11/19/08	11/19/08	JWG0804466	
cis-1,2-Dichloroethene	ND U	10	1.2	10	11/19/08	11/19/08	JWG0804466	
2,2-Dichloropropane	ND U	10	2.2	10	11/19/08	11/19/08	JWG0804466	
1,1-Dichloropropene	ND U	50	1.3	10	11/19/08	11/19/08	JWG0804466	
2-Butanone (MEK)	ND U	100	5.6	10	11/19/08	11/19/08	JWG0804466	
Propionitrile	ND U	250	8.7	10	11/19/08	11/19/08	JWG0804466	
Bromochloromethane	ND U	50	1.4	10	11/19/08	11/19/08	JWG0804466	
Methacrylonitrile	ND U	50	2.0	10	11/19/08	11/19/08	JWG0804466	
Chloroform	ND U	10	1.0	10	11/19/08	11/19/08	JWG0804466	
1,1,1-Trichloroethane (TCA)	ND U	10	2.1	10	11/19/08	11/19/08	JWG0804466	
Carbon Tetrachloride	ND U	10	1.8	10	11/19/08	11/19/08	JWG0804466	
Benzene	ND U	10	5.2	10	11/19/08	11/19/08	JWG0804466	
1,2-Dichloroethane (EDC)	ND U	10	1.5	10	11/19/08	11/19/08	JWG0804466	
Isobutyl Alcohol	ND U	1000	46	10	11/19/08	11/19/08	JWG0804466	
Trichloroethene (TCE)	ND U	10	1.5	10	11/19/08	11/19/08	JWG0804466	
1,2-Dichloropropane	ND U	10	0.57	10	11/19/08	11/19/08	JWG0804466	

Comments:

Printed: 11/20/2008 12:53:57

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

1 of 3

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-1

Lab Code:

J0805551-001

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromomethane	ND U	50	1.2	10	11/19/08	11/19/08	JWG0804466	***************************************
Methyl Methacrylate	ND U	10	2.1	10	11/19/08	11/19/08	JWG0804466	
Bromodichloromethane	ND U	10	1.0	10	11/19/08	11/19/08	JWG0804466	
cis-1,3-Dichloropropene	ND U	10	1.2	10	11/19/08	11/19/08	JWG0804466	
4-Methyl-2-pentanone (MIBK)	ND U	250	3.7	10	11/19/08	11/19/08	JWG0804466	
Toluene	13	10	5.2	10	11/19/08	11/19/08	JWG0804466	
trans-1,3-Dichloropropene	ND U	10	1.2	10	11/19/08	11/19/08	JWG0804466	
Ethyl Methacrylate	ND U	10	1.4	10	11/19/08	11/19/08	JWG0804466	
1,1,2-Trichloroethane	ND U	10	2.1	10	11/19/08	11/19/08	JWG0804466	
Tetrachloroethene (PCE)	ND U	10	2.2	10	11/19/08	11/19/08	JWG0804466	
1,3-Dichloropropane	ND U	10	1.0	10	11/19/08	11/19/08	JWG0804466	
2-Hexanone	ND U	250	3.6	10	11/19/08	11/19/08	JWG0804466	The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co
Dibromochloromethane	ND U	10	1.1	10	11/19/08	11/19/08	JWG0804466	
1,2-Dibromoethane (EDB)	ND U	10	1.8	10	11/19/08	11/19/08	JWG0804466	
Chlorobenzene	ND U	10	1.5	10	11/19/08	11/19/08	JWG0804466	
1,1,1,2-Tetrachloroethane	ND U	10	1.0	10	11/19/08	11/19/08	JWG0804466	
Ethylbenzene	27	10	1.0	10	11/19/08	11/19/08	JWG0804466	
m,p-Xylenes	30	20	2.2	10	11/19/08	11/19/08	JWG0804466	
o-Xylene	16	10	1.0	10	11/19/08	11/19/08	JWG0804466	
Styrene	ND U	10	0.51	10	11/19/08	11/19/08	JWG0804466	
Bromoform	ND U	20	1.2	10	11/19/08	11/19/08	JWG0804466	
1,1,2,2-Tetrachloroethane	ND U	10	1.5	10	11/19/08	11/19/08	JWG0804466	
1,2,3-Trichloropropane	ND U	20	1.6	10	11/19/08	11/19/08	JWG0804466	
trans-1,4-Dichloro-2-butene	ND U	200	11	10	11/19/08	11/19/08	JWG0804466	
1,3-Dichlorobenzene	ND U	10	1.4	10	11/19/08	11/19/08	JWG0804466	
1,4-Dichlorobenzene	<b>7.5</b> I	10	1.4	10	11/19/08	11/19/08	JWG0804466	
1,2-Dichlorobenzene	ND U	10	1.7	10	11/19/08	11/19/08	JWG0804466	
1,2-Dibromo-3-chloropropane (DBCP	ND U	50	2.6	10	11/19/08	11/19/08	JWG0804466	
1,2,4-Trichlorobenzene	ND U	100	3.0	10	11/19/08	11/19/08	JWG0804466	
Hexachlorobutadiene	ND U	100	6.1	10	11/19/08	11/19/08	JWG0804466	
Naphthalene	ND U	100	2.5	10	11/19/08	11/19/08	JWG0804466	

Co	mm	ents:

Printed: 11/20/2008 12:53:57

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 3

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-1

Lab Code:

J0805551-001

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	94	71-122	11/19/08	Acceptable	
4-Bromofluorobenzene	94	75-120	11/19/08	Acceptable	
Dibromofluoromethane	99	82-116	11/19/08	Acceptable	
Toluene-d8	105	88-117	11/19/08	Acceptable	

Comments:

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-4

Lab Code:

J0805551-002

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Posult O	MRL	MDI	Dilution	Date	Date	Extraction	***
Dichlorodifluoromethane	Result Q ND U		MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND U	200 10	2.3 1.7	10	11/18/08	11/18/08	JWG0804446	
Vinyl Chloride	ND U	10		10	11/18/08	11/18/08	JWG0804446	
-			2.5	10	11/18/08	11/18/08	JWG0804446	
Bromomethane	ND U	10	1.4	10	11/18/08	11/18/08	JWG0804446	
Chloroethane	ND U	50	1.9	10	11/18/08	11/18/08	JWG0804446	
Trichlorofluoromethane	ND U	200	2.5	10	11/18/08	11/18/08	JWG0804446	
Acrolein	ND U	500	96	10	11/18/08	11/18/08	JWG0804446	
1,1-Dichloroethene	ND U	10	1.6	10	11/18/08	11/18/08	JWG0804446	
Acetone	<b>50</b> I	500	24	10	11/18/08	11/18/08	JWG0804446	
Iodomethane (Methyl Iodide)	ND U	50	25	10	11/18/08	11/18/08	JWG0804446	
Carbon Disulfide	ND U	100	8.4	10	11/18/08	11/18/08	JWG0804446	
Acetonitrile	ND U	250	33	10	11/18/08	11/18/08	JWG0804446	
Allyl Chloride	ND U	50	1.3	10	11/18/08	11/18/08	JWG0804446	
Methylene Chloride	ND U	50	7.2	10	11/18/08	11/18/08	JWG0804446	
Acrylonitrile	ND U	100	5.9	10	11/18/08	11/18/08	JWG0804446	
trans-1,2-Dichloroethene	ND U	10	1.3	10	11/18/08	11/18/08	JWG0804446	
1,1-Dichloroethane	ND U	10	5.6	10	11/18/08	11/18/08	JWG0804446	
Vinyl Acetate	ND U	100	6.0	10	11/18/08	11/18/08	JWG0804446	
Chloroprene	ND U	10	2.4	10	11/18/08	11/18/08	JWG0804446	····
cis-1,2-Dichloroethene	ND U	10	1.2	10	11/18/08	11/18/08	JWG0804446	
2,2-Dichloropropane	ND U	10	2.2	10	11/18/08	11/18/08	JWG0804446	
1,1-Dichloropropene	ND U	50	1.3	10	11/18/08	11/18/08	JWG0804446	
2-Butanone (MEK)	ND U	100	5.6	10	11/18/08	11/18/08	JWG0804446	
Propionitrile	ND U	250	8.7	10	11/18/08	11/18/08	JWG0804446	
Bromochloromethane	ND U	50	1.4	10	11/18/08	11/18/08	JWG0804446	
Methacrylonitrile	ND U	50	2.0	10	11/18/08	11/18/08	JWG0804446	
Chloroform	ND U	10	1.0	10	11/18/08	11/18/08	JWG0804446	
1,1,1-Trichloroethane (TCA)	ND U	10	2.1	10	11/18/08	11/18/08	JWG0804446	***************************************
Carbon Tetrachloride	ND U	10	1.8	10	11/18/08	11/18/08	JWG0804446	
Benzene	<b>5.7</b> I	10	5.2	10	11/18/08	11/18/08	JWG0804446	
1,2-Dichloroethane (EDC)	ND U	10	1.5	10	11/18/08	11/18/08	JWG0804446	
Isobutyl Alcohol	ND UJ	1000	46	10	11/18/08	11/18/08	JWG0804446	J(3)
Trichloroethene (TCE)	ND U	10	1.5	10	11/18/08	11/18/08	JWG0804446	` /
1,2-Dichloropropane	ND U	10	0.57	10	11/18/08	11/18/08	JWG0804446	PRAMON AL

**Comments:** 

Printed: 11/20/2008 12:53:59

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 3

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-4

Lab Code:

J0805551-002

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromomethane	ND U	50	1.2	10	11/18/08	11/18/08	JWG0804446	
Methyl Methacrylate	ND U	10	2.1	10	11/18/08	11/18/08	JWG0804446	
Bromodichloromethane	ND U	10	1.0	10	11/18/08	11/18/08	JWG0804446	WAR THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF T
cis-1,3-Dichloropropene	ND U	10	1.2	10	11/18/08	11/18/08	JWG0804446	
4-Methyl-2-pentanone (MIBK)	ND U	250	3.7	10	11/18/08	11/18/08	JWG0804446	
Toluene	27	10	5.2	10	11/18/08	11/18/08	JWG0804446	
trans-1,3-Dichloropropene	ND U	10	1.2	10	11/18/08	11/18/08	JWG0804446	
Ethyl Methacrylate	ND UJ	10	1.4	10	11/18/08	11/18/08	JWG0804446	J(3)
1,1,2-Trichloroethane	ND U	10	2.1	10	11/18/08	11/18/08	JWG0804446	***************************************
Tetrachloroethene (PCE)	ND U	10	2.2	10	11/18/08	11/18/08	JWG0804446	
1,3-Dichloropropane	ND U	10	1.0	10	11/18/08	11/18/08	JWG0804446	
2-Hexanone	ND U	250	3.6	10	11/18/08	11/18/08	JWG0804446	
Dibromochloromethane	ND U	10	1.1	10	11/18/08	11/18/08	JWG0804446	
1,2-Dibromoethane (EDB)	ND U	10	1.8	10	11/18/08	11/18/08	JWG0804446	
Chlorobenzene	<b>7.1</b> I	10	1.5	10	11/18/08	11/18/08	JWG0804446	
1,1,1,2-Tetrachloroethane	ND U	10	1.0	10	11/18/08	11/18/08	JWG0804446	
Ethylbenzene	22	10	1.0	10	11/18/08	11/18/08	JWG0804446	
m,p-Xylenes	26	20	2.2	10	11/18/08	11/18/08	JWG0804446	
o-Xylene	15	10	1.0	10	11/18/08	11/18/08	JWG0804446	
Styrene	ND U	10	0.51	10	11/18/08	11/18/08	JWG0804446	
Bromoform	ND U	20	1.2	10	11/18/08	11/18/08	JWG0804446	
1,1,2,2-Tetrachloroethane	ND U	10	1.5	10	11/18/08	11/18/08	JWG0804446	
1,2,3-Trichloropropane	ND U	20	1.6	10	11/18/08	11/18/08	JWG0804446	
trans-1,4-Dichloro-2-butene	ND UJ	200	11	10	11/18/08	11/18/08	JWG0804446	J(3)
1,3-Dichlorobenzene	ND U	10	1.4	10	11/18/08	11/18/08	JWG0804446	. ,
1,4-Dichlorobenzene	12	10	1.4	10	11/18/08	11/18/08	JWG0804446	
1,2-Dichlorobenzene	ND U	10	1.7	10	11/18/08	11/18/08	JWG0804446	***************************************
1,2-Dibromo-3-chloropropane (DBCP	ND U	50	2.6	10	11/18/08	11/18/08	JWG0804446	
1,2,4-Trichlorobenzene	ND U	100	3.0	10	11/18/08	11/18/08	JWG0804446	
Hexachlorobutadiene	ND U	100	6.1	10	11/18/08	11/18/08	JWG0804446	
Naphthalene	ND U	100	2.5	10	11/18/08	11/18/08	JWG0804446	

<b>Comments:</b>
------------------

Printed: 11/20/2008 12:53:59

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

2 of 3

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: 11/13/2008

**Date Received:** 11/13/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-4

Lab Code:

L-4

J0805551-002

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	99	71-122	11/18/08	Acceptable
4-Bromofluorobenzene	94	75-120	11/18/08	Acceptable
Dibromofluoromethane	98	82-116	11/18/08	Acceptable
Toluene-d8	95	88-117	11/18/08	Acceptable

Comments:

Printed: 11/20/2008 12:53:59

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

14

Page 3 of 3

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-5

Lab Code:

J0805551-003

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	U	200	2.3	10	11/18/08	11/18/08	JWG0804446	AND AND DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART
Chloromethane	ND	U	10	1.7	10	11/18/08	11/18/08	JWG0804446	
Vinyl Chloride	ND	U	10	2.5	10	11/18/08	11/18/08	JWG0804446	
Bromomethane	ND	U	10	1.4	10	11/18/08	11/18/08	JWG0804446	
Chloroethane	ND	U	50	1.9	10	11/18/08	11/18/08	JWG0804446	
Trichlorofluoromethane	ND	U	200	2.5	10	11/18/08	11/18/08	JWG0804446	
Acrolein	ND	U	500	96	10	11/18/08	11/18/08	JWG0804446	
1,1-Dichloroethene	ND	U	10	1.6	10	11/18/08	11/18/08	JWG0804446	
Acetone	11000		5000	240	100	11/19/08	11/19/08	JWG0804466	
Iodomethane (Methyl Iodide)	ND	U	50	25	10	11/18/08	11/18/08	JWG0804446	***************************************
Carbon Disulfide	ND	U	100	8.4	10	11/18/08	11/18/08	JWG0804446	
Acetonitrile	ND	U	250	33	10	11/18/08	11/18/08	JWG0804446	
Allyl Chloride	ND	U	50	1.3	10	11/18/08	11/18/08	JWG0804446	
Methylene Chloride	16		50	7.2	10	11/18/08	11/18/08	JWG0804446	
Acrylonitrile	ND	U	100	5.9	10	11/18/08	11/18/08	JWG0804446	
trans-1,2-Dichloroethene	ND		10	1.3	10	11/18/08	11/18/08	JWG0804446	
1,1-Dichloroethane	ND	U	10	5.6	10	11/18/08	11/18/08	JWG0804446	
Vinyl Acetate	ND	U	100	6.0	10	11/18/08	11/18/08	JWG0804446	
Chloroprene	ND		10	2.4	10	11/18/08	11/18/08	JWG0804446	
cis-1,2-Dichloroethene	5.1		10	1.2	10	11/18/08	11/18/08	JWG0804446	
2,2-Dichloropropane	ND	U	10	2.2	10	11/18/08	11/18/08	JWG0804446	
1,1-Dichloropropene	ND	U	50	1.3	10	11/18/08	11/18/08	JWG0804446	
2-Butanone (MEK)	24000		1000	56	100	11/19/08	11/19/08	JWG0804466	
Propionitrile	ND	U	250	8.7	10	11/18/08	11/18/08	JWG0804446	
Bromochloromethane	ND		50	1.4	10	11/18/08	11/18/08	JWG0804446	
Methacrylonitrile	ND		50	2.0	10	11/18/08	11/18/08	JWG0804446	
Chloroform	ND	U	10	1.0	10	11/18/08	11/18/08	JWG0804446	
1,1,1-Trichloroethane (TCA)	ND		10	2.1	10	11/18/08	11/18/08	JWG0804446	
Carbon Tetrachloride	ND	U	10	1.8	10	11/18/08	11/18/08	JWG0804446	
Benzene	16		10	5.2	10	11/18/08	11/18/08	JWG0804446	
1,2-Dichloroethane (EDC)	40		10	1.5	10	11/18/08	11/18/08	JWG0804446	
Isobutyl Alcohol	620		1000	46	10	11/18/08	11/18/08	JWG0804446	
Trichloroethene (TCE)	ND	U	10	1.5	10	11/18/08	11/18/08	JWG0804446	
1,2-Dichloropropane	ND	U	10	0.57	10	11/18/08	11/18/08	JWG0804446	

Comments:

Printed: 11/20/2008 12:54:01

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 3

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-5

Lab Code:

J0805551-003

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromomethane	ND U	50	1.2	10	11/18/08	11/18/08	JWG0804446	
Methyl Methacrylate	ND U	10	2.1	10	11/18/08	11/18/08	JWG0804446	
Bromodichloromethane	ND U	10	1.0	10	11/18/08	11/18/08	JWG0804446	***************************************
cis-1,3-Dichloropropene	ND U°	10	1.2	10	11/18/08	11/18/08	JWG0804446	
4-Methyl-2-pentanone (MIBK)	260	250	3.7	10	11/18/08	11/18/08	JWG0804446	
Toluene	490	10	5.2	10	11/18/08	11/18/08	JWG0804446	
trans-1,3-Dichloropropene	ND U	10	1.2	10	11/18/08	11/18/08	JWG0804446	
Ethyl Methacrylate	ND UJ	10	1.4	10	11/18/08	11/18/08	JWG0804446	J(3)
1,1,2-Trichloroethane	ND U	10	2.1	10	11/18/08	11/18/08	JWG0804446	
Tetrachloroethene (PCE)	ND U	10	2.2	10	11/18/08	11/18/08	JWG0804446	
1,3-Dichloropropane	ND U	10	1.0	10	11/18/08	11/18/08	JWG0804446	
2-Hexanone	38 I	250	3.6	10	11/18/08	11/18/08	JWG0804446	
Dibromochloromethane	ND U	10	1.1	10	11/18/08	11/18/08	JWG0804446	
1,2-Dibromoethane (EDB)	ND U	10	1.8	10	11/18/08	11/18/08	JWG0804446	
Chlorobenzene	<b>4.4</b> I	10	1.5	10	11/18/08	11/18/08	JWG0804446	
1,1,1,2-Tetrachloroethane	ND U	10	1.0	10	11/18/08	11/18/08	JWG0804446	
Ethylbenzene	30	10	1.0	10	11/18/08	11/18/08	JWG0804446	
m,p-Xylenes	39	20	2.2	10	11/18/08	11/18/08	JWG0804446	
o-Xylene	17	10	1.0	10	11/18/08	11/18/08	JWG0804446	
Styrene	ND U	10	0.51	10	11/18/08	11/18/08	JWG0804446	
Bromoform	ND U	20	1.2	10	11/18/08	11/18/08	JWG0804446	
1,1,2,2-Tetrachloroethane	ND U	10	1.5	10	11/18/08	11/18/08	JWG0804446	
1,2,3-Trichloropropane	ND U	20	1.6	10	11/18/08	11/18/08	JWG0804446	
trans-1,4-Dichloro-2-butene	ND UJ	200	11	10	11/18/08	11/18/08	JWG0804446	J(3)
1,3-Dichlorobenzene	ND U	10	1.4	10	11/18/08	11/18/08	JWG0804446	. /
1,4-Dichlorobenzene	6.9 I	10	1.4	10	11/18/08	11/18/08	JWG0804446	
1,2-Dichlorobenzene	ND U	10	1.7	10	11/18/08	11/18/08	JWG0804446	
1,2-Dibromo-3-chloropropane (DBCP	ND U	50	2.6	10	11/18/08	11/18/08	JWG0804446	
1,2,4-Trichlorobenzene	ND U	100	3.0	10	11/18/08	11/18/08	JWG0804446	
Hexachlorobutadiene	ND U	100	6.1	10	11/18/08	11/18/08	JWG0804446	
Naphthalene	ND U	100	2.5	10	11/18/08	11/18/08	JWG0804446	

Comments:	
-----------	--

Printed: 11/20/2008 12:54:01

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

**Analytical Results** 

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: 11/13/2008

**Date Received:** 11/14/2008

## Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-5

Lab Code:

J0805551-003

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	106	71-122	11/18/08	Acceptable
4-Bromofluorobenzene	96	75-120	11/18/08	Acceptable
Dibromofluoromethane	101	82-116	11/18/08	Acceptable
Toluene-d8	95	88-117	11/18/08	Acceptable

Comments:

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

## Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Trip Blank

Lab Code:

J0805551-004

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	20	0.23	1	11/19/08	11/19/08	JWG0804466	
Chloromethane	ND U	1.0	0.17	1	11/19/08	11/19/08	JWG0804466	
Vinyl Chloride	ND U	1.0	0.25	1	11/19/08	11/19/08	JWG0804466	
Bromomethane	ND U	1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
Chloroethane	ND U	5.0	0.19	1	11/19/08	11/19/08	JWG0804466	
Trichlorofluoromethane	ND U	20	0.25	1	11/19/08	11/19/08	JWG0804466	
Acrolein	ND U	50	9.6	1	11/19/08	11/19/08	JWG0804466	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/19/08	11/19/08	JWG0804466	
Acetone	ND U	50	2.4	1	11/19/08	11/19/08	JWG0804466	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/19/08	11/19/08	JWG0804466	
Carbon Disulfide	ND U	10	0.84	1	11/19/08	11/19/08	JWG0804466	
Acetonitrile	ND U	25	3.3	1	11/19/08	11/19/08	JWG0804466	
Allyl Chloride	ND U	5.0	0.13	1	11/19/08	11/19/08	JWG0804466	
Methylene Chloride	ND U	5.0	0.72	1	11/19/08	11/19/08	JWG0804466	
Acrylonitrile	ND U	10	0.59	1	11/19/08	11/19/08	JWG0804466	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/19/08	11/19/08	JWG0804466	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/19/08	11/19/08	JWG0804466	
Vinyl Acetate	ND U	10	0.60	1	11/19/08	11/19/08	JWG0804466	
Chloroprene	ND U	1.0	0.24	1	11/19/08	11/19/08	JWG0804466	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/19/08	11/19/08	JWG0804466	
2,2-Dichloropropane	ND U	1.0	0.22	1	11/19/08	11/19/08	JWG0804466	
1,1-Dichloropropene	ND U	5.0	0.13	1	11/19/08	11/19/08	JWG0804466	
2-Butanone (MEK)	ND U	10	0.56	1	11/19/08	11/19/08	JWG0804466	
Propionitrile	ND U	25	0.87	1	11/19/08	11/19/08	JWG0804466	
Bromochloromethane	ND U	5.0	0.14	1	11/19/08	11/19/08	JWG0804466	
Methacrylonitrile	ND U	5.0	0.20	1	11/19/08	11/19/08	JWG0804466	
Chloroform	ND U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/19/08	11/19/08	JWG0804466	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/19/08	11/19/08	JWG0804466	
Benzene	ND U	1.0	0.52	1	11/19/08	11/19/08	JWG0804466	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	
Isobutyl Alcohol	ND U	100	4.6	1	11/19/08	11/19/08	JWG0804466	
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	
1,2-Dichloropropane	ND U	1.0	0.057	1	11/19/08	11/19/08	JWG0804466	

Comments:

Printed: 11/20/2008 12:54:03

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 3

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Trip Blank

Lab Code:

J0805551-004

**Extraction Method:** 

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromomethane	ND U	5.0	0.12	1	11/19/08	11/19/08	JWG0804466	
Methyl Methacrylate	ND U	1.0	0.21	1	11/19/08	11/19/08	JWG0804466	
Bromodichloromethane	ND U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	11/19/08	11/19/08	JWG0804466	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	11/19/08	11/19/08	JWG0804466	
Toluene	ND U	1.0	0.52	1	11/19/08	11/19/08	JWG0804466	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	11/19/08	11/19/08	JWG0804466	
Ethyl Methacrylate	ND U	1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	11/19/08	11/19/08	JWG0804466	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	11/19/08	11/19/08	JWG0804466	
1,3-Dichloropropane	ND U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
2-Hexanone	ND U	25	0.36	1	11/19/08	11/19/08	JWG0804466	
Dibromochloromethane	ND U	1.0	0.11	1	11/19/08	11/19/08	JWG0804466	
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	11/19/08	11/19/08	JWG0804466	
Chlorobenzene	ND U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
Ethylbenzene	ND U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
m,p-Xylenes	ND U	2.0	0.22	1	11/19/08	11/19/08	JWG0804466	
o-Xylene	ND U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
Styrene	ND U	1.0	0.051	1	11/19/08	11/19/08	JWG0804466	
Bromoform	ND U	2.0	0.12	1	11/19/08	11/19/08	JWG0804466	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	11/19/08	11/19/08	JWG0804466	
trans-1,4-Dichloro-2-butene	ND Ù	20	1.1	1	11/19/08	11/19/08	JWG0804466	
1,3-Dichlorobenzene	ND U	1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	11/19/08	11/19/08	JWG0804466	
1,2-Dibromo-3-chloropropane (DBCP	ND U	5.0	0.26	1	11/19/08	11/19/08	JWG0804466	
1,2,4-Trichlorobenzene	ND U	10	0.30	1	11/19/08	11/19/08	JWG0804466	
Hexachlorobutadiene	ND U	10	0.61	1	11/19/08	11/19/08	JWG0804466	
Naphthalene	ND U	10	0.25	1	11/19/08	11/19/08	JWG0804466	

Comments:

Printed: 11/20/2008 12:54:03

 $p:\Stealth\Crystal.rpt\Form1\,m.rpt$ 

Merged

Form 1A - Organic

2 of 3

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Trip Blank

Lab Code:

J0805551-004

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	93	71-122	11/19/08	Acceptable	
4-Bromofluorobenzene	92	75-120	11/19/08	Acceptable	
Dibromofluoromethane	99	82-116	11/19/08	Acceptable	
Toluene-d8	105	88-117	11/19/08	Acceptable	

Comments:

3 of 3

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA

Date Received: NA

## Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804446-4

**Extraction Method:** 

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	20	0.23	1	11/18/08	11/18/08	JWG0804446	
Chloromethane	ND U	1.0	0.17	1	11/18/08	11/18/08	JWG0804446	
Vinyl Chloride	ND U	1.0	0.25	1	11/18/08	11/18/08	JWG0804446	
Bromomethane	ND U	1.0	0.14	1	11/18/08	11/18/08	JWG0804446	
Chloroethane	ND U	5.0	0.19	1	11/18/08	11/18/08	JWG0804446	
Trichlorofluoromethane	ND U	20	0.25	1	11/18/08	11/18/08	JWG0804446	
Acrolein	ND U	50	9.6	1	11/18/08	11/18/08	JWG0804446	
1,1-Dichloroethene	ND U	1.0	0.16	1	11/18/08	11/18/08	JWG0804446	
Acetone	ND U	50	2.4	1	11/18/08	11/18/08	JWG0804446	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	11/18/08	11/18/08	JWG0804446	
Carbon Disulfide	ND U	10	0.84	1	11/18/08	11/18/08	JWG0804446	
Acetonitrile	ND U	25	3.3	1	11/18/08	11/18/08	JWG0804446	
Allyl Chloride	ND U	5.0	0.13	1	11/18/08	11/18/08	JWG0804446	
Methylene Chloride	ND U	5.0	0.72	1	11/18/08	11/18/08	JWG0804446	
Acrylonitrile	ND U	10	0.59	1	11/18/08	11/18/08	JWG0804446	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	11/18/08	11/18/08	JWG0804446	
1,1-Dichloroethane	ND U	1.0	0.56	1	11/18/08	11/18/08	JWG0804446	
Vinyl Acetate	ND U	10	0.60	1	11/18/08	11/18/08	JWG0804446	
Chloroprene	ND U	1.0	0.24	1	11/18/08	11/18/08	JWG0804446	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	11/18/08	11/18/08	JWG0804446	
2,2-Dichloropropane	ND U	1.0	0.22	1	11/18/08	11/18/08	JWG0804446	
1,1-Dichloropropene	ND U	5.0	0.13	1	11/18/08	11/18/08	JWG0804446	
2-Butanone (MEK)	ND U	10	0.56	1	11/18/08	11/18/08	JWG0804446	
Propionitrile	ND U	25	0.87	1	11/18/08	11/18/08	JWG0804446	
Bromochloromethane	ND U	5.0	0.14	1	11/18/08	11/18/08	JWG0804446	
Methacrylonitrile	ND U	5.0	0.20	1	11/18/08	11/18/08	JWG0804446	
Chloroform	ND U	1.0	0.10	1	11/18/08	11/18/08	JWG0804446	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	11/18/08	11/18/08	JWG0804446	
Carbon Tetrachloride	ND U	1.0	0.18	1	11/18/08	11/18/08	JWG0804446	
Benzene	ND U	1.0	0.52	1	11/18/08	11/18/08	JWG0804446	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	11/18/08	11/18/08	JWG0804446	
Isobutyl Alcohol	ND UJ	100	4.6	1	11/18/08	11/18/08	JWG0804446	J(3)
Trichloroethene (TCE)	ND U	1.0	0.15	1	11/18/08	11/18/08	JWG0804446	\ /
1,2-Dichloropropane	ND U	1.0	0.057	1	11/18/08	11/18/08	JWG0804446	

**Comments:** 

Printed: 11/20/2008 12:54:05

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 3

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA
Date Received: NA

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804446-4

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromomethane	ND	U	5.0	0.12	1	11/18/08	11/18/08	JWG0804446	
Methyl Methacrylate	ND	U	1.0	0.21	1	11/18/08	11/18/08	JWG0804446	
Bromodichloromethane	ND	U	1.0	0.10	1	11/18/08	11/18/08	JWG0804446	
cis-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/18/08	11/18/08	JWG0804446	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/18/08	11/18/08	JWG0804446	
Toluene	ND	U	1.0	0.52	1	11/18/08	11/18/08	JWG0804446	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/18/08	11/18/08	JWG0804446	
Ethyl Methacrylate	ND	UJ	1.0	0.14	1	11/18/08	11/18/08	JWG0804446	J(3)
1,1,2-Trichloroethane	ND		1.0	0.21	1	11/18/08	11/18/08	JWG0804446	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/18/08	11/18/08	JWG0804446	
1,3-Dichloropropane	ND	U	1.0	0.10	1	11/18/08	11/18/08	JWG0804446	
2-Hexanone	ND	U	25	0.36	1	11/18/08	11/18/08	JWG0804446	
Dibromochloromethane	ND	U	1.0	0.11	1	11/18/08	11/18/08	JWG0804446	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/18/08	11/18/08	JWG0804446	
Chlorobenzene	ND		1.0	0.15	1	11/18/08	11/18/08	JWG0804446	
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/18/08	11/18/08	JWG0804446	
Ethylbenzene	ND	U	1.0	0.10	1	11/18/08	11/18/08	JWG0804446	
m,p-Xylenes	ND		2.0	0.22	1	11/18/08	11/18/08	JWG0804446	*****
o-Xylene	ND	U	1.0	0.10	1	11/18/08	11/18/08	JWG0804446	
Styrene	ND	U	1.0	0.051	1	11/18/08	11/18/08	JWG0804446	
Bromoform	ND	U	2.0	0.12	1	11/18/08	11/18/08	JWG0804446	************
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/18/08	11/18/08	JWG0804446	
1,2,3-Trichloropropane	ND	U	2.0	0.16	1	11/18/08	11/18/08	JWG0804446	
trans-1,4-Dichloro-2-butene	ND	UJ	20	1.1	1	11/18/08	11/18/08	JWG0804446	J(3)
1,3-Dichlorobenzene	ND		1.0	0.14	1	11/18/08	11/18/08	JWG0804446	` '
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/18/08	11/18/08	JWG0804446	
1,2-Dichlorobenzene	ND	U	1.0	0.17	1	11/18/08	11/18/08	JWG0804446	
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/18/08	11/18/08	JWG0804446	
1,2,4-Trichlorobenzene	ND	U	10	0.30	1	11/18/08	11/18/08	JWG0804446	
Hexachlorobutadiene	ND	U	10	0.61	1	11/18/08	11/18/08	JWG0804446	
Naphthalene	ND	U	10	0.25	1	11/18/08	11/18/08	JWG0804446	

Printed: 11/20/2008 12:54:05

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

22 Page

2 of 3

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA
Date Received: NA

Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code: Method Blank

JWG0804446-4

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	98	71-122	11/18/08	Acceptable
4-Bromofluorobenzene	100	75-120	11/18/08	Acceptable
Dibromofluoromethane	97	82-116	11/18/08	Acceptable
Toluene-d8	95	88-117	11/18/08	Acceptable

Comments:

Printed: 11/20/2008 12:54:05 p:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

23_p

3 of 3

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA
Date Received: NA

# Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804466-3

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Dogwle	^	MDI	MINT	Dilution	Date	Date	Extraction	
Analyte Name	Result		MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND		20	0.23	1	11/19/08	11/19/08	JWG0804466	
Chloromethane	ND		1.0	0.17	1	11/19/08	11/19/08	JWG0804466	
Vinyl Chloride	ND	U	1.0	0.25	1	11/19/08	11/19/08	JWG0804466	
Bromomethane	ND		1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
Chloroethane	ND		5.0	0.19	1	11/19/08	11/19/08	JWG0804466	
Trichlorofluoromethane	ND	U	20	0.25	1	11/19/08	11/19/08	JWG0804466	
Acrolein	ND	U	50	9.6	1	11/19/08	11/19/08	JWG0804466	
1,1-Dichloroethene	ND	U	1.0	0.16	1	11/19/08	11/19/08	JWG0804466	
Acetone	ND	U	50	2.4	1	11/19/08	11/19/08	JWG0804466	
Iodomethane (Methyl Iodide)	ND	U	5.0	2.5	1	11/19/08	11/19/08	JWG0804466	
Carbon Disulfide	ND	U	10	0.84	1	11/19/08	11/19/08	JWG0804466	
Acetonitrile	ND	U	25	3.3	1	11/19/08	11/19/08	JWG0804466	
Allyl Chloride	ND	U	5.0	0.13	1	11/19/08	11/19/08	JWG0804466	
Methylene Chloride	ND	U	5.0	0.72	1	11/19/08	11/19/08	JWG0804466	
Acrylonitrile	ND	U	10	0.59	1	11/19/08	11/19/08	JWG0804466	
trans-1,2-Dichloroethene	ND	U	1.0	0.13	1	11/19/08	11/19/08	JWG0804466	
1,1-Dichloroethane	ND	U	1.0	0.56	1	11/19/08	11/19/08	JWG0804466	
Vinyl Acetate	ND	U	10	0.60	1	11/19/08	11/19/08	JWG0804466	
Chloroprene	ND	U	1.0	0.24	1	11/19/08	11/19/08	JWG0804466	
cis-1,2-Dichloroethene	ND	U	1.0	0.12	1	11/19/08	11/19/08	JWG0804466	
2,2-Dichloropropane	ND	U	1.0	0.22	1	11/19/08	11/19/08	JWG0804466	
1,1-Dichloropropene	ND	U	5.0	0.13	1	11/19/08	11/19/08	JWG0804466	
2-Butanone (MEK)	ND	U	10	0.56	1	11/19/08	11/19/08	JWG0804466	
Propionitrile	ND	U	25	0.87	1	11/19/08	11/19/08	JWG0804466	
Bromochloromethane	ND		5.0	0.14	1	11/19/08	11/19/08	JWG0804466	
Methacrylonitrile	ND	U	5.0	0.20	1	11/19/08	11/19/08	JWG0804466	
Chloroform	ND	U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
1,1,1-Trichloroethane (TCA)	ND	U	1.0	0.21	1	11/19/08	11/19/08	JWG0804466	
Carbon Tetrachloride	ND	U	1.0	0.18	1	11/19/08	11/19/08	JWG0804466	
Benzene	ND	U	1.0	0.52	1	11/19/08	11/19/08	JWG0804466	
1,2-Dichloroethane (EDC)	ND	U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	
Isobutyl Alcohol	ND	U	100	4.6	1	11/19/08	11/19/08	JWG0804466	
Trichloroethene (TCE)	ND	U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	
1,2-Dichloropropane	ND	U	1.0	0.057	1	11/19/08	11/19/08	JWG0804466	

Printed: 11/20/2008 12:54:07

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

24

ge 1 of 3

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA Date Received: NA

## Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Method Blank

JWG0804466-3

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromomethane	ND	U	5.0	0.12	1	11/19/08	11/19/08	JWG0804466	
Methyl Methacrylate	ND	U	1.0	0.21	1	11/19/08	11/19/08	JWG0804466	
Bromodichloromethane	ND	U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
cis-1,3-Dichloropropene	ND	U.	1.0	0.12	1	11/19/08	11/19/08	JWG0804466	
4-Methyl-2-pentanone (MIBK)	ND	U	25	0.37	1	11/19/08	11/19/08	JWG0804466	
Toluene	ND	U	1.0	0.52	1	11/19/08	11/19/08	JWG0804466	
trans-1,3-Dichloropropene	ND	U	1.0	0.12	1	11/19/08	11/19/08	JWG0804466	
Ethyl Methacrylate	ND	U	1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
1,1,2-Trichloroethane	ND	U	1.0	0.21	1	11/19/08	11/19/08	JWG0804466	
Tetrachloroethene (PCE)	ND	U	1.0	0.22	1	11/19/08	11/19/08	JWG0804466	
1,3-Dichloropropane	ND	U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
2-Hexanone	ND	U	25	0.36	1	11/19/08	11/19/08	JWG0804466	
Dibromochloromethane	ND	U	1.0	0.11	1	11/19/08	11/19/08	JWG0804466	
1,2-Dibromoethane (EDB)	ND	U	1.0	0.18	1	11/19/08	11/19/08	JWG0804466	
Chlorobenzene	ND	U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	***************************************
1,1,1,2-Tetrachloroethane	ND	U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
Ethylbenzene	ND	U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
m,p-Xylenes	ND		2.0	0.22	1	11/19/08	11/19/08	JWG0804466	
o-Xylene	ND	U	1.0	0.10	1	11/19/08	11/19/08	JWG0804466	
Styrene	ND	U	1.0	0.051	1	11/19/08	11/19/08	JWG0804466	
Bromoform	ND	U	2.0	0.12	1	11/19/08	11/19/08	JWG0804466	***************************************
1,1,2,2-Tetrachloroethane	ND	U	1.0	0.15	1	11/19/08	11/19/08	JWG0804466	
1,2,3-Trichloropropane	ND	U	2.0	0.16	1	11/19/08	11/19/08	JWG0804466	
trans-1,4-Dichloro-2-butene	ND	U	20	1.1	1	11/19/08	11/19/08	JWG0804466	
1,3-Dichlorobenzene	ND	U	1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
1,4-Dichlorobenzene	ND	U	1.0	0.14	1	11/19/08	11/19/08	JWG0804466	
1,2-Dichlorobenzene	ND	U	1.0	0.17	1	11/19/08	11/19/08	JWG0804466	
1,2-Dibromo-3-chloropropane (DBCP	ND	U	5.0	0.26	1	11/19/08	11/19/08	JWG0804466	
1,2,4-Trichlorobenzene	ND	U	10	0.30	1	11/19/08	11/19/08	JWG0804466	
Hexachlorobutadiene	ND	Ú	10	0.61	1	11/19/08	11/19/08	JWG0804466	***
Naphthalene	ND	U	10	0.25	1	11/19/08	11/19/08	JWG0804466	

~	4
Comm	ente:

Printed: 11/20/2008 12:54:07

 $p:\Stealth\Crystal.rpt\Form1\,m.rpt$ 

Merged

Form 1A - Organic

 $25_{\text{Page}} \quad \text{2 of} \quad 3$ 

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA Date Received: NA

Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804466-3

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	92	71-122	11/19/08	Acceptable
4-Bromofluorobenzene	92	75-120	11/19/08	Acceptable
Dibromofluoromethane	99	82-116	11/19/08	Acceptable
Toluene-d8	106	88-117	11/19/08	Acceptable

Comments:

Printed: 11/20/2008 12:54:07

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

26_{Page 3 of 3}

RR25756 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants

Project: Sample Matrix: JED SWDF/FQ1512

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

L-1

Lab Code:

J0805551-001

Units: ug/L

Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DBCP	ND U ND U	0.020 0.020	0.0070 0.0057	1 1	11/16/08 11/16/08	11/18/08 11/18/08	JWG0804358 JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	120	77-150	11/18/08	Acceptable

Comments:

Printed: 11/20/2008 13:20:53

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: 11/13/2008

**Date Received:** 11/14/2008

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

L-4

Lab Code:

J0805551-002

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	118	77-150	11/18/08	Acceptable	

**Comments:** 

Printed: 11/20/2008 13:20:54

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference:

RR25760

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805551

Date Collected: 11/13/2008

**Date Received:** 11/14/2008

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

L-5

Lab Code:

J0805551-003

Units: ug/L Basis: NA

**Extraction Method:** 

METHOD

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	And the second second
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	118	77-150	11/18/08	Acceptable

Comments:

Printed: 11/20/2008 13:20:55

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA

Date Collected: NA

Date Received: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804358-4

Units: ug/L Basis: NA

**Extraction Method:** 

METHOD

. . .

Analysis Method:

8011

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.020	0.0070	1	11/16/08	11/18/08	JWG0804358	
1,2-Dibromo-3-chloropropane (DBCP	ND U	0.020	0.0057	1	11/16/08	11/18/08	JWG0804358	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	132	77-150	11/18/08	Acceptable

**Comments:** 

Printed: 11/20/2008 13:20:57 p:\Stealth\Crystal.rpt\FormIm.rpt

Merged

Form 1A - Organic

 $30_{Page}$ 

1 of 1

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-1

Lab Code:

J0805551-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

Analysis Method:

8270C

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodimethylamine	ND	U	5.7	0.83	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosomethylethylamine	ND	U	5.7	0.94	1	11/18/08	11/20/08	JWG0804427	
Methyl Methanesulfonate	ND	U	5.7	0.64	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosodiethylamine	ND		5.7	0.72	1	11/18/08	11/20/08	JWG0804427	
Ethyl Methanesulfonate	ND		5.7	0.74	1	11/18/08	11/20/08	JWG0804427	
Phenol	ND	U	5.7	0.48	1	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroethyl) Ether	ND		5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
2-Chlorophenol	ND		5.7	0.86	1	11/18/08	11/20/08	JWG0804427	
1,3-Dichlorobenzene	ND	U	5.7	0.80	1	11/18/08	11/20/08	JWG0804427	
1,4-Dichlorobenzene	2.6		5.7	1.4	1	11/18/08	11/20/08	JWG0804427	
1,2-Dichlorobenzene	ND		5.7	0.85	1	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroisopropyl) Ether	ND	U	5.7	0.65	1	11/18/08	11/20/08	JWG0804427	
Benzyl alcohol	ND		5.7	0.79	1	11/18/08	11/20/08	JWG0804427	THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O
2-Methylphenol	ND		5.7	0.73	1	11/18/08	11/20/08	JWG0804427	
Acetophenone	ND	U	12	1.5	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosopyrrolidine	ND		5.7	0.80	1	11/18/08	11/20/08	JWG0804427	
Hexachloroethane	ND		5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosodi-n-propylamine	ND	U	5.7	0.78	1	11/18/08	11/20/08	JWG0804427	
o-Toluidine	ND		5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
4-Methylphenol†	2.4		5.7	0.88	1	11/18/08	11/20/08	JWG0804427	
Nitrobenzene	ND	U	5.7	0.83	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosopiperidine	ND		5.7	1.9	1	11/18/08	11/20/08	JWG0804427	
Isophorone	ND		5.7	0.91	1	11/18/08	11/20/08	JWG0804427	
2-Nitrophenol	ND	U	23	0.69	1	11/18/08	11/20/08	JWG0804427	
2,4-Dimethylphenol	ND		5.7	0.90	1	11/18/08	11/20/08	JWG0804427	A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR
O,O,O-Triethyl Phosphorothioate	ND		23	0.60	1	11/18/08	11/20/08	JWG0804427	
bis(2-Chloroethoxy)methane	ND	U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
2,4-Dichlorophenol	ND		5.7	0.57	1	11/18/08	11/20/08	JWG0804427	
1,2,4-Trichlorobenzene	ND	U	5.7	0.89	1	11/18/08	11/20/08	JWG0804427	
Naphthalene	ND	U	5.7	0.90	1	11/18/08	11/20/08	JWG0804427	
2,6-Dichlorophenol	ND	U	12	0.82	1	11/18/08	11/20/08	JWG0804427	
Hexachloropropene	ND		5.7	2.2	1	11/18/08	11/20/08	JWG0804427	
4-Chloroaniline	ND	U	5.7	0.61	1	11/18/08	11/20/08	JWG0804427	
Hexachlorobutadiene	ND	U	5.7	0.70	1	11/18/08	11/20/08	JWG0804427	CHARLEST CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CONTRACTOR TO THE CON

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-1

Lab Code:

J0805551-001

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result (	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodi-n-butylamine	ND 1	U	5.7	0.77	1	11/18/08	11/20/08	JWG0804427	
p-Phenylenediamine	ND 1	U	23	1.3	1	11/18/08	11/20/08	JWG0804427	
4-Chloro-3-methylphenol	ND 1	U	5.7	0.86	1	11/18/08	11/20/08	JWG0804427	
2-Methylnaphthalene	ND 1	U	5.7	0.85	1	11/18/08	11/20/08	JWG0804427	
Hexachlorocyclopentadiene	ND 1	U	5.7	0.47	1	11/18/08	11/20/08	JWG0804427	
1,2,4,5-Tetrachlorobenzene	ND 1	U	5.7	0.63	1	11/18/08	11/20/08	JWG0804427	
Safrole	ND 1	U	5.7	0.81	1	11/18/08	11/20/08	JWG0804427	
2,4,6-Trichlorophenol	ND 1	U	5.7	0.83	1	11/18/08	11/20/08	JWG0804427	
2,4,5-Trichlorophenol	ND 1	U	5.7	0.74	1	11/18/08	11/20/08	JWG0804427	
Isosafrole		U	5.7	0.86	1	11/18/08	11/20/08	JWG0804427	
2-Chloronaphthalene	ND 1	U	5.7	0.81	1	11/18/08	11/20/08	JWG0804427	
2-Nitroaniline	ND I		5.7	0.63	1	11/18/08	11/20/08	JWG0804427	
1,4-Naphthoquinone	ND 1		12	1.6	1	11/18/08	11/20/08	JWG0804427	
1,3-Dinitrobenzene	ND 1	U	12	1.8	1	11/18/08	11/20/08	JWG0804427	
Acenaphthylene	ND 1		5.7	0.66	1	11/18/08	11/20/08	JWG0804427	
Dimethyl Phthalate	ND I		5.7	0.87	1	11/18/08	11/20/08	JWG0804427	
2,6-Dinitrotoluene	ND 1	U	5.7	0.95	1	11/18/08	11/20/08	JWG0804427	
Acenaphthene	ND 1		5.7	1.2	1 ,	11/18/08	11/20/08	JWG0804427	
3-Nitroaniline	ND 1		5.7	0.86	1	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrophenol	ND 1	U	23	0.62	1	11/18/08	11/20/08	JWG0804427	
Pentachlorobenzene	ND I		5.7	2.8	1	11/18/08	11/20/08	JWG0804427	
Dibenzofuran	ND I		5.7	0.90	1	11/18/08	11/20/08	JWG0804427	
4-Nitrophenol	ND 1	U	23	1.1	1	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrotoluene	ND I		5.7	4.7	1	11/18/08	11/20/08	JWG0804427	
2-Naphthylamine	ND I		5.7	1.3	1	11/18/08	11/20/08	JWG0804427	
2,3,4,6-Tetrachlorophenol	ND 1	U	5.7	1.4	1	11/18/08	11/20/08	JWG0804427	
1-Naphthylamine	ND I		5.7	1.3	1	11/18/08	11/20/08	JWG0804427	
Fluorene	ND U		5.7	1.0	1	11/18/08	11/20/08	JWG0804427	
4-Chlorophenyl Phenyl Ether	ND I		5.7	0.70	1	11/18/08	11/20/08	JWG0804427	
Thionazin	ND I		12	0.93	1	11/18/08	11/20/08	JWG0804427	
Diethyl Phthalate	ND I		5.7	4.7	1	11/18/08	11/20/08	JWG0804427	
5-Nitro-o-toluidine	ND I		5.7	1.2	1	11/18/08	11/20/08	JWG0804427	
4-Nitroaniline		U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
2-Methyl-4,6-dinitrophenol	ND I	UJ	23	0.73	1	11/18/08	11/20/08	JWG0804427	J(3)

Comments:

Printed: 12/01/2008 15:22:55  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

 $32_{\text{Page}}$ 

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551 **Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-1

Lab Code:

J0805551-001

**Extraction Method:** 

EPA 3510C

Analysis Method:

8270C

Units: ug/L Basis: NA Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodiphenylamine†	ND U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
Diallate	ND U	5.7	1.2	1	11/18/08	11/20/08	JWG0804427	
Phorate	ND U	5.7	1.0	1	11/18/08	11/20/08	JWG0804427	
1,3,5-Trinitrobenzene	ND U	5.7	1.3	1	11/18/08	11/20/08	JWG0804427	
4-Bromophenyl Phenyl Ether	ND U	5.7	0.77	1	11/18/08	11/20/08	JWG0804427	
Phenacetin	ND U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
Hexachlorobenzene	ND U	5.7	0.72	1	11/18/08	11/20/08	JWG0804427	
Dimethoate	ND U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
4-Aminobiphenyl	ND U	5.7	1.2	1	11/18/08	11/20/08	JWG0804427	
Pentachlorophenol	ND U	23	0.77	1	11/18/08	11/20/08	JWG0804427	
Pentachloronitrobenzene	ND U	5.7	1.8	1	11/18/08	11/20/08	JWG0804427	
Pronamide	ND U	23	0.97	1	11/18/08	11/20/08	JWG0804427	
Phenanthrene	ND U	5.7	0.80	1	11/18/08	11/20/08	JWG0804427	
Disulfoton	ND U	5.7	0.60	1	11/18/08	11/20/08	JWG0804427	
Dinoseb	ND U	5.7	0.70	1	11/18/08	11/20/08	JWG0804427	
Anthracene	ND U	5.7	0.81	1	11/18/08	11/20/08	JWG0804427	
Methyl Parathion	ND U	12	1.3	1	11/18/08	11/20/08	JWG0804427	
Di-n-butyl Phthalate	ND U	5.7	1.2	1	11/18/08	11/20/08	JWG0804427	
Parathion	ND U	23	1.1	1	11/18/08	11/20/08	JWG0804427	
Methapyrilene	ND U	5.7	1.8	1	11/18/08	11/20/08	JWG0804427	
Isodrin	ND U	12	0.81	1	11/18/08	11/20/08	JWG0804427	
Fluoranthene	ND U	5.7	0.75	1	11/18/08	11/20/08	JWG0804427	
Pyrene	ND U	5.7	0.96	1	11/18/08	11/20/08	JWG0804427	
Chlorobenzilate	ND U	12	0.96	1	11/18/08	11/20/08	JWG0804427	
3,3'-Dimethylbenzidine	ND UJ	23	2.7	1	11/18/08	11/20/08	JWG0804427	J(3)
Famphur	ND U	12	0.79	1	11/18/08	11/20/08	JWG0804427	
p-Dimethylaminoazobenzene	ND U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
Butyl Benzyl Phthalate	ND U	12	1.3	1	11/18/08	11/20/08	JWG0804427	
2-Acetylaminofluorene	ND U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
Kepone	ND U	57	4.8	1	11/18/08	11/20/08	JWG0804427	
3,3'-Dichlorobenzidine	ND U	23	1.1	1	11/18/08	11/20/08	JWG0804427	
Benz(a)anthracene	ND U	5.7	0.98	1	11/18/08	11/20/08	JWG0804427	
Chrysene	ND U	5.7	0.99	1	11/18/08	11/20/08	JWG0804427	
Bis(2-ethylhexyl) Phthalate	ND U	5.7	1.2	1	11/18/08	11/20/08	JWG0804427	

Comments:

Printed: 12/01/2008 15:22:55 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $33_{Page}$ 

3 of 4

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805551

Date Collected: 11/13/2008

**Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-1

Lab Code:

J0805551-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Di-n-octyl Phthalate	ND U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	
Benzo(b)fluoranthene	ND UJ	5.7	0.99	1	11/18/08	11/20/08	JWG0804427	J(3)
Benzo(k)fluoranthene	ND U	5.7	0.62	1	11/18/08	11/20/08	JWG0804427	` ,
7,12-Dimethylbenz(a)anthracene	ND U	5.7	0.99	1	11/18/08	11/20/08	JWG0804427	TENNIA TENNIA MARIANTANA MARIANTANA
Benzo(a)pyrene	ND U	5.7	0.72	1	11/18/08	11/20/08	JWG0804427	
3-Methylcholanthrene	ND U	5.7	1.2	1	11/18/08	11/20/08	JWG0804427	
Indeno(1,2,3-cd)pyrene	ND U	5.7	0.63	1	11/18/08	11/20/08	JWG0804427	
Dibenz(a,h)anthracene	ND U	5.7	0.71	1	11/18/08	11/20/08	JWG0804427	
Benzo(g,h,i)perylene	ND U	5.7	1.1	1	11/18/08	11/20/08	JWG0804427	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	. 18	10-77	11/20/08	Acceptable
Phenol-d6	15	10-51	11/20/08	Acceptable
Nitrobenzene-d5	51	32-106	11/20/08	Acceptable
2-Fluorobiphenyl	31	30-102	11/20/08	Acceptable
2,4,6-Tribromophenol	41	30-143	11/20/08	Acceptable
Terphenyl-d14	15	23-165	11/20/08	Outside Control Limits

## † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

N-Nitrosodiphenylamine

This analyte can not be separated from Diphenylamine.

**Comments:** 

Printed: 12/01/2008 15:22:55

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-4

Lab Code:

J0805551-002

Units: ug/L Basis: NA

**Extraction Method:** EPA 3510C

Level: Low

Analysis	Method:	8270C
Allalysis	Memon:	6270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND U	6.5	0.94	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosomethylethylamine	ND U	6.5	1.1	1	11/18/08	11/20/08	JWG0804427	
Methyl Methanesulfonate	ND U	6.5	0.72	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosodiethylamine	ND U	6.5	0.81	1	11/18/08	11/20/08	JWG0804427	***************************************
Ethyl Methanesulfonate	ND U	6.5	0.84	1	11/18/08	11/20/08	JWG0804427	
Phenol	ND U	6.5	0.54	1	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroethyl) Ether	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
2-Chlorophenol	ND U	6.5	0.97	1	11/18/08	11/20/08	JWG0804427	
1,3-Dichlorobenzene	ND U	6.5	0.90	1	11/18/08	11/20/08	JWG0804427	
1,4-Dichlorobenzene	3.0 I	6.5	1.6	1	11/18/08	11/20/08	JWG0804427	
1,2-Dichlorobenzene	ND U	6.5	0.95	1	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroisopropyl) Ether	ND U	6.5	0.74	1	11/18/08	11/20/08	JWG0804427	
Benzyl alcohol	ND U	6.5	0.89	1	11/18/08	11/20/08	JWG0804427	
2-Methylphenol	<b>3.7</b> I	6.5	0.83	1	11/18/08	11/20/08	JWG0804427	
Acetophenone	ND U	13	1.7	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosopyrrolidine	ND U	6.5	0.90	1	11/18/08	11/20/08	JWG0804427	
Hexachloroethane	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosodi-n-propylamine	ND U	6.5	0.88	1	11/18/08	11/20/08	JWG0804427	
o-Toluidine	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
4-Methylphenol†	<b>2.0</b> I	6.5	0.99	1	11/18/08	11/20/08	JWG0804427	
Nitrobenzene	ND U	6.5	0.94	1	11/18/08	11/20/08	JWG0804427	
N-Nitrosopiperidine	ND U	6.5	2.1	1	11/18/08	11/20/08	JWG0804427	
Isophorone	ND U	6.5	1.1	1	11/18/08	11/20/08	JWG0804427	
2-Nitrophenol	ND U	26	0.77	1	11/18/08	11/20/08	JWG0804427	
2,4-Dimethylphenol	ND U	6.5	1.1	1	11/18/08	11/20/08	JWG0804427	
O,O,O-Triethyl Phosphorothioate	ND U	26	0.67	1	11/18/08	11/20/08	JWG0804427	
bis(2-Chloroethoxy)methane	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
2,4-Dichlorophenol	ND U	6.5	0.65	1	11/18/08	11/20/08	JWG0804427	
1,2,4-Trichlorobenzene	ND U	6.5	1.0	1	11/18/08	11/20/08	JWG0804427	
Naphthalene	<b>3.9</b> I	6.5	1.1	1	11/18/08	11/20/08	JWG0804427	
2,6-Dichlorophenol	ND U	13	0.93	1	11/18/08	11/20/08	JWG0804427	
Hexachloropropene	ND U	6.5	2.5	1	11/18/08	11/20/08	JWG0804427	
4-Chloroaniline	ND U	6.5	0.68	1	11/18/08	11/20/08	JWG0804427	
Hexachlorobutadiene	ND U	6.5	0.79	1	11/18/08	11/20/08	JWG0804427	

Printed: 12/01/2008 15:22:59

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $35_{\text{Page}}$ 

1 of 4

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-4

Lab Code:

J0805551-002

**Extraction Method:** 

EPA 3510C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodi-n-butylamine	ND U	6.5	0.86	1	11/18/08	11/20/08	JWG0804427	
p-Phenylenediamine	ND U	26	1.5	1	11/18/08	11/20/08	JWG0804427	
4-Chloro-3-methylphenol	ND U	6.5	0.97	1	11/18/08	11/20/08	JWG0804427	THE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T
2-Methylnaphthalene	<b>2.6</b> I	6.5	0.95	1	11/18/08	11/20/08	JWG0804427	
Hexachlorocyclopentadiene	ND U	6.5	0.53	1	11/18/08	11/20/08	JWG0804427	
1,2,4,5-Tetrachlorobenzene	ND U	6.5	0.71	1	11/18/08	11/20/08	JWG0804427	
Safrole	ND U	6.5	0.92	1	11/18/08	11/20/08	JWG0804427	
2,4,6-Trichlorophenol	ND U	6.5	0.94	1	11/18/08	11/20/08	JWG0804427	
2,4,5-Trichlorophenol	ND U	6.5	0.84	1	11/18/08	11/20/08	JWG0804427	
Isosafrole	ND U	6.5	0.97	1	11/18/08	11/20/08	JWG0804427	
2-Chloronaphthalene	ND U	6.5	0.92	1	11/18/08	11/20/08	JWG0804427	
2-Nitroaniline	ND U	6.5	0.71	1	11/18/08	11/20/08	JWG0804427	
1,4-Naphthoquinone	ND U	13	1.8	1	11/18/08	11/20/08	JWG0804427	
1,3-Dinitrobenzene	ND U	13	2.0	1	11/18/08	11/20/08	JWG0804427	
Acenaphthylene	ND U	6.5	0.75	1	11/18/08	11/20/08	JWG0804427	
Dimethyl Phthalate	ND U	6.5	0.98	1	11/18/08	11/20/08	JWG0804427	
2,6-Dinitrotoluene	ND U	6.5	1.1	1	11/18/08	11/20/08	JWG0804427	
Acenaphthene	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
3-Nitroaniline	ND U	6.5	0.97	1	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrophenol	ND U	26	0.70	1	11/18/08	11/20/08	JWG0804427	
Pentachlorobenzene	ND U	6.5	3.1	1	11/18/08	11/20/08	JWG0804427	
Dibenzofuran	ND U	6.5	1.1	1	11/18/08	11/20/08	JWG0804427	
4-Nitrophenol	ND U	26	1.2	1	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrotoluene	ND U	6.5	5.3	1	11/18/08	11/20/08	JWG0804427	
2-Naphthylamine	ND U	6.5	1.5	1	11/18/08	11/20/08	JWG0804427	
2,3,4,6-Tetrachlorophenol	ND U	6.5	1.6	1	11/18/08	11/20/08	JWG0804427	
1-Naphthylamine	ND U	6.5	1.5	1	11/18/08	11/20/08	JWG0804427	
Fluorene	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
4-Chlorophenyl Phenyl Ether	ND U	6.5	0.79	1	11/18/08	11/20/08	JWG0804427	
Thionazin	ND U	13	1.1	1	11/18/08	11/20/08	JWG0804427	
Diethyl Phthalate	ND U	6.5	5.3	1	11/18/08	11/20/08	JWG0804427	
5-Nitro-o-toluidine	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
4-Nitroaniline	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
2-Methyl-4,6-dinitrophenol	ND UJ		0.83	1	11/18/08	11/20/08	JWG0804427	J(3)
								` '

Comments:

Printed: 12/01/2008 15:22:59 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $36_{\text{Page}}$ 

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-4

Lab Code:

J0805551-002

**Extraction Method:** EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodiphenylamine†	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
Diallate	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
Phorate	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
1,3,5-Trinitrobenzene	ND U	6.5	1.5	1	11/18/08	11/20/08	JWG0804427	
4-Bromophenyl Phenyl Ether	ND U	6.5	0.86	1	11/18/08	11/20/08	JWG0804427	
Phenacetin	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
Hexachlorobenzene	ND U	6.5	0.81	1	11/18/08	11/20/08	JWG0804427	
Dimethoate	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
4-Aminobiphenyl	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
Pentachlorophenol	ND U	26	0.86	1	11/18/08	11/20/08	JWG0804427	
Pentachloronitrobenzene	ND U	6.5	2.0	1	11/18/08	11/20/08	JWG0804427	
Pronamide	ND U	26	1.1	1	11/18/08	11/20/08	JWG0804427	
Phenanthrene	ND U	6.5	0.90	1	11/18/08	11/20/08	JWG0804427	
Disulfoton	ND U	6.5	0.67	1	11/18/08	11/20/08	JWG0804427	ANT - POINT ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICLAS AND ANTICL
Dinoseb	ND U	6.5	0.79	1	11/18/08	11/20/08	JWG0804427	
Anthracene	ND U	6.5	0.92	1	11/18/08	11/20/08	JWG0804427	
Methyl Parathion	ND U	13	1.5	1	11/18/08	11/20/08	JWG0804427	
Di-n-butyl Phthalate	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
Parathion	ND U	26	1.2	1	11/18/08	11/20/08	JWG0804427	
Methapyrilene	ND U	6.5	2.0	1	11/18/08	11/20/08	JWG0804427	
Isodrin	ND U	13	0.92	1	11/18/08	11/20/08	JWG0804427	
Fluoranthene	ND U	6.5	0.85	1	11/18/08	11/20/08	JWG0804427	
Pyrene	ND U	6.5	1.1	1	11/18/08	11/20/08	JWG0804427	
Chlorobenzilate	ND U	13	1.1	1	11/18/08	11/20/08	JWG0804427	
3,3'-Dimethylbenzidine	ND UJ	26	3.0	1	11/18/08	11/20/08	JWG0804427	J(3)
Famphur	ND U	13	0.89	1	11/18/08	11/20/08	JWG0804427	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
p-Dimethylaminoazobenzene	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
Butyl Benzyl Phthalate	ND U	13	1.5	1	11/18/08	11/20/08	JWG0804427	
2-Acetylaminofluorene	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
Kepone	ND U	65	5.4	1	11/18/08	11/20/08	JWG0804427	
3,3'-Dichlorobenzidine	ND U	26	1.2	1	11/18/08	11/20/08	JWG0804427	
Benz(a)anthracene	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
Chrysene	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
Bis(2-ethylhexyl) Phthalate	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	

Printed: 12/01/2008 15:22:59 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: 11/13/2008 **Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-4

Lab Code:

J0805551-002

**Extraction Method:** 

EPA 3510C

Units: ug/L Basis: NA

Level: Low

**Analysis Method:** 

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Di-n-octyl Phthalate	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	***************************************
Benzo(b)fluoranthene	ND UJ	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	J(3)
Benzo(k)fluoranthene	ND U	6.5	0.70	1	11/18/08	11/20/08	JWG0804427	. ,
7,12-Dimethylbenz(a)anthracene	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	
Benzo(a)pyrene	ND U	6.5	0.81	1	11/18/08	11/20/08	JWG0804427	
3-Methylcholanthrene	ND U	6.5	1.3	1	11/18/08	11/20/08	JWG0804427	
Indeno(1,2,3-cd)pyrene	ND U	6.5	0.71	1	11/18/08	11/20/08	JWG0804427	
Dibenz(a,h)anthracene	ND U	6.5	0.80	1	11/18/08	11/20/08	JWG0804427	
Benzo(g,h,i)perylene	ND U	6.5	1.2	1	11/18/08	11/20/08	JWG0804427	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	19	10-77	11/20/08	Acceptable
Phenol-d6	19	10-51	11/20/08	Acceptable
Nitrobenzene-d5	59	32-106	11/20/08	Acceptable
2-Fluorobiphenyl	38	30-102	11/20/08	Acceptable
2,4,6-Tribromophenol	48	30-143	11/20/08	Acceptable
Terphenyl-d14	28	23-165	11/20/08	Acceptable

#### † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

N-Nitrosodiphenylamine

This analyte can not be separated from Diphenylamine.

Comments:

Printed: 12/01/2008 15:22:59

p:\Stealth\Crystal.rpt\FormIm.rpt

Merged

Form 1A - Organic

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected: 11/13/2008 Date Received:** 11/14/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-5

Lab Code:

J0805551-003

**Extraction Method:** EPA 3510C Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND U	150	21	25	11/18/08	11/20/08	JWG0804427	
N-Nitrosomethylethylamine	ND U	150	24	25	11/18/08	11/20/08	JWG0804427	
Methyl Methanesulfonate	ND U	150	16	25	11/18/08	11/20/08	JWG0804427	
N-Nitrosodiethylamine	ND U	150	18	25	11/18/08	11/20/08	JWG0804427	
Ethyl Methanesulfonate	ND U	150	19	25	11/18/08	11/20/08	JWG0804427	
Phenol	110 I	150	12	25	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroethyl) Ether	ND U	150	28	25	11/18/08	11/20/08	JWG0804427	
2-Chlorophenol	ND U	150	22	25	11/18/08	11/20/08	JWG0804427	
1,3-Dichlorobenzene	ND U	150	20	25	11/18/08	11/20/08	JWG0804427	
1,4-Dichlorobenzene	ND U	150	35	25	11/18/08	11/20/08	JWG0804427	
1,2-Dichlorobenzene	ND U	150	22	25	11/18/08	11/20/08	JWG0804427	
Bis(2-chloroisopropyl) Ether	ND U	150	17	25	11/18/08	11/20/08	JWG0804427	
Benzyl alcohol	ND U	150	20	25	11/18/08	11/20/08	JWG0804427	
2-Methylphenol	ND U	150	19	25	11/18/08	11/20/08	JWG0804427	
Acetophenone	ND U	290	37	25	11/18/08	11/20/08	JWG0804427	
N-Nitrosopyrrolidine	ND U	150	20	25	11/18/08	11/20/08	JWG0804427	
Hexachloroethane	ND U	150	27	25	11/18/08	11/20/08	JWG0804427	
N-Nitrosodi-n-propylamine	ND U	150	20	25	11/18/08	11/20/08	JWG0804427	
o-Toluidine	ND U	150	26	25	11/18/08	11/20/08	JWG0804427	
4-Methylphenol†	1900	150	22	25	11/18/08	11/20/08	JWG0804427	
Nitrobenzene	ND U	150	21	25	11/18/08	11/20/08	JWG0804427	
N-Nitrosopiperidine	ND U	150	46	25	11/18/08	11/20/08	JWG0804427	
Isophorone	ND U	150	23	25	11/18/08	11/20/08	JWG0804427	
2-Nitrophenol	ND U	570	18	25	11/18/08	11/20/08	JWG0804427	
2,4-Dimethylphenol	ND U	150	23	25	11/18/08	11/20/08	JWG0804427	
O,O,O-Triethyl Phosphorothioate	ND U	570	15	25	11/18/08	11/20/08	JWG0804427	
bis(2-Chloroethoxy)methane	ND U	150	26	25	11/18/08	11/20/08	JWG0804427	
2,4-Dichlorophenol	ND U	150	15	25	11/18/08	11/20/08	JWG0804427	
1,2,4-Trichlorobenzene	ND U	150	23	25	11/18/08	11/20/08	JWG0804427	
Naphthalene	ND U	150	23	25	11/18/08	11/20/08	JWG0804427	
2,6-Dichlorophenol	ND U	290	21	25	11/18/08	11/20/08	JWG0804427	
Hexachloropropene	ND U	150	54	25	11/18/08	11/20/08	JWG0804427	
4-Chloroaniline	ND U	150	16	25	11/18/08	11/20/08	JWG0804427	
Hexachlorobutadiene	ND U	150	18	25	11/18/08	11/20/08	JWG0804427	

<b>Comments:</b>
------------------

Printed: 12/01/2008 15:23:05 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $39_{\text{Page}}$ 

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-5

Lab Code:

J0805551-003

**Extraction Method:** EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodi-n-butylamine	ND U	150	20	25	11/18/08	11/20/08	JWG0804427	
p-Phenylenediamine	ND U	570	32	25	11/18/08	11/20/08	JWG0804427	
4-Chloro-3-methylphenol	ND U	150	22	25	11/18/08	11/20/08	JWG0804427	
2-Methylnaphthalene	ND U	150	22	25	11/18/08	11/20/08	JWG0804427	
Hexachlorocyclopentadiene	ND U	150	12	25	11/18/08	11/20/08	JWG0804427	
1,2,4,5-Tetrachlorobenzene	ND U	150	16	25	11/18/08	11/20/08	JWG0804427	
Safrole	ND U	150	21	25	11/18/08	11/20/08	JWG0804427	
2,4,6-Trichlorophenol	ND U	150	21	25	11/18/08	11/20/08	JWG0804427	
2,4,5-Trichlorophenol	ND U	150	19	25	11/18/08	11/20/08	JWG0804427	
Isosafrole	ND U	150	22	25	11/18/08	11/20/08	JWG0804427	
2-Chloronaphthalene	ND U	150	21	25	11/18/08	11/20/08	JWG0804427	
2-Nitroaniline	ND U	150	16	25	11/18/08	11/20/08	JWG0804427	
1,4-Naphthoquinone	ND U	290	40	25	11/18/08	11/20/08	JWG0804427	
1,3-Dinitrobenzene	ND U	290	43	25	11/18/08	11/20/08	JWG0804427	
Acenaphthylene	ND U	150	17	25	11/18/08	11/20/08	JWG0804427	
Dimethyl Phthalate	ND U	150	22	25	11/18/08	11/20/08	JWG0804427	
2,6-Dinitrotoluene	ND U	150	24	25	11/18/08	11/20/08	JWG0804427	
Acenaphthene	ND U	150	29	25	11/18/08	11/20/08	JWG0804427	
3-Nitroaniline	ND U	150	22	25	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrophenol	ND U	570	16	25	11/18/08	11/20/08	JWG0804427	
Pentachlorobenzene	ND U	150	69	25	11/18/08	11/20/08	JWG0804427	
Dibenzofuran	ND U	150	23	25	11/18/08	11/20/08	JWG0804427	
4-Nitrophenol	ND U	570	27	25	11/18/08	11/20/08	JWG0804427	
2,4-Dinitrotoluene	ND U	150	120	25	11/18/08	11/20/08	JWG0804427	
2-Naphthylamine	ND U	150	32	25	11/18/08	11/20/08	JWG0804427	
2,3,4,6-Tetrachlorophenol	ND U	150	35	25	11/18/08	11/20/08	JWG0804427	
1-Naphthylamine	ND U	150	32	25	11/18/08	11/20/08	JWG0804427	
Fluorene	ND U	150	25	25	11/18/08	11/20/08	JWG0804427	
4-Chlorophenyl Phenyl Ether	ND U	150	18	25	11/18/08	11/20/08	JWG0804427	
Thionazin	ND U	290	24	25	11/18/08	11/20/08	JWG0804427	
Diethyl Phthalate	ND U	150	120	25	11/18/08	11/20/08	JWG0804427	
5-Nitro-o-toluidine	ND U	150	29	25	11/18/08	11/20/08	JWG0804427	
4-Nitroaniline	ND U	150	27	25	11/18/08	11/20/08	JWG0804427	
2-Methyl-4,6-dinitrophenol	ND UJ	570	19	25	11/18/08	11/20/08	JWG0804427	J(3)

Comments:

Printed: 12/01/2008 15:23:05

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $40_{\text{Page}}$ 

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-5

Lab Code:

J0805551-003

Units: ug/L Basis: NA

**Extraction Method:** EPA 3510C

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodiphenylamine†	ND U	150	28	25	11/18/08	11/20/08	JWG0804427	eurocusessociumismo
Diallate	ND U	150	29	25	11/18/08	11/20/08	JWG0804427	
Phorate	ND U	150	25	25	11/18/08	11/20/08	JWG0804427	
1,3,5-Trinitrobenzene	ND U	150	32	25	11/18/08	11/20/08	JWG0804427	
4-Bromophenyl Phenyl Ether	ND U	150	20	25	11/18/08	11/20/08	JWG0804427	
Phenacetin	ND U	150	26	25	11/18/08	11/20/08	JWG0804427	
Hexachlorobenzene	ND U	150	18	25	11/18/08	11/20/08	JWG0804427	
Dimethoate	ND U	150	26	25	11/18/08	11/20/08	JWG0804427	
4-Aminobiphenyl	ND U	150	29	25	11/18/08	11/20/08	JWG0804427	
Pentachlorophenol	ND U	570	20	25	11/18/08	11/20/08	JWG0804427	
Pentachloronitrobenzene	ND U	150	43	25	11/18/08	11/20/08	JWG0804427	
Pronamide	ND U	570	25	25	11/18/08	11/20/08	JWG0804427	
Phenanthrene	ND U	150	20	25	11/18/08	11/20/08	JWG0804427	
Disulfoton	ND U	150	15	25	11/18/08	11/20/08	JWG0804427	
Dinoseb	ND U	150	18	25	11/18/08	11/20/08	JWG0804427	
Anthracene	ND U	150	21	25	11/18/08	11/20/08	JWG0804427	
Methyl Parathion	ND U	290	32	25	11/18/08	11/20/08	JWG0804427	
Di-n-butyl Phthalate	ND U	150	28	25	11/18/08	11/20/08	JWG0804427	
Parathion	ND U	570	27	25	11/18/08	11/20/08	JWG0804427	
Methapyrilene	ND U	150	43	25	11/18/08	11/20/08	JWG0804427	
Isodrin	ND U	290	21	25	11/18/08	11/20/08	JWG0804427	
Fluoranthene	ND U	150	19	25	11/18/08	11/20/08	JWG0804427	
Pyrene	ND U	150	24	25	11/18/08	11/20/08	JWG0804427	
Chlorobenzilate	ND U	290	24	25	11/18/08	11/20/08	JWG0804427	
3,3'-Dimethylbenzidine	ND UJ	570	66	25	11/18/08	11/20/08	JWG0804427	J(3)
Famphur	ND U	290	20	25	11/18/08	11/20/08	JWG0804427	
p-Dimethylaminoazobenzene	ND U	150	26	25	11/18/08	11/20/08	JWG0804427	
Butyl Benzyl Phthalate	ND U	290	32	25	11/18/08	11/20/08	JWG0804427	
2-Acetylaminofluorene	ND U	150	26	25	11/18/08	11/20/08	JWG0804427	
Kepone	ND U	1500	120	25	11/18/08	11/20/08	JWG0804427	
3,3'-Dichlorobenzidine	ND U	570	26	25	11/18/08	11/20/08	JWG0804427	
Benz(a)anthracene	ND U	150	25	25	11/18/08	11/20/08	JWG0804427	
Chrysene	ND U	150	25	25	11/18/08	11/20/08	JWG0804427	
Bis(2-ethylhexyl) Phthalate	ND U	150	28	25	11/18/08	11/20/08	JWG0804427	

Merged

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

L-5

Lab Code:

J0805551-003

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 

8270C

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Di-n-octyl Phthalate	ND	U	150	27	25	11/18/08	11/20/08	JWG0804427	***************************************
Benzo(b)fluoranthene	ND	UJ	150	25	25	11/18/08	11/20/08	JWG0804427	J(3)
Benzo(k)fluoranthene	ND	U	150	16	25	11/18/08	11/20/08	JWG0804427	· /
7,12-Dimethylbenz(a)anthracene	ND	U	150	25	25	11/18/08	11/20/08	JWG0804427	
Benzo(a)pyrene	ND	U	150	18	25	11/18/08	11/20/08	JWG0804427	
3-Methylcholanthrene	ND	U	150	28	25	11/18/08	11/20/08	JWG0804427	
Indeno(1,2,3-cd)pyrene	ND	U	150	16	25	11/18/08	11/20/08	JWG0804427	
Dibenz(a,h)anthracene	ND	U	150	18	25	11/18/08	11/20/08	JWG0804427	
Benzo(g,h,i)perylene	ND	U	150	26	25	11/18/08	11/20/08	JWG0804427	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	20	10-77	11/20/08	Acceptable
Phenol-d6	11	10-51	11/20/08	Acceptable
Nitrobenzene-d5	51	32-106	11/20/08	Acceptable
2-Fluorobiphenyl	42	30-102	11/20/08	Acceptable
2,4,6-Tribromophenol	0	30-143	11/20/08	Outside Control Limits
Terphenyl-d14	41	23-165	11/20/08	Acceptable

### † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

N-Nitrosodiphenylamine

This analyte can not be separated from Diphenylamine.

Comments:

Printed: 12/01/2008 15:23:05 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

RR25930 SuperSet Reference:

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

Project: Sample Matrix:

Water

Service Request: J0805551

equest: JU8USS:

Date Collected: NA
Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804427-1

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND U	5.0	0.73	1	11/18/08	11/19/08	JWG0804427	11010
N-Nitrosomethylethylamine	ND U	5.0	0.82	1	11/18/08	11/19/08	JWG0804427	
Methyl Methanesulfonate	ND U	5.0	0.56	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosodiethylamine	ND U	5.0	0.63	1	11/18/08	11/19/08	JWG0804427	
Ethyl Methanesulfonate	ND U	5.0	0.65	1	11/18/08	11/19/08	JWG0804427	
Phenol	ND U	5.0	0.42	1	11/18/08	11/19/08	JWG0804427	
Bis(2-chloroethyl) Ether	ND U	5.0	0.96	1	11/18/08	11/19/08	JWG0804427	
2-Chlorophenol	ND U	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
1,3-Dichlorobenzene	ND U	5.0	0.70	1	11/18/08	11/19/08	JWG0804427	
1,4-Dichlorobenzene	ND U	5.0	1.2	1	11/18/08	11/19/08	JWG0804427	
1,2-Dichlorobenzene	ND U	5.0	0.74	1	11/18/08	11/19/08	JWG0804427	
Bis(2-chloroisopropyl) Ether	ND U	5.0	0.57	1	11/18/08	11/19/08	JWG0804427	
Benzyl alcohol	ND U	5.0	0.69	1	11/18/08	11/19/08	JWG0804427	
2-Methylphenol	ND U	5.0	0.64	1	11/18/08	11/19/08	JWG0804427	
Acetophenone	ND U	10	1.3	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosopyrrolidine	ND U	5.0	0.70	1	11/18/08	11/19/08	JWG0804427	
Hexachloroethane	ND U	5.0	0.70	1	11/18/08	11/19/08	JWG0804427 JWG0804427	
N-Nitrosodi-n-propylamine	ND U	5.0	0.92	1	11/18/08	11/19/08	JWG0804427	
o-Toluidine	ND U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427	
4-Methylphenol†	ND U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427 JWG0804427	
Nitrobenzene	ND U	5.0 5.0						
			0.73	1	11/18/08	11/19/08	JWG0804427	
N-Nitrosopiperidine	ND U	5.0	1.6	1	11/18/08	11/19/08	JWG0804427	
Isophorone	ND U	5.0	0.80	1	11/18/08	11/19/08	JWG0804427	
2-Nitrophenol	ND U	20	0.60	1	11/18/08	11/19/08	JWG0804427	
2,4-Dimethylphenol	ND U	5.0	0.79	1	11/18/08	11/19/08	JWG0804427	
O,O,O-Triethyl Phosphorothioate	ND U	20	0.52	1	11/18/08	11/19/08	JWG0804427	
bis(2-Chloroethoxy)methane	ND U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427	
2,4-Dichlorophenol	ND U	5.0	0.50	1	11/18/08	11/19/08	JWG0804427	
1,2,4-Trichlorobenzene	ND U	5.0	0.78	1	11/18/08	11/19/08	JWG0804427	
Naphthalene	ND U	5.0	0.79	1	11/18/08	11/19/08	JWG0804427	
2,6-Dichlorophenol	ND U	10	0.72	1	11/18/08	11/19/08	JWG0804427	
Hexachloropropene	ND U	5.0	1.9	1	11/18/08	11/19/08	JWG0804427	
4-Chloroaniline	ND U	5.0	0.53	1	11/18/08	11/19/08	JWG0804427	
Hexachlorobutadiene	ND U	5.0	0.61	1	11/18/08	11/19/08	JWG0804427	

**Comments:** 

Printed: 12/01/2008 15:23:08

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

₹5 _{Page}

1 of 4

SuperSet Reference: RR25930

Analytical Results

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA
Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804427-1

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodi-n-butylamine	ND U	5.0	0.67	1	11/18/08	11/19/08	JWG0804427	
p-Phenylenediamine	ND U	20	1.1	1	11/18/08	11/19/08	JWG0804427	
4-Chloro-3-methylphenol	ND U	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
2-Methylnaphthalene	ND U	5.0	0.74	1	11/18/08	11/19/08	JWG0804427	
Hexachlorocyclopentadiene	ND U	5.0	0.41	1	11/18/08	11/19/08	JWG0804427	
1,2,4,5-Tetrachlorobenzene	ND U	5.0	0.55	1	11/18/08	11/19/08	JWG0804427	
Safrole	ND U	5.0	0.71	1	11/18/08	11/19/08	JWG0804427	
2,4,6-Trichlorophenol	ND U	5.0	0.73	1	11/18/08	11/19/08	JWG0804427	
2,4,5-Trichlorophenol	ND U	5.0	0.65	1	11/18/08	11/19/08	JWG0804427	
Isosafrole	ND U	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
2-Chloronaphthalene	ND U	5.0	0.71	1	11/18/08	11/19/08	JWG0804427	
2-Nitroaniline	ND U	5.0	0.55	1	11/18/08	11/19/08	JWG0804427	
1,4-Naphthoquinone	ND U	10	1.4	1	11/18/08	11/19/08	JWG0804427	
1,3-Dinitrobenzene	ND U	10	1.5	1	11/18/08	11/19/08	JWG0804427	
Acenaphthylene	ND U	5.0	0.58	1	11/18/08	11/19/08	JWG0804427	
Dimethyl Phthalate	ND U	5.0	0.76	1	11/18/08	11/19/08	JWG0804427	
2,6-Dinitrotoluene	ND U	5.0	0.83	1	11/18/08	11/19/08	JWG0804427	
Acenaphthene	ND U	5.0	0.99	1	11/18/08	11/19/08	JWG0804427	
3-Nitroaniline	ND U	5.0	0.75	1	11/18/08	11/19/08	JWG0804427	
2,4-Dinitrophenol	ND U	20	0.54	1	11/18/08	11/19/08	JWG0804427	
Pentachlorobenzene	ND U	5.0	2.4	1	11/18/08	11/19/08	JWG0804427	
Dibenzofuran	ND U	5.0	0.79	1	11/18/08	11/19/08	JWG0804427	
4-Nitrophenol	ND U	20	0.93	1	11/18/08	11/19/08	JWG0804427	
2,4-Dinitrotoluene	ND U	5.0	4.1	1	11/18/08	11/19/08	JWG0804427	
2-Naphthylamine	ND U	5.0	1.1	1	11/18/08	11/19/08	JWG0804427	
2,3,4,6-Tetrachlorophenol	ND U	5.0	1.2	1	11/18/08	11/19/08	JWG0804427	
1-Naphthylamine	ND U	5.0	1.1	1	11/18/08	11/19/08	JWG0804427	
Fluorene	ND U	5.0	0.88	1	11/18/08	11/19/08	JWG0804427	
4-Chlorophenyl Phenyl Ether	ND U	5.0	0.61	1	11/18/08	11/19/08	JWG0804427	
Thionazin	ND U	10	0.81	1	11/18/08	11/19/08	JWG0804427	
Diethyl Phthalate	ND U	5.0	4.1	1	11/18/08	11/19/08	JWG0804427	
5-Nitro-o-toluidine	ND U	5.0	1.0	1	11/18/08	11/19/08	JWG0804427	
4-Nitroaniline	ND U	5.0	0.92	1	11/18/08	11/19/08	JWG0804427	
2-Methyl-4,6-dinitrophenol	ND UJ	20	0.64	1	11/18/08	11/19/08	JWG0804427	J(3)

**Comments:** 

Printed: 12/01/2008 15:23:08 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $44_{\text{Dago}}$ 

SuperSet Reference: RR25930

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805551

Date Collected: NA Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG0804427-1

**Extraction Method:** 

EPA 3510C

Units: ug/L Basis: NA

Level: Low

**Analysis Method:** 8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodiphenylamine†	ND U	5.0	0.96	1	11/18/08	11/19/08	JWG0804427	
Diallate	ND U	5.0	1.0	1	11/18/08	11/19/08	JWG0804427	
Phorate	ND U	5.0	0.88	1	11/18/08	11/19/08	JWG0804427	
1,3,5-Trinitrobenzene	ND U	5.0	1.1	1	11/18/08	11/19/08	JWG0804427	
4-Bromophenyl Phenyl Ether	ND U	5.0	0.67	1	11/18/08	11/19/08	JWG0804427	<del></del>
Phenacetin	ND U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427	
Hexachlorobenzene	ND U	5.0	0.63	1	11/18/08	11/19/08	JWG0804427	
Dimethoate	ND U	5.0	0.90	1	11/18/08	11/19/08	JWG0804427	
4-Aminobiphenyl	ND U	5.0	0.99	1	11/18/08	11/19/08	JWG0804427	
Pentachlorophenol	ND U	20	0.67	1	11/18/08	11/19/08	JWG0804427	
Pentachloronitrobenzene	ND U	5.0	1.5	1	11/18/08	11/19/08	JWG0804427	
Pronamide	ND U	20	0.85	1	11/18/08	11/19/08	JWG0804427	
Phenanthrene	ND U	5.0	0.70	1	11/18/08	11/19/08	JWG0804427	
Disulfoton	ND U	5.0	0.52	1	11/18/08	11/19/08	JWG0804427	
Dinoseb	ND U	5.0	0.61	1	11/18/08	11/19/08	JWG0804427	
Anthracene	ND U	5.0	0.71	1	11/18/08	11/19/08	JWG0804427	
Methyl Parathion	ND U	10	1.1	1	11/18/08	11/19/08	JWG0804427	
Di-n-butyl Phthalate	ND U	5.0	0.97	1	11/18/08	11/19/08	JWG0804427	
Parathion	ND U	20	0.93	1	11/18/08	11/19/08	JWG0804427	
Methapyrilene	ND U	5.0	1.5	1	11/18/08	11/19/08	JWG0804427	
Isodrin	ND U	10	0.71	1	11/18/08	11/19/08	JWG0804427	
Fluoranthene	ND U	5.0	0.66	1	11/18/08	11/19/08	JWG0804427	
Pyrene	ND U	5.0	0.84	1	11/18/08	11/19/08	JWG0804427	
Chlorobenzilate	ND U	10	0.84	1	11/18/08	11/19/08	JWG0804427	
3,3'-Dimethylbenzidine	ND UJ	20	2.3	1	11/18/08	11/19/08	JWG0804427	J(3)
Famphur	ND U	10	0.69	1	11/18/08	11/19/08	JWG0804427	
p-Dimethylaminoazobenzene	ND U	5.0	0.89	1	11/18/08	11/19/08	JWG0804427	
Butyl Benzyl Phthalate	ND U	10	1.1	1	11/18/08	11/19/08	JWG0804427	
2-Acetylaminofluorene	ND U	5.0	0.90	1	11/18/08	11/19/08	JWG0804427	
Kepone	ND U	50	4.2	1	11/18/08	11/19/08	JWG0804427	
3,3'-Dichlorobenzidine	ND U	20	0.89	1	11/18/08	11/19/08	JWG0804427	
Benz(a)anthracene	ND U	5.0	0.86	1	11/18/08	11/19/08	JWG0804427	
Chrysene	ND U	5.0	0.87	1	11/18/08	11/19/08	JWG0804427	
Bis(2-ethylhexyl) Phthalate	ND U	5.0	0.98	1	11/18/08	11/19/08	JWG0804427	

Comments:
Comments.

Analytical Results

**Client:** Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA Date Received: NA

# Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Units: ug/L

Lab Code:

JWG0804427-1

Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Di-n-octyl Phthalate	ND U	5.0	0.95	1	11/18/08	11/19/08	JWG0804427	
Benzo(b)fluoranthene	ND UJ	5.0	0.87	1	11/18/08	11/19/08	JWG0804427	J(3)
Benzo(k)fluoranthene	ND U	5.0	0.54	1	11/18/08	11/19/08	JWG0804427	. ,
7,12-Dimethylbenz(a)anthracene	ND U	5.0	0.87	1	11/18/08	11/19/08	JWG0804427	
Benzo(a)pyrene	ND U	5.0	0.63	1	11/18/08	11/19/08	JWG0804427	
3-Methylcholanthrene	ND U	5.0	0.97	1	11/18/08	11/19/08	JWG0804427	
Indeno(1,2,3-cd)pyrene	ND U	5.0	0.55	1	11/18/08	11/19/08	JWG0804427	
Dibenz(a,h)anthracene	ND U	5.0	0.62	1	11/18/08	11/19/08	JWG0804427	
Benzo(g,h,i)perylene	ND U	5.0	0.91	1	11/18/08	11/19/08	JWG0804427	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	25	10-77	11/19/08	Acceptable	
Phenol-d6	20	10-51	11/19/08	Acceptable	
Nitrobenzene-d5	68	32-106	11/19/08	Acceptable	
2-Fluorobiphenyl	55	30-102	11/19/08	Acceptable	
2,4,6-Tribromophenol	74	30-143	11/19/08	Acceptable	
Terphenyl-d14	73	23-165	11/19/08	Acceptable	

#### † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

N-Nitrosodiphenylamine

This analyte can not be separated from Diphenylamine.

Comments:

Printed: 12/01/2008 15:23:08 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

RR25930 SuperSet Reference:

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

# Organochlorine Pesticides by GC-ECD

Sample Name:

L-1

Lab Code:

J0805551-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

Analysis Method:

8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result (	Q MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND 1	U 0.024	0.0092	1	11/16/08	11/21/08	JWG0804383	
gamma-BHC (Lindane)	ND I	U 0.024	0.0096	1	11/16/08	11/21/08	JWG0804383	
beta-BHC	ND 1	U 0.024	0.0099	1	11/16/08	11/21/08	JWG0804383	
delta-BHC	ND 1	U 0.024	0.013	1	11/16/08	11/21/08	JWG0804383	
Heptachlor	ND 1	U 0.024	0.012	1	11/16/08	11/21/08	JWG0804383	
Aldrin	ND 1	U 0.024	0.0080	1	11/16/08	11/21/08	JWG0804383	
Heptachlor Epoxide	ND 1	U 0.024	0.0092	1	11/16/08	11/21/08	JWG0804383	
gamma-Chlordane	ND 1	U 0.024	0.0088	1	11/16/08	11/21/08	JWG0804383	
alpha-Chlordane	ND 1	U 0.024	0.0077	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDE	ND 1	U 0.024	0.0098	1	11/16/08	11/21/08	JWG0804383	
Endosulfan I	ND 1	U 0.024	0.011	1	11/16/08	11/21/08	JWG0804383	
Dieldrin	ND 1	U 0.024	0.0085	1	11/16/08	11/21/08	JWG0804383	
Endrin	ND 1	U 0.024	0.011	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDD	ND 1	U 0.024	0.0092	1	11/16/08	11/21/08	JWG0804383	
Endosulfan II	ND 1	U 0.24	0.24	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDT	ND 1	U 0.024	0.016	1	11/16/08	11/21/08	JWG0804383	rhad tillette i dramat at bette demonstrate fran
Endrin Aldehyde	ND 1	U 0.024	0.0099	1	11/16/08	11/21/08	JWG0804383	
Methoxychlor	ND 1	U 0.047	0.013	1	11/16/08	11/21/08	JWG0804383	
Endosulfan Sulfate	ND 1	U 0.024	0.011	1	11/16/08	11/21/08	JWG0804383	
Endrin Ketone	ND 1			1	11/16/08	11/21/08	JWG0804383	
Toxaphene	ND 1	U 0.59	0.59	1	11/16/08	11/21/08	JWG0804383	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	9	32-92	11/21/08	Outside Control Limits
Decachlorobiphenyl	3	13-104	11/21/08	Outside Control Limits

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

### Organochlorine Pesticides by GC-ECD

Sample Name:

L-4

Lab Code:

J0805551-002

Extraction Method: EPA 3510C

**Analysis Method:** 

8081A

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.023	0.0090	1	11/16/08	11/21/08	JWG0804383	
gamma-BHC (Lindane)	ND U	0.023	0.0094	1	11/16/08	11/21/08	JWG0804383	
beta-BHC	ND U	0.023	0.0097	1	11/16/08	11/21/08	JWG0804383	
delta-BHC	ND U	0.023	0.013	1	11/16/08	11/21/08	JWG0804383	***************************************
Heptachlor	ND U	0.023	0.011	1	11/16/08	11/21/08	JWG0804383	
Aldrin	ND U	0.023	0.0078	1	11/16/08	11/21/08	JWG0804383	
Heptachlor Epoxide	ND U	0.023	0.0090	1	11/16/08	11/21/08	JWG0804383	
gamma-Chlordane	ND U	0.023	0.0086	1	11/16/08	11/21/08	JWG0804383	
alpha-Chlordane	ND U	0.023	0.0075	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDE	ND U	0.023	0.0096	1	11/16/08	11/21/08	JWG0804383	
Endosulfan I	ND U	0.023	0.011	1	11/16/08	11/21/08	JWG0804383	
Dieldrin	ND U	0.023	0.0083	1	11/16/08	11/21/08	JWG0804383	
Endrin	ND U	0.023	0.011	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDD	ND U	0.023	0.0090	1	11/16/08	11/21/08	JWG0804383	
Endosulfan II	ND U	0.23	0.23	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDT	ND U	0.023	0.015	1	11/16/08	11/21/08	JWG0804383	
Endrin Aldehyde	ND U	0.023	0.0097	1	11/16/08	11/21/08	JWG0804383	
Methoxychlor	ND U	0.046	0.013	1	11/16/08	11/21/08	JWG0804383	
Endosulfan Sulfate	ND U	0.023	0.011	1	11/16/08	11/21/08	JWG0804383	
Endrin Ketone	ND U	0.023	0.0061	1	11/16/08	11/21/08	JWG0804383	
Toxaphene	ND U	0.57	0.57	1	11/16/08	11/21/08	JWG0804383	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	21	32-92	11/21/08	Outside Control Limits Outside Control Limits
Decachlorobiphenyl	4	13-104	11/21/08	

Analytical Results

Client:

GeoSyntec Consultants JED SWDF/FQ1512

**Project:** Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

### Organochlorine Pesticides by GC-ECD

Sample Name:

L-5

Lab Code:

J0805551-003

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

**Analysis Method:** 

8081A

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.024	0.0092	1	11/16/08	11/25/08	JWG0804383	WEDGER HER STREET
gamma-BHC (Lindane)	ND	U	0.024	0.0096	1	11/16/08	11/25/08	JWG0804383	
beta-BHC	ND	U	0.024	0.0099	1	11/16/08	11/25/08	JWG0804383	
delta-BHC	ND	U	0.024	0.013	1	11/16/08	11/25/08	JWG0804383	~~~
Heptachlor	ND	U	0.024	0.012	1	11/16/08	11/25/08	JWG0804383	
Aldrin	ND	U	0.024	0.0080	1	11/16/08	11/25/08	JWG0804383	
Heptachlor Epoxide	ND	U	0.024	0.0092	1	11/16/08	11/25/08	JWG0804383	
gamma-Chlordane	ND	U	0.024	0.0088	1	11/16/08	11/25/08	JWG0804383	
alpha-Chlordane	ND	U	0.024	0.0077	1	11/16/08	11/25/08	JWG0804383	
4,4'-DDE	ND	U	0.024	0.0098	1	11/16/08	11/25/08	JWG0804383	
Endosulfan I	ND	U	0.024	0.011	1	11/16/08	11/25/08	JWG0804383	
Dieldrin	ND	U	0.024	0.0085	1	11/16/08	11/25/08	JWG0804383	
Endrin	ND	U	0.024	0.011	1	11/16/08	11/25/08	JWG0804383	
4,4'-DDD	ND	U	0.024	0.0092	1	11/16/08	11/25/08	JWG0804383	
Endosulfan II	ND	U	0.24	0.24	1	11/16/08	11/25/08	JWG0804383	
4,4'-DDT	ND	U	0.024	0.016	1	11/16/08	11/25/08	JWG0804383	
Endrin Aldehyde	ND	U	0.024	0.0099	1	11/16/08	11/25/08	JWG0804383	
Methoxychlor	ND	U	0.047	0.013	1	11/16/08	11/25/08	JWG0804383	
Endosulfan Sulfate	ND	U	0.024	0.011	1	11/16/08	11/25/08	JWG0804383	
Endrin Ketone	ND	U	0.024	0.0062	1	11/16/08	11/25/08	JWG0804383	
Toxaphene	ND	U	0.59	0.59	1	11/16/08	11/25/08	JWG0804383	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	61	32-92	11/25/08	Acceptable
Decachlorobiphenyl	53	13-104	11/25/08	Acceptable

Analytical Results

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA

Date Received: NA

### Organochlorine Pesticides by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG0804383-2

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8081A

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.020	0.0079	1	11/16/08	11/21/08	JWG0804383	
gamma-BHC (Lindane)	ND U	0.020	0.0082	1	11/16/08	11/21/08	JWG0804383	
beta-BHC	ND U	0.020	0.0085	1	11/16/08	11/21/08	JWG0804383	
delta-BHC	ND U	0.020	0.011	1	11/16/08	11/21/08	JWG0804383	
Heptachlor	ND U	0.020	0.0096	1	11/16/08	11/21/08	JWG0804383	
Aldrin	ND U	0.020	0.0068	1	11/16/08	11/21/08	JWG0804383	
Heptachlor Epoxide	ND U	0.020	0.0079	1	11/16/08	11/21/08	JWG0804383	
gamma-Chlordane	ND U	0.020	0.0075	1	11/16/08	11/21/08	JWG0804383	
alpha-Chlordane	ND U	0.020	0.0066	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDE	ND U	0.020	0.0084	1	11/16/08	11/21/08	JWG0804383	
Endosulfan I	ND U	0.020	0.0089	1	11/16/08	11/21/08	JWG0804383	
Dieldrin	ND U	0.020	0.0073	1	11/16/08	11/21/08	JWG0804383	
Endrin	ND U	0.020	0.0090	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDD	ND U	0.020	0.0079	1	11/16/08	11/21/08	JWG0804383	
Endosulfan II	ND U	0.20	0.20	1	11/16/08	11/21/08	JWG0804383	
4,4'-DDT	ND U	0.020	0.013	1	11/16/08	11/21/08	JWG0804383	
Endrin Aldehyde	ND U	0.020	0.0085	1	11/16/08	11/21/08	JWG0804383	
Methoxychlor	ND U	0.040	0.011	1	11/16/08	11/21/08	JWG0804383	
Endosulfan Sulfate	ND U	0.020	0.0092	1	11/16/08	11/21/08	JWG0804383	
Endrin Ketone	ND U	0.020	0.0053	1	11/16/08	11/21/08	JWG0804383	
Toxaphene	ND U	0.50	0.50	1	11/16/08	11/21/08	JWG0804383	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	46	32-92	11/21/08	Acceptable	
Decachlorobiphenyl	50	13-104	11/21/08	Acceptable	

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

# Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

L-1

Lab Code:

J0805551-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8082

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.59	0.16	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1221	ND U	0.59	0.26	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1232	ND U	0.59	0.27	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1242	ND U	0.59	0.14	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1248	ND U	0.59	0.31	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1254	ND U	0.59	0.44	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1260	ND U	0.59	0.20	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1262	ND U	0.59	0.20	1	11/16/08	11/21/08	JWG0804384	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	4	24-120	11/21/08	Outside Control Limits

Comments:

Printed: 11/26/2008 01:45:57  $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Form 1A - Organic

 $51_{\text{Page}}$ 1 of 1 SuperSet Reference: RR25859

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008

**Date Received:** 11/14/2008

# Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

L-4

Lab Code:

J0805551-002

Units: ug/L

Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.57	0.15	1	11/16/08	11/21/08	JWG0804384	WATER THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY
Aroclor 1221	ND U	0.57	0.25	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1232	ND U	0.57	0.27	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1242	ND U	0.57	0.14	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1248	ND U	0.57	0.30	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1254	ND U	0.57	0.43	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1260	ND U	0.57	0.20	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1262	ND U	0.57	0.20	1	11/16/08	11/21/08	JWG0804384	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	5	24-120	11/21/08	Outside Control Limits

**Comments:** 

Printed: 11/26/2008 01:45:58 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

 $52_{\text{Page}}$ 

1 of 1

SuperSet Reference: RR25859

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Collected:** 11/13/2008 **Date Received:** 11/14/2008

# Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

L-5

Lab Code:

J0805551-003

EPA 3510C

**Extraction Method: Analysis Method:** 

8082

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.59	0.16	1	11/16/08	11/25/08	JWG0804384	
Aroclor 1221	ND U	0.59	0.26	1	11/16/08	11/25/08	JWG0804384	
Aroclor 1232	ND U	0.59	0.27	1	11/16/08	11/25/08	JWG0804384	
Aroclor 1242	ND U	0.59	0.14	1	11/16/08	11/25/08	JWG0804384	
Aroclor 1248	ND U	0.59	0.31	1	11/16/08	11/25/08	JWG0804384	
Aroclor 1254	ND U	0.59	0.44	1	11/16/08	11/25/08	JWG0804384	
Aroclor 1260	ND U	0.59	0.20	1	11/16/08	11/25/08	JWG0804384	
Aroclor 1262	ND U	0.59	0.20	1	11/16/08	11/25/08	JWG0804384	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	53	24-120	11/25/08	Acceptable

**Comments:** 

Printed: 11/26/2008 01:46:00

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

 $53_{Page}$ 1 of 1

SuperSet Reference: RR25859

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Collected: NA

# Date Received: NA

# Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

Method Blank

Units: ug/L Basis: NA

Lab Code:

JWG0804384-4

**Extraction Method:** 

EPA 3510C

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.50	0.13	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1221	ND U	0.50	0.22	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1232	ND U	0.50	0.23	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1242	ND U	0.50	0.12	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1248	ND U	0.50	0.26	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1254	ND U	0.50	0.37	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1260	ND U	0.50	0.17	1	11/16/08	11/21/08	JWG0804384	
Aroclor 1262	ND U	0.50	0.17	1	11/16/08	11/21/08	JWG0804384	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	63	24-120	11/21/08	Acceptable	

Comments:

Printed: 11/26/2008 01:46:01 p:\Stealth\Crystal.rpt\Form1m.rpt

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805551 Date Collected:

11/13/2008

**Date Received:** 11/14/2008

Total Metals

Sample Name:

L-1

Lab Code:

J0805551-001

Units: ug/L N/A Basis:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	12/05/2008	24	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	12/05/2008	24	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	12/05/2008	912	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	1.9	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	12/05/2008	2.8	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	12/05/2008	314	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	16	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	11	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/25/2005	11/26/2008	5150	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	73	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.14	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	252	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	12/05/2008	34	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	12/05/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	U	
Tin	EPA 3020A	6020	5.0	0.3	1.0	11/21/2008	12/05/2008	8.3	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	12/05/2008	472	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	12/05/2008	26	

## Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805551 Date Collected:

11/13/2008

Date Received:

11/14/2008

Total Metals

Sample Name:

L-4

Lab Code:

J0805551-002

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	12/05/2008	39	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	12/05/2008	36	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	12/05/2008	469	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	1.9	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	12/05/2008	6.1	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	12/05/2008	538	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	21	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	46	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/25/2005	11/26/2008	2130	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	49	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.18	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	110	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	12/05/2008	85	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	12/05/2008	0.10	i
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	U	
Tin	EPA 3020A	6020	5.0	0.3	1.0	11/21/2008	12/05/2008	13	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	12/05/2008	691	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	12/05/2008	39	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805551 Date Collected:

11/13/2008

**Date Received:** 11/14/2008

Total Metals

Sample Name: Lab Code:

L-5

J0805551-003

Units: ug/L Basis: N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	12/05/2008	3.4	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	12/05/2008	13	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	12/05/2008	244	
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	0.4	i
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	12/05/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	12/05/2008	24	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	2.0	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	7.6	
Iron	EPA 3010A	6010B	50	4.0	1.0	11/25/2005	11/26/2008	18900	
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	2.4	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.09	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	58	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	12/05/2008	5.1	
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	12/05/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	U	
Tin	EPA 3020A	6020	5.0	0.3	1.0	11/21/2008	12/05/2008	0.8	i
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	12/05/2008	64	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	12/05/2008	27	

## Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512 WATER Service Request: J0805551

Date Collected: Date Received: N/A

N/A

Total Metals

Sample Name:

Method Blank

Lab Code:

MB3-1121

Units: Basis:

ug/L N/A

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Antimony	EPA 3020A	6020	2.0	0.4	1.0	11/21/2008	12/05/2008	U	
Arsenic	EPA 3020A	6020	0.50	0.20	1.0	11/21/2008	12/05/2008	U	
Barium	EPA 3020A	6020	2.0	0.5	1.0	11/21/2008	12/05/2008	1.1	i
Beryllium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	U	
Cadmium	EPA 3020A	6020	0.50	0.12	1.0	11/21/2008	12/05/2008	U	
Chromium	EPA 3020A	6020	2.0	0.8	1.0	11/21/2008	12/05/2008	U	
Cobalt	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	U	
Copper	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	U	
Iron	EPA 3010A	6010B	50.0	4.0	1.0	11/25/2005	11/26/2008	17.0	i
Lead	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	U	
Mercury	METHOD	7470A	0.50	0.08	1.0	11/18/2008	11/18/2008	0.08	i
Nickel	EPA 3020A	6020	2.0	0.3	1.0	11/21/2008	12/05/2008	U	
Selenium	EPA 3020A	6020	2.0	0.7	1.0	11/21/2008	12/05/2008	0.8	i
Silver	EPA 3020A	6020	0.50	0.08	1.0	11/21/2008	12/05/2008	U	
Thallium	EPA 3020A	6020	1.0	0.2	1.0	11/21/2008	12/05/2008	U	
Tin	EPA 3020A	6020	5.0	0.3	1.0	11/21/2008	12/05/2008	U	
Vanadium	EPA 3020A	6020	5.0	1.2	1.0	11/21/2008	12/05/2008	U	
Zinc	EPA 3020A	6020	10	4	1.0	11/21/2008	12/05/2008	6	i

Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** Project Number: JED SWDF

Matrix:

FQ1512

Analysis Method: 6010B

WATER

EPA 3010A

Service Request:

J0805551 11/13/2008

Date Collected:

**Date Received:** 11/14/2008

**Total Metals** Sodium

mg/L N/A

Units: Basis:

Test Notes:

Prep Method:

Sample Name:	Lab Code:	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
L-1	J0805551-001	10	0.40	20.0	11/25/2008	11/26/2008	2190	
L-4	J0805551-002	10	0.40	20.0	11/25/2008	11/26/2008	1290	
L-5	J0805551-003	0.50	0.02	1.0	11/25/2008	11/26/2008	475	
Method Blank	MB6-1125	0.50	0.02	1.0	11/25/2008	11/26/2008	U	

# Analytical Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Sample Matrix :

WATER

Service Request: J0805551

Date Collected: 11/13/08

Date Received: 11/14/08

**Inorganic Parameters** 

Sample Name:

L-1

Lab Code:

J0805551-001

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	50	16	10	11/24/08 14:00	2800	
Ammonia as Nitrogen	mg/L (ppm)	350.1	5	2	100	11/17/08 13:11	720	
Chloride	mg/L (ppm)	300.0	20	3.1	100	12/01/08 18:41	4100	
Cyanide, Total	mg/L (ppm)	335.4	0.01	0.004	1	11/26/08 14:28	0.020	
Nitrate as Nitrogen	mg/L (ppm)	300.0	2	0.38	10	11/14/08 17:15	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	100	48	10	11/19/08 17:35	13000	
Sulfide	mg/L (ppm)	376.1	2	0.38	1	11/20/08 17:15	4.4	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Sample Matrix:

WATER

Service Request: J0805551

**Date Collected:** 11/13/08

Date Received: 11/14/08

Inorganic Parameters

Sample Name:

L-4

Lab Code:

J0805551-002

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	50	16	10	11/24/08 14:00	2600	
Ammonia as Nitrogen	mg/L (ppm)	350.1	5	2	100	11/17/08 13:11	780	
Chloride	mg/L (ppm)	300.0	20	3.1	100	12/01/08 18:41	2300	
Cyanide, Total	mg/L (ppm)	335.4	0.01	0.004	1	11/26/08 14:28	0.038	
Nitrate as Nitrogen	mg/L (ppm)	300.0	2	0.38	10	11/14/08 17:30	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	40	19	4.0	11/19/08 17:35	11000	
Sulfide	mg/L (ppm)	376.1	2	0.38	1	11/20/08 17:15	5.2	

# Analytical Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512

Sample Matrix:

WATER

Service Request: J0805551 **Date Collected:** 11/13/08 Date Received: 11/14/08

**Inorganic Parameters** 

Sample Name:

L-5

Lab Code:

J0805551-003

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	10	3.2	2.5	11/24/08 14:00	880	
Ammonia as Nitrogen	mg/L (ppm)	350.1	5	2	100	11/17/08 13:11	210	
Chloride	mg/L (ppm)	300.0	2	0.31	10	11/14/08 13:31	830	
Cyanide, Total	mg/L (ppm)	335.4	0.01	0.004	1	11/26/08 14:28	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	2	0.38	10	11/14/08 17:45	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	20	9.6	2.5	11/19/08 17:35	3700	
Sulfide	mg/L (ppm)	376.1	2	0.38	1	11/20/08 17:15	13	

### Analytical Report

Client: **Project Name:** 

GeoSyntec Consultants

Project Number: FQ1512 Sample Matrix:

WATER

JED SWDF

Date Collected: NA Date Received: NA

Service Request: J0805551

**Inorganic Parameters** 

Sample Name:

Method Blank

Lab Code:

J0805551-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date/Time Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	5	1.6	1	11/24/08 14:00	U	
Ammonia as Nitrogen	mg/L (ppm)	350.1	0.05	0.02	1	11/17/08 13:11	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	12/01/08 18:41	U	
Chloride	mg/L (ppm)	300.0	0.2	0.031	1	11/14/08 13:31	U	
Cyanide, Total	mg/L (ppm)	335.4	0.01	0.004	1	11/26/08 14:28	U	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.038	1	11/14/08 13:31	U	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	10	4.8	1	11/19/08 17:35	U	
Sulfide	mg/L (ppm)	376.1	2	0.38	1	11/20/08 17:15	U	

QA/QC Report

Volatile Organic Compounds by GC/MS (Appendix II)

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

**Surrogate Recovery Summary** 

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Service Request: J0805551

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
L-1	J0805551-001	94	94	99	105
L-4	J0805551-002	99	94	98	95
L-5	J0805551-003	106	96	101	95
Trip Blank	J0805551-004	93	92	99	105
Method Blank	JWG0804446-4	98	100	97	95
Method Blank	JWG0804466-3	92	92	99	106
Lab Control Sample	JWG0804446-3	97	93	100	97
Lab Control Sample	JWG0804466-2	94	92	97	105

#### Surrogate Recovery Control Limits (%)

Sur1 = 1,2-Dichloroethane-d4	71-122	
Sur2 = 4-Bromofluorobenzene	75-120	
Sur3 = Dibromofluoromethane	82-116	
Sur4 = Toluene-d8	88-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/20/2008 12:54:12

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference:

QA/QC Report

Client: Project:

GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Extracted:** 11/18/2008 **Date Analyzed:** 11/18/2008

# Lab Control Spike Summary

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Volatile Organic Compounds by GC/MS (Appendix II)

Units: ug/L

Basis: NA Level: Low

Extraction Lot: JWG0804446

Lab Control Sample JWG0804446-3 Lab Control Spike

	Lab	Control Spike	е	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Dichlorodifluoromethane	19.1	20.0	95	69-138
Chloromethane	19.0	20.0	95	67-135
Vinyl Chloride	19.9	20.0	100	78-132
Bromomethane	18.0	20.0	90	79-130
Chloroethane	20.7	20.0	104	74-126
Trichlorofluoromethane	19.5	20.0	97	74-134
Acrolein	106	100	106	61-137
1,1-Dichloroethene	21.6	20.0	108	78-130
Acetone	110	100	110	67-133
Iodomethane (Methyl Iodide)	77.9	100	78	68-134
Carbon Disulfide	105	100	105	76-138
Acetonitrile	120	100	120	67-132
Allyl Chloride	22.3	20.0	111	68-128
Methylene Chloride	20.0	20.0	100	72-124
Acrylonitrile	117	100	117	77-127
trans-1,2-Dichloroethene	20.9	20.0	104	77-124
1,1-Dichloroethane	19.3	20.0	96	80-128
Vinyl Acetate	113	100	113	61-148
Chloroprene	19.6	20.0	98	81-132
cis-1,2-Dichloroethene	19.7	20.0	99	80-126
2,2-Dichloropropane	20.1	20.0	100	72-136
1,1-Dichloropropene	21.2	20.0	106	85-124
2-Butanone (MEK)	113	100	113	73-127
Propionitrile	112	100	112	77-131
Bromochloromethane	21.5	20.0	107	79-129
Methacrylonitrile	24.8	20.0	124	77-129
Chloroform	20.1	20.0	101	83-124
1,1,1-Trichloroethane (TCA)	21.0	20.0	105	79-124
Carbon Tetrachloride	20.5	20.0	103	81-125
Benzene	19.7	20.0	98	79-119
1,2-Dichloroethane (EDC)	19.9	20.0	100	80-124
Isobutyl Alcohol	574	400	143 *	62-139
Trichloroethene (TCE)	19.9	20.0	100	76-124
1,2-Dichloropropane	21.3	20.0	106	79-123
Dibromomethane	19.9	20.0	100	83-123
Methyl Methacrylate	25.5	20.0	128	79-128
J				0

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/20/2008 12:54:15 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551 Date Extracted: 11/18/2008

**Date Analyzed:** 11/18/2008

### Lab Control Spike Summary Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: JWG0804446

Lab Control Sample JWG0804446-3 Lab Control Spike

•	Lau	Control Spike	<u> </u>	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Bromodichloromethane	19.3	20.0	97	81-123
cis-1,3-Dichloropropene	19.7	20.0	98	86-123
4-Methyl-2-pentanone (MIBK)	110	100	110	72-136
Toluene	19.5	20.0	98	86-117
trans-1,3-Dichloropropene	20.6	20.0	103	83-124
Ethyl Methacrylate	26.8	20.0	134 *	78-127
1,1,2-Trichloroethane	20.1	20.0	101	86-114
Tetrachloroethene (PCE)	19.1	20.0	95	80-121
1,3-Dichloropropane	19.9	20.0	100	88-117
2-Hexanone	114	100	114	71-138
Dibromochloromethane	19.6	20.0	98	82-121
1,2-Dibromoethane (EDB)	19.9	20.0	99	88-117
Chlorobenzene	19.4	20.0	97	86-113
1,1,1,2-Tetrachloroethane	19.7	20.0	99	85-117
Ethylbenzene	19.8	20.0	99	90-118
m,p-Xylenes	40.8	40.0	102	86-121
o-Xylene	20.1	20.0	100	89-119
Styrene	19.6	20.0	98	89-122
Bromoform	20.0	20.0	100	68-129
1,1,2,2-Tetrachloroethane	21.4	20.0	107	83-120
1,2,3-Trichloropropane	21.6	20.0	108	83-123
trans-1,4-Dichloro-2-butene	33.4	20.0	167 *	53-143
1,3-Dichlorobenzene	20.1	20.0	101	83-112
1,4-Dichlorobenzene	20.2	20.0	101	83-113
1,2-Dichlorobenzene	20.9	20.0	105	84-115
1,2-Dibromo-3-chloropropane (DBCP	23.1	20.0	116	62-123
1,2,4-Trichlorobenzene	22.9	20.0	114	72-123
Hexachlorobutadiene	19.3	20.0	97	73-140
Naphthalene	26.3	20.0	132	59-135

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

Date Extracted: 11/19/2008

**Date Analyzed:** 11/19/2008

## Lab Control Spike Summary Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804466

Lab Control Sample JWG0804466-2 Lab Control Spike

	Lab	Control Spike	e	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Dichlorodifluoromethane	17.3	20.0	86	69-138	
Chloromethane	21.3	20.0	107	67-135	
Vinyl Chloride	19.2	20.0	96	78-132	
Bromomethane	21.2	20.0	106	79-130	
Chloroethane	18.8	20.0	94	74-126	
Trichlorofluoromethane	19.2	20.0	96	74-134	
Acrolein	94.4	100	94	61-137	
1,1-Dichloroethene	19.1	20.0	96	78-130	
Acetone	104	100	104	67-133	
Iodomethane (Methyl Iodide)	102	100	102	68-134	
Carbon Disulfide	98.1	100	98	76-138	
Acetonitrile	104	100	104	67-132	
Allyl Chloride	20.6	20.0	103	68-128	
Methylene Chloride	20.3	20.0	102	72-124	
Acrylonitrile	105	100	105	77-127	
trans-1,2-Dichloroethene	20.5	20.0	102	77-124	
1,1-Dichloroethane	20.4	20.0	102	80-128	
Vinyl Acetate	108	100	108	61-148	
Chloroprene	17.6	20.0	88	81-132	
cis-1,2-Dichloroethene	20.7	20.0	103	80-126	
2,2-Dichloropropane	19.9	20.0	99	72-136	
1,1-Dichloropropene	18.7	20.0	93	85-124	
2-Butanone (MEK)	101	100	101	73-127	
Propionitrile	99.7	100	100	77-131	
Bromochloromethane	20.9	20.0	104	79-129	
Methacrylonitrile	21.7	20.0	108	77-129	
Chloroform	20.0	20.0	100	83-124	
1,1,1-Trichloroethane (TCA)	19.0	20.0	95	79-124	
Carbon Tetrachloride	19.1	20.0	96	81-125	
Benzene	19.4	20.0	97	79-119	
1,2-Dichloroethane (EDC)	20.5	20.0	102	80-124	
Isobutyl Alcohol	356	400	89	62-139	
Trichloroethene (TCE)	20.2	20.0	101	76-124	
1,2-Dichloropropane	20.4	20.0	102	79-123	
Dibromomethane	21.7	20.0	108	83-123	
Methyl Methacrylate	21.5	20.0	107	79-128	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/20/2008 12:54:18 p:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

SuperSet Reference:

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Extracted:** 11/19/2008

**Date Analyzed:** 11/19/2008

### Lab Control Spike Summary Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804466

Lab Control Sample JWG0804466-2 Lab Control Spike

	Lab Control Spike		%Rec	
Analyte Name	Result	Expected	%Rec	Limits
Bromodichloromethane	20.3	20.0	101	81-123
cis-1,3-Dichloropropene	20.2	20.0	101	86-123
4-Methyl-2-pentanone (MIBK)	111	100	111	72-136
Toluene	19.7	20.0	99	86-117
trans-1,3-Dichloropropene	20.6	20.0	103	83-124
Ethyl Methacrylate	21.9	20.0	110	78-127
1,1,2-Trichloroethane	21.2	20.0	106	86-114
Tetrachloroethene (PCE)	19.4	20.0	97	80-121
1,3-Dichloropropane	20.3	20.0	101	88-117
2-Hexanone	109	100	109	71-138
Dibromochloromethane	19.6	20.0	98	82-121
1,2-Dibromoethane (EDB)	20.8	20.0	104	88-117
Chlorobenzene	19.7	20.0	99	86-113
1,1,1,2-Tetrachloroethane	19.9	20.0	100	85-117
Ethylbenzene	19.8	20.0	99	90-118
m,p-Xylenes	39.1	40.0	98	86-121
o-Xylene	19.7	20.0	98	89-119
Styrene	19.3	20.0	96	89-122
Bromoform	19.4	20.0	97	68-129
1,1,2,2-Tetrachloroethane	19.7	20.0	98	83-120
1,2,3-Trichloropropane	21.1	20.0	106	83-123
trans-1,4-Dichloro-2-butene	17.6	20.0	88	53-143
1,3-Dichlorobenzene	18.6	20.0	93	83-112
1,4-Dichlorobenzene	18.3	20.0	91	83-113
1,2-Dichlorobenzene	19.5	20.0	97	84-115
1,2-Dibromo-3-chloropropane (DBCP	20.6	20.0	103	62-123
1,2,4-Trichlorobenzene	22.1	20.0	111	72-123
Hexachlorobutadiene	22.3	20.0	112	73-140
Naphthalene	24.4	20.0	122	59-135

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3C - Organic

Printed: 11/20/2008 12:54:18

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Surrogate Recovery Summary** 

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method: METHOD Analysis Method:

8011

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
L-1	J0805551-001	120
L-4	J0805551-002	118
L-5	J0805551-003	118
Method Blank	JWG0804358-4	132
Lab Control Sample	JWG0804358-3	131

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/10/2008 10:23:45 p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

1 of 1

SuperSet Reference: RR26136

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Extracted:** 11/16/2008

**Date Analyzed:** 11/18/2008

Lab Control Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804358

Lab Control Sample JWG0804358-3

Lab Control Spike

%Rec **Analyte Name** Result Limits **Expected** %Rec 1,2-Dibromoethane (EDB) 0.322 0.250 70-130 129 1,2-Dibromo-3-chloropropane (DBCP 0.303 0.250 121 70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/10/2008 10:23:49  $p:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

SuperSet Reference:

QA/QC Report

Client:

GeoSyntec Consultants

**Project:** 

JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Surrogate Recovery Summary** 

Semi-Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 3510C

Units: PERCENT

**Analysis Method:** 

8270C

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4	Sur5	Sur6
L-1	J0805551-001	18	15	51	31	41	15 #
L-4	J0805551-002	19	19	59	38	48	28
L-5	J0805551-003	20 D #	11 D #	51 D #	42 D #	0 D #	41 D #
Method Blank	JWG0804427-1	25	20	68	55	74	73
Lab Control Sample	JWG0804427-2	28	21	69	64	81	72

# Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	10-77	Sur5 = 2,4,6-Tribromophenol	30-143
Sur2 = Phenol-d6	10-51	Sur6 = Terphenyl-d14	23-165
Sur3 = Nitrobenzene-d5	32-106	• •	
Sur4 = 2-Fluorobiphenyl	30-102		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/01/2008 15:23:18

 $p:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic

1 of 1

SuperSet Reference: RR25930

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551 **Date Extracted:** 11/18/2008 **Date Analyzed:** 11/19/2008

### Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low Extraction Lot: JWG0804427

Lab Control Sample JWG0804427-2 Lab Control Spike

	Lab	Control Spike	<u>e</u>	%Rec			
Analyte Name	Result	Expected	%Rec	Limits			
Phenol	15.4	50.0	31	12-54	 1	 ***************************************	 
Bis(2-chloroethyl) Ether	29.8	50.0	60	41-99			
2-Chlorophenol	26.7	50.0	53	35-101			
1,3-Dichlorobenzene	23.5	50.0	47	30-119			
1,4-Dichlorobenzene	24.6	50.0	49	31-119			
1,2-Dichlorobenzene	26.1	50.0	52	32-123			
Bis(2-chloroisopropyl) Ether	28.9	50.0	58	31-94			
Benzyl alcohol	25.8	50.0	52	32-110			
2-Methylphenol	25.9	50.0	52	21-100			
Hexachloroethane	25.6	50.0	51	19-113			
N-Nitrosodi-n-propylamine	37.8	50.0	76	43-103			
4-Methylphenol	51.8	75.0	69	15-93			
Nitrobenzene	33.7	50.0	67	36-116			
Isophorone	39.5	50.0	79	46-106			
2-Nitrophenol	30.8	50.0	62	40-120			
2,4-Dimethylphenol	32.3	50.0	65	38-110			
bis(2-Chloroethoxy)methane	37.4	50.0	75	47-100			
2,4-Dichlorophenol	36.8	50.0	74	36-117			
1,2,4-Trichlorobenzene	26.8	50.0	54	50-120			
Naphthalene	27.4	50.0	55	44-97			
4-Chloroaniline	26.8	50.0	54	39-110			
Hexachlorobutadiene	25.1	50.0	50	20-110			
4-Chloro-3-methylphenol	37.9	50.0	76	36-117			
2-Methylnaphthalene	28.4	50.0	57	46-110			
Hexachlorocyclopentadiene	22.1	50.0	44	23-115			
2,4,6-Trichlorophenol	36.4	50.0	73	41-115			
2,4,5-Trichlorophenol	38.3	50.0	77	47-113			
2-Chloronaphthalene	30.2	50.0	60	47-106			
2-Nitroaniline	35.2	50.0	70	33-94			
Acenaphthylene	32.6	50.0	65	45-99			
Dimethyl Phthalate	38.5	50.0	77	32-119			
2,6-Dinitrotoluene	35.4	50.0	71	55-121			
Acenaphthene	31.7	50.0	63	42-106			
3-Nitroaniline	27.0	50.0	54	25-91			
2,4-Dinitrophenol	34.5	50.0	69	27-128			
Dibenzofuran	31.8	50.0	64	49-103			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/01/2008 15:23:22  $p:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

Form 3C - Organic

 $72_{Page}$  1 of 2

SuperSet Reference: RR25930

QA/QC Report

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Extracted:** 11/18/2008

**Date Analyzed:** 11/19/2008

# Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804427

Lab Control Sample JWG0804427-2 Lab Control Spike

	Lab	Control Spike	e	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
4-Nitrophenol	12.6	50.0	25	10-86	
2,4-Dinitrotoluene	36.6	50.0	73	54-121	
2,3,4,6-Tetrachlorophenol	45.5	50.0	91	50-150	
Fluorene	33.2	50.0	66	54-97	
4-Chlorophenyl Phenyl Ether	39.2	50.0	78	53-108	
Diethyl Phthalate	36.0	50.0	72	56-108	
4-Nitroaniline	32.9	50.0	66	44-102	
2-Methyl-4,6-dinitrophenol	41.5	50.0	83	46-117	
N-Nitrosodiphenylamine	16.8	50.0	34	30-122	
4-Bromophenyl Phenyl Ether	43.1	50.0	86	63-123	
Hexachlorobenzene	36.6	50.0	73	55-110	
Pentachlorophenol	34.5	50.0	69	44-120	
Phenanthrene	32.7	50.0	65	52-110	
Anthracene	32.7	50.0	65	52-104	
Di-n-butyl Phthalate	34.4	50.0	69	57-118	
Fluoranthene	34.8	50.0	70	52-110	
Pyrene	36.9	50.0	74	53-110	
Butyl Benzyl Phthalate	34.5	50.0	69	47-117	
3,3'-Dichlorobenzidine	30.7	50.0	61	32-112	
Benz(a)anthracene	34.1	50.0	68	49-114	
Chrysene	33.8	50.0	68	50-113	
Bis(2-ethylhexyl) Phthalate	36.1	50.0	72	48-127	
Di-n-octyl Phthalate	34.6	50.0	69	35-139	
Benzo(b)fluoranthene	26.9	50.0	54 *	56-110	
Benzo(k)fluoranthene	38.8	50.0	78	48-110	
Benzo(a)pyrene	29.1	50.0	58	56-110	•
Indeno(1,2,3-cd)pyrene	40.1	50.0	80	54-115	
Dibenz(a,h)anthracene	38.9	50.0	78	51-125	
Benzo(g,h,i)perylene	43.3	50.0	87	53-116	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805551

Surrogate Recovery Summary
Organochlorine Pesticides by GC-ECD

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8081A

Units: PERCENT

Level: Low

Sample Name	<u>Lab Code</u>	<u>Sur1</u>		Sur2	
L-1	J0805551-001	9	#	3	#
L-4	J0805551-002	21	#	4	#
L-5	J0805551-003	61		53	
Method Blank	JWG0804383-2	46		50	
Lab Control Sample	JWG0804383-1	60		83	

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 32-92 Sur2 = Decachlorobiphenyl 13-104

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

**Sample Matrix:** 

Water

Service Request: J0805551

**Date Extracted:** 11/16/2008 **Date Analyzed:** 11/21/2008

### Lab Control Spike Summary Organochlorine Pesticides by GC-ECD

**Extraction Method:** EPA 3510C

Analysis Method:

8081A

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804383

Lab Control Sample JWG0804383-1 Lab Control Spike

	- Lab Control Spike		%Rec	
Analyte Name	Result	Expected	%Rec	Limits
alpha-BHC	0.278	0.400	70	56-104
gamma-BHC (Lindane)	0.272	0.400	68	57-101
beta-BHC	0.270	0.400	68	55-97
delta-BHC	0.221	0.400	55	31-105
Heptachlor	0.287	0.400	72	52-100
Aldrin	0.300	0.400	75	45-108
Heptachlor Epoxide	0.258	0.400	65	59-103
gamma-Chlordane	0.307	0.400	77	53-107
alpha-Chlordane	0.311	0.400	78	54-104
4,4'-DDE	0.332	0.400	83	58-114
Endosulfan I	0.314	0.400	79	61-104
Dieldrin	0.335	0.400	84	57-111
Endrin	0.287	0.400	72	57-117
4,4'-DDD	0.353	0.400	88	56-116
Endosulfan II	0.308	0.400	77	50-106
4,4'-DDT	0.323	0.400	81	41-115
Endrin Aldehyde	0.324	0.400	81	51-108
Methoxychlor	0.321	0.400	80	43-123
Endosulfan Sulfate	0.340	0.400	85	56-107
Endrin Ketone	0.352	0.400	88	46-101

QA/QC Report

Client:

GeoSyntec Consultants

Project:

JED SWDF/FQ1512

Sample Matrix: V

Water

Service Request: J0805551

Surrogate Recovery Summary Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Extraction Method: Analysis Method:

EPA 3510C

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	
L-1	J0805551-001	4	#
L-4	J0805551-002	5	#
L-5	J0805551-003	-53	
Method Blank	JWG0804384-4	63	
Lab Control Sample	JWG0804384-3	48	

Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

24-120

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/26/2008 01:46:05

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

 $76_{\text{Page}}$ 

1 of 1

SuperSet Reference: RR25859

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0805551

**Date Extracted:** 11/16/2008

**Date Analyzed:** 11/21/2008

Lab Control Spike Summary Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8082

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804384

Lab Control Sample JWG0804384-3

	Lab	Control Spike	e	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Aroclor 1016	2.07	4.00	52	39-116	
Aroclor 1260	2.16	4.00	54	41-118	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/26/2008 01:46:08  $p:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

Form 3C - Organic

 $77_{\text{Page}}$  1 of 1

SuperSet Reference: RR25859

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805551

**Date Collected:** 11/13/2008 Date Received: 11/14/2008

**Date Extracted:** 11/25/2005 **Date Analyzed:** 11/26/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

Lab Code:

L-1

J0805551-001

J0805551-001S

Units: ug/L

Basis: N/A

												% Rec	
	Prep	Analysis		Spik	e Level	Sample	Spike	Result	Percent	Recover	y	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Iron	EPA 3010	6010B	50	2000	2000	5150	6830	6770	84	81	1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name: Project Number: FQ1512

JED SWDF

Matrix:

WATER

Service Request: J0805551

Date Collected: 11/13/2008

**Date Received:** 11/14/2008

Date Extracted: 11/25/2008

**Date Analyzed:** 11/26/2008

Matrix Spike/Matrix Spike Duplicate Summary

Total Metals

Sample Name:

L-1

Lab Code:

J0805551-001

J0805551-001S

Units: mg/L

Basis: N/A

												% Rec	
	Prep	Analysis		Spike	Level	Sample	Spike	Result	Percent	Recovery	y	Acceptance	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	RPD	Limits	Notes
Sodium	EPA 3010	6010B	10.0	10.0	10.0	2190.0	2220.0	2220.0	NC	NC	<1	75 - 125	

QA/QC Report

Client:

GeoSyntec Consultants

**Project Name:** 

JED SWDF

Project Number: FQ1512 Matrix:

WATER

Service Request: J0805551

Date Collected: N/A Date Received: N/A

Date Extracted: 11/21/2008

**Date Analyzed:** 12/05/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Lab Code:

LCS3-1121

Units: ug/L

Basis: N/A

Analyte	Prep Method	Analysis Method	True Value	Results	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Antimony	EPA 3020A	6020	50.0	47.8	96	80 - 120	
Arsenic	EPA 3020A	6020	50.0	47.0	94	80 - 120	
Barium	EPA 3020A	6020	50.0	50.3	101	80 - 120	
Beryllium	EPA 3020A	6020	50.0	48.1	96	80 - 120	
Cadmium	EPA 3020A	6020	50.0	48.5	97	80 - 120	
Chromium	EPA 3020A	6020	50.0	49.3	99	80 - 120	
Cobalt	EPA 3020A	6020	50.0	49.4	99	80 - 120	
Copper	EPA 3020A	6020	50.0	48.5	97	80 - 120	
Iron	EPA 3010A	6010B	2000	1860	93	80 - 120	
Lead	EPA 3020A	6020	50.0	51.1	102	80 - 120	
Mercury	METHOD	7470A	5.00	5.21	104	80 - 120	
Nickel	EPA 3020A	6020	50.0	50.1	100	80 - 120	
Selenium	EPA 3020A	6020	50.0	44.4	89	80 - 120	
Silver	EPA 3020A	6020	50.0	47.4	95	80 - 120	
Thallium	EPA 3020A	6020	50.0	49.9	100	80 - 120	
Tin	EPA 3020A	6020	50.0	49.2	98	80 - 120	
Vanadium	EPA 3020A	6020	50.0	49.8	100	80 - 120	
Zinc	EPA 3020A	6020	100	92.2	92	80 - 120	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: FQ1512

Matrix:

WATER

Service Request: J0805551

Date Collected: N/A

Date Received: N/A

Date Extracted: 11/25/2008

Date Analyzed: 11/26/2008

Laboratory Control Sample Summary

Total Metals

Sample Name:

Lab Control Sample

Units: mg/L

Basis: N/A

Lab Code:

LCS6-1125

**CAS** Percent Recovery

Acceptance Limits

Result

Analyte

Method EPA 3010A

Prep

Method 6010B

Value

True

Results

97

Percent

Recovery

Notes

Sodium

Analysis

10.0

9.7

80 - 120

### QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: Sample Matrix:

FQ1512 WATER

Service Request: J0805551 Date Collected: NA Date Received: NA Date Extracted: NA

**Date Analyzed:** 11/14-12/01/08

Laboratory Control Sample Summary Inorganic Parameters

Sample Name:

Laboratory Control Sample

Lab Code:

J0805551-LCS

Basis: NA

Test Notes:

Analyte	Units	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	SM2320 B	250	247	99	85-115	
Ammonia as Nitrogen	mg/L (ppm)	350.1	5.00	5.20	104	90-110	
Chloride	mg/L (ppm)	300.0	100	99.9	100	90-110	
Chloride	mg/L (ppm)	300.0	100	98.6	99	90-110	
Cyanide, Total	mg/L (ppm)	335.4	0.100	0.108	108	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	5.0	5.11	102	90-110	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	300	319	106	85-115	
Sulfide	mg/L (ppm)	376.1	10.8	10.8	100	85-115	

QA/QC Report

Client:

GeoSyntec Consultants

Project Name:

JED SWDF

Project Number: Sample Matrix:

FQ1512

WATER

Service Request: J0805551

Date Collected:

NA

Date Received: NA

Date Extracted: NA

**Date Analyzed:** 11/20/08

Laboratory Control Sample Summary **Inorganic Parameters** 

Sample Name:

Laboratory Control Sample Duplicate

Basis: NA

Lab Code:

J0805551-LCSD

Test Notes:

						CAS Percent	
Analyte	Units	Analysis Method	True Value	Result		Recovery Acceptance Limits	Result Notes
Sulfide	mg/L (ppm)	376.1	10.8	10.8	100	85-115	

Columbia Analytical Services, Inc.

		Cooler Rec	eipt and Preservation	Form		
lient:	Geosynt	ec C n=	Service Reques	st# <u> </u>	080555	
roject:		<u> </u>		11/11/08	TA	
ooler recei	ved on	11/14/08	and opened on	~/*//	y / <u>U</u> /	
OURIER:	CAS (UPS)	FEDEX	DHL CLIENT	Tracking #		
1	Were custody seals	on outside of co	oler?		es No	N/A
2	Were seals intact, s	igned and dated?			es No	N/A
3	Were custody pape	rs properly filled	out?		es No	N/A
4	Temperature of cooler(	s) upon receipt	(Should be 4 +/- 2 degrees C)	11/2	3 1,1	
5	Correct Temperatur	re?		(4	(es) No	N/A
6	Were Ice or Ice Pac	eks present			les No	N/A
7	Did all bottles arriv	ve in good condit	ion (unbroken, etc)?		res No	N/A
8	Were all bottle labe	els complete (san	nple ID, preservation, e	tc)?	Yes No	N/A
9	Did all bottle labels	s and tags agree	with custody papers?		yes No	N/A
10	Were the correct be	ottles used for the	e tests indicated?		Yes No	N/A
11	Were all of the preserv	ed bottles received	with the appropriate preserv	ative?\	Yes No	N/A
12 13 14		ked for absence of a	nalysis holding times? r bubbles? If present, note b	relow	Yes No Yes No CAS Client	N/A N/A
			Manuf. Lot # or CAS	1 1	erananamanananananananananananananananana	
	Sample ID	Reagent	Chem ID	ml added	Inititials	-(0) IE
ė.	6-4	HN03	47198	h O 1,0	-XV)	TION
	1-5	4003	47198	40		1000
						- 1/1/2
A dditional	comments and/or e	vnlanation of all	discrepancies noted abo	)ve:		Видентерический
Additional	Comments and/or c	Apiditation of dif				
						<u> </u>

30	Misc.	NIA -																											
29 400ml	100mL P Sodium	Thiosultate N/A														-													
1 1	ENC S	Y Z						+		$\dagger$						-													
1 11.		ž	$\dagger \dagger$																										
26	20z         40z         80z         16oz           G         G         G         G	ž			-	-		-		+		+	-		_	-		$\dashv$	-	-	+		-	-	-	+	-		+
7 24 25	20z 40 G G	VIV ,		$\ \cdot\ $		_																				1			
	110	HCI H2SO4										J.																	
		일 2																			-		_	-		_	-		
1 1 15	= 0	HNO3 CZ NIS	z ee	+	+	+	H	-	H	-	-	$\dashv$	+	$\ \cdot\ $		+	-		+		-		$\dashv$	+		-	+	$\vdash$	$\dashv$
) als:	= 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	++	++	+	+							$\perp$				$\perp$				$\perp$			1					
15 16 17 18 19 20	500mt.	H2SO4 HNO3																											
receipt 0	500mL P	- 2 																											
Te loogler				-	$\prod$																								
15   15	50ml G	HN03				T							T																
Sa otherwise no Bottle Code	Som G	Ą,			$\Pi$	T								T															
Date:	250ml 2	NaOH NaOH >9 >12	~ ~	<del>,</del>		1																							
ding unit	250mL 2 P P										T																		
n head	ml 25	03 N		-	+		-	+	-	$\vdash$	+	$\ \cdot\ $	+	+		+	-	$\left\  \cdot \right\ $	-	+	+	+	-	-	-	+	+		
е соГит	125ml 125mL 125ml 250ml 250ml 250ml P P P P P P P P P P P P P P P P P P P	H2SO4 HN03		+		+	+		-			$\left  \cdot \right $	-	-		+	-		-	+	+	-		-	-				
ed in th	1 250r	100 100 100 100				$\dashv$	-		-				-	-		-	-	-		+-	-	-		-	-		-		-
rion list	L 250n	εί X V	_	$\downarrow \downarrow$	$\dashv \dashv$	_	-		-		_		-	-		-	+				4	-	H	-			_	-	
S Horite	L 125m	ONH 4		7	-	-	1		_	-	-	-	-			-	4	-		+	_	+		-	+		-	+	$\vdash$
Sossial phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical phical p	1125m	H2SO4 HN03							1		-			-		_	_	-			_	1		_	-		_	-	-
s the re	1125m	된 2		44		1	_		_	$  \cdot  $	-	-		-	-		-	-		-	-	-	$\frac{1}{1}$	+	-		-	-	$\vdash$
. J	125mL P	N/A				-	_		-	$\frac{ \cdot }{ \cdot }$	-	-		-	$\perp$		+	-			-	-	$\left  \cdot \right $	+	+			-	$\vdash$
SR#::	40ml.	H2SC -				1	-		_		-	-		- -			+	1			1	-	$\perp$	-	-		-		$\vdash$
SR#: $J$ CSSS   Date:	40mL G	Thiosultate H2SO4					- Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont																						
that pH	404	원인.		(00)										$\perp$			$\int$	_				_						_	$\perp \downarrow$
Note	- 10 0 P	N/A		0							$\perp$																		
	Container	Pres. Req. pH Sample #	-002	-003	-005	-007	800	010	011	013	-014	-015	-017	-018	-020	-021	-022	-023	-025	-026	-028	-029	-63	-032	-033	-035	-036	-037	-039

✓ Columbia

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Analytical Services:

Anal

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

P

HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Other IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report ટ X II. Results + OC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration ANALYSIS REQUESTED (Include Method Number and Edata Yes 0000 I. Results Only TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD PRESERVATIVE CUSTODY SEALS: Y N Leuchat efferesces when contacts and proserved bothes, I rived vox wat w/leadute sangle water to reave 1024× 17 11.13.08 0800 Leadury 17 *UMBER OF CONTAINERS* 11.12.800%0 | Jenyar Email Address
The ills pagantecon MATRIX 3 SAMPLING ATE TIME 813-558-9726 11:13:38 1.05 54 300 Sampler's Printed Name 33637 4055 Riveda D. LAB ID SAMPLE RECEIPT: CONDITION/COOLER TEMP: が言させるうちち anow, FL TOS SON 813-558-0990 SPECIAL INSTRUCTIONS/COMMENTS いののシングぞん CLIENT SAMPLE ID トゥショスト 77~ See QAPP

Distribution: White - Return to Originator; Vellow - Lab Copy; Pirk - Retained by Cifent Date/Time 13-08

Printed Name

Signature

Signature

Printed Name

RELINQUISHED BY

45 134

Signature

Firm Creosyn Le

Date/Time

060

RELINQUISHED BY

Date/Time

Date/Time



Columbia Analytical Services 9143 Philips Highway, Suite 200 Jacksonville, FL 32256 Tel 904-739-2277 Fax 904-739-2011

# **Appendix A**Subcontracted Analytical Results

### **Environmental Conservation Laboratories, Inc.**

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314

FAX: 407.850.6945



www.encolabs.com

Friday, November 21, 2008

Columbia Analytical Svcs. (CO009)

Attn: Craig Myers

9143 Philips Highway, Suite 200

Jacksonville, FL 32256

RE: Laboratory Results for

Project Number: J0805551, Project Name/Desc: J0805551

**ENCO Workorder: A805836** 

Dear Craig Myers,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Saturday, November 15, 2008.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Camlo

Sincerely,

David Camacho For Ronald Wambles

Project Manager

Enclosure(s)



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: L-1	Lab 1	D: A805836-01 Sampled	: 11/13/08 08:00 Received: 11/15/08 08:0	00
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)	
EPA 8151A	11/20/08 12/27/08	3 11/17/08 19:38	11/20/2008 23:35	

Client ID: L-4		Lab ID: A8	305836-02 Sampled:	11/13/08 09:40 Received: 11/15/08 08:00
Parameter	Hold Date/Time(s	s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8151A	11/20/08	12/27/08	11/17/08 19:38	11/21/2008 00:13

Client ID: L-5		Lab ID: A805836-03	Sa	impled: 11/13/08	11:00	Received:	11/15/08 08:00
Parameter	Hold Date/Time(s)		Prep Date/Tin	ne(s)	Analysis Da	ate/Time(s)	
EPA 8151A	11/20/08	12/27/08	11/17/08 19	9:38	11/21/2008	00:50	



### **SAMPLE DETECTION SUMMARY**

No positive results detected.

Page 3 of 9



### **ANALYTICAL RESULTS**

Description: L-1

**Lab Sample ID:** A805836-01

Received: 11/15/08 08:00

Matrix: Ground Water

Sampled: 11/13/08 08:00

Work Order: A805836

Project: J0805551

Sampled By:

### **Chlorinated Herbicides by GC**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	Method	<u>Analyzed</u>	By	<u>Notes</u>
2,4,5-T [93-76-5] ^	0.080	U	ug/L	1	0.080	0.50	8K17021	EPA 8151A	11/20/08 23:35	RC	
2,4,5-TP (Silvex) [93-72-1] ^	0.087	U	ug/L	1	0.087	0.50	8K17021	EPA 8151A	11/20/08 23:35	RC	
2,4-D [94-75-7] ^	0.13	U	ug/L	1	0.13	0.50	8K17021	EPA 8151A	11/20/08 23:35	RC	
Dinoseb [88-85-7] ^	0.10	U	ug/L	1	0.10	0.50	8K17021	EPA 8151A	11/20/08 23:35	RC	
Pentachlorophenol [87-86-5] ^	0.056	U	ug/L	1	0.056	0.50	8K17021	EPA 8151A	11/20/08 23:35	RC	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
2,4-DCAA	2.3	1	2.00	117 %	77-	191	8K17021	EPA 8151A	11/20/08 23:35	RC	



www.encolabs.com

Description: L-4

**Lab Sample ID:** A805836-02

Sampled By:

Received: 11/15/08 08:00

Matrix: Ground Water Project: J0805551

Sampled: 11/13/08 09:40

Work Order: A805836

### **Chlorinated Herbicides by GC**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	PQL	<u>Batch</u>	Method	Analyzed	Вy	<u>Notes</u>
2,4,5-T [93-76-5] ^	0.080	U	ug/L	1	0.080	0.50	8K17021	EPA 8151A	11/21/08 00:13	RC	
2,4,5-TP (Silvex) [93-72-1] ^	0.087	U	ug/Ĺ	1	0.087	0.50	8K17021	EPA 8151A	11/21/08 00:13	RC	
2,4-D [94-75-7] ^	0.13	U	ug/L	1	0.13	0.50	8K17021	EPA 8151A	11/21/08 00:13	RC	
Dinoseb [88-85-7] ^	0.10	U	ug/L	1	0.10	0.50	8K17021	EPA 8151A	11/21/08 00:13	RC	
Pentachlorophenol [87-86-5] ^	0.056	U	ug/L	. 1,	0.056	0.50	8K17021	EPA 8151A	11/21/08 00:13	RC	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
2,4-DCAA	0.58	1	2.00	29 %	77-	191	8K17021	EPA 8151A	11/21/08 00:13	RC	QS-05



Description: L-5

Lab Sample ID: A805836-03

Received: 11/15/08 08:00

Matrix: Ground Water

Sampled: 11/13/08 11:00

Work Order: A805836

Project: J0805551

Sampled By:

### Chlorinated Herbicides by GC

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	Units	DF	MDL	POL.	Batch	Method	Analyzed	Ву	Notes
2,4,5-T [93-76-5] ^	0.080	U	ug/L	1	0.080	0.50	8K17021	EPA 8151A	11/21/08 00:50	RC	Notes
2,4,5-TP (Silvex) [93-72-1] ^	0.087	U	ug/L	1	0.087	0.50	8K17021	EPA 8151A	11/21/08 00:50	RC	
2,4-D [94-75-7] ^	0.13	U	ug/L	1	0.13	0.50	8K17021	EPA 8151A	11/21/08 00:50	RC	
Dinoseb [88-85-7] ^	0.10	IJ	ug/L	· 1	0.10	0.50	8K17021	EPA 8151A	11/21/08 00:50	RC	
Pentachlorophenol [87-86-5] ^	0.056	U	ug/L	1	0.056	0.50	8K17021	EPA 8151A	11/21/08 00:50	RC	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	By	Notes
2,4-DCAA	0.83	1	2.00	42 %	77-	191	8K17021	EPA 8151A	11/21/08 00:50	RC	QS-05



### **QUALITY CONTROL**

### **Chlorinated Herbicides by GC - Quality Control**

Batch 8K17021 - EPA 3510C

Blank (8K17021-BLK1)

Prepared: 11/17/2008 19:38 Analyzed: 11/20/2008 12:59

Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	Notes
2,4-D	0.13	U	0.50	ug/L	LEVEI	Result	70KEC	Limits	RPD	Limit	Notes
Pentachlorophenol	0.056	U	0.50	ug/L							
2,4,5-TP (Silvex)	0.087	U	0.50	ug/L							
2,4,5-T [2C]	0.080	U	0.50	ug/L							
Dinoseb [2C]	0.10	U	0.50	ug/L							
Surrogate: 2,4-DCAA	2.0			ug/L	2.00		102	77-191	**		

LCS (8K17021-BS1)

Prepared: 11/17/2008 19:38 Analyzed: 11/20/2008 13:37

					Spike	Source	Visitati	%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
2,4-D	1.8		0.50	ug/L	2.00		88	85-140	-		
2,4,5-TP (Silvex)	1.9		0.50	ug/L	2.00		96	74-177			
Surrogate: 2,4-DCAA	2.1	ant the Control of the Analysis and the Analysis and the		ug/L	2.00		104	77-191			

Matrix Spike (8K17021-MS1)

Source: A805838-01

Prepared: 11/17/2008 19:38 Analyzed: 11/20/2008 14:14

				Spike	Source		%REC	RPD
Analyte	Result Flag	PQL	Units	Level	Result	%REC	Limits	RPD Limit Notes
2,4-D	1.8	0.50	ug/L	2.00	0.13 U	92	85-140	
2,4,5-TP (Silvex)	2.0	0.50	ug/L	2.00	0.087 U	99	74-177	
Surrogate: 2,4-DCAA	2.0	,	ug/L	2.00		98	77-191	111111111111111111111111111111111111111



### FLAGS/NOTES AND DEFINITIONS

PQL	PQL: Practical Quantitation Limit.
В	Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
I	The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
J K	Estimated value. The associated sample note or project narrative indicate the causative reason.  Off-scale low; Actual value is known to be less than the value given.
L	Off-scale high; Actual value is known to be greater than value given.
М	Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
N	Presumptive evidence of presence of material.
Ο	Sampled, but analysis lost or not performed.
Q .	Sample exceeded the accepted holding time.
T	Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
U	Indicates that the compound was analyzed for but not detected.
V Y	Indicates that the analyte was detected in both the sample and the associated method blank.  The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
Ζ .	Too many colonies were present (TNTC); the numeric value represents the filtration volume.
?	Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
* QS-05	Not reported due to interference.  Surrogate recovery biased low and outside control limits due to suspected matrix effects, as evidenced by sample behavior during sample preparation (emulsion formation, excessive foaming).
	roanning).



# 

CAS Contact: Craig Myers

Project Number:

10805581

Project Manager: Craig Myets

					13.8810 \$75	14.		
Lab Code	Sample ID	劃。	of Cont.	Matrix	Date	Time	Lab ID	
90365 <b>551-0</b> 01	L.A.	ħ.	3	Water	11:1358	158(iii)	white E	NICO
10805551-002	L4		A	Wissa	1000	l om	LLA	
10805551-003	1×5		Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of th	Late W	1913,64	1,180	Librahile -	

**Test Comments** 

HERB - 8151A

10805551-001,23

Region Appendix II For Said to USCU Jax.

Invoice Information Auritational Regularments Report Requirements Special Instructions/Comments P Results Only 101 SH (Suicharges Apply) If Results + QC Summaries PLEASI, CIRCLE WORK DAYS PLEASE SEND P()# 311 Regults + QC and Calibration Summaries 1 2 1 4 5 30805551 RESULTS TO IV Data Validation Report with Raw Data SLYSDARD MANDY SULLIVAN Billio Requested EXX Date POMPAINA FDD Respected Report Dan 44-26-18-Relinquished By:

Page



December 19, 2008

Service Request No: J0806110

Kirk Wills GeoSyntec Consultants 14055 Riveredge Drive Suite 300 Tampa, FL 33637

### Laboratory Results for: JED SWDF/FQ1512

Dear Kirk:

Enclosed are the results of the sample(s) submitted to our laboratory on December 16, 2008. For your reference, these analyses have been assigned our service request number **J0806110**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of 15

Laboratory Manager: Greg Jordan

Quality Assurance Officer: Kathy Brungard

CAS Jacksonville is NELAC-accredited by the State of Florida, #E82502 valid through 6/30/09. Other state accreditations include: Georgia, #958 valid through 6/30/09; Louisiana, #02086 valid through 6/30/09; Texas, #T104704197-06-TX valid through 5/31/09; North Carolina, #527 valid through 12/31/08; South Carolina, #96021001 valid through 6/30/09.

Client:

GeoSyntec Consultants

Project:

JED SWDF

Sample Matrix: Water

Service Request No.:

J0806110

Date Received:

12/16/08

### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

### Sample Receipt

One water sample was received for analysis at Columbia Analytical Services on 12/16/08. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2^{\circ}$ C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

### **Lab Control Sample Exceptions**

The spike recovery of 1,2-Dibromo-3-chloropropane (DBCP) for Laboratory Control Sample (LCS) JWG0804957-3 was outside the upper control criterion. The analyte in question was not detected in the associated field sample. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

### **Batch QC Notes and Discussion**

Quality control samples for MS/DMS were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

Approved by	Gan R Mrs	Date	12/19	08	
	0, 1		1		_

### Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

### **Acronyms**

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project: GeoSyntec Consultants

JED SWDF/FQ1512

Service Request: J0806110

### SAMPLE CROSS-REFERENCE

SAMPLE#

**CLIENT SAMPLE ID** 

J0806110-001

MW-10A

**DATE** 

**TIME** 

12/15/08

11:10

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0806110

**Date Collected: 12/15/2008** 

**Date Received:** 12/16/2008

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-10A

Lab Code:

J0806110-001

**Extraction Method:** 

EPA 5030B

**Analysis Method:** 

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q M	1RL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND		1.0	0.17	1	12/17/08	12/17/08	JWG0804957	
Vinyl Chloride	ND '		1.0	0.25	1	12/17/08	12/17/08	JWG0804957	
Bromomethane	ND	U	1.0	0.14	1	12/17/08	12/17/08	JWG0804957	
Chloroethane	ND T		5.0	0.19	1	12/17/08	12/17/08	JWG0804957	
Trichlorofluoromethane	ND '		20	0.25	1	12/17/08	12/17/08	JWG0804957	
1,1-Dichloroethene	ND	U	1.0	0.16	1	12/17/08	12/17/08	JWG0804957	
Acetone	ND		50	2.4	1	12/17/08	12/17/08	JWG0804957	
Iodomethane (Methyl Iodide)	ND		5.0	2.5	1	12/17/08	12/17/08	JWG0804957	
Carbon Disulfide	ND	U	10	0.84	1	12/17/08	12/17/08	JWG0804957	
Methylene Chloride	ND		5.0	0.72	1	12/17/08	12/17/08	JWG0804957	
trans-1,2-Dichloroethene	ND		1.0	0.13	1	12/17/08	12/17/08	JWG0804957	
Acrylonitrile	ND	U	10	0.59	1	12/17/08	12/17/08	JWG0804957	
1,1-Dichloroethane	ND T		1.0	0.56	1	12/17/08	12/17/08	JWG0804957	
Vinyl Acetate	ND		10	0.60	1	12/17/08	12/17/08	JWG0804957	
cis-1,2-Dichloroethene	0.99	I	1.0	0.12	1	12/17/08	12/17/08	JWG0804957	
2-Butanone (MEK)	ND		10	0.56	1	12/17/08	12/17/08	JWG0804957	
Bromochloromethane	ND 1		5.0	0.14	1	12/17/08	12/17/08	JWG0804957	
Chloroform	ND	U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
1,1,1-Trichloroethane (TCA)	ND 1		1.0	0.21	1	12/17/08	12/17/08	JWG0804957	
Carbon Tetrachloride	ND 1		1.0	0.18	1	12/17/08	12/17/08	JWG0804957	
Benzene	1.3		1.0	0.52	1	12/17/08	12/17/08	JWG0804957	
1,2-Dichloroethane (EDC)	ND 1		1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
Trichloroethene (TCE)	ND 1		1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
1,2-Dichloropropane	ND 1	U	1.0	0.057	1	12/17/08	12/17/08	JWG0804957	
Dibromomethane	ND 1		5.0	0.12	1	12/17/08	12/17/08	JWG0804957	
Bromodichloromethane	ND 1		1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
cis-1,3-Dichloropropene	ND 1	U	1.0	0.12	1	12/17/08	12/17/08	JWG0804957	
4-Methyl-2-pentanone (MIBK)	ND 1		25	0.37	1	12/17/08	12/17/08	JWG0804957	
Toluene	ND 1		1.0	0.52	1	12/17/08	12/17/08	JWG0804957	
trans-1,3-Dichloropropene	ND 1	U :	1.0	0.12	1	12/17/08	12/17/08	JWG0804957	
1,1,2-Trichloroethane	ND 1		1.0	0.21	1	12/17/08	12/17/08	JWG0804957	
Tetrachloroethene (PCE)	ND I		1.0	0.22	1	12/17/08	12/17/08	JWG0804957	
2-Hexanone	ND 1	U .	25	0.36	1	12/17/08	12/17/08	JWG0804957	
Dibromochloromethane	ND I	U	1.0	0.11	1	12/17/08	12/17/08	JWG0804957	

Comments:

Printed: 12/18/2008 11:12:56

 $p:\Stealth\Crystal.rpt\Form1m.rpt$ 

Merged

Form 1A - Organic

6_{Page 1 of 2}

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0806110

**Date Collected:** 12/15/2008

**Date Received:** 12/16/2008

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

MW-10A

Lab Code:

J0806110-001

**Extraction Method: Analysis Method:** 

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	12/17/08	12/17/08	JWG0804957	(CONTRACTOR CONTRACTOR)
Chlorobenzene	ND U	1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
Ethylbenzene	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
m,p-Xylenes	ND U	2.0	0.22	1	12/17/08	12/17/08	JWG0804957	
o-Xylene	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
Styrene	ND U	1.0	0.051	1 .	12/17/08	12/17/08	JWG0804957	
Bromoform	ND U	2.0	0.12	1	12/17/08	12/17/08	JWG0804957	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	12/17/08	12/17/08	JWG0804957	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	12/17/08	12/17/08	JWG0804957	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	12/17/08	12/17/08	JWG0804957	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	12/17/08	12/17/08	JWG0804957	
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	12/17/08	12/17/08	JWG0804957	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,2-Dichloroethane-d4	97	71-122	12/17/08	Acceptable
4-Bromofluorobenzene	101	75-120	12/17/08	Acceptable
Dibromofluoromethane	100	82-116	12/17/08	Acceptable
Toluene-d8	97	88-117	12/17/08	Acceptable

Comments:

Printed: 12/18/2008 11:12:56 p:\Stealth\Crystal.rpt\Form1m.rpt

Analytical Results

Client: Project: GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0806110

Date Collected: NA Date Received: NA

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

JWG0804957-4

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Chloromethane	ND U	1.0	0.17	1	12/17/08	12/17/08	JWG0804957	Service de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la company
Vinyl Chloride	ND U	1.0	0.25	1	12/17/08	12/17/08	JWG0804957	
Bromomethane	ND U	1.0	0.14	1	12/17/08	12/17/08	JWG0804957	
Chloroethane	ND U	5.0	0.19	1	12/17/08	12/17/08	JWG0804957	
Trichlorofluoromethane	ND U	20	0.25	1	12/17/08	12/17/08	JWG0804957	
1,1-Dichloroethene	ND U	1.0	0.16	1	12/17/08	12/17/08	JWG0804957	
Acetone	ND U	50	2.4	1	12/17/08	12/17/08	JWG0804957	
Iodomethane (Methyl Iodide)	ND U	5.0	2.5	1	12/17/08	12/17/08	JWG0804957	
Carbon Disulfide	ND U	10	0.84	1	12/17/08	12/17/08	JWG0804957	
Methylene Chloride	ND U	5.0	0.72	1	12/17/08	12/17/08	JWG0804957	
trans-1,2-Dichloroethene	ND U	1.0	0.13	1	12/17/08	12/17/08	JWG0804957	
Acrylonitrile	ND U	10	0.59	1	12/17/08	12/17/08	JWG0804957	
1,1-Dichloroethane	ND U	1.0	0.56	1	12/17/08	12/17/08	JWG0804957	
Vinyl Acetate	ND U	10	0.60	1	12/17/08	12/17/08	JWG0804957	
cis-1,2-Dichloroethene	ND U	1.0	0.12	1	12/17/08	12/17/08	JWG0804957	
2-Butanone (MEK)	ND U	10	0.56	1	12/17/08	12/17/08	JWG0804957	
Bromochloromethane	ND U	5.0	0.14	1	12/17/08	12/17/08	JWG0804957	
Chloroform	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
1,1,1-Trichloroethane (TCA)	ND U	1.0	0.21	1	12/17/08	12/17/08	JWG0804957	
Carbon Tetrachloride	ND U	1.0	0.18	1	12/17/08	12/17/08	JWG0804957	
Benzene	ND U	1.0	0.52	1	12/17/08	12/17/08	JWG0804957	
1,2-Dichloroethane (EDC)	ND U	1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
Trichloroethene (TCE)	ND U	1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
1,2-Dichloropropane	ND U	1.0	0.057	1	12/17/08	12/17/08	JWG0804957	
Dibromomethane	ND U	5.0	0.12	1	12/17/08	12/17/08	JWG0804957	
Bromodichloromethane	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
cis-1,3-Dichloropropene	ND U	1.0	0.12	1	12/17/08	12/17/08	JWG0804957	
4-Methyl-2-pentanone (MIBK)	ND U	25	0.37	1	12/17/08	12/17/08	JWG0804957	
Toluene	ND U	1.0	0.52	1	12/17/08	12/17/08	JWG0804957	
trans-1,3-Dichloropropene	ND U	1.0	0.12	1	12/17/08	12/17/08	JWG0804957	
1,1,2-Trichloroethane	ND U	1.0	0.21	1	12/17/08	12/17/08	JWG0804957	
Tetrachloroethene (PCE)	ND U	1.0	0.22	1	12/17/08	12/17/08	JWG0804957	
2-Hexanone	ND U	25	0.36	1	12/17/08	12/17/08	JWG0804957	
Dibromochloromethane	ND U	1.0	0.11	1	12/17/08	12/17/08	JWG0804957	

**Comments:** 

Printed: 12/18/2008 11:12:58

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR26353

Analytical Results

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0806110

Date Collected: NA Date Received: NA

### Appendix I Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0804957-4

**Extraction Method:** Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	1.0	0.18	1	12/17/08	12/17/08	JWG0804957	
Chlorobenzene	ND U	1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
1,1,1,2-Tetrachloroethane	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
Ethylbenzene	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
m,p-Xylenes	ND U	2.0	0.22	1	12/17/08	12/17/08	JWG0804957	
o-Xylene	ND U	1.0	0.10	1	12/17/08	12/17/08	JWG0804957	
Styrene	ND U	1.0	0.051	. 1	12/17/08	12/17/08	JWG0804957	
Bromoform	ND U	2.0	0.12	1	12/17/08	12/17/08	JWG0804957	
1,1,2,2-Tetrachloroethane	ND U	1.0	0.15	1	12/17/08	12/17/08	JWG0804957	
1,2,3-Trichloropropane	ND U	2.0	0.16	1	12/17/08	12/17/08	JWG0804957	
1,4-Dichlorobenzene	ND U	1.0	0.14	1	12/17/08	12/17/08	JWG0804957	
trans-1,4-Dichloro-2-butene	ND U	20	1.1	1	12/17/08	12/17/08	JWG0804957	
1,2-Dichlorobenzene	ND U	1.0	0.17	1	12/17/08	12/17/08	JWG0804957	
1,2-Dibromo-3-chloropropane (DBCP	ND UJ	5.0	0.26	1	12/17/08	12/17/08	JWG0804957	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	102	71-122	12/17/08	Acceptable	
4-Bromofluorobenzene	103	75-120	12/17/08	Acceptable	
Dibromofluoromethane	96	82-116	12/17/08	Acceptable	
Toluene-d8	102	88-117	12/17/08	Acceptable	

**Comments:** 

QA/QC Report

**Client: Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0806110

**Surrogate Recovery Summary** 

Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method:** EPA 5030B

**Analysis Method:** 

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	<u>Sur4</u>
MW-10A	J0806110-001	97	101	100	97
Method Blank	JWG0804957-4	102	103	96	102
Lab Control Sample	JWG0804957-3	103	98	101	99

Surrogate Recovery Control Limits (%)

Sur1 = 1,2-Dichloroethane-d4	71-122	. :
Sur2 = 4-Bromofluorobenzene	75-120	
Sur3 = Dibromofluoromethane	82-116	
Sur4 = Toluene-d8	88-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 12/18/2008 11:13:03 p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR26353

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0806110

**Date Extracted:** 12/17/2008

**Date Analyzed: 12/17/2008** 

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: JWG0804957

Lab Control Sample JWG0804957-3 Lab Control Spike

	Lab	Control Spike	<del></del>	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Chloromethane	19.3	20.0	97	67-135	
Vinyl Chloride	22.6	20.0	113	78-132	
Bromomethane	23.3	20.0	117	79-130	
Chloroethane	20.9	20.0	104	74-126	
Trichlorofluoromethane	23.5	20.0	118	74-134	
1,1-Dichloroethene	23.1	20.0	116	78-130	
Acetone	125	100	125	67-133	
Iodomethane (Methyl Iodide)	96.3	100	96	68-134	
Carbon Disulfide	118	100	118	76-138	
Methylene Chloride	22.7	20.0	113	72-124	
trans-1,2-Dichloroethene	23.0	20.0	115	77-124	
Acrylonitrile	119	100	119	77-127	
1,1-Dichloroethane	23.0	20.0	115	80-128	
Vinyl Acetate	108	100	108	61-148	
cis-1,2-Dichloroethene	22.6	20.0	113	80-126	
2-Butanone (MEK)	117	100	117	73-127	
Bromochloromethane	23.6	20.0	118	79-129	
Chloroform	22.8	20.0	114	83-124	
1,1,1-Trichloroethane (TCA)	23.5	20.0	118	79-124	
Carbon Tetrachloride	23.4	20.0	117	81-125	
Benzene	22.9	20.0	114	79-119	
1,2-Dichloroethane (EDC)	23.5	20.0	118	80-124	
Trichloroethene (TCE)	22.7	20.0	113	76-124	
1,2-Dichloropropane	22.2	20.0	111	79-123	
Dibromomethane	22.4	20.0	112	83-123	
Bromodichloromethane	23.0	20.0	115	81-123	
cis-1,3-Dichloropropene	22.6	20.0	113	86-123	
4-Methyl-2-pentanone (MIBK)	112	100	112	72-136	
Toluene	21.8	20.0	109	86-117	
trans-1,3-Dichloropropene	22.1	20.0	111	83-124	
1,1,2-Trichloroethane	21.5	20.0	107	86-114	
Tetrachloroethene (PCE)	21.1	20.0	106	80-121	
2-Hexanone	113	100	113	71-138	
Dibromochloromethane	21.7	20.0	108	82-121	
1,2-Dibromoethane (EDB)	21.2	20.0	106	88-117	
Chlorobenzene	21.4	20.0	107	86-113	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/18/2008 11:13:06  $p:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

Form 3C - Organic

11 Page 1 of 2

QA/QC Report

Client: **Project:**  GeoSyntec Consultants JED SWDF/FQ1512

Sample Matrix:

Water

Service Request: J0806110

**Date Extracted: 12/17/2008** 

**Date Analyzed:** 12/17/2008

### Lab Control Spike Summary Appendix I Volatile Organic Compounds by GC/MS

**Extraction Method: Analysis Method:** 

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG0804957

Lab Control Sample JWG0804957-3 Lab Control Snike

Lau	E	%Rec		
Result	Expected	%Rec	Limits	
21.3	20.0	107	85-117	
21.8	20.0	109	90-118	
42.6	40.0	106	86-121	
21.8	20.0	109	89-119	
21.3	20.0	106	89-122	
21.7	20.0	108	68-129	
22.6	20.0	113	83-120	
22.6	20.0	113	83-123	
21.8	20.0	109	83-113	
21.8	20.0	109	53-143	
22.2	20.0	111	84-115	
26.8	20.0	134 *	62-123	
	21.3 21.8 42.6 21.8 21.3 21.7 22.6 22.6 21.8 21.8 22.2	Result         Expected           21.3         20.0           21.8         20.0           42.6         40.0           21.8         20.0           21.3         20.0           21.7         20.0           22.6         20.0           22.6         20.0           21.8         20.0           21.8         20.0           22.2         20.0	21.3     20.0     107       21.8     20.0     109       42.6     40.0     106       21.8     20.0     109       21.3     20.0     106       21.7     20.0     108       22.6     20.0     113       22.6     20.0     113       21.8     20.0     109       21.8     20.0     109       22.2     20.0     111	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 12/18/2008 11:13:06 p:\Stealth\Crystal.rpt\Form3LCS.rpt

# Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

Client:	Geosynte	CAE		Service Reques	t #	_J01	06110	
roject:	JED 3	WUT		, ,	17/1/1/19		TAV	
Cooler rec		6/08		and opened on	12/16/00	by	147	
COURIER	.: CAS UPS'	'FEDEX	DHL	CLIENT	Tracking #		***************************************	
1	Were custody seals o	n outside of co	oler?			Yes	No	N/A
2	Were seals intact, sig	ned and dated?	)		(	Yes	No	N/A
3	Were custody papers	properly filled	out?		1 1	Yes	No	N/A
4	Temperature of cooler(s)	upon receipt	(Should be	e 4 +/- 2 degrees C)	1,7			
5	Correct Temperature	?				Yes	No	N/A
6	Were Ice or Ice Pack	s present			(	Yes	No	N/A
7	Did all bottles arrive	in good condit	ion (unb	oroken, etc)?		Yes	No	N/A
8	Were all bottle labels	complete (san	aple ID,	preservation, etc	o)? (	Yes	No	N/A
9	Did all bottle labels a	and tags agree	with cus	tody papers?	(	Yes	No	N/A
.10	Were the correct bott	les used for the	e tests i	ndicated?	>	Yes)	No	N/A
11	Were all of the preserved	bottles received	with the a	ppropriate preservat	ive?	Yes	No	N/A
13 14	Were VOA vials checked Where did the bottles		r bubbles'	? If present, note be	low	Yes CAS	No Client	N/A
	promise and an exercise to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr		Manu	f. Lot#or CAS				SALES AND AND AND AND AND AND AND AND AND AND
	1		1	-				
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
	Sample ID	Reagent		Chem ID	ml added	Ir	nititials	
						Ir	nititials	
dditional	Sample ID					Ir	nititials	
dditional						Ir	nititials	
dditional						Ir	nititials	
dditional						Ir	nititials	

SR#: 1 5806//0

Date: 12/16/08

Initials:

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise hoted on cooler receipt form.

	Γ												Bott	le Coc	ie															<u>L_</u>
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		23		25		27	28	29	30
		40mL	40mL	40mL			125ml			250mL	250ml						500ml				1L	1L	1L	2oz	4oz	8oz	16oz	5g ENC	100mL	Misc.
Container	G	G	G	G	Р	Р	P	Р	Р	Р	Ρ	Р	Р	G	G	Р	Р	P	Р	Р	G	G	G	G	G	G	G	ENC	Р	Misc.
			Sodium	unco		l uci	Lucco.		Marni	H2SO4	LINIO3	ZnAcetate NaOH	NaOH		ниоз	Miller.	Lune O	HNO3		HNOS		LIC!	H2SO4	1					Sodium Thiosulfate	
Pres. Req. pH	N/A	<2	Thiosulfate	<2 <2	N/A	<2	H2SO4	<2	N/A	<2	<2	>9	>12	N/A	<2	N/A	<2	<2	N/A						N/A	NIA	N/A	N/A	N/A	N/A
Sample #	N/A		-	-	- 19/24	-	-	1	19/7					19/5	-	- 1975	1-	<del> </del>	-	-	-			-	-	1447	31317.5	Liner	-	-
-001		3		-	<del> </del>		<del> </del>	<del>                                     </del>							-		1	1	$\vdash$	<del> </del>				<u> </u>						
-002		4.7		<del> </del>	<b> </b>												<b>†</b>	<del>                                     </del>	1		1			_						
-002					1		<del> </del>	<del> </del>				l			<b></b>		1	<del> </del>	1		-	<u> </u>		<b> </b>						
				<del> </del>	<del> </del>		<del> </del>								l		<b></b> -	<del> </del>	$\vdash$		_	<b>-</b>		<del>                                     </del>						
-004				<del> </del>	<del> </del>	-	<del> </del>								-		1	<del> </del>	1-		-									<b> </b>
-005				<del> </del>			<b></b>	-	<del> </del>									+	+		├	<del> </del>	ļ			-				<del> </del>
-006				<del> </del>	-	-	ļ					ļ			<del> </del>		<del> </del>	-		<u> </u>	-			-	-					-
-007				<del> </del>			ļ											+	-		-					-				-
-008						ļ	ļ										-		┼-						-					<del> </del>
-009	ļ			<u> </u>		ļ	ļ											-	+											+-
-010	<u> </u>				ļ		ļ								ļ				$\vdash$		-			-	-					-
-011	ļ						-	-								ļ	<del> </del>		-	<del> </del>				-						-
-012					ļ	ļ	ļ					ļ <u>.</u>						-			⊢			-	-					
-013				<u> </u>			ļ	ļ											┼		-									
-014				ļ	<u> </u>	ļ	ļ										<del> </del>		<del> </del>		├—				-					+
-015					ļ		ļ	<u> </u>				ļ			-				┼	<del> </del>	-									<del> </del>
-016							<u> </u>												┼		-			-						
-017				<u> </u>			<del> </del>	ļ											┼		-									-
-018					<b> </b>	<u> </u>		ļ								<u> </u>	<del> </del>				-					-				+
-019				ļ	ļ		ļ	<u> </u>	ļ								<del> </del>		-		-			├						
-020				ļ			ļ									ļ		<del> </del>	-		├				-					
-021					ļ		ļ	ļ									ļ	ļ	<del> </del>		ļ									<del> </del>
-022				ļ	ļ		ļ	-										ļ	-		<u> </u>									
-023					ļ		ļ										ļ	ļ	<del> </del>	ļ										
-024				ļ				1									<u> </u>		<u> </u>		<u> </u>									ļ
-025				L													<u> </u>	-	1		_									<u> </u>
-026							ļ											ļ	<u> </u>											-
-027																						<u> </u>								<u> </u>
-028					ļ												ļ	ļ												ļ
-029																					_									
-030																	1		_											
-031	L																		<u></u>		_									ļ
-032																														
-033					<u></u>																									<u> </u>
-034																														
-035																			_											
-036																											T			
-037																														
-038																														
-039					1																									
-040				1															T											

15	Columbia	
	Columbia Analytical	Services*

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#
JU806110
CAS Cantact

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE ICAS Contact www.caslab.com SWOF FQ 1512 ANALYSIS REQUESTED (Include Method Number a **PRESERVATIVE** Preservative Key 0. NONE NUMBER OF CONTAINERS 1. HCL 2. HNO₃ 3. H₂SO₄ 4. NaOH 33637 5. Zn. Acetate MeOH 7. NaHSO₄ V 0 813-558-9726 8. Other Sampler's Printed Name Joe Terry REMARKS/ ALTERNATE DESCRIPTION SAMPLING CLIENT SAMPLE ID LAB ID DATE TIME MATRIX MW-10A 12.15-28 1110 GW 3 SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION RUSH (SURCHARGES APPLY) I. Results Only X STANDARD II. Results + QC Summaries PO# (LCS, DUP, MS/MSD as required) REQUESTED FAX DATE BILL TO: III. Results + QC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report See QAPP □ Edata _____ Yes ____ No SAMPLE RECEIPT: CONDITION/COOLER TEMP: CUSTODY SEALS: Y N RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY Signature Signature Signature Signature Printed Name Printed Name Printed Name Printed Name Date/Time Date/Time Date/Time