

TRAIL RIDGE LANDFILL

Semiannual Water Quality Data Report

Prepared for:
Trail Ridge Landfill
5110 U.S. Highway 301, South
Jacksonville, Florida 32234

FDEP Permit Number 0013493-017-SO WACS ID Number NED/16/00033628

Prepared by:

HDR Engineering, Inc. 200 West Forsyth Street Suite 800 Jacksonville, Florida 32202 (904) 598-8900 (904) 598-8988 fax

October 2010

PART I GENERAL INFORMATION

Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31)

Form Title: Water Quality Monitoring Certification

Effective Date: January 6, 2010 Incorporated in Rule 62-701.510(9)

WATER QUALITY MONITORING CERTIFICATION

(1)	Facility Name <u>Trail Ridge Landfill, Inc.</u>			
	Address 5110 U.S. Highway 301			
	City Baldwin, FL	Zip <u>3223</u> 4	1	County <u>Duval</u>
	Telephone Number (850) 474-8846			
(2)	WACS Facility ID NED/16/00033628			
(3)	DEP Permit Number 0013493-017-SQ			
(4)	Authorized Representative's Name Eric Parker		Title	Manager of Env. Protection
	Address 5110 US Hwy 301			<u> </u>
	City Baldwin, FL			
	Telephone Number (904) 289-9100 Ext. 212		• ***	
	Email address (if available) EParker1@wm.com			
dod info for	ertify under penalty of law that I have personally examined cument and all attachments and that, based on my inquiry of tormation, I believe that the information is true, accurate, and submission of false information including the possibility of fine (Date)	and am fa hose individ complete. I and impriso	uals immedia am aware tl nment.	ately responsible for obtaining the hat there are significant penalties
	(Date) (Owner or Au	thorized Rep	resentative's	s Signature)
PA	RT II QUALITY ASSURANCE REQUIREMENTS			
Sa	mpling Organization <u>Professional Tech. Support Services</u>			
An	alytical Lab NELAC / HRS Certification # NELAP Certification	E87667		
Lal	b Name <u>Test America, Inc.</u>			
Ad	dress 4955 Yarrow Street, Arvada, CO 80002			
Ph	one Number <u>(303) 736-0100</u>			
En	pail address (if available). Danielle Harrington@testamericaing	.com		

EXECUTIVE SUMMARY

Semiannual Water Quality Data Report for Trail Ridge Landfill

This semiannual water quality monitoring report was completed on behalf of the Trail Ridge Landfill (Trail Ridge) located in Jacksonville, Duval County, Florida. The data reviewed were obtained during the routine semiannual detection monitoring event conducted in July 2010. The groundwater at Trail Ridge is monitored by thirty-seven wells including five background wells and three surface water sample points in accordance with Permit Number 0013493-010-SC. The groundwater wells are monitored semiannually for the parameters listed under Attachment 6 and Specific Condition 45 of the Permit. The three surface water points are monitored semiannually for parameters listed under Attachment 9 and Specific Condition 46 of the Permit. Leachate is monitored annually and reported during the 2nd semiannual sampling event for the parameters listed in Specific Condition 40 of the Permit. Condensate is discharged into the leachate collection system, which is monitored in accordance with the leachate sampling requirement. Therefore testing of gas condensate is no longer conducted.

A detailed review of the monitoring data indicates that iron exceeded the Secondary Drinking Water Standard (SDWS) in samples from 26 of the 37 monitoring wells including all five background wells. This finding is consistent with historical reports which show that the levels of iron in the groundwater at Trail Ridge result from the geochemical kinetics processes of soil minerals in groundwater and are characteristic of the groundwater in Duval County. The pH of samples from 32 of the 37 wells was below the SDWS of 6.5 S.U., including four background wells (i.e., pH's below 6.5 S.U. are naturally occurring). Total dissolved solids was detected from one well (MWB-34(S)c) above the Secondary Drinking Water Standard (SDWS), which is consistent with the historical data. Consistent with the monitoring history, vanadium was detected from two wells (MWB-12(S)c and MWB-13(S)c) above the Groundwater Cleanup Target Level.

Several VOCs were detected at MWB-2(S)c at trace levels slightly above laboratory detection limits but below the reporting limit and substantially below applicable groundwater standards. VOC's detected at trace levels include 2-butanone, acetone, and toluene. These concentrations are substantially below their respective groundwater standards. Toluene was also detected from MWB-2(S)c, MWB-2(I)c, and field blank below the report limit. These compounds are common field and laboratory contaminants.

The field measured pH and dissolved oxygen of the surface water samples from both SW-1 and SW-2 (background location) exceeded the Class III standard limits. Calculated unionized ammonia concentration from SW-3 was above the Class III limit. Beryllium was detected from SW-2 and mercury was detected from all surface water points below reporting limits but above their respective Class III standards. Iron from SW-1 and SW-3 were also detected above the Class III standards. The remainder of the data meets the water quality standards.

Overall, the data reported is consistent with the site's overall groundwater quality and historical data. The parameters detected at levels above applicable SDWS have been previously reported to the FDEP and there are no new exceedances requiring reporting under 62-701.510(7)a.

Based on recent monitoring well inspections, all of the wells are maintained in good condition. Surface seals, protective casings, well caps, and well locks are in-place and in proper condition at each well to ensure that

TABLE OF CONTENTS

		Page
Title P	age	
Execut	tive Sum	nmaryi
Table o	of Conte	ents
1.0	Introd	uction1
	1.1	Background1
2.0	Groun	dwater Monitoring Data
	2.1 2.2	Field Data
3.0	Surfac	e Water Monitoring Data 5
4.0	Leacha	ate Monitoring Data
5.0	Summa	ary6
6.0	Certifi	cation7
Figure Figure Figure Figure	1 2	Groundwater Contour Map Shallow Wells - Trail Ridge Landfill Groundwater Contour Map Intermediate Wells - Trail Ridge Landfill Groundwater Contour Map Deep Wells - Trail Ridge Landfill
Appen A B C D	<u>dices</u>	Laboratory Report – Groundwater Sample Points with Field Data Sheets Laboratory Report – Surface Water Sample Points Laboratory Report – Leachate EDD Files – Field Data; Laboratory Data, and Error Logs (CD)

1.0 INTRODUCTION

This semiannual groundwater monitoring report is submitted on behalf of the Trail Ridge Landfill (Trail Ridge) located in Jacksonville, Florida. Trail Ridge is located to the west of US Highway 301 South, in the western portion of Duval County, Florida. It is located at 5110 U.S. Highway 301 South in Baldwin, Florida. The landfill is about 4 1/2 miles southwest of the intersection of US 301 and I-10. Trail Ridge is an active municipal solid waste landfill owned by the City of Jacksonville and operated by Waste Management. Operation of the Landfill is in accordance with Permit Number 0013493-017-SO, issued September 16, 2009 and the applicable provisions of previous permits.

The data submitted in this groundwater quality assessment were obtained during the routine semiannual detection-monitoring event conducted on July 16-18, 2010. During this monitoring period, groundwater wells were monitored for the parameters listed in Attachment 6 of the permit. In conjunction with the groundwater monitoring, surface water samples were collected and analyzed for the parameters listed in Attachment 9 of the permit.

The groundwater and surface water monitoring program at Trail Ridge incorporates monitoring elements to provide environmental protection during site operation and after landfill closure. All field work, sampling methodologies, data evaluation, data QA/QC, and laboratory analyses were conducted in accordance with the site permit, and the sample team and National Environmental Laboratory Accreditation Conference (NELAC) standards.

1.1 Background

As identified in the following tables, 37 wells comprise the facility's routine groundwater monitoring system with an additional nine wells that are maintained but only sampled if required for assessment monitoring. Five of the 37 wells are designated background wells, seven wells are designated detection wells and 25 are designated as compliance wells. An additional nine compliance wells are part of the permitted groundwater monitoring network but in accordance with Specific Condition 45 of the permit not utilized unless required for assessment monitoring. Monitoring well designations are shown in the following tables.

Location	Well ID
Background	MWB-2(S)b, MWB-2(I)b MWB-3(S)b, MWB-3(I)b MWB-31(D)b
Phase I Compliance	MWB-7(S)c, MWB-7(I)c, MWB-7(D)c MWB-11(S)c, MWB-11(IR)c MWB-12(S)c, MWB-12(I)c, MWB-12(D)c MWB-19(S)c, MWB-19(I)c, MWB-19(D)c MWB-20(S)c MWB-21(S)c MWB-22(S)c
Phase II Compliance	MWB-17(S)c, MWB-17(I)c, MWB-17(D)c
Phase III & Phase IV Compliance	MWB-13(S)c, MWB-13(I)c
Phase III Detection	MWB-33(S)d MWB-34(S)d MWB-34(I)d, MWB-34(D)d
Phase V Compliance	MWB-27(S)c, MWB-27(I)c, MWB-27(D)c MWB-29(S)c, MWB-29(I)c, MWB-29(D)c
Phase V Detection	MWB-32(S)d, MWB-32(I)d, MWB-32(D)d

Specific Condition 45: These wells shall be maintained but will not be utilized unless required for assessment monitoring.							
Location Well ID							
Phase I Compliance	MWB-14(S)c, MWB-14(I)c, MWB-14(D)c						
Phase III & Phase IV Compliance	MWB-23(S)c						
Phase IV Compliance	MWB-24(S)c,						
	MWB-25(S)c, MWB-25(I)c, MWB-25(D)c,						
	MWB-26(S)c						

The monitoring wells are installed around the perimeter of the landfill and are screened in three zones within the Surficial Aquifer (Shallow, Intermediate, and Deep zones). The monitoring wells are sampled and analyzed semiannually for the parameters listed in Attachment III of the permit. Sampling is required by permit to be conducted prior to March 30, and September 30 of each year, with reports submitted to the FDEP for each sampling period no later than April 15 and October 15 each year.

Surface water flow at the site mimics topography, with runoff in a predominantly eastward direction and drainage features trending west-east. There are three surface water monitoring sites (designated SW-1, SW-2, and SW-3). Monitoring location SW-1 is located in a wetland, approximately 200 feet east of the landfill's stormwater retention pond. Monitoring location SW-2 is located in a west-east trending drainage feature, approximately 500 feet north of the landfill. SW-2 is considered a background sampling location, since it does not receive run-off directly from the landfill area. SW-3 is a new monitoring point established under the permit issued September 16, 2009 and is located in the existing stormwater pond

approximately 700 feet east of the landfill boundary. SW-3 is collected at the discharge point if actively discharging or at the center of the pond if there is no discharge. In accordance with Chapter 62-701, FAC, surface water monitoring is performed on a semiannual basis in conjunction with the groundwater monitoring schedule.

In accordance with Specific Condition 40 of the operating permit, leachate is sampled and analyzed annually prior to September 30. Leachate collection pipes that lie on top of the primary liner terminate at the leachate collection sumps. These sumps also collect any leachate flowing along the secondary leak detection system. The sump is designed so that the leachate from the primary and secondary systems is separated. Therefore, it is necessary to have two pumps in each sump, one for the primary leachate collection system and one for the secondary leachate collection system. Two samples are collected, a composite sample (from tanks 1-5 designated LCS) and a sample of secondary leachate collection system (tank 6 designated LDSS). The leachate is pumped from the sumps through primary and secondary force mains to six 20,000-gallon storage tanks. Tanks 1 through 5 (interconnected) receive the leachate collected from all of the primary leachate collection sumps via one force main. Tank 6 receives leachate that is pumped through a separate force main from the secondary leachate collection sumps. Previous sampling procedures required sampling of all six tanks. However, since tanks 1 through 5 contain the same leachate, sampling procedures were modified during the 1997 permit renewal for the site to the collection of two (2) samples (one for the secondary leachate collection tank and one composite sample of the five primary leachate collection tanks).

In accordance with Specific Condition 38 of the current permit, gas condensate is discharged into the leachate collecting system and testing of condensate is no longer required.

In a letter dated June 15, 2004, FDEP concurred with the site Contamination Evaluation Plan and follow-up letter requesting that the site return to Detection Monitoring and to terminate sampling of the compliance wells. As reported previously, these compliance wells will not be sampled during future events unless otherwise required by the FDEP, and the site has returned to detection monitoring.

2.0 GROUNDWATER MONITORING DATA

The following section contains an evaluation of the groundwater monitoring data. The groundwater data from each of the compliance wells is compared to the background groundwater quality and the applicable water quality standards.

Professional Technical Support Services, Inc. (Pro-Tech) conducted the field activities at the Trail Ridge, in which groundwater elevation data, field measurements, and samples for laboratory analyses were collected. Columbia Analytical Services performed the laboratory analyses. The laboratory reports for the groundwater samples are included in Appendix A.

2.1 Field Data

On July 20 to 21, 2010, Pro-Tech performed the field activities at the Trail Ridge. The field measurements, sample collection, and sample preservation were conducted in accordance with Rule 62-160, F.A.C. and the FDEP Standard Operating Procedures (DEP-SOP-001/01). Prior to purging (on February 16th), depth to water and water level elevations were recorded to the nearest hundredth of a foot from a surveyed reference datum. The water level measurements were utilized for determining water

volumes in the well casing and used to determine groundwater flow direction and gradient at the site (Figures 1-3). Water levels were collected within the same day prior to sampling.

The average horizontal gradient across the site indicates that groundwater flow directions and gradients in the three zones are very similar, with the deep zone on average, having a slightly flatter gradient than the shallow and intermediate zones. There were no obvious seasonal trends in gradient fluctuations. As noted in previous reports, groundwater flow direction in all three zones is predominantly eastward. Current data reflects little change or variation in flow direction in any of the three zones.

Bladder pumps were used to evacuate a volume (3.06 to 11.6 gallons) of water from within each monitoring well. Following completion of purging activities, samples were collected from the wells using the bladder pumps. During sampling, field parameters including dissolved oxygen, pH, temperature, turbidity, specific conductance, and physical characteristics of the water samples, as well as the meteorological conditions at the time of sampling were noted on the field forms with the field data (Appendix A). Following collection of samples into laboratory provided containers and ice chests. The samples were forwarded to the contract laboratory under signed chain of custody documentation. Trip blanks were submitted for laboratory analyses with the samples.

A review of the field data shows that the field pH levels of the groundwater samples collected from four background wells and twenty-seven compliance wells were below the lower limit of SDWS (pH 6.5) except in one background well (MWB-31(D)b) and five compliance wells (MWB-7(D)c, MWB-12(D)c, MWB-19(D)c, MWB-27(S)c, and MWB-34(D)c. Four of these wells are deep surficial groundwater wells and one is shallow surficial groundwater well. Based on historical data, these pH levels are characteristic of the site.

Sample turbidity at one shallow Surficial well (MWB-2S) and one intermediate Surficial well (MWB-29I) was above 20 NTU's.

2.2 Laboratory Parameters

The groundwater samples collected from the site were transferred to Columbia Analytical Services (located in Jacksonville, FL) for analysis. The laboratory analyses including the quality control procedures were conducted in accordance with Rule 62-160, F.A.C. Samples submitted were analyzed within the required holding times, unless otherwise noted in the laboratory reports. Quality controls exceedances are discussed in the narrative portion of the laboratory reports for each lot of samples analyzed (Appendix A). The monitoring parameters were compared to the groundwater quality standards as designated in 62-550.310 and 62-550.320, F.A.C.

A review of the groundwater data notes that:

total iron exceeded the FDEP's SDWS of 300 μg/L at all five background monitoring wells and twenty-one compliance/detection wells (MWB-7(I)c, MWB-11(S)c, MWB-11(IR)c, MWB-12(I)c, MWB-12(D)c, MWB-13(S)c, MWB-13(I)c, MWB-17(I)c, MWB-17(D)c, MWB-19(I)c, MWB-19(D)c, MWB-27(S)c MWB-27(I)c, MWB-27(D)c, MWB-29(S)c, MWB-29(I)c, MWB-29(D)c, MWB-32(D)d, MWB-33(S)d, MWB-34(I)d, and MWB-34(D)d). Iron concentrations from most shallow surficial wells (MWB-7(S)c, MWB-12(S)c, MWB-17(S)c, MWB-19(S)c, MWB-20(S)c, MWB-21(S)c, MWB-22(S)c, MWB-32(S)c, and MWB-34(S)c) met the SDWS. Iron concentrations

have historically been reported above the SDWS at this site and are considered to be reflective of natural groundwater conditions in the area. High iron levels detected are believed to be soluble and are unlikely related to turbidity at most wells because sample turbidity is less than 20 NTU's except at two wells (MWB-02S and MWB-29I). The relatively high iron concentrations associated with a neutral pH in the deeper surficial groundwater is likely due to groundwater reduction, in which microbes degrade organic matter and pass free electron to ferric iron where dissolved oxygen has been relatively depleted. As a result, iron transformed from insoluble ferric form into a soluble ferrous form by accepting free electron (e) and proton under a reduced groundwater condition:

$$Fe(OH)_3 + H^+ + e = Fe(OH)_2 + H_2O$$

Groundwater reduction resulted in shifting groundwater pH from an acidic state to a neutral state (near pH 7).

• Vanadium was also detected in samples from two wells (MWB-12(S)c and MWB-13(S)c) at levels above the GCTL, which is consistent with historic results.

No other parameters were detected at levels above applicable groundwater standards. No VOCs were detected above the detection limits except 2-butanone, acetone and toluene at MWB-2(S)c, which were detected at trace levels below the reporting limits and well below the Groundwater Cleanup Target Limits (GCTL). Toluene was also detected at MWB-2(I)c and Field Blank below the reporting limit. These compounds are common field and laboratory contaminants.

3.0 SURFACE WATER MONITORING DATA

The following section contains an evaluation of the surface water monitoring data. The surface water data is compared to the applicable water quality standards. The laboratory reports and field forms for the surface water samples are included in Appendix B.

A review of the surface water data notes that none of the volatile organic compounds (VOCs) monitored for were detected above the laboratory reporting limits. The following details compounds detected above Class III Surface Water Standards (Chapter 62-302, FAC).

- Consistent with historical data, field measured dissolved oxygen and pH for SW-1 and SW-2 (the background location) were below the Class III Surface Water Standard of 5.0 mg/L and 6.0 SU, respectively.
- Fecal Coliform counts at SW-2 and SW-3 were 380 cfu/100 ml and 320 cfu/100 ml, respectively, which are above the Class III standard of 200 MPN (Monthly Average), but are below the 800 MPN maximum on any one day criteria, which are consistent with the historical results.
- Turbidity (173 NTU) at SW-3 was above the Class III standard, which was consistent with the past result.
- Consistent with the historic results, the detected iron concentrations at SW-1 and SW-3 were above the Class III standard (1 mg/L). Iron detected at SW-3 is likely associated with a high turbidity.
- Trace levels of mercury was detected at levels below the reporting limit at all three surface water sampling locations. However, these levels were above the Class III standard (0.012 μ g/L).

- Beryllium from SW-2 was detected below the reporting limit, but was above the Class III standard (0.13 μ g/L annual average), which is consistent with the historic results
- The calculated un-ionized ammonia concentration at SW-3 was above the Class III standard of 0.02 mg/L. The calculated un-ionized ammonia concentration increased with both ammonia-N and pH of the surface water sample.

All other surface water data are below applicable surface water standards and are consistent with the historical data obtained.

4.0 LEACHATE MONITORING DATA

In accordance with Specific Condition 40 of the permit, leachate is sampled annually prior to September 30 for parameter listed Specific Condition 40 of the Permit. Gas condensate is now discharged into the leachate; and condensate testing is no longer required. Leachate samples (LCS and LDSS) were sampled on July 21st, 2010 and transported to Columbia Analytical Services for analysis. The laboratory report is provided in Appendix C. Review of the leachate data indicated that none of the parameters detected were above any limits listed under 40 CFR Part 261.24.

5.0 SUMMARY

The data obtained during this semiannual monitoring event at the Trail Ridge are generally consistent with the historical data. No groundwater parameters were detected above the PDWS during this sampling event. The groundwater parameters detected at levels above applicable SDWS have been previously reported to the FDEP and there are no new exceedances requiring reporting under 62-701.510(7)a. Total iron and pH for most groundwater samples (including background samples) routinely exceeded SDWS for most wells. These detections are consistent with background water quality.

The field measured pH, dissolved oxygen, and turbidity, and laboratory measured iron, unionized ammonia, and fecal coliform for one or more surface water locations were above the respective Class III standards. Beryllium from SW-2 and mercury from all three surface water locations were detected below the reporting limits; but above the Class III standard. The low pH has been historically detected in both up and down stream surface water samples; and is not considered a result of site activities. The remainder of the data is below applicable groundwater or surface water quality standards and is consistent with the historical data. The monitoring well network continues to adequately monitor the landfill.

6.0 CERTIFICATION

This document has been prepared under my direction in general accordance with Chapter 62-701, Florida Solid Waste Management Facility Regulations. The information contained within this report is to the best of my knowledge and belief, true, accurate, and complete.

Handi Wang, PhD, CPSS

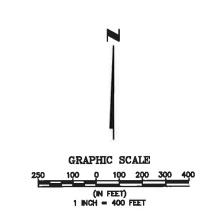
HDR Engineering, Inc.

Sr. Environmental Scientist

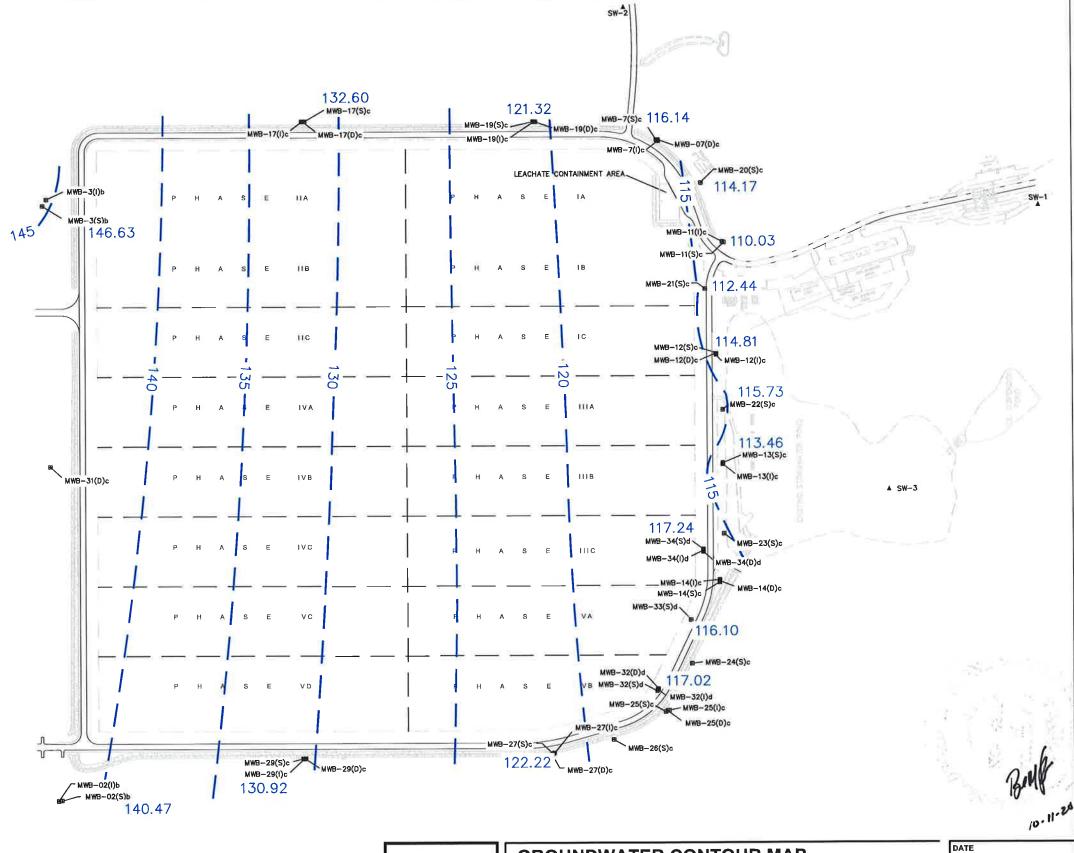
Bradford M. Stone, P.E.

HDR Engineering, Inc

Vice President


FL License No. 53110

Date

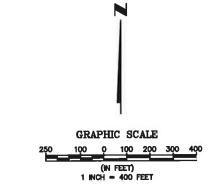

10 - 11 - 201

Figures

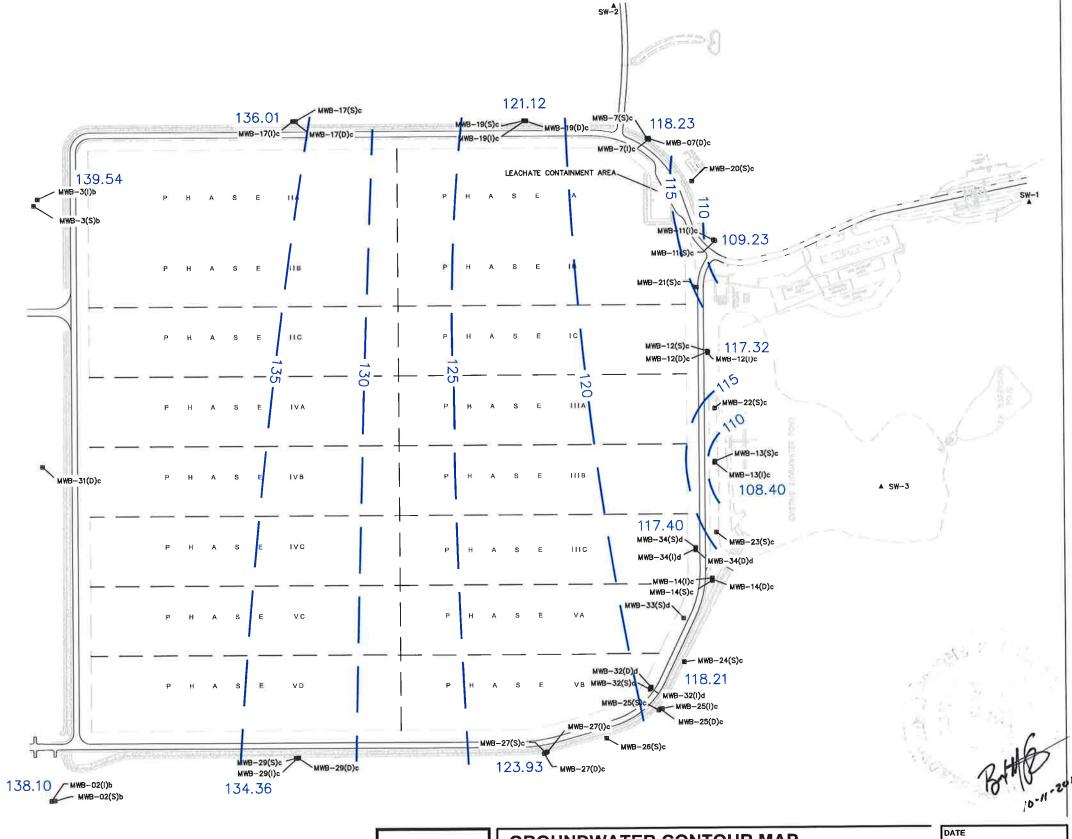
Figure 1	Groundwater Contour Map Shallow Wells - Trail Ridge Landfill
Figure 2	Groundwater Contour Map Intermediate Wells - Trail Ridge Landfill
Figure 3	Groundwater Contour Man Deep Wells - Trail Ridge Landfill

l loronul										
WELL ID	NORTHING	EASTING	TOP OF CASING ELEVATION (FT NGVD)	DEPTH TO WATER (FT bTOC)	SCREENED INTERVAL (FT 6TOC)					
MWB-02(5)6	2141385.08	324825.98	148.6	6.2	10.0-20.0					
MAB-03(2)P	2143945.04	324771.68	154.4	7.8	10.0-20.0					
MWB-07(S)c	2144200.78	327417.58	123.3	7.2	10.0-20.0					
MWB-11(S)c	2143755.32	327703.68	120.8	10.8	9.5-19.5					
MWB-12(S)c	2143281.08	327882.25	124.6	9.8	14.5-24.5					
MWB-13(S)c	2142807.57	327687.97	126.1	12.6	16.6-26.6					
MWB-17(S)c	2144295.29	325905.68	138.3	5.7	13.3-18.3					
MWB-19(S)c	2144284.38	326886.42	127.4	6.1	10.0-20.0					
MWB-20(S)c	2144012.47	327607.93	121.0	6.8	10.0-20.0					
MWB-21(S)c	2143556.32	327620.57	122.8	10.4	13.0-18.0					
MWB-22(S)c	2143035.78	327689.95	127.0	11.2	16.0-28.0					
MWB-27(S)c	2141563.57	326939.44	128.4	6.2	10.5-15.5					
MWB-29(S)c	2141554.36	325886.04	138.0	7.1	10.0-20.0					
MWB-32(S)d	2141830.50	327392.55	124.6	7.8	14.9-19.0					
MWB-33(S)d	2142135.13	327541.18	125.9	9.8	10.3-20.3					
MWB-34(S)d	2142438.07	327598.51	125.8	8.5	13.4-18.4					

HDR ENGINEERING, INC. 200 W. FORSYTH ST. SUITE 800 JACKSONVILLE, FL 32202 (904) 598-8900


GROUNDWATER CONTOUR MAP SHALLOW WELLS TRAIL RIDGE LANDFILL

MEASUREMENT DATE: JULY 20, 2010

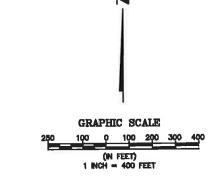

OCT. 2010

FIGURE

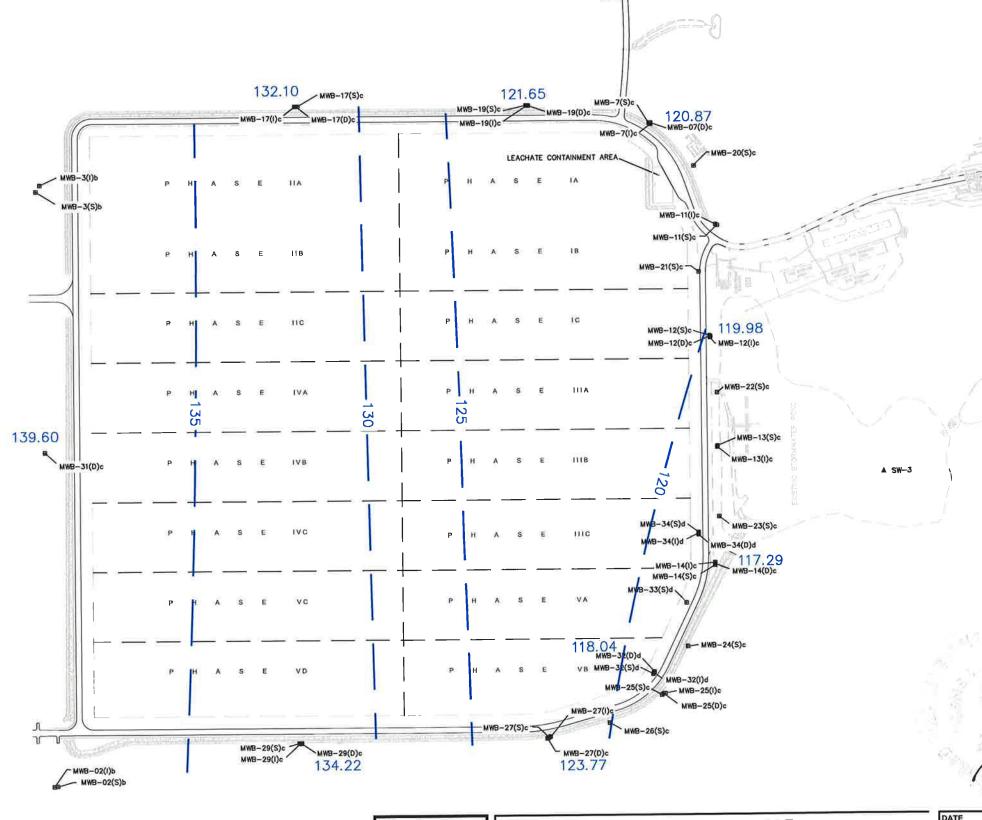
FIG 1

G	GROUNDWATER WELL SURVEY DATA										
WELL ID	NORTHING	EASTING	TOP OF CASING ELEVATION (FT NGVD)	DEPTH TO WATER (FT bTOC)	SCREENED INTERVAL (FT bTOC)						
MWB-02(I)b	2141383.31	324811.77	145.7	7.6	51.5-81.5						
MWB-03(I)6	2143072.50	324788.45	151,9	12,3	52.0-62.0						
MWB-07(I)c	2144195.61	327425.14	121.5	3.3	55.0-85.0						
₩B —11(I)c	2143758.91	327696.72	120.4	11.2	45.0-55.0						
MWB-12(I)c	2143273.26	327663.85	124.8	7.3	61.5-71.5						
MWB-13(I)c	2142802.08	327686.70	126.0	17.6	50.4-60.4						
MWB-17(I)c	2144294.74	325892,95	138,4	2.4	50.1-60.1						
MWB-19(I)c	2144283.60	326893.45	127.9	6.8	49.0-59.0						
MWB-27(I)c	2141587.11	326945.24	128.6	4.7	52.5-82.5						
MWB-29(I)c	2141553.54	325671.43	138.1	3.7	53.5-63.5						
MWB-32(I)d	2141835.48	327394.94	124.5	6.6	54.6-84.6						
MWB-34(I)d	2142432.74	327598.45	125.8	8.4	44.0-54.0						

SUITE 800 JACKSONVILLE, FL 32202 (904) 598-8900


GROUNDWATER CONTOUR MAP INTERMEDIATE WELLS TRAIL RIDGE LANDFILL

MEASUREMENT DATE: JULY 20, 2010

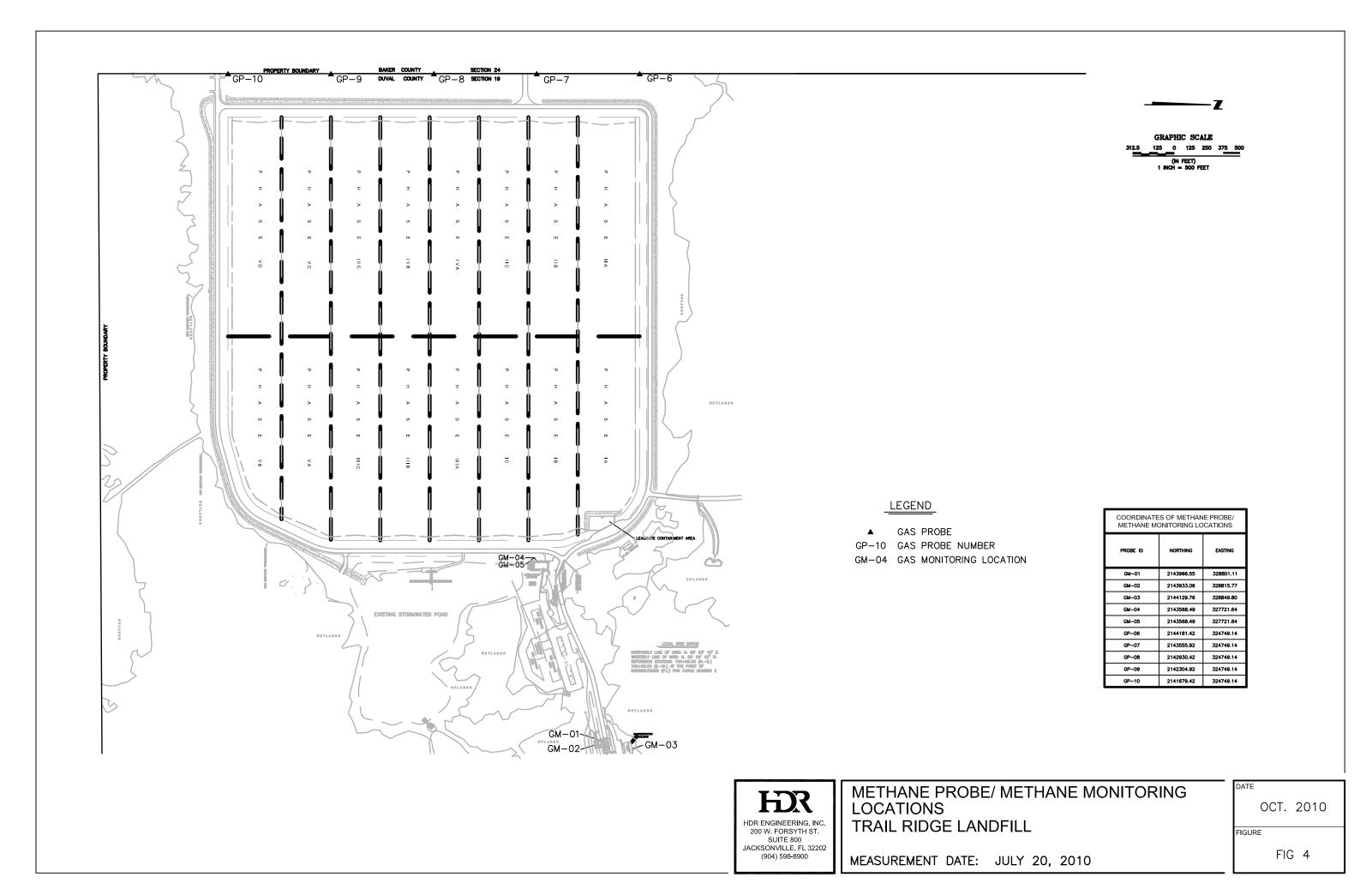

OCT. 2010

FIGURE

FIG 2

METT ID	NORTHING	EASTING	TOP OF CASING ELEVATION (FT NGVD)	DEPTH TO WATER (FT bTOC)	SCREENED INTERVAL (FI bTOC)
MWB-07(0)d	2144200,50	327424.47	121.7	0.8	107.0-117.0
MW8-12(D)d	2143277.78	327665.18	124.6	4.6	102.0-112.0
MWB-17(D)d	2144294.68	325898.87	138.5	8.4	117.3-127.3
MWB-19(D)d	2144283.27	326698.35	128.2	8.8	105,5-115,5
MWB-27(D)d	2141559,56	326932.31	128.9	5.1	100.0-110.0
MWB-29(0)d	2141555,03	325876.40	138.2	4.0	100,5~110.5
MWB-31(D)d	2142821.94	324793.77	156.2	15.6	119.0-129.0
MWB-32(D)d	2141839.49	327397.40	124.9	8.9	98.8-108.8
WWB-34(0)d	2142427.96	327598.03	125.9	6.6	90.8-100.8

GROUNDWATER CONTOUR MAP
DEEP WELLS
TRAIL RIDGE LANDFILL


MEASUREMENT DATE: JULY 20, 2010

DATE

OCT. 2010

FIGURE

FIG 3

Appendix A

Laboratory Report – Groundwater Sample Points with Field Data Sheets

August 23, 2010

Service Request No: J1003438

Handi Wang HDR Engineering 200 W. Forsyth Street, Suite 800 Jacksonville, FL 32202

Laboratory Results for: Trail Ridge

Dear Handi:

Enclosed are the results of the sample(s) submitted to our laboratory on July 21, 2010. For your reference, these analyses have been assigned our service request number **J1003438**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers
Project Manager

Page 1 of 343

Client: HDR Engineering Service Request No.: J1003438
Project: Trail Ridge Date Received: 7/21/10

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Forty-two water samples and one trip blank were received for analysis at Columbia Analytical Services on 7/21/10. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4 ± 2 °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

Volatile Organic Compounds by GC-MS

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

Continuing Calibration Verification Exceptions

The primary evaluation criterion was exceeded for the following analyte in Continuing Calibration Verification (CCV) JWG1002593-2: trans-1,4-Dichloro-2-butene. The primary evaluation criterion was exceeded for the following analyte in Continuing Calibration Verification (CCV) JWG1002607-2: Acetone. The analytes in question were not detected in the associated field samples. Since the analytes were detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

Matrix Spike Recovery Exceptions

The matrix spike recoveries of several analytes for sample MWB171 were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) were acceptable, which indicates the analytical batch was in control. The recoveries were not significantly outside of control criteria. No further corrective action was required.

Relative Percent Difference Exceptions

The Relative Percent Difference (RPD) for the following analytes in the replicate matrix spike analyses of MWB22S and MWB17D were outside control criteria: trans-1,4-Dichloro-2-butene. The analyte in question was not detected in the field samples. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was appropriate.

Approved by Date 8/23/10

Lab Control Sample Exceptions

The spike recoveries of Vinyl Acetate and trans-1,4-Dichloro-2-butene for Laboratory Control Sample (LCS) JQ1003037-01 were outside the lower control criterion. The analytes in question were not detected in the associated field samples. Since the analytes were detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

EDB and **DBCP** by **GC-ECD**

The samples were analyzed for EDB and DBCP using EPA Method 8011. The following observations were made regarding this delivery group.

Second Source Verification Exceptions

The upper control criterion was exceeded for the following analytes in the Second Source Verification (SSV): 1,2-Dibromoethane (EDB) and 1,2-Dibromo-3-chloropropane (DBCP). The field samples analyzed in this sequence did not contain the analytes in question. Because elevated recovery equates to a potential high bias, the data is not significantly affected. No further corrective action was taken.

Continuing Calibration Verification Exceptions

The upper control criterion was exceeded for the following surrogate in Continuing Calibration Verification (CCV) JWG1002610-4: 1,1,1,2-Tetrachloroethane. The field samples analyzed in this sequence all had passing or biased high surrogate recoveries and no target analytes were detected in these samples. Because elevated recovery equates to a potential high bias, the data is not significantly affected. No further corrective action was taken.

Surrogate Exceptions

The upper control criterion was exceeded for the following surrogate in samples DUP02, MWB34I, MWB34D, and DUP03: 1,1,1,2-Tetrachloroethane. No target analytes were detected in the samples. The error associated with an elevated recovery equates to a high bias. The quality of the sample data is not significantly affected. No further corrective action was appropriate.

Matrix Spike Recovery Exceptions

The matrix spike recovery of 1,2-Dibromoethane (EDB) for sample MWB3S and the duplicate matrix spike recovery of 1,2-Dibromoethane (EDB) for sample MWB29ID were outside control criteria. Recoveries in the Laboratory Control Samples (LCS) were acceptable, which indicates the analytical batches were in control. No further corrective action was appropriate.

Relative Percent Difference Exceptions

The Relative Percent Differences (RPD) for the following analyte in the replicate matrix spike analyses of samples MWB3S and MWG29ID were outside control criteria: 1,2-Dibromoethane (EDB). All spike recoveries in the associated Laboratory Control Samples (LCS) were within acceptance limits, indicating the analytical batches were in control. No further corrective action was appropriate.

Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

Approved by	Clas Colle	Date	8/23/10	
	\circ . ()		l l	

0 01

Batch QC Notes and Discussion

Some quality control samples (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

General Chemistry Parameters

The samples were analyzed for Inorganic Parameters using various EPA and Standard Methods. The following observations were made regarding this delivery group.

Method Blank Exceptions

Method Blank J1003438-MB contained a low level of Ammonia above the Method Detection Limit (MDL), but less than the Method Reporting Limit (MRL). Samples MWB3S, MWB3I, and MWB11(R) exhibited this analyte in approximately the same concentration as the method blank. The data is flagged with a qualifier to indicate the results are estimated values. The method blank results may indicate the potential for a false positive.

Approved by	Clarkoly	Date	8/23/10	
	\bigcirc ' ()			

Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
 - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
 - 2. No known quality control criteria exists for the component.
 - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
 - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
 - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance allowed in

drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the

MDL.

Trail Ridge

Service Request: J1003438

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	TIME
J1003438-001	MWB3S	7/20/10	10:01
J1003438-002	MWB3I	7/20/10	10:30
J1003438-003	MWB19D	7/20/10	11:07
J1003438-004	MWB19I	7/20/10	11:38
J1003438-005	MWB19S	7/20/10	12:07
J1003438-006	MWB20S	7/20/10	12:37
J1003438-007	MWB11S	7/20/10	13:10
J1003438-008	MWB11I(R)	7/20/10	13:42
J1003438-009	MWB12D	7/20/10	14:18
J1003438-010	MWB12I	7/20/10	14:18
J1003438-011	MWB7I	7/20/10	13:09
J1003438-012	MWB7D	7/20/10	13:40
J1003438-013	MWB21S	7/20/10	14:08
J1003438-014	MWB22S	7/20/10	15:15
J1003438-015	DUP02	7/20/10	15:15
J1003438-016	MWB29D	7/20/10	07:28
J1003438-017	MWB29I	7/20/10	07:59
J1003438-018	MWB29S	7/20/10	08:28
J1003438-019	MWB2I	7/20/10	09:00
J1003438-020	MWB2S	7/20/10	09:29
J1003438-021	MWB33S	7/20/10	16:20
J1003438-022	MWB27S	7/20/10	08:15
J1003438-023	MWB27I	7/20/10	08:43
J1003438-024	MWB27D	7/20/10	09:18
J1003438-025	DUP01	7/20/10	09:18
J1003438-026	MWB31D	7/20/10	10:04
J1003438-027	MWB17S	7/20/10	10:42
J1003438-028	MWB17D	7/20/10	11:15
J1003438-029	MWB17I	7/20/10	11:49
J1003438-030	MWB7S	7/20/10	12:32
J1003438-031	MWB12S	7/20/10	15:20
J1003438-032	MWB13I	7/20/10	16:02
J1003438-033	MWB13S	7/21/10	09:09
J1003438-034	MWB32S	7/21/10	11:09
J1003438-035	MWB32I	7/21/10	12:19
J1003438-036	MWB32D	7/21/10	12:43
J1003438-037	MWB34S	7/21/10	09:59
J1003438-038	MWB34I	7/21/10	12:28
J1003438-039	MWB34D	7/21/10	09:24
J1003438-040	DUP03	7/21/10	12:19
J1003438-041	DUP04	7/21/10	12:28
J1003438-042	FB	7/21/10	12:53
J1003438-043	Trip Blank	7/20/10	00:00

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB3S J1003438-001 Service Request: J1003438

Date Collected: 7/20/10 1001

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/26/10 20:04		210096
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/26/10 20:04		210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 20:04		210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 20:04		210096
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/26/10 20:04		210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 20:04		210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 20:04		210096
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/26/10 20:04		210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 20:04	٠,,	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/26/10 20:04		210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/26/10 20:04		210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 20:04		210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 20:04		210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/26/10 20:04		210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 20:04		210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 20:04		210096
Acetone	ND	U	50.0	5.60	1	NA	7/26/10 20:04		210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 20:04		210096
Benzene	ND	U	1.00	0.210	1	NA	7/26/10 20:04		210096
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/26/10 20:04		210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 20:04		210096
Bromoform	ND	U	2.00	0.420	1	NA	7/26/10 20:04		210096
Bromomethane	ND	U	1.00	0.220	1	NA	7/26/10 20:04		210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 20:04		210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/26/10 20:04		210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/26/10 20:04		210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 20:04		210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 20:04		210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/26/10 20:04		210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 20:04		210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 20:04	* * * .	210096
Dibromochloromethane	ND		1.00	0.190	1	NA	7/26/10 20:04		210096
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 20:04		210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 20:04		210096
Iodomethane	ND		5.00	2.68	1	NA	7/26/10 20:04		210096
m,p-Xylenes	ND		2.00	1.04	1	NA	7/26/10 20:04		210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

MWB3S

J1003438-001

Service Request: J1003438

Date Collected: 7/20/10 1001 Date Received: 7/21/10

> Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/26/10 20:04	210096
o-Xylene	ND	U	1.00	0.140	1	NA	7/26/10 20:04	210096
Styrene	ND	U	1.00	0.291	1	NA	7/26/10 20:04	210096
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/26/10 20:04	210096
Toluene	ND	U	1.00	0.190	1	NA	7/26/10 20:04	210096
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/26/10 20:04	210096
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/26/10 20:04	210096
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/26/10 20:04	210096
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/26/10 20:04	210096
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/26/10 20:04	210096
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/26/10 20:04	210096
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/26/10 20:04	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	94	71-122	7/26/10 20:04	•	
4-Bromofluorobenzene	109	75-120	7/26/10 20:04		
Dibromofluoromethane	96	82-116	7/26/10 20:04		
Toluene-d8	96	88-117	7/26/10 20:04		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB3I

J1003438-002

Service Request: J1003438

Date Collected: 7/20/10 1030

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/26/10 20:35	210096
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/26/10 20:35	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 20:35	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 20:35	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/26/10 20:35	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 20:35	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 20:35	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/26/10 20:35	210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 20:35	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/26/10 20:35	210096
1,2-Dichloroethane	ND		1.00	0.180	. 1	NA	7/26/10 20:35	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 20:35	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 20:35	210096
2-Butanone (MEK)	ND	U	10.0	3.80	. 1	NA	7/26/10 20:35	210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 20:35	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 20:35	210096
Acetone	ND	U	50.0	5.60	1	NA	7/26/10 20:35	
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 20:35	210096
Benzene	ND	U	1.00	0.210	1	NA	7/26/10 20:35	210096
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/26/10 20:35	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 20:35	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/26/10 20:35	210096
Bromomethane	ND	U	1.00	0.220	1	NA	7/26/10 20:35	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 20:35	210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/26/10 20:35	210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/26/10 20:35	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 20:35	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 20:35	210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/26/10 20:35	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 20:35	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 20:35	210096
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/26/10 20:35	210096
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 20:35	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 20:35	210096
Iodomethane	ND		5.00	2.68	1	NA	7/26/10 20:35	210096
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/26/10 20:35	210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB3I

Lab Code:

J1003438-002

Service Request: J1003438

Date Collected: 7/20/10 1030

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/26/10 20:35	210096
o-Xylene	ND	U	1.00	0.140	1	NA	7/26/10 20:35	210096
Styrene	ND	U	1.00	0.291	1	NA	7/26/10 20:35	210096
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/26/10 20:35	210096
Toluene	ND	U	1.00	0.190	1	NA	7/26/10 20:35	210096
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/26/10 20:35	210096
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/26/10 20:35	210096
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	. 1	NA	7/26/10 20:35	210096
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/26/10 20:35	210096
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/26/10 20:35	210096
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/26/10 20:35	210096
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/26/10 20:35	210096

Surrogate Name	%Rec	Limits	Analyzed	Q ·	
1,2-Dichloroethane-d4	98	71-122	7/26/10 20:35	***************************************	
4-Bromofluorobenzene	102	75-120	7/26/10 20:35		
Dibromofluoromethane	96	82-116	7/26/10 20:35		
Toluene-d8	99	88-117	7/26/10 20:35		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB19D J1003438-003 Service Request: J1003438 **Date Collected:** 7/20/10 1107

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/26/10 21:06		210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/26/10 21:06	ı	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 21:06	1	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 21:06		210096
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/26/10 21:06		210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 21:06	,	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 21:06		210096
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/26/10 21:06		210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 21:06		210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/26/10 21:06		210096
1,2-Dichloroethane	ND		1.00	0.180	. 1	NA.	7/26/10 21:06		210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 21:06		210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 21:06		210096
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/26/10 21:06		210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 21:06		210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 21:06		210096
Acetone	ND		50.0	5.60	1	NA	7/26/10 21:06	ı	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 21:06		210096
Benzene	ND		1.00	0.210	1	NA	7/26/10 21:06		210096
Bromochloromethane	ND		5.00	0.270	1	NA	7/26/10 21:06		210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 21:06		210096
Bromoform	ND		2.00	0.420	1	NA	7/26/10 21:06		210096
Bromomethane	ND		1.00	0.220	1	NA	7/26/10 21:06		210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 21:06		210096
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/26/10 21:06		210096
Chlorobenzene	ND		1.00	0.160	1	NA	7/26/10 21:06		210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 21:06		210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 21:06		210096
Chloromethane	ND		1.00	0.110	1	NA	7/26/10 21:06		210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 21:06		210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 21:06		210096
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/26/10 21:06		210096
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 21:06		210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 21:06		210096
Iodomethane	ND	U	5.00	2.68	1	NA	7/26/10 21:06		210096
n,p-Xylenes	ND	U	2.00	1.04	1	NA	7/26/10 21:06		210096

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB19D J1003438-003 Service Request: J1003438

Date Collected: 7/20/10 1107

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/26/10 21:06	210096
o-Xylene	ND	U	1.00	0.140	1	NA	7/26/10 21:06	210096
Styrene	ND	U	1.00	0.291	1	NA	7/26/10 21:06	210096
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/26/10 21:06	210096
Toluene	ND	U	1.00	0.190	1	NA	7/26/10 21:06	210096
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/26/10 21:06	210096
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/26/10 21:06	210096
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/26/10 21:06	210096
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/26/10 21:06	210096
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/26/10 21:06	210096
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/26/10 21:06	210096
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/26/10 21:06	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	96	71-122	7/26/10 21:06	
4-Bromofluorobenzene	100	75-120	7/26/10 21:06	
Dibromofluoromethane	98	82-116	7/26/10 21:06	
Toluene-d8	102	88-117	7/26/10 21:06	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB19I J1003438-004 Service Request: J1003438 Date Collected: 7/20/10 1138

Date Collected: 7/20/10 1
Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/26/10 21:37		210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/26/10 21:37		210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 21:37		210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 21:37		210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	- 1	NA	7/26/10 21:37	,	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 21:37	,	210096
1,2,3-Trichloropropane	ND	U.	2.00	0.420	1	NA	7/26/10 21:37		210096
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/26/10 21:37		210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 21:37		210096
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/26/10 21:37		210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/26/10 21:37	,	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 21:37	ta a taga	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 21:37		210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/26/10 21:37	i	210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 21:37	•	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 21:37	'	210096
Acetone	ND	U	50.0	5.60	1	NA	7/26/10 21:37		210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 21:37		210096
Benzene	ND	U	1.00	0.210	1	NA	7/26/10 21:37		210096
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/26/10 21:37	i	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 21:37	i	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/26/10 21:37		210096
Bromomethane	ND		1.00	0.220	1	NA	7/26/10 21:37	i	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 21:37	i	210096
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/26/10 21:37		210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/26/10 21:37	i	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 21:37		210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 21:37		210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/26/10 21:37	1	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 21:37		210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 21:37		210096
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/26/10 21:37		210096
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 21:37	•	210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 21:37	,	210096
Iodomethane	ND		5.00	2.68	1	NA	7/26/10 21:37		210096
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/26/10 21:37		210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB19I

Lab Code:

J1003438-004

Service Request: J1003438

Date Collected: 7/20/10 1138

Date Received: 7/21/10

Units: $\mu g/L$ Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/26/10 21:37	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/26/10 21:37	210096
Styrene	ND U	1.00	0.291	1	NA	7/26/10 21:37	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/26/10 21:37	210096
Toluene	ND U	1.00	0.190	1	NA	7/26/10 21:37	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	. 1	NA	7/26/10 21:37	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/26/10 21:37	210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/26/10 21:37	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/26/10 21:37	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/26/10 21:37	210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/26/10 21:37	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/26/10 21:37	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	98	71-122	7/26/10 21:37	
4-Bromofluorobenzene	102	75-120	7/26/10 21:37	
Dibromofluoromethane	94	82-116	7/26/10 21:37	
Toluene-d8	101	88-117	7/26/10 21:37	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB19S J1003438-005 ranary area. respon

Service Request: J1003438 **Date Collected:** 7/20/10 1207

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/26/10 22:09		210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/26/10 22:09	•	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 22:09		210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 22:09	1	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/26/10 22:09	i	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 22:09	1	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 22:09		210096
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/26/10 22:09		210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 22:09	i	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/26/10 22:09		210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/26/10 22:09	<u> </u>	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 22:09	ı	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 22:09		210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/26/10 22:09		210096
2-Hexanone	ND	U	25.0	2.20	1 .	NA	7/26/10 22:09		210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 22:09		210096
Acetone	ND	U	50.0	5.60	1	NA	7/26/10 22:09		210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 22:09		210096
Benzene	ND	U	1.00	0.210	1	NA	7/26/10 22:09		210096
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/26/10 22:09		210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 22:09		210096
Bromoform	ND	U	2.00	0.420	1	NA	7/26/10 22:09		210096
Bromomethane	ND	U	1.00	0.220	1	NA	7/26/10 22:09		210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 22:09		210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/26/10 22:09		210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/26/10 22:09		210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 22:09		210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 22:09		210096
Chloromethane	ND	U	1.00	0.110	1	ŇA	7/26/10 22:09		210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 22:09		210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 22:09	***************************************	210096
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/26/10 22:09		210096
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 22:09		210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 22:09		210096
Iodomethane	ND		5.00	2.68	1	NA	7/26/10 22:09		210096
m,p-Xylenes	ND		2.00	1.04	1	NA	7/26/10 22:09		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB19S J1003438-005

MWB19S

Service Request: J1003438

Date Collected: 7/20/10 1207 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/26/10 22:09	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/26/10 22:09	210096
Styrene	ND U	1.00	0.291	1	NA	7/26/10 22:09	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/26/10 22:09	210096
Toluene	ND U	1.00	0.190	1	NA	7/26/10 22:09	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/26/10 22:09	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/26/10 22:09	210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/26/10 22:09	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/26/10 22:09	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/26/10 22:09	210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/26/10 22:09	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/26/10 22:09	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	99	71-122	7/26/10 22:09	
4-Bromofluorobenzene	104	75-120	7/26/10 22:09	
Dibromofluoromethane	100	82-116	7/26/10 22:09	
Toluene-d8	95	88-117	7/26/10 22:09	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB20S J1003438-006 Service Request: J1003438
Date Collected: 7/20/10 1237

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/26/10 22:40	210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/26/10 22:40	
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 22:40	210096
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/26/10 22:40	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/26/10 22:40	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 22:40	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 22:40	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/26/10 22:40	
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 22:40	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/26/10 22:40	210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/26/10 22:40	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 22:40	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 22:40	210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/26/10 22:40	
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 22:40	
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	. 1	NA	7/26/10 22:40	210096
Acetone	ND	U	50.0	5.60	1	NA	7/26/10 22:40	
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 22:40	210096
Benzene	ND	U	1.00	0.210	1	NA	7/26/10 22:40	210096
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/26/10 22:40	210096
Bromodichloromethane	ND	U	1.00	0.170°	1	NA	7/26/10 22:40	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/26/10 22:40	210096
Bromomethane	ND	U	1.00	0.220	1	NA	7/26/10 22:40	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 22:40	210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/26/10 22:40	210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/26/10 22:40	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 22:40	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 22:40	210096
Chloromethane	ND		1.00	0.110	1	NA	7/26/10 22:40	210096
cis-1,2-Dichloroethene	ND		1.00	0.360	1	NA	7/26/10 22:40	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 22:40	
Dibromochloromethane	ND		1.00	0.190	1	NA	7/26/10 22:40	210096
Dibromomethane	ND		5.00	0.180	1	NA	7/26/10 22:40	210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 22:40	210096
Iodomethane		Ü	5.00	2.68	1	NA	7/26/10 22:40	210096
m,p-Xylenes	ND		2.00	1.04	î	NA	7/26/10 22:40	210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB20S J1003438-006 Service Request: J1003438

Date Collected: 7/20/10 1237 Date Received: 7/21/10

> Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/26/10 22:40)	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/26/10 22:40)	210096
Styrene	ND U	1.00	0.291	1	NA	7/26/10 22:40)	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/26/10 22:40)	210096
Toluene	ND U	1.00	0.190	1	NA	7/26/10 22:40)	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/26/10 22:40)	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/26/10 22:40)	210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/26/10 22:40)	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/26/10 22:40)	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/26/10 22:40)	210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/26/10 22:40) .	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/26/10 22:40)	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	99	71-122	7/26/10 22:40		
4-Bromofluorobenzene	106	75-120	7/26/10 22:40		
Dibromofluoromethane	97	82-116	7/26/10 22:40		Y
Toluene-d8	102	88-117	7/26/10 22:40		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB11S J1003438-007 Service Request: J1003438

Date Collected: 7/20/10 1310

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/26/10 23:10	210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/26/10 23:10	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 23:10	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 23:10	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/26/10 23:10	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 23:10	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 23:10	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/26/10 23:10	210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	[*] NA	7/26/10 23:10	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/26/10 23:10	210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/26/10 23:10	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 23:10	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 23:10	210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/26/10 23:10	210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 23:10	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 23:10	210096
Acetone	ND	U	50.0	5.60	1	NA	7/26/10 23:10	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 23:10	210096
Benzene	ND	U	1.00	0.210	1	NA	7/26/10 23:10	210096
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/26/10 23:10	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 23:10	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/26/10 23:10	210096
Bromomethane	ND		1.00	0.220	1	NA	7/26/10 23:10	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 23:10	210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/26/10 23:10	210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/26/10 23:10	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 23:10	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 23:10	210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/26/10 23:10	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 23:10	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 23:10	210096
Dibromochloromethane	ND		1.00	0.190	1	NA	7/26/10 23:10	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 23:10	210096
Ethylbenzene	ND	U	1.00	0.519		NA	7/26/10 23:10	210096
Iodomethane	ND		5.00	2.68	1	NA	7/26/10 23:10	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/26/10 23:10	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB11S

J1003438-007

Service Request: J1003438

Date Collected: 7/20/10 1310

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/26/10 23:10)	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/26/10 23:10)	210096
Styrene	ND U	1.00	0.291	1	NA	7/26/10 23:10)	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/26/10 23:10)	210096
Toluene	ND U	1.00	0.190°	1	NA	7/26/10 23:10)	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/26/10 23:10) · ·	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/26/10 23:10)	210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/26/10 23:10)	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/26/10 23:10	,	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/26/10 23:10		210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/26/10 23:10)	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/26/10 23:10) ⁽ -	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	98	71-122	7/26/10 23:10		
4-Bromofluorobenzene	106	75-120	7/26/10 23:10		
Dibromofluoromethane	96	82-116	7/26/10 23:10		
Toluene-d8	99	88-117	7/26/10 23:10	TO POP THE PROPERTY AND	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name: Lab Code: MWB11I(R) J1003438-008 Service Request: J1003438

Date Collected: 7/20/10 1342

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/26/10 23:41	210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/26/10 23:41	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 23:41	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 23:41	210096
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/26/10 23:41	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 23:41	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 23:41	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/26/10 23:41	210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 23:41	210096
1,2-Dichlorobenzene	ND		1.00	0.478	. 1	NA	7/26/10 23:41	210096
1,2-Dichloroethane	ND		1.00	0.180	1	: NA	7/26/10 23:41	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 23:41	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 23:41	210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/26/10 23:41	210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 23:41	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 23:41	210096
Acetone	ND		50.0	5.60	1	NA	7/26/10 23:41	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 23:41	210096
Benzene	ND		1.00	0.210	1	NA	7/26/10 23:41	210096
Bromochloromethane	ND		5.00	0.270	1	NA	7/26/10 23:41	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 23:41	210096
Bromoform	ND		2.00	0.420	1	NA	7/26/10 23:41	210096
Bromomethane	ND		1.00	0.220	1	NA	7/26/10 23:41	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 23:41	210096
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/26/10 23:41	210096
Chlorobenzene	ND		1.00	0.160	1	NA	7/26/10 23:41	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 23:41	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 23:41	210096
Chloromethane	ND	U	1.00	0.110	. 1	NA	7/26/10 23:41	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 23:41	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 23:41	210096
Dibromochloromethane	ND		1.00	0.190	1	NA	7/26/10 23:41	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 23:41	210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 23:41	210096
Iodomethane	ND	U	5.00	2.68	1	NA	7/26/10 23:41	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/26/10 23:41	210096

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name: Lab Code:

MWB11I(R) J1003438-008

Water

Service Request: J1003438 **Date Collected:** 7/20/10 1342 Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/26/10 23:41		210096
o-Xylene	ND U	1.00	0.140	1	NA	7/26/10 23:41		210096
Styrene	ND . U	1.00	0.291	1	NA	7/26/10 23:41		210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/26/10 23:41		210096
Toluene	ND U	1.00	0.190	1	NA	7/26/10 23:41		210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/26/10 23:41	:	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/26/10 23:41		210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/26/10 23:41		210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/26/10 23:41		210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/26/10 23:41		210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/26/10 23:41		210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/26/10 23:41		210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	98	71-122	7/26/10 23:41	***************************************	
4-Bromofluorobenzene	104	75-120	7/26/10 23:41		
Dibromofluoromethane	99	82-116	7/26/10 23:41		
Toluene-d8	98	88-117	7/26/10 23:41		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12D

J1003438-009

Service Request: J1003438

Date Received: 7/21/10

Date Collected: 7/20/10 1418

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 00:13		210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 00:13		210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 00:13		210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 00:13	***************************************	210096
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/27/10 00:13		210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 00:13		210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 00:13		210096
,2-Dibromo-3-chloropropane DBCP)	ND		5.00	2.30	1	NA	7/27/10 00:13		210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 00:13		210096
,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 00:13		210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 00:13		210096
,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 00:13		210096
,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/27/10 00:13		210096
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 00:13		210096
-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 00:13		210096
-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 00:13		210096
Acetone	ND		50.0	5.60	1	NA	7/27/10 00:13		210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 00:13		210096
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 00:13		210096
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 00:13		210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 00:13		210096
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 00:13		210096
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 00:13		210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 00:13		210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 00:13		210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 00:13		210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 00:13		210096
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 00:13		210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 00:13		210096
is-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 00:13		210096
is-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 00:13		210096
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 00:13		210096
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 00:13		210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 00:13		210096
odomethane	ND		5.00	2.68	1	NA	7/27/10 00:13		210096
n,p-Xylenes	ND		2.00	1.04	1	NA	7/27/10 00:13		210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12D J1003438-009

Service Request: J1003438
Date Collected: 7/20/10 1418

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 00:13		210096
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 00:13	}	210096
Styrene	ND U	1.00	0.291	1	NA	7/27/10 00:13	}	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 00:13		210096
Toluene	ND U	1.00	0.190	1 ·	NA	7/27/10 00:13	3	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 00:13	}	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 00:13		210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 00:13	}	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 00:13	}	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 00:13		210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 00:13	;	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 00:13	;	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	94	71-122	7/27/10 00:13	
4-Bromofluorobenzene	104	75-120	7/27/10 00:13	
Dibromofluoromethane	95	82-116	7/27/10 00:13	
Toluene-d8	99	88-117	7/27/10 00:13	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12I J1003438-010 Service Request: J1003438

Date Collected: 7/20/10 1418 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/27/10 00:44	210096
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 00:44	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 00:44	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 00:44	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 00:44	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 00:44	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 00:44	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 00:44	210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 00:44	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 00:44	210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 00:44	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 00:44	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 00:44	210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 00:44	
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 00:44	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 00:44	210096
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 00:44	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 00:44	210096
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 00:44	210096
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 00:44	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 00:44	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 00:44	210096
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 00:44	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 00:44	210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 00:44	210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 00:44	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 00:44	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 00:44	210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 00:44	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 00:44	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 00:44	210096
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 00:44	210096
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 00:44	210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 00:44	210096
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 00:44	210096
m,p-Xylenes	ND		2.00	1.04	1	NA	7/27/10 00:44	210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12I J1003438-010 Service Request: J1003438

Date Collected: 7/20/10 1418
Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 00:44	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 00:44	210096
Styrene	ND U	1.00	0.291	1	NA	7/27/10 00:44	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 00:44	210096
Toluene	ND U	1.00	0.190	1	NA	7/27/10 00:44	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 00:44	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 00:44	210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 00:44	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 00:44	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 00:44	210096
Vinyl Acetate	ND U	10.0	1.90	1 ,	NA	7/27/10 00:44	210096
Vinyl Chloride	'ND U'	1.00	0.220	i	NA	7/27/10 00:44	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	98	71-122	7/27/10 00:44	
4-Bromofluorobenzene	1.03	75-120	7/27/10 00:44	
Dibromofluoromethane	98	82-116	7/27/10 00:44	
Toluene-d8	100	88-117	7/27/10 00:44	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB7I

Lab Code:

J1003438-011

Service Request: J1003438 **Date Collected:** 7/20/10 1309

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 01:15	210096
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 01:15	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 01:15	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 01:15	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 01:15	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 01:15	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 01:15	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1 .	NA	7/27/10 01:15	210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 01:15	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 01:15	210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 01:15	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 01:15	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 01:15	210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 01:15	210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 01:15	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 01:15	210096
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 01:15	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 01:15	210096
Benzene	ND		1.00	0.210	1	NA	7/27/10 01:15	210096
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 01:15	
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 01:15	210096
Bromoform	ND		2.00	0.420	1	NA	7/27/10 01:15	
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 01:15	
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 01:15	210096
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 01:15	
Chlorobenzene		U	1.00	0.160	1	NA	7/27/10 01:15	
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 01:15	210096
Chloroform	ND		1.00	0.350	1	NA	7/27/10 01:15	
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 01:15	
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 01:15	210096
cis-1,3-Dichloropropene	ND		1.00	0.200	1	NA	7/27/10 01:15	
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 01:15	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 01:15	210096
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 01:15	210096
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 01:15	210096
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 01:15	210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB7I

J1003438-011

Service Request: J1003438 **Date Collected:** 7/20/10 1309

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 01:15	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 01:15	210096
Styrene	ND U	1.00	0.291	1	NA	7/27/10 01:15	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 01:15	210096
Toluene	ND U	1.00	0.190	1	NA	7/27/10 01:15	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 01:15	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 01:15	5 210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 01:15	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 01:15	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 01:15	210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 01:15	210096
Vinyl Chloride	ND U	1.00	0.220	1 ~	NA	7/27/10 01:15	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	98	71-122	7/27/10 01:15	
4-Bromofluorobenzene	101	75-120	7/27/10 01:15	
Dibromofluoromethane	95	82-116	7/27/10 01:15	
Toluene-d8	101	88-117	7/27/10 01:15	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB7D J1003438-012 Service Request: J1003438 **Date Collected:** 7/20/10 1340

Date Received: 7/21/10

Units: $\mu g/L$ Basis: NA

Volatile Organic Compounds by GC/MS

v				D41 44	ъ .	.	
Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/27/10 01:46	
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA NA	7/27/10 01:46	
1,1,2,2-Tetrachloroethane	ND U	1.00	0.170	1	NA NA	7/27/10 01:46	
					·		
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/27/10 01:46	
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/27/10 01:46	
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/27/10 01:46	210096
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/27/10 01:46	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/27/10 01:46	210096
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/27/10 01:46	210096
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/27/10 01:46	210096
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/27/10 01:46	210096
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/27/10 01:46	210096
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/27/10 01:46	210096
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/27/10 01:46	210096
2-Hexanone	ND U	25.0	2.20	1	NA	7/27/10 01:46	210096
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/27/10 01:46	210096
Acetone	ND U	50.0	5.60	1	NA	7/27/10 01:46	
Acrylonitrile	ND U	10.0	1.20	1	NA	7/27/10 01:46	
Benzene	ND U	1.00	0.210	1	NA	7/27/10 01:46	210096
Bromochloromethane	ND U	5.00	0.270	1	NA	7/27/10 01:46	
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/27/10 01:46	210096
Bromoform	ND U	2.00	0.420	1	NA	7/27/10 01:46	210096
Bromomethane	ND U	1.00	0.220	1	NA	7/27/10 01:46	
Carbon Disulfide	ND U	10.0	2.36	1	NA	7/27/10 01:46	
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/27/10 01:46	210096
Chlorobenzene	ND U	1.00	0.160	1	NA	7/27/10 01:46	
Chloroethane	ND U	5.00	0.220	1	NA	7/27/10 01:46	
Chloroform	ND U	1.00	0.350	1	NA	7/27/10 01:46	
Chloromethane	ND U	1.00	0.110	1	NA	7/27/10 01:46	
cis-1,2-Dichloroethene	ND U	1.00	0.360	1	NA	7/27/10 01:46	
cis-1,3-Dichloropropene	ND U	1.00	0.200	1	NA	7/27/10 01:46	
Dibromochloromethane	ND U	1.00	0.190	1	NA	7/27/10 01:46	
Dibromomethane	ND U	5.00	0.180	1	NA	7/27/10 01:46	
Ethylbenzene	ND U	1.00	0.519	1	NA	7/27/10 01:46	
Iodomethane	ND U	5.00	2.68	1	NA	7/27/10 01:46	
m,p-Xylenes	ND U	2.00	1.04	1	NA	7/27/10 01:46	
	112 0		1.01		7 47 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	210070

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB7D

J1003438-012

Service Request: J1003438

Date Collected: 7/20/10 1340

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 01:46	5	210096
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 01:46	ó	210096
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 01:46	5	210096
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 01:46	5	210096
Toluene	ND	U .	1.00	0.190	1	NA	7/27/10 01:46	5	210096
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/27/10 01:46	5	210096
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 01:46	5	210096
trans-1,4-Dichloro-2-butene	ND	U .	20.0	2.20	1	NA	7/27/10 01:46	5	210096
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 01:46	5	210096
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 01:46	5	210096
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/27/10 01:46	5	210096
Viñyl Chloride	ND	U	1.00	0.220	1	NA	7/27/10 01:46	5	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	100	71-122	7/27/10 01:46	
4-Bromofluorobenzene	102	75-120	7/27/10 01:46	
Dibromofluoromethane	101	82-116	7/27/10 01:46	
Toluene-d8	98	88-117	7/27/10 01:46	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB21S J1003438-013 Service Request: J1003438 **Date Collected:** 7/20/10 1408

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 02:17	210096
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 02:17	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 02:17	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 02:17	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 02:17	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 02:17	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 02:17	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 02:17	
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10*02:17	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 02:17	210096
1,2-Dichloroethane	ND	U	1.00	0.180	1	NA	7/27/10 02:17	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 02:17	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 02:17	210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 02:17	210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 02:17	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 02:17	210096
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 02:17	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 02:17	210096
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 02:17	210096
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/27/10 02:17	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 02:17	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 02:17	210096
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 02:17	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 02:17	210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 02:17	210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 02:17	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 02:17	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 02:17	210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 02:17	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 02:17	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 02:17	210096
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 02:17	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 02:17	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 02:17	210096
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 02:17	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 02:17	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Lab Code:

MWB21S J1003438-013

Water

Service Request: J1003438 **Date Collected:** 7/20/10 1408

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 02:17	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 02:17	210096
Styrene	ND U	1.00	0.291	1	NA	7/27/10 02:17	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 02:17	210096
Toluene	ND U	1.00	0.190	1	NA	7/27/10 02:17	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 02:17	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 02:17	210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 02:17	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 02:17	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 02:17	210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 02:17	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 02:17	· ·

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	98	71-122	7/27/10 02:17	
4-Bromofluorobenzene	104	75-120	7/27/10 02:17	
Dibromofluoromethane	98	82-116	7/27/10 02:17	
Toluene-d8	98	88-117	7/27/10 02:17	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB22S

J1003438-014

Service Request: J1003438

Date Collected: 7/20/10 1515

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 02:48	210096
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 02:48	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 02:48	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 02:48	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 02:48	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 02:48	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 02:48	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 02:48	210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 02:48	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 02:48	210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 02:48	210096
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 02:48	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 02:48	210096
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 02:48	210096
2-Hexanone	ND	\mathbf{U}	25.0	2.20	1	NA	7/27/10 02:48	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 02:48	210096
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 02:48	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 02:48	210096
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 02:48	210096
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 02:48	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 02:48	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 02:48	210096
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 02:48	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 02:48	210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 02:48	210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 02:48	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 02:48	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 02:48	210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 02:48	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 02:48	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 02:48	210096
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 02:48	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 02:48	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 02:48	210096
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 02:48	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 02:48	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB22S

Lab Code:

J1003438-014

Service Request: J1003438

Date Collected: 7/20/10 1515

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 02:48	3 .	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 02:48	3	210096
Styrene	ND U	1.00	0.291	1	NA	7/27/10 02:48	3	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 02:48	}	210096
Toluene	ND U	1.00	0.190	1	NA	7/27/10 02:48	3	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 02:48	}	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 02:48		210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 02:48	3	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 02:48	} .	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 02:48	}	210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 02:48	3	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 02:48	3	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	97	71-122	7/27/10 02:48		
4-Bromofluorobenzene	103	75-120	7/27/10 02:48		
Dibromofluoromethane	94	82-116	7/27/10 02:48		
Toluene-d8	99	88-117	7/27/10 02:48		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name:

Water

Lab Code:

DUP02

J1003438-015

Service Request: J1003438 **Date Collected:** 7/20/10 1515

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 08:45	210383
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 08:45	
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 08:45	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 08:45	210383
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/27/10 08:45	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 08:45	210383
1,2,3-Trichloropropane	ND	-	2.00	0.420	1	NA	7/27/10 08:45	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 08:45	210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 08:45	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 08:45	
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 08:45	210383
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 08:45	210383
1,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/27/10 08:45	210383
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 08:45	210383
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 08:45	210383
4-Methyl-2-pentanone (MIBK)	ND		25.0	0.650	1	NA	7/27/10 08:45	210383
Acetone	ND		50.0	5.60	1	NA	7/27/10 08:45	210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 08:45	210383
Benzene	ND		1.00	0.210	1	NA	7/27/10 08:45	
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 08:45	210383
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 08:45	210383
Bromoform	ND		2.00	0.420	1	NA	7/27/10 08:45	210383
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 08:45	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 08:45	210383
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 08:45	
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 08:45	210383
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 08:45	210383
Chloroform	ND		1.00	0.350	1	NA	7/27/10 08:45	210383
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 08:45	210383
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 08:45	210383
cis-1,3-Dichloropropene	ND		1.00	0.200	1	NA	7/27/10 08:45	210383
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 08:45	210383
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 08:45	210383
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 08:45	210383
lodomethane	ND		5.00	2.68	1	NA	7/27/10 08:45	210383
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 08:45	210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

DUP02

Lab Code:

J1003438-015

Service Request: J1003438

Date Collected: 7/20/10 1515

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 08:45		210383
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 08:45	;	210383
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 08:45	;	210383
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 08:45	j	210383
Toluene	ND	U	1.00	0.190	. 1	NA	7/27/10 08:45	;	210383
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/27/10 08:45	;	210383
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 08:45	,	210383
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/27/10 08:45	;	210383
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 08:45	;	210383
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 08:45		210383
Vinyl Acetate	ND	Ü	10.0	1.90	1	NA	7/27/10 08:45	;	2103.83
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/27/10 08:45	;	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	98	71-122	7/27/10 08:45		
4-Bromofluorobenzene	109	75-120	7/27/10 08:45		
Dibromofluoromethane	97	82-116	7/27/10 08:45		
Toluene-d8	99	88-117	7/27/10 08:45		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB29D J1003438-016 Service Request: J1003438 **Date Collected: 7/20/10 0728**

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/27/10 09:16	
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 09:16	
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 09:16	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 09:16	210383
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 09:16	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 09:16	210383
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 09:16	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 09:16	
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 09:16	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 09:16	210383
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 09:16	
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 09:16	210383
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 09:16	210383
2-Butanone (MEK)	ND		10.0	3.80	1 1	NA	7/27/10 09:16	210383
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 09:16	210383
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 09:16	210383
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 09:16	
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 09:16	210383
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 09:16	210383
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/27/10 09:16	210383
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 09:16	210383
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 09:16	210383
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 09:16	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 09:16	210383
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 09:16	210383
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 09:16	
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 09:16	210383
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 09:16	210383
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 09:16	
cis-1,2-Dichloroethene	ND		1.00	0.360	1	NA	7/27/10 09:16	
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 09:16	210383
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 09:16	
Dibromomethane	ND		5.00	0.180	1	NA	7/27/10 09:16	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 09:16	210383
Iodomethane		Ŭ	5.00	2.68	1	NA	7/27/10 09:16	210383
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 09:16	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB29D

Lab Code:

J1003438-016

Service Request: J1003438

Date Collected: 7/20/10 0728

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 09:16	6	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 09:16	5	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 09:16	5	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 09:16	5	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 09:16	5	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 09:16	5	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 09:16	5	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 09:16	5	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 09:16	5	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 09:16	5	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 09:16	5	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 09:16	5	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	95	71-122	7/27/10 09:16	
4-Bromofluorobenzene	108	75-120	7/27/10 09:16	
Dibromofluoromethane	95	82-116	7/27/10 09:16	
Toluene-d8	97	88-117	7/27/10 09:16	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB29I J1003438-017 Service Request: J1003438 **Date Collected:** 7/20/10 0759

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/27/10 09:47	210383
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA	7/27/10 09:47	210383
1,1,2,2-Tetrachloroethane	ND U	1.00	0.110	1	NA	7/27/10 09:47	210383
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/27/10 09:47	210383
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/27/10 09:47	210383
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/27/10 09:47	210383
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/27/10 09:47	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND U		2.30	1	NA	7/27/10 09:47	
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/27/10 09:47	210383
1,2-Dichlorobenzene	ND U		0.478	1	ŊA	7/27/10 09:47	210383
1,2-Dichloroethane	ND U		0.180	. 1	NA	7/27/10 09:47	
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/27/10 09:47	210383
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/27/10 09:47	210383
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/27/10 09:47	210383
2-Hexanone	ND U	25.0	2.20	1	NA	7/27/10 09:47	210383
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/27/10 09:47	210383
Acetone	ND U	50.0	5.60	1	NA	7/27/10 09:47	210383
Acrylonitrile	ND U	10.0	1.20	1	NA	7/27/10 09:47	210383
Benzene	ND U		0.210	1	NA	7/27/10 09:47	
Bromochloromethane	ND U		0.270	1	NA	7/27/10 09:47	
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/27/10 09:47	210383
Bromoform	ND U		0.420	1	NA	7/27/10 09:47	210383
Bromomethane	ND U		0.220	1	NA	7/27/10 09:47	
Carbon Disulfide	ND U	10.0	2.36	1	NA	7/27/10 09:47	210383
Carbon Tetrachloride	ND U		0.340	1	NA	7/27/10 09:47	210383
Chlorobenzene	ND U		0.160	1	NA	7/27/10 09:47	210383
Chloroethane	ND U	5.00	0.220	1	NA	7/27/10 09:47	210383
Chloroform	ND U		0.350	1	NA	7/27/10 09:47	
Chloromethane	ND U	1.00	0.110	1	NA	7/27/10 09:47	210383
cis-1,2-Dichloroethene	ND U	1.00	0.360	1	NA	7/27/10 09:47	210383
cis-1,3-Dichloropropene	ND U		0.200	1	NA	7/27/10 09:47	210383
Dibromochloromethane	ND U	1.00	0.190	1	NA	7/27/10 09:47	210383
Dibromomethane	ND U	5.00	0.180	1	NA	7/27/10 09:47	210383
Ethylbenzene	ND U	1.00	0.519	1	NA	7/27/10 09:47	210383
Iodomethane	ND U	5.00	2.68	1	NA	7/27/10 09:47	
m,p-Xylenes	ND U	2.00	1.04	1	NA	7/27/10 09:47	210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB29I J1003438-017 Service Request: J1003438

Date Collected: 7/20/10 0759 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 09:47	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 09:47	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 09:47	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 09:47	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 09:47	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 09:47	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 09:47	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 09:47	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 09:47	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 09:47	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 09:47	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 09:47	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	93	71-122	7/27/10 09:47	
4-Bromofluorobenzene	99	75-120	7/27/10 09:47	
Dibromofluoromethane	93	82-116	7/27/10 09:47	
Toluene-d8	97	88-117	7/27/10 09:47	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB29S J1003438-018 Service Request: J1003438
Date Collected: 7/20/10 0828

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 10:18 210383 1,2-Dichloroptane ND U 1.00 0.180 1 NA 7/27/10 10:18 210383 1,2-Dichloroptopane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 2-Butanone (MEK) ND U 10.0 3.80 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 A-cetone ND U 10.0 1.20 1<	Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction . Lot	Analysis Lot
1,1,2,2-Tetrachloroethane				1.00	0.180	1	NA	7/27/10 10:18		210383
1,1,2-Trichloroethane						1		7/27/10 10:18	:	210383
1,1-Dichloroethane (1,1-DCA)	1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 10:18		210383
1,1-Dichloroethene (1,1-DCE) ND U 1.00 0.160 1 NA 7/27/10 10:18 210383 1,2,3-Trichloropropane ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 1,2-Dibromo-3-chloropropane (DBCP) ND U 5.00 2.30 1 NA 7/27/10 10:18 210383 (DBCP) 1,2-Dichlorobethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 1,2-Dichlorobethane ND U 1.00 0.478 1 NA 7/27/10 10:18 210383 1,2-Dichloroptopane ND U 1.00 0.120 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 0.120 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 3.80 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 3.80 1 NA 7/27/10 10:18 210383 2-Butanone	1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 10:18		210383
1,2,3-Trichloropropane						1				210383
1,2-Dibromo-3-chloropropane (DBCP)	1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 10:18	;	210383
(DBCP) 1,2-Dichloromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 10:18 210383 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 10:18 210383 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 10:18 210383 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 3.80 1 NA 7/27/10 10:18 210383 2-Butanone (MEK) ND U 10.0 3.80 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 10:18 210383 4-Methyl-2-pentanone (MIBK) ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 Acetone ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acetone ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Benzene ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 5.00 0.270 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.20 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.20 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.20 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.20 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 1.00 0.20 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Cis-1,2-Dichloropropene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Cis-1,3-Dichloropropene ND U 1.00 0.90 1 NA 7/27/10 10:18 210383 Cis-1,3-Dichloropropene ND U 1.00 0.90 1 NA 7/27/10 10:18 210383 Cis-1,3-Dichloromethane ND U 5.00 0.20 1 NA 7/27/10 10:18 210383 Cis-1,3-Dichloropropene ND U 1.00 0.90 1 NA 7/27/10 10:18 210383 Cis-1,3-Dichloromethane ND U 5.00 0.80 1 NA 7/27/10 10:18 210383 Cidomethane ND U 5.00 0.80 1 NA 7/27/10 10:18 210383 Cidomethane ND U 5.00 0.80 1 NA	1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 10:18		210383
1,2-Dichlorobenzene	(DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 10:18	1	210383
1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 10:18 210383 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 2-Butanone (MEK) ND U 10.0 3.80 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 10:18 210383 2-Hexanone MD U 25.0 2.650 1 NA 7/27/10 10:18 210383 2-Hexanone MID U 50.0 5.60 1 NA 7/27/10 10:18 210383 4-Wethyl-2-pentanone (MIBK) ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acetone ND U 10.0 1.20 1 NA 7/27/10 10:18 <th< td=""><td>1,2-Dibromoethane (EDB)</td><td>ND</td><td>U</td><td>1.00</td><td>0.170</td><td>1</td><td>NA</td><td>7/27/10 10:18</td><td></td><td>210383</td></th<>	1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 10:18		210383
1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 10:18 210383 1,4-Dichlorobenzene ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 2-Butanone (MEK) ND U 10.0 3.80 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 4-Methyl-2-pentanone (MIBK) ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acetone ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Acetone ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 1.00 0.270 1 N	·					1	NA	7/27/10 10:18		210383
1,4-Dichlorobenzene ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 2-Butanone (MEK) ND U 10.0 3.80 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 10:18 210383 4-Methyl-2-pentanone (MIBK) ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 Acetone ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acetone ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Acetone ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 1.00 0.270 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA						1				210383
2-Butanone (MEK) ND U 10.0 3.80 1 NA 7/27/10 10:18 210383 2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 10:18 210383 4-Methyl-2-pentanone (MIBK) ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 Acetone ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acrylonitrile ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 5.00 0.270 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 Bromoform ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 1.00 0.236 1 NA 7/27/10 10:18 210383 Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chlorotenane ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Cis-1,2-Dichlorotene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Cis-1,3-Dichloropropene ND U 1.00 0.000 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.519 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.519 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.519 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.519 1 NA 7/27/10 10:18 210383	1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 10:18		210383
2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 10:18 210383 4-Methyl-2-pentanone (MIBK) ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 Acetone ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acrylonitrile ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 5.00 0.270 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 Bromoform ND U 1.00 0.20 1 NA 7/27/10 10:18 210383 Bromoform ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Bromoform ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 10.0 2.36 1 NA 7/27/10 10:18 210383 Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chloroethane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroethane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroethane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Cisis-1,2-Dichloropropene ND U 1.00 0.090 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 5.00 0.68 1 NA 7/27/10 10:18 210383	1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 10:18		210383
4-Methyl-2-pentanone (MIBK) ND U 25.0 0.650 1 NA 7/27/10 10:18 210383 Acetone ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acrylonitrile ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 5.00 0.270 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 10.0 2.36 1 NA 7/27/10 10:18 210383 Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.160 1 NA 7/27/10 10:18 210383 Chlorothane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chlorothane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroform ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Cis-1,2-Dichloropepene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 1.00 0.100 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.519 1 NA 7/27/10 10:18 210383 Didodomethane ND U 5.00 0.519 1 NA 7/27/10 10:18 210383 Didodomethane ND U 5.00 0.519 1 NA 7/27/10 10:18 210383	2-Butanone (MEK)			10.0	3.80	1	NA	7/27/10 10:18		210383
Acetone ND U 50.0 5.60 1 NA 7/27/10 10:18 210383 Acrylonitrile ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 5.00 0.270 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 Bromoferm ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Bromoferm ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 1.00 0.340 1 NA 7/27/10 10:18 210383	2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 10:18	}	210383
Acrylonitrile ND U 10.0 1.20 1 NA 7/27/10 10:18 210383 Benzene ND U 1.00 0.210 1 NA 7/27/10 10:18 210383 Bromochloromethane ND U 5.00 0.270 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Bromomethane ND U 10.0 0.220 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 10.0 0.340 1 NA 7/27/10 10:18 210383 Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.160 1 <t< td=""><td>4-Methyl-2-pentanone (MIBK)</td><td>ND</td><td>U</td><td>25.0</td><td>0.650</td><td>1</td><td>NA</td><td>7/27/10 10:18</td><td></td><td>210383</td></t<>	4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 10:18		210383
Benzene	Acetone	ND	U	50.0	5.60	1	NA	7/27/10 10:18	1	210383
Bromochloromethane ND U 5.00 0.270 1 NA 7/27/10 10:18 210383 Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 10.0 2.36 1 NA 7/27/10 10:18 210383 Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.160 1 NA 7/27/10 10:18 210383 Chlorothane ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloroform ND U 1.00 0.350 1	Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 10:18		210383
Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 10:18 210383 Bromoform ND U 2.00 0.420 1 NA 7/27/10 10:18 210383 Bromomethane ND U 1.00 0.220 1 NA 7/27/10 10:18 210383 Carbon Disulfide ND U 10.0 2.36 1 NA 7/27/10 10:18 210383 Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.160 1 NA 7/27/10 10:18 210383 Chlorothane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroform ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1	Benzene	ND	U	1.00	0.210	1	NA	7/27/10 10:18		210383
Bromoform	Bromochloromethane					1	NA	7/27/10 10:18		210383
Bromomethane	Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 10:18		210383
Carbon Disulfide ND U 10.0 2.36 1 NA 7/27/10 10:18 210383 Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.160 1 NA 7/27/10 10:18 210383 Chloroethane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroform ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18<	Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 10:18		210383
Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 10:18 210383 Chlorobenzene ND U 1.00 0.160 1 NA 7/27/10 10:18 210383 Chloroethane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroform ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1	Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 10:18		210383
Chlorobenzene ND U 1.00 0.160 1 NA 7/27/10 10:18 210383 Chloroethane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroform ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 10:18		210383
Chloroethane ND U 5.00 0.220 1 NA 7/27/10 10:18 210383 Chloroform ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 10:18		210383
Chloroform ND U 1.00 0.350 1 NA 7/27/10 10:18 210383 Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 10:18		210383
Chloromethane ND U 1.00 0.110 1 NA 7/27/10 10:18 210383 cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 10:18		210383
cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 10:18 210383 cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 10:18		210383
cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 10:18 210383 Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 10:18		210383
Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 10:18		210383
Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 10:18 210383 Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 10:18 210383 Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 10:18		210383
Ethylbenzene ND U 1.00 0.519 1 NA 7/27/10 10:18 210383 Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Dibromochloromethane			1.00	0.190	1	NA			
Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 10:18		210383
Iodomethane ND U 5.00 2.68 1 NA 7/27/10 10:18 210383	Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 10:18		210383
m,p-Xylenes ND U 2.00 1.04 1 NA 7/27/10 10:18 210383	Iodomethane					1	NA	7/27/10 10:18		
	m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 10:18		210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB29S J1003438-018 Service Request: J1003438

Date Collected: 7/20/10 0828

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction A Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 10:18	3	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 10:18	3	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 10:18	3	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 10:18	3	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 10:18	3	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 10:18	3	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 10:18	3	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 10:18	3	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 10:18	3	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 10:18	}	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 10:18	3	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 10:18	3	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	95	71-122	7/27/10 10:18		·
4-Bromofluorobenzene	105	75-120	7/27/10 10:18		
Dibromofluoromethane	93	82-116	7/27/10 10:18		
Toluene-d8	97	88-117	7/27/10 10:18		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB2I

J1003438-019

Service Request: J1003438
Date Collected: 7/20/10 0900

Date Collected: 7/20/10 090 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot	
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/27/10 10:49	210383	
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA	7/27/10 10:49	210383	
1,1,2,2-Tetrachloroethane	ND U	1.00	0.110	1	NA	7/27/10 10:49	210383	
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/27/10 10:49	210383	epergence energy.
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/27/10 10:49	210383	
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/27/10 10:49	210383	
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/27/10 10:49	210383	
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/27/10 10:49	210383	
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/27/10 10:49	210383	
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/27/10 10:49	210383	
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/27/10 10:49	210383	
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/27/10 10:49	210383	
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/27/10 10:49	210383	
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/27/10 10:49	210383	
2-Hexanone	ND U	25.0	2.20	1	NA	7/27/10 10:49	210383	
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/27/10 10:49	210383	
Acetone	ND U	50.0	5.60	1	NA	7/27/10 10:49	210383	
Acrylonitrile	ND U	10.0	1.20	1	NA	7/27/10 10:49	210383	
Benzene	ND U	1.00	0.210	1	NA	7/27/10 10:49	210383	
Bromochloromethane	ND U	5.00	0.270	1	NA	7/27/10 10:49	210383	
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/27/10 10:49	210383	
Bromoform	ND U	2.00	0.420	1	NA	7/27/10 10:49	210383	
Bromomethane	ND U	1.00	0.220	1	NA	7/27/10 10:49	210383	
Carbon Disulfide	ND U	10.0	2.36	1	NA	7/27/10 10:49	210383	
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/27/10 10:49	210383	
Chlorobenzene	ND U	1.00	0.160	1	NA	7/27/10 10:49	210383	
Chloroethane	ND U	5.00	0.220	1	NA	7/27/10 10:49	210383	
Chloroform	ND U	1.00	0.350	1	NA	7/27/10 10:49	210383	
Chloromethane	ND U	1.00	0.110	1	NA	7/27/10 10:49	210383	
cis-1,2-Dichloroethene	ND U	1.00	0.360	1	NA	7/27/10 10:49	210383	
cis-1,3-Dichloropropene	ND U	1.00	0.200	1	NA	7/27/10 10:49	210383	
Dibromochloromethane	ND U	1.00	0.190	1	NA	7/27/10 10:49	210383	
Dibromomethane	ND U	5.00	0.180	1	NA	7/27/10 10:49	210383	
Ethylbenzene	ND U	1.00	0.519	1	NA	7/27/10 10:49	210383	
Iodomethane	ND U	5.00	2.68	1	NA	7/27/10 10:49		
m,p-Xylenes	ND U	2.00	1.04	1	NA	7/27/10 10:49	210383	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB2I

J1003438-019

Service Request: J1003438

Date Collected: 7/20/10 0900

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 10:49	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 10:49	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 10:49	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 10:49	210383
Toluene	0.307 I	1.00	0.190	1	NA	7/27/10 10:49	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 10:49	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 10:49	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 10:49	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 10:49	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 10:49	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 10:49	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 10:49	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	96	71-122	7/27/10 10:49		
4-Bromofluorobenzene	101	75-120	7/27/10 10:49		
Dibromofluoromethane	98	82-116	7/27/10 10:49		
Toluene-d8	97	88-117	7/27/10 10:49		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB2S

J1003438-020

Service Request: J1003438 **Date Collected:** 7/20/10 0929

Date Received: 7/21/10

Units: $\mu g/L$ Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 11:21	210383
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 11:21	210383
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 11:21	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 11:21	210383
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 11:21	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 11:21	210383
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 11:21	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 11:21	210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 11:21	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 11:21	
1,2-Dichloroethane	ND.		1.00	0.180	1	NA	7/27/10 11:21	210383
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 11:21	210383
1,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/27/10 11:21	210383
2-Butanone (MEK)	5.35		10.0	3.80	1	NA	7/27/10 11:21	210383
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 11:21	210383
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 11:21	210383
Acetone	21.7		50.0	5.60	1	NA	7/27/10 11:21	210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 11:21	210383
Benzene	ND		1.00	0.210	1	NA	7/27/10 11:21	210383
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 11:21	210383
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 11:21	210383
Bromoform	ND		2.00	0.420	1	NA	7/27/10 11:21	210383
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 11:21	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 11:21	210383
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 11:21	210383
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 11:21	210383
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 11:21	210383
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 11:21	210383
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 11:21	210383
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 11:21	210383
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 11:21	210383
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 11:21	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 11:21	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 11:21	210383
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 11:21	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 11:21	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge Water

Sample Matrix: Sample Name:

Lab Code:

MWB2S

J1003438-020

Service Request: J1003438

Date Collected: 7/20/10 0929

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 11:21		210383
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 11:21		210383
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 11:21		210383
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 11:21		210383
Toluene	0.262	I	1.00	0.190	1	NA	7/27/10 11:21	l	210383
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/27/10 11:21	l	210383
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 11:21		210383
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/27/10 11:21	[210383
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 11:21		210383
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 11:21		210383
Vinyl Acetate	ND	U	10.0	1.90	Í	NA	7/27/10 11:21		210383
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/27/10 11:21	1	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	96	71-122	7/27/10 11:21	
4-Bromofluorobenzene	105	75-120	7/27/10 11:21	
Dibromofluoromethane	98	82-116	7/27/10 11:21	
Toluene-d8	99	88-117	7/27/10 11:21	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

MWB33S

Lab Code:

J1003438-021

Service Request: J1003438

Date Collected: 7/20/10 1620 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

					Dilution	Date		Extraction Analysis
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/27/10 11:52	210383
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 11:52	
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 11:52	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 11:52	210383
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 11:52	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 11:52	210383
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 11:52	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 11:52	210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 11:52	210383
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/27/10 11:52	210383
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 11:52	
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 11:52	210383
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 11:52	210383
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 11:52	210383
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 11:52	210383
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 11:52	210383
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 11:52	210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 11:52	210383
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 11:52	210383
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/27/10 11:52	210383
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 11:52	210383
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 11:52	210383
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 11:52	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 11:52	210383
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 11:52	210383
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 11:52	210383
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 11:52	210383
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 11:52	210383
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 11:52	
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 11:52	210383
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 11:52	210383
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 11:52	
Dibromomethane	ND		5.00	0.180	1	NA	7/27/10 11:52	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 11:52	210383
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 11:52	
m,p-Xylenes	ND		2.00	1.04	1	NA	7/27/10 11:52	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB33S J1003438-021 Service Request: J1003438

Date Collected: 7/20/10 1620 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 11:52	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 11:52	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 11:52	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 11:52	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 11:52	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 11:52	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 11:52	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 11:52	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 11:52	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 11:52	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 11:52	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 11:52	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q ·	
1,2-Dichloroethane-d4	99	71-122	7/27/10 11:52		
4-Bromofluorobenzene	105	75-120	7/27/10 11:52		
Dibromofluoromethane	98	82-116	7/27/10 11:52		
Toluene-d8	104	88-117	7/27/10 11:52		

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB27S J1003438-022 Service Request: J1003438

Date Collected: 7/20/10 0815

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 12:22	210383
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 12:22	210383
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 12:22	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 12:22	210383
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/27/10 12:22	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 12:22	210383
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 12:22	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 12:22	210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 12:22	210383
1,2-Dichlorobenzene	ND		1.00	0.478	ļ	NA	7/27/10 12:22	
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 12:22	
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 12:22	210383
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 12:22	210383
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 12:22	
2-Hexanone	ND	U	25.0	2.20	1 -	NA	7/27/10 12:22	210383
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 12:22	210383
Acetone	ND		50.0	5.60	1 .	NA	7/27/10 12:22	
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 12:22	210383
Benzene	ND		1.00	0.210	1	NA	7/27/10 12:22	
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/27/10 12:22	
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 12:22	210383
Bromoform	ND		2.00	0.420	1	NA	7/27/10 12:22	
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 12:22	
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 12:22	210383
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 12:22	
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 12:22	
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 12:22	210383
Chloroform	ND		1.00	0.350	1	NA	7/27/10 12:22	
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 12:22	
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 12:22	2 210383
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 12:22	2 210383
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 12:22	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 12:22	2 210383
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 12:22	2 210383
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 12:22	210383
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 12:22	2 210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB27S J1003438-022 Service Request: J1003438

Date Collected: 7/20/10 0815

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 12:22	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 12:22	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 12:22	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 12:22	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 12:22	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 12:22	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 12:22	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 12:22	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 12:22	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 12:22	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 12:22	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 12:22	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	99	71-122	7/27/10 12:22	
4-Bromofluorobenzene	107	75-120	7/27/10 12:22	
Dibromofluoromethane	97	82-116	7/27/10 12:22	
Toluene-d8	97	88-117	7/27/10 12:22	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB27I J1003438-023 Service Request: J1003438 **Date Collected:** 7/20/10 0843

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

•					Dilution	Date	Date	Extraction Analysis
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 12:53	210383
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 12:53	210383
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 12:53	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 12:53	210383
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/27/10 12:53	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 12:53	210383
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 12:53	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 12:53	210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 12:53	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 12:53	210383
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 12:53	210383
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 12:53	210383
1,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/27/10 12:53	210383
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 12:53	210383
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 12:53	210383
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 12:53	210383
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 12:53	210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 12:53	210383
Benzene	ND		1.00	0.210	1	NA	7/27/10 12:53	210383
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 12:53	210383
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 12:53	210383
Bromoform	ND		2.00	0.420	1	NA	7/27/10 12:53	210383
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 12:53	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 12:53	210383
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 12:53	210383
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 12:53	210383
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 12:53	210383
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 12:53	210383
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 12:53	210383
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 12:53	210383
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 12:53	210383
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 12:53	210383
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 12:53	210383
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 12:53	210383
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 12:53	210383
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 12:53	210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB27I J1003438-023

Service Request: J1003438

Date Collected: 7/20/10 0843 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 12:53	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 12:53	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 12:53	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 12:53	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 12:53	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 12:53	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 12:53	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 12:53	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 12:53	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 12:53	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 12:53	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 12:53	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	99	71-122	7/27/10 12:53		
4-Bromofluorobenzene	105	75-120	7/27/10 12:53		
Dibromofluoromethane	98	82-116	7/27/10 12:53		
Toluene-d8	97	88-117	7/27/10 12:53		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB27D J1003438-024

rail Didge

Service Request: J1003438

Date Collected: 7/20/10 0918

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 13:24	210383
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 13:24	210383
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 13:24	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 13:24	210383
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 13:24	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 13:24	210383
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 13:24	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 13:24	210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	ŅA	7/27/10 13:24	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 13:24	
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 13:24	
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 13:24	210383
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 13:24	210383
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 13:24	210383
2-Hexanone	ND	U	25.0	2.20	. 1	NA	7/27/10 13:24	210383
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 13:24	210383
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 13:24	210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 13:24	210383
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 13:24	210383
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 13:24	210383
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 13:24	210383
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 13:24	210383
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 13:24	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 13:24	210383
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 13:24	210383
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 13:24	210383
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 13:24	210383
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 13:24	210383
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 13:24	210383
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 13:24	210383
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 13:24	210383
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 13:24	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 13:24	210383
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 13:24	210383
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 13:24	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 13:24	210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB27D J1003438-024 Service Request: J1003438

Date Collected: 7/20/10 0918 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 13:24	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 13:24	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 13:24	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 13:24	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 13:24	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	. 1	NA	7/27/10 13:24	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 13:24	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 13:24	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 13:24	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 13:24	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 13:24	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 13:24	210383

Surrogate Name		%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	2	99	71-122	7/27/10 13:24	·
4-Bromofluorobenzene		105	75-120	7/27/10 13:24	
Dibromofluoromethane		97	82-116	7/27/10 13:24	
Toluene-d8		101	88-117	7/27/10 13:24	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

DUP01

J1003438-025

Service Request: J1003438

Date Collected: 7/20/10 0918 Date Received: 7/21/10

> Units: $\mu g/L$ Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/27/10 13:56	210383
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1 .	NA	7/27/10 13:56	
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 13:56	210383
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 13:56	210383
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 13:56	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 13:56	210383
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 13:56	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 13:56	210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 13:56	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 13:56	210383
1,2-Dichloroethane	ND		1.00	0.180	. 1	NA	7/27/10 13:56	210383
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 13:56	210383
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 13:56	210383
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 13:56	210383
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 13:56	210383
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 13:56	210383
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 13:56	210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 13:56	210383
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 13:56	210383
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 13:56	210383
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 13:56	210383
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 13:56	210383
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 13:56	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 13:56	210383
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 13:56	210383
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 13:56	210383
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 13:56	210383
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 13:56	210383
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 13:56	
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 13:56	
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 13:56	210383
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 13:56	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 13:56	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 13:56	210383
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 13:56	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 13:56	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

DUP01

Lab Code:

J1003438-025

Service Request: J1003438

Date Collected: 7/20/10 0918 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 13:56	5 210383
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 13:56	210383
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 13:56	210383
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 13:56	5 210383
Toluene	ND T	U	1.00	0.190	1	NA	7/27/10 13:56	210383
trans-1,2-Dichloroethene	ND 1	U	1.00	0.120	1	NA	7/27/10 13:56	210383
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 13:56	5 210383
trans-1,4-Dichloro-2-butene	ND 1	U	20.0	2.20	1	NA	7/27/10 13:56	210383
Trichloroethene (TCE)	ND 1	U	1.00	0.160	1	NA	7/27/10 13:56	210383
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 13:56	5 210383
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/27/10 13:56	210383
Vinyl Chloride	ND 1	U	1.00	0.220	1	NA	7/27/10 13:56	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	97	71-122	7/27/10 13:56		
4-Bromofluorobenzene	104	75-120	7/27/10 13:56		
Dibromofluoromethane	98	82-116	7/27/10 13:56		
Toluene-d8	95	88-117	7/27/10 13:56		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB31D J1003438-026

M

Tity of

Service Request: J1003438

Date Collected: 7/20/10 1004

Date Received: 7/21/10
Units: μg/L

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q MRI	_ MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U 1.00	0.180	1	NA	7/27/10 14:27		210383
1,1,1-Trichloroethane (TCA)	ND 1	U 1.00	0.170	1	NA	7/27/10 14:27	•	210383
1,1,2,2-Tetrachloroethane	ND	U 1.00	0.110	1	NA	7/27/10 14:27	,	210383
1,1,2-Trichloroethane	ND		0.170	1	NA	7/27/10 14:27	•	210383
1,1-Dichloroethane (1,1-DCA)	ND.			1	NA	7/27/10 14:27	•	210383
1,1-Dichloroethene (1,1-DCE)	ND 1	U 1.00	0.160	1	NA	7/27/10 14:27	•	210383
1,2,3-Trichloropropane	ND			1	NA	7/27/10 14:27		210383
1,2-Dibromo-3-chloropropane (DBCP)	ND			1	NA	7/27/10 14:27		210383
1,2-Dibromoethane (EDB)	ND	U 1.00	0.170	1	NA	7/27/10 14:27		210383
1,2-Dichlorobenzene	ND			1	NA	7/27/10 14:27		210383
1,2-Dichloroethane	ND			1	NA	7/27/10 14:27		210383
1,2-Dichloropropane	ND	U 1.00	0.120	1	NA	7/27/10 14:27		210383
1,4-Dichlorobenzene	ND '			1	NA	7/27/10 14:27		210383
2-Butanone (MEK)	ND '	U 10.0	3.80	1	NA	7/27/10 14:27	' .	210383
2-Hexanone	ND	U 25.0	2.20	1	NA	7/27/10 14:27	•	210383
4-Methyl-2-pentanone (MIBK)	ND	U 25.0	0.650	1	NA	7/27/10 14:27		210383
Acetone	ND '	U 50.0	5.60	1	NA	7/27/10 14:27	,	210383
Acrylonitrile	ND	U 10.0	1.20	1	NA	7/27/10 14:27		210383
Benzene	ND			1	NA	7/27/10 14:27	7	210383
Bromochloromethane	ND			1	NA	7/27/10 14:27	7	210383
Bromodichloromethane	ND	U 1.00	0.170	1	NA	7/27/10 14:27	! .	210383
Bromoform	ND '			1	NA	7/27/10 14:27	7	210383
Bromomethane	ND			1	NA	7/27/10 14:27		210383
Carbon Disulfide	ND	U 10.0	2.36	1	NA	7/27/10 14:27	7	210383
Carbon Tetrachloride	ND			1	NA	7/27/10 14:27		210383
Chlorobenzene	ND			1	NA	7/27/10 14:27		210383
Chloroethane	ND	U 5.00	0.220	1	NA	7/27/10 14:27	7	210383
Chloroform	ND			1	NA	7/27/10 14:27		210383
Chloromethane	ND			1	NA	7/27/10 14:27		210383
cis-1,2-Dichloroethene	ND	U 1.00	0.360	1	NA	7/27/10 14:27	7	210383
cis-1,3-Dichloropropene	ND		0.200	1	NA	7/27/10 14:27	7	210383
Dibromochloromethane	ND		0.190	1	NA	7/27/10 14:27	7	210383
Dibromomethane	ND	U 5.00	0.180	1	NA	7/27/10 14:27	7	210383
Ethylbenzene	ND		0.519	1	NA	7/27/10 14:27	7	210383
Iodomethane	ND			1	NA	7/27/10 14:27	7	210383
m,p-Xylenes	ND	U 2.00	1.04	1	NA	7/27/10 14:27	7	210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB31D J1003438-026

Service Request: J1003438

Date Collected: 7/20/10 1004 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction A Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 14:27	7 2	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 14:27	7 2	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 14:27	7 2	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 14:27	7 2	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 14:27	7 2	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 14:27	7 2	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 14:27	7 2	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 14:27	7 2	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 14:27	7 2	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 14:27	7 2	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 14:27	7 2	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 14:27	7	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	96	71-122	7/27/10 14:27	
4-Bromofluorobenzene	105	75-120	7/27/10 14:27	
Dibromofluoromethane	96	82-116	7/27/10 14:27	
Toluene-d8	98	88-117	7/27/10 14:27	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB17S J1003438-027 Service Request: J1003438

Date Collected: 7/20/10 1042 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/29/10 10:04	***************************************	210615
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/29/10 10:04		210615
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/29/10 10:04		210615
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/29/10 10:04		210615
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/29/10 10:04		210615
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/29/10 10:04		210615
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/29/10 10:04		210615
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/29/10 10:04		210615
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/29/10 10:04	1	210615
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/29/10 10:04		210615
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/29/10 10:04		210615
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/29/10 10:04		210615
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/29/10 10:04	77.77.77.77.77.77.77.77.77.77.77.77.77.	210615
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/29/10 10:04		210615
2-Hexanone	ND	U	25.0	2.20	1	NA	7/29/10 10:04		210615
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/29/10 10:04		210615
Acetone	ND		50.0	5.60	1	NA	7/29/10 10:04		210615
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/29/10 10:04		210615
Benzene	ND		1.00	0.210	1	NA	7/29/10 10:04		210615
Bromochloromethane	ND		5.00	0.270	1	NA	7/29/10 10:04		210615
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/29/10 10:04		210615
Bromoform	ND		2.00	0.420	1	NA	7/29/10 10:04		210615
Bromomethane	ND		1.00	0.220	1	NA	7/29/10 10:04		210615
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/29/10 10:04		210615
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/29/10 10:04		210615
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/29/10 10:04		210615
Chloroethane	ND	U	5.00	0.220	1	NA	7/29/10 10:04		210615
Chloroform	ND	U	1.00	0.350	1	NA	7/29/10 10:04		210615
Chloromethane	ND	U	1.00	0.110	1	NA	7/29/10 10:04		210615
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/29/10 10:04		210615
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/29/10 10:04	-	210615
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/29/10 10:04		210615
Dibromomethane	ND	U	5.00	0.180	1	NA	7/29/10 10:04		210615
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/29/10 10:04		210615
Iodomethane	ND		5.00	2.68	1	NA	7/29/10 10:04		210615
m,p-Xylenes	ND	TT	2.00	1.04	1	NA	7/29/10 10:04		210615

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB17S J1003438-027 Service Request: J1003438

Date Collected: 7/20/10 1042
Date Received: 7/21/10

Units: µg/L

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND	U ⁻	5.00	0.210	1	NA	7/29/10 10:04	210615
o-Xylene	ND	U	1.00	0.140	1	NA	7/29/10 10:04	210615
Styrene	ND	U	1.00	0.291	1	NA	7/29/10 10:04	210615
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/29/10 10:04	210615
Toluene	ND	U	1.00	0.190	1	NA	7/29/10 10:04	210615
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/29/10 10:04	210615
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/29/10 10:04	210615
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/29/10 10:04	210615
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/29/10 10:04	210615
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/29/10 10:04	210615
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/29/10 10:04	210615
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/29/10 10:04	210615

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	104	71-122	7/29/10 10:04	
4-Bromofluorobenzene	105	75-120	7/29/10 10:04	
Dibromofluoromethane	103	82-116	7/29/10 10:04	
Toluene-d8	103	88-117	7/29/10 10:04	

Analytical Report

Client: Project: Jacksonville, City of

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB17D J1003438-028 Service Request: J1003438

Date Collected: 7/20/10 1115 Date Received: 7/21/10

> Units: $\mu g/L$ Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 14:58		210383
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 14:58		210383
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 14:58		210383
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/27/10 14:58		210383
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 14:58	1	210383
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 14:58	}	210383
1,2,3-Trichloropropane	ND		2.00	0.420	1	NA	7/27/10 14:58	<u> </u>	210383
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 14:58		210383
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 14:58)	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 14:58		210383
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 14:58		210383
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 14:58	,	210383
1,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/27/10 14:58	;	210383
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 14:58		210383
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 14:58		210383
4-Methyl-2-pentanone (MIBK)	ND		25.0	0.650	1	NA	7/27/10 14:58		210383
Acetone	ND		50.0	5.60	1	NA	7/27/10 14:58		210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 14:58		210383
Benzene	ND		1.00	0.210	1	NA	7/27/10 14:58		210383
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 14:58		210383
Bromodichloromethane	ND		1.00	0.170	1	NA	7/27/10 14:58		210383
Bromoform	ND		2.00	0.420	1	NA	7/27/10 14:58		210383
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 14:58		210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 14:58))	210383
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 14:58		210383
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 14:58		210383
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 14:58		210383
Chloroform	ND		1.00	0.350	1	NA	7/27/10 14:58		210383
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 14:58		210383
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 14:58		210383
cis-1,3-Dichloropropene	ND		1.00	0.200	1	NA	7/27/10 14:58		210383
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 14:58		210383
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 14:58		210383
Ethylbenzene	ND		1.00	0.519	1	NA	7/27/10 14:58	,	210383
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 14:58		210383
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 14:58		210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB17D

J1003438-028

Service Request: J1003438

Date Collected: 7/20/10 1115 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q MRI	L MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND I	U 5.00	0.210	1	NA	7/27/10 14:58	3 210383
o-Xylene	ND I	U 1.00	0.140	1	NA	7/27/10 14:58	210383
Styrene	ND I	U 1.00	0.291	1	NA	7/27/10 14:58	210383
Tetrachloroethene (PCE)	ND U	U 1.00	0.110	1	NA	7/27/10 14:58	3 210383
Toluene	ND I	U 1.00	0.190	1	NA	7/27/10 14:58	210383
trans-1,2-Dichloroethene	ND 1	U 1.00	0.120	1 .	NA	7/27/10 14:58	210383
trans-1,3-Dichloropropene	ND I	U 1.00	0.230	1	NA	7/27/10 14:58	3 210383
trans-1,4-Dichloro-2-butene	ND I	U 20.0	2.20	1	NA	7/27/10 14:58	210383
Trichloroethene (TCE)	ND 1	U 1.00	0.160	. 1	NA	7/27/10 14:58	210383
Trichlorofluoromethane	ND I	U 20.0	0.220	1	NA	7/27/10 14:58	3 210383
Vinyl Acetate	ND I	U 10.0	1.90	1	NA	7/27/10 14:58	210383
Vinyl Chloride	ND I	U 1.00	0.220	1	NA	7/27/10 14:58	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q ·
1,2-Dichloroethane-d4	99	71-122	7/27/10 14:58	
4-Bromofluorobenzene	105	75-120	7/27/10 14:58	
Dibromofluoromethane	99	82-116	7/27/10 14:58	
Toluene-d8	98	88-117	7/27/10 14:58	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB17I J1003438-029 Service Request: J1003438

Date Collected: 7/20/10 1149 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

•					Dilution	Date	Date	Extraction Analysis
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 19:34	210384
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 19:34	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 19:34	210384
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/27/10 19:34	210384
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 19:34	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 19:34	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 19:34	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 19:34	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 19:34	210384
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 19:34	210384
1,2-Dichloroethane	ND	U	1.00	0.180	1	⁵ NA	7/27/10 19:34	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 19:34	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 19:34	210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 19:34	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 19:34	210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 19:34	210384
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 19:34	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 19:34	210384
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 19:34	210384
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/27/10 19:34	210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 19:34	210384
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 19:34	210384
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 19:34	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 19:34	210384
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 19:34	210384
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 19:34	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 19:34	210384
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 19:34	210384
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 19:34	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 19:34	210384
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 19:34	210384
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 19:34	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 19:34	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 19:34	210384
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 19:34	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 19:34	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB17I J1003438-029 Service Request: J1003438 **Date Collected:** 7/20/10 1149

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 19:34	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 19:34	210384
Styrene	ND U	1.00	0.291	1	NA.	7/27/10 19:34	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 19:34	210384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 19:34	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 19:34	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 19:34	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 19:34	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 19:34	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 19:34	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 19:34	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 19:34	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	92	71-122	7/27/10 19:34		
4-Bromofluorobenzene	102	75-120	7/27/10 19:34		
Dibromofluoromethane	94	82-116	7/27/10 19:34		
Toluene-d8	99	88-117	7/27/10 19:34	The same and the s	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB7S

J1003438-030

Service Request: J1003438

Date Collected: 7/20/10 1232 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 20:05	210384
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 20:05	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 20:05	210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 20:05	210384
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 20:05	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 20:05	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 20:05	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 20:05	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 20:05	210384
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 20:05	210384
1,2-Dichloroethane	ND	U	1.00	0.180	1	NA	7/27/10 20:05	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 20:05	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 20:05	210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 20:05	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 20:05	210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 20:05	210384
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 20:05	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 20:05	210384
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 20:05	210384
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 20:05	210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 20:05	210384
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 20:05	210384
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 20:05	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 20:05	210384
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 20:05	210384
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 20:05	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 20:05	210384
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 20:05	210384
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 20:05	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 20:05	210384
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 20:05	210384
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 20:05	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 20:05	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 20:05	210384
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 20:05	
m,p-Xylenes	ND	* *	2.00	1.04	1	NA	7/27/10 20:05	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB7S

J1003438-030

Service Request: J1003438

Date Collected: 7/20/10 1232

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 20:05	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 20:05	210384
Styrene	ND U	1.00	0.291	1	NA	7/27/10 20:05	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 20:05	210384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 20:05	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 20:05	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 20:05	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 20:05	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 20:05	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 20:05	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 20:05	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 20:05	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed Q)
1,2-Dichloroethane-d4	95	71-122	7/27/10 20:05	
4-Bromofluorobenzene	104	75-120	7/27/10 20:05	
Dibromofluoromethane	95	82-116	7/27/10 20:05	
Toluene-d8	96	88-117	7/27/10 20:05	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB12S J1003438-031 Service Request: J1003438 **Date Collected:** 7/20/10 1520

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 20:36	210384
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 20:36	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 20:36	210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 20:36	210384
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/27/10 20:36	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 20:36	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 20:36	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 20:36	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 20:36	210384
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/27/10 20:36	210384
1,2-Dichloroethane	ND	U	1.00	0.180	1	NA	7/27/10 20:36	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 20:36	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 20:36	210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 20:36	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 20:36	210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 20:36	210384
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 20:36	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 20:36	210384
Benzene	ND		1.00	0.210	1	NA	7/27/10 20:36	210384
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 20:36	210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 20:36	210384
Bromoform	ND		2.00	0.420	1	NA	7/27/10 20:36	210384
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 20:36	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 20:36	210384
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 20:36	210384
Chlorobenzene	ND		1.00	0.160	. 1	NA	7/27/10 20:36	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 20:36	210384
Chloroform	ND		1.00	0.350	1	NA	7/27/10 20:36	
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 20:36	
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 20:36	210384
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 20:36	210384
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 20:36	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 20:36	210384
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 20:36	210384
Iodomethane	ND	U	5.00	2.68	. 1	NA	7/27/10 20:36	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 20:36	210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12S J1003438-031 Service Request: J1003438

Date Collected: 7/20/10 1520 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 20:36	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 20:36	210384
Styrene	ND U	1.00	0.291	1	NA	7/27/10 20:36	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 20:36	210384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 20:36	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 20:36	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 20:36	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 20:36	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 20:36	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 20:36	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 20:36	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 20:36	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	99	71-122	7/27/10 20:36	
4-Bromofluorobenzene	106	75-120	7/27/10 20:36	
Dibromofluoromethane	96	82-116	7/27/10 20:36	
Toluene-d8	100	88-117	7/27/10 20:36	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB13I J1003438-032 Service Request: J1003438

Date Collected: 7/20/10 1602 Date Received: 7/21/10

> Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 21:08		210384
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 21:08		210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 21:08		210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 21:08		210384
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 21:08		210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 21:08		210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 21:08		210384
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 21:08		210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10-21:08		210384
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 21:08		210384
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 21:08		210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 21:08		210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 21:08		210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 21:08		210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 21:08		210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 21:08		210384
Acetone	ND		50.0	5.60	1	NA	7/27/10 21:08		210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 21:08		210384
Benzene	ND		1.00	0.210	1	NA	7/27/10 21:08		210384
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 21:08		210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 21:08		210384
Bromoform	ND		2.00	0.420	1	NA	7/27/10 21:08		210384
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 21:08		210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 21:08		210384
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 21:08		210384
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 21:08		210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 21:08		210384
Chloroform	ND		1.00	0.350	1	NA	7/27/10 21:08		210384
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 21:08		210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 21:08		210384
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 21:08		210384
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 21:08		210384
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 21:08		210384
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 21:08	:	210384
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 21:08		210384
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 21:08		210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB13I

J1003438-032

Service Request: J1003438

Date Collected: 7/20/10 1602

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction A Lot	nalysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 21:08	3 2	10384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 21:08	3 2	10384
Styrene	ND U	1.00	0.291	1	NA	7/27/10 21:08	3 2	10384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 21:08	3 2	10384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 21:08	3 2	10384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 21:08	2	10384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 21:08	3 2	10384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 21:08	3 2	10384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 21:08	3 2	10384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 21:08	2	10384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 21:08	. 2	10384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 21:08	3 2	10384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	96	71-122	7/27/10 21:08	
4-Bromofluorobenzene	107	75-120	7/27/10 21:08	
Dibromofluoromethane	95	82-116	7/27/10 21:08	
Toluene-d8	103	88-117	7/27/10 21:08	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB13S J1003438-033 Service Request: J1003438

Date Collected: 7/21/10 0909

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result () MRL	MDL	Dilution Factor	Date Extracted		Extraction	•
		-				Analyzed	Lot	Lot
1,1,1,2-Tetrachloroethane	ND U		0.180	1	NA	7/27/10 21:38		210384
1,1,1-Trichloroethane (TCA)	ND U		0.170	1	NA	7/27/10 21:38		210384
1,1,2,2-Tetrachloroethane	ND U		0.110	1	NA	7/27/10 21:38		210384
1,1,2-Trichloroethane	ND U		0.170	1	NA	7/27/10 21:38		210384
1,1-Dichloroethane (1,1-DCA)	ND U		0.130	1	NA	7/27/10 21:38		210384
1,1-Dichloroethene (1,1-DCE)	ND U	J 1.00	0.160	1	NA	7/27/10 21:38		210384
1,2,3-Trichloropropane	ND U	J 2.00	0.420	1	NA	7/27/10 21:38		210384
1,2-Dibromo-3-chloropropane (DBCP)	ND U		2.30	1	NA	7/27/10 21:38		210384
1,2-Dibromoethane (EDB)	ND U	J 1.00	0.170	1	NA	7/27/10 21:38	4,	210384
1,2-Dichlorobenzene	ND U	J 1.00	0.478	1	NA	7/27/10 21:38	-	210384
1,2-Dichloroethane	ND U		0.180	1	NA	7/27/10 21:38		210384
1,2-Dichloropropane	ND U	J 1.00	0.120	1	NA	7/27/10 21:38		210384
1,4-Dichlorobenzene	ND U	J 1.00	0.100	1	NA	7/27/10 21:38		210384
2-Butanone (MEK)	ND U	J 10.0	3.80	1	NA	7/27/10 21:38		210384
2-Hexanone	ND U	J 25.0	2.20	1	NA	7/27/10 21:38		210384
4-Methyl-2-pentanone (MIBK)	ND U	J 25.0	0.650	1	NA	7/27/10 21:38	I	210384
Acetone	ND U		5.60	1	NA	7/27/10 21:38		210384
Acrylonitrile	ND U	J 10.0	1.20	1	NA	7/27/10 21:38		210384
Benzene	ND U	J 1.00	0.210	1	NA	7/27/10 21:38		210384
Bromochloromethane	ND U	J 5.00	0.270	1	NA	7/27/10 21:38		210384
Bromodichloromethane	ND U	J 1.00	0.170	1	NA	7/27/10 21:38		210384
Bromoform	ND U	J 2.00	0.420	1	NA	7/27/10 21:38		210384
Bromomethane	ND U	J 1.00	0.220	1	NA	7/27/10 21:38		210384
Carbon Disulfide	ND U	J 10.0	2.36	1	NA	7/27/10 21:38		210384
Carbon Tetrachloride	ND U	J 1.00	0.340	1	NA	7/27/10 21:38		210384
Chlorobenzene	ND U	J 1.00	0.160	1	NA	7/27/10 21:38		210384
Chloroethane	ND U	J 5.00	0.220	1	NA	7/27/10 21:38		210384
Chloroform	ND U	J 1.00	0.350	1	NA	7/27/10 21:38		210384
Chloromethane	ND U		0.110	1	NA	7/27/10 21:38		210384
cis-1,2-Dichloroethene	ND U	J 1.00	0.360	1	NA	7/27/10 21:38		210384
cis-1,3-Dichloropropene	ND U	J 1.00	0.200	1	NA	7/27/10 21:38	<u> </u>	210384
Dibromochloromethane	ND U		0.190	1	NA	7/27/10 21:38		210384
Dibromomethane	ND U		0.180	1	NA	7/27/10 21:38		210384
Ethylbenzene	ND U	J 1.00	0.519	1	NA	7/27/10 21:38		210384
Iodomethane	ND U		2.68	1	NA	7/27/10 21:38		210384
m,p-Xylenes	ND U		1.04	1	NA	7/27/10 21:38		210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB13S J1003438-033 **.**

Service Request: J1003438

Date Received: 7/21/10

Date Collected: 7/21/10 0909

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 21:38	3 210384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 21:38	3 210384
Styrene	ND U	1.00	0.291	1	NA	7/27/10 21:38	3 210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 21:38	3 210384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 21:38	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 21:38	3 210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 21:38	3 210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 21:38	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 21:38	3 210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 21:38	3 210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 21:38	3 210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 21:38	3 210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	97	71-122	7/27/10 21:38		
4-Bromofluorobenzene	107	75-120	7/27/10 21:38		
Dibromofluoromethane	97	82-116	7/27/10 21:38		
Toluene-d8	96	88-117	7/27/10 21:38		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB32S J1003438-034 Service Request: J1003438
Date Collected: 7/21/10 1109

Date Received: 7/21/10 11

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/27/10 22:09	210384
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 22:09	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 22:09	210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/27/10 22:09	210384
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 22:09	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 22:09	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 22:09	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 22:09	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 22:09	210384
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 22:09	
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 22:09	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 22:09	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 22:09	210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 22:09	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 22:09	210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 22:09	210384
Acetone	ND	U	50.0	5.60	1	NA	7/27/10 22:09	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 22:09	210384
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 22:09	210384
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 22:09	210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 22:09	210384
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 22:09	210384
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 22:09	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 22:09	210384
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 22:09	210384
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 22:09	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 22:09	210384
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 22:09	210384
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 22:09	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 22:09	210384
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 22:09	210384
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 22:09	210384
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 22:09	210384
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 22:09	210384
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 22:09	210384
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 22:09	210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB32S J1003438-034

Mumaaa

Service Request: J1003438

Date Collected: 7/21/10 1109

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 22:09)	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 22:09)	210384
Styrene	ND U	1.00	0.291	1	NA	7/27/10 22:09)	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 22:09) .	210384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 22:09)	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 22:09)	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 22:09)	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 22:09)	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 22:09) :	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 22:09)	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 22:09)	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 22:09)	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	97	71-122	7/27/10 22:09		
4-Bromofluorobenzene	107	75-120	7/27/10 22:09		
Dibromofluoromethane	97	82-116	7/27/10 22:09		
Toluene-d8	97	88-117	7/27/10 22:09		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB32I J1003438-035 Service Request: J1003438 **Date Collected:** 7/21/10 1219

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	_	1.00	0.180	1	NA	7/27/10 22:40	
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA NA	7/27/10 22:40	
1,1,2,2-Tetrachloroethane	ND		1.00	0.110	1	NA	7/27/10 22:40	210384
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/27/10 22:40	
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 22:40	
1,1-Dichloroethene (1,1-DCE)	ND		1.00	0.160	1	NA	7/27/10 22:40	
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 22:40	
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 22:40	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 22:40	210384
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/27/10 22:40	210384
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 22:40	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 22:40	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 22:40	210384
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 22:40	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 22:40	210384
4-Methyl-2-pentanone (MIBK)	ND		25.0	0.650	1	NA	7/27/10 22:40	210384
Acetone	ND		50.0	5.60	1	NA	7/27/10 22:40	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 22:40	210384
Benzene	ND		1.00	0.210	1	NA	7/27/10 22:40	
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 22:40	
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 22:40	210384
Bromoform	ND		2.00	0.420	1	NA	7/27/10 22:40	
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 22:40	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 22:40	210384
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 22:40	210384
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 22:40	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 22:40	210384
Chloroform	ND		1.00	0.350	1	NA	7/27/10 22:40	210384
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 22:40	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 22:40	210384
cis-1,3-Dichloropropene	ND		1.00	0.200	1	NA	7/27/10 22:40	210384
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 22:40	210384
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 22:40	210384
Ethylbenzene	ND		1.00	0.519	1	NA	7/27/10 22:40	210384
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 22:40	210384
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 22:40	210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB32I J1003438-035 Service Request: J1003438

Date Collected: 7/21/10 1219

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 22:40	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 22:40	210384
Styrene	ND U	1.00	0.291	1	NA	7/27/10 22:40	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 22:40	210384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 22:40	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 22:40	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 22:40	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 22:40	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 22:40	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 22:40	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 22:40	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 22:40	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	100	71-122	7/27/10 22:40	
4-Bromofluorobenzene	107	75-120	7/27/10 22:40	
Dibromofluoromethane	99	82-116	7/27/10 22:40	
Toluene-d8	104	88-117	7/27/10 22:40	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB32D J1003438-036 Service Request: J1003438

Date Collected: 7/21/10 1243

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

1,1,1-Trichloroethane (TCA) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,1,2,2-Tetrachloroethane ND U 1.00 0.110 1 NA 7/27/10 23:12 21 1,1,2-Trichloroethane ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,1-Dichloroethane (1,1-DCA) ND U 1.00 0.130 1 NA 7/27/10 23:12 21 1,1-Dichloroethene (1,1-DCE) ND U 1.00 0.160 1 NA 7/27/10 23:12 21 1,2,3-Trichloropropane ND U 2.00 0.420 1 NA 7/27/10 23:12 21 1,2-Dibromo-3-chloropropane ND U 5.00 2.30 1 NA 7/27/10 23:12 21 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 <	analysis Lot
1,1,2,2-Tetrachloroethane ND U 1.00 0.110 1 NA 7/27/10 23:12 21 1,1,2-Trichloroethane ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,1-Dichloroethane (1,1-DCA) ND U 1.00 0.130 1 NA 7/27/10 23:12 23 1,1-Dichloroethane (1,1-DCE) ND U 1.00 0.160 1 NA 7/27/10 23:12 21 1,2,3-Trichloropropane ND U 2.00 0.420 1 NA 7/27/10 23:12 21 1,2-Dibromo-3-chloropropane ND U 5.00 2.30 1 NA 7/27/10 23:12 21 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.180 1 NA 7/27/10 23:12 21	10384
1,1,2-Trichloroethane ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,1-Dichloroethane (1,1-DCA) ND U 1.00 0.130 1 NA 7/27/10 23:12 21 1,1-Dichloroethene (1,1-DCE) ND U 1.00 0.160 1 NA 7/27/10 23:12 21 1,2,3-Trichloropropane ND U 2.00 0.420 1 NA 7/27/10 23:12 21 1,2-Dibromo-3-chloropropane ND U 5.00 2.30 1 NA 7/27/10 23:12 21 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	10384
1,1-Dichloroethane (1,1-DCA) ND U 1.00 0.130 1 NA 7/27/10 23:12 21 1,1-Dichloroethene (1,1-DCE) ND U 1.00 0.160 1 NA 7/27/10 23:12 21 1,2,3-Trichloropropane ND U 2.00 0.420 1 NA 7/27/10 23:12 21 1,2-Dibromo-3-chloropropane ND U 5.00 2.30 1 NA 7/27/10 23:12 21 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	210384
1,1-Dichloroethene (1,1-DCE) ND U 1.00 0.160 1 NA 7/27/10 23:12 21 1,2,3-Trichloropropane ND U 2.00 0.420 1 NA 7/27/10 23:12 21 1,2-Dibromo-3-chloropropane (DBCP) ND U 5.00 2.30 1 NA 7/27/10 23:12 21 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	10384
1,2,3-Trichloropropane ND U 2.00 0.420 1 NA 7/27/10 23:12 21 1,2-Dibromo-3-chloropropane ND U 5.00 2.30 1 NA 7/27/10 23:12 21 (DBCP) 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	10384
1,2-Dibromo-3-chloropropane (DBCP) ND U 5.00 2.30 1 NA 7/27/10 23:12 21 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	10384
(DBCP) 1,2-Dibromoethane (EDB) ND U 1.00 0.170 1 NA 7/27/10 23:12 21 1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	10384
1,2-Dichlorobenzene ND U 1.00 0.478 1 NA 7/27/10 23:12 21 1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	210384
1,2-Dichloroethane ND U 1.00 0.180 1 NA 7/27/10 23:12 21 1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	210384
1,2-Dichloropropane ND U 1.00 0.120 1 NA 7/27/10 23:12 21	10384
	10384
14 D'11 1	10384
1,4-Dichlorobenzene ND U 1.00 0.100 1 NA 7/27/10 23:12 21	10384
2-Butanone (MEK) ND U 10.0 3.80 1 NA 7/27/10 23:12 21	210384
2-Hexanone ND U 25.0 2.20 1 NA 7/27/10 23:12 21	10384
4-Methyl-2-pentanone (MIBK) ND U 25.0 0.650 1 NA 7/27/10 23:12 21	10384
Acetone ND U 50.0 5.60 1 NA 7/27/10 23:12 21	10384
Acrylonitrile ND U 10.0 1.20 1 NA 7/27/10 23:12 21	210384
	10384
	10384
Bromodichloromethane ND U 1.00 0.170 1 NA 7/27/10 23:12 21	210384
Bromoform ND U 2.00 0.420 1 NA 7/27/10 23:12 21	10384
	10384
Carbon Disulfide ND U 10.0 2.36 1 NA 7/27/10 23:12 23	210384
Carbon Tetrachloride ND U 1.00 0.340 1 NA 7/27/10 23:12 23	10384
Chlorobenzene ND U 1.00 0.160 1 NA 7/27/10 23:12 21	210384
Chloroethane ND U 5.00 0.220 1 NA 7/27/10 23:12 21	10384
Chloroform ND U 1.00 0.350 1 NA 7/27/10 23:12 21	210384
	210384
cis-1,2-Dichloroethene ND U 1.00 0.360 1 NA 7/27/10 23:12 21	210384
cis-1,3-Dichloropropene ND U 1.00 0.200 1 NA 7/27/10 23:12 21	210384
Dibromochloromethane ND U 1.00 0.190 1 NA 7/27/10 23:12 23	10384
Dibromomethane ND U 5.00 0.180 1 NA 7/27/10 23:12 23	10384
	210384
Iodomethane ND U 5.00 2.68 1 NA 7/27/10 23:12 21	210384
m,p-Xylenes ND U 2.00 1.04 1 NA 7/27/10 23:12 21	10384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB32D J1003438-036

Service Request: J1003438 **Date Collected:** 7/21/10 1243 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 23:12		210384
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 23:12	2	210384
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 23:12	?	210384
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 23:12		210384
Toluene	ND	U	1.00	0.190	1	NA	7/27/10 23:12	2	210384
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/27/10 23:12	2	210384
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 23:12)	210384
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/27/10 23:12	2	210384
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 23:12	2	210384
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 23:12	,	210384
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/27/10 23:12	2	210384
Vinyl Chloride	ND	Ů	1.00	0.220	1	NA	7/27/10 23:12	2	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	100	71-122	7/27/10 23:12	
4-Bromofluorobenzene	103	75-120	7/27/10 23:12	
Dibromofluoromethane	97	82-116	7/27/10 23:12	
Toluene-d8	97	88-117	7/27/10 23:12	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB34S J1003438-037 Service Request: J1003438

Date Collected: 7/21/10 0959
Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/27/10 23:42	210384
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA	7/27/10 23:42	210384
1,1,2,2-Tetrachloroethane	ND U	1.00	0.110	1	NA	7/27/10 23:42	210384
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/27/10 23:42	210384
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/27/10 23:42	210384
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/27/10 23:42	210384
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/27/10 23:42	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/27/10 23:42	210384
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/27/10 23:42	210384
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/27/10 23:42	210384
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/27/10 23:42	210384
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/27/10 23:42	210384
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/27/10 23:42	210384
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/27/10 23:42	210384
2-Hexanone	ND U	25.0	2.20	1	NA	7/27/10 23:42	210384
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/27/10 23:42	210384
Acetone	ND U	50.0	5.60	1	NA	7/27/10 23:42	210384
Acrylonitrile	ND U	10.0	1.20	1	NA	7/27/10 23:42	210384
Benzene	ND U	1.00	0.210	1	NA	7/27/10 23:42	210384
Bromochloromethane	ND U	5.00	0.270	1	NA	7/27/10 23:42	
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/27/10 23:42	210384
Bromoform	ND U	2.00	0.420	1	NA	7/27/10 23:42	
Bromomethane	ND U	1.00	0.220	1	NA	7/27/10 23:42	
Carbon Disulfide	ND U	10.0	2.36	1	NA	7/27/10 23:42	210384
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/27/10 23:42	
Chlorobenzene	ND U	1.00	0.160	1	NA	7/27/10 23:42	
Chloroethane	ND U	5.00	0.220	1	NA	7/27/10 23:42	210384
Chloroform	ND U	1.00	0.350	1	NA	7/27/10 23:42	210384
Chloromethane	ND U	1.00	0.110	1	NA	7/27/10 23:42	
cis-1,2-Dichloroethene	ND U	1.00	0.360	1	NA	7/27/10 23:42	210384
cis-1,3-Dichloropropene	ND U	1.00	0.200	1	NA	7/27/10 23:42	
Dibromochloromethane	ND U	1.00	0.190	1	NA	7/27/10 23:42	210384
Dibromomethane	ND U	5.00	0.180	1	NA	7/27/10 23:42	210384
Ethylbenzene	ND U	1.00	0.519	1	NA	7/27/10 23:42	210384
Iodomethane	ND U	5.00	2.68	1	NA	7/27/10 23:42	
m,p-Xylenes	ND U	2.00	1.04	1	NA	7/27/10 23:42	210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB34S J1003438-037 Service Request: J1003438

Date Collected: 7/21/10 0959

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q.	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 23:42	210384
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 23:42	210384
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 23:42	210384
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 23:42	210384
Toluene	ND	U	1.00	0.190	. 1	NA	7/27/10 23:42	210384
trans-1,2-Dichloroethene	ND	U	1.00	0.120	• 1	NA	7/27/10 23:42	210384
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 23:42	210384
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/27/10 23:42	210384
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 23:42	210384
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 23:42	210384
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/27/10 23:42	210384
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/27/10 23:42	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	98	71-122	7/27/10 23:42	
4-Bromofluorobenzene	108	75-120	7/27/10 23:42	
Dibromofluoromethane	97	82-116	7/27/10 23:42	
Toluene-d8	96	88-117	7/27/10 23:42	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

MWB34I

Lab Code:

J1003438-038

Service Request: J1003438

Date Collected: 7/21/10 1228
Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/28/10 00:13	210384
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/28/10 00:13	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/28/10 00:13	210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/28/10 00:13	210384
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/28/10 00:13	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/28/10 00:13	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/28/10 00:13	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/28/10 00:13	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/28/10 00:13	210384
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/28/10 00:13	210384
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/28/10 00:13	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/28/10 00:13	210384
1,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/28/10 00:13	210384
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/28/10 00:13	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/28/10 00:13	210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/28/10 00:13	210384
Acetone	ND		50.0	5.60	1	NA	7/28/10 00:13	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/28/10 00:13	210384
Benzene	ND		1.00	0.210	1	NA	7/28/10 00:13	210384
Bromochloromethane	ND		5.00	0.270	1	NA	7/28/10 00:13	210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/28/10 00:13	210384
Bromoform	ND		2.00	0.420	1	NA	7/28/10 00:13	210384
Bromomethane	ND		1.00	0.220	1	NA	7/28/10 00:13	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/28/10 00:13	210384
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/28/10 00:13	210384
Chlorobenzene	ND		1.00	0.160	1	NA	7/28/10 00:13	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/28/10 00:13	210384
Chloroform	ND		1.00	0.350	1	NA	7/28/10 00:13	210384
Chloromethane	ND		1.00	0.110	1	NA	7/28/10 00:13	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/28/10 00:13	210384
cis-1,3-Dichloropropene	ND		1.00	0.200	1	NA	7/28/10 00:13	210384
Dibromochloromethane	ND		1.00	0.190	1	NA	7/28/10 00:13	210384
Dibromomethane	ND	U	5.00	0.180	1	NA	7/28/10 00:13	210384
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/28/10 00:13	210384
Iodomethane	ND		5.00	2.68	1	NA	7/28/10 00:13	210384
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/28/10 00:13	210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB34I J1003438-038 Service Request: J1003438

Date Collected: 7/21/10 1228

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analy Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/28/10 00:13	3 21038
o-Xylene	ND U	1.00	0.140	1	NA	7/28/10 00:13	21038
Styrene	ND U	1.00	0.291	1	NA	7/28/10 00:13	3 21038
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/28/10 00:13	3 21038
Toluene	ND U	1.00	0.190	1	NA	7/28/10 00:13	21038
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/28/10 00:13	3 21038
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/28/10 00:13	3 21038
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/28/10 00:13	21038
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/28/10 00:13	21038
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/28/10 00:13	3 21038
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/28/10 00:13	21038
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/28/10 00:13	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	98	71-122	7/28/10 00:13		
4-Bromofluorobenzene	110	75-120	7/28/10 00:13		
Dibromofluoromethane	96	82-116	7/28/10 00:13		
Toluene-d8	93	88-117	7/28/10 00:13		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB34D J1003438-039 Service Request: J1003438 **Date Collected:** 7/21/10 0924

Date Received: 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/28/10 00:45		210384
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA	7/28/10 00:45		210384
1,1,2,2-Tetrachloroethane	ND U	1.00	0.110	1	NA	7/28/10 00:45		210384
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/28/10 00:45		210384
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/28/10 00:45		210384
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/28/10 00:45		210384
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/28/10 00:45		210384
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/28/10 00:45		210384
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/28/10 00:45		210384
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/28/10 00:45		210384
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/28/10 00:45		210384
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/28/10 00:45		210384
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/28/10 00:45		210384
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/28/10 00:45		210384
2-Hexanone	ND U	25.0	2.20	1	NA	7/28/10 00:45		210384
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/28/10 00:45		210384
Acetone	ND U	50.0	5.60	1	NA	7/28/10 00:45		210384
Acrylonitrile	ND U	10.0	1.20	1	NA	7/28/10 00:45		210384
Benzene	ND U	1.00	0.210	1	NA	7/28/10 00:45		210384
Bromochloromethane	ND U	5.00	0.270	1	NA	7/28/10 00:45		210384
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/28/10 00:45		210384
Bromoform	ND U	2.00	0.420	1	NA	7/28/10 00:45		210384
Bromomethane	ND U	1.00	0.220	1	NA	7/28/10 00:45		210384
Carbon Disulfide	ND U	10.0	2.36	1	NA	7/28/10 00:45		210384
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/28/10 00:45		210384
Chlorobenzene	ND U	1.00	0.160	1	NA	7/28/10 00:45		210384
Chloroethane	ND U	5.00	0.220	1	NA	7/28/10 00:45		210384
Chloroform	ND U	1.00	0.350	1	NA	7/28/10 00:45		210384
Chloromethane	ND U	1.00	0.110	1	NA	7/28/10 00:45		210384
cis-1,2-Dichloroethene	ND U	1.00	0.360	1	NA	7/28/10 00:45		210384
cis-1,3-Dichloropropene	ND U	1.00	0.200	1	NA	7/28/10 00:45		210384
Dibromochloromethane	ND U	1.00	0.190	1	NA	7/28/10 00:45		210384
Dibromomethane	ND U	5.00	0.180	1	NA	7/28/10 00:45		210384
Ethylbenzene	ND U	1.00	0.519	1	NA	7/28/10 00:45		210384
Iodomethane	ND U	5.00	2.68	1	NA	7/28/10 00:45		210384
m,p-Xylenes	ND U	2.00	1.04	1	NA	7/28/10 00:45		210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

MWB34D J1003438-039 Service Request: J1003438

Date Collected: 7/21/10 0924

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/28/10 00:45	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/28/10 00:45	210384
Styrene	ND U	1.00	0.291	1	NA	7/28/10 00:45	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/28/10 00:45	210384
Toluene	ND U	1.00	0.190	1	NA	7/28/10 00:45	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/28/10 00:45	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	. 1	NA	7/28/10 00:45	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/28/10 00:45	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/28/10 00:45	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/28/10 00:45	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/28/10 00:45	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/28/10 00:45	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q * 2.55
1,2-Dichloroethane-d4	100	71-122	7/28/10 00:45	
4-Bromofluorobenzene	113	75-120	7/28/10 00:45	
Dibromofluoromethane	100	82-116	7/28/10 00:45	
Toluene-d8	102	88-117	7/28/10 00:45	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: DUP03

J1003438-040

Service Request: J1003438

Date Collected: 7/21/10 1219

Date Received: 7/21/10 1.

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/28/10 01:16	210384
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/28/10 01:16	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/28/10 01:16	210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/28/10 01:16	210384
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/28/10 01:16	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/28/10 01:16	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/28/10 01:16	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/28/10 01:16	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/28/10 01:16	210384
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/28/10 01:16	210384
1,2-Dichloroethane	ND	U	1.00	0.180	1	NA	7/28/10 01:16	210384
1,2-Dichloropropane	ND	U	1.00	0.120	. 1	NA	7/28/10 01:16	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/28/10 01:16	210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/28/10 01:16	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/28/10 01:16	210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/28/10 01:16	210384
Acetone	ND	U	50.0	5.60	1	NA	7/28/10 01:16	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/28/10 01:16	210384
Benzene	ND	U	1.00	0.210	1	NA	7/28/10 01:16	210384
Bromochloromethane	ND		5.00	0.270	1	NA	7/28/10 01:16	
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/28/10 01:16	210384
Bromoform	ND		2.00	0.420	1	NA	7/28/10 01:16	210384
Bromomethane	ND		1.00	0.220	1	NA	7/28/10 01:16	
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/28/10 01:16	210384
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/28/10 01:16	210384
Chlorobenzene	ND		1.00	0.160	1	NA	7/28/10 01:16	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/28/10 01:16	210384
Chloroform	ND	U	1.00	0.350	1	NA	7/28/10 01:16	210384
Chloromethane	ND	U	1.00	0.110	1	NA	7/28/10 01:16	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/28/10 01:16	210384
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/28/10 01:16	210384
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/28/10 01:16	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/28/10 01:16	210384
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/28/10 01:16	210384
Iodomethane	ND	U	5.00	2.68	1	NA	7/28/10 01:16	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/28/10 01:16	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: DUP03

J1003438-040

Service Request: J1003438

Date Collected: 7/21/10 1219 **Date Received:** 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result (Q MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	J 5.00	0.210	1	NA	7/28/10 01:16	5 210384
o-Xylene	ND U	J 1.00	0.140	1	NA	7/28/10 01:16	210384
Styrene	ND U	J 1.00	0.291	1	NA	7/28/10 01:16	210384
Tetrachloroethene (PCE)	ND U	J 1.00	0.110	1	NA	7/28/10 01:16	5 210384
Toluene	ND U	J 1.00	0.190	1	NA	7/28/10 01:16	210384
trans-1,2-Dichloroethene	ND U	J 1.00	0.120	1	NA	7/28/10 01:16	210384
trans-1,3-Dichloropropene	ND U	J 1.00	0.230	1	NA	7/28/10 01:16	5 210384
trans-1,4-Dichloro-2-butene	ND U	J 20.0	2.20	- 1	NA	7/28/10 01:16	210384
Trichloroethene (TCE)	ND U	J 1.00	0.160	1	NA	7/28/10 01:16	210384
Trichlorofluoromethane	ND U	J 20.0	0.220	1	NA	7/28/10 01:16	5 210384
Vinyl Acetate	ND U	J 10.0	1.90	1	NA	7/28/10 01:16	210384
Vinyl Chloride	ND U	J 1.00	0.220	1	NA	7/28/10 01:16	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	\mathbf{Q}	
1,2-Dichloroethane-d4	95	71-122	7/28/10 01:16		
4-Bromofluorobenzene	103	75-120	7/28/10 01:16		
Dibromofluoromethane	95	82-116	7/28/10 01:16		
Toluene-d8	94	88-117	7/28/10 01:16	***************************************	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: DUP04

J1003438-041

Service Request: J1003438

Date Collected: 7/21/10 1228

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/28/10 01:47	210384
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/28/10 01:47	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/28/10 01:47	210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/28/10 01:47	210384
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1	NA	7/28/10 01:47	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/28/10 01:47	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/28/10 01:47	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/28/10 01:47	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/28/10 01:47	210384
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/28/10 01:47	210384
1,2-Dichloroethane	ND	U	1.00	0.180	1	NA	7/28/10 01:47	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/28/10 01:47	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/28/10 01:47	210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/28/10 01:47	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/28/10 01:47	210384
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/28/10 01:47	210384
Acetone	ND		50.0	5.60	1	NA	7/28/10 01:47	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/28/10 01:47	210384
Benzene	ND		1.00	0.210	1	NA	7/28/10 01:47	
Bromochloromethane	ND		5.00	0.270	1	NA	7/28/10 01:47	
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/28/10 01:47	210384
Bromoform	ND		2.00	0.420	1	NA	7/28/10 01:47	
Bromomethane	ND		1.00	0.220	1	NA	7/28/10 01:47	
Carbon Disulfide	ND	U	10.0	2.36	. 1	NA	7/28/10 01:47	210384
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/28/10 01:47	
Chlorobenzene	ND		1.00	0.160	1	NA	7/28/10 01:47	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/28/10 01:47	210384
Chloroform	ND		1.00	0.350	1	NA	7/28/10 01:47	210384
Chloromethane	ND		1.00	0.110	1	NA	7/28/10 01:47	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/28/10 01:47	210384
cis-1,3-Dichloropropene	ND		1.00	0.200	1	NA	7/28/10 01:47	210384
Dibromochloromethane	ND		1.00	0.190	1	NA	7/28/10 01:47	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/28/10 01:47	210384
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/28/10 01:47	210384
Iodomethane	ND	U	5.00	2.68	1	NA	7/28/10 01:47	210384
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/28/10 01:47	210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

DUP04

Lab Code:

J1003438-041

Service Request: J1003438

Date Collected: 7/21/10 1228 Date Received: 7/21/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/28/10 01:47	7	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/28/10 01:47	7	210384
Styrene	ND U	1.00	0.291	1	NA	7/28/10 01:47	7	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/28/10 01:47	7	210384
Toluene	ND U	1.00	0.190	1	NA	7/28/10 01:47	7	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/28/10 01:47	7	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/28/10 01:47	7 .	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/28/10 01:47	7	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/28/10 01:47	7	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/28/10 01:47	7	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/28/10 01:47	7	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/28/10 01:47	7	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q · · · · · · ·
1,2-Dichloroethane-d4	102	71-122	7/28/10 01:47	
4-Bromofluorobenzene	109	75-120	7/28/10 01:47	
Dibromofluoromethane	102	82-116	7/28/10 01:47	
Toluene-d8	105	88-117	7/28/10 01:47	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge Water

Sample Matrix:

FB

Sample Name: Lab Code:

J1003438-042

Service Request: J1003438

Date Collected: 7/21/10 1253

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction A Lot	nalysis Lot
1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/28/10 02:19		10384
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA	7/28/10 02:19		10384
1,1,2,2-Tetrachloroethane	ND U	1.00	0.110	1	NA	7/28/10 02:19		10384
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/28/10 02:19	2	10384
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/28/10 02:19	2	10384
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/28/10 02:19	2	10384
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/28/10 02:19	2	10384
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/28/10 02:19	2	10384
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/28/10 02:19	2	10384
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/28/10 02:19		10384
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/28/10 02:19		10384
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/28/10 02:19	2	10384
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/28/10 02:19	2	10384
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/28/10 02:19	2	10384
2-Hexanone	ND U	25.0	2.20	1	NA	7/28/10 02:19	2	10384
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/28/10 02:19	2	10384
Acetone	ND U	50.0	5.60	1	NA	7/28/10 02:19	2	10384
Acrylonitrile	ND U	10.0	1.20	1	NA	7/28/10 02:19	2	10384
Benzene	ND U	1.00	0.210	1	NA	7/28/10 02:19	2	10384
Bromochloromethane	ND U	5.00	0.270	1	NA	7/28/10 02:19	2	10384
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/28/10 02:19	2	10384
Bromoform	ND U	2.00	0.420	1	NA	7/28/10 02:19		10384
Bromomethane	ND U	1.00	0.220	1	NA	7/28/10 02:19	2	10384
Carbon Disulfide	ND U	10.0	2.36	1	NA	7/28/10 02:19	2	10384
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/28/10 02:19		10384
Chlorobenzene	ND U	1.00	0.160	1	NA	7/28/10 02:19	2	10384
Chloroethane	ND U	5.00	0.220	1	NA	7/28/10 02:19	2	10384
Chloroform	ND U	1.00	0.350	1	NA	7/28/10 02:19		10384
Chloromethane	ND U	1.00	0.110	1	NA	7/28/10 02:19		10384
cis-1,2-Dichloroethene	ND U	1.00	0.360	1	NA	7/28/10 02:19	2	10384
cis-1,3-Dichloropropene	ND U	1.00	0.200	1	NA	7/28/10 02:19	2	10384
Dibromochloromethane	ND U	1.00	0.190	1	NA	7/28/10 02:19	2	10384
Dibromomethane	ND U	5.00	0.180	1	NA	7/28/10 02:19	2	10384
Ethylbenzene	ND U	1.00	0.519	1	NA	7/28/10 02:19	2	10384
Iodomethane	ND U	5.00	2.68	1	NA	7/28/10 02:19	2	10384
m,p-Xylenes	ND U	2.00	1.04	1	NA	7/28/10 02:19	2	10384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

FB

Lab Code:

J1003438-042

Service Request: J1003438

Date Collected: 7/21/10 1253 **Date Received:** 7/21/10

Units: μg/L

Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/28/10 02:19)	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/28/10 02:19)	210384
Styrene	ND U	1.00	0.291	1	NA	7/28/10 02:19)	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/28/10 02:19)	210384
Toluene	0.207 I	1.00	0.190	1	NA	7/28/10 02:19) ·	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/28/10 02:19)	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/28/10 02:19)	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/28/10 02:19)	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/28/10 02:19)	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/28/10 02:19)	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/28/10 02:19)	210384
Vinyl Chloride	$ND^{-}U$	1.00	0.220	1	NA	7/28/10 02:19).	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	96	71-122	7/28/10 02:19	
4-Bromofluorobenzene	105	75-120	7/28/10 02:19	
Dibromofluoromethane	93	82-116	7/28/10 02:19	
Toluene-d8	97	88-117	7/28/10 02:19	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Trip Blank J1003438-043 Service Request: J1003438

Date Collected: 7/20/10 0000

Date Received: 7/21/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Michiga. 6200D								
Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/28/10 02:50	210384
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/28/10 02:50	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/28/10 02:50	210384
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/28/10 02:50	210384
1,1-Dichloroethane (1,1-DCA)	ND	U	1.00	0.130	1 .	NA	7/28/10 02:50	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/28/10 02:50	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/28/10 02:50	210384
,2-Dibromo-3-chloropropane DBCP)	ND		5.00	2.30	1	NA	7/28/10 02:50	
,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/28/10 02:50	210384
,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/28/10 02:50	210384
,2-Dichloroethane	· ND	U	1.00	0.180	1	NA	7/28/10 02:50	210384
,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/28/10 02:50	210384
,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/28/10 02:50	210384
-Butanone (MEK)	ND		10.0	3.80	1	NA	7/28/10 02:50	210384
-Hexanone	ND	U	25.0	2.20	1	NA	7/28/10 02:50	210384
-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/28/10 02:50	210384
Acetone	ND	U	50.0	5.60	1	NA	7/28/10 02:50	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/28/10 02:50	210384
Benzene	ND	U	1.00	0.210	1	NA	7/28/10 02:50	210384
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/28/10 02:50	210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/28/10 02:50	210384
Bromoform	ND		2.00	0.420	1	NA	7/28/10 02:50	210384
Bromomethane	ND		1.00	0.220	1	NA	7/28/10 02:50	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/28/10 02:50	210384
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/28/10 02:50	210384
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/28/10 02:50	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/28/10 02:50	210384
Chloroform	ND	U	1.00	0.350	1	NA	7/28/10 02:50	210384
Chloromethane	ND	U	1.00	0.110	1	NA	7/28/10 02:50	
is-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/28/10 02:50	210384
is-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/28/10 02:50	210384
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/28/10 02:50	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/28/10 02:50	
thylbenzene	ND	U	1.00	0.519	1	NA	7/28/10 02:50	210384
odomethane	ND		5.00	2.68	1	NA	7/28/10 02:50	
n,p-Xylenes	ND	U	2.00	1.04	1	NA	7/28/10 02:50	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Trip Blank J1003438-043 Service Request: J1003438

Date Collected: 7/20/10 0000 **Date Received:** 7/21/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/28/10 02:50	210384
o-Xylene	ND	U	1.00	0.140	1	NA	7/28/10 02:50	210384
Styrene	ND	U	1.00	0.291	1	NA	7/28/10 02:50	210384
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/28/10 02:50	210384
Toluene	ND	U	1.00	0.190	1	NA	7/28/10 02:50	210384
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/28/10 02:50	210384
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/28/10 02:50	210384
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/28/10 02:50	210384
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/28/10 02:50	210384
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/28/10 02:50	210384
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/28/10 02:50	210384
Vinyl Chloride	ND	\mathbf{U}	1.00	0.220	1	NA	7/28/10 02:50	210384

Surrogate Name		%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	•	99	71-122	7/28/10 02:50	
4-Bromofluorobenzene		107	75-120	7/28/10 02:50	
Dibromofluoromethane		97	82-116	7/28/10 02:50	
Toluene-d8		94	88-117	7/28/10 02:50	,

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

Method Blank

Lab Code:

JQ1002990-02

Service Request: J1003438

Date Collected: NA Date Received: NA

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/26/10 18:31	210096
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/26/10 18:31	210096
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/26/10 18:31	210096
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/26/10 18:31	210096
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/26/10 18:31	210096
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/26/10 18:31	210096
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/26/10 18:31	210096
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/26/10 18:31	210096
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/26/10 18:31	210096
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/26/10 18:31	210096
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/26/10 18:31	
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/26/10 18:31	210096
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/26/10 18:31	210096
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/26/10 18:31	210096
2-Hexanone	ND	U	25.0	2.20	1	NA	7/26/10 18:31	210096
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/26/10 18:31	210096
Acetone	ND	U	50.0	5.60	1	NA	7/26/10 18:31	210096
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/26/10 18:31	210096
Benzene	ND	U	1.00	0.210	1	NA	7/26/10 18:31	210096
Bromochloromethane	ND		5.00	0.270	1	NA	7/26/10 18:31	210096
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/26/10 18:31	210096
Bromoform	ND	U	2.00	0.420	1	NA	7/26/10 18:31	210096
Bromomethane	ND	U	1.00	0.220	1	NA	7/26/10 18:31	210096
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/26/10 18:31	210096
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/26/10 18:31	210096
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/26/10 18:31	210096
Chloroethane	ND	U	5.00	0.220	1	NA	7/26/10 18:31	210096
Chloroform	ND	U	1.00	0.350	1	NA	7/26/10 18:31	210096
Chloromethane	ND	U	1.00	0.110	1	NA	7/26/10 18:31	210096
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/26/10 18:31	210096
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/26/10 18:31	210096
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/26/10 18:31	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/26/10 18:31	
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/26/10 18:31	210096
Iodomethane	ND	U	5.00	2.68	1	NA	7/26/10 18:31	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/26/10 18:31	210096

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank JQ1002990-02 Service Request: J1003438

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	. 1	NA	7/26/10 18:31	210096
o-Xylene	ND U	1.00	0.140	1	NA	7/26/10 18:31	210096
Styrene	ND U	1.00	0.291	1	NA	7/26/10 18:31	210096
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/26/10 18:31	210096
Toluene	ND U	1.00	0.190	1	NA	7/26/10 18:31	210096
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/26/10 18:31	210096
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/26/10 18:31	210096
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/26/10 18:31	210096
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/26/10 18:31	210096
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/26/10 18:31	210096
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/26/10 18:31	210096
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/26/10 18:31	210096

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	100	71-122	7/26/10 18:31	
4-Bromofluorobenzene	102	75-120	7/26/10 18:31	
Dibromofluoromethane	95	82-116	7/26/10 18:31	
Toluene-d8	99	88-117	7/26/10 18:31	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name: Lab Code:

Method Blank JQ1003037-02 Service Request: J1003438 Date Collected: NA

Date Received: NA

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

•					Diludian	Data	D - 4 -	T7-44' A E'-
Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180				
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1 1	NA NA	7/27/10 08:14 7/27/10 08:14	
1,1,2,2-Tetrachloroethane	ND		1.00	0.170	1			
			~~~			NA	7/27/10 08:14	
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/27/10 08:14	
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 08:14	
1,1-Dichloroethene (1,1-DCE)	ND		1.00	0.160	1	NA	7/27/10 08:14	210383
1,2,3-Trichloropropane	ND		2.00	0.420	1	NA	7/27/10 08:14	210383
1,2-Dibromo-3-chloropropane	ND	U	5.00	2.30	1	NA	7/27/10 08:14	210383
(DBCP)	ND	* *	1.00	0.170		27.1	#/ <b>0</b> #/10004	
1,2-Dibromoethane (EDB)	ND		1.00	0.170	1	NA	7/27/10 08:14	210383
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 08:14	210383
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 08:14	210383
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 08:14	210383
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 08:14	210383
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 08:14	
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 08:14	
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/27/10 08:14	210383
Acetone	ND		50.0	5.60	1	NA	7/27/10 08:14	210383
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 08:14	210383
Benzene	ND	U	1.00	0.210	1	NA	7/27/10 08:14	210383
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/27/10 08:14	
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 08:14	
Bromoform	ND	U	2.00	0.420	1	NA	7/27/10 08:14	210383
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 08:14	210383
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 08:14	210383
Carbon Tetrachloride	ND	IJ	1.00	0.340	1	NA	7/27/10 08:14	210383
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 08:14	210383
Chloroethane	ND		5.00	0.220	1	NA	7/27/10 08:14	
Chloroform	ND	II	1.00	0.350	1	NA	7/27/10 08:14	210383
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 08:14	210383
cis-1,2-Dichloroethene	ND		1.00	0.360	1	NA	7/27/10 08:14	210383
cis-1,3-Dichloropropene	ND		1.00	0.200				
Dibromochloromethane	ND		1.00	0.200	1	NA NA	7/27/10 08:14	2.10303
Dibromomethane	ND ND		5.00	0.190	1 1	NA NA	7/27/10 08:14 7/27/10 08:14	
***************************************								210383
Ethylbenzene	ND		1.00	0.519	1	NA	7/27/10 08:14	
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 08:14	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 08:14	210383

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank JQ1003037-02

Service Request: J1003438

Date Collected: NA
Date Received: NA

Units: µg/L Basis: NA

### Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 08:14	210383
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 08:14	210383
Styrene	ND U	1.00	0.291	1	NA	7/27/10 08:14	210383
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 08:14	210383
Toluene	ND U	1.00	0.190	1	NA	7/27/10 08:14	210383
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 08:14	210383
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 08:14	210383
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 08:14	210383
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 08:14	210383
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 08:14	210383
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 08:14	210383
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 08:14	210383

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	93	71-122	7/27/10 08:14		
4-Bromofluorobenzene	104	75-120	7/27/10 08:14		
Dibromofluoromethane	95	82-116	7/27/10 08:14		
Toluene-d8	101	88-117	7/27/10 08:14		

### Analytical Report

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge Water

Sample Name:

Method Blank

Lab Code:

JQ1003038-02

Service Request: J1003438

Date Collected: NA Date Received: NA

> Units: µg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND	U	1.00	0.180	1	NA	7/27/10 19:03	210384
1,1,1-Trichloroethane (TCA)	ND	U	1.00	0.170	1	NA	7/27/10 19:03	210384
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 19:03	210384
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/27/10 19:03	210384
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 19:03	210384
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 19:03	210384
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/27/10 19:03	210384
1,2-Dibromo-3-chloropropane (DBCP)	ND		5.00	2.30	1	NA	7/27/10 19:03	210384
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 19:03	210384
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 19:03	210384
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 19:03	210384
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 19:03	210384
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/27/10 19:03	210384
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/27/10 19:03	210384
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 19:03	210384
4-Methyl-2-pentanone (MIBK)	ND		25.0	0.650	1	NA	7/27/10 19:03	210384
Acetone	ND		50.0	5.60	1	NA	7/27/10 19:03	210384
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 19:03	210384
Benzene	ND		1.00	0.210	1	NA	7/27/10 19:03	210384
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 19:03	210384
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 19:03	210384
Bromoform	ND		2.00	0.420	1	NA	7/27/10 19:03	210384
Bromomethane	ND	U	1.00	0.220	1	NA	7/27/10 19:03	210384
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 19:03	210384
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/27/10 19:03	210384
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/27/10 19:03	210384
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 19:03	210384
Chloroform	ND	U	1.00	0.350	1	NA	7/27/10 19:03	210384
Chloromethane	ND	U	1.00	0.110	1	NA	7/27/10 19:03	210384
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 19:03	210384
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 19:03	210384
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/27/10 19:03	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 19:03	210384
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/27/10 19:03	210384
Iodomethane	ND	U	5.00	2.68	1	NA	7/27/10 19:03	210384
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 19:03	210384

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank JQ1003038-02 Service Request: J1003438

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 19:03	210384
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 19:03	210384
Styrene	ND U	1.00	0.291	1	NA	7/27/10 19:03	210384
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 19:03	210384
Toluene	ND U	1.00	0.190	1	NA	7/27/10 19:03	210384
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 19:03	210384
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 19:03	210384
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 19:03	210384
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 19:03	210384
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 19:03	210384
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 19:03	210384
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 19:03	210384

Surrogate Name	%Rec	Control Limits	Date Analyzed	<b>Q</b>
1,2-Dichloroethane-d4	96	71-122	7/27/10 19:03	
4-Bromofluorobenzene	107	75-120	7/27/10 19:03	
Dibromofluoromethane	96	82-116	7/27/10 19:03	
Toluene-d8	96	88-117	7/27/10 19:03	

### Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

Method Blank JQ1003076-02 Service Request: J1003438

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

### Volatile Organic Compounds by GC/MS

					D.11 41	<b>375</b>	<b></b>	·
Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
		_					-	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA)	ND ND		1.00	0.180	1	NA	7/29/10 09:33	
1,1,2,2-Tetrachloroethane			1.00	0.170	1	NA	7/29/10 09:33	
	ND		1.00	0.110	1	NA	7/29/10 09:33	
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/29/10 09:33	
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/29/10 09:33	
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/29/10 09:33	210615
1,2,3-Trichloropropane	ND		2.00	0.420	1	NA	7/29/10 09:33	210615
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/29/10 09:33	210615
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/29/10 09:33	210615
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/29/10 09:33	210615
1,2-Dichloroethane	ND	U	1.00	0.180	1	NA	7/29/10 09:33	210615
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/29/10 09:33	210615
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/29/10 09:33	210615
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/29/10 09:33	210615
2-Hexanone	ND	U	25.0	2.20	1 .	NA	7/29/10 09:33	210615
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/29/10 09:33	210615
Acetone	ND	U	50.0	5.60	1	NA	7/29/10 09:33	210615
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/29/10 09:33	210615
Benzene	ND		1.00	0.210	1	NA	7/29/10 09:33	210615
Bromochloromethane	ND		5.00	0.270	1	NA	7/29/10 09:33	210615
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/29/10 09:33	210615
Bromoform	ND	U	2.00	0.420	1	NA	7/29/10 09:33	210615
Bromomethane	ND	U	1.00	0.220	1	NA	7/29/10 09:33	210615
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/29/10 09:33	210615
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/29/10 09:33	210615
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/29/10 09:33	210615
Chloroethane	ND	U	5.00	0.220	1	NA	7/29/10 09:33	210615
Chloroform	ND	U	1.00	0.350	1	NA	7/29/10 09:33	210615
Chloromethane	ND	U	1.00	0.110	1	NA	7/29/10 09:33	210615
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/29/10 09:33	210615
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/29/10 09:33	210615
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/29/10 09:33	
Dibromomethane	ND	U	5.00	0.180	1	NA	7/29/10 09:33	210615
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/29/10 09:33	210615
Iodomethane	ND	U	5.00	2.68	1	NA	7/29/10 09:33	
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/29/10 09:33	210615
								**************************************

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name: Lab Code: Method Blank JQ1003076-02

Jacksonvine, Ci Trail Ridge Service Request: J1003438

Date Collected: NA

Date Received: NA

Units: μg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/29/10 09:33		210615
o-Xylene	ND U	1.00	0.140	1	NA	7/29/10 09:33	}	210615
Styrene	ND U	1.00	0.291	1	NA	7/29/10 09:33	}	210615
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/29/10 09:33	<b>,</b>	210615
Toluene	ND U	1.00	0.190	1	NA	7/29/10 09:33	}	210615
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/29/10 09:33	ř	210615
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/29/10 09:33	}	210615
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/29/10 09:33	}	210615
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/29/10 09:33	}	210615
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/29/10 09:33	}	210615
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/29/10 09:33	}	210615
Vinyl Chloride	ND U	1.00	0.220	1	ⁿ NA	7/29/10 09:33	}	210615

Surrogate Name	%Rec	Control Limits	Date		
		Lillits	Analyzed	Ų	
1,2-Dichloroethane-d4	106	71-122	7/29/10 09:33		
4-Bromofluorobenzene	103	75-120	7/29/10 09:33		
Dibromofluoromethane	103	82-116	7/29/10 09:33		
Toluene-d8	106	88-117	7/29/10 09:33		

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB3S

Lab Code:

J1003438-001

Units: ug/L Basis: NA

**Extraction Method:** 

. . .

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	140	77-150	07/29/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:43:56 p:\Stealth\Crystal.rpt\Form\ImNew.rpt

Form 1A - Organic

Merged

 $102_{\,\text{Page}}$ 

1 of 1

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010

**Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB3I

Lab Code:

J1003438-002

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	135	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:43:59 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Merged

 $103_{\text{Page}}$ 

RR35522 SuperSet Reference:

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB19D

Lab Code:

J1003438-003

Units: ug/L

**Extraction Method:** 

**METHOD** 

Basis: NA

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0058	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	131	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:02  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB19I

Lab Code:

J1003438-004

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	119	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:44:05 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB19S

Lab Code:

J1003438-005

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0058	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	119	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:44:08  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB20S

Lab Code:

J1003438-006

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	130	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:11  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB11S

Lab Code:

J1003438-007

Units: ug/L

**Extraction Method:** 

**METHOD** 

Basis: NA

**Analysis Method:** 

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	141	77-150	07/29/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:44:14 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

**Analyte Name** 

MWB11I(R)

Lab Code:

J1003438-008

ND UJ

Units: ug/L Basis: NA

**Extraction Method:** 

METHOD

Level: Low

JWG1002568

J(3)

Analysis Method:

1,2-Dibromoethane (EDB)

1,2-Dibromo-3-chloropropane (DF

8011

Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)

07/26/10

07/29/10

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	140	77-150	07/29/10	Acceptable	

0.0060

0.021

**Comments:** 

Printed: 08/06/2010 14:44:17 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010 **Date Received:** 07/21/2010

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB12D

Lab Code:

J1003438-009

Units: ug/L

**Extraction Method:** 

**METHOD** 

Basis: NA

Analysis Method:

8011

Level: Low

Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
ND UJ	0.021	0.0074	1	07/26/10	07/29/10	JWG1002568	J(3)
ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002568	J(3)
	ND UJ	ND UJ 0.021	ND UJ 0.021 0.0074	Result Q         MRL         MDL         Factor           ND UJ         0.021         0.0074         1	Result Q         MRL         MDL         Factor         Extracted           ND UJ         0.021         0.0074         1         07/26/10	Result Q         MRL         MDL         Factor         Extracted         Analyzed           ND UJ         0.021         0.0074         1         07/26/10         07/29/10	Result Q         MRL         MDL         Factor         Extracted         Analyzed         Lot           ND UJ         0.021         0.0074         1         07/26/10         07/29/10         JWG1002568

Surrogate Name %Re	Control Date Limits Analyzed
1,1,1,2-Tetrachloroethane 117	77-150 07/29/10

Comments:

Printed: 08/06/2010 14:44:20  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010 **Date Received:** 07/21/2010

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB12I

Lab Code:

J1003438-010

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	140	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:23 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 **Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB7I

Lab Code:

J1003438-011

**METHOD** 

**Extraction Method:** Analysis Method:

8011

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002568	J(3)

Comments:

Printed: 08/06/2010 14:44:26 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB7D

Lab Code:

J1003438-012

Units: ug/L

**Extraction Method:** 

Basis: NA

**Analysis Method:** 

**METHOD** 8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	143	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:44:29 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB21S

Lab Code:

J1003438-013

Units: ug/L

**Extraction Method:** 

Basis: NA

**METHOD** 

Level: Low

**Analysis Method:** 8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	142	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:44:32 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

1 of 1

SuperSet Reference: RR35522

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB22S

Lab Code:

J1003438-014

Units: ug/L

**Extraction Method:** 

Basis: NA

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	131	77-150	07/29/10	Acceptable	

**Comments:** 

Printed: 08/06/2010 14:44:35 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic Merged

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

DUP02

Lab Code:

J1003438-015

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(1,3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002568	J(1,3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	156	77-150	07/29/10	Outside Control Limits

**Comments:** 

Printed: 08/06/2010 14:44:38 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR35522 1 of 1

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB29D

Lab Code:

J1003438-016

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

ND UJ

Level: Low

JWG1002568

Note

**Analysis Method:** 

1,2-Dibromoethane (EDB)

8011

Dilution Date Date **Extraction Analyte Name** Result Q **MRL MDL** Factor Extracted Analyzed Lot

0.021

J(3) 1,2-Dibromo-3-chloropropane (DF ND UJ 0.021 0.0059 1 07/26/10 07/29/10 JWG1002568 J(3)

0.0073

1

07/26/10

07/29/10

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	131	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:41 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB29I

Lab Code:

J1003438-017

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	136	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:44 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

RR35522

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

**Date Collected:** 07/20/2010 **Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB29S

Lab Code:

J1003438-018

Units: ug/L Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	126	77-150	07/29/10	Acceptable	<u> </u>

Comments:

Printed: 08/06/2010 14:44:47 p:\Stealth\Crystal.rpt\Form1 mNew.rpt

19_{Page 1 of 1}

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB2I

Lab Code:

J1003438-019

**Extraction Method:** Analysis Method:

**METHOD** 

8011

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	144	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:50 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB2S

Lab Code:

J1003438-020

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	110	77-150	07/29/10	Acceptable

Comments:

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB33S

Lab Code:

J1003438-021

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	129	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:56  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

RR35522

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB27S

Lab Code:

J1003438-022

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	123	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:44:59  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB27I

Lab Code:

J1003438-023

**Extraction Method:** 

METHOD

Analysis Method:

8011

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	103	77-150	07/29/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:45:02 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

 $124_{Page}$  1 of 1

SuperSet Reference: RR35522

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB27D

Lab Code:

J1003438-024

Units: ug/L

**Extraction Method:** 

METHOD

Basis: NA

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	109	77-150	07/29/10	Acceptable

Comments:

 $\begin{array}{lll} Printed: & 08/06/2010 & 14:45:05 \\ p:\Stealth\Crystal.rpt\Form\ImNew.rpt & \end{array}$ 

SuperSet Reference:

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

DUP01

Lab Code:

J1003438-025

J1003436-02.

**Analysis Method:** 

**Extraction Method:** 

**METHOD** 

ME11 8011 Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	120	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:45:08 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

 $126_{\,Page} \quad {}_{1\ of}\quad {}_{1}$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB31D

Lab Code:

J1003438-026

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Dilution Date Date Extraction

MRL MDL Factor Extracted Analyzed Lot Note

**Analyte Name** Result Q 1,2-Dibromoethane (EDB) ND UJ 0.021 0.0072 JWG1002569 1 07/26/10 07/29/10 J(3) 1,2-Dibromo-3-chloropropane (DF ND UJ 0.021 0.0059 1 07/26/10 07/29/10 JWG1002569 J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	114	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:45:11 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB17S

Lab Code:

J1003438-027

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	118	77-150	07/29/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:45:14 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Analytical Results

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge Water

Service Request: J1003438 **Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB17D

Lab Code:

J1003438-028

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0074	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	123	77-150	07/29/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:45:17 

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR35522

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/20/2010 **Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB17I

Lab Code:

J1003438-029

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	93	77-150	07/29/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:45:20  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Form 1A - Organic

SuperSet Reference: RR35522

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

**Date Collected:** 07/20/2010

**Date Received:** 07/21/2010

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB7S

Lab Code:

J1003438-030

Units: ug/L Basis: NA

Extraction Method:

METHOD

Dasis. 1471

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.022	0.0074	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.022	0.0061	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name %	%Rec Control Limits	TT Ditte	ote	
,1,1,2-Tetrachloroethane	141 77-150	77-150 07/29/10 Ac	cceptable	

Comments:

 $\begin{array}{lll} Printed: & 08/06/2010 & 14:45:23 \\ p:\Stealth\Crystal.rpt\Form\ImNew.rpt & \end{array}$ 

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438 Date Collected: 07/20/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB12S

Lab Code:

J1003438-031

Units: ug/L

**Extraction Method:** 

**METHOD** 

Basis: NA

Analysis Method:

8011

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	106	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:45:26 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Water

......

Service Request: J1003438

**Date Collected:** 07/20/2010 **Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB13I

Lab Code:

J1003438-032

Units: ug/L Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Devei. Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0058	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name %
,1,1,2-Tetrachloroethane 1

Comments:

Printed: 08/06/2010 14:45:29 p:\Stealth\Crystal.rpt\Form1 mNew.rpt

Merged

Form 1A - Organic

133 _{Page}

Page 1 of 1

SuperSet Reference: RR35522

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Analyte Name

MWB13S

Lab Code:

J1003438-033

Result Q

ND UJ

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

JWG1002569

J(3)

Analysis Method:

1,2-Dibromoethane (EDB)

1,2-Dibromo-3-chloropropane (DF

8011

Dilution Date Date Extraction MDL Factor Extracted Analyzed Lot Note

07/29/10

07/26/10

1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)
	<b>a</b>							

0.0072

1

MRL

0.021

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	99	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:45:32 p:\Stealth\Crystal.rpt\Form1mNew.rpt

**Analytical Results** 

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB32S

Lab Code:

J1003438-034

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	102	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:45:35  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Form 1A - Organic

135 _{Page}

SuperSet Reference:

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/21/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB32I

Lab Code:

J1003438-035

Units: ug/L

**Extraction Method:** 

Basis: NA

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1.2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0060	1	07/26/10	07/29/10	IWG1002569	I(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	104	77-150	07/29/10	Acceptable

Comments:

Printed: 08/06/2010 14:45:38 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/21/2010

**Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB32D

Lab Code:

J1003438-036

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	111	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:45:41  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/21/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB34S

Lab Code:

J1003438-037

Units: ug/L Basis: NA

Extraction Method: METHOD

Analysis Method:

Level: Low

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.022	0.0074	1	07/26/10	07/29/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.022	0.0060	1	07/26/10	07/29/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	126	77-150	07/29/10	Acceptable	

Comments:

Printed: 08/06/2010 14:45:44  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

Form 1A - Organic

 $138_{Page}$ 

1 of 1

SuperSet Reference: RR35522

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/21/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB34I

Lab Code:

J1003438-038

Units: ug/L Basis: NA

**Extraction Method:** 

METHOD

asis: NA

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/30/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/30/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	197	77-150	07/30/10	Outside Control Limits

**Comments:** 

 $\begin{array}{lll} Printed: & 08/06/2010 & 14:45:47 \\ p:\Stealth\Crystal.rpt\Form\ImNew.rpt \end{array}$ 

Merged

 $139_{\,Page} \quad {\scriptstyle 1\ of\quad 1}$ 

SuperSet Reference: RR35522

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/21/2010

**Date Received:** 07/21/2010

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB34D

Lab Code:

J1003438-039

Units: ug/L

Extraction Method: METHOD

Basis: NA

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/30/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/30/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	195	77-150	07/30/10	Outside Control Limits

Comments:

Printed: 08/06/2010 14:45:50  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

DUP03

Lab Code:

J1003438-040

Units: ug/L Basis: NA

**Extraction Method:** 

METHOD

Level: Low

Analysis Method:

8011

Dilution Date Date Extraction

Result Q MRL MDL Factor Extracted Analyzed Lot Note

**Analyte Name** 1,2-Dibromoethane (EDB) ND UJ 0.021 0.0072 JWG1002570 1 07/26/10 07/30/10 J(3) 1,2-Dibromo-3-chloropropane (DF ND UJ 0.021 0.0059 1 07/26/10 07/30/10 JWG1002570 J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	194	77-150	07/30/10	Outside Control Limits

Comments:

 $\begin{array}{lll} Printed: & 08/06/2010 & 14:45:53 \\ p:\Stealth\Crystal.rpt\Form\ImNew.rpt \end{array}$ 

Merged

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

DUP04

Lab Code:

J1003438-041

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/30/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0060	1	07/26/10	07/30/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	123	77-150	07/30/10	Acceptable

Comments:

Printed: 08/06/2010 14:45:56  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Form 1A - Organic

Merged

 $142_{Page}$  1 of 1

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 07/21/2010

**Date Received:** 07/21/2010

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

FB

Lab Code:

J1003438-042

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/30/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/30/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	132	77-150	07/30/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:45:59  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Water

Service Request: J1003438

Date Collected: NA Date Received: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG1002568-4

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.020	0.0070	1	07/26/10	07/28/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.020	0.0057	1	07/26/10	07/28/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	110	77-150	07/28/10	Acceptable	

Comments:

Printed: 08/06/2010 14:46:02  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: NA

Date Received: NA

#### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG1002569-4

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.020	0.0070	1	07/26/10	07/29/10	JWG1002569	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.020	0.0057	1	07/26/10	07/29/10	JWG1002569	J(3)

Surrogate Name %Re	Control Date Limits Analyzed
1,1,1,2-Tetrachloroethane 137	77-150 07/29/10

Comments:

Printed: 08/06/2010 14:46:05  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

**Analytical Results** 

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

Date Collected: NA Date Received: NA

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG1002570-4

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.020	0.0070	1	07/26/10	07/29/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.020	0.0057	1	07/26/10	07/29/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	118	77-150	07/29/10	Acceptable

**Comments:** 

Printed: 08/06/2010 14:46:08  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

1 of 1

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

MWB3S

Lab Code:

J1003438-001

Service Request: J1003438

**Date Collected:** 7/20/10 1001 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 18:47
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/29/10	8/2/10 18:47
Barium, Total	6020	10.5	$\mu g/L$	2.0	0.5	1	7/29/10	8/2/10 18:47
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:47
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/29/10	8/2/10 18:47
Chromium, Total	6020	1.0 I	μg/L	2.0	0.6	1	7/29/10	8/2/10 18:47
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/29/10	8/2/10 18:47
Copper, Total	6020	ND U	$\mu g/L$	2.0	0.5	1	7/29/10	8/2/10 18:47
Iron, Total	6010B	500	μg/L	100	10	1	7/29/10	8/1/10 22:17
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:47
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:24
Nickel, Total	6020	<b>0.4</b> I	μg/L	2.0	0.3	1	7/29/10	8/2/10 18:47
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/29/10	8/2/10 18:47
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/29/10	8/2/10 18:47
Sodium, Total	6010B	2.94	mg/L	0.50	0.02	1	7/29/10	8/1/10 22:16
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/29/10	8/2/10 18:47
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/29/10	8/2/10 18:47
Zinc, Total	6020	ND U	μg/L	10	3	1	7/29/10	8/2/10 18:47

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB3I

J1003438-002

Service Request: J1003438

Date Collected: 7/20/10 1030

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 18:52
Arsenic, Total	6020	0.22	I	μg/L	0.50	0.14	1	7/29/10	8/2/10 18:52
Barium, Total	6020	25.4		$\mu g/L$	2.0	0.5	1	7/29/10	8/2/10 18:52
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:52
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 18:52
Chromium, Total	6020	0.7	I	μg/L	2.0	0.6	1	7/29/10	8/2/10 18:52
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/29/10	8/2/10 18:52
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/29/10	8/2/10 18:52
Iron, Total	6010B	710		μg/L	100	10	1	7/29/10	8/1/10 22:22
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:52
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:26
Nickel, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 18:52
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 18:52
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 18:52
Sodium, Total	6010B	3.59		mg/L	0.50	0.02	1	7/29/10	8/1/10 22:20
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 18:52
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/29/10	8/2/10 18:52
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/29/10	8/2/10 18:52

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB19D

J1003438-003

Service Request: J1003438

Date Collected: 7/20/10 1107

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 18:57
Arsenic, Total	6020	1.08		μg/L	0.50	0.14	1	7/29/10	8/2/10 18:57
Barium, Total	6020	102		μg/L	2.0	0.5	1	7/29/10	8/2/10 18:57
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:57
Cadmium, Total	6020	0.17	I	μg/L	0.50	0.17	1	7/29/10	8/2/10 18:57
Chromium, Total	6020	3.3		$\mu g/L$	2.0	0.6	1	7/29/10	8/2/10 18:57
Cobalt, Total	6020	0.3	I	μg/L	1.0	0.2	1	7/29/10	8/2/10 18:57
Copper, Total	6020	0.9	I	μg/L	2.0	0.5	1	7/29/10	8/2/10 18:57
Iron, Total	6010B	1690		$\mu g/L$	100	10	1	7/29/10	8/1/10 22:32
Lead, Total	6020	0.6	I	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:57
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:27
Nickel, Total	6020	2.7		μg/L	2.0	0.3	1	7/29/10	8/2/10 18:57
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 18:57
Silver, Total	6020	ND	U	$\mu g/L$	0.50	0.09	1	7/29/10	8/2/10 18:57
Sodium, Total	6010B	4.58		mg/L	0.50	0.02	1	7/29/10	8/1/10 22:32
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 18:57
Vanadium, Total	6020	2.7	I	μg/L	5.0	1.2	1	7/29/10	8/2/10 18:57
Zinc, Total	6020	3	I	μg/L	10	3	1	7/29/10	8/2/10 18:57

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Matrix

Water

Sample Name: Lab Code: MWB19I

J1003438-004

Service Request: J1003438

**Date Collected:** 7/20/10 1138 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:02
Arsenic, Total	6020	0.28	I	μg/L	0.50	0.14	1	7/29/10	8/2/10 19:02
Barium, Total	6020	66.7		μg/L	2.0	0.5	1	7/29/10	8/2/10 19:02
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:02
Cadmium, Total	6020	0.27	I	μg/L	0.50	0.17	1	7/29/10	8/2/10 19:02
Chromium, Total	6020	3.4		μg/L	2.0	0.6	1	7/29/10	8/2/10 19:02
Cobalt, Total	6020	1.6		μg/L	1.0	0.2	1	7/29/10	8/2/10 19:02
Copper, Total	6020	0.7	I	μg/L	2.0	0.5	1	7/29/10	8/2/10 19:02
Iron, Total	6010B	750		μg/L	100	10	1	7/29/10	8/1/10 22:36
Lead, Total	6020	0.9	I	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:02
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:29
Nickel, Total	6020	2.9		μg/L	2.0	0.3	1	7/29/10	8/2/10 19:02
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 19:02
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 19:02
Sodium, Total	6010B	3.59		mg/L	0.50	0.02	1	7/29/10	8/1/10 22:34
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 19:02
Vanadium, Total	6020	2.7	I	μg/L	5.0	1.2	1	7/29/10	8/2/10 19:02
Zinc, Total	6020	10		μg/L	10	3	1	7/29/10	8/2/10 19:02

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water MWB19S

Lab Code:

J1003438-005

Service Request: J1003438

**Date Collected:** 7/20/10 1207 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:07
Arsenic, Total	6020	0.81		μg/L	0.50	0.14	1	7/29/10	8/2/10 19:07
Barium, Total	6020	11.6		μg/L	2.0	0.5	1	7/29/10	8/2/10 19:07
Beryllium, Total	6020	ND U	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:07
Cadmium, Total	6020	ND U	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 19:07
Chromium, Total	6020	4.6		$\mu$ g/L	2.0	0.6	1	7/29/10	8/2/10 19:07
Cobalt, Total	6020	ND U	U	μg/L	1.0	0.2	1	7/29/10	8/2/10 19:07
Copper, Total	6020	1.5 I	[	μg/L	2.0	0.5	1	7/29/10	8/2/10 19:07
Iron, Total	6010B	180		$\mu g/L$	100	10	1	7/29/10	8/1/10 22:40
Lead, Total	6020	6.0		μg/L	1.0	0.3	1	7/29/10	8/2/10 19:07
Mercury, Total	7470A	ND U	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:39
Nickel, Total	6020	<b>1.7</b> I	I	$\mu g/L$	2.0	0.3	1	7/29/10	8/2/10 19:07
Selenium, Total	6020	ND U	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 19:07
Silver, Total	6020	ND U	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 19:07
Sodium, Total	6010B	11.0		mg/L	0.50	0.02	1	7/29/10	8/1/10 22:39
Thallium, Total	6020	ND U	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 19:07
Vanadium, Total	6020	9.2		μg/L	5.0	1.2	1	7/29/10	8/2/10 19:07
Zinc, Total	6020	ND U	U	μg/L	10	3	1	7/29/10	8/2/10 19:07

Analytical Report

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge Water

Sample Name:

Lab Code:

MWB20S J1003438-006

Service Request: J1003438 **Date Collected:** 7/20/10 1237

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND 1	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:12
Arsenic, Total	6020	0.42	I	μg/L	0.50	0.14	1	7/29/10	8/2/10 19:12
Barium, Total	6020	12.4		$\mu$ g/L	2.0	0.5	1	7/29/10	8/2/10 19:12
Beryllium, Total	6020	ND 1	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:12
Cadmium, Total	6020	ND I	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 19:12
Chromium, Total	6020	1.8	I	$\mu$ g/L	2.0	0.6	1	7/29/10	8/2/10 19:12
Cobalt, Total	6020	0.2	I	μg/L	1.0	0.2	1	7/29/10	8/2/10 19:12
Copper, Total	6020	0.6	I	μg/L	2.0	0.5	1	7/29/10	8/2/10 19:12
Iron, Total	6010B	280		$\mu g/L$	100	10	1	7/29/10	8/1/10 22:57
Lead, Total	6020	0.3	I	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:12
Mercury, Total	7470A	ND 1	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:40
Nickel, Total	6020	0.8	I	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:12
Selenium, Total	6020	ND I	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 19:12
Silver, Total	6020	ND I	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 19:12
Sodium, Total	6010B	5.54		mg/L	0.50	0.02	1	7/29/10	8/1/10 22:55
Thallium, Total	6020	ND I	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 19:12
Vanadium, Total	6020	2.8	I	μg/L	5.0	1.2	1	7/29/10	8/2/10 19:12
Zinc, Total	6020	ND I	U	μg/L	10	3	1	7/29/10	8/2/10 19:12

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB11S

J1003438-007

Service Request: J1003438

Date Collected: 7/20/10 1310

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	0.3	I	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:16
Arsenic, Total	6020	0.31	I	μg/L	0.50	0.14	1	7/29/10	8/2/10 19:16
Barium, Total	6020	83.5		μg/L	2.0	0.5	1	7/29/10	8/2/10 19:16
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:16
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 19:16
Chromium, Total	6020	1.2	I	μg/L	2.0	0.6	1	7/29/10	8/2/10 19:16
Cobalt, Total	6020	0.6	I	μg/L	1.0	0.2	1	7/29/10	8/2/10 19:16
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/29/10	8/2/10 19:16
Iron, Total	6010B	540		μg/L	100	10	1	7/29/10	8/1/10 23:01
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:16
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:42
Nickel, Total	6020	1.0	I	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:16
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 19:16
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 19:16
Sodium, Total	6010B	13.3		mg/L	0.50	0.02	1	7/29/10	8/1/10 23:00
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 19:16
Vanadium, Total	6020	3.7	I	μg/L	5.0	1.2	1	7/29/10	8/2/10 19:16
Zinc, Total	6020	3	I	μg/L	10	3	1	7/29/10	8/2/10 19:16

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB11I(R) J1003438-008 Service Request: J1003438 **Date Collected:** 7/20/10 1342

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:36
Arsenic, Total	6020	<b>0.17</b> I	μg/L	0.50	0.14	1	7/29/10	8/2/10 19:36
Barium, Total	6020	42.8	μg/L	2.0	0.5	1	7/29/10	8/2/10 19:36
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:36
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/29/10	8/2/10 19:36
Chromium, Total	6020	4.5	μg/L	2.0	0.6	1	7/29/10	8/2/10 19:36
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/29/10	8/2/10 19:36
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/29/10	8/2/10 19:36
Iron, Total	6010B	510	μg/L	100	10	1	7/29/10	8/1/10 23:05
Lead, Total	6020	0.9 I	μg/L	1.0	0.3	1	7/29/10	8/2/10 19:36
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:43
Nickel, Total	6020	<b>0.6</b> I	μg/L	2.0	0.3	1	7/29/10	8/2/10 19:36
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/29/10	8/2/10 19:36
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/29/10	8/2/10 19:36
Sodium, Total	6010B	3.25	mg/L	0.50	0.02	1	7/29/10	8/1/10 23:04
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/29/10	8/2/10 19:36
Vanadium, Total	6020	5.4	μg/L	5.0	1.2	1	7/29/10	8/2/10 19:36
Zinc, Total	6020	ND U	μg/L	10	3	1	7/29/10	8/2/10 19:36

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12D

J1003438-009

Service Request: J1003438

Date Collected: 7/20/10 1418

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:00
Arsenic, Total	6020	ND U	U	$\mu$ g/L	0.50	0.14	1	7/29/10	8/2/10 20:00
Barium, Total	6020	117		μg/L	2.0	0.5	1	7/29/10	8/2/10 20:00
Beryllium, Total	6020	ND U	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:00
Cadmium, Total	6020	ND T	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 20:00
Chromium, Total	6020	<b>0.8</b> I	[	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:00
Cobalt, Total	6020	ND U	U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:00
Copper, Total	6020	ND U	U	$\mu$ g/L	2.0	0.5	1	7/29/10	8/2/10 20:00
Iron, Total	6010B	720		$\mu$ g/L	100	10	1	7/29/10	8/1/10 23:15
Lead, Total	6020	ND U	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:00
Mercury, Total	7470A	ND U	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:45
Nickel, Total	6020	1.8 I	[	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:00
Selenium, Total	6020	ND U	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:00
Silver, Total	6020	ND U	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:00
Sodium, Total	6010B	6.00		mg/L	0.50	0.02	1	7/29/10	8/1/10 23:15
Thallium, Total	6020	ND U	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:00
Vanadium, Total	6020	ND U	IJ	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:00
Zinc, Total	6020	ND U	IJ	μg/L	10	3	1	7/29/10	8/2/10 20:00

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12I J1003438-010 **Service Request:** J1003438 **Date Collected:** 7/20/10 1418

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:05
Arsenic, Total	6020	ND	U	μg/L	0.50	0.14	1	7/29/10	8/2/10 20:05
Barium, Total	6020	48.0		μg/L	2.0	0.5	1	7/29/10	8/2/10 20:05
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:05
Cadmium, Total	6020	ND	U ·	μg/L	0.50	0.17	1	7/29/10	8/2/10 20:05
Chromium, Total	6020	1.1	I	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:05
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:05
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:05
Iron, Total	6010B	350		μg/L	100	10	1	7/29/10	8/1/10 23:19
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:05
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:46
Nickel, Total	6020	0.3	I	$\mu g/L$	2.0	0.3	1	7/29/10	8/2/10 20:05
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:05
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:05
Sodium, Total	6010B	3.04		mg/L	0.50	0.02	1	7/29/10	8/1/10 23:18
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:05
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:05
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/29/10	8/2/10 20:05

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB7I

J1003438-011

Service Request: J1003438 **Date Collected:** 7/20/10 1309

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:10
Arsenic, Total	6020	ND	U	μg/L	0.50	0.14	1	7/29/10	8/2/10 20:10
Barium, Total	6020	51.1		μg/L	2.0	0.5	1	7/29/10	8/2/10 20:10
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:10
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 20:10
Chromium, Total	6020	1.1	I	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:10
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:10
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:10
Iron, Total	6010B	540		$\mu$ g/L	100	10	1	7/29/10	8/1/10 23:24
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:10
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:48
Nickel, Total	6020	0.4	I	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:10
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:10
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:10
Sodium, Total	6010B	3.26		mg/L	0.50	0.02	1	7/29/10	8/1/10 23:22
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:10
Vanadium, Total	6020	1.3	I	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:10
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/29/10	8/2/10 20:10

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB7D J1003438-012

Service Request: J1003438

Date Collected: 7/20/10 1340

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:15
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/29/10	8/2/10 20:15
Barium, Total	6020	85.3	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:15
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:15
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/29/10	8/2/10 20:15
Chromium, Total	6020	<b>0.7</b> I	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:15
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:15
Copper, Total	6020	ND U	$\mu g/L$	2.0	0.5	1	7/29/10	8/2/10 20:15
Iron, Total	6010B	260	μg/L	100	10	1	7/29/10	8/1/10 23:27
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:15
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:49
Nickel, Total	6020	1.7 I	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:15
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:15
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:15
Sodium, Total	6010B	4.63	mg/L	0.50	0.02	1	7/29/10	8/1/10 23:26
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:15
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:15
Zinc, Total	6020	ND U	μg/L	10	3	1	7/29/10	8/2/10 20:15

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB21S

J1003438-013

Service Request: J1003438

**Date Collected:** 7/20/10 1408

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:34
Arsenic, Total	6020	<b>0.47</b> I	$\mu g/L$	0.50	0.14	1	7/29/10	8/2/10 20:34
Barium, Total	6020	9.2	$\mu$ g/L	2.0	0.5	1	7/29/10	8/2/10 20:34
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:34
Cadmium, Total	6020	ND U	$\mu$ g/L	0.50	0.17	1	7/29/10	8/2/10 20:34
Chromium, Total	6020	1.3 I	$\mu$ g/L	2.0	0.6	1	7/29/10	8/2/10 20:34
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:34
Copper, Total	6020	0.8 I	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:34
Iron, Total	6010B	270	μg/L	100	10	1	7/29/10	8/1/10 23:31
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:34
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:54
Nickel, Total	6020	1.7 I	$\mu g/L$	2.0	0.3	1	7/29/10	8/2/10 20:34
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:34
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:34
Sodium, Total	6010B	1.56	mg/L	0.50	0.02	1	7/29/10	8/1/10 23:29
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:34
Vanadium, Total	6020	<b>2.7</b> I	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:34
Zinc, Total	6020	ND U	μg/L	10	3	1	7/29/10	8/2/10 20:34

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB22S

J1003438-014

Service Request: J1003438

Date Collected: 7/20/10 1515

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q Unit	s MRL	MDL	Dilution Factor		Date Analyzed
Antimony, Total	6020	ND U	J μg/I	2.0	0.3	1	7/29/10	8/2/10 20:39
Arsenic, Total	6020	0.31 I	μg/I	0.50	0.14	1	7/29/10	8/2/10 20:39
Barium, Total	6020	5.9	μg/I	2.0	0.5	1	7/29/10	8/2/10 20:39
Beryllium, Total	6020	ND U	J μg/I	1.0	0.3	1	7/29/10	8/2/10 20:39
Cadmium, Total	6020	ND U	J μg/I	0.50	0.17	1	7/29/10	8/2/10 20:39
Chromium, Total	6020	1.3 I	μg/I	2.0	0.6	1	7/29/10	8/2/10 20:39
Cobalt, Total	6020	ND U	J μg/I	1.0	0.2	1	7/29/10	8/2/10 20:39
Copper, Total	6020	<b>0.6</b> I	μg/I	2.0	0.5	1	7/29/10	8/2/10 20:39
Iron, Total	6010B	<b>60</b> I	μg/I	100	10	1	7/29/10	8/1/10 23:35
Lead, Total	6020	ND U	J μg/L	1.0	0.3	1	7/29/10	8/2/10 20:39
Mercury, Total	7470A	ND U	J μg/L	0.50	0.08	1	7/29/10	7/30/10 14:55
Nickel, Total	6020	<b>1.8</b> I	μg/I	2.0	0.3	1	7/29/10	8/2/10 20:39
Selenium, Total	6020	1 I	μg/I	5.0	0.9	1	7/29/10	8/2/10 20:39
Silver, Total	6020	ND U	J μg/L	0.50	0.09	1	7/29/10	8/2/10 20:39
Sodium, Total	6010B	6.59	mg/I	0.50	0.02	1	7/29/10	8/1/10 23:33
Thallium, Total	6020	ND U	J μg/L	1.0	0.4	1	7/29/10	8/2/10 20:39
Vanadium, Total	6020	15.2	μg/L		1.2	1	7/29/10	8/2/10 20:39
Zinc, Total	6020	ND U			3	1	7/29/10	8/2/10 20:39

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix: Sample Name:

Water

Lab Code:

DUP02 J1003438-015 Service Request: J1003438 **Date Collected:** 7/20/10 1515

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	J μg/L	2.0	0.3	1	7/29/10	8/2/10 20:44
Arsenic, Total	6020	<b>0.23</b> I	μg/L	0.50	0.14	1	7/29/10	8/2/10 20:44
Barium, Total	6020	5.9	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:44
Beryllium, Total	6020	ND U	J μg/L	1.0	0.3	1	7/29/10	8/2/10 20:44
Cadmium, Total	6020	ND U	J μg/L	0.50	0.17	1	7/29/10	8/2/10 20:44
Chromium, Total	6020	1.4 I	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:44
Cobalt, Total	6020	ND U	J μg/L	1.0	0.2	1	7/29/10	8/2/10 20:44
Copper, Total	6020	<b>0.6</b> I	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:44
Iron, Total	6010B	<b>60</b> I	μg/L	100	10	1	7/29/10	8/1/10 23:40
Lead, Total	6020	ND U	J μg/L	1.0	0.3	1	7/29/10	8/2/10 20:44
Mercury, Total	7470A	ND U	J μg/L	0.50	0.08	1	7/29/10	7/30/10 14:56
Nickel, Total	6020	<b>1.8</b> I	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:44
Selenium, Total	6020	1.1 I	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:44
Silver, Total	6020	ND U	J μg/L	0.50	0.09	1	7/29/10	8/2/10 20:44
Sodium, Total	6010B	6.36	mg/L		0.02	1	7/29/10	8/1/10 23:38
Thallium, Total	6020	ND U	J μg/L	1.0	0.4	1	7/29/10	8/2/10 20:44
Vanadium, Total	6020	15.2	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:44
Zinc, Total	6020	ND U	$J \mu g/L$	10	3	1	7/29/10	8/2/10 20:44

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Sample Name: Lab Code:

MWB29D J1003438-016

Service Request: J1003438 **Date Collected:** 7/20/10 0728

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:49
Arsenic, Total	6020	0.18	I	μg/L	0.50	0.14	1	7/29/10	8/2/10 20:49
Barium, Total	6020	51.5		$\mu$ g/L	2.0	0.5	1	7/29/10	8/2/10 20:49
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:49
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 20:49
Chromium, Total	6020	1.1	I	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:49
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:49
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:49
Iron, Total	6010B	720		$\mu g/L$	100	10	1	7/29/10	8/1/10 23:44
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:49
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:58
Nickel, Total	6020	0.6	I	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:49
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:49
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:49
Sodium, Total	6010B	3.77		mg/L	0.50	0.02	1	7/29/10	8/1/10 23:42
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:49
Vanadium, Total	6020	1.4	I	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:49
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/29/10	8/2/10 20:49

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB29I

J1003438-017

Service Request: J1003438

Date Collected: 7/20/10 0759

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:54
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/29/10	8/2/10 20:54
Barium, Total	6020	44.7	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:54
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:54
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/29/10	8/2/10 20:54
Chromium, Total	6020	1.9 I	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:54
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:54
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:54
Iron, Total	6010B	490	μg/L	100	10	1	7/29/10	8/1/10 23:48
Lead, Total	6020	1.1	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:54
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:59
Nickel, Total	6020	1.2 I	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:54
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:54
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:54
Sodium, Total	6010B	3.80	mg/L	0.50	0.02	1	7/29/10	8/1/10 23:46
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:54
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:54
Zinc, Total	6020	ND U	μg/L	10	3	1	7/29/10	8/2/10 20:54

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB29S

J1003438-018

Service Request: J1003438
Date Collected: 7/20/10 0828

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:59
Arsenic, Total	6020	<b>0.19</b> I	$\mu g/L$	0.50	0.14	1	7/29/10	8/2/10 20:59
Barium, Total	6020	9.7	μg/L	2.0	0.5	1	7/29/10	8/2/10 20:59
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:59
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/29/10	8/2/10 20:59
Chromium, Total	6020	<b>1.5</b> I	μg/L	2.0	0.6	1	7/29/10	8/2/10 20:59
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/29/10	8/2/10 20:59
Copper, Total	6020	ND U	$\mu g/L$	2.0	0.5	1	7/29/10	8/2/10 20:59
Iron, Total	6010B	380	μg/L	100	10	1	7/29/10	8/1/10 23:52
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 20:59
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/29/10	7/30/10 15:01
Nickel, Total	6020	<b>0.5</b> I	μg/L	2.0	0.3	1	7/29/10	8/2/10 20:59
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/29/10	8/2/10 20:59
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/29/10	8/2/10 20:59
Sodium, Total	6010B	6.42	mg/L	0.50	0.02	1	7/29/10	8/1/10 23:51
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/29/10	8/2/10 20:59
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/29/10	8/2/10 20:59
Zinc, Total	6020	ND U	μg/L	10	3	1	7/29/10	8/2/10 20:59

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

MWB2I

J1003438-019

Service Request: J1003438

**Date Collected:** 7/20/10 0900 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 21:04
Arsenic, Total	6020	ND	U	μg/L	0.50	0.14	1	7/29/10	8/2/10 21:04
Barium, Total	6020	20.7		$\mu g/L$	2.0	0.5	1	7/29/10	8/2/10 21:04
Beryllium, Total	6020	ND	U	μg/L	· 1.0	0.3	1	7/29/10	8/2/10 21:04
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 21:04
Chromium, Total	6020	0.7	I	μg/L	2.0	0.6	1	7/29/10	8/2/10 21:04
Cobalt, Total	6020	0.2	Ι	μg/L	1.0	0.2	1	7/29/10	8/2/10 21:04
Copper, Total	6020	0.5	I	μg/L	2.0	0.5	1	7/29/10	8/2/10 21:04
Iron, Total	6010B	370		μg/L	100	10	1	7/29/10	8/2/10 00:03
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 21:04
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 15:02
Nickel, Total	6020	0.8	I	μg/L	2.0	0.3	1	7/29/10	8/2/10 21:04
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 21:04
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 21:04
Sodium, Total	6010B	4.82		mg/L	0.50	0.02	1	7/29/10	8/2/10 00:02
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 21:04
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/29/10	8/2/10 21:04
Zinc, Total	6020	5	I	μg/L	10	3	1	7/29/10	8/2/10 21:04

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB2S

J1003438-020

Service Request: J1003438

Date Collected: 7/20/10 0929

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	8/2/10 21:08
Arsenic, Total	6020	0.36	I	μg/L	0.50	0.14	1	7/29/10	8/2/10 21:08
Barium, Total	6020	7.5		μg/L	2.0	0.5	1	7/29/10	8/2/10 21:08
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	8/2/10 21:08
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/29/10	8/2/10 21:08
Chromium, Total	6020	4.3		μg/L	2.0	0.6	1	7/29/10	8/2/10 21:08
Cobalt, Total	6020	0.2	I	μg/L	1.0	0.2	1	7/29/10	8/2/10 21:08
Copper, Total	6020	3.7		μg/L	2.0	0.5	1	7/29/10	8/2/10 21:08
Iron, Total	6010B	680		μg/L	100	10	1	7/29/10	8/2/10 00:08
Lead, Total	6020	2.2		μg/L	1.0	0.3	1	7/29/10	8/2/10 21:08
Mercury, Total	7470A	ND 1	U	μg/L	0.50	0.08	1	7/29/10	7/30/10 15:04
Nickel, Total	6020	1.6	I	μg/L	2.0	0.3	1	7/29/10	8/2/10 21:08
Selenium, Total	6020	ND 1	U	μg/L	5.0	0.9	1	7/29/10	8/2/10 21:08
Silver, Total	6020	ND 1	U	μg/L	0.50	0.09	1	7/29/10	8/2/10 21:08
Sodium, Total	6010B	2.62		mg/L	0.50	0.02	1	7/29/10	8/2/10 00:06
Thallium, Total	6020	ND 1	U	μg/L	1.0	0.4	1	7/29/10	8/2/10 21:08
Vanadium, Total	6020	4.3	I	μg/L	5.0	1.2	1	7/29/10	8/2/10 21:08
Zinc, Total	6020	3 1	I	μg/L	10	3	1	7/29/10	8/2/10 21:08

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB33S

J1003438-021

Service Request: J1003438

**Date Collected:** 7/20/10 1620

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	1.4 I	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:19
Arsenic, Total	6020	0.96	μg/L	0.50	0.14	1	7/30/10	8/5/10 14:19
Barium, Total	6020	12.0	μg/L	2.0	0.5	1	7/30/10	8/5/10 14:19
Beryllium, Total	6020	ND U	J μg/L	1.0	0.3	1	7/30/10	8/5/10 14:19
Cadmium, Total	6020	ND U	J μg/L	0.50	0.17	1	7/30/10	8/5/10 14:19
Chromium, Total	6020	3.2	μg/L	2.0	0.6	1	7/30/10	8/5/10 14:19
Cobalt, Total	6020	<b>0.3</b> I	μg/L	1.0	0.2	1	7/30/10	8/5/10 14:19
Copper, Total	6020	2.1	μg/L	2.0	0.5	1	7/30/10	8/5/10 14:19
Iron, Total	6010B	450	μg/L	100	10	1	7/29/10	8/2/10 00:18
Lead, Total	6020	0.5 I	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:19
Mercury, Total	7470A	ND U	J μg/L	0.50	0.08	1	8/2/10	8/3/10 13:44
Nickel, Total	6020	2.0	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:19
Selenium, Total	6020	0.9 I	μg/L	5.0	0.9	1	7/30/10	8/5/10 14:19
Silver, Total	6020	ND U	J μg/L	0.50	0.09	1	7/30/10	8/5/10 14:19
Sodium, Total	6010B	16.5	mg/L	0.50	0.02	1	7/29/10	8/2/10 00:18
Thallium, Total	6020	ND L	J μg/L	1.0	0.4	1	7/30/10	8/5/10 14:19
Vanadium, Total	6020	7.7	μg/L	5.0	1.2	1	7/30/10	8/5/10 14:19
Zinc, Total	6020	ND U		10	3	1	7/30/10	8/5/10 14:19

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Matrix

Water

Sample Name: Lab Code: MWB27S

J1003438-022

Service Request: J1003438

**Date Collected:** 7/20/10 0815 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:24
Arsenic, Total	6020	0.69		$\mu$ g/L	0.50	0.14	1	7/30/10	8/5/10 14:24
Barium, Total	6020	7.4		μg/L	2.0	0.5	1	7/30/10	8/5/10 14:24
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:24
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 14:24
Chromium, Total	6020	3.0		μg/L	2.0	0.6	1	7/30/10	8/5/10 14:24
Cobalt, Total	6020	0.2	I	μg/L	1.0	0.2	1	7/30/10	8/5/10 14:24
Copper, Total	6020	1.5	I	$\mu g/L$	2.0	0.5	1	7/30/10	8/5/10 14:24
Iron, Total	6010B	340		$\mu g/L$	100	10	1	7/29/10	8/2/10 00:22
Lead, Total	6020	0.5	I	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:24
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 13:46
Nickel, Total	6020	1.5	I	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:24
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 14:24
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 14:24
Sodium, Total	6010B	5.87		mg/L	0.50	0.02	1	7/29/10	8/2/10 00:20
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 14:24
Vanadium, Total	6020	5.2		μg/L	5.0	1.2	1	7/30/10	8/5/10 14:24
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/30/10	8/5/10 14:24

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

MWB27I

Lab Code:

J1003438-023

Service Request: J1003438

**Date Collected:** 7/20/10 0843 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:43
Arsenic, Total	6020	ND	U	μg/L	0.50	0.14	1	7/30/10	8/5/10 14:43
Barium, Total	6020	54.0		μg/L	2.0	0.5	1	7/30/10	8/5/10 14:43
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:43
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 14:43
Chromium, Total	6020	1.1	I	μg/L	2.0	0.6	1	7/30/10	8/5/10 14:43
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 14:43
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/30/10	8/5/10 14:43
Iron, Total	6010B	500		μg/L	100	10	1	7/29/10	8/2/10 00:26
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:43
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 13:53
Nickel, Total	6020	0.9	I	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:43
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 14:43
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 14:43
Sodium, Total	6010B	3.64		mg/L	0.50	0.02	1	7/29/10	8/2/10 00:25
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 14:43
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/30/10	8/5/10 14:43
Zinc, Total	6020	4	I	μg/L	10	3	1	7/30/10	8/5/10 14:43

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB27D J1003438-024 **Service Request:** J1003438 **Date Collected:** 7/20/10 0918

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:48
Arsenic, Total	6020	ND	U	μg/L	0.50	0.14	1	7/30/10	8/5/10 14:48
Barium, Total	6020	56.6		$\mu$ g/L	2.0	0.5	1	7/30/10	8/5/10 14:48
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:48
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 14:48
Chromium, Total	6020	1.0	I	μg/L	2.0	0.6	1	7/30/10	8/5/10 14:48
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 14:48
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/30/10	8/5/10 14:48
Iron, Total	6010B	650		μg/L	100	10	1	7/29/10	8/2/10 00:30
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:48
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 13:55
Nickel, Total	6020	0.7	I	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:48
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 14:48
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 14:48
Sodium, Total	6010B	3.91		mg/L	0.50	0.02	1	7/29/10	8/2/10 00:29
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 14:48
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/30/10	8/5/10 14:48
Zinc, Total	6020	3	I	μg/L	10	3	1	7/30/10	8/5/10 14:48

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: DUP01

J1003438-025

Service Request: J1003438

Date Collected: 7/20/10 0918

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:53
Arsenic, Total	6020	0.16	I	μg/L	0.50	0.14	1	7/30/10	8/5/10 14:53
Barium, Total	6020	54.9		μg/L	2.0	0.5	1	7/30/10	8/5/10 14:53
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:53
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 14:53
Chromium, Total	6020	1.7	I	$\mu$ g/L	2.0	0.6	1	7/30/10	8/5/10 14:53
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 14:53
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/30/10	8/5/10 14:53
Iron, Total	6010B	610		μg/L	100	10	1	7/29/10	8/2/10 00:35
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:53
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 13:59
Nickel, Total	6020	0.9	I	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:53
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 14:53
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 14:53
Sodium, Total	6010B	3.61		mg/L	0.50	0.02	1	7/29/10	8/2/10 00:33
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 14:53
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/30/10	8/5/10 14:53
Zinc, Total	6020	3	I	μg/L	10	3	1	7/30/10	8/5/10 14:53

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

MWB31D

J1003438-026

Service Request: J1003438

Date Collected: 7/20/10 1004

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:58
Arsenic, Total	6020	0.29	I	μg/L	0.50	0.14	1	7/30/10	8/5/10 14:58
Barium, Total	6020	116		μg/L	2.0	0.5	1	7/30/10	8/5/10 14:58
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:58
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 14:58
Chromium, Total	6020	1.6	I	$\mu g/L$	2.0	0.6	1	7/30/10	8/5/10 14:58
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 14:58
Copper, Total	6020	0.5	I	μg/L	2.0	0.5	1	7/30/10	8/5/10 14:58
Iron, Total	6010B	1300		$\mu g/L$	100	10	1	7/29/10	8/2/10 00:39
Lead, Total	6020	0.9	I	μg/L	1.0	0.3	1	7/30/10	8/5/10 14:58
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:01
Nickel, Total	6020	1.5	I	μg/L	2.0	0.3	1	7/30/10	8/5/10 14:58
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 14:58
Silver, Total	6020	0.94		μg/L	0.50	0.09	1	7/30/10	8/5/10 14:58
Sodium, Total	6010B	6.83		mg/L	0.50	0.02	1	7/29/10	8/2/10 00:38
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 14:58
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/30/10	8/5/10 14:58
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/30/10	8/5/10 14:58

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB17S

J1003438-027

Service Request: J1003438

Date Collected: 7/20/10 1042

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:03
Arsenic, Total	6020	<b>0.19</b> I	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:03
Barium, Total	6020	3.0	$\mu g/L$	2.0	0.5	1	7/30/10	8/5/10 15:03
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:03
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:03
Chromium, Total	6020	<b>1.9</b> I	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:03
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:03
Copper, Total	6020	<b>0.6</b> I	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:03
Iron, Total	6010B	200	μg/L	100	10	1	7/29/10	8/2/10 00:50
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:03
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:02
Nickel, Total	6020	1.1 I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:03
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:03
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:03
Sodium, Total	6010B	4.49	mg/L	0.50	0.02	1	7/29/10	8/2/10 00:49
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:03
Vanadium, Total	6020	1.4 I	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:03
Zinc, Total	6020	ND U	$\mu g/L$	10	3	1	7/30/10	8/5/10 15:03

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB17D J1003438-028 Service Request: J1003438

Date Collected: 7/20/10 1115

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:07
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:07
Barium, Total	6020	33.1	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:07
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:07
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:07
Chromium, Total	6020	<b>1.8</b> I	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:07
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:07
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:07
Iron, Total	6010B	360	μg/L	100	10	1	7/29/10	8/2/10 00:55
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:07
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:04
Nickel, Total	6020	<b>0.4</b> I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:07
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:07
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:07
Sodium, Total	6010B	3.27	mg/L	0.50	0.02	1	7/29/10	8/2/10 00:53
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:07
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:07
Zinc, Total	6020	ND U	μg/L	10	3	1	7/30/10	8/5/10 15:07

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB17I

J1003438-029

Service Request: J1003438

**Date Collected:** 7/20/10 1149

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:12
Arsenic, Total	6020	0.24 I	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:12
Barium, Total	6020	37.2	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:12
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:12
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:12
Chromium, Total	6020	1.0 I	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:12
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:12
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:12
Iron, Total	6010B	370	μg/L	100	10	1	7/29/10	8/2/10 00:59
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:12
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:05
Nickel, Total	6020	<b>0.7</b> I	μg/L	2.0	0.3	1 ·	7/30/10	8/5/10 15:12
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:12
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:12
Sodium, Total	6010B	3.35	mg/L	0.50	0.02	1	7/29/10	8/2/10 00:58
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:12
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:12
Zinc, Total	6020	ND U	μg/L	10	3	1	7/30/10	8/5/10 15:12

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB7S

J1003438-030

Service Request: J1003438

**Date Collected:** 7/20/10 1232 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:17
Arsenic, Total	6020	0.32	I	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:17
Barium, Total	6020	7.1		$\mu g/L$	2.0	0.5	1	7/30/10	8/5/10 15:17
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:17
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:17
Chromium, Total	6020	2.5		μg/L	2.0	0.6	1	7/30/10	8/5/10 15:17
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:17
Copper, Total	6020	0.7	I	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:17
Iron, Total	6010B	110		μg/L	100	10	1	7/29/10	8/2/10 01:04
Lead, Total	6020	0.4	I	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:17
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:06
Nickel, Total	6020	1.0	I	$\mu g/L$	2.0	0.3	1	7/30/10	8/5/10 15:17
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:17
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:17
Sodium, Total	6010B	13.6		mg/L	0.50	0.02	1	7/29/10	8/2/10 01:02
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:17
Vanadium, Total	6020	4.9	I	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:17
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/30/10	8/5/10 15:17

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB12S

J1003438-031

Service Request: J1003438 **Date Collected:** 7/20/10 1520

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	<b>0.6</b> I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:22
Arsenic, Total	6020	<b>0.14</b> I	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:22
Barium, Total	6020	9.2	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:22
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:22
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:22
Chromium, Total	6020	3.3	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:22
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:22
Copper, Total	6020	1.0 I	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:22
Iron, Total	6010B	<b>50</b> I	μg/L	100	10	1	7/29/10	8/2/10 01:20
Lead, Total	6020	<b>0.3</b> I	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:22
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/2/10	8/3/10 14:08
Nickel, Total	6020	1 I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:22
Selenium, Total	6020	8.8	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:22
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:22
Sodium, Total	6010B	8.31	mg/L	0.50	0.02	1	7/29/10	8/2/10 01:19
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:22
Vanadium, Total	6020	94.4	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:22
Zinc, Total	6020	ND U	μg/L	10	3	1	7/30/10	8/5/10 15:22

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB13I

J1003438-032

Service Request: J1003438

Date Collected: 7/20/10 1602

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 13:55
Arsenic, Total	6020	0.25	I	μg/L	0.50	0.14	1	7/30/10	8/5/10 13:55
Barium, Total	6020	34.3		μg/L	2.0	0.5	1	7/30/10	8/5/10 13:55
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 13:55
Cadmium, Total	6020	0.22	I	μg/L	0.50	0.17	1	7/30/10	8/5/10 13:55
Chromium, Total	6020	2.0		μg/L	2.0	0.6	1	7/30/10	8/5/10 13:55
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 13:55
Copper, Total	6020	0.7	I	μg/L	2.0	0.5	1	7/30/10	8/5/10 13:55
Iron, Total	6010B	380		μg/L	100	10	1	7/29/10	8/2/10 01:24
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 13:55
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:09
Nickel, Total	6020	0.5	I	μg/L	2.0	0.3	1	7/30/10	8/5/10 13:55
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 13:55
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 13:55
Sodium, Total	6010B	3.65		mg/L	0.50	0.02	1	7/29/10	8/2/10 01:23
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 13:55
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/30/10	8/5/10 13:55
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/30/10	8/5/10 13:55

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name: Lab Code: MWB13S

J1003438-033

**Service Request:** J1003438 **Date Collected:** 7/21/10 0909

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q Units	MRL	MDL	Dilution Factor		Date Analyzed
Antimony, Total	6020	<b>0.7</b> I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:41
Arsenic, Total	6020	0.80	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:41
Barium, Total	6020	7.2	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:41
Beryllium, Total	6020	ND U	J μg/L	1.0	0.3	1	7/30/10	8/5/10 15:41
Cadmium, Total	6020	ND U	J μg/L	0.50	0.17	1	7/30/10	8/5/10 15:41
Chromium, Total	6020	2.7	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:41
Cobalt, Total	6020	ND U	J μg/L	1.0	0.2	1	7/30/10	8/5/10 15:41
Copper, Total	6020	1.5 I	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:41
Iron, Total	6010B	340	μg/L	100	10	1	7/29/10	8/2/10 01:36
Lead, Total	6020	0.3 I	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:41
Mercury, Total	7470A	ND U	J μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:11
Nickel, Total	6020	1.2 I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:41
Selenium, Total	6020	5.0	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:41
Silver, Total	6020	ND U	J μg/L	0.50	0.09	1	7/30/10	8/5/10 15:41
Sodium, Total	6010B	18.5	mg/L	0.50	0.02	1	7/29/10	8/2/10 01:34
Thallium, Total	6020	ND L	J μg/L	1.0	0.4	1	7/30/10	8/5/10 15:41
Vanadium, Total	6020	63.6	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:41
Zinc, Total	6020	ND U	J μg/L	10	3	1	7/30/10	8/5/10 15:41

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Sample Name:

Water

Lab Code:

MWB32S

J1003438-034

Service Request: J1003438

Date Collected: 7/21/10 1109

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	0.5 I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:46
Arsenic, Total	6020	0.76	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:46
Barium, Total	6020	20.7	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:46
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:46
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:46
Chromium, Total	6020	4.0	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:46
Cobalt, Total	6020	<b>0.3</b> I	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:46
Copper, Total	6020	2.0 I	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:46
Iron, Total	6010B	230	μg/L	100	10	1	7/29/10	8/2/10 01:39
Lead, Total	6020	1.1	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:46
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:12
Nickel, Total	6020	3.3	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:46
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:46
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:46
Sodium, Total	6010B	32.9	mg/L	0.50	0.02	1	7/29/10	8/2/10 01:39
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:46
Vanadium, Total	6020	6.7	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:46
Zinc, Total	6020	ND U	μg/L	10	3	1	7/30/10	8/5/10 15:46

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name:

MWB32I

Water

Lab Code:

J1003438-035

Service Request: J1003438

**Date Collected:** 7/21/10 1219 Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:51
Arsenic, Total	6020	ND	U	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:51
Barium, Total	6020	36.0		$\mu g/L$	2.0	0.5	1	7/30/10	8/5/10 15:51
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:51
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:51
Chromium, Total	6020	1.6	I	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:51
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:51
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:51
Iron, Total	6010B	280		$\mu g/L$	100	10	1	7/29/10	8/2/10 01:43
Lead, Total	6020	0.5	I	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:51
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:17
Nickel, Total	6020	0.4	I	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:51
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:51
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:51
Sodium, Total	6010B	2.93		mg/L	0.50	0.02	1	7/29/10	8/2/10 01:41
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:51
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:51
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/30/10	8/5/10 15:51

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB32D

J1003438-036

Service Request: J1003438
Date Collected: 7/21/10 1243

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/30/10	8/5/10 15:56
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/30/10	8/5/10 15:56
Barium, Total	6020	32.4	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:56
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:56
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 15:56
Chromium, Total	6020	1.9 I	μg/L	2.0	0.6	1	7/30/10	8/5/10 15:56
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/30/10	8/5/10 15:56
Copper, Total	6020	<b>0.7</b> I	μg/L	2.0	0.5	1	7/30/10	8/5/10 15:56
Iron, Total	6010B	470	μg/L	100	10	1	7/29/10	8/2/10 01:47
Lead, Total	6020	0.5 I	μg/L	1.0	0.3	1	7/30/10	8/5/10 15:56
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:18
Nickel, Total	6020	<b>1.2</b> I	$\mu$ g/L	2.0	0.3	1	7/30/10	8/5/10 15:56
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/30/10	8/5/10 15:56
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 15:56
Sodium, Total	6010B	4.35	mg/L	0.50	0.02	1	7/29/10	8/2/10 01:46
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 15:56
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/30/10	8/5/10 15:56
Zinc, Total	6020	ND U	μg/L	10	3	1	7/30/10	8/5/10 15:56

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

MWB34S

J1003438-037

Service Request: J1003438

Date Collected: 7/21/10 0959

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 16:01
Arsenic, Total	6020	0.94		μg/L	0.50	0.14	1	7/30/10	8/5/10 16:01
Barium, Total	6020	4.8		$\mu$ g/L	2.0	0.5	1	7/30/10	8/5/10 16:01
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 16:01
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 16:01
Chromium, Total	6020	2.8		μg/L	2.0	0.6	1	7/30/10	8/5/10 16:01
Cobalt, Total	6020	0.9	I	μg/L	1.0	0.2	1	7/30/10	8/5/10 16:01
Copper, Total	6020	1.1	I	μg/L	2.0	0.5	1	7/30/10	8/5/10 16:01
Iron, Total	6010B	190		μg/L	100	10	1	7/29/10	8/2/10 01:50
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 16:01
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:20
Nickel, Total	6020	5.4		$\mu$ g/L	2.0	0.3	1	7/30/10	8/5/10 16:01
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 16:01
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 16:01
Sodium, Total	6010B	80.4		mg/L	0.50	0.02	1	7/29/10	8/2/10 01:50
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 16:01
Vanadium, Total	6020	6.6		$\mu g/L$	5.0	1.2	1	7/30/10	8/5/10 16:01
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/30/10	8/5/10 16:01

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

MWB34I

Sample Name: Lab Code:

J1003438-038

Service Request: J1003438

Date Collected: 7/21/10 1228

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	J μg/L	2.0	0.3	1	7/30/10	8/5/10 16:06
Arsenic, Total	6020	ND U	J μg/L	0.50	0.14	1	7/30/10	8/5/10 16:06
Barium, Total	6020	50.7	μg/L	2.0	0.5	1	7/30/10	8/5/10 16:06
Beryllium, Total	6020	ND U	J μg/L	1.0	0.3	1	7/30/10	8/5/10 16:06
Cadmium, Total	6020	ND U		0.50	0.17	1	7/30/10	8/5/10 16:06
Chromium, Total	6020	<b>1.4</b> I		2.0	0.6	1	7/30/10	8/5/10 16:06
Cobalt, Total	6020	ND U	J μg/L	1.0	0.2	1	7/30/10	8/5/10 16:06
Copper, Total	6020	ND U	J μg/L	2.0	0.5	1	7/30/10	8/5/10 16:06
Iron, Total	6010B	500	μg/L	100	10	1	7/29/10	8/2/10 01:54
Lead, Total	6020	ND U	J μg/L	1.0	0.3	1	7/30/10	8/5/10 16:06
Mercury, Total	7470A	ND U	J μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:21
Nickel, Total	6020	<b>0.9</b> I	μg/L	2.0	0.3	1	7/30/10	8/5/10 16:06
Selenium, Total	6020	ND U	J μg/L	5.0	0.9	1	7/30/10	8/5/10 16:06
Silver, Total	6020	ND U		0.50	0.09	1	7/30/10	8/5/10 16:06
Sodium, Total	6010B	3.24	mg/L	0.50	0.02	1	7/29/10	8/2/10 01:53
Thallium, Total	6020	ND U	J μg/L	1.0	0.4	1	7/30/10	8/5/10 16:06
Vanadium, Total	6020	ND U		5.0	1.2	1	7/30/10	8/5/10 16:06
Zinc, Total	6020	ND U		10	3	1	7/30/10	8/5/10 16:06

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB34D J1003438-039

Service Request: J1003438 **Date Collected:** 7/21/10 0924

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/30/10	8/5/10 16:10
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/30/10	8/5/10 16:10
Barium, Total	6020	114	μg/L	2.0	0.5	1	7/30/10	8/5/10 16:10
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 16:10
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 16:10
Chromium, Total	6020	1.0 I	$\mu g/L$	2.0	0.6	1	7/30/10	8/5/10 16:10
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/30/10	8/5/10 16:10
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/30/10	8/5/10 16:10
Iron, Total	6010B	460	μg/L	100	10	1	7/29/10	8/2/10 01:57
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 16:10
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:23
Nickel, Total	6020	<b>0.7</b> I	μg/L	2.0	0.3	1	7/30/10	8/5/10 16:10
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/30/10	8/5/10 16:10
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 16:10
Sodium, Total	6010B	6.39	mg/L	0.50	0.02	1	7/29/10	8/2/10 01:57
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 16:10
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/30/10	8/5/10 16:10
Zinc, Total	6020	ND U	μg/L	10	3	1	7/30/10	8/5/10 16:10

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

DUP03

J1003438-040

Service Request: J1003438 **Date Collected:** 7/21/10 1219

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/30/10	8/5/10 16:15
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/30/10	8/5/10 16:15
Barium, Total	6020	36.4	μg/L	2.0	0.5	1	7/30/10	8/5/10 16:15
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/30/10	8/5/10 16:15
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/30/10	8/5/10 16:15
Chromium, Total	6020	<b>1.4</b> I	μg/L	2.0	0.6	1	7/30/10	8/5/10 16:15
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/30/10	8/5/10 16:15
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/30/10	8/5/10 16:15
Iron, Total	6010B	280	μg/L	100	10	1	7/29/10	8/2/10 02:01
Lead, Total	6020	0.4 I	μg/L	1.0	0.3	1	7/30/10	8/5/10 16:15
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 14:24
Nickel, Total	6020	<b>0.4</b> I	μg/L	2.0	0.3	1	7/30/10	8/5/10 16:15
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/30/10	8/5/10 16:15
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/30/10	8/5/10 16:15
Sodium, Total	6010B	2.99	mg/L	0.50	0.02	1	7/29/10	8/2/10 02:00
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/30/10	8/5/10 16:15
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/30/10	8/5/10 16:15
Zinc, Total	6020	ND U	μg/L	10	3	1	7/30/10	8/5/10 16:15

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: DUP04

J1003438-041

Service Request: J1003438

Date Collected: 7/21/10 1228

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:30
Arsenic, Total	6020	ND	U	μg/L	0.50	0.14	1	7/28/10	8/2/10 15:30
Barium, Total	6020	48.5		μg/L	2.0	0.5	1	7/28/10	8/2/10 15:30
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:30
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/28/10	8/2/10 15:30
Chromium, Total	6020	1.1	I	μg/L	2.0	0.6	1	7/28/10	8/2/10 15:30
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/28/10	8/2/10 15:30
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/28/10	8/2/10 15:30
Iron, Total	6010B	480		$\mu$ g/L	100	10	1	7/29/10	8/1/10 22:02
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:30
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/27/10	7/28/10 11:42
Nickel, Total	6020	0.8	I	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:30
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/28/10	8/2/10 15:30
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/28/10	8/2/10 15:30
Sodium, Total	6010B	3.36		mg/L	0.50	0.02	1	7/29/10	8/1/10 22:00
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/28/10	8/2/10 15:30
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/28/10	8/2/10 15:30
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/28/10	8/2/10 15:30

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: FB

J1003438-042

Service Request: J1003438
Date Collected: 7/21/10 1253

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:34
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/28/10	8/2/10 15:34
Barium, Total	6020	ND U	μg/L	2.0	0.5	1	7/28/10	8/2/10 15:34
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:34
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/28/10	8/2/10 15:34
Chromium, Total	6020	ND U	μg/L	2.0	0.6	1	7/28/10	8/2/10 15:34
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/28/10	8/2/10 15:34
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/28/10	8/2/10 15:34
Iron, Total	6010B	ND U	$\mu$ g/L	100	10	1	7/29/10	8/1/10 22:06
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:34
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/27/10	7/28/10 11:43
Nickel, Total	6020	ND U	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:34
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/28/10	8/2/10 15:34
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/28/10	8/2/10 15:34
Sodium, Total	6010B	ND U	mg/L	0.50	0.02	1	7/29/10	8/1/10 22:05
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/28/10	8/2/10 15:34
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/28/10	8/2/10 15:34
Zinc, Total	6020	ND U	μg/L	10	3	1	7/28/10	8/2/10 15:34

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank J1003438-MB1

Service Request: J1003438 Date Collected: NA Date Received: NA

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/28/10	8/2/10 13:09
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/28/10	8/2/10 13:09
Barium, Total	6020	ND U	μg/L	2.0	0.5	1	7/28/10	8/2/10 13:09
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/28/10	8/2/10 13:09
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/28/10	8/2/10 13:09
Chromium, Total	6020	ND U	μg/L	2.0	0.6	1	7/28/10	8/2/10 13:09
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/28/10	8/2/10 13:09
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/28/10	8/2/10 13:09
Iron, Total	6010B	<b>30</b> I	μg/L	100	10	1	7/29/10	8/1/10 20:21
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/28/10	8/2/10 13:09
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/27/10	7/28/10 11:08
Nickel, Total	6020	ND U	μg/L	2.0	0.3	1	7/28/10	8/2/10 13:09
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/28/10	8/2/10 13:09
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/28/10	8/2/10 13:09
Sodium, Total	6010B	ND U	mg/L	0.50	0.02	1	7/29/10	8/1/10 20:20
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/28/10	8/2/10 13:09
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/28/10	8/2/10 13:09
Zinc, Total	6020	ND U	μg/L	10	3	1	7/28/10	8/2/10 13:09

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank J1003438-MB2 Service Request: J1003438

Date Collected: NA
Date Received: NA

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 18:38
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/29/10	8/2/10 18:38
Barium, Total	6020	ND U	$\mu g/L$	2.0	0.5	1	7/29/10	8/2/10 18:38
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:38
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/29/10	8/2/10 18:38
Chromium, Total	6020	ND U	μg/L	2.0	0.6	1	7/29/10	8/2/10 18:38
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/29/10	8/2/10 18:38
Copper, Total	6020	ND U	μg/L	2.0	0.5	1	7/29/10	8/2/10 18:38
Iron, Total	6010B	ND U	μg/L	100	10	1	7/29/10	8/1/10 22:11
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/29/10	8/2/10 18:38
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/29/10	7/30/10 14:21
Nickel, Total	6020	ND U	μg/L	2.0	0.3	1	7/29/10	8/2/10 18:38
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/29/10	8/2/10 18:38
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/29/10	8/2/10 18:38
Sodium, Total	6010B	ND U	mg/L	0.50	0.02	1	7/29/10	8/1/10 22:09
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/29/10	8/2/10 18:38
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/29/10	8/2/10 18:38
Zinc, Total	6020	ND U	μg/L	10	3	1	7/29/10	8/2/10 18:38

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Water

N.C. d. 15

Sample Name: Lab Code: Method Blank J1003438-MB3 Service Request: J1003438

Date Collected: NA
Date Received: NA

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 13:45
Arsenic, Total	6020	0.17	I	μg/L	0.50	0.14	1	7/30/10	8/5/10 13:45
Barium, Total	6020	ND	U	μg/L	2.0	0.5	1	7/30/10	8/5/10 13:45
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 13:45
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/30/10	8/5/10 13:45
Chromium, Total	6020	ND	U	μg/L	2.0	0.6	1	7/30/10	8/5/10 13:45
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/30/10	8/5/10 13:45
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/30/10	8/5/10 13:45
Iron, Total	6010B	ND	U	μg/L	100	10	1	7/29/10	8/2/10 00:12
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/30/10	8/5/10 13:45
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	8/ 2/10	8/3/10 13:42
Nickel, Total	6020	ND	U	μg/L	2.0	0.3	1	7/30/10	8/5/10 13:45
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/30/10	8/5/10 13:45
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/30/10	8/5/10 13:45
Sodium, Total	6010B	ND	U	mg/L	0.50	0.02	1	7/29/10	8/2/10 00:11
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/30/10	8/5/10 13:45
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/30/10	8/5/10 13:45
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/30/10	8/5/10 13:45

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB3S

J1003438-001

Service Request: J1003438

Date Collected: 7/20/10 1001

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	2000	Date Analyzed
Ammonia as Nitrogen	350.1	0.004	IV	mg/L	0.010	0.004	1	NA	7/26/10 17:33
Chloride	300.0	5.14		mg/L	0.50	0.09	1	NA	7/22/10 02:52
Conductivity, Field	120.1	48		μMHOS/cm			1	NA	7/20/10 10:00
Dissolved Oxygen, Field	360.1	0.8		ppm			1	NA	7/20/10 10:00
Groundwater Elevation	Depth Field	147		Feet			1	NA	7/20/10 10:00
Nitrate as Nitrogen	300.0	ND	U	mg/L	0.20	0.07	1	NA	7/22/10 02:52
pH, Field	150.1	4.67		pH Units			1	NA	7/20/10 10:00
Solids, Total Dissolved	SM 2540 C	ND	U	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	23.4		deg C			1	NA	7/20/10 10:00
Turbidity, Field	180.1	3.17		NTU			1	NA	7/20/10 10:00

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB3I

Lab Code:

J1003438-002

Service Request: J1003438

**Date Collected:** 7/20/10 1030

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.007	IV mg/L	0.010	0.004	1	NA	7/26/10 14:07
Chloride	300.0	5.14	mg/L	0.50	0.09	1	NA	7/22/10 03:07
Conductivity, Field	120.1	41	μMHOS/cm			1	NA	7/20/10 10:29
Dissolved Oxygen, Field	360.1	0.6	ppm			1	NA	7/20/10 10:29
Groundwater Elevation	Depth Field	140	Feet			1	NA	7/20/10 10:29
Nitrate as Nitrogen	300.0	ND I	U mg/L	0.20	0.07	1	NA	7/22/10 03:07
pH, Field	150.1	5.00	pH Units			1	NA	7/20/10 10:29
Solids, Total Dissolved	SM 2540 C	13	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	22.6	deg C			1	NA	7/20/10 10:29
Turbidity, Field	180.1	0.98	NTU			1	NA	7/20/10 10:29

Analytical Report

Client:

Jacksonville, City of

Project:

Lab Code:

Trail Ridge

Sample Matrix: Sample Name: Water

,, 4,,,,,

MWB19D J1003438-003 Service Request: J1003438

**Date Collected:** 7/20/10 1107 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.111	mg/L	0.010	0.004	1	NA	7/26/10 14:08
Chloride	300.0	4.01	mg/L	0.50	0.09	1	NA	7/22/10 03:22
Conductivity, Field	120.1	393	μMHOS/cm			1	NA	7/20/10 11:06
Dissolved Oxygen, Field	360.1	0.3	ppm			1	NA	7/20/10 11:06
Groundwater Elevation	Depth Field	122	Feet			1	NA	7/20/10 11:06
Nitrate as Nitrogen	300.0	<b>0.18</b> I	mg/L	0.20	0.07	1	NA	7/22/10 03:22
pH, Field	150.1	7.45	pH Units			1	NA	7/20/10 11:06
Solids, Total Dissolved	SM 2540 C	202	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	24.3	deg C			1	NA	7/20/10 11:06
Turbidity, Field	180.1	7.11	NTU			1	NA	7/20/10 11:06

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Water

Sample Name: Lab Code: MWB19I

: J1003438-004

Service Request: J1003438

**Date Collected:** 7/20/10 1138 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.065	mg/L	0.010	0.004	1	NA	7/26/10 14:12
Chloride	300.0	4.86	mg/L	0.50	0.09	1	NA	7/22/10 03:37
Conductivity, Field	120.1	38	μMHOS/cm			1	NA	7/20/10 11:37
Dissolved Oxygen, Field	360.1	0.5	ppm			1	NA	7/20/10 11:37
Groundwater Elevation	Depth Field	ND U	Feet			1	NA	7/20/10 11:37
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 03:37
pH, Field	150.1	5.34	pH Units			1	NA	7/20/10 11:37
Solids, Total Dissolved	SM 2540 C	23	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	25.6	deg C			1	NA	7/20/10 11:37
Turbidity, Field	180.1	14.72	NTU			1	NA	7/20/10 11:37

Analytical Report

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge

Water

**Date Collected:** 7/20/10 1207 Date Received: 7/21/10

Service Request: J1003438

Sample Name:

MWB19S

Lab Code:

J1003438-005

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.426	mg/L	0.010	0.004	1	NA	7/26/10 14:13
Chloride	300.0	12.0	mg/L	0.50	0.09	1	NA	7/22/10 03:52
Conductivity, Field	120.1	188	μMHOS/cm			1	NA	7/20/10 12:06
Dissolved Oxygen, Field	360.1	0.4	ppm			1	NA	7/20/10 12:06
Groundwater Elevation	Depth Field	121	Feet			1	NA	7/20/10 12:06
Nitrate as Nitrogen	300.0	<b>0.19</b> I	mg/L	0.20	0.07	1	NA	7/22/10 03:52
pH, Field	150.1	5.79	pH Units			1	NA	7/20/10 12:06
Solids, Total Dissolved	SM 2540 C	120	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	27.2	deg C			1	NA	7/20/10 12:06
Turbidity, Field	180.1	13.00	NTU			1	NA	7/20/10 12:06

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438 **Date Collected:** 7/20/10 1237

Date Received: 7/21/10

Sample Name:

MWB20S

Lab Code:

J1003438-006

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.347	mg/L	0.010	0.004	1	NA	7/26/10 14:14
Chloride	300.0	8.72	mg/L	0.50	0.09	1	NA	7/22/10 04:07
Conductivity, Field	120.1	100	μMHOS/cm			1	NA	7/20/10 12:36
Dissolved Oxygen, Field	360.1	0.5	ppm			1	NA	7/20/10 12:36
Groundwater Elevation	Depth Field	114	Feet			1	NA	7/20/10 12:36
Nitrate as Nitrogen	300.0	<b>0.18</b> I	mg/L	0.20	0.07	1	NA	7/22/10 04:07
pH, Field	150.1	4.64	pH Units	-		1	NA	7/20/10 12:36
Solids, Total Dissolved	SM 2540 C	66	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	28.3	deg C			1	NA	7/20/10 12:36
Turbidity, Field	180.1	16.08	NTU			1	NA	7/20/10 12:36

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Lab Code:

Trail Ridge

Sample Matrix: Sample Name:

Water

MWB11S J1003438-007 Service Request: J1003438

**Date Collected:** 7/20/10 1310

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed
Ammonia as Nitrogen	350.1	0.103	mg/L	0.010	0.004	1	NA	7/26/10 14:15
Chloride	300.0	22.1	mg/L	0.50	0.09	1	NA	7/22/10 05:06
Conductivity, Field	120.1	216	μMHOS/cm			1	NA	7/20/10 13:09
Dissolved Oxygen, Field	360.1	0.5	ppm			1	NA	7/20/10 13:09
Groundwater Elevation	Depth Field	110	Feet			1	NA	7/20/10 13:09
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 05:06
pH, Field	150.1	4.08	pH Units			1	NA	7/20/10 13:09
Solids, Total Dissolved	SM 2540 C	116	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	25.4	deg C			1	NA	7/20/10 13:09
Turbidity, Field	180.1	1.62	NTU			1	NA	7/20/10 13:09

Analytical Report

Client:

Jacksonville, City of

Project:
Sample Matrix:

Trail Ridge

:

Water

Sample Name: Lab Code: MWB11I(R) J1003438-008 Service Request: J1003438

**Date Collected:** 7/20/10 1342

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed
Ammonia as Nitrogen	350.1	0.043 V	mg/L	0.010	0.004	1	NA	7/26/10 14:16
Chloride	300.0	5.35	mg/L	0.50	0.09	1	NA	7/22/10 06:21
Conductivity, Field	120.1	41	μMHOS/cm			1	NA	7/20/10 13:41
Dissolved Oxygen, Field	360.1	0.6	ppm			1	NA	7/20/10 13:41
Groundwater Elevation	Depth Field	109	Feet			1	NA	7/20/10 13:41
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 06:21
pH, Field	150.1	5.18	pH Units			1	NA	7/20/10 13:41
Solids, Total Dissolved	SM 2540 C	22	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	26.3	deg C			1	NA	7/20/10 13:41
Turbidity, Field	180.1	11.49	NTU	·		1	NA	7/20/10 13:41

Analytical Report

Client:

Jacksonville, City of

Project:

Sample Name:

Lab Code:

Trail Ridge

Sample Matrix:

Water

J1003438-009

MWB12D

Service Request: J1003438 **Date Collected:** 7/20/10 1418 Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.169	mg/L	0.010	0.004	1	NA	7/26/10 14:18
Chloride	300.0	3.78	mg/L	0.50	0.09	1	NA	7/22/10 06:36
Conductivity, Field	120.1	420	μMHOS/cm			1	NA	7/20/10 14:17
Dissolved Oxygen, Field	360.1	0.1	ppm			1	NA	7/20/10 14:17
Groundwater Elevation	Depth Field	120	Feet			1	NA	7/20/10 14:17
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 06:36
pH, Field	150.1	7.20	pH Units			1	NA	7/20/10 14:17
Solids, Total Dissolved	SM 2540 C	218	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	25.7	deg C			1	NA	7/20/10 14:17
Turbidity, Field	180.1	2.55	NTU			1	NA	7/20/10 14:17

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB12I

J1003438-010

Service Request: J1003438

**Date Collected:** 7/20/10 1418 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.044	mg/L	0.010	0.004	1	NA	7/26/10 14:25
Chloride	300.0	4.75	mg/L	0.50	0.09	1	NA	7/22/10 08:06
Conductivity, Field	120.1	42	μMHOS/cm			1	NA	7/20/10 14:47
Dissolved Oxygen, Field	360.1	0.2	ppm			1	NA	7/20/10 14:47
Groundwater Elevation	Depth Field	117	Feet			1	NA	7/20/10 14:47
Nitrate as Nitrogen	300.0	<b>0.18</b> I	mg/L	0.20	0.07	1	NA	7/22/10 08:06
pH, Field	150.1	5.34	pH Units			1	NA	7/20/10 14:47
Solids, Total Dissolved	SM 2540 C	29	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	25.3	deg C			1	NA	7/20/10 14:47
Turbidity, Field	180.1	2.03	NTU			1	NA	7/20/10 14:47

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Tran Kiug

Water

MWB7I

Sample Name: Lab Code:

J1003438-011

Service Request: J1003438

**Date Collected:** 7/20/10 1309

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.049	mg/L	0.010	0.004	1	NA	7/26/10 14:25
Chloride	300.0	5.09	mg/L	0.50	0.09	1	NA	7/22/10 08:50
Conductivity, Field	120.1	38	μMHOS/cm			1	NA	7/20/10 13:08
Dissolved Oxygen, Field	360.1	0.0	ppm			1	NA	7/20/10 13:08
Groundwater Elevation	Depth Field	118	Feet			1	NA	7/20/10 13:08
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 08:50
pH, Field	150.1	5.36	pH Units			1	NA	7/20/10 13:08
Solids, Total Dissolved	SM 2540 C	34	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	26.0	deg C			1	NA	7/20/10 13:08
Turbidity, Field	180.1	0.39	NTU			1	NA	7/20/10 13:08

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB7D

J1003438-012

Service Request: J1003438

**Date Collected:** 7/20/10 1340 Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.136	mg/L	0.010	0.004	1	NA	7/26/10 14:26
Chloride	300.0	3.88	mg/L	0.50	0.09	1	NA	7/22/10 09:05
Conductivity, Field	120.1	340	μMHOS/cm			1	NA	7/20/10 13:39
Dissolved Oxygen, Field	360.1	0.0	ppm			1	NA	7/20/10 13:39
Groundwater Elevation	Depth Field	121	Feet			1	NA	7/20/10 13:39
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 09:05
pH, Field	150.1	7.28	pH Units			1	NA	7/20/10 13:39
Solids, Total Dissolved	SM 2540 C	194	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	25.4	deg C			1	NA	7/20/10 13:39
Turbidity, Field	180.1	0.17	NTU			1	NA	7/20/10 13:39

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

MWB21S

Sample Name: Lab Code:

J1003438-013

Service Request: J1003438 **Date Collected:** 7/20/10 1408

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.205	mg/L	0.010	0.004	1	NA	7/26/10 14:27
Chloride	300.0	1.34	mg/L	0.50	0.09	1	NA	7/22/10 09:20
Conductivity, Field	120.1	164	μMHOS/cm			1	NA	7/20/10 14:07
Dissolved Oxygen, Field	360.1	0.0	ppm			1	NA	7/20/10 14:07
Groundwater Elevation	Depth Field	112	Feet			1	NA	7/20/10 14:07
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 09:20
pH, Field	150.1	5.83	pH Units			1	NA	7/20/10 14:07
Solids, Total Dissolved	SM 2540 C	123	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	26.4	deg C			1	NA	7/20/10 14:07
Turbidity, Field	180.1	0.24	NTU			1	NA	7/20/10 14:07

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

MWB22S

Sample Name: Lab Code:

MWB228 J1003438-014 Service Request: J1003438

**Date Collected:** 7/20/10 1515 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.043	mg/L	0.010	0.004	1	NA	7/26/10 14:28
Chloride	300.0	10.7	mg/L	0.50	0.09	1	NA	7/22/10 09:35
Conductivity, Field	120.1	236	μMHOS/cm			1	NA	7/20/10 15:14
Dissolved Oxygen, Field	360.1	0.9	ppm			1	NA	7/20/10 15:14
Groundwater Elevation	Depth Field	116	Feet			1	NA	7/20/10 15:14
Nitrate as Nitrogen	300.0	0.20 I	mg/L	0.20	0.07	1	NA	7/22/10 09:35
pH, Field	150.1	6.01	pH Units			1	NA	7/20/10 15:14
Solids, Total Dissolved	SM 2540 C	164	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	27.8	deg C			1	NA	7/20/10 15:14
Turbidity, Field	180.1	0.40	NTU			1	NA	7/20/10 15:14

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name:

Water DUP02

Lab Code:

J1003438-015

Service Request: J1003438 **Date Collected:** 7/20/10 1515

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.037	mg/L	0.010	0.004	1	NA	7/26/10 14:29
Chloride	300.0	10.6	mg/L	0.50	0.09	1	NA	7/22/10 09:50
Conductivity, Field	120.1	236	μMHOS/cm			1	NA	7/20/10 15:14
Dissolved Oxygen, Field	360.1	0.9	ppm			1	NA	7/20/10 15:14
Groundwater Elevation	Depth Field	116	Feet			1	NA	7/20/10 15:14
Nitrate as Nitrogen	300.0	0.20 I	mg/L	0.20	0.07	1	NA	7/22/10 09:50
pH, Field	150.1	6.01	pH Units			1	NA	7/20/10 15:14
Solids, Total Dissolved	SM 2540 C	159	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	27.8	deg C			1	NA	7/20/10 15:14
Turbidity, Field	180.1	0.40	NTU			1	NA	7/20/10 15:14

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB29D

J1003438-016

Service Request: J1003438

**Date Collected:** 7/20/10 0728

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.086	mg/L	0.010	0.004	1	NA	7/26/10 14:30
Chloride	300.0	5.89	mg/L	0.50	0.09	1	NA	7/21/10 22:23
Conductivity, Field	120.1	69	μMHOS/cm			1	NA	7/20/10 07:27
Dissolved Oxygen, Field	360.1	0.6	ppm			1	NA	7/20/10 07:27
Groundwater Elevation	Depth Field	134	Feet			1	NA	7/20/10 07:27
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/21/10 22:23
pH, Field	150.1	5.63	pH Units			1	NA	7/20/10 07:27
Solids, Total Dissolved	SM 2540 C	51	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	23.3	deg C			1	NA	7/20/10 07:27
Turbidity, Field	180.1	1.90	NTU			1	NA	7/20/10 07:27

Analytical Report

**Client:** 

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

MWB29I

Sample Name: Lab Code:

J1003438-017

Service Request: J1003438

**Date Collected:** 7/20/10 0759 Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.073	mg/L	0.010	0.004	1	NA	7/26/10 14:31
Chloride	300.0	5.22	mg/L	0.50	0.09	1	NA	7/21/10 22:38
Conductivity, Field	120.1	41	μMHOS/cm			1	NA	7/20/10 07:58
Dissolved Oxygen, Field	360.1	0.8	ppm			1	NA	7/20/10 07:58
Groundwater Elevation	Depth Field	134	Feet			1	NA	7/20/10 07:58
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/21/10 22:38
pH, Field	150.1	5.15	pH Units			1	NA	7/20/10 07:58
Solids, Total Dissolved	SM 2540 C	23	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	23.4	deg C			1	NA	7/20/10 07:58
Turbidity, Field	180.1	29.31	NTU			1	NA	7/20/10 07:58

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB29S

Lab Code:

J1003438-018

**Service Request:** J1003438 **Date Collected:** 7/20/10 0828

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.147	mg/L	0.010	0.004	1	NA	7/26/10 14:32
Chloride	300.0	9.31	mg/L	0.50	0.09	1	NA	7/21/10 22:53
Conductivity, Field	120.1	63	μMHOS/cm			1	NA	7/20/10 08:27
Dissolved Oxygen, Field	360.1	0.8	ppm			1	NA	7/20/10 08:27
Groundwater Elevation	Depth Field	131	Feet			1	NA	7/20/10 08:27
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/21/10 22:53
pH, Field	150.1	4.82	pH Units			1	NA	7/20/10 08:27
Solids, Total Dissolved	SM 2540 C	39	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	25.3	deg C			1	NA	7/20/10 08:27
Turbidity, Field	180.1	1.83	NTU			1	NA	7/20/10 08:27

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name:

MWB2I

Lab Code:

J1003438-019

**Date Collected:** 7/20/10 0900 Date Received: 7/21/10

Service Request: J1003438

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.035	mg/L	0.010	0.004	1	NA	7/26/10 14:38
Chloride	300.0	6.86	mg/L	0.50	0.09	1	NA	7/21/10 23:53
Conductivity, Field	120.1	42	μMHOS/cm			1	NA	7/20/10 08:59
Dissolved Oxygen, Field	360.1	0.5	ppm			1	NA	7/20/10 08:59
Groundwater Elevation	Depth Field	138	Feet			1	NA	7/20/10 08:59
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/21/10 23:53
pH, Field	150.1	4.95	pH Units			1	NA	7/20/10 08:59
Solids, Total Dissolved	SM 2540 C	21	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	23.7	deg C			1	NA	7/20/10 08:59
Turbidity, Field	180.1	1.75	NTU			1	NA	7/20/10 08:59

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: W

Water

Sample Name: Lab Code: MWB2S

J1003438-020

Service Request: J1003438

**Date Collected:** 7/20/10 0929 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.019	mg/L	0.010	0.004	1	NA	7/26/10 14:39
Chloride	300.0	1.75	mg/L	0.50	0.09	1	NA	7/22/10 00:37
Conductivity, Field	120.1	28	μMHOS/cm			1	NA	7/20/10 09:28
Dissolved Oxygen, Field	360.1	0.9	ppm			1	NA	7/20/10 09:28
Groundwater Elevation	Depth Field	140	Feet			1	NA	7/20/10 09:28
Nitrate as Nitrogen	300.0	0.18 I	mg/L	0.20	0.07	1	NA	7/22/10 00:37
pH, Field	150.1	4.73	pH Units			1	NA	7/20/10 09:28
Solids, Total Dissolved	SM 2540 C	48	mg/L	10	10	1	NA	7/26/10 21:34
Temperature, Field	170.1	27.5	deg C			1	NA	7/20/10 09:28
Turbidity, Field	180.1	95.31	NTU			1	NA	7/20/10 09:28

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB33S

J1003438-021

Service Request: J1003438

**Date Collected:** 7/20/10 1620 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	1.73	mg/L	0.010	0.004	1	NA	7/26/10 14:39
Chloride	300.0	18.0	mg/L	0.50	0.09	1	NA	7/22/10 10:20
Conductivity, Field	120.1	292	μMHOS/cm			1	NA	7/20/10 16:19
Dissolved Oxygen, Field	360.1	0.4	ppm			1	NA	7/20/10 16:19
Groundwater Elevation	Depth Field	116	Feet			1	NA	7/20/10 16:19
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 10:20
pH, Field	150.1	5.79	pH Units			1	NA	7/20/10 16:19
Solids, Total Dissolved	SM 2540 C	200	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	27.9	deg C			1	NA	7/20/10 16:19
Turbidity, Field	180.1	3.22	NTU			1	NA	7/20/10 16:19

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

MWB27S

Sample Name: Lab Code:

J1003438-022

Service Request: J1003438

**Date Collected:** 7/20/10 0815 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.150	mg/L	0.010	0.004	1	NA	7/26/10 14:40
Chloride	300.0	8.51	mg/L	0.50	0.09	1	NA	7/22/10 00:52
Conductivity, Field	120.1	76	μMHOS/cm			1	NA	7/20/10 08:14
Dissolved Oxygen, Field	360.1	0.10	ppm			1	NA	7/20/10 08:14
Groundwater Elevation	Depth Field	122	Feet			1	NA	7/20/10 08:14
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 00:52
pH, Field	150.1	6.50	pH Units			1	NA	7/20/10 08:14
Solids, Total Dissolved	SM 2540 C	95	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	23.3	deg C			1	NA	7/20/10 08:14
Turbidity, Field	180.1	12.8	NTU			1	NA	7/20/10 08:14

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB27I

J1003438-023

Service Request: J1003438

Date Collected: 7/20/10 0843
Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.062	mg/L	0.010	0.004	1	NA	7/26/10 14:41
Chloride	300.0	4.86	mg/L	0.50	0.09	1	NA	7/22/10 01:07
Conductivity, Field	120.1	48	μMHOS/cm			1	NA	7/20/10 08:42
Dissolved Oxygen, Field	360.1	0.2	ppm			1	NA	7/20/10 08:42
Groundwater Elevation	Depth Field	124	Feet			1	NA	7/20/10 08:42
Nitrate as Nitrogen	300.0	0.18 I	mg/L	0.20	0.07	1	NA	7/22/10 01:07
pH, Field	150.1	5.61	pH Units			1	NA	7/20/10 08:42
Solids, Total Dissolved	SM 2540 C	42	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	24.1	deg C			1	NA	7/20/10 08:42
Turbidity, Field	180.1	0.65	NTU			1	NA	7/20/10 08:42

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

MWB27D

J1003438-024

Service Request: J1003438

**Date Collected:** 7/20/10 0918 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.077	mg/L	0.010	0.004	1	NA	7/26/10 14:42
Chloride	300.0	5.29	mg/L	0.50	0.09	1	NA	7/22/10 01:22
Conductivity, Field	120.1	72	μMHOS/cm			1	NA	7/20/10 09:17
Dissolved Oxygen, Field	360.1	0.2	ppm			1	NA	7/20/10 09:17
Groundwater Elevation	Depth Field	124	Feet			1	NA	7/20/10 09:17
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 01:22
pH, Field	150.1	5.85	pH Units			1	NA	7/20/10 09:17
Solids, Total Dissolved	SM 2540 C	57	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	24.3	deg C			1	NA	7/20/10 09:17
Turbidity, Field	180.1	0.37	NTU			1	NA	7/20/10 09:17

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: DUP01

J1003438-025

Service Request: J1003438

**Date Collected:** 7/20/10 0918 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.078	mg/L	0.010	0.004	1	NA	7/26/10 14:43
Chloride	300.0	5.26	mg/L	0.50	0.09	1	NA	7/22/10 01:37
Conductivity, Field	120.1	72	μMHOS/cm			1	NA	7/20/10 09:17
Dissolved Oxygen, Field	360.1	0.2	ppm			1	NA	7/20/10 09:17
Groundwater Elevation	Depth Field	124	Feet			1	NA	7/20/10 09:17
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 01:37
pH, Field	150.1	5.85	pH Units			1	NA	7/20/10 09:17
Solids, Total Dissolved	SM 2540 C	55	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	24.3	deg C			1	NA	7/20/10 09:17
Turbidity, Field	180.1	0.37	NTU			1	NA	7/20/10 09:17

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

ampie matrix.

Water

MWB31D

Sample Name: Lab Code:

J1003438-026

Service Request: J1003438

**Date Collected:** 7/20/10 1004 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.137	mg/L	0.010	0.004	1	NA	7/26/10 14:44
Chloride	300.0	4.80	mg/L	0.50	0.09	1	NA	7/22/10 01:52
Conductivity, Field	120.1	355	μMHOS/cm			1	NA	7/20/10 10:03
Dissolved Oxygen, Field	360.1	0.1	ppm			1	NA	7/20/10 10:03
Groundwater Elevation	Depth Field	140	Feet			1	NA	7/20/10 10:03
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 01:52
pH, Field	150.1	6.71	pH Units			1	NA	7/20/10 10:03
Solids, Total Dissolved	SM 2540 C	213	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	24.0	deg C			1	NA	7/20/10 10:03
Turbidity, Field	180.1	1.11	NTU			1	NA	7/20/10 10:03

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB17S

J1003438-027

Service Request: J1003438

**Date Collected:** 7/20/10 1042 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.193	mg/L	0.010	0.004	1	NA	7/26/10 14:45
Chloride	300.0	5.98	mg/L	0.50	0.09	1	NA	7/22/10 02:07
Conductivity, Field	120.1	80	μMHOS/cm			1	NA	7/20/10 10:41
Dissolved Oxygen, Field	360.1	1.7	ppm			1	NA	7/20/10 10:41
Groundwater Elevation	Depth Field	133	Feet			1	NA	7/20/10 10:41
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 02:07
pH, Field	150.1	5.60	pH Units			1	NA	7/20/10 10:41
Solids, Total Dissolved	SM 2540 C	50	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	26.8	deg C			1	NA	7/20/10 10:41
Turbidity, Field	180.1	9.56	NTU			1	NA	7/20/10 10:41

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB17D

J1003438-028

Service Request: J1003438

Date Collected: 7/20/10 1115

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.042	mg/L	0.010	0.004	1	NA	7/26/10 14:49
Chloride	300.0	5.78	mg/L	0.50	0.09	1	NA	7/22/10 04:22
Conductivity, Field	120.1	50	μMHOS/cm			1	NA	7/20/10 11:14
Dissolved Oxygen, Field	360.1	0.1	ppm			1	NA	7/20/10 11:14
Groundwater Elevation	Depth Field	132	Feet			1	NA	7/20/10 11:14
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 04:22
pH, Field	150.1	5.55	pH Units			1	NA	7/20/10 11:14
Solids, Total Dissolved	SM 2540 C	41	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	26.9	deg C			1	NA	7/20/10 11:14
Turbidity, Field	180.1	0.31	NTU			1	NA	7/20/10 11:14

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB17I

J1003438-029

Service Request: J1003438

**Date Collected:** 7/20/10 1149 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.025	mg/L	0.010	0.004	1	NA	7/26/10 14:52
Chloride	300.0	4.35	mg/L	0.50	0.09	1	NA	7/22/10 04:36
Conductivity, Field	120.1	27	μMHOS/cm			1	NA	7/20/10 11:48
Dissolved Oxygen, Field	360.1	0.1	ppm			1	NA	7/20/10 11:48
Groundwater Elevation	Depth Field	136	Feet			1	NA	7/20/10 11:48
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 04:36
pH, Field	150.1	5.11	pH Units			1	NA	7/20/10 11:48
Solids, Total Dissolved	SM 2540 C	21	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	26.9	deg C			1	NA	7/20/10 11:48
Turbidity, Field	180.1	0.81	NTU			1	NA	7/20/10 11:48

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB7S

J1003438-030

Service Request: J1003438

**Date Collected:** 7/20/10 1232 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.392	mg/L	0.010	0.004	1	NA	7/26/10 14:54
Chloride	300.0	18.0	mg/L	0.50	0.09	1	NA	7/22/10 04:51
Conductivity, Field	120.1	158	μMHOS/cm			1	NA	7/20/10 12:31
Dissolved Oxygen, Field	360.1	0.0	ppm			1	NA	7/20/10 12:31
Groundwater Elevation	Depth Field	116	Feet			1	NA	7/20/10 12:31
Nitrate as Nitrogen	300.0	0.27	mg/L	0.20	0.07	1	NA	7/22/10 04:51
pH, Field	150.1	5.29	pH Units			1	NA	7/20/10 12:31
Solids, Total Dissolved	SM 2540 C	121	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	27.7	deg C			1	NA	7/20/10 12:31
Turbidity, Field	180.1	14.0	NTU			1	NA	7/20/10 12:31

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Water

Sample Name: Lab Code: MWB12S

ode: J1003438-031

Service Request: J1003438

**Date Collected:** 7/20/10 1520 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.030	mg/L	0.010	0.004	1	NA	7/26/10 14:55
Chloride	300.0	7.34	mg/L	0.50	0.09	1	NA	7/22/10 07:21
Conductivity, Field	120.1	208	μMHOS/cm			1	NA	7/20/10 15:19
Dissolved Oxygen, Field	360.1	0.6	ppm			1	NA	7/20/10 15:19
Groundwater Elevation	Depth Field	115	Feet			1	NA	7/20/10 15:19
Nitrate as Nitrogen	300.0	4.49	mg/L	0.20	0.07	1	NA	7/22/10 07:21
pH, Field	150.1	5.74	pH Units			1	NA	7/20/10 15:19
Solids, Total Dissolved	SM 2540 C	146	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	27.2	deg C			1	NA	7/20/10 15:19
Turbidity, Field	180.1	14.71	NTU			1	NA	7/20/10 15:19

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB13I

J1003438-032

Service Request: J1003438

Date Collected: 7/20/10 1602

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.048	mg/L	0.010	0.004	1	NA	7/26/10 14:56
Chloride	300.0	4.83	mg/L	0.50	0.09	1	NA	7/22/10 10:05
Conductivity, Field	120.1	38	μMHOS/cm			1	NA	7/20/10 16:01
Dissolved Oxygen, Field	360.1	0.3	ppm			1	NA	7/20/10 16:01
Groundwater Elevation	Depth Field	108	Feet			1	NA	7/20/10 16:01
Nitrate as Nitrogen	300.0	0.18 I	mg/L	0.20	0.07	1	NA	7/22/10 10:05
pH, Field	150.1	5.32	pH Units			1	NA	7/20/10 16:01
Solids, Total Dissolved	SM 2540 C	35	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	25.9	deg C			1	NA	7/20/10 16:01
Turbidity, Field	180.1	4.46	NTU			1	NA	7/20/10 16:01

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB13S

J1003438-033

Service Request: J1003438

**Date Collected: 7/21/10 0909** 

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	ND U	mg/L	0.010	0.004	1	NA	7/26/10 14:57
Chloride	300.0	31.3	mg/L	0.50	0.09	1	NA	7/22/10 10:35
Conductivity, Field	120.1	312	μMHOS/cm			1	NA	7/21/10 09:08
Dissolved Oxygen, Field	360.1	1.0	ppm			1	NA	7/21/10 09:08
Groundwater Elevation	Depth Field	113	Feet			1	NA	7/21/10 09:08
Nitrate as Nitrogen	300.0	0.78	mg/L	0.20	0.07	1	NA	7/22/10 10:35
pH, Field	150.1	5.62	pH Units			1	NA	7/21/10 09:08
Solids, Total Dissolved	SM 2540 C	188	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	25.9	deg C			1	NA	7/21/10 09:08
Turbidity, Field	180.1	19.32	NTU			1	NA	7/21/10 09:08

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB32S

J1003438-034

Service Request: J1003438

Date Collected: 7/21/10 1109

Date Received: 7/21/10 1

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.232	mg/L	0.010	0.004	1	NA	7/26/10 15:01
Chloride	300.0	28.7	mg/L	0.50	0.09	1	NA	7/22/10 10:50
Conductivity, Field	120.1	455	μMHOS/cm			1	NA	7/21/10 11:08
Dissolved Oxygen, Field	360.1	0.1	ppm			1	NA	7/21/10 11:08
Groundwater Elevation	Depth Field	117	Feet			1	NA	7/21/10 11:08
Nitrate as Nitrogen	300.0	0.65	mg/L	0.20	0.07	1	NA	7/22/10 10:50
pH, Field	150.1	6.13	pH Units			1	NA	7/21/10 11:08
Solids, Total Dissolved	SM 2540 C	345	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	25.7	deg C			1	NA	7/21/10 11:08
Turbidity, Field	180.1	13.3	NTU			1	NA	7/21/10 11:08

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB32I

J1003438-035

Service Request: J1003438

**Date Collected:** 7/21/10 1219 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.042	mg/L	0.010	0.004	1	NA	7/26/10 15:02
Chloride	300.0	4.79	mg/L	0.50	0.09	1	NA	7/22/10 12:05
Conductivity, Field	120.1	38	μMHOS/cm			1	NA	7/21/10 12:18
Dissolved Oxygen, Field	360.1	0.3	ppm			1	NA	7/21/10 12:18
Groundwater Elevation	Depth Field	118	Feet			1	NA	7/21/10 12:18
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 12:05
pH, Field	150.1	5.45	pH Units			1	NA	7/21/10 12:18
Solids, Total Dissolved	SM 2540 C	30	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	25.2	deg C			1	NA	7/21/10 12:18
Turbidity, Field	180.1	12.1	NTU			1	NA	7/21/10 12:18

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB32D

J1003438-036

Service Request: J1003438

**Date Collected:** 7/21/10 1243 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.079	mg/L	0.010	0.004	1	NA	7/26/10 15:03
Chloride	300.0	5.14	mg/L	0.50	0.09	1	NA	7/22/10 12:20
Conductivity, Field	120.1	70	μMHOS/cm			1	NA	7/21/10 10:42
Dissolved Oxygen, Field	360.1	1.5	ppm			1	NA	7/21/10 10:42
Groundwater Elevation	Depth Field	118	Feet			1	NA	7/21/10 10:42
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 12:20
pH, Field	150.1	5.75	pH Units			1	NA	7/21/10 10:42
Solids, Total Dissolved	SM 2540 C	51	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	26.5	deg C			1	NA	7/21/10 10:42
Turbidity, Field	180.1	1.41	NTU			1	NA	7/21/10 10:42

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB34S

J1003438-037

Service Request: J1003438

**Date Collected:** 7/21/10 0959 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	2.02	mg/L	0.010	0.004	1	NA	7/26/10 15:04
Chloride	300.0	40.0	mg/L	0.50	0.09	1	NA	7/22/10 12:35
Conductivity, Field	120.1	950	μMHOS/cm			1	NA	7/21/10 09:58
Dissolved Oxygen, Field	360.1	0.1	ppm			1	NA	7/21/10 09:58
Groundwater Elevation	Depth Field	117	Feet			1	NA	7/21/10 09:58
Nitrate as Nitrogen	300.0	<b>0.19</b> I	mg/L	0.20	0.07	1	NA	7/22/10 12:35
pH, Field	150.1	6.14	pH Units		·	1	NA	7/21/10 09:58
Solids, Total Dissolved	SM 2540 C	659	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	26.9	deg C			1	NA	7/21/10 09:58
Turbidity, Field	180.1	0.33	NTU			1	NA	7/21/10 09:58

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: MWB34I

J1003438-038

Service Request: J1003438

**Date Collected:** 7/21/10 1228

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.053	mg/L	0.010	0.004	1	NA	7/26/10 15:05
Chloride	300.0	4.98	mg/L	0.50	0.09	1	NA	7/22/10 12:50
Conductivity, Field	120.1	46	μMHOS/cm			1	NA	7/21/10 12:27
Dissolved Oxygen, Field	360.1	0.4	ppm			1	NA	7/21/10 12:27
Groundwater Elevation	Depth Field	117	Feet			1	NA	7/21/10 12:27
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 12:50
pH, Field	150.1	5.44	pH Units			1	NA	7/21/10 12:27
Solids, Total Dissolved	SM 2540 C	36	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	27.2	deg C			1	NA	7/21/10 12:27
Turbidity, Field	180.1	4.89	NTU			1	NA	7/21/10 12:27

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

MWB34D

J1003438-039

Service Request: J1003438 **Date Collected:** 7/21/10 0924

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.179	mg/L	0.010	0.004	1	NA	7/26/10 15:06
Chloride	300.0	4.42	mg/L	0.50	0.09	1	NA	7/22/10 13:05
Conductivity, Field	120.1	421	μMHOS/cm			1	NA	7/21/10 09:23
Dissolved Oxygen, Field	360.1	0.1	ppm			1	NA	7/21/10 09:23
Groundwater Elevation	Depth Field	117	Feet			1	NA	7/21/10 09:23
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 13:05
pH, Field	150.1	7.06	pH Units			1	NA	7/21/10 09:23
Solids, Total Dissolved	SM 2540 C	247	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	25.5	deg C			1	NA	7/21/10 09:23
Turbidity, Field	180.1	0.32	NTU			1	NA	7/21/10 09:23

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 **Date Collected:** 7/21/10 1219

Date Received: 7/21/10

Sample Name:

DUP03

Lab Code:

J1003438-040

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.049	mg/L	0.010	0.004	1	NA	7/26/10 15:07
Chloride	300.0	4.80	mg/L	0.50	0.09	1	NA	7/22/10 13:19
Conductivity, Field	120.1	38	μMHOS/cm			1	NA	7/21/10 12:18
Dissolved Oxygen, Field	360.1	0.3	ppm			1	NA	7/21/10 12:18
Groundwater Elevation	Depth Field	118	Feet			1	NA	7/21/10 12:18
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 13:19
pH, Field	150.1	5.45	pH Units			1	NA	7/21/10 12:18
Solids, Total Dissolved	SM 2540 C	32	mg/L	10	10	1	NA	7/26/10 21:35
Temperature, Field	170.1	25.2	deg C			1	NA	7/21/10 12:18
Turbidity, Field	180.1	12.1	NTU			1	NA	7/21/10 12:18

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

DUP04

J1003438-041

Service Request: J1003438

**Date Collected:** 7/21/10 1228 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.057	mg/L	0.010	0.004	1	NA	7/26/10 15:09
Chloride	300.0	4.98	mg/L	0.50	0.09	1	NA	7/22/10 13:34
Conductivity, Field	120.1	46	μMHOS/cm			1	NA	7/21/10 12:27
Dissolved Oxygen, Field	360.1	0.4	ppm			1	NA	7/21/10 12:27
Groundwater Elevation	Depth Field	117	Feet			1	NA	7/21/10 12:27
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 13:34
pH, Field	150.1	5.44	pH Units			1	NA	7/21/10 12:27
Solids, Total Dissolved	SM 2540 C	35	mg/L	10	10	1	NA	7/27/10 15:47
Temperature, Field	170.1	27.2	deg C			1	NA	7/21/10 12:27
Turbidity, Field	180.1	4.89	NTU			1	NA	7/21/10 12:27

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: FB

J1003438-042

Service Request: J1003438

**Date Collected:** 7/21/10 1253

**Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.01	I	mg/L	0.010	0.004	1	NA	7/26/10 15:14
Chloride	300.0	ND	U	mg/L	0.50	0.09	1	NA	7/22/10 14:47
Nitrate as Nitrogen	300.0	ND	U	mg/L	0.20	0.07	1	NA	7/22/10 14:47
Solids, Total Dissolved	SM 2540 C	ND	U	mg/L	10	10	1	NA	7/27/10 15:47

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Method Blank

Sample Name: Lab Code:

J1003438-MB1

Service Request: J1003438

Date Collected: NA Date Received: NA

Basis: NA

# **General Chemistry Parameters**

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.005	I	mg/L	0.010	0.004	1	NA	7/26/10 13:38
Chloride	300.0	ND	U	mg/L	0.50	0.09	1	NA	7/21/10 15:36
Nitrate as Nitrogen	300.0	ND	U	mg/L	0.20	0.07	1	NA	7/21/10 15:36
Solids, Total Dissolved	SM 2540 C	ND	U	mg/L	10	10	1	NA	7/26/10 21:34

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Sample Name:

Lab Code:

Trail Ridge

Sample Matrix:

Water

Method Blank J1003438-MB2

Service Request: J1003438

Date Collected: NA Date Received: NA

Basis: NA

# **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed
Ammonia as Nitrogen	350.1	ND U	mg/L	0.010	0.004	1	NA	7/26/10 16:39
Chloride	300.0	ND U	mg/L	0.50	0.09	1	NA	7/22/10 06:51
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 06:51
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	10	10	1	NA	7/26/10 21:35

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank

J1003438-MB3

Service Request: J1003438

Date Collected: NA
Date Received: NA

Basis: NA

# **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	ND U	mg/L	0.010	0.004	1	NA	7/26/10 16:40
Chloride	300.0	ND U	mg/L	0.50	0.09	1	NA	7/22/10 13:49
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 13:49
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	10	10	1	NA	7/27/10 15:47

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Units: Percent

# Surrogate Recovery Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
MWB3S	J1003438-001	94	109	96	96
MWB3I	J1003438-002	98	102	96	99
MWB19D	J1003438-003	96	100	98	102
MWB19I	J1003438-004	98	102	94	101
MWB19S	J1003438-005	99	104	100	95
MWB20S	J1003438-006	99	106	97	102
MWB11S	J1003438-007	98	106	96	99
MWB11I(R)	J1003438-008	98	104	99	98
MWB12D	J1003438-009	94	104	95	99
MWB12I	J1003438-010	98	103	98	100
MWB7I	J1003438-011	98	101	95	101
MWB7D	J1003438-012	100	102	101	98
MWB21S	J1003438-013	98	104	98	98
MWB22S	J1003438-014	97	103	94	99
DUP02	J1003438-015	98	109	97	99
MWB29D	J1003438-016	95	108	95	97
MWB29I	J1003438-017	93	99	93	97
MWB29S	J1003438-018	95	105	93	97
MWB2I	J1003438-019	96	101	98	97
MWB2S	J1003438-020	96	105	98	99
MWB33S	J1003438-021	99	105	98	104
MWB27S	J1003438-022	99	107	97	97
MWB27I	J1003438-023	99	105	98	97
MWB27D	J1003438-024	99	105	97	101
DUP01	J1003438-025	97	104	98	95
MWB31D	J1003438-026	96	105	96	98
MWB17S	J1003438-027	104	105	103	103
MWB17D	J1003438-028	99	105	99	98
MWB17I	J1003438-029	92	102	94	99
MWB7S	J1003438-030	95	104	95	96
MWB12S	J1003438-031	99	106	96	100
MWB13I	J1003438-032	96	107	95	103
MWB13S	J1003438-033	97	107	97	96
MWB32S	J1003438-034	97	107	97	97
MWB32I	J1003438-035	100	107	99	104

#### Surrogate Recovery Control Limits (%)

Sur1	= 1,2-Dichloroethane-d4	71 - 122
Sur2	= 4-Bromofluorobenzene	75 - 120
Sur3	= Dibromofluoromethane	82 - 116
Sur4	= Toluene-d8	88 - 117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed 7/30/10 16:33

Surrogate Summary

237

SuperSet Reference:

10-0000149595 rev 00

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

# Surrogate Recovery Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B Units: Percent

Sample Name	Lab Code	Sur1	Sur2	Sur3	<u>Sur4</u>
MWB32D	J1003438-036	100	103	97	97
MWB34S	J1003438-037	98	108	97	96
MWB34I	J1003438-038	98	110	96	93
MWB34D	J1003438-039	100	113	100	102
DUP03	J1003438-040	95	103	95	94
DUP04	J1003438-041	102	109	102	105
FB	J1003438-042	96	105	93	97
Trip Blank	J1003438-043	99	107	97	94
Method Blank	JQ1002990-02	100	102	95	99
Method Blank	JQ1003037-02	93	104	95	101
Method Blank	JQ1003038-02	96	107	96	96
Method Blank	JQ1003076-02	106	103	103	106
Lab Control Sample	JQ1002990-01	102	104	95	101
Lab Control Sample	JQ1003037-01	99	96	97	95
Lab Control Sample	JQ1003038-01	95	99	96	97
Lab Control Sample	JQ1003076-01	111	95	107	104
MWB22SMS	JQ1002990-03	97	99	97	98
MWB22SDMS	JQ1002990-04	96	101	97	96
MWB17DMS	JQ1003037-03	97	101	94	93
MWB17DDMS	JQ1003037-04	102	101	95	100
MWB17IMS	JQ1003038-03	94	100	97	94
MWB17IDMS	JQ1003038-04	95	103	95	98

# Surrogate Recovery Control Limits (%)

Sur1	- 12 Diahlaraathana da	71 - 122	
Suri	= 1,2-Dichloroethane-d4	/1 - 122	
Sur2	= 4-Bromofluorobenzene	75 - 120	
Sur3	= Dibromofluoromethane	82 - 116	
Sur4	= Toluene-d8	88 - 117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 **Date Collected:** 7/20/10

Date Received: 7/21/10 Date Analyzed: 7/27/10

# Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

MWB22S

Lab Code:

J1003438-014

Units: µg/L Basis: NA

Analytical Method: 8260B

Analyte Name	Sample Result	N	MWB22SMS Matrix Spike Q1002990-03 Spike Amount	<del>:</del>	Duplic	WB22SDMS cate Matrix S Q1002990-04 Spike Amount	Spike	% Rec Limits	RPD	RPD Limit
1,1,1,2-Tetrachloroethane	ND	20.0	20.0	100	20.6	20.0	103	82 - 118	3	30
1,1,1-Trichloroethane (TCA)	ND ND	19.3	20.0	96	20.3	20.0	103	76 - 130	<i>5</i>	30
1,1,2,2-Tetrachloroethane	ND	19.1	20.0	96	19.8	20.0	99	72 - 127	4	30
1,1,2-Trichloroethane	ND	20.7	20.0	103	20.4	20.0	102	77 - 124	1	30
1,1-Dichloroethane (1,1-DCA)	ND	19.7	20.0	99	19.5	20.0	97	78 - 125	1	30
1,1-Dichloroethene (1,1-DCE)	ND	20.0	20.0	100	19.9	20.0	100	79 - 133	0	30
1,2,3-Trichloropropane	ND	19.3	20.0	97	19.6	20.0	98	76 - 123	2	30
1,2-Dibromo-3-chloropropane (DBC	ND	16.8	20.0	84	17.4	20.0	87	54 - 120	4	30.
1,2-Dibromoethane (EDB)	ND	18.8	20.0	94	19.4	20.0	97	81 - 119	3	30
1,2-Dichlorobenzene	ND	18.7	20.0	94	19.3	20.0	96	77 - 116	3	30
1,2-Dichloroethane	ND	20.9	20.0	105	19.6	20.0	98	74 - 126	7	30
1,2-Dichloropropane	ND	20.6	20.0	103	20.1	20.0	101	77 - 122	3	30
1,4-Dichlorobenzene	ND	18.3	20.0	92	19.7	20.0	99	75 - 115	7	30
2-Butanone (MEK)	ND	94.3	100	94	96.9	100	97	63 - 134	3	30
2-Hexanone	ND	97.7	100	98	96.9	100	97	63 - 142	1	30
4-Methyl-2-pentanone (MIBK)	ND	100	100	100	97.5	100	97	65 - 138	3	30
Acetone	ND	77.4	100	77	77.5	100	77	56 - 139	0	30
Acrylonitrile	ND	101	100	101	98.8	100	99	68 - 131	2	30
Benzene	ND	19.8	20.0	99	19.2	20.0	96	78 - 123	3	30
Bromochloromethane	ND	18.8	20.0	94	20.0	20.0	100	80 - 124	6	30
Bromodichloromethane	ND	19.4	20.0	97	19.4	20.0	97	79 - 125	0	30
Bromoform	ND	18.0	20.0	90	17.3	20.0	86	70 - 129	4	30
Bromomethane	ND	19.0	20.0	95	19.3	20.0	97	78 - 129	2	30
Carbon Disulfide	ND	98.6	100	99	100	100	100	71 - 146	2	30
Carbon Tetrachloride	ND	18.2	20.0	91	17.8	20.0	89	76 - 131	2	30
Chlorobenzene	ND	19.8	20.0	99	20.3	20.0	102	81 - 120	2	30
Chloroethane	ND	18.2	20.0	91	19.2	20.0	96	76 - 129	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed 7/30/10 16:33

\\Inflow2\Starlims\LimsReps\MatrixSpike.rpt

Matrix Spike Summary

239

SuperSet Reference:

10-0000149595 rev 00

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10 Date Received: 7/21/10 Date Analyzed: 7/27/10

# Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MWB22S

J1003438-014

Units: µg/L Basis: NA

Analytical Method: 8260B

		MWB22SMS Matrix Spike JQ1002990-03			Duplic	(WB22SDM) cate Matrix Q1002990-04	Spike				
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit	
Chloroform	ND	19.4	20.0	97	20.1	20.0	100	81 - 124	4	30	
Chloromethane	ND	20.4	20.0	102	20.6	20.0	103	73 - 139	1	30	
cis-1,2-Dichloroethene	ND	19.8	20.0	99	19.5	20.0	97	75 - 127	1	30	
cis-1,3-Dichloropropene	ND	19.2	20.0	96	18.6	20.0	93	77 - 117	3	30	
Dibromochloromethane	ND	20.0	20.0	100	19.6	20.0	98	78 - 124	2	30	
Dibromomethane	ND	19.9	20.0	99	20.1	20.0	101	78 - 124	1	30	
Ethylbenzene	ND	20.0	20.0	100	19.4	20.0	97	87 - 122	3	30	
Iodomethane	ND	96.5	100	96	97.0	100	97	74 - 134	1	30	
m,p-Xylenes	ND	41.0	40.0	103	40.8	40.0	102	82 - 120	1	30	
Methylene Chloride	ND	17.9	20.0	90	19.2	20.0	96	75 - 123	7	30	
o-Xylene	ND	20.1	20.0	100	20.1	20.0	101	85 - 119	0	30	
Styrene	ND	19.8	20.0	99	19.7	20.0	98	84 - 126	1	30	
Tetrachloroethene (PCE)	ND	19.4	20.0	97	19.5	20.0	97	79 - 123	0	30	
Toluene	ND	20.5	20.0	103	20.3	20.0	101	86 - 119	1	30	
trans-1,2-Dichloroethene	ND	19.1	20.0	96	19.5	20.0	98	76 - 125	2	30	
trans-1,3-Dichloropropene	ND	18.3	20.0	92	17.9	20.0	89	75 - 120	2	30	
trans-1,4-Dichloro-2-butene	ND	8.64	20.0	43	15.5	20.0	78	22 - 135	57	* 30	
Trichloroethene (TCE)	ND	20.7	20.0	103	20.4	20.0	102	77 - 128	1	30	
Trichlorofluoromethane	ND	18.8	20.0	94	19.5	20.0	98	81 - 133	4	30	
Vinyl Acetate	ND	72.0	100	72	72.3	100	72	43 - 163	0	30	
Vinyl Chloride	ND	20.3	20.0	101	20.3	20.0	101	78 - 141	0	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed 7/30/10 16:33 \\Inflow2\Starlims\LimsReps\MatrixSpike.rpt Matrix Spike Summary

240

SuperSet Reference:

10-0000149595 rev 00

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10

Date Received: 7/21/10

Date Analyzed: 7/27/10

# Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

MWB17D

Lab Code:

J1003438-028

Units: μg/L Basis: NA

Analytical Method: 8260B

	Sample	N	AWB17DMS Aatrix Spike Q1003037-03 Spike	<b>:</b>	Duplic	WB17DDM ate Matrix Q1003037-04 Spike	Spike	% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND	19.0	20.0	95	18.6	20.0	93	82 - 118	2	30
1,1,1-Trichloroethane (TCA)	ND	19.4	20.0	97	18.1	20.0	90	76 - 130	7	30
1,1,2,2-Tetrachloroethane	ND	18.4	20.0	92	19.3	20.0	96	72 - 127	5	30
1,1,2-Trichloroethane	ND	18.8	20.0	94	19.5	20.0	98	77 - 124	4	30
1,1-Dichloroethane (1,1-DCA)	ND	19.2	20.0	96	17.6	20.0	88	78 - 125	9	30
1,1-Dichloroethene (1,1-DCE)	ND	19.7	20.0	99	18.0	20.0	90	79 - 133	9	30
1,2,3-Trichloropropane	ND	18.3	20.0	92	18.8	20.0	94	76 - 123	- 3	30
1,2-Dibromo-3-chloropropane (DBC	ND	16.7	20.0	84	17.4	20.0	87	54 - 120	4	30.
1,2-Dibromoethane (EDB)	ND	19.6	20.0	98	19.2	20.0	96	81 - 119	2	30
1,2-Dichlorobenzene	ND	18.7	20.0	94	17.4	20.0	- 87	77 - 116	7	30
1,2-Dichloroethane	ND	19.1	20.0	95	19.0	20.0	95	74 - 126	0	30
1,2-Dichloropropane	ND	19.8	20.0	99	18.4	20.0	92	77 - 122	8	30
1,4-Dichlorobenzene	ND	18.1	20.0	90	18.1	20.0	91	75 - 115	0	30
2-Butanone (MEK)	ND	105	100	105	101	100	101	63 - 134	3	30
2-Hexanone	ND	96.7	100	97	98.8	100	99	63 - 142	2	30
4-Methyl-2-pentanone (MIBK)	ND	98.3	100	98	101	100	101	65 - 138	3	30
Acetone	ND	125	100	125	116	100	116	56 - 139	8	30
Acrylonitrile	ND	101	100	101	97.7	100	98	68 - 131	3	30
Benzene	ND	19.5	20.0	97	18.0	20.0	90	78 - 123	8	30
Bromochloromethane	ND	19.2	20.0	96	17.9	20.0	90	80 - 124	7	30
Bromodichloromethane	ND	19.5	20.0	98	18.4	20.0	92	79 - 125	6	30
Bromoform	ND	18.1	20.0	90	18.1	20.0	91	70 - 129	0	30
Bromomethane	ND	18.4	20.0	92	17.1	20.0	86	78 - 129	7	30
Carbon Disulfide	ND	96.8	100	97	91.0	100	91	71 - 146	6	30
Carbon Tetrachloride	ND	18.1	20.0	90	16.9	20.0	84	76 - 131	7	30
Chlorobenzene	ND	19.5	20.0	97	18.6	20.0	93	81 - 120	4	30
Chloroethane	ND	16.5	20.0	83	17.3	20.0	86	76 - 129	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

SuperSet Reference:

241 10-0000149595 rev 00

Printed 7/30/10 16:33

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10 **Date Received:** 7/21/10

Date Analyzed: 7/27/10

# Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

MWB17D

Lab Code:

J1003438-028

Units: μg/L Basis: NA

Analytical Method: 8260B

		N	MWB17DMS Matrix Spike JQ1003037-03		MWB17DDMS <b>Duplicate Matrix Spike</b> JQ1003037-04					
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Chloroform	ND	19.2	20.0	96	18.1	20.0	90	81 - 124	6	30
Chloromethane	ND	18.1	20.0	91	17.0	20.0	85	73 - 139	6	30
cis-1,2-Dichloroethene	ND	18.6	20.0	93	18.1	20.0	90	75 - 127	3	30
cis-1,3-Dichloropropene	ND	18.6	20.0	93	18.5	20.0	93	77 - 117	0	30
Dibromochloromethane	ND	19.2	20.0	96	18.9	20.0	95	78 - 124	2	30
Dibromomethane	ND	20.0	20.0	100	19.2	20.0	96	78 - 124	4	30
Ethylbenzene	ND	19.3	20.0	97	18.8	20.0	94	87 - 122	3	30
Iodomethane	ND	94.6	100	95	88.2	100	88	74 - 134	7	30
m,p-Xylenes	ND	40.3	40.0	101	38.5	40.0	96	82 - 120	4	30
Methylene Chloride	ND	18.4	20.0	92	17.7	20.0	88	75 - 123	4	30
o-Xylene	ND	19.5	20.0	97	19.4	20.0	97	85 - 119	0	30
Styrene	ND	18.7	20.0	93	19.1	20.0	95	84 - 126	2	30
Tetrachloroethene (PCE)	ND	19.1	20.0	96	18.6	20.0	93	79 - 123	3	30
Toluene	ND	19.5	20.0	97	19.2	20.0	96	86 - 119	1	30
trans-1,2-Dichloroethene	ND	18.9	20.0	94	17.8	20.0	89	76 - 125	6	30
trans-1,3-Dichloropropene	ND	18.3	20.0	92	18.9	20.0	94	75 - 120	3	30
trans-1,4-Dichloro-2-butene	ND	13.5	20.0	68	19.5	20.0	97	22 - 135	36 '	* 30
Trichloroethene (TCE)	ND	19.4	20.0	97	18.3	20.0	91	77 - 128	6	30
Trichlorofluoromethane	ND	18.7	20.0	94	17.3	20.0	87	81 - 133	8	30
Vinyl Acetate	ND	96.8	100	97	94.0	100	94	43 - 163	3	30
Vinyl Chloride	ND	19.3	20.0	96	17.5	20.0	88	78 - 141	9	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed 7/30/10 16:33

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10 Date Received: 7/21/10 Date Analyzed: 7/28/10

# Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

MWB17I

J1003438-029

Units: µg/L Basis: NA

Analytical Method: 8260B

	Sample	N	MWB17IMS Matrix Spike Q1003038-03 Spike	:	Duplic	IWB17IDMS eate Matrix Q1003038-04 Spike	Spike	% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND	18.1	20.0	91	16.7	20.0	83	82 - 118	8	30
1,1,1-Trichloroethane (TCA)	ND	18.5	20.0	93	15.9	20.0	80	76 - 130	15	30
1,1,2,2-Tetrachloroethane	ND	18.6	20.0	93	17.9	20.0	90	72 - 127	4	30
1,1,2-Trichloroethane	ND	18.3	20.0	92	17.7	20.0	89	77 - 124	3	30
1,1-Dichloroethane (1,1-DCA)	ND	18.6	20.0	93	16.7	20.0	83	78 - 125	11	30
1,1-Dichloroethene (1,1-DCE)	ND	18.9	20.0	95	16.4	20.0	82	79 - 133	14	. 30
1,2,3-Trichloropropane	ND	17.5	20.0	87	17.7	20.0	88	76 - 123	1	30
1,2-Dibromo-3-chloropropane (DBC	ND	15.9	20.0	80	16.5	20.0	82	54 - 120	4	30.
1,2-Dibromoethane (EDB)	ND	18.2	20.0	91	17.5	20.0	87	81 - 119	4	30
1,2-Dichlorobenzene	ND	18.1	20.0	90	16.1	20.0	81	77 - 116	12	30
1,2-Dichloroethane	ND	17.5	20.0	87	16.6	20.0	83	74 - 126	5	30
1,2-Dichloropropane	ND	19.2	20.0	96	17.2	20.0	86	77 - 122	11	30
1,4-Dichlorobenzene	ND	17.2	20.0	86	15.4	20.0	77	75 - 115	11	30
2-Butanone (MEK)	ND	88.1	100	88	95.0	100	95	63 - 134	8	30
2-Hexanone	ND	91.9	100	92	91.9	100	92	63 - 142	0	30
4-Methyl-2-pentanone (MIBK)	ND	95.3	100	95	94.1	100	94	65 - 138	1	30
Acetone	ND	75.0	100	75	77.3	100	77	56 - 139	3	30
Acrylonitrile	ND	98.5	100	99	89.9	100	90	68 - 131	9	30
Benzene	ND	18.4	20.0	92	17.1	20.0	86	78 - 123	7	30
Bromochloromethane	ND	17.8	20.0	89	16.7	20.0	83	80 - 124	6	30
Bromodichloromethane	ND	18.2	20.0	91	16.3	20.0	82	79 - 125	11	30
Bromoform	ND	16.3	20.0	81	15.3	20.0	77	70 - 129	6	30
Bromomethane	ND	17.8	20.0	89	15.2	20.0	76 3	* 78 - 129	16	30
Carbon Disulfide	ND	96.1	100	96	83.5	100	83	71 - 146	14	30
Carbon Tetrachloride	ND	16.9	20.0	85	15.2	20.0	76	76 - 131	11	30
Chlorobenzene	ND	18.5	20.0	93	16.8	20.0	84	81 - 120	10	30
Chloroethane	ND	17.6	20.0	88	15.9	20.0	79	76 - 129	11	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed 7/30/10 16:33

Matrix Spike Summary

243

SuperSet Reference:

10-0000149595 rev 00

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 Date Collected: 7/20/10

Date Collected: 7/20/10 Date Received: 7/21/10 Date Analyzed: 7/28/10

# Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

MWB17I

Lab Code:

J1003438-029

Units: μg/L Basis: NA

Analytical Method: 8260B

		MWB17IMS <b>Matrix Spike</b> JQ1003038-03			Duplic	WB17IDMS eate Matrix (2) 21003038-04				
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Chloroform	ND	18.5	20.0	93	16.5	20.0	-83	81 - 124	11	30
Chloromethane	ND	18.0	20.0	90	15.6	20.0	78	73 - 139	14	30
cis-1,2-Dichloroethene	ND	18.2	20.0	91	16.3	20.0	81	75 - 127	11	30
cis-1,3-Dichloropropene	ND	16.9	20.0	85	16.0	20.0	80	77 - 117	6	30
Dibromochloromethane	ND	18.0	20.0	90	17.1	20.0	86	78 - 124	5	30
Dibromomethane	ND .	18.9	20.0	95	17.7	20.0	88	78 - 124	7	30
Ethylbenzene	ND	18.0	20.0	90	16.9	20.0	84	* 87 - 122	6	30
Iodomethane	ND	92.5	100	93	81.5	100	82	74 - 134	13	30
m,p-Xylenes	ND	37.9	40.0	95	34.3	40.0	86	82 - 120	10	30
Methylene Chloride	ND	18.7	20.0	93	16.8	20.0	84	75 - 123	11	30
o-Xylene	ND	19.3	20.0	97	16.8	20.0	84	* 85 - 119	14	30
Styrene	ND	17.7	20.0	88	15.7	20.0	78	* 84 - 126	12	30
Tetrachloroethene (PCE)	ND	17.5	20.0	88	16.3	20.0	81	79 - 123	7	30
Toluene	ND	18.5	20.0	92	17.3	20.0	86	86 - 119	7	30
trans-1,2-Dichloroethene	ND	18.2	20.0	91	16.0	20.0	80	76 - 125	13	30
trans-1,3-Dichloropropene	ND	15.9	20.0	79	14.8	20.0	74	* 75 - 120	7	30
trans-1,4-Dichloro-2-butene	ND	16.4	20.0	82	16.0	20.0	80	22 - 135	2	30
Trichloroethene (TCE)	ND	18.6	20.0	93	16.8	20.0	84	77 - 128	10	30
Trichlorofluoromethane	ND	17.9	20.0	90	15.4	20.0	77	* 81 - 133	15	30
Vinyl Acetate	ND	71.2	100	71	66.4	100	66	43 - 163	7	30
Vinyl Chloride	ND	18.6	20.0	93	16.7	20.0	83	78 - 141	11	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

244

Printed 7/30/10 16:33

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 Date Analyzed: 7/26/10

Lab Control Sample Summary

**Analytical Method:** 

8260B

Volatile Organic Compounds by GC/MS

Units: μg/L Basis: NA

Analysis Lot: 210096

Lab Control Sample JQ1002990-01

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
1,1,1,2-Tetrachloroethane	19.0	20.0	95	85 - 117	
1,1,1-Trichloroethane (TCA)	17.7	20.0	88	79 - 124	
1,1,2,2-Tetrachloroethane	18.8	20.0	94	83 - 120	
1,1,2-Trichloroethane	19.1	20.0	96	86 - 114	
1,1-Dichloroethane (1,1-DCA)	17.4	20.0	87	80 - 128	
1,1-Dichloroethene (1,1-DCE)	18.0	20.0	90	78 - 130	
1,2,3-Trichloropropane	19.4	20.0	97	83 - 123	
1,2-Dibromo-3-chloropropane (DBCP)	16.9	20.0	84	62 - 123	
1,2-Dibromoethane (EDB)	19.1	20.0	96	88 - 117	
1,2-Dichlorobenzene	18.5	20.0	92	84 - 115	
1,2-Dichloroethane	19.9	20.0	99	80 - 124	
1,2-Dichloropropane	18.6	20.0	93	79 - 123	
1,4-Dichlorobenzene	18.5	20.0	93	83 - 113	
2-Butanone (MEK)	92.9	100	93	73 - 127	
2-Hexanone	94.2	100	94	71 - 138	
4-Methyl-2-pentanone (MIBK)	97.6	100	98	72 - 136	
Acetone	114	100	114	67 - 133	
Acrylonitrile	94.4	100	94	77 - 127	
Benzene	18.3	20.0	92	79 - 119	
Bromochloromethane	18.5	20.0	92	79 - 129	
Bromodichloromethane	17.7	20.0	88	81 - 123	
Bromoform	16.9	20.0	85	68 - 129	
Bromomethane	17.7	20.0	88	79 - 130	
Carbon Disulfide	89.0	100	89	76 - 138	
Carbon Tetrachloride	16.7	20.0	84	81 - 125	
Chlorobenzene	18.7	20.0	94	86 - 113	
Chloroethane	16.9	20.0	85	74 - 126	
Chloroform	18.4	20.0	92	83 - 124	
Chloromethane	17.9	20.0	89	67 - 135	
cis-1,2-Dichloroethene	17.7	20.0	89	80 - 126	
cis-1,3-Dichloropropene	19.4	20.0	97	86 - 123	
Dibromochloromethane	19.2	20.0	96	82 - 121	
Dibromomethane	18.8	20.0	94	83 - 123	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Printed 7/30/10 16:34

Lab Control Sample Summary

245 10-0000149595 rev 00

 $\verb|\Inflow2\Startims\LimsReps\LabControlSample.rpt| \\$ 

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Analyzed: 7/26/10

**Lab Control Sample Summary** Volatile Organic Compounds by GC/MS

Analytical Method:

8260B

Units: µg/L Basis: NA

Analysis Lot: 210096

Lab Control Sample JQ1002990-01

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
Ethylbenzene	19.3	20.0	96	90 - 118	
Iodomethane	89.4	100	89	68 - 134	
m,p-Xylenes	38.3	40.0	96	86 - 121	
Methylene Chloride	17.4	20.0	87	72 - 124	
o-Xylene	19.2	20.0	96	89 - 119	
Styrene	19.2	20.0	96	89 - 122	: .
Tetrachloroethene (PCE)	18.1	20.0	91	80 - 121	
Toluene	19.0	20.0	95	86 - 117	
trans-1,2-Dichloroethene	. 17.3	20.0	² 86	77 - 124	
trans-1,3-Dichloropropene	18.7	20.0	94	83 - 124	
trans-1,4-Dichloro-2-butene	17.0	20.0	85	53 - 143	
Trichloroethene (TCE)	17.9	20.0	90	76 - 124	·
Trichlorofluoromethane	17.0	20.0	85	74 - 134	
Vinyl Acetate	90.3	100	90	61 - 148	
Vinyl Chloride	17.9	20.0	90	78 - 132	

#### Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

Date Analyzed: 7/27/10

# Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method:

8260B

Units: µg/L Basis: NA

Analysis Lot: 210383

# Lab Control Sample JQ1003037-01

	3	Q1005057-0	1	07.10	
Analyte Name	D14	Spike Amount	0/ D	% Rec Limits	
Analyte Name	Result	Amount	% Rec	Limits	
1,1,1,2-Tetrachloroethane	19.2	20.0	96	85 - 117	
1,1,1-Trichloroethane (TCA)	18.5	20.0	93	79 - 124	
1,1,2,2-Tetrachloroethane	16.7	20.0	83	83 - 120	
1,1,2-Trichloroethane	18.3	20.0	92	86 - 114	
1,1-Dichloroethane (1,1-DCA)	18.5	20.0	93	80 - 128	
1,1-Dichloroethene (1,1-DCE)	18.9	20.0	95	78 - 130	
1,2,3-Trichloropropane	18.6	20.0	93	83 - 123	
1,2-Dibromo-3-chloropropane (DBCP)	16.4	20.0	82	62 - 123	
1,2-Dibromoethane (EDB)	19.0	20.0	95	88 - 117	
1,2-Dichlorobenzene	17.3	20.0	86	84 - 115	
1,2-Dichloroethane	17.3	20.0	87	80 - 124	
1,2-Dichloropropane	18.8	20.0	94	79 - 123	
1,4-Dichlorobenzene	17.6	20.0	88	83 - 113	
2-Butanone (MEK)	93.5	100	93	73 - 127	
2-Hexanone	91.8	100	92	71 - 138	
4-Methyl-2-pentanone (MIBK)	95.6	100	96	72 - 136	
Acetone	112	100	112	67 - 133	
Acrylonitrile	92.8	100	93	77 - 127	
Benzene	18.5	20.0	93	79 - 119	
Bromochloromethane	18.2	20.0	91	79 - 129	
Bromodichloromethane	18.3	20.0	92	81 - 123	
Bromoform	16.7	20.0	84	68 - 129	
Bromomethane	18.2	20.0	91	79 - 130	
Carbon Disulfide	94.4	100	94	76 - 138	
Carbon Tetrachloride	18.2	20.0	91	81 - 125	
Chlorobenzene	19.0	20.0	95	86 - 113	
Chloroethane	18.4	20.0	92	74 - 126	
Chloroform	18.8	20.0	94	83 - 124	
Chloromethane	19.2	20.0	96	67 - 135	
cis-1,2-Dichloroethene	18.4	20.0	92	80 - 126	
cis-1,3-Dichloropropene	18.0	20.0	90	86 - 123	
Dibromochloromethane	18.9	20.0	95	82 - 121	
Dibromomethane	18.9	20.0	94	83 - 123	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Analyzed: 7/27/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method:

8260B

Units: µg/L Basis: NA

Analysis Lot: 210383

Lab Control Sample JQ1003037-01

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits		
Ethylbenzene	19.0	20.0	95	90 - 118		
Iodomethane	92.1	100	92	68 - 134		
m,p-Xylenes	38.9	40.0	97	86 - 121		
Methylene Chloride	18.0	20.0	90	72 - 124		
o-Xylene	18.4	20.0	92	89 - 119		
Styrene	18.8	20.0	94	89 - 122		
Tetrachloroethene (PCE)	18.5	20.0	93	80 - 121		
Toluene	18.8	20.0	94	86 - 117		
trans-1,2-Dichloroethene	18.1	20.0	90	77 - 124		<del>, , ,,,,,, ,, ,,,,,,,,,,,,,,,,,</del>
trans-1,3-Dichloropropene	17.6	20.0	88	83 - 124		
trans-1,4-Dichloro-2-butene	5.71	20.0	29 *	53 - 143		
Trichloroethene (TCE)	19.6	20.0	98	76 - 124		
Trichlorofluoromethane	18.3	20.0	91	74 - 134		
Vinyl Acetate	59.9	100	60 *	61 - 148		
Vinyl Chloride	19.2	20.0	96	78 - 132		

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 Date Analyzed: 7/27/10

# Lab Control Sample Summary Volatile Organic Compounds by GC/MS

**Analytical Method:** 

8260B

Units: µg/L Basis: NA

Analysis Lot: 210384

# Lab Control Sample JQ1003038-01

	J	Q1002020-0	1		
		Spike		% Rec	
Analyte Name	Result	Amount	% Rec	Limits	
1,1,1,2-Tetrachloroethane	18.7	20.0	93	85 - 117	
1,1,1-Trichloroethane (TCA)	17.4	20.0	87	79 - 124	
1,1,2,2-Tetrachloroethane	18.7	20.0	94	83 - 120	
1,1,2-Trichloroethane	18.6	20.0	93	86 - 114	
1,1-Dichloroethane (1,1-DCA)	17.8	20.0	89	80 - 128	
1,1-Dichloroethene (1,1-DCE)	16.7	20.0	83	78 - 130	
1,2,3-Trichloropropane	18.4	20.0	: 92	83 - 123	
1,2-Dibromo-3-chloropropane (DBCP)	17.6	20.0	88	62 - 123	
1,2-Dibromoethane (EDB)	19.1	20.0	95	88 - 117	
1,2-Dichlorobenzene	17.3	20.0	87	84 - 115	
1,2-Dichloroethane	17.7	20.0	89	80 - 124	
1,2-Dichloropropane	18.3	20.0	91	79 - 123	
1,4-Dichlorobenzene	17.9	20.0	89	83 - 113	
2-Butanone (MEK)	98.7	100	99	73 - 127	
2-Hexanone	92.2	100	92	71 - 138	
4-Methyl-2-pentanone (MIBK)	95.8	100	96	72 - 136	
Acetone	111	100	111	67 - 133	
Acrylonitrile	93.8	100	94	77 - 127	
Benzene	17.7	20.0	89	79 - 119	
Bromochloromethane	18.3	20.0	91	79 - 129	
Bromodichloromethane	17.3	20.0	86	81 - 123	
Bromoform	17.4	20.0	87	68 - 129	
Bromomethane	16.5	20.0	83	79 - 130	
Carbon Disulfide	85.5	100	85	79 <b>-</b> 130 76 <b>-</b> 138	
			<del></del>		
Carbon Tetrachloride	16.3	20.0	82	81 - 125	
Chlorobenzene	18.6	20.0	93	86 - 113	
Chloroethane	16.6	20.0	83	74 - 126	
Chloroform	18.0	20.0	90	83 - 124	
Chloromethane	16.7	20.0	83	67 - 135	
cis-1,2-Dichloroethene	17.7	20.0	88	80 - 126	
cis-1,3-Dichloropropene	18.4	20.0	92	86 - 123	
Dibromochloromethane	18.8	20.0	94	82 <b>-</b> 121	
Dibromomethane	18.7	20.0	94	83 - 123	
	10.7	20.0	J-T	05 - 125	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Analyzed: 7/27/10

**Lab Control Sample Summary** Volatile Organic Compounds by GC/MS

**Analytical Method:** 

8260B

Units: µg/L Basis: NA

Analysis Lot: 210384

Lab Control Sample JQ1003038-01

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
Ethylbenzene	18.4	20.0	92	90 - 118	
Iodomethane	87.3	100	87	68 - 134	
m,p-Xylenes	37.9	40.0	95	86 - 121	
Methylene Chloride	18.0	20.0	90	72 - 124	
o-Xylene	18.6	20.0	93	89 - 119	
Styrene	18.4	20.0	92	89 - 122	
Tetrachloroethene (PCE)	17.2	20.0	86	80 - 121	
Toluene	18.5	20.0	92	86 - 117	
trans-1,2-Dichloroethene	17.3	20.0	87	77 - 124	
trans-1,3-Dichloropropene	18.2	20.0	91	83 - 124	
trans-1,4-Dichloro-2-butene	15.6	20.0	78	53 - 143	
Trichloroethene (TCE) Trichlorofluoromethane Vinyl Acetate	18.0 15.7 90.9	20.0 20.0 100	90 79 91	76 - 124 74 - 134 61 - 148	
Vinyl Chloride	16.6	20.0	83	78 - 132	

## Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Analyzed: 7/29/10

# Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B Units: µg/L Basis: NA

Analysis Lot: 210615

Lab Control Sample JQ1003076-01

	3	Q1003070=0	1	0/ D	
A malvita Nama	Dagult	Spike	0/ D	% Rec Limits	
Analyte Name	Result	Amount	% Rec	Limits	
1,1,1,2-Tetrachloroethane	20.7	20.0	103	85 - 117	
1,1,1-Trichloroethane (TCA)	21.0	20.0	105	79 - 124	
1,1,2,2-Tetrachloroethane	19.9	20.0	100	83 - 120	
1,1,2-Trichloroethane	20.1	20.0	100	86 - 114	
1,1-Dichloroethane (1,1-DCA)	21.1	20.0	106	80 - 128	
1,1-Dichloroethene (1,1-DCE)	21.3	20.0	106	78 - 130	
1,2,3-Trichloropropane	21.8	20.0	109	83 - 123	
1,2-Dibromo-3-chloropropane (DBCP)	17.4	20.0	87	62 - 123	
1,2-Dibromoethane (EDB)	19.6	20.0	98	88 - 117	
1,2-Dichlorobenzene	19.1	20.0	96	84 - 115	
1,2-Dichloroethane	21.7	20.0	109	80 - 124	
1,2-Dichloropropane	20.9	20.0	104	79 - 123	
1,4-Dichlorobenzene	20.0	20.0	100	83 - 113	
2-Butanone (MEK)	101	100	101	73 - 127	
2-Hexanone	100	100	100	71 - 138	
4-Methyl-2-pentanone (MIBK)	103	100	103	72 - 136	
Acetone	75.8	100	76	67 - 133	
Acrylonitrile	102	100	102	77 - 127	
Benzene	21.2	20.0	106	79 - 119	
Bromochloromethane	20.7	20.0	103	79 - 129	
Bromodichloromethane	20.4	20.0	102	81 - 123	
Bromoform	18.7	20.0	94	68 - 129	
Bromomethane	21.2	20.0	106	79 - 130	
Carbon Disulfide	104	100	104	76 - 138	
Carbon Tetrachloride	19.9	20.0	99	81 - 125	
Chlorobenzene	20.9	20.0	105	86 - 113	
Chloroethane	20.9	20.0	104	74 - 126	
Chloroform	20.8	20.0	104	83 - 124	
Chloromethane	22.7	20.0	113	67 - 135	
cis-1,2-Dichloroethene	20.6	20.0	103	80 - 126	
cis-1,3-Dichloropropene	20.2	20.0	101	86 - 123	
Dibromochloromethane	19.8	20.0	99	82 - 121	
Dibromomethane	21.0	20.0	105	83 - 123	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 Date Analyzed: 7/29/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method:

8260B

Units: µg/L Basis: NA

Analysis Lot: 210615

Lab Control Sample JQ1003076-01

	•	Q10050700	•		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
Ethylbenzene	19.9	20.0	100	90 - 118	
Iodomethane	104	100	104	68 - 134	
m,p-Xylenes	43.1	40.0	108	86 - 121	
Methylene Chloride	20.6	20.0	103	72 - 124	
o-Xylene	20.9	20.0	105	89 - 119	
Styrene	20.6	20.0	103	89 - 122	
Tetrachloroethene (PCE)	20.8	20.0	104	80 - 121	
Toluene	21.0	20.0	105	86 - 117	
trans-1,2-Dichloroethene	20.6	20.0	103	77 - 124	
trans-1,3-Dichloropropene	19.6	20.0	98	83 - 124	
trans-1,4-Dichloro-2-butene	18.8	20.0	94	53 - 143	
Trichloroethene (TCE)	20.5	20.0	103	76 - 124	
Trichlorofluoromethane	20.2	20.0	101	74 - 134	
Vinyl Acetate	97.6	100	98	61 - 148	
Vinyl Chloride	22.0	20.0	110	78 - 132	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

# **Surrogate Recovery Summary**

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Extraction Method: METHOD

**Analysis Method:** 

8011

Units: PERCENT

Level: Low

Sample Name	Lab Code	Crrw1
		Sur1
MWB3S	J1003438-001	140
MWB3I	J1003438-002	135
MWB19D	J1003438-003	131
MWB19I	J1003438-004	119
MWB19S	J1003438-005	119
MWB20S	J1003438-006	130
MWB11S	J1003438-007	141
MWB11I(R)	J1003438-008	140
MWB12D	J1003438-009	117
MWB12I	J1003438-010	140
MWB7I	J1003438-011	139
MWB7D	J1003438-012	143
MWB21S	J1003438-013	142
MWB22S	J1003438-014	131
DUP02	J1003438-015	156
MWB29D	J1003438-016	131
MWB29I	J1003438-017	136
MWB29S	J1003438-018	126
MWB2I	J1003438-019	144
MWB2S	J1003438-020	110
MWB33S	J1003438-021	129
MWB27S	J1003438-022	123
MWB27I	J1003438-023	103
MWB27D	J1003438-024	109
DUP01	J1003438-025	120
MWB31D	J1003438-026	114
MWB17S	J1003438-027	118
MWB17D	J1003438-028	123
MWB17I	J1003438-029	93
MWB7S	J1003438-030	141
MWB12S	J1003438-031	106
MWB13I	J1003438-032	103
MWB13S	J1003438-033	99
MWB32S	J1003438-034	102
MWB32I	J1003438-035	104

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/06/2010 14:46:15 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

# **Surrogate Recovery Summary**

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** METHOD

Units: PERCENT

Level: Low

**Analysis Method:** 8011

Sample Name	Lab Code	Sur1
MWB32D	J1003438-036	111
MWB34S	J1003438-037	126
MWB34I	J1003438-038	197
MWB34D	J1003438-039	195
DUP03	J1003438-040	194
DUP04	J1003438-041	123
FB	J1003438-042	132
Method Blank	JWG1002568-4	110
Method Blank	JWG1002569-4	137
Method Blank	JWG1002570-4	118
MWB3SMS	JWG1002568-1	97
MWB3SDMS	JWG1002568-2	100
MWB29IMS	JWG1002569-1	110
MWB29IDMS	JWG1002569-2	89
MWB34SMS	JWG1002570-1	110
MWB34SDMS	JWG1002570-2	100
Lab Control Sample	JWG1002568-3	127
Lab Control Sample	JWG1002569-3	127
Lab Control Sample	JWG1002570-3	115

#### Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/06/2010 14:46:15 p:\Stealth\Crystal.rpt\Form2.rpt

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Extracted: 07/26/2010

**Date Analyzed:** 07/29/2010

Matrix Spike/Duplicate Matrix Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB3S

Lab Code:

J1003438-001

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG1002568

MWB3SMS

JWG1002568-1

MWB3SDMS

JWG1002568-2

Matrix Spike **Duplicate Matrix Spike** Sample %Rec RPD Result **Analyte Name** RPD Result **Expected** %Rec Limits Limit Result Expected %Rec 1,2-Dibromoethane (EDB) ND 0.363 0.257 141 * 0.275 0.256 107 65-135 28 * 20 1,2-Dibromo-3-chloropropane (DBCP ND 0.266 0.257 103 0.257 0.256 101 65-135 3 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/06/2010 14:46:18 p:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

255 Page

1 of 1

RR35522 SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Extracted:** 07/26/2010 **Date Analyzed:** 07/29/2010

# Matrix Spike/Duplicate Matrix Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB29I

Lab Code:

J1003438-017

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

Analysis Method:

8011

Extraction Lot: JWG1002569

MWB29IMS

JWG1002569-1

MWB29IDMS

JWG1002569-2

Matrix Spike **Duplicate Matrix Spike** Sample %Rec **RPD Analyte Name** Result Limits RPD Limit Result Expected %Rec Result Expected %Rec 1,2-Dibromoethane (EDB) ND 0.213 0.258 83 0.163 0.258 63 * 65-135 26 * 20 1,2-Dibromo-3-chloropropane (DBCP ND 0.240 0.258 93 0.212 0.258 82 65-135 12 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/06/2010 14:46:21 p:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

256 Page

1 of 1

SuperSet Reference: RR35522

QA/QC Report

Client: Project: Jacksonville, City of

Sample Matrix:

Trail Ridge Water

Service Request: J1003438 Date Extracted: 07/26/2010

**Date Analyzed:** 07/30/2010

Matrix Spike/Duplicate Matrix Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

MWB34S

Lab Code:

J1003438-037

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG1002570

MWB34SMS

JWG1002570-1

MWB34SDMS

JWG1002570-2

	Sample		Matrix Spike			cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
1,2-Dibromoethane (EDB)	ND	0.182	0.254	72	0.177	0.263	67	65-135	3	20
1,2-Dibromo-3-chloropropane (DBCP	ND	0.265	0.254	104	0.255	0.263	97	65-135	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/06/2010 14:46:24 p:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

 $257_{Page}$  1 of 1

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Extracted:** 07/26/2010 **Date Analyzed:** 07/29/2010

# Lab Control Spike Summary 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG1002568

Lab Control Sample JWG1002568-3

Lab Control Spike %Rec **Analyte Name** Result Expected Limits %Rec 1,2-Dibromoethane (EDB) 0.326 0.250 130 70-130 1,2-Dibromo-3-chloropropane (DBCP 0.318 0.250 127 70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/06/2010 14:46:27 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Extracted: 07/26/2010

**Date Analyzed:** 07/29/2010

Lab Control Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG1002569

Lab Control Sample JWG1002569-3 Lab Control Spike

	Lab	%Rec		
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	0.296	0.250	118	70-130
1,2-Dibromo-3-chloropropane (DBCP	0.319	0.250	128	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/06/2010 14:46:30 p:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

 $259_{Page} \quad 1 \ of \quad 1$ 

SuperSet Reference: RR35522

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Extracted:** 07/26/2010

**Date Analyzed:** 07/29/2010

Lab Control Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method: Analysis Method:** 

**METHOD** 

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG1002570

Lab Control Sample JWG1002570-3

	Lab	Control Spike	%Rec		
Analyte Name	Result	Expected	%Rec	Limits	
1,2-Dibromoethane (EDB)	0.229	0.250	92	70-130	
1,2-Dibromo-3-chloropropane (DBCP	0.325	0.250	130	70-130	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/06/2010 14:46:33 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10

Date Received: 7/21/10 Date Analyzed: 7/30/10

**Matrix Spike Summary** 

Mercury, Total in Liquid Waste (Manual Cold-Vapor Technique)

Sample Name:

MWB19I

Lab Code:

J1003438-004

Units: µg/L

Basis: NA

Analytical Method: 7470A

Prep Method:

Method

MWB19IMS

MWB19IDMS

Matrix Spike

**Duplicate Matrix Spike** 

J1003438-MS1

J1003438-DMS1

Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Mercury, Total	ND	5.18	5.00	104	5.41	5.00	108	75 - 125	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10 Date Received: 7/21/10

Date Analyzed: 8/1/10

**Matrix Spike Summary Inorganic Parameters** 

Sample Name:

MWB19S

Lab Code:

J1003438-005

Units: mg/L Basis: NA

Analytical Method: 6010B

Prep Method:

EPA 3010A

MWB19SMS

MWB19SDMS

Matrix Spike

**Duplicate Matrix Spike** 

J1003438-MS2

J1003438-DMS2

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sodium, Total	11.0	20.4	10.0	93	19.9	10.0	88	75 - 125	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 **Date Collected:** 7/20/10

Date Received: 7/21/10 Date Analyzed: 8/1/10

**Matrix Spike Summary Inorganic Parameters** 

Sample Name: Lab Code:

MWB19S

J1003438-005

Units: µg/L Basis: NA

**Analytical Method:** 6010B

Prep Method:

EPA 3010A

MWB19SMS

MWB19SDMS

Matrix Spike

**Duplicate Matrix Spike** 

J1003438-MS2

J1003438-DMS2

Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Iron, Total	180	2200	2000	101	2150	2000	98	75 - 125	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10 Date Received: 7/21/10 Date Analyzed: 8/2/10

**Matrix Spike Summary Inorganic Parameters** 

Sample Name:

MWB11I(R)

Lab Code:

J1003438-008

Units: µg/L Basis: NA

Analytical Method: 6020

Prep Method:

EPA 3020A

	Sample	MWB11I(R)MS <b>Matrix Spike</b> J1003438-MS3 <b>Spike</b>			Duplic	VB11I(R)DN cate Matrix 003438-DMS	9/ Dag		nnn	
Analyte Name	Result	Result	Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Antimony, Total	ND	49.5	50.0	99	49.5	50.0	99	75 - 125	0	20
Arsenic, Total	0.17	47.7	50.0	95	47.6	50.0	95	75 - 125	0	20
Barium, Total	42.8	94.7	50.0	104	92.9	50.0	100	75 - 125	2	20
Beryllium, Total	ND	49.6	50.0	99	51.2	50.0	102	75 - 125	3	20
Cadmium, Total	ND	48.6	50.0	97	48.0	50.0	96	75 - 125	1	20
Chromium, Total	4.5	55.1	50.0	101	54.7	50.0	101	75 - 125	1	20
Cobalt, Total	ND	50.8	50.0	102	50.7	50.0	101	75 - 125	0	20
Copper, Total	ND	50.2	50.0	100	49.4	50.0	99	75 - 125	2	20
Lead, Total	0.9	55.0	50.0	108	53.9	50.0	106	75 - 125	2	20
Nickel, Total	0.6	51.0	50.0	101	51.7	50.0	102	75 - 125	1	20
Selenium, Total	ND	42.1	50.0	84	41.5	50.0	83	75 - 125	2	20
Silver, Total	ND	49.5	50.0	99	49.9	50.0	100	75 - 125	1	20
Thallium, Total	ND	53.9	50.0	108	53.1	50.0	106	75 - 125	2	20
Vanadium, Total	5.4	57.0	50.0	103	54.9	50.0	99	75 - 125	4	20
Zinc, Total	ND	93.0	100	93	92.7	100	93	75 - 125	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: NA Date Received: NA

Date Analyzed: 8/3/10

**Matrix Spike Summary** 

Mercury, Total in Liquid Waste (Manual Cold-Vapor Technique)

Sample Name:

Lab Code:

J1003438-022

Units: µg/L

Basis: NA

Analytical Method: 7470A Prep Method:

Method

Matrix SpikeMS

Duplicate Matrix SpikeDMS

**Matrix Spike** 

**Duplicate Matrix Spike** 

J1003438-DMS4

J1003438-MS4

Sample **Analyte Name** Result

Spike **Amount** % Rec

Spike % Rec Limits Result Amount % Rec

Mercury, Total

5.06

Result

5.06

RPD Limit

5.00

101

5.00

101 75 - 125

0 20

**RPD** 

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10 Date Received: 7/21/10

Date Analyzed: 8/2/10

**Matrix Spike Summary Inorganic Parameters** 

Sample Name:

MWB7S

Lab Code:

J1003438-030

Units: mg/L Basis: NA

Analytical Method: 6010B

Prep Method:

EPA 3010A

MWB7SMS

**MWB7SDMS** 

Matrix Spike

**Duplicate Matrix Spike** 

J1003438-MS5

Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Sodium, Total	13.6	24.0	10.0	104	21.2	10.0	77	75 - 125	12	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10

Date Received: 7/21/10 Date Analyzed: 8/2/10

Matrix Spike Summary **Inorganic Parameters** 

Sample Name:

MWB7S

Lab Code:

J1003438-030

Units: µg/L Basis: NA

Analytical Method: 6010B

Prep Method:

EPA 3010A

MWB7SMS

**MWB7SDMS** 

**Matrix Spike** 

**Duplicate Matrix Spike** 

J1003438-MS5

11003438-DMS5

Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Iron, Total	110	2380	2000	113	2080	2000	98	75 - 125	14	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10
Date Received: 7/21/10

Date Received: //21/10 Date Analyzed: 8/5/10

Matrix Spike Summary Inorganic Parameters

Sample Name: Lab Code: MWB13I

J1003438-032

Units: μg/L Basis: NA

Analytical Method: 6020

Prep Method:

EPA 3020A

MWB13IMS

MWB13IDMS **Duplicate Matrix Spike** 

Matrix Spike J1003438-MS6 J1003438-DMS6 Sample Spike Spike % Rec **RPD Analyte Name** Result Amount Result % Rec Amount Result % Rec Limits RPD Limit Antimony, Total ND 53.5 50.0 107 54.4 50.0 109 75 - 1252 20 Arsenic, Total 0.25 49.4 50.0 98 50.9 50.0 101 75 - 1253 20 Barium, Total 34.3 90.0 50.0 111 91.3 50.0 114 75 - 125 1 20 Beryllium, Total ND 49.0 50.0 98 51.6 50.0 103 75 - 1255 20 Cadmium, Total 0.22 48.5 50.0 97 48.5 50.0 96 75 - 1250 20 Chromium, Total 2.0 55.7 50.0 107 56.4 50.0 75 - 125 109 1 20 Cobalt, Total ND 51.9 50.0 104 53.5 50.0 107 75 - 1253 20 Copper, Total 0.7 51.3 50.0 101 51.4 50.0 101 75 - 1250 20 Lead, Total ND 55.3 50.0 111 56.4 50.0 2 113 75 - 12520 Nickel, Total 0.5 51.5 50.0 102 53.1 50.0 105 75 - 125 3 20 Selenium, Total ND 42.3 50.0 85 43.4 50.0 87 75 - 1253 20 Silver, Total ND 51.2 50.0 102 51.4 50.0 103 75 - 1250 20 Thallium, Total ND 54.4 50.0 109 54.8 50.0 110 75 - 125 1 20 Vanadium, Total ND 54.6 50.0 109 55.7 50.0 111 75 - 1252 20 Zinc, Total ND 95.8 100 96 98.4 100 98 75 - 1253 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438 Date Analyzed: 7/28/10 -

8/2/10

# Lab Control Sample Summary Inorganic Parameters

Units: μg/L Basis: NA

# Lab Control Sample J1003438-LCS1

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits	
Antimony, Total	6020	50.8	50.0	102	80 - 120	
Arsenic, Total	6020	48.7	50.0	97	80 - 120	
Barium, Total	6020	50.8	50.0	102	80 - 120	
Beryllium, Total	6020	46.8	50.0	94	80 - 120	
Cadmium, Total	6020	48.0	50.0	96	80 - 120	
Chromium, Total	6020	52.4	50.0	105	80 - 120	
Cobalt, Total	6020	52.8	50.0	106	80 - 120	
Copper, Total	6020	50.3	50.0	101	80 - 120	
Iron, Total	6010B	2030	2000	102	80 - 120	
Lead, Total	6020	51.4	50.0	103	80 - 120	
Mercury, Total	7470A	5.36	5.00	107	80 - 120	
Nickel, Total	6020	50.7	50.0	101	80 - 120	
Selenium, Total	6020	45.0	50.0	90	80 - 120	 
Silver, Total	6020	49.6	50.0	99	80 - 120	
Thallium, Total	6020	52.1	50.0	104	80 - 120	
Vanadium, Total	6020	51.9	50.0	104	80 - 120	 
Zinc, Total	6020	94.6	100	95	80 - 120	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix:

Trail Ridge Water Service Request: J1003438 Date Analyzed: 7/30/10 -

8/2/10

### Lab Control Sample Summary Inorganic Parameters

Units: μg/L Basis: NA

### Lab Control Sample J1003438-LCS2

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits	
Antimony, Total	6020	53.3	50.0	107	80 - 120	
Arsenic, Total Barium, Total	6020	49.7	50.0	99	80 - 120	
Bartuin, Total	6020	52.6	50.0	105	80 - 120	
Beryllium, Total	6020	50.1	50.0	100	80 - 120	
Cadmium, Total	6020	49.3	50.0	99	80 - 120	
Chromium, Total	6020	52.9	50.0	106	80 - 120	
Cobalt, Total	6020	52.4	50.0	105	80 - 120	
Copper, Total	6020	50.8	50.0	102	80 - 120	
Iron, Total	6010B	2030	2000	101	80 - 120	
Lead, Total	6020	54.2	50.0	108	80 - 120	 ·
Mercury, Total	7470A	4.89	5.00	98	80 - 120	
Nickel, Total	6020	53.1	50.0	106	80 - 120	
Selenium, Total	6020	44.9	50.0	90	80 - 120	 
Silver, Total	6020	50.6	50.0	101	80 - 120	
Thallium, Total	6020	54.2	50.0	108	80 - 120	
Vanadium, Total	6020	52.5	50.0	105	80 - 120	 
Zinc, Total	6020	96.5	100	97	80 - 120	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix:

Trail Ridge Water

Trail Ridge

Service Request: J1003438 Date Analyzed: 8/2/10 -

8/ 5/10

Lab Control Sample Summary Inorganic Parameters

> Units: μg/L Basis: NA

Lab Control Sample J1003438-LCS3

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits	
Antimony, Total	6020	52.2	50.0	104	80 - 120	
Arsenic, Total	6020	49.6	50.0	99	80 - 120	
Barium, Total	6020	53.8	50.0	108	80 - 120	
Beryllium, Total	6020	48.1	50.0	96	80 - 120	
Cadmium, Total	6020	48.3	50.0	97	80 - 120	
Chromium, Total	6020	52.0	50.0	104	80 - 120	
Cobalt, Total	6020	51.7	50.0	103	80 - 120	
Copper, Total	6020	50.6	50.0	101	80 - 120	
Iron, Total	6010B	2160	2000	108	80 - 120	
Lead, Total	6020	53.6	50.0	107	80 - 120	
Mercury, Total	7470A	5.03	5.00	101	80 - 120	
Nickel, Total	6020	50.9	50.0	102	80 - 120	
Selenium, Total	6020	44.3	50.0	89	80 - 120	741 W
Silver, Total	6020	49.8	50.0	100	80 - 120	
Thallium, Total	6020	51.9	50.0	104	80 - 120	
Vanadium, Total	6020	51.4	50.0	103	80 - 120	
Zinc, Total	6020	92.4	100	92	80 - 120	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 Date Analyzed: 7/28/10 -

8/2/10

Lab Control Sample Summary **Inorganic Parameters** 

> Units: mg/L Basis: NA

**Lab Control Sample** 

J1003438-LCS1

Analyte Name	Method	Result	Spike Amount % Rec	% Rec Limits	
Sodium, Total	6010B	9.57	10.0 96	80 - 120	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438 Date Analyzed: 7/30/10 -

8/2/10

Lab Control Sample Summary **Inorganic Parameters** 

> Units: mg/L Basis: NA

Lab Control Sample J1003438-LCS2

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Sodium, Total	6010B	9.61	10.0	96	80 - 120

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Analyzed: 8/2/10 -

8/5/10

Lab Control Sample Summary **Inorganic Parameters** 

> Units: mg/L Basis: NA

Lab Control Sample J1003438-LCS3

Spike % Rec **Analyte Name** Method Result Amount % Rec Limits Sodium, Total 6010B 10.1 10.0 101 80 - 120

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10 Date Received: 7/21/10 Date Analyzed: 7/26/10

**Matrix Spike Summary** 

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

MWB3S

Lab Code:

J1003438-001

Units: mg/L Basis: NA

Analytical Method: 350.1

MWB3SMS

**Matrix Spike** 

J1003438-MS1

% Rec Sample Spike Limits Result Amount % Rec **Analyte Name** Result 0.004 0.948 1.00 94 90 - 110Ammonia as Nitrogen

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

275

Printed 7/29/10 11:50

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10 Date Received: 7/21/10

Date Analyzed: 7/22/10

**Matrix Spike Summary General Chemistry Parameters** 

Sample Name:

MWB11S

Lab Code:

J1003438-007

Units: mg/L

Basis: NA

**Analytical Method: 300.0** 

**MWB11SMS** Matrix Spike

11003438-MS2

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Chloride	22.1	72.2	50.0	100	90 - 110
Nitrate as Nitrogen	ND	4.81	5.00	96	90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

276 10-0000149595 rev 00 SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Water

Service Request: J1003438

Date Collected: 7/20/10 Date Received: 7/21/10

Date Analyzed: 7/26/10

**Matrix Spike Summary** 

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

Sample Matrix:

MWB12D

Lab Code:

J1003438-009

Units: mg/L Basis: NA

**Analytical Method: 350.1** 

MWB12DMS

**Matrix Spike** J1003438-MS3

	Sample		Spike	0.4 75	% Rec
Analyte Name	Result	Result	Amount	% Rec	Limits
Ammonia as Nitrogen	0.169	1.11	1.00	94	90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10

**Date Received:** 7/21/10 **Date Analyzed:** 7/26/10

**Matrix Spike Summary** 

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

MWB29S

Lab Code:

J1003438-018

Units: mg/L Basis: NA

Analytical Method: 350.1

MWB29SMS

Matrix Spike

J1003438-MS4

Analyte Name

Sample
Result
Result
Amount
Result
Amount
Rec
Limits

Ammonia as Nitrogen

0.147
1.11
1.00
96
90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10 **Date Received:** 7/21/10

Date Analyzed: 7/22/10

Matrix Spike Summary General Chemistry Parameters

Sample Name:

MWB2I

Lab Code:

J1003438-019

Units: mg/L Basis: NA

Analytical Method: 300.0

MWB2IMS

Matrix Spike

J1003438-MS5

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Chloride	6.86	57.6	50.0	101	90 - 110
Nitrate as Nitrogen	ND	4.80	5.00	96	90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10

Date Received: 7/21/10 Date Analyzed: 7/26/10

**Matrix Spike Summary** 

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

MWB17I

Lab Code:

Units: mg/L Basis: NA

J1003438-029

Analytical Method: 350.1

MWB17IMS

**Matrix Spike** 

J1003438-MS6

Sample % Rec Spike **Analyte Name** Result Amount Limits Result % Rec Ammonia as Nitrogen 0.025 0.973 1.00 95 90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/29/10 11:50  $\verb|\Inflow2\Starlims\LimsReps\MatrixSpike.rpt| \\$  Matrix Spike Summary

280

SuperSet Reference:

10-0000149595 rev 00

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix: Water

Service Request: J1003438

**Date Collected:** 7/20/10 **Date Received:** 7/21/10

Date Analyzed: 7/22/10

Matrix Spike Summary General Chemistry Parameters

Sample Name:

MWB12S

Lab Code:

J1003438-031

Units: mg/L Basis: NA

**Analytical Method: 300.0** 

MWB12SMS

Matrix Spike

J1003438-MS7

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Chloride	7.34	59.0	50.0	103	90 - 110
Nitrate as Nitrogen	4.49	9.56	5.00	102	90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

**Sample Matrix:** 

Water

Service Request: J1003438

**Date Collected:** 7/21/10 **Date Received:** 7/21/10

Date Analyzed: 7/22/10

Matrix Spike Summary General Chemistry Parameters

Sample Name: Lab Code:

MWB32S

J1003438-034

Units: mg/L Basis: NA

Analytical Method: 300.0

MWB32SMS Matrix Spike

J1003438-MS8

% Rec Sample Spike **Analyte Name** Result Amount Limits Result % Rec Chloride 28.7 50.0 100 90 - 110 78.6 Nitrate as Nitrogen 0.65 5.59 5.00 99 90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/21/10 Date Received: 7/21/10

Date Analyzed: 7/26/10

**Matrix Spike Summary** 

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

DUP03

Lab Code:

J1003438-040

Units: mg/L Basis: NA

Analytical Method: 350.1

DUP03MS

Matrix Spike

J1003438-MS9

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Ammonia as Nitrogen	0.049	0.992	1.00	94	90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10 **Date Received:** 7/21/10

Date Analyzed: 7/26/10

**Duplicate Sample Summary General Chemistry Parameters** 

Sample Name:

MWB3S

Lab Code:

J1003438-001

Units: mg/L Basis: NA

MWB3SDUP

Dunlicate Sample

				Sample		38-DUP1		RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Ammonia as Nitrogen Solids, Total Dissolved	350.1 SM 2540 C	0.010 10	0.004 10	0.004 IV ND U	ND U ND U	NC NC	NC NC	20 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10

**Date Received:** 7/21/10 **Date Analyzed:** 7/22/10

**Duplicate Sample Summary General Chemistry Parameters** 

Sample Name:

MWB11S

Lab Code:

J1003438-007

Units: mg/L

Basis: NA

MWB11SDUP

Duplicate Sample

Analyte Name		MRL	MDL	Sample		38-DUP2		RPD Limit
	Method			Result	Result	Average	RPD	
Chloride	300.0	0.50	0.09	22.1	22.1	22.1	<1	20
Nitrate as Nitrogen	300.0	0.20	0.07	ND U	ND U	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10 **Date Received:** 7/21/10

Date Analyzed: 7/26/10

Duplicate Sample Summary

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

MWB12D

Lab Code:

J1003438-009

Units: mg/L

Basis: NA

MWB12DDUP

**Duplicate Sample** 

Sample J1003438-DUP3 **RPD** Result Limit **Analyte Name** Method MRL **MDL** Result Average **RPD** Ammonia as Nitrogen 350.1 0.010 0.004 0.169 0.169 0.169 <1 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003438

**Date Collected:** 7/20/10 **Date Received:** 7/21/10

Date Analyzed: 7/26/10

Duplicate Sample Summary
Total Dissolved Solids Dried at 180 Deg C (TDS) 20th Ed.

Sample Name:

MWB7I

Lab Code:

J1003438-011

Units: mg/L

Basis: NA

MWB7IDUP

**Duplicate Sample** 

				Sample	J1003438-DUP4			RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Solids, Total Dissolved	SM 2540 C	10	10	34	30	32.0	13	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Collected: 7/20/10

**Date Received:** 7/21/10 **Date Analyzed:** 7/26/10

Duplicate Sample Summary

**MRL** 

0.010

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

0.004

0.147

Sample Name:

**Analyte Name** 

Ammonia as Nitrogen

MWB29S

Lab Code:

J1003438-018

Method

350.1

Units: mg/L

Basis: NA

20

MWB29SDUP

**Duplicate Sample** 

0.150

Sample J1003438-DUP5 RPD
MDL Result Result Average RPD Limit

0.153

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge

Water

Service Request: J1003438

**Date Collected:** 7/20/10 **Date Received:** 7/21/10

Date Analyzed: 7/22/10

**Duplicate Sample Summary General Chemistry Parameters** 

Sample Name:

MWB2I

Lab Code:

J1003438-019

Units: mg/L Basis: NA

MWB2IDUP

				Sample		te Sample 38-DUP6		RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Chloride	300.0	0.50	0.09	6.86	6.83	6.85	<1	20
Nitrate as Nitrogen	300.0	0.20	0.07	ND U	ND U	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/20/10

**Date Received:** 7/21/10 **Date Analyzed:** 7/26/10

Duplicate Sample Summary

Total Dissolved Solids Dried at 180 Deg C (TDS) 20th Ed.

Sample Name:

MWB33S

Lab Code:

J1003438-021

Units: mg/L

Basis: NA

MWB33SDUP

**Duplicate Sample** 

J1003438-DUP7 **RPD** Sample **Analyte Name** Method **MRL MDL** Result Result Average **RPD** Limit Solids, Total Dissolved SM 2540 C 10 10 200 207 204 3 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

**Sample Matrix:** 

Water

Service Request: J1003438

**Date Collected:** 7/20/10

Date Received: 7/21/10 Date Analyzed: 7/26/10

**Duplicate Sample Summary** 

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

MWB17I

Lab Code:

J1003438-029

Units: mg/L

Basis: NA

MWB17IDUP

**Duplicate Sample** 

Sample J1003438-DUP8 **RPD Analyte Name MRL** Result Limit Method **MDL** Result Average **RPD** Ammonia as Nitrogen 350.1 0.010 0.004 0.025 0.023 0.0242 10 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

.

Service Request: J1003438

**Date Collected:** 7/20/10

**Date Received:** 7/21/10 **Date Analyzed:** 7/22/10 -

7/26/10

**Duplicate Sample Summary General Chemistry Parameters** 

Sample Name:

MWB12S

Lab Code:

J1003438-031

Units: mg/L Basis: NA

MWB12SDUP

**Duplicate Sample** 

				Sample		38-DUP9		RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Chloride	300.0	0.50	0.09	7.34	7.30	7.32	<1	20
Nitrate as Nitrogen	300.0	0.20	0.07	4.49	4.51	4.50	<1	20
Solids, Total Dissolved	SM 2540 C	10	10	146	156	151	7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/21/10

**Date Received:** 7/21/10 **Date Analyzed:** 7/22/10

**Duplicate Sample Summary General Chemistry Parameters** 

**Sample Name:** 

MWB32S

Lab Code:

J1003438-034

 $\textbf{Units:} \ mg/L$ 

Basis: NA

MWB32SDUP

**Duplicate Sample** 

				Sample		8-DUP10		RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Chloride	300.0	0.50	0.09	28.7	28.7	28.7	<1	20
Nitrate as Nitrogen	300.0	0.20	0.07	0.65	0.65	0.650	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

**Date Collected:** 7/21/10

Date Received: 7/21/10 Date Analyzed: 7/26/10

**Duplicate Sample Summary** 

Nitrogen, Ammonia, (Colorimetric, Automated Phenate)

Sample Name:

DUP03

Lab Code:

J1003438-040

Units: mg/L

Basis: NA

DUP03DUP

**Duplicate Sample** 

J1003438-DUP11 **RPD** Sample **Analyte Name** Method MRL MDL Result Result Average **RPD** Limit Ammonia as Nitrogen 350.1 0.010 0.004 0.049 0.041 0.0450 18 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Method

SM 2540 C

**Project:** 

**Sample Matrix:** 

**Analyte Name** 

Solids, Total Dissolved

Trail Ridge

Water

Service Request: J1003438

**Date Analyzed:** 7/27/10

Lab Control Sample Summary Total Dissolved Solids Dried at 180 Deg C (TDS) 20th Ed.

300

99

297

Units: mg/L Basis: NA

85 - 115

2

20

Lab Control S	Sample Di	ıplicate L	ab Control Sample			
J1003438-L	.CS1	J1003	438-DLCS1			
Spik	e		Spike	% Rec		RPD
Result Amou	nt % Rec	Result	Amount % Rec	Limits	RPD	Limit

300

101

303

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003438

Date Analyzed: 7/21/10 -

7/26/10

Lab Control Sample Summary General Chemistry Parameters

> Units: mg/L Basis: NA

Lab Control Sample J1003438-LCS2

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Ammonia as Nitrogen	350.1	0.946	1.00	95	90 - 110
Chloride	300.0	51.9	50.0	104	90 - 110
Nitrate as Nitrogen	300.0	4.94	5.00	99	90 - 110
Solids, Total Dissolved	SM 2540 C	289	300	96	85 - 115

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix:

Water

Trail Ridge

Service Request: J1003438 Date Analyzed: 7/22/10 -

7/26/10

**Lab Control Sample Summary General Chemistry Parameters** 

Units: mg/L Basis: NA

Lab Control Sample J1003438-LCS3

		• • • • • • • • • • • • • • • • • • • •	Spike		% Rec
Analyte Name	Method	Result	Amount	% Rec	Limits
Ammonia as Nitrogen	350.1	0.966	1.00	97	90 - 110
Chloride	300.0	51.9	50.0	104	90 - 110
Nitrate as Nitrogen	300.0	4.90	5.00	98	90 - 110
Solids, Total Dissolved	SM 2540 C	295	300	98	85 - 115

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

A QC Report

Service Request: J1003438

Date Analyzed: 7/22/10 -

7/27/10

**Lab Control Sample Summary General Chemistry Parameters** 

Units: mg/L Basis: NA

Lab Control Sample J1003438-LCS4

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Ammonia as Nitrogen	350.1	0.957	1.00	96	90 - 110
Chloride	300.0	52.7	50.0	105	90 - 110
Nitrate as Nitrogen	300.0	4.98	5.00	100	90 - 110
Solids, Total Dissolved	SM 2540 C	27.0	30	90	70 - 130

Results flagged with an asterisk (*) indicate values outside control criteria.



### Columbia Analytical Services, Inc. Cooler Receipt Form

Analytical Services			Cooler Receipt Form	n		
Client:	HOR	10-19-10-10-10-10-10-10-10-10-10-10-10-10-10-	Service Requ	est #:	5/00343	78
Project:	Trailk	id se	,			
Cooler rec	eived on $\bigcirc$	<u>.\-</u> \0	and opened of	1-16-1	Oby	65
COURIER	CAS UPS	FEDEX	Client Other		Airbill #	
1	Were custody seals of	on outside of c	ooler?		(Yes) No	
	If yes, how many and	d where?			#: on lid	other
2	Were seals intact and	l signature and	d date correct?		Yes No	N/A
3	Were custody papers	properly fille	d out?		Yes No	N/A
4	Temperature of cooler(	(s) upon receipt	(Should be $> 0$ °C and $< 6$ °C)	4.9 4	0 3.6 5	1 5,5
5	Thermometer ID			116	2	
6	Temperature Blank F	Present?		, -	(Yes No	
7	Were Ice or Ice Pack	s present		(	Ice Ice I	Packs No
8	Did all bottles arrive	in good condi	tion (unbroken, etc)?		Yes No	N/A
9	Type of packing mat	erial present		P	ubblew	nas
10	Were all bottle labels	complete (sa	mple ID, preservation, e	etc)?	Yes No	N/A
11	Did all bottle labels a	and tags agree	with custody papers?		Yes No	N/A
12	Were the correct bott	les used for th	e tests indicated?	1	Yes No	N/A
13	Were all of the preserved HNO3 pH<2 H2SO4 Preservative additions noted be	pH<2 ZnAc	with the appropriate preserva c2/NaOH pH>9 NaOH		Yes No	) N/A
14	Were all samples rec	eived within a	nalysis holding times?		Yes No	N/A
15	Were VOA vials checked	for absence of ai	r bubbles? If present, note be	elow	Yes No	N/A
16	Where did the bottles	originate?		(	CAS Client	
	Sample ID	Reagent	Lot #	ml added	Initials Date/Ti	me
	MWB345	HN03	meT 183H	\	GB7.2	1.0
	47.77.77.77.77.77.77.77.77.77.77.77.77.7				153	30
4 41,1						
dditional c	comments and/or expla	nation of all c	liscrepancies noted abor	ve: (on	bined	all
Trip	Dlank Vi	als i	nto one	Sot	- Logo	sed
in a	+ the e	nd c	it the pr	Ojec		
•		······································	1	<i></i>		299
lient appro	oval to run samples if d	liscrepancies r	noted:		Date:	

Jacksonville Laboratory Condition Upon Receipt - Sample pH

Date: 7 - 10 Initials:

SR#: J 1003438

-011 -012 -013 -015 -001 -002 -003 -010 -014 -016 -019 -020 -031 -032 -033 -035 -036 -036 -038 -039 -004 -005 -006 -007 -008 -009 -017 -018 -021 -022 -023 -024 -026 -026 -027 -028 -029 -040 A/A Misc. Ziplock 30 29 100ml Thiosulfate N/A Sodium 28 160z G N/A A/A 27 80z G N/A 26 40z G A/A 202 25 HCI H2SO4 24 ပ 23 ပ N/A 2 7 5 HN03 21 ۵ A/A 20 # 19 A/A 
 40mL
 40mL
 125ml 125ml 125ml 125ml 125ml 250ml 250ml
 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml 250ml Note that pH is check and meets the required pH criterion listed in the column heading unless otherwise noted on the cooler receipt form 18 HCI H2SO4HNO3 Bottle Code 15 16 N/A HN03 N/A H2SO4 HNO3 NaOH NaOH 12 ZnAc2 10 A/N HCI H2SO4HNO3 N/A N/A 모 2 3 ΥX Req. pH Container Sample # -040 -001 -003 -004 -005 900--007 -008 600--010 -011 -012 -013 -014 -015 -016 -017 -018 -019 -020 -021 -022 -023 -024 -025 -026 -027 -028 -029 -030 -032 300 -037 -038 -039 -002

- ONDING A checks are performed by the analytical area, not sample control

-043

701

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

J 40

CAS Contact

www.caslab.com					33. ( )			
Project Name TRAIL RIDGE	Project Number		-	A	ALYSIS RE	QUESTED (II	ANALYSIS REQUESTED (Include Method Number an	
M	Email Address		PRESERVATIVE	0	ر س	0		
Z 00 Z	おんらくず らて	STE 800	SH					
J ACKSZAVILLE, FL	32228	9000	<b>BNIAT</b> V			704		2.8.8.4 NON H.N.O. NON CO. N. O.
•			\ <u>'</u>	<u> </u>		L' €0		
Phone # 948 8553	FAX#		00	5 ch/3	23			8. Other
Sampler Signature	Sampler's Printed Name	J Name		<b>&gt;</b>	lac			REMARKS/ ALTERNATE DESCRIPTION
CLIENT SAMPLE ID	LAB ID	SAMPLING DATE TIME MATRIX	RIX					
MW 835		7.20 1001 GW	9 3	ر مم	_			The second secon
MUBBL	in company of the com	7. to 1030 GW	3 3	_	_			
0 618 UM		3 tol 2.t	8 8	-			The state of the s	
MUBIOT.	- Common	7-20 1138 GW	0 9 3 3	_	_			The state of the s
MWB19 S		mg to21 %-t	933		_		Total Control of the	The Analysis of the Control of the C
MWBZOS		7.20 1237 6W	8		_			
MWBIIS		7.20 (310 GU	5	_				
MUBUIT (R)		7-20 1342 GW	6				The state of the s	
MUBIRD	The state of the s	7-20 1418 GW	<i>ବ</i>					
MWBIZI		7. 23 1448 6W	1933					
SPECIAL INSTRUCTIONS/COMMENTS				TURNARO	TURNAROUND REQUIREMENTS	REMENTS	REPORT REQUIREMENTS	INVOICE INFORMATION
				RUSH	RUSH (SURCHARGES APPLY)	APPLY)	l. Results Only	
			1	STANDARD	ARD		II. Results + QC Summaries (LCS, DUP, MS/MSD as required)	PO#
		,		2000			III. Results + QC and Calibration Summaries	BILL TO:
-			Ä	QUESTED RI	REQUESTED REPORT DATE		IV. Data Validation Report with Raw Data	
See QAPP					WALL		V. Speicalized Forms / Custom Report	
SAMPLE RECEIPT: CONDITION/COOLER TEMP:		CUSTODY SEALS:	SEALS: Y N				Edata Yes No	
RELINQUISHED BY	BECEWED BY	RALINOUSHED BY	HED BY	(	RECEIVED BY		RELINQUISHED BY	RECEIVED BY
	de la Mari	and Signature ( 11)	ange 6 Sign	Signature		کے	Signature	Signature
M.	Deport 1	The 165 Prints Name of 1	(Choles Prin	Printed Magne	18	7967	Printed Name	Printed Name
X	1983	Firm	XS Firm		7		Firm	Fim
Date/Ting -21-10   1115   Date	Date Lime 1/1/10 18	1 (5 Date mal/10	1,100 Date	Date/Time	1-14	(3	Date/Time	Date/Time
Tribution: White - Return to Originator; Yellow - Retained by	Setained by Client	2/11/2						JSCOC-06/20/08

Columbia Columbia Analytical Services

### CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

CAS Contact

P_40 www.caslab.com

סמנא המת סברעונתם DISSULVED METAL HNO3 H2SO4 NaOH Zn. Acetate MeOH REMARKS/ ALTERNATE DESCRIPTION TOTAL METALS INVOICE INFORMATION (A) ANACTRE Printed Name Date/Time BILL TO: Signature **B** Firm IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration RELINQUISHED BY ANALYSIS REQUESTED (Include Method Number at Yes I. Results Only BISSOLVED NETRIS Edata ţ. Printed Name 0 TURNAROUND REQUIREMENTS 102 EOM RUSH (SURCHARGES APPLY) N RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD 0 **PRESERVATIVE** (^) (M) ( m M 4 (c) 2 NUMBER OF CONTAINERS CUSTODY SEALS: IQUISHED BY MATRIX 3 3 3 3 3 ₹ 3 3 3 P-20 02-4 1340 0428 9280 oz.f 3.6 515 6759 7.20 1309 7-20 HOB Q 5151 02-6 SAMPLING 0 Qo AKE 0 28 7-30 3.5 2-20 7.20 SIL Sampler's Printed Name CEIVED BY Email Address 5 32502 LAB ID Distribution: White - Return to Originator; Yellow - Refained by Client FOR SYPE SAMPLE RECEIPT: CONDITION/COOLER TEMP Ľ 855 3 SPECIAL INSTRUCTIONS/COMMENTS N 002 SACKSOLVILLE = 2 CLIENT SAMPLE ID してのとい 225 SWW DAN ARMOUR RIDGE RELINQUISHED BY 日でののひと S LY B Z A ANDSOSE DUPAZ 00 348 A 2828 M HN03E H TRMW 32036 Firm P. Ro . ( S.CH Date/Time BRAD 18AB See QAPP HDR Phone #

Columbia
Analytical Services

### CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

# HS

J. 1003438

Key H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION BILL TO: IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report REPORT REQUIREMENTS II. Results + QC Summaries (LCS, DUP, MS/MSD as required) III. Results + QC and Calibration ANALYSIS REQUESTED (Include Method Nur I. Results Only 0 TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) N REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD ٥ **PRESERVATIVE** ~ 3 CUSTODY SEALS: Y C, NUMBER OF CONTAINERS MATRIX <u>ح</u> 3 S Z 3 <u>ر</u> ق 3 F SAMPLING 7-20 1232 200 1042 029 000 100 7.20 0815 81/8 MS EH! 7-20 ج 92-t から 2+ 3.5 Rit 7-20 DATE DAY ARMOUR sampler's Printed Name 0000 Email Address LAB ID KN 32225 SAMPLE RECEIPT: CONDITION/COOLER TEMP 5 8553 JACKSONVILLE, FL SPECIAL INSTRUCTIONS/COMMENTS 200 F FORSYTH CLIENT SAMPLE ID BRAD STONE BUBBIA D M & B & B & B BUB175 04202W STRAME H tions MW3317 2500 AS MWB 335 00 5 むいのなり TRAIL See QAPP 705

RECEIVED BY

RECEIVED BY

RELINQUISHED BY

Name A RMOUR

Signette

Printed Name

Printed Name

Date/Time

4

Distribution: White - Return to Originator; Yellow - Retained by Client

Date/Time

Pro-Terest

Ell

Columbia
Analytical Services

www.castab.com

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

OF 4

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE L

CAS Contact

Project Name	Project Number					ANAIV	NO BEO!	ESTED //	ANALYSIS BEOLIECTED (Include Mothed Muse		
TRAIL RIDGE						, I I	21.00	בי בי	illoring menion valid		
Project Manager  BRAD STON &	Email Address			PRESERVATIVE		0	m	ი ი			
J	PORSYTH ST. STE	Q 000		Sł						NONE	(e)
- 4	( C ( C ( C ( C ( C ( C ( C ( C ( C ( C			JJNIV	_	\	_	20.			
JACKS ON THE TH	34506			CONT	1			2/8			4)
i	FAX#			EB OF	192 108	- M	, M.	/ 40 /c		5. MeOH 7. NaHSO4 8. Other	Marie Company
548 855	Sampler's Printed			amun	3	Ŋ	9			BEMARKS	
	DAN AC	ALL WOOLS				1	1	$\frac{1}{1}$		/ ALTERNATE DESCRIPTION	z
CLIENT SAMPLE ID	LAB ID	SAMPLING DATE TIME	MATRIX	M	13	+	Ŧ			· •	H-14800 bild shania
mw3125		A.20 1520	75	6	W		_			TANKS TO THE TANKS	
HE BIR		7091 02.E	73	6	M	_					
TRIP		7 20 1	3	7	7				The state of the s		
				•							
										THE PROPERTY OF THE PROPERTY O	
							-				T
							-			the second secon	***************************************
											***************************************
SPECIAL INSTRUCTIONS/COMMENTS					TURN	AROUND	TURNAROUND REQUIREMENTS	MENTS	REPORT REQUIREMENTS	INVOICE INFORMATION	
					- 1	USH (SURC	RUSH (SURCHARGES APPLY)	PLY)	l. Results Only		**************************************
					.s	STANDARD			II. Results + QC Summaries	PO#	
					REQUEST	REQUESTED FAX DATE	ш		(LCS, DUP, MS/MSD as required)		,
					.		ı		III. Results + QC and Calibration Summaries		
					REQUEST	REQUESTED REPORT DATE	DATE		IV. Data Validation Report with Raw Data		
See QAPP									V. Speicalized Forms / Custom Report		
SAMPLE RECEIPT: CONDITION/COOLER TEMP:	1 1	Sno	CUSTODY SEALS:	Z >::					Edata Yes No	The state of the s	
RELINQUISHED BY	THECEIVED BY	ALC N	REMINQUISHED BY	1	,	RECEI	RECEIVED BY		RELINQUISHED BY	RECEIVED BY	Ī
	Significant Market of the Mark	Signal L	IN X	12/1/2	Signature	X	X		Signature	Signature	-
٦	Color 1000	OS Printed Varie	AMICZ AMICZ	000			7	, A	Printed Name	Printed Name	
Ţ.	Dato Timo	Firm	TAS	4		1	M		Firm	Firm	
Jan 7-21-10 11/5	2/4/10 1911	110/10 9,	190	0/	Date/I me	1	9	3	Date/Time	Date/Time Î	
Distribution: White - Return to Originator; Yellow - Retained by Glient	- Retained by Client	,								JSCOC-06/20/08	20/08

iο
ăi
ម
.=
>
Sunt
a
ιĀ
ത്ത
·= i
Marie o Marie
Ct
37
0 =
UC
~

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

SR # \\ \( \subseteq \) \( \cools \alpha \) \( \cools \)

Preservative Key
0. NONE
1. HCL
2. HNC3
3. H2SO4
4. NaOH
5. Zn. Acetate
6. MeOH
7. NaHSO4 HCL HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Other RECEIVED BY ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Time Signature BILL TO: #Od Firm IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report ž II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration RELINQUISHED BY Yes I. Results Only Edata Printed Name Date/Time 0 TURNAROUND REQUIREMENTS , OX RUSH (SURCHARGES APPLY) N RECEIVED BY REQUESTED REPORT DATE 3 REQUESTED FAX DATE STANDARD Printed Name Ø Date/Time **PRESERVATIVE** (1) 3 3 (~) 3 Z CUSTODY SEALS: Y
RELINQUISHED BY NUMBER OF CONTAINERS σ 0 C" MATRIX 3 3 いく 3 3 3 <u>ت.</u> ق S 3 0909 0959 77 1219 77 CHO! 72 50 601 1228 7-21 1753 Printed Name SAMPLING DATE TIM Date/Time Signature 0000 TRIP BLANKS PROVIDED IN COOLERS Sampler's Printed Name 7 7-2 47 12.4 ナン 17.7 7.51 12-4 74 18 Kg 1445 32202 Email Address LAB ID 200 W. FORSTAN ST FAX# EX SAMPLE RECEIPT: CONDITION/COOLER TEMP: 8553 JACKSONVILLE, FL SPECIAL INSTRUCTIONS/COMMENTS アンファ CLIENT SAMPLE ID DAN ARMOUR TRAIL RIDGE 2000 BRAD STONE Par- 1204 RELINQUISHED BY T 288 MW mw320 P MWB135 RED 345 THE OMW MW13325 MW 334 DUPOH 20003 Date/Time 500 Company/Address See QAPP ADDI 30

SITE NAME:	TRAIL	. Ric	<i>S</i> €€				SITE LOCATION:	SACKSON	11111 00	Ei					
WELL NO	mub	3 5		SAMPL	E ID:				WIGGE !	DATE:	7-20-10	·····			
		<del></del>				PUR	GING DATA	<u> </u>	······································	1	1 50-10				
WELL		TUBI		31 WE	LL SCREEN					PI	JRGE PUMP TYP				
			ETER (inches)	: 18 DE	PTH:   o fe	eet to 2 o	feet TO WATE	ER (feet): 十, 十	-2		RBAILER: B				
	EVATION TOC		154.38	<b>K</b>		0	VOCINDANY I EM EI	LEVATION IT NO	VDE LLA	5,63					
(only fill o	ut if applicable)	METT A		HAL WELL DE	PIH - SIA	ATIC DEPTI	TO WATER) X	WELL CAPAC	ITY						
			= (		feet -		feet) X		gailons/foot	=	gallon	5			
EQUIPMI (only fill o	ENT VOLUME P ut if applicable)	URGE: 1 E	QUIPMENT VO				CITY X To	UBING LENGTH			•				
INITIAL P	UMP OR TUBIN	IG	FINAL PL	MP OR TUBIN		PURG		PURGING	+ 0.05	gallons	= 0,4 Agallons				
DEPTH I	WELL (feet):	15,00	DEPTH IN	WELL (feet):	15.00		TED AT: D941	ENDED AT:	1001		TOTAL VOLU PURGED (gal	ME 3,8			
	VOLUME	CUMUL.		DEPTH	pН	TEMP.	COND. (circle units)	DISSOLVED OXYGEN							
TIME	PURGED (gallons)	PURGED	RATE	WATER	(standard units)	(°C)	μmhos/cm	(circle units)	TURBIDITY (NTUs)	ORP (mV)		ODOR			
		(galions)		(feet)		<u> </u>	or μS/cm	mg/L <u>or</u> % saturation							
0951	1.90	1,90	91.0	7.90	4,64	23,3	21	0.8	78.8	109					
2954	6.57	5,43	0,19	7,92	4.65	23.4	49	0,8	4,35	105					
0957	F 2,0	3.04	0.19	7.90	4,66	23,4	48	0,8	3.29	101					
1002	£ 2,0	3,61	0.19	3.63	4,67	23,4	48	0,8	3.13	47	NONE				
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88														
	WELL CAP	I ACITY (Galic	ons Per Foot):	0.75" = 0.02;	1" = 0.04:	1.25" = (	0.06: 2" = 0.16:	3" = 0 37·	A" = 0 85; E	1 = 1 00	6" = 1.47; 12				
	TOBING IN	SIDE DIA. C	AFACITI (Gal	JPL): 110" = U.	0008; 3/10	b" = 0.0014	1/4" = 0.0026;	5/16" = 0.00	4; 3/8" = 0.0			!" = 5.88 !" = 0.016			
	PURGING	QUIPMENT	CODES:	B = Bailer;	BP = Bladder		ESP = Electric St		; PP = Per	staltic Pun	np; 0 = Othe	r (Specify)			
SAMPLE	BY (PRINT) / A	FFILIATION		SAMPLER(S)	SIGNATURE	SANIF	LING DATA	<del></del>		γ	<del></del>				
DAN A	RMOUR	17	RO-TECH	/ . W				SAMPLING INITIATED AT	: 1001		SAMPLING ENDED AT:	NO			
PUMP OR	TUBING			TUBING						(N)	FILTER SIZE				
	WELL (feet):	15,	00	MATERIAL C	ODE:			μm Filtration	Equipment Type						
FIELD DE	CONTAMINATIO	ON: PU	MP Y Q	<b>D</b>	TUBING	Y (1)	replaced)		DUPLICATE:	Y	<b>®</b>				
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMDLEDE	ECEDIATI	ON.		SAI	/PLE					
			711011		SAMPLE PR			INTENDE ANALYSIS AN	ID/OR   FLOV	JMP / RATE	SAMPLING EQ				
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		OTAL VOL D IN FIELD		METHOD	1	. per nute)	CODE				
							, <u>, , , , , , , , , , , , , , , , , ,</u>			10.07					
	X SEE	SAM	PLE	C-0-C	AND	roa	TLE ORG	DER VIZ	RKSHEE						
									STABOURS						
												, ,			
	DELLARIZA														
	REMARKS:									1					
	MATERIAL (Specify)	CODES:	AG = Amber	· Glass; CG =	Clear Glass	PE = P	olyethylene; PF	P = Polypropylene	s; S = Silicone	s; T = Te	eflon; O = Othe	ar .			
		EQUIPMEN		APP = After Pe RFPP = Revers	ristaitic Pump e Flow Perist	o; B = E	Baller; BP = Bl	adder Pump; ethod (Tubing Gra	ESP = Electric	Submersib	ole Pump;				
NOTES	: 1. The abo	ve do not	constitute a	I of the infor	mation ren	uired by	Chanter 62-160	E A O	avity Drain);	O = Other	r (Specify)				

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	- R10	\& <b>₹</b>				SITE	70				
WELLN	_	B3I		SAMPL	E ID:		LOCATION;	JACKSO	AVICLE,			
<u> </u>	,	(-) -)				DIID	GING DAT			DATE:	1-05.F	)
WELL		TUBI	NG	9 )   WE	LL SCREEN	INTERVAL	STATIC	A DEDTU	<del></del>			
		2 DIAM	ETER (Inches	: 3 8 DE	PTH: SZ f	eet to 6 2	feet TO WAT	TER (feet): 12.	32	PU	RGE PUMP TYPE BAILER: B	E O
	LEVATION TOO	(ILNGVD):	151.8	አ <i>ር</i> -		l G	ROUNDWATER E	LEVATION (# NO	GVD):	,54	DAILCOR . B	<u> </u>
(only fill	OLUME PURGE out if applicable)	: 1 WELL V	OLUME = (TO	TAL WELL DE	PTH - ST	ATIC DEPTI	HTO WATER)	WELL CAPAC	SITY Y	12-1		
	,		<b>=</b> (		feet -		feet) >	<	gallons/foot	=	gallon	_
EQUIPM	ENT VOLUME F	URGE: 1 EC	UIPMENT VO	L. = PUMP VO	LUME + (TU	BING CAPA	CITY X 7	TUBING LENGTH	•		Sanon	•
(Only file	out if applicable)						allons/foot X 62					
INITIAL	PUMP OR TUBI		FINAL PU	MP OR TURIN	C .	DUDO		PURGING	1)+0,05	gallons	= 0.72gallon	
DEPTHI	N WELL (feet):	57.00	DEPTHIN	WELL (feet):	57.00	> INITIA	TED AT: 1009	ENDED AT:	1030		TOTAL VOLU PURGED (gai	ME ions): S. L7
****	VOLUME	VOLUME	PURGE	DEPTH	pН	TEMP.	COND.	DISSOLVED			<u> </u>	T
TIME	PURGED (gallons)	PURGED	RATE	WATER	(standard units)	(°C)	(circle units) μmhos/cm	(circle units)	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
		(galions)	(gpm)	(feet)			<u>or</u> μS/cm	mg/L. <u>or</u> % saturation	(**,***)	. (1114)		
1050	£9.5	2,97	75,0	15.21	5.02	22,5	42	0.6	1,24	-143		
(023	0181	3.78	0,27	15.22		22.6	42	0,6	1.04	-147		~
1026	0.81	4.59	£5.0		5,05	55.6	42	0,6	1,05	-149		
1029	0.81	5.40	0.53	12.59	5.00	55'6	41	0,6	0.98	-148	14042	
<u> </u>												
ļ	_											
				<u> </u>								
		<u> </u>		<u> </u>								
		<u> </u>						·				
		<u> </u>	_									
<b></b>	WELL CAP	I ACITY (Gallo	ns Per Foot):	0.75" = 0.02	4" = 0.04·	1 250 = 0	).06; 2" = 0.16;	011 0 02				•
	100man	GIUL DIA. UP	PAGIT (Gal.	IFL): 118" = 0.	0006; 3/1	3" = 0.0014;	1/4" = 0.0026	3" = 0.37; 5/16" = 0.00	4" = 0.65; 5' 4; 3/8" = 0.0			2" = 5.88 3" = 0.016
<u> </u>	PURGING	EQUIPMENT	CODES: 1	3 = Baller; i	BP = Bladder		ESP = Electric S	ubmersible Pump	; PP = Peri	staltic Pum		r (Specify)
SAMPLE	BY (PRINT) / A	FFILIATION:	1	SAMPLER(S)	SIGNATURE	SAMP	LING DAT	<del></del>				
	ARMOUR		RO-TECH		OIGHATIGAG	40).		SAMPLING INITIATED AT	r. 1		SAMPLING	
PUMP OF	TUBING			TUBING			·		TERED: Y	dD	ENDED AT:	
DEPTH IN	WELL (feet):	57.0	0	MATERIAL CO	DDE:			μm	•		FILTER SIZE	<b>:</b>
FIELD DE	CONTAMINATIO	ON: PU	AP Y C	b	TUBING	Y (M)	replaced)		Equipment Type DUPLICATE:			
241	DI = 001 = 11 = 1						, - ,	<del> </del>		Y MPLE	<b>₽</b>	
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	ESERVATION	ON	INTENDE	D PU	JMP	SAMPLING EQ	UDLACAT
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI		OTAL VOL	FINAL	ANALYSIS AN METHOL		/ RATE	CODE	
12 2006	JOHN FRINKLING	- SODE		USED	ADDE	D IN FIELD	(mL) pH	<u> </u>		nute)		
								-				
	X SEE	SAM	0, 15		<u> </u>	9						
				-0-6	AND	708	DE OR	per vi	DRKSHES	<u> </u>	***************************************	
·····					_			<del> </del>				
	REMARKS:		L									
											•	
	MATERIAL (Specific)	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Po	olyethylene; PI	P = Polypropyleni	e: S = Silloon	. T-T-	lan. C - C''	
	(Specify)	EQUIPMENT	CODES	DD = AB = - D	F=1-18* ==	***************************************						r I
	1		F	APP = After Per AFPP = Reverse	Flow Periet	altic Dumn	CM - Change M.	adder Pump; ethod (Tubing Gn	ESP = Electric	Submersible	e Pump;	
NOTES	3: 1. The abo	ve do not c	onstitute al	of the Inform	nation requ	uired by C	hapter 62-160.	FAC	avity Diain);	O = Other	(Specify)	

2. Stabilization Criteria For range of variation of Last three consecutive readings (see FS 2212, section 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ±5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	- Rit	S€€				SITE	ZA . K . A	٠						
WELLN	o: MMB	19D		SAMPL	E ID:		200/11/014	JACKSO	AVICER,	DATE:	~ ~				
\				I		PUR	GING DAT	Δ		DATE	J.50-19	9			
WELL	rn /	TUBI		3) WE	LL SCREEN	INTERVAL	STATIC	DEPTH .		PII	RGE PUMP TYP	)E			
	ER (Inches): LEVATION TOC		IETER (Inches	· 10100	PTH:105.5f			ER (feet): 6.5	8		BAILER: B				
WELL V	OLUME PURGE	: 1 WELL V	128,21 OLUME = (TO	OTAL WELL DE	PTH - STA	ATIC DEPTI	ROUNDWATER E H TO WATER) X	WELL CARAC	GVD): 121	· 65					
(only fill o	out if applicable)		. = (		feet -	,,,	feet) X								
EQUIPM	ENT VOLUME	URGE: 1 E	QUIPMENT VO	L = PUMP VO		BING CAPA			gallons/foot		gallons	S			
(only fill o	out if applicable)							UBING LENGTH							
	PUMP OR TUBIN	1G	FINAL PL	IMP OR TUBIN	G	i PURG	allons/foot X // S	PURGING	1+0,05	galions	= 1.0 ¹ / gallons				
DEPTHI	N WELL (feet):	110.50		N WELL (feet):	118,50	INITIA	TED AT: 1043	ENDED AT:	401		PURGED (gail				
TIME	VOLUME	VOLUME VOLUME		DEPTH	pH	TEMP.	COND. (circle units)	DISSOLVED OXYGEN							
111415	PURGED (gallons)	PURGEI (galions)		WATER (feet)	(standard units)	(°C)	μmhos/cm	(circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR			
1054	2,97	7.93	75.0		2 20	5	or μS/cm	% saturation	ļ						
1058	1.38	4.05	0.27	7.19	7.39	24,2	392	0,4	6,14	-157					
1102	1.08	5113	67.0		7.45	54,3	363	0,3	5,00	-135					
1106	1.08	6.21	0,27	05 AF	7.45	24,3	393	0,3	6.02 7.11	-132					
							<u> </u>		7.11	-137	Nowa				
				·						<del>                                     </del>					
										†					
<del></del>				<del></del>											
	WELL CAP	I ACITY (Galic	ons Per Foot):	0.75" = 0.02:	1" = 0.04:	125" = 0	).06; 2" = 0.16;	21 - 0.07				·			
	LODING IN	SIDE DIA. CA	APACH Y (Gal.	JFL): $1/8" = 0$ .	0006; 3/16	$3^* = 0.0014;$	1/4" = 0.0026;	5/16" = 0.00		' = 1.02; 06;     1/2'		" = 5.88 " = 0.016			
	PORGING	EQUIPMENT	CODES:	B = Baller,	BP = Biadder		ESP = Electric St	ubmersible Pump	; PP = Peri	staltic Pum		r (Specify)			
SAMPLE	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	SAIVIP (S):	LING DATA	<del></del>		1	<del></del>				
DAY	Armour	17	RO-TECH		-		,	SAMPLING INITIATED AT	: 1/07		SAMPLING ENDED AT:	NO			
PUMP OF	R TUBING I WELL (feet):			TUBING				FIELD-FI	The same of the sa	(M)	FILTER SIZE				
	CONTAMINATION	110,5		MATERIAL CO				μm Filtration	Equipment Type	<u>.                                    </u>					
FIELD DE	CONTAMINATIO	ON: PU	MP Y C	<u>v</u>	TUBING	Y	replaced)		DUPLICATE:	Y	(1)				
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	ESERVATIO	NC	INTENDE	SAN D PU	MPLE IMP					
SAMPLE	#	MATERIAL	VOLUME	PRESERVATI	VE T	OTAL VOL	FINAL	ANALYSIS AN METHOL	ID/OR   FLOW	RATE per	SAMPLING EQU CODE				
ID CODE	CONTAINERS	CODE		USED	ADDE	O IN FIELD	(mL) pH		, ,,,,-	ute)					
								<u> </u>							
	X SEE	SAm	PIE	C- D- C	AND	3									
			<u> </u>		200	708	GE ORE	DER VIC	>RKSHEE	7	***************************************				
					_							,			
	REMARKS:	-,						<b></b>		I	<del> </del>				
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Po	plyethylene; PP	Polypropylene	s; S = Silicone	; T = Tef	lon; 0 = Othe				
		EQUIPMENT	CODES:	APP = After Per	istaltic Pump	B=B									
NOTE				RFPP ≃ Reverse	Flow Perists	lific Pump	SM = Straw Ma	adder Pump; ethod (Tubing Gra	ESP = Electric Savity Drain);	Submersible O = Other (	Pump; Specify)	,			
NOTE	∍. i. ine abc	ve ao not e	constitute al	of the infon	nation requ	ulred by C	hapter 62-160.	FAC		34,01					

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAI	L RV	NC #		7		SITE	~				
WELL			<u> </u>	SAMPL	E ID:		LOCATION:	JACKSO	WILLEY,			· · · · · · · · · · · · · · · · · · ·
	1110	<u> 319 I</u>		OVINIL C	E 10.	200			Í	DATE:	1-05-5	2
WELL		TUE	BING	n. W	ELL SCREEN	PUR	GING DAT					
			METER (Inches	5): 3)8 DE	PTH: 49 f	eet to 53	feet TO WAT	TER (feet):	82	PUR	GE PUMP TYP	"E
	LEVATION TO					G	ROUNDWATER	TI EVATION IN AU		ORB	AILER: B	<u>, P</u>
(only fill	OLUME PURGI out if applicable	E; 1WELL'	VOLUME = (T	OTAL WELL DE	PTH - ST	ATIC DEPT	HTO WATER)	X WELL CAPAC	XITY Y	-		
			<b>=</b> (		feet -		feet) ;	x	gallons/foot	=		_
EQUIPA (only fill	IENT VOLUME out if applicable	PURGE: 1 E	QUIPMENT V	OL. = PUMP VO	LUME + (TU	BING CAPA	CITY X	TUBING LENGTH			gallon	S
(Oray iii	out it applicable,						allons/foot X 5				_	
INITIAL	PUMP OR TUBI N WELL (feet):		FINAL P	UMP OR TUBIN	G	PURG	SING	PURGING	1+0.05		O. 7 ogailon	
DEFIN	IN VVELL (leet):	T		N WELL (feet):	54.00	INITIA	TED AT: 1115	ENDED AT:	1138		TOTAL VOLU PURGED (gai	ME lons): 5,52
TIME	VOLUME	VOLUM	E PURGI	□ DEPTH □ TO	pH	TEMP.	COND. (circle units)	DISSOLVED			T	7,515
	PURGED (gallons)	PURGE (gallons			(standard units)	(°C)	μmhos/cm	(circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
1175	2 8 4	<del>                                     </del>		1.550	63-		or μS/cm	% saturation	,	,		
1125	0.72 2F.0	3,12	0.24	6.90	2,35	52.19	39	0,5	10,50	-17S		
1131	0.72	3,84	1054	6,91	5.33	52.9		0,5	7.6B	-173		
1134	57.0 \$7.0	4.56	0,24	6.88	5.33	15.6	38	0.2	10.68	1) 72		
1137	0.72	5.28	0,24	6.85	5.34	55,6	3.8	0.5	14,13	-173	BULL	
11.5 +	10,42	3,28	10,21	6.85	5,34	25,6	38	015.	14.75	-176	NONE	
		<del> </del>								<u> </u>		
*******************************								·				
	WELL CAP	ACITY (Gall	ons Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0	).06; 2" = 0.16;	3" = 0.37	4" = 0.65; 5"	-100 0		
	1001140 114	EQUIPMENT	APACITI (Gai	JFL): 1/8" = 0.0	0006; 3/16 3P = Biadder	" = 0.0014;	1/4" = 0.0026;	5/16" = 0.004	4; 3/8" = 0.00	06; 1/2" =	= 1.47; 12 0.010; 5/8	" = 5.88 " = 0.016
				o - Dalict, I	or - DIROGE		LING DATA	ubmersible Pump	PP = Peris	taltic Pump;		r (Specify)
SAMPLE	BY (PRINT) / /	AFFILIATION	:	SAMPLER(S)	SIGNATURE	(S);	LING DATA	<del></del>				
DAN	ARMOUR	17	RO-TECH	4				SAMPLING INITIATED AT:	1138	ł	SAMPLING ENDED AT:	NO
PUMP OF	R TUBING I WELL (feet):	C.,		TUBING		_		FIELD-FIL		OP -	FILTER SIZE	
	•	54.0		MATERIAL CO	1			μm Filtration 8	quipment Type:			
PIELD DE	CONTAMINATION	ON: PU	MP Y C	<u> </u>	TUBING	<u>ь</u>	replaced)		DUPLICATE:		<b>®</b>	
SAM	IPLE CONTAINE	R SPECIFIC	ATION	,	SAMPLE PRI	ESERVATIO	אר	MITTAIN	SAM	PLE		
SAMPLE	#	MATERIAL		PRESERVATI				INTENDE	D/OR FLOW		MPLING EQU	JIPMENT
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	OTAL VOL O IN FIELD (	(mL) FINAL	METHOD	(mL min		CODE	
				******							**************************************	
	NI .						·					
	X SEE	SAm	PLE	C-0-C	AND	708	TIE ORG	DER WO	RKSHEE	7		
						<del></del>						
	REMARKS:			*****								
										L		
	MATERIAL	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = PA	lyethylene; PP	I m Dela				
	(Specify)	EOUNIE					nyoutyletie; PP	= Polypropylene;	S = Silicone;	T = Teflon;	0 = Other	
	SAMPLING		· 1	APP = After Peri RFPP = Reverse	Flow Perista	Hic Pump	CM - Chan Li	idder Pump;	ESP = Electric S	ubmersible Pi	JMp;	
NOTES	: 1. The abo	ve do not	constitute al	of the inform	nation requ	ired by C	hanter 62-160	thod (Tubing Gra	vity Drain); (	F Other (Sp	ecify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME:	TRAIL	- RID	68				SITE	70		<u> </u>		
WELL				SAMPL	E ID:		LOCATION:	JACKSO	ANICLE,	1-L	<u> </u>	
			<del></del>			DUID	GING DAT			DATE:	7.20-1	2
WELL		TUBIN		21 WE	LL SCREEN						10000011111	
		***************************************	TER (Inches):	18 DE	PTH: 10 fe	eet to 2 >	feet TO WAT	ER (feet):	dc	OF	RGE PUMP TYPER BAILER: B	Č O
	LEVATION TOO		127,38	3		G	ROUNDWATER E	LEVATION (ft NO	3VD): 131	. 32		<u> </u>
(only fill	out if applicable)	:		IAL WELL DE	PTH - STA	ATIC DEPTI	HTO WATER) X	WELL CAPAC	ITY			
EQUIPM	IENT VOLUME	PURGE: 1 EQ	" ( UIPMENT VOI	= PUMP VO	feet LUME + (TUI	BING CAPA	feet) X	( UBING LENGTH	gallons/foot		gallon	<b>S</b>
(only fill	out if applicable)						allons/foot X 2.0					
INITIAL	PUMP OR TUBI		FINAL PUN	AP OR TUBIN	3	PURG	ING	PURGING	1+0,05	gallons	= 0.47 gallon	
DEPIR	N WELL (feet):	15.00	DEPTH IN	WELL (feet):	15,00	AITINI C	TED AT: 1146	ENDED AT:	F051		TOTAL VOLU PURGED (gal	ME  ons):3,76
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
1127	1.98	1.98	81.0	6.18	5.84	1. FS	190	0.4	14.86	-169		
1200	10.54	2,52	0.18	6,12	5.82	27.1	183	0,4	13.66	-)7		
1203	0.54	3.60	0.18	6.50	5,83	27.2	188	2,4	13,05	-171	4	
1206	0.24	3,60	81.0	6.15	5.79	27.2	188	0.4	13,00	-175	NONE	
		<del> </del>		<u> </u>	~			•				
			<del> </del>									
			<del></del>	<del> </del>				<del></del>		<u> </u>		
				<del> </del>						<u> </u>		
								•		<del> </del>		
	WELL CAP	ACITY (Gallon	s Per Foot): (	).75" = 0.02;	1" = 0.04;	1.25" = 0	0.08; 2" = 0.16; 1/4" = 0.0028;	3" = 0.37;	$4^{\prime\prime} = 0.65; 5^{\prime\prime}$	= 1.02;	6" = 1.47; 12	" = 5.88
	PURGING I	EQUIPMENT C	ODES: B	= Baller; I	3P = Bladder	Pump:	## = 0.0026; ESP = Electric St		4; 3/8" = 0.0	06; 1/2	= 0.010; 5/8	"= 0.016
CAMPIE	5 557 (55) (5 <del>5</del> )					SAMP	LING DATA	1	, FF Fen	staltic Pum	p;	r (Specify)
	D BY (PRINT) / A	_		SAMPLER(S)	SIGNATURE	(S);		SAMPLING		T	SAMPLING	
PUMP OF	ARMOUR	1 / //	20-TECH	10 6			γ	INITIATED AT			ENDED AT:	NR
DEPTH IN	WELL (feet):	15,00	<b>)</b>	TUBING MATERIAL CO	DE: T	-		μm	LTERED: Y	<b>3</b>	FILTER SIZE	
FIELD DE	CONTAMINATIO				TUBING	y M	replaced)		Equipment Type			
					100110		replaced)	<u> </u>	DUPLICATE:	Y	(A)	
SAM	PLE CONTAINE	R SPECIFICA	TION		SAMPLE PRI	ESERVATIO	NC	INTENDE	D I DII	IPLE IMP	SAMPLING EQ	HDs are er
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL	FINAL	ANALYSIS AN METHOD		RATE per	CODE	
				- JOED	ADDEL	O IN FIELD	(mL) pH	<u> </u>	min	ute)		
				*****************							·····	
	X SEE	SAMP	LE C	-0-6	AND	708	7.000	250				
						~~\	TE ORG	LEIZ MC	RKSHEE			
						***************************************		·				
	DELL'ER										·	
	REMARKS:	<b></b> .						<u> </u>		L	· · · · · · · · · · · · · · · · · · ·	
	MATERIAL (Specify)	CODES:	AG = Amber G	ilass; CG =	Clear Glass;	PE = Po	plyethylene; PP	Polypropylene	; S = Silicone	; T = Tel	lon; 0 = Othe	<u> </u>
	SAMPLING	EQUIPMENT C		PP = After Per	staltic Pump;	B=B	aller; BP = Bla	adder Pump;	ESP = Electric S	Submereihl	e Dumer	
NOTES	: 1. The abo	ve do not co	nstitute all	PP = Reverse	riow Perista	itic Pump;	SM = Straw Me	diam'd / Think I	ivity Drain);	O = Other	(Specify)	

The above do not constitute all of the information required by Chapter 62-104, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NAME:	TRAIL	- R17	76.5				SITE LOCATION: -	ZA. v. a		~ <u>~</u>	·	
WELL N	o: mwb			SAMPL	E ID:	· · · · · · · · · · · · · · · · · · ·	LEGO TION	-11CK20	NVILLE ,	DATE	. %	
<u> </u>						PUR	GING DAT	Α	<u> </u>	DATE	1-50-10	)
WELL		TUB		31 W	LL SCREEN						URGE PUMP TYP	- P-
	ER (inches): EVATION TOO		METER (Inches		PTH: 15 fe	et to 2 o	feet TO WAT	TER (feet): 🔞 .		0	RBAILER: B	Ď
			121.01				ROUNDWATER E H TO WATER)	ELEVATION (ft N	GVD): \\1	FILE		1
(only fill o	ut if applicable)			SIAL MELL DE		CHC DEPT	H TO WATER)	WELL CAPA	CITY			
FAURI			** (		feet –		feet) >		gallons/foot		gallon	s
(only fill o	ent volume i at if applicable)	PURGE: 1 E	QUIPMENT VO	L. = PUMP VO				TUBING LENGT	H) + FLOW CELL	VOLUME		
INITERAL E	UMP OR TUBI		1 =	= 0,3	allons + (O.		allons/foot X 2 c	> OO fee	1)+0,05	gailons	= O.H-7gallon:	5
	WELL (feet):	15.00	DEPTH I	JMP OR TUBIN NWELL (feet):	G 15.00	PURG NITIA	ING TED AT: 121	PURGING	: 1237		TOTAL VOLU PURGED (gal	
	1/01/11/5	CUMUL		DEPTH	T .	1	COND.	DISSOLVED	1037	<del> </del>	PURGED (gal	lons):グバイイ
TIME	VOLUME PURGED	VOLUMI PURGEI		TO WATER	pH (standard	TEMP. (°C)	(circle units) μmhos/cm	OXYGEN (circle units)	TURBIDITY	ORP	,	ODOR
	(gallons)	(gallons	) (gpm)	(feet)	units)	( 0,	or μS/cm	mg/L <u>or</u> % saturation	(NTUs)	(mV)		
1557	2,09	2,09	0,19	f.03	4.61	28.2	99	0,5	15.11	-92		
1530	6.57	2.66	0.19	7.05	4,63	28,2	100	0,5	1670	-96		
1533	5.57	3,23	0.19	00.F	4.61	5.85	100	0.5	16.34	-93		
1536	0.57	3.80	0,18	7.01	4.64	58'3	00	012	16:08	-90		
		<u> </u>								<u> </u>	To ct	
	<del> </del>										BROWN	
	<del> </del>											
				<del>- </del>			•					
		<u> </u>							-			
	WELL CAP	ACITY (Gallo	ons Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0	).06; 2" = 0.16;	3" = 0.37;	A" = 0.65: E"	= 1.02;		
<del></del>	10DING IN	SIDE DIA. C. EQUIPMENT	APACITY (Gal.	(FL): $1/8" = 0.0$	0006; <b>3/16</b>	" = 0.0014;	1/4" = 0.0026;	5/16" = 0.00	3/8" = 0.0	06; 1/2	" = 0.010; 5/8	." = 5.88 ! <b>"</b> = 0.016
				o - Daller,	3P = Bladder		ESP = Electric S	ubmersible Pump	o; PP = Peri	staltic Pun	1p; 0 = Othe	r (Specify)
SAMPLE	BY (PRINT) / A	_		SAMPLERIS)	SIGNATURE	(S):	LING DATA	SAMPLING		<u> </u>		
	ARMOU	R/F	'RO-TECH	(A)	6		•	INITIATED AT	r: 1237		SAMPLING ENDED AT:	NR
PUMP OR	TUBING WELL (feet):			TUBING				FIELD-FI	LTERED: Y	<b>®</b>	FILTER SIZE	
	CONTAMINATION	15,00		MATERIAL CO					Equipment Type			
TILLO OL	- CINTANINATIO	JN. PU	MP Y C	<u> </u>	TUBING	Y (D)	replaced)		DUPLICATE:	Υ	(8)	
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PRE	ESERVATIO	NC	INTENDE	SAM ED PU	IPLE MP		
SAMPLE	•	MATERIAL	VOLUME	PRESERVATI	VE I TO	OTAL VOL	FINAL	ANALYSIS AT	ND/OR   FLOW	RATE	SAMPLING EQU CODE	
ID CODE	CONTAINERS	CODE	VOLOIME	USED		IN FIELD	(mL) pH		, ,,	per ute)		
						<del></del>		<u> </u>				
	X SEE	۲۸	0		<u></u>	_						
	A 3.6	SHIP	PLE	-0-6	AND	708	TE OR	PER WI	BREHEE	7		
					-		<del>-  </del>					
					_							
	REMARKS:	.,		·	I							
	<u> </u>											
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Po	lyethylene; PF	= Polypropyleni	e; S = Silicone;	T = Te	flon; 0 = Othe	·
		EQUIPMENT	CODES:	APP = After Per	staltic Pump	B = B:	aller RD - Di	adder Pump;				
NOTES	· 1 The sho	ve do set	F	RFPP = Reverse	Flow Peristal	Hic Pump	SM = Straw Me	أسعاله والمراجع المسالم	ESP = Electric S avity Drain);	ubmersib O = Other	e Pump; (Specify)	
	abc	au 110£	viisutute al	of the intorn	nation regu	ired by C	bapter 62-160	FAC				

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

PH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RID.	68				SITE LOCATION:	Ackson	21.110	(S)		
WELL NO	" MWBI			SAMPLI	E ID:				VICES ;	DATE:	7-20-10	
<u> </u>	1.000	7=		I		PUR	GING DATA	<u> </u>			4- 60-10	
WELL		TUBIN		310 WE	LL SCREEN	INTERVAL	STATIC	DEPTH		PUR	GE PUMP TYP	F
			ETER (Inches)	18 DE	PTH: 9 , 5 fe	set to 19.5	feet TO WATE	ER (feet): 10,	18	ORI	BAILER: B	<u></u> ρ
	EVATION TOC		120.81	TAL MELL DE	7711 67	GI	ROUNDWATER EL H TO WATER) X	LEVATION (ft NG	^(VD) :	0,03		
(only fill o	ut if applicable)			IAL WELL DE		AIR DEPI			IΤΥ		*	
			<b>*</b> (		feet -		feet) X		gallons/foot		gallons	3
(only fill o	NT VOLUME P ut if applicable)	URGE: 1 EQ	UIPMENT VO					UBING LENGTH	+ FLOW CELL	VOLUME		
41 19974 4 4 5							allons/foot X 19	,50 feet	+0,05	gallons =	enollsgf. H. O:	5
	UMP OR TUBIN I WELL (feet):		DEPTH IN	MP OR TUBING WELL (feet):	14.50	PURG	ING TED AT: 1248	PURGING ENDED AT:	1310		TOTAL VOLUI PURGED (gall	ME 3 5>
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
1300	1.42	1,92	0,16	10.83	4,05	25,4	220	% saturation	2,99	204		
1303	0.48	2.40	0.16	10.80	4.03	25,3	217	0,4	1.63	191		
1306	0,48	2,88	0.16	10.81	4007	25,4	216	0,5	1,79	188		
1309	0,48	3.36	0.16	18.01	80,4	25,4	216	0.3	1,62	186	Nong	
								•		1	700.00	L
<u></u>												
<b></b>	<del>-</del>											
	WELL CAP	 ACITY (Gallo	ns Per Foot):	0.75" = 0.02:	1" = 0.04:	1.25" = (	0.06; 2" = 0.16;	3" = 0 27.	4" = 0 65. Ell	- 4 00:	01 - 4 45 - 46	
	I UBING IN	SIDE DIA. CA	PACITY (Gal.	/Ft.): 1/8" = 0.	0006; 3/1	6" = 0.0014	; 1/4" = 0.0026;	5/16" = 0.00	4; 3/8" = 0.0			2" = 5.88 3" = 0.016
L	PURGING	QUIPMENT	CODES: E	3 = Baller;	BP = Bladder		ESP = Electric St		; PP = Peri	staltic Pump	O = Other	r (Specify)
SAMPLE	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATUR	SAIVIT E(S):	LING DATA	·   · · · · · · · · · · · · · · · · · ·		T	T	
DAN	Armor	A IP	RO-TECH	(1)		7		SAMPLING INITIATED AT	: 1310		SAMPLING ENDED AT:	NR
PUMP OF				TUBING	\.				LTERED: Y	, COD	FILTER SIZE	
	WELL (feet):	14,50		MATERIAL C	ODE:			μm Filtration	Equipment Type	:		
FIELD DE	CONTAMINATIO	ON: PUI	MP Y CT	<u> </u>	TUBING	YO	replaced)	<u> </u>	DUPLICATE:	Y	<b>®</b>	
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PF	RESERVATI	ON	INTENDE		APLE JMP		
SAMPLE	#	MATERIAL	\(\alpha\) \(\begin{array}{cccccccccccccccccccccccccccccccccccc	PRESERVAT	IVE I	TOTAL VOL	FINAL	ANALYSIS AN METHOI	ID/OR   FLOW	/ RATE	SAMPLING EQ CODE	
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD				nute)		
						·		<u> </u>				
l	N 55=		0.7						· ·			
<del> </del>	X SEE	SAM	PLE C	<u>-0-c</u>	AND	<u>706</u>	THE OR	per wi	>RKSHEG	7		
				·								· ·
	REMARKS:	<del>-</del>	L									
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass	PE = P	olyethylene; PI	P = Polypropylen	e; S = Silicone	; T = Tef	lon; O = Oth	er e
		EQUIPMENT	CODES:	APP = After Pe	ristaltic Pumi	p; B=1	Bailer: BP = BI	adder Pump;	ESP = Electric	Submaraiki	a Duma:	
NOTE	1 The sho	ve do not	i	RFPP ≃ Revers	e Flow Peris	taltic Pump;	SM = Straw Mo	ethod (Tublea Gr	avity Drain);	O = Other	(Specify)	
*****	:. <del>.</del> abl	U UU 11UL I	シンコラいにほじせ さし	i vi uie IIIIOI	iliauun rec	wirea DV (	.nanter 67.160	H A C				

^{2.} Stabilization Criteria For range of variation of Last three consecutive readings (see FS 2212, Section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RIDG	· E				LOCATION: 3	ACKSON	VILLES	FL					
WELL NO	: MWB	III (R)	\	SAMPLE	ID:					7	d1.02.t				
		211-2-6:3				PUR	GING DATA	······			7 00 10				
WELL		TUBING			LL SCREEN		STATIC			PUR	GE PUMP TYP				
	R (inches): 2 EVATION TOC (		ER (inches):	3/8 DEF	7TH:45 fe		feet TO WATE				BAILER: B	ρ			
			20,43 UME = (TOT)	AL WELL DEF	TH - STA		TO WATER) X			9.23					
(only fill or	it if applicable)		<b>=</b> (		feet -			TILLE ON NO							
FOURDIE	NT VOLUME P	IBCE. 4 EOU	•	- DUMB VAI		INO OADA	feet) X	ISINO I ENGERIN	gallons/foot		gallons				
	it if applicable)	DRGE: 1 EQUI	FINEN! VOL		-			JBING LENGTH)							
INITIAL DI	UMP OR TUBIN	6	EINAL DUL	P OR TUBINO		PURG	illons/foot X 5 5		+0.05	gallons =	0.68 gallons				
	WELL (feet):	50,00		VELL (feet):			TED AT: 1320	PURGING ENDED AT:	1345		TOTAL VOLUI PURGED (gali				
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	рН	TEMP.	COND. (circle units)	DISSOLVED OXYGEN	TURBIDITY	ORP					
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER	(standard units)	(°C)	μmhos/cm	(circle units) mg/L or	(NTUs)	(mV)	COLOR	ODOR			
				(feet)	6 11	-	or μS/cm	% saturation	1.0						
1329	91.5	5.16	0.24	11.38	2.16	26.3	41	0.6	6,13	-161	<del> </del>				
1332	24.0	3.60	0.24	11.40		26.7	41	0, b	10,08	-166	-				
1338	0,72	4,32	0.24	11,36	5,20	26.2	40	0,6	9.65	-135 -135					
(34)	0.72	5,04	0,24	11.32	5,18	36.3	41	0,6	11,49	-169	Nove				
					3116	100.0		016	1,1,1	-167	140/40				
												· ·			
		ACITY (Gallons SIDE DIA. CAP				1.25" = 6" = 0.0014	0.06; 2" = 0.16; ; 1/4" = 0.0026;	3" = 0.37; 5/16" = 0.00				2" = 5.88 8" = 0.016			
	PURGING E	QUIPMENT CO	DDES: B	= Baller;	BP = Biadde		ESP = Electric St			istaltic Pump		er (Specify)			
CAMDI ET	BY (PRINT) / A	CENTATION:		SAMPLER(S)	CICNATUD		LING DATA	<del></del>							
<b>}</b> .	ARMOU	10	0-TECH	SAMPLEN(S)	SIGNATION	E(0);		SAMPLING INITIATED AT	: 1392		SAMPLING ENDED AT:	NO			
PUMP OR		<u> </u>		TUBING					LTERED: Y	(A)P	FILTER SIZE				
	WELL (feet):	50,0		MATERIAL C	ODE:			μm Filtration	Equipment Typ	e:					
FIELD DE	CONTAMINATIO	ON: PUMF	, A (A)	>	TUBING	У (Д	replaced)		DUPLICATE:	Y	<b>⇔</b>				
SAM	PLE CONTAINE	R SPECIFICAT	ION		SAMDI E DE	DECEDIAT	ION	IN LTTEN ITOT		MPLE					
					SAMPLE PI			ANALYSIS AN	ND/OR   FLO	WINNE	SAMPLING EC				
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL ED IN FIELD		METHO	1 5	nL per inute)	005	-			
	-X SEE	SAMP	LE	-0-6	AND	roa	TLE OR	DER WA	DRKSHE	23					
<u> </u>								<b> </b>				,			
<u> </u>	REMARKS:	<u> </u>					<u> </u>			L					
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG	Clear Glass	; PE=1	Polyethylene; P	P = Polypropyler	ne; S = Silicon	ne; T = Tel	flon; O = Oth	ner			
	SAMPLING	EQUIPMENT (	CODES: A	APP = After Pe	ristaltic Pum se Flow Peris	p; B =	Baller; BP = Bi	ladder Pump; ethod (Tubing G	ESP = Electric	Submersibl O = Other					
NOTE	S: 1 The abo	ove do not co					Chanter 62-160		water widelij,	O - Ouler	(opecity)				

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RIDE	÷ €				LOCATION: 3	ACKSON	ville.	FL		*		
WELL NO:	MWBI	ds.		SAMPLE	ID:				7	DATE: 7	-50-10			
						PUR	GING DATA	1			· · · · · · · · · · · · · · · · · · ·			
WELL DIAMETEI WELL ELE	R (inches): 2		ER (inches):		LL SCREEN ?TH:  O≥ fe	et to 11 2	feet TO WATE	R (feet): 4,5			SE PUMP TYP AILER: B			
WELL VO	LUME PURGE:	1 WELL VOL	UME = (TOT	AL WELL DEF	TH - STA	TIC DEPTH	TO WATER) X	WELL CAPACI	ITY	. 10				
	t if applicable)		= (		feet -		feet) X		gallons/foot		galions	3		
	NT VOLUME PI it if applicable)	URGE: 1 EQU	IPMENT VOL				CITY X TI	•			, <b>○ </b>			
	JMP OR TUBIN WELL (feet):			IP OR TUBINO WELL (feet):		PURG INITIA	ING TED AT: 1354		1418		TOTAL VOLU PURGED (gai	ME lons):し、ファ		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR		
1405	3.08	3,08	0.58	4.74	7.21	25,6	420	0.1	1.92	105-				
1409	1.15	4.20	0,28	4.78	7.20	F.25	419	0,1	1,94	+05-				
1413	1.15	5,32	0.28	4.47	J.50	55,7		0.1	1,90	~505				
1417	1.15	6,44	0,28	4.75	7,20	25,7	420	0./	5,55	-500	None			
			<del>                                     </del>							<del> </del>				
				<del> </del>										
												<u> </u>		
		ACITY (Gallon SIDE DIA. CAI				1.25" = ( 0.0014 = "3	0.06; 2" = 0.16; ; 1/4" = 0.0026		4" = 0.65; 5 04; 3/8" = 0.6	" = 1.02; 006; 1/2"		2" = 5.88 8" = 0.016		
	PURGING I	EQUIPMENT C	ODES: B	= Baller;	BP = Bladder			ubmersible Pum	o; PP≖Per	ristaltic Pump	; 0 = Oth	er (Specify)		
SAMDI ET	BY (PRINT) / A	EEI IATION:	· · · · · · · · · · · · · · · · · · ·	SAMPLER(S)	SIGNATURE		PLING DAT	<del></del>		· · · · · · · · · · · · · · · · · · ·		<del>,</del>		
	ARmoul		RO-TECH			_(0).	•	SAMPLING INITIATED A	T: 1418		SAMPLING ENDED AT			
PUMP OR	**************************************	109.0		TUBING MATERIAL C	ODE:			FIELD-F µm	ILTERED: Y	•	FILTER SIZ			
FIELD DE	CONTAMINATION			<u> </u>	TUBING	Y (1)	replaced)	Pilitation	Equipment Typ DUPLICATE:	e: Y	(N)	·		
								<del> </del>	SA	MPLE	<u> </u>			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT		RESERVAT FOTAL VOL D IN FIELD	. FINAL	INTENDI ANALYSIS A METHO	ND/OR FLO	W RATE	SAMPLING ECOD			
,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VO.117 III III II				1,000	* : *tuble	- Vital hit							
	<del>}</del>	SAm	PLE	C-D-C	AND	ros	TIE OR	DER W	ORKSHE	ET .				
												Ţ.		
	REMARKS									L	· · · · · · · · · · · · · · · · · · ·			
	MATERIAL (Specify)	. CODES:	AG = Amber	Glass; CG	= Clear Glass	; PE=1	Polyethylene; F	P = Polypropyle	ne; S = Silico	ne; T=Te	flon; O = Ot	her		
		EQUIPMENT		APP = After Po RFPP = Rever				Bladder Pump; Method (Tubing G	ESP = Electri	c Submersib		· · · · · · · · · · · · · · · · · · ·		
NOTE	S: 1 The ah	ove do not o				·	Chapter 62-160			J - 00161	(CPUUII)/	·		

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE _ NAME:	TRAIL	RIDO	÷€				FILE TOCATION: 2	ACKSON	WILLEY.	FL					
	MWB			SAMPLE	ID:						.20-10				
				L		PUR	GING DATA	\							
WELL DIAMETER WELL ELE	(Inches): 2		ER (inches): こり、して		L SCREEN TH: 61,5 fe	et to 71,5	feet TO WATE	R (feet): +, ?		ORB	SE PUMP TYP				
WELL VOL	UME PURGE:	,	UME = (TOT	AL WELL DEP	TH - STA		TO WATER) X	· -	11 4	32					
•	if applicable)		= (		feet -		feet) X		gallons/foot		gallons	i			
	IT VOLUME PI : If applicable)	JRGE: 1 EQU	IPMENT VOL		• •		CITY X TU Illons/foot X T(		) + FLOW CELL ) + O , OS		O,구분gallons	<b>.</b>			
	MP OR TUBIN WELL (feet):	(%'20 e		IP OR TUBING WELL (feet):		PURGI INITIA	ING TED AT: 1426	PURGING ENDED AT:			TOTAL VOLUI PURGED (gall	ME			
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR			
1438	3,24	3,24	0.27	7.32	5,36	२,५, ८	40	0,2	5'15	-145					
1441	0.81	4,05	0,27	1.32	2,36	25.3	41	0,2	5.15	-149					
1444	1810	4,86	45.0	7,32	5.36	25.2	42	2,0	2,10	-152	<del> </del>				
1447	0,81	5.67	0,27	1,35	5,34	52,3	42	0.2	3.03	-124	NOVE				
	WELL CAP	ACITY (Gallon	s Per Foot):	0.75" = 0.02;			0.06; <b>2" =</b> 0.16;			" = 1.02;		2" = 5.88			
	<del></del>	SIDE DIA. CA EQUIPMENT (		Ft.): 1/8" = 0. = Baller;	0006; 3/1: BP ≃ Bladde	6" = 0.0014	; 1/4" = 0.0026; ESP = Electric S			06; 1/2* istaitic Pump		8" = 0.016 er (Specify)			
	PORGING	EQUIPMENT C	ODES. B	- Dallel	Dr - Diague		LING DATA		µ, rr≖rei	istaluc Puntp	, 0-0th	ві (Зресііу)			
SAMPLED	BY (PRINT) / A	AFFILIATION:	· · · · · · · · · · · · · · · · · · ·	SAMPLER(S)	SIGNATUR		20110 27117	SAMPLING		1	SAMPLING	· · · · · · · · · · · · · · · · · · ·			
DAN F	moun	19	RO-TECH	A				INITIATED A			ENDED AT:	NR			
PUMP OR		66.5	0	TUBING MATERIAL C	ODE:	Γ		μm	ILTERED: Y	a: (N)	FILTER SIZ	<b>E</b>			
FIELD DEC	CONTAMINATI	ON: PUM	IP Y C	D	TUBING	У Ø	(replaced)		DUPLICATE:	Y	<b>1</b>				
SAMI	PLE CONTAINI	ER SPECIFICA	NOITA		SAMPLE P	RESERVAT	ION	INTEND ANALYSIS A	ED P	MPLE UMP V RATE	SAMPLING EC				
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD		METHO	DD (m	L per nute)	COD	E			
								<u> </u>							
	X SEE	SAm	PLE	C-0-C	AND	rola	THE OR	DER VI	DRKSHE	57					
								<u> </u>				· · · · · · · · · · · · · · · · · · ·			
	REMARKS														
	MATERIAL (Specify)	. CODES:	AG = Amber	Glass; CG	= Clear Glass	s; PE=	Polyethylene; P	P = Polypropyle	ne; S = Silicor	ne; T = Te	fion; O = Oti	ner			
			CODES:	APP = After Pe	riotaltia Dum		Baller: BP = B	ladder Pump:		Submersible					

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	TRAIL	- R17	)&£				SITE LOCATION:	77				
WELL	MWE			SAMPL	E ID:		LOCATION:	JACKSON	ANICLE	, <u>  - L</u>		
L	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<del>- 1</del>				DIID	GING DAT			DATE:	5/05/10	2010
WELL		TUB	NG IETER (Inches):	31 WE	LL SCREEN	INTERVAL	STATIC	DEPTH 3		I BUI	205 21112 7	
DIAMETI	R (inches):	DIAN	IETER (Inches): 121.53	18 DE	PTHSS: 1		feet TO WAT	ER (feet):	30		RGE PUMP TYP BAILER: B	
				ALWELL DE	DTU OT	G	ROUNDWATER E H TO WATER) X	LEVATION (ft NO	3VD): 118	·23		1
(only fill o	ut if applicable)			VE METT DE		A HC DEPT	H IO WATER) X	WELL CAPAC	ITY-			
FOURIN	NYVOLUME	NIBOE. 4 F	* (		feet		feet) >	•	gallons/foot		gallon	3
(only fill o	ut if applicable)	-UNGE: 1E	QUIPMENT VOL				•	UBING LENGTH				
	UMP OR TUBI	NG 60.0	FINAL PUN	IP OR TUBIN	<b>3</b> /		illons/foot X 6 5			gallons =	=0:74 gallons	5
DEPTHI	WELL (feet):	Υ	1	WELL (feet):	60.00	) INITIA	TED AT: 1240		1308		TOTAL VOLU PURGED (gai	ME 4-4-8 lons):
TIME	VOLUME	VOLUMI	PURGE	DEPTH	pH	TEMP.	COND. (circle units)	DISSOLVED OXYGEN	TURBIDITY			·
	PURGED (gallons)	PURGE! (gallons)		WATER (feet)	(standard units)	(°C)	μmhos/cm or μS/cm	(circle units) mg/L or	(NTUs)	ORP (mV)	COLOR	ODOR
1248	1.28	1.28	0:16	3.40	5,35	26.9	38	% saturation				
1253	0.80	2.08	0:16	3.40		26.8	38	0.0	0.99	-97.4		
1258	0.80	2-88		3.90	5,35	26.5	38	0.0	0.47	-1021		
1303	0,80	3.68	0.16	3.40	5,35		38	D' D	0.43	-104.		<u> </u>
1308	0.80	4.48	0.16	3:40	536		38	D C D	039	-10b	NONE	
				•						106	BUNC	
					·							
	WELL CAP	I ACITY (Galk	ns Per Foot): 0	.75" = 0.02;	1" = 0.04;	1.25" = 0	.06; 2" = 0.16;	3" = 0 37	4" = 0.65; 5	<u> </u>		
	או טאומטוו	<u>SIDE DIA. C.</u> EQUIPMENT	MACTIY (Gal/F	L): 1/8" = 0.0	2008; 3/16	3" = 0.0014;	1/4" = 0.0026;	5/16" = 0.004	4;  (3/8) = 0.0	06; 1/2"	= 0.010; 5/8	" = 5.88 " = 0.016
	TORONO	-doll west	CODES: B	= Baller; i	3P = Bladder		ESP = Electric St	ubmersible Pump	PP = Per	istaltic Pump		r (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION	13	SAMPLER(S)	SIGNATURE	/S)·		CALIDING		7	T	
DENK	AMMEAN	MU/F	RO-TECH E	sen K	mpa	wa		INITIATED AT:	1309	ļ	SAMPLING ENDED AT:	NR
PUMP OR DEPTH IN	TUBING WELL (feet):	600		TUBING MATERIAL CO	DDE: T	_		FIELD-FIL	TERED: Y	(8)	FILTER SIZE	
FIELD DE	CONTAMINATIO	ON: PU			TUBING	Y M	eplaced)		quipment Type			· · · · · · · · · · · · · · · · · · ·
			T				epiaceu/	<del> </del>	DUPLICATE:	Y	(B)	
SAM	PLE CONTAINE	R SPECIFIC	ATION	+	SAMPLE PRI	ESERVATIO	N	INTENDE	D PL	JMP .	SAMPLING EQU	IIDMENT
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME F	RESERVATI USED		OTAL VOL	FINAL	ANALYSIS AN	(ml	- per	CODE	
					ADDEL	O IN FIELD	mL) pH		mlr	nute)	····	
	* SEE	SAM	PLE C	· D · C	AND	708	06 000	DER WO	0 11 11	_		
						<u></u>	- UK	210 410	RKKHEZ			
									<del></del>			
	REMARKS:											
	NEMAKNS:								· · · · · · · · · · · · · · · · · · ·			
	MATERIAL	CODES:	AG = Amber G	ass; CG =	Clear Glass;	PE = Po	lyethylene; PP	= Polypropylene;	S = Silicon	. T-T-0-	O = O"	
	(Specify)	EQUIPMENT	CODES: An			<u> </u>						
			RF	P = After Peri PP = Reverse	Flow Perista	Itic Pump:	SM = Straw Mar		ESP = Electric (	Submersible O = Other (S	Pump;	
NOTES	: 1. The abo	ve do not o	onstitute all c	f the inform	ration requ	ired by C	napter 62-160, I	F.A.C.	, -,,,	C - Outer (S	-pacity)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	TRAIL	ρ.	NC &			· · · · · · · · · · · · · · · · · · ·	SITE .	<del>_</del>				
	: MW	2 70	OGE	SAMPL			LOCATION:	JACKSO	ANILLE	FL		
	. 1910	<u> </u>		SAMPL	LE IU:	90. C 0 m				DATE: (	07/20/	0105
WELL		TUI	BING	2. IW	ELL SCREEN	PUR	GING DAT	<u>'A</u>				
	R (inches): EVATION TO	2 DIA	METER (inche	s):	PTH: 107.1	eet to 117	7-feet TO WA	DEPTH TER (feet): 0 · 7	8	l Ani	GE PUMP TYP BAILER: B	PE
WELL VO	LUME PURGI	: 1 WELL	VOLUME = (7	OTAL WELL DE	PTH - ST	G ATIC DEPT	H TO WATER	ELEVATION (ft NI	GVD): 120	87		
(only fill ou	it if applicable	)	= (		feet -	,			JH Y			
EQUIPME	NT VOLUME	PURGE: 1	•	OL. = PUMP VO		BING CAPA	feet)	X TUBING LENGTH	gallons/foot		gallor	3
(Gray in Ou	it it appikable)							7,00 feet	0.05		1	
	JMP OR TUBI WELL (feet):	NG 112 1	PINAL P	UMP OR TUBIN N WELL (feet):	B 112.00	PURG		DUDCING		gallons =	TOTAL VOLU	ME = ==
	T	CUMUI		DEPTH	T	I	COND.	P ENDED AT: DISSOLVED	1339	<u> </u>	PURGED (ga	ions): 7Z
TIME	VOLUME PURGED (gallons)	VOLUM PURGE (gallons	D RATE (gpm)	E TO WATER	pH (standard units)	TEMP. (°C)	(circle units) μmhos/cm οι μS/cm	OXYGEN (circle units) mg/L_or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
1324	1	2.42			7.27	250	338	0.0	0.32	-121.	<del></del>	
1329	1.10	3.52			7.28		339	0:0	0:27	-123		
1334	1.10	5:72			7.78		339	0.0	0.18	-121:		
1221	110	3112	- 0.2	2 1.08	7.28	25,4	340	0.0	0:17	-117.	NONE	
		<del> </del>				·						
-		<del> </del>										
							·				<u> </u>	
	WELL CAP	'ACITY (Gall SIDE DIA. C	ons Per Foot): APACITY (Ga	0.75" = 0.02; /Ft): 1/8" = 0	1" = 0.04;	1.25" = 0	0.06; 2" = 0.16; 1/4" = 0.0026	<b>3"</b> = 0.37;	4" = 0,65; 5"	= 1.02; 6	" = 1.47; 12	" = 5.88
	PURGING	EQUIPMENT		B = Bailer; I	3P = Bladder	Pump;		ubmersible Pump	$4;  (3/8)^n = 0.00$		0.010; 5/8	* = 0.016
SAMOLED	BY (PRINT) / A	CENTRAL DE				SAMP	LING DATA	A	, FF = FBII	statuc Pump;	O = Othe	r (Specify)
	MUEAL			SAMPLER(S)	SIGNATURE	(S):		SAMPLING INITIATED AT	121-		SAMPLING	
PUMP OR 3	TIRING			TUBING	9	wai	<u> </u>			(N)	ENDED AT:	
	WELL (feet):		0	MATERIAL CO	DDE:	_		μm	Equipment Type:		FILTER SIZE	•
FIELD DEC	ONTAMINATIO	ON: PL	IMP Y C	<u> </u>	TUBING	Y (M)	replaced)		DUPLICATE:		N	
SAMP	LE CONTAINE	R SPECIFIC	CATION		SAMPLE PRI	SERVATIO	ON.		SAM	PLE	<u> </u>	
SAMPLE		MATERIAL		PRESERVATI				INTENDEI ANALYSIS AN	D/OR FLOW	MP RATE S	AMPLING EQU	
ID CODE	CONTAINERS	CODE	VOLUME	USED		OTAL VOL ) IN FIELD (	mL) pH	METHOD	(mL min		CODE	
											***************************************	
<del></del>	V											
F	X SEE	SAM	PLE	C-D-C	AND	3077	TE OR	DER WO	RKSHEE	7		
		·			<del></del> -	·····						
					_							-
<u>-</u>	REMARKS:		<u> </u>		I							
		·										
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Po	iyethylene; PP	= Polypropylene;	S = Silicone;	T = Teflon	0 = Other	
	SAMPLING	EQUIPMENT	CODES:	APP = After Peri	staitic Pump;	B = Ba	iller; BP = Bis	adder Pump;	ESP = Electric S	iboo emilele =		
NOTES:	1. The abo	ve do not	Constitute al	RFPP = Reverse of the inform	Flow Peristal	tic Pump; Ired by Ci	SM = Straw Me napter 62-160,		vity Drain); (	omersible P D ≈ Other (Sp	ump; ecify)	

ON CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME:	TRAIL	RIC	GE				SITE	77				· · · · · · · · · · · · · · · · · · ·		
	MIN E			SAMPL	F ID:		LOCATION: -	JACKSO	ANICLE	, <u> </u>	1 4			
	10000	<u> </u>				DUB	ONIO DIT			DATE:	07/20/3	2010		
WELL		TUBII	IG	2 WE	LL SCREEN		GING DAT		<del></del>					
	ER (Inches): EVATION TOC	2 DIAM	ETER (Inches	: 18 DE	PTH:13: 1	eet to 18.	feet TO WAT	ER (feet): (0'	40		IRGE PUMP TYF R BAILER: B			
WELL VO	DLUME PURGE	: 1 WELL V	DLUME = (TO	TAL WELL DE	PTH - ST	ATIC DEPTI	ROUNDWATER E	LEVATION (# NO	GVD): 112	<u>-144</u>	•			
(only fill o	ut if applicable)		<b>=</b> (			THO DEF (			JITY					
FOURIN	-NEVOLUME 5	UDOR. J.F.	•		feet -		feet) X		gallons/foot		gallon	5		
(only fill o	ENT VOLUME F ut if applicable)	ORGE: 1EG	OFMENTY				CITY X T	UBING LENGTH						
	UMP OR TUBIN	IG 15.50	FINAL PL	MP OR TUBIN	G .				1)+0.05	gallons	=0.46 gallon			
DEPTHIN	WELL (feet):	<del></del>	DEPTH IN	WELL (feet):	15.50	INITIA	ING TED AT: 1346	ENDED AT:	1407		TOTAL VOLU PURGED (gai	ME 3.57 lons):		
TIME	VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE RATE	DEPTH TO WATER	pH (standard	TEMP.	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units)	TURBIDITY (NTUs)	ORP	COLOR	ODOR		
1206	(gallons)	(gallons)	(gpm)	(feet)	units)		or μS/cm	mg/L <u>or</u> % saturation	(IVIOS)	(mV)				
1355	0.51	2.04	0.17	1111	5.84		166	0.1	0.31	-109				
1401	0.51	2.55	0.17	11.16	5.84		165	0:1	0.58	-109				
1404	0.51	3.06	<del></del>	111.19	5.83	1	165	0.1	10.58	-108	}			
1407	0.21	3.57	0.17	11.23	5.83		165	0.0	0.25	-108				
1907 0:51 3:57 6:17 11:27 5:83 26:4 164 0:0. 0:24 -107 NONE														
			<del> </del>			<b> </b>								
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 7/16" = 0.0026; 5/16" = 0.004; 7/16" = 0.0026; 5/16" = 0.004; 7/16" = 0.0026; 5/16" = 0.004; 7/16" = 0.0026; 5/16" = 0.004; 7/16" = 0.0026; 7/16" = 0.004; 7/16" = 0.0026; 7/16" = 0.004; 7/16" = 0.0026; 7/16" = 0.004; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16" = 0.0026; 7/16"													
	10DING IN	SIDE DIA. CA QUIPMENT	PAGITI (Gal.	/FL): 1/0" = U.	0000; 3/16	$5^{\circ} = 0.0014;$	1/4" = 0.0026;	5/16" = 0.00	4; (378) = 0.0			!" = 5.88 !" = 0.016		
L	ronding:	- COLLMEIAL	JONES: 1	3 = Baller; I	3P = Bladder		ESP = Electric So LING DATA	ubmersible Pump	); PP ≈ Per	istaltic Pur	p; 0 = Othe	r (Specify)		
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	SAIVIP	LING DATA	<del></del>			<del></del>			
	AMJEAN	WU/P	RO-TECH					SAMPLING INITIATED AT	:1408		SAMPLING ENDED AT:	NR		
PUMP OR DEPTH IN	TUBING WELL (feet):	15.5	5	TUBING MATERIAL CO	nne. T			FIELD-FI	LTERED: Y	(1)	FILTER SIZE			
	CONTAMINATION	ON: PUN	IP Y CT			@>>		Filtration	Equipment Type	);				
TILLD OL	OOMANINATIO	JN. PUN	PYC	<u> </u>	TUBING	Λ ( <u>W</u> )	eplaced)	<u> </u>	DUPLICATE:	Υ	(A)			
SAM	PLE CONTAINE	R SPECIFIC	NOITA		SAMPLE PR	ESERVATIO	ON	INTENDE		MPLE JMP				
SAMPLE	¢	MATERIAL	VOLUME	PRESERVATI	VE I T	OTAL VOL	FINAL	ANALYSIS AN METHOL	ND/OR   FLOW	V RATE L per	SAMPLING EQUICATION CODE			
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	O IN FIELD	mL) pH			nute)				
				····										
	<u> </u>													
	- SEE	SAm	PLE	C-0-C	AND	708	JE ORG	DER WE	RKSHEE					
		-		······································										
	REMARKS:		<u> </u>						<u>L</u>		tm			
											•			
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Po	lyethylene; PF	= Polypropylene	s; S = Silicone	; T = Te	ion; O = Othe	r		
	SAMPLING	EQUIPMENT		APP = After Per	istaltic Pump	B = B:	aller; BP = Bla	adder Pump;	ESP = Electric	Submersihl	e Pume:			
NOTES	: 1. The abo	ve do not c	onstitute al	RFPP = Reverse	nation roce	ute Pump;	SM = Straw Me	thod (Tubing Co	avity Drain);	O = Other	(Specify)	.		

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	TRAIL	RID.	G.E				SITE LOCATION:	SACKSO	33643 100	51		······································		
WELL NO	» Mul	BZZS		SAMPLI	E ID:				A VICER	DATE	27/2-10	2012		
<u> </u>	DUF		······································			PUR	GING DATA	<u> </u>			07/20/2	2010		
WELL			G	31 WE	LL SCREEN				,	PU	IRGE PUMP TYP	E		
	ER (inches):  EVATION TOC	DIAME	TER (Inches):	18 DE	PTH: 16 · f	eet to 26	STATIC I	ER (feet): 111 Z	-4	l OB	BAILER: B			
					PTH _ ST	ATIC DEPTI	ROUNDWATER E	LEVATION (ft NO	3VD): 115	73				
(only fill o	ut if applicable)		= (	7 Table 1 T Table 10 100		THO DEFT								
FOUIDME	ENT VOLUME P	HDGE: 4 EO	•	= DUMB VA	feet	500 6454	feet) X		gallons/foot		gallons	;		
(only fill o	ut if applicable)	ONGE: I EQ	DIPMENT VOL					UBING LENGTH		VOLUME				
INITIAL P	UMP OR TUBIN	IG	FINAL PUR	# O, 3 g	3		allons/foot X Z G		)+ 0.05	gailons	=6.5  gallons			
	WELL (feet):	IG 21.00	DEPTH IN	WELL (feet):	3 Stron	> INITIA	ING TED AT: 14 SO	PURGING ENDED AT:	1514		TOTAL VOLUI PURGED (gail	ME 4.27		
	VOLUME	CUMUL.	PURGE	DEPTH	рH	TEMP.	COND.	DISSOLVED OXYGEN						
TIME	PURGED (gallons)	PURGED	RATE	WATER	(standard units)	(°C)	(circle units) µmhos/cm	(circle units) mg/L_or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR		
<u> </u>		(gallons)	(gpm)	(feet)	<u></u>		or μS/cm	% saturation						
1502	2.16	2.16	0.18	11.68			236	019	2.35	11.7				
1508	0:54	3.14	0.18	11.70	6.01	2716	236	0,9	1.23	1.5				
1511	0154	3.68	6.18	11:74	6.07		236	6.9	0.53	0.7				
1514		4,22	0118	11.75	6.01	27,7	236 236	0.9	0.43	0,5				
1 - 11	10.01	100	10-16	111-1-	0.01	21.0	236	0.9	0.40	0.1	Mone			
									<b> </b>	<u> </u>				
										<u> </u>				
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.08; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88													
	TUBING IN	ACITY (Gallor SIDE DIA. CA	s Per Foot): ( PACITY (Gal./	).75" = 0.02; FL):   1/8" = 0.	1" = 0.04; 0006; 3/1	1.25" = ( :0.0014 = "6	).06; 2" = 0.16; 1/4" = 0.0026;	3" = 0.37; 5/16" = 0.00	4" = 0.85; 5' 4; (3/85" = 0.0	= 1.02;		" = 5.88 " = 0.016		
	PURGING	EQUIPMENT (	ODES: B	= Baller,	3P = Bladder		ESP = Electric St	ubmersible Pump		staltic Pum		r (Specify)		
SAMPLE	BY (PRINT) / A	FEILIATION:		SAMPLER(S)	SIGNATUR	SAMP	LING DATA	4						
ł	PANJEAK			^	amea			SAMPLING INITIATED AT	11514		SAMPLING	NIO		
PUMP OF	TUBING			TUBING	Jugar					(N)	ENDED AT:			
DEPTH IN	WELL (feet):	21.00	<u> </u>	MATERIAL CO	DDE:			μm Filtration	Equipment Type	<u> </u>				
FIELD DE	CONTAMINATION	ON: PUM	PYC	>	TUBING	× (4)	replaced)		DUPLICATE:	(D)	N			
SAM	PLE CONTAINE	ER SPECIFICA	TION		SAMPLE PR	RESERVATION	ON	INTENDE		APLE				
SAMPLE		MATERIAL		PRESERVAT				ANALYSIS AN	ID/OR FLOW	IMP / RATE	SAMPLING EQUI			
ID CODE	CONTAINERS	CODE	VOLUME	USED		OTAL VOL D IN FIELD	(mL) FINAL	METHO		. per nute)				
						·								
	N ==	<u> </u>												
	X SEE	SAM	SIE C	- D-C	AND.	<u>708</u>	TIE ORI	DER WI	DRKSHEZ	7				
	REMARKS:	L						<u> </u>						
	رب	MPLET	ED DU	002 B	MWR	225	•					-		
	MATERIAL		AG = Amber (				olyethylene; PF	= Polypropylene	e; S = Silicone	; T=Te	flon; O = Othe			
	(Specify) SAMPLING	EQUIPMENT	CODES: A	PP = After Per	istaltic Pum	Y R==								
1/0==	1		R	FPP = Revers	Flow Perist	altic Pump;	SM = Straw Me	adder Pump; ethod (Tubing Gn	ESP = Electric : avity Drain);	Submersibl O = Other	e Pump; (Specify)			
NOTES	s: 1. The abo	ove do not c	onstitute all	of the infor	nation red	uired by C	hapter 62-160.	EAC		<del></del>				

The above do not constitute an of the information required by Chapter 02-100, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ±5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	. R10	6.8				SITE LOCATION:	SACKSON	13/12/02	FL				
WELL NO	" mw	BRAD		SAMPLI	≣ ID:				,	DATE:	J-20-10			
							GING DATA	4		_ <del></del>	<u> </u>			
WELL	R (inches):	TUBIN	IG ETER (inches)	3)8 WE	LL SCREEN	INTERVAL	STATIC	DEPTH D	,		RGE PUMP TYP			
WELL EL	EVATION TOC		138 10	18 05	P117:186.5 TE		feet TO WAT				BAILER: B			
WELL VO	LUME PURGE	1 WELL VO	DLUME = (TO	TAL WELL DE	PTH - STA		H TO WATER) X			<del>,                                    </del>	134.2	ζ		
	ut if applicable)		= (		feet -		feet) X	<b>:</b>	gallons/foot	=	gallon	S		
EQUIPME (only fill or	NT VOLUME P	URGE: 1 EQ	UIPMENT VO					UBING LENGTH		VOLUME				
INITIAL D	UMP OR TUBIN	10	EINAL DU	# O. 3 g	allons + (O.		allons/foot X \\ C		1+0,05	gailons	= 1.0   gallon			
	WELL (feet):	105.50	DEPTH IN	WELL (feet):	105,5	D PURG	TED AT: 670		8560		TOTAL VOLU PURGED (ga	IME Ilons): 7, 0		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR		
0715	3.36	3,36	85.0	4.98	5,64	23.7	68	0,6	2,39	-181				
9150	1,12	4.48	85.0	4.98	2.65	1	4.8	0,6	5.07	-183				
0723		5,60	0,28		5.61	23.3	68	0.6	1.79	-184		ļ		
FSFB	1.15	6.72	0.58	4.93	5,63	23,3	69	0,6	1.90	-182	Nove			
				1		<b></b>				<del> </del>		<del> </del>		
						<u> </u>				<del> </del>				
										<del></del>				
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88													
	TUBING IN	SIDE DIA. CA	ns Per Foot); .PACITY (Gal	<b>0.75" =</b> 0.02; /Ft.): <b>1/8" =</b> 0.	1" = 0.04; .0006; 3/1	= "1.25"   8" = 0.0014	0.06;      2" = 0.16; ;      1/4" = 0.0026	; 3" = 0.37; ; 5/16" = 0.00	4" = 0.65; 5' 4; 3/8" = 0.0	" = 1.02; 006: 1/2		2" = 5.88 /8" = 0.016		
	PURGING I	QUIPMENT	CODES:	3 = Baller;	BP = Bladder		ESP = Electric S			istaltic Purr		er (Specify)		
SAMPLED	BY (PRINT) / A	FEILIATION:		SAMPLER(S)	SIGNATUR		LING DAT			- 1				
-	ARMOUR		RO-TECH	L 1/	0.0,0	_(0).		SAMPLING INITIATED AT	6240		SAMPLING ENDED AT			
PUMP OR	TURING			TUBING				FIELD-FI	LTERED: Y	(B)	FILTER SIZ			
DEPTH IN	WELL (feet):	105,50	<b>.</b>	MATERIAL C	ODE:			μm Filtration	Equipment Type	e:				
FIELD DE	CONTAMINATION	ON: PUN	MP Y C	<u> </u>	TUBING	Y (1)	replaced)		DUPLICATE:	Y	<i>Q</i> 9			
SAM	PLE CONTAINE	ER SPECIFIC	ATION		SAMPLE PF	RESERVAT	ION	INTENDE	1	MPLE UMP				
SAMPLE	#	MATERIAL	\ (C)     1   (C)	PRESERVAT	IVE I T	TOTAL VOL	FINAL	ANALYSIS AI	ND/OR   FLOW	V RATE L per	SAMPLING EC			
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD			-   ""	nute)				
	***************************************													
	X SEE		A		_	<b>3</b> -						*****		
	* SEE SAMPLE K-D-C AND BOTTLE ORDER WORKSHEET													
			~			· · · · · · · · · · · · · · · · · · ·								
	REMARKS:					******				L				
	MATERIAL	CODES:	AG = Ambe	Glass; CG =	= Clear Glass	; PE = F	Polyethylene; P	PP = Polypropyler	ne; S = Silicon	e: T=T	efion; O = Oth	ner		
<b></b>	(Specify)	EQUIPMENT	CODES	APP = After Pe	rictaltie D.	····						101		
NOTES				RFPP = Revers	se Flow Peris	taltic Pump	Bailer; BP = B SM = Straw M Chapter 62-160	liadder Pump; lethod (Tubing G	ESP = Electric ravity Drain);	Submersib O = Other	ole Pump; r (Specify)			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	TRAIL	- R10	G E				SITE LOCATION:	SACK SO	WILLEY,	51					
WELL NO	mwB	TPS		SAMPLE	E ID:				d V 1 C C C		9-2-				
	7,74,73	×				PUR	GING DATA	<u> </u>			7-50-10				
WELL		TUBIN	IG TER (inches):	31 WE	LL SCREEN	INTERVAL	STATIC	DEPTH	_	PUR	GE PUMP TYP	E			
	R (inches): EVATION TOC				TH:53.51		feet TO WAT			OR	BAILER: B				
i .		•	138,0 DLUME = (TO	S TAL WELL DE	TH - STA	TIC DEPT	ROUNDWATER EI H TO WATER) X	LEVATION (ft No	GVD): 134	1136					
(only fill o	ut if applicable)		= (												
FOIIDME	NT VOLUME P	IIDGE: 1EA	•	- 500 IS VA	feet -	1110 010	feet) X		gallons/foot		gallons	3			
(only fill o	ut if applicable)	UNGE: 1EQ	OIFMER! VOI						) + FLOW CELL	VOLUME					
INITIAL P	UMP OR TUBIN	lG	FINAL PUI	MP OR TUBIN		PURG	allons/foot X (3		1)+ D105	gallons =	0,73 gallons				
	WELL (feet):	58.50	DEPTH IN	WELL (feet):	58,50	INITIA	TED AT: 073	PURGING ENDED AT:	0759		TOTAL VOLUI PURGED (gail	ME ons): S. 7 5			
	VOLUME	CUMUL.	PURGE	DEPTH TO	рH	777.40	COND.	DISSOLVED OXYGEN		1	T	, , , , ,			
TIME	PURGED (gallons)	PURGED	RATE	WATER	(standard units)	TEMP.	(circle units) µmhos/cm	(circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR			
		(gallons)	(gpm)	(feet)			or μS/cm	% saturation							
0749		2.75	0.52	3.75	2,13	23.4	41	0.8	30.34	-133					
0752		3.50	0.25	3.75	5.16	23,4	41	0,8	30,48	-133					
0755		4, 25	0,25	3.74	5.15	23,4 23.4	41	0.8	58.20	-122	<u> </u>				
0 73 8	0,73	5,00	0,23	13.73	5.13	23.4	4,	0.8	29.31	-175	LT.TW				
					***************************************					<del> </del>					
	WELL CAPACITY (Gallons Per Foot): 0.75% x 0.02; 4% = 0.04; 4.05% = 0.05; 4% = 0.04;														
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016														
		EQUIPMENT (	**		3P ≃ Bladder	Pump;	ESP = Electric St	ubmersible Pum		istaltic Pump		r (Specify)			
SAMPLE	BY (PRINT) / A	FEI IATION	Т	SAMPLER(S)	SIGNATION	SAMF	LING DATA	4							
_	ARmou		RO-TECH		JOHN	2(O).		SAMPLING INITIATED A	T: 0759		SAMPLING ENDED AT:	210			
PUMP OR		· · · · · · · · · · · · · · · · · · ·		TUBING		·			ILTERED:	83 M		NIK			
DEPTH IN	WELL (feet):	58,5	0	MATERIAL CO	ODE:		į	μm Filtration	Equipment Type	- W	1080				
FIELD DE	CONTAMINATIO	ON: PUN	IP Y C	<b>&gt;</b>	TUBING	Y (Д	replaced)		DUPLICATE:	Y	(1)	WIGGA			
SAM	PLE CONTAINE	ER SPECIFICA	TION		SAMPLE PR	ESERVATI	ON	INTEND		MPLE					
SAMPLE		MATERIAL		PRESERVAT				ANALYSIS A	ND/OR   FLOV	* 1 W 1 1 Land	SAMPLING EQUICODE				
ID CODE	CONTAINERS	CODE	VOLUME	USED		OTAL VOL D IN FIELD		METHO		L per nute)	0052				
	<u> </u>														
	X SEE	SAm	PLE K	-0-6	AND	70 <u>6</u>	TIE OR	PER W	DRKSHE	77					
	REMARKS:														
		JO FILT	cereo s	AMPLE	- دی زر	ELTE	Ø								
	MATERIAL (Specify)		AG = Amber	Glass; CG =	Clear Glass;			P = Polypropyler	ne; S = Silicon	e; T = Tefl	on; O = Othe	er			
		EQUIPMENT		APP = After Pe	istaltic Pumn	: R=1	Raller: RP = RI	adder Pump:							
NOTE	ŀ		F	RPP = Revers	e Flow Perist	altic Pump:	SM = Straw M	ethod (Tubles G	ESP = Electric ravity Drain);	Submersible 0 = Other (	Pump; Specify)				
NOIE	o, i. ine add	ove ao not c	onsutute al	or the intor	mation red	uired by (	Chapter 62-160,	FAC							

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RIC	S€€				SITE LOCATION:	SACKSOF	د. د د د د د د د د د د د د د د د د د د د					
WELL NO				SAMPL	E ID:		COOKITOR.	1108301	MICCE	DATE:	<u> </u>			
						PUR	GING DATA	1		- DATE.	J.20-10	)		
WELL	ER (inches):	Z_ DIAM	NG ETER (Inches	310 WE	LL SCREEN					PU	RGE PUMP TYP	E		
	EVATION TOC		130 03	: 18 DE	PIH: 10 te	et to 2 o	feet   TO WATE ROUNDWATER EL	ER (feet): + , \			BAILER: B	<u>ρ</u>		
WELL VO	<b>DLUME PURGE</b>	: 1 WELL V	OLUME = (TO	TAL WELL DE	PTH - STA	TIC DEPTI	HTO WATER) X	WELL CAPAC	136	5.92				
(only fill o	ut if applicable)		= (		feet -		feet) X		gallons/foot	=	gallons			
EQUIPMI	ENT VOLUME P	URGE: 1 EC	UIPMENT VO	L. = PUMP VO	LUME + (TUE	ING CAPA	CITY X TI	UBING LENGTH			- gallonis			
			······································	= 0.3g	allons + ( 0.	006 g	allons/foot X 2 c				= n u C gallons			
	UMP OR TUBIN 1 WELL (feet):	16 15,00	FINAL PU DEPTH IN	MP OR TUBING WELL (feet):	3 15.0sa	PURG	ING TED AT: 0808	PURGING		T	TOTAL VOLUI	ME		
	1/0/11/15	CUMUL.		DEPTH	pH	1	COND.	DISSOLVED	10068	<del> </del> -	PURGED (gall	ons):3,7		
TIME	VOLUME PURGED	VOLUME PURGED		TO WATER	(standard	TEMP.	(circle units) μmhos/cm	OXYGEN (circle units)	TURBIDITY (NTUs)	ORP	COLOR	ODOR		
<u> </u>	(gallons)	(galions)	(gpm)	(feet)	units)	` .	or μS/cm	mg/i <u>or</u> % saturation	(141.03)	(mV)		ŀ		
08/8	1,90	1,90	0.19	9.10		25,3	57	0,8	2.78	-169				
0821	10.57	3.04	0,19	7.10	4,81	25.3	61	<u>0, 9</u>	2.14	-169	<u> </u>			
0824 F580		3,61	0,19	9.10	4.82	25,3	63	0.8	5.10	-167				
-0-1	10,34		10,,,	+-10	7,02	(3,7)	6.7	0.8	1.83	1-13:	० भग्ने			
										1		· .		
												·		
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.008; 1/2" = 0.010; 5/8" = 0.016													
	TOBING IN	SIDE DÍA, C <i>I</i> EQUIPMENT	AFACITI (Gal.	/PL): 1/0" = U.	0006; 3/16	" = 0.0014	1/4" = 0.0026;	5/16" = 0.00	4; 3/8" = 0.0	06; 1/2	" = 0.010; 5/8	2" = 5.88 3" = 0.016		
	FUNGING	EQUIPMENT	CODES:	3 = Baller;	BP = Bladder		ESP = Electric Su PLING DATA		; PP = Per	istaltic Pum	ip; 0 = Othe	r (Specify)		
SAMPLED	BY (PRINT) / A			SAMPLER(S)	SIGNATURE	(S):	LING DATA	SAMPLING	· · · · · · · · · · · · · · · · · · ·	Т	T 644/01/1919			
	ARMOUA	1/7	RO-TECH	A				INITIATED AT			SAMPLING ENDED AT:	NR		
PUMP OR DEPTH IN	TUBING WELL (feet):	,	_	TUBING MATERIAL CO	ODE:	-		μm	LTERED: Y	9	FILTER SIZE			
FIELD DE	CONTAMINATION	ON: PU		-	TUBING	Y (N	replaced)	1	Equipment Type					
0411	DI = 001 = 1111			<u> </u>				<u> </u>	DUPLICATE:	Y MPLE	<u> </u>			
	PLE CONTAINE		ATION		SAMPLE PR	ESERVATI	ON	INTENDE ANALYSIS AN	D P	JMP V RATE	SAMPLING EQ			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL	(mL) FINAL	METHO	) (m	L per nute)	CODE			
	X SEE	MAZ	PLE	C-D-C	AND	<u>708</u>	THE ORG	DER WI	DRKSHEE					
			1											
	REMARKS:							<u> </u>			<del></del>			
	MATERIAL	CODES	AG = Amber	Gloss: CC	Clear Glass;									
	(Specify)		· · · · · · · · · · · · · · · · · · ·				olyethylene; PF	Polypropylen	e; S = Silicon	a; T≃Te	efion; O = Othe	er T		
		EQUIPMENT		APP = After Pe RFPP = Revers	e Flow Perist	altic Pump:	SM = Straw Ma	adder Pump; athod (Tubing Gr	ESP = Electric	Submersib	le Pump;			
NOTES	3: 1. The abo	ve do not	constitute a	of the infor	mation reg	ulred by (	Chapter 62-160.	EAC	avity Drain);	O = Other	(Specify)			

2. Stabilization Criteria for range of Variation of Last three consecutive readings (see FS 2212, section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RIT	S€€				SITE LOCATION:	SACKED	1.2.2.3.3.3	<u></u>	*** . *********************************			
WELL N				SAMPL	E ID:		<u> </u>	SACKSO	VICLE,	TOATE	<u> </u>			
L		<u> </u>				PHR	GING DATA			DATE	J-20-10			
WELL		TUBI	NG	31 WE	LL SCREEN					l Di	JRGE PUMP TYP	15		
		2 DIAN	IETER (inches	): 18 DE	PTH:515 fe	set to 61.5	feet TO WATE	ER (feet): 7, 6	. 3		RBAILER: B			
	EVATION TOC		145,	73		] G	ROUNDWATER E	LEVATION (ft NO	VD): 138	3.10		· <del>* · · · · · · · · · · · · · · · · · ·</del>		
(only fill o	out if applicable)	1 WELL V		DIAL WELL DE	PIH - STA	ATIC DEPTI	H TO WATER) X	WELL CAPAC	ITY					
			= (		feet -		feet) X		gallons/foot	=	gallon	s		
(only fill o	ENT VOLUME P ut if applicable)	URGE: 1 E	QUIPMENT VO	L. = PUMP VO	LUME + (TUE	BING CAPA	CITY X T	UBING LENGTH	) + FLOW CELL	VOLUME				
			······································			006 9	allons/foot X 6)	50 feet	+0.05	gallons	= 0.72gallons	s		
	PUMP OR TUBIN N WELL (feet):	اG ۲ <b>۵,۶</b> ۵	FINAL PU	JMP OR TUBIN N WELL (feet):	3 56,50	PURG	SING TED AT: 0839	PURGING			TOTAL VOLU	ME		
	T	CUMUL		DEPTH	I	1 1141.17	COND.	DISSOLVED	0900	<del> </del>	PURGED (gal	lons): 5.25		
TIME	VOLUME PURGED	VOLUME PURGED		то	pH (standard	TEMP.	(circle units)	OXYGEN (circle units)	TURBIDITY	ORP	COLOR	ODOR		
	(gallons)	(galions)		(feet)	units)	(°C)	μmhos/cm or μS/cm	mg/L <u>or</u>	(NTUs)	(mV)				
0850	2.75	2.75	0.25	7.61	4.94	23.7	41	% saturation	1.17	-		<u> </u>		
0823	24.0	3,50	0.25	7.64	4,95	23.6	42	0,5	1,60	-149				
0856	27.0	4,25	0.25	7.63	4.95	7.85	42	0.5	1.47	341-		<u> </u>		
0859	0.75	5.00	0.52	7.61	4.95	23.7	42	2,0	1,75	-149				
										<del>  ``</del>	1.00			
<u> </u>							·							
			_											
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 5" = 1.02; 42" = 5.00													
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.85; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016													
	PURGING E	QUIPMENT	CODES:	B = Bailer;	BP = Bladder		ESP = Electric St		; PP = Per	istaltic Pum	ip; 0 = Othe	r (Specify)		
SAMPLE	BY (PRINT) / A	FFILIATION		SAMPLER(S)	SIGNATURE		LING DATA	<del></del>						
DAU	ARMOUR	17	RO-TECH					SAMPLING INITIATED AT	: 09-00		SAMPLING ENDED AT:	ND		
PUMP OF		•		TUBING				FIELD-FI	LTERED: Y	<u>'00</u>	FILTER SIZE			
	WELL (feet):	20:0		MATERIAL C	ODE:			μm Filtration	Equipment Type	<del>)</del> :				
FIELD DE	CONTAMINATIO	DN: PU	MP Y C	<u> </u>	TUBING	Υ (M	replaced)	1 1	DUPLICATE:	Y	(1)			
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	ESERVATI	ON	INTENDE		MPLE JMP				
SAMPLE	# 1	MATERIAL		PRESERVATI		OTAL VOL		ANALYSIS AN	ID/OR   FLOV	V RATE	SAMPLING EQUIPMENT CODE			
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD		METHOL		L per nute)	****			
						***								
	N)	***												
	X SEE	SAM	PLE	C-D-C	AND	<u>706</u>	TIE ORG	DER WO	RKSHES	-7				
					_									
	REMARKS:													
	,										•	]		
	MATERIAL	CODES:	AG = Ambe	Glass; CG =	Clear Glass;	PE = P	olyethylene; PF	Palypropylen	S = Silicon	a: T=To	sfion: O = Othe	·		
	(Specify) SAMPLING	FOILIPMENT	r cones.	APP = After Pe	detaille D			·				-		
				RFPP = Revers	e Flow Perist	altic Pump;	SM = Straw Me	adder Pump; athod (Tubing Gr	ESP = Electric avity Drain);	Submersible O = Other	le Pump; (Specify)			
NOTES	s: 1. The abo	ve do not	constitute a	I of the infor	mation room	ilead by	hanter 62 460				·1			

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RID	68				LOCATION: 3	ACKSON	VILLE	FL			
WELL NO:	MWB	75		SAMPLE	ID:								
<u></u>				t		PUR	GING DATA	ľ			1 20 12		
WELL	R (inches): 2	TUBING	G TER (inches):	-21	L SCREEN		1		_		RGE PUMP TYP	_	
DIAMETEI WELL ELE	VATION TOC (		IER (Inches):	18 05	TH: 19 fe		ROUNDWATER EL	R (feet): b, \			BAILER: B	þ	
•	-		146,64 LUME = (TOT	AL WELL DEP	TH - STA		TO WATER) X			FP,0			
(only fill ou	t if applicable)		<b>=</b> (		feet -		feet) X		gallons/foot	=	gallons	,	
EQUIPME	NT VOLUME PL	JRGE: 1 EQU	JIPMENT VOL	. = PUMP VOL	UME + (TUE	ING CAPA	•	JBING LENGTH	•		AgiiOi is		
	t if applicable)				•		illons/foot X 2 5				: = 0 ペン gallons		
INITIAL PL	JMP OR TUBIN	g		IP OR TUBING		PURG	ING	PURGING		gallons -	TOTAL VOLUI		
DEPTH IN	WELL (feet):	15.00	DEPTH IN	WELL (feet):	15,00	INITIA	TED AT: D909	DISSOLVED	0929		PURGED (gall	ons): <b>1.0</b>	
TIME	VOLUME	CUMUL. VOLUME	PURGE	DEPTH	pH (standard	TEMP.	COND. (circle units)	OXYGEN	TURBIDITY	ORP	COLOR	ODOR	
LIMIC	PURGED (gallons)	PURGED (gallons)	(gpm)	WATER (feet)	units)	(°C)	μmhos/cm or μS/cm	(circle units) mg/L_or	(NTUs)	(mV)		Joon	
0919	2,0	2,0	05,0	6,53	4.82	57.5	30	% saturation	93.46	20			
09 22	ا ا	ما، ح	0.20	6.50	4.76	275	2.8	0,9	96.51	22			
0925	0,6	3,2	0.20	6.46	4.73	275	28	7.0	98.90	22			
8590	0.6	3,8	0.20	6.43	4.73	27.5	28	0.9	95.31	23	BROWN		
	-									<u> </u>	_		
					<del></del>	4.				<b></b>			
	<del> </del>					· .							
			ns Per Foot):		1" = 0.04;		0.06; 2" = 0.16;	3" = 0.37;	4" = 0.65; 5'			2" = 5.88	
		SIDE DIA. CA EQUIPMENT (	PACITY (Gal./		0006; 3/16 3P = Bladder	B" = 0.0014	; 1/4" = 0.0026; ESP = Electric St		***************************************	06; 1/2°		3" = 0.016	
L							LING DATA		, 11-1-00	Stalle Full	p, 0 - Othe	er (Specify)	
SAMPLED	BY (PRINT) / A	_		SAMPLER(S)	SIGNATURE	E(S);		SAMPLING			SAMPLING		
	ARmos	R/P	RO-TECH	so e		•	·	INITIATED AT	: ዕየኒባ LTERED: (Y)	<u> </u>	ENDED AT:	1 7 7	
PUMP OR DEPTH IN	TUBING WELL (feet):	15.0		TUBING MATERIAL CO	DDE:			μm	_	<b>Ø</b> Ø	FILTER SIZE		
FIELD DE	CONTAMINATIO			·	TUBING	Y (7)	replaced)		Equipment Type DUPLICATE:	У М М	₹D	MICHON	
			T							MPLE			
SAM	PLE CONTAINE	R SPECIFICA	ATION		SAMPLE PF	RESERVAT	ION	INTENDE ANALYSIS AN		JMP V RATE	SAMPLING EQ		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL		METHO	V	L per nute)	CODE	3	
		,											
	<del>}</del> 586	SAm	PLE	-0-6	AND	roa	THE OR	DER W	DRKSHE	2.7			
									·				
		<b></b>						<u> </u>					
	REMARKS:	<u> </u>			L	<del>1</del>		<u> </u>			***************************************		
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass	: PE = 1	Polyethylene; Pi	P = Polypropylen	e; S = Silicon	e; T = Te	flon; O = Oth	er	
		EQUIPMENT	CODES:	APP = After Pe	ristaltic Pum	p; B=	Bailer; BP = Bi	adder Pump;	ESP = Electric	Suhmarelh	le Pumn		
NOTE	S: 1 The ah	ove do not		RFPP = Revers		taltic Pump		ethod (Tubing G	avity Drain);	O = Other	(Specify)		

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RID	6 <i>E</i>				LOCATION: 3	Ackson	1112LE	FL				
WELL NO	MWB	335		SAMPLE	ID:				· · · · · · · · · · · · · · · · · · ·	DATE:				
						PUR	GING DATA	1			····			
WELL	R (inches): Ž	TUBIN DIAME	3 TER (inches):	3) WE	LL SCREEN	INTERVAL	STATIC D	EPTH 9.	SO S		RGE PUMP TYP			
	EVATION TOC			19105	-111:10 -21e	GF	ROUNDWATER EL	EVATION (# NG			BAILER: . B	Ρ		
WELL VO	LUME PURGE:				TH - STA		TO WATER) X			140				
(only fill or	it if applicable)		<b>*</b> (		feet -		feet) X		gallons/foot		gallons			
EQUIPME	NT VOLUME P	URGE: 1 EQ	JIPMENT VO	= PUMP VO	.UME + (TUE	BING CAPA	CITY X TO	JBING LENGTH	*		94.0.10			
(only fill or	it if applicable)						illons/foot X ZO				-9 - 47 gallons			
	UMP OR TUBIN I WELL (feet):	G 15 30	FINAL PUI	MP OR TUBING WELL (feet):					1619	1	TOTAL VOLUM PURGED (gall			
OLI IIIII	1 ***	CUMUL.	1 021	DEPTH		"41154	COND.	DISSOLVED	1017	<del>                                     </del>	PURGED (gall	ons):		
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE	TO WATER	pH (standard	TEMP. (°C)	(circle units) μmhos/cm	OXYGEN (circle units)	TURBIDITY	ORP	COLOR	ODOR		
	(gallons)	(gallons)	(gpm)	(feet)	units)	(3)	or µS/cm	mg/L <u>or</u> % saturation	(NTUs)	(mV)				
1610	2.52	2152	0.18	19:18	5 .81	28.0	301	014	4.78	-134	_			
1613	0.54	3.06	0.18	9.80	5.80	27.9	299	0.3	3.73	-136				
1616	0.54	3.60	0.18	9.81	5.80	27.9	296	0.3	3160	-134				
16 19	0.54	4.14	0.18	3,82	5.79	21.0	292	0.4	3,22	- 13	NONE			
								•				~~~		
				-				<del> </del>						
<u> </u>			<del></del>							<del></del>				
	WELL CAP	ACITY (Gallo	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 1	0.06; 2" = 0.16; ; 1/4" = 0.0026;	3" = 0.37; 5/16" = 0.00				2" = 5.88		
		QUIPMENT			BP = Bladder		ESP = Electric St			ristaltic Pun		3" = 0.016 er (Specify)		
				- A			LING DATA	4						
	BY (PRINT) / A MEANNAM			SAMPLER(S) Ben Ran				SAMPLING INITIATED AT	.1620		SAMPLING			
PUMP OR	····	· · · · · · · · · · · · · · · · · · ·		TUBING	neaux		<del></del> i		LTERED: Y	(A)	ENDED AT:			
DEPTH IN	WELL (feet):	15.30	•	MATERIAL C	ODE:	Γ		μm	Equipment Typ		, m. r. c. r. c. c. c.	- \		
FIELD DE	CONTAMINATION	ON: PUN	IP Y C	<u> </u>	TUBING	Y (7)	replaced)	I iluation	DUPLICATE:	Υ Υ	働	<u> </u>		
CALL	PLE CONTAINE	B SPECIEIO	MOIT		CAMPIER			25,200.0		MPLE		:		
	IF LE CONTAIN		TION		SAMPLE PF			INTENDE ANALYSIS AI	ND/OR   FLO	UMP W RATE	SAMPLING EC			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL		METHO	- 1 5	nL per inute)	CODE	•		
	X SEE	SAM	PLE	C-0-C	AND	roa	THE OR	PER W	ORKSHE	2.2				
								-						
	REMARKS:	<u> </u>				*		]						
			·											
	MATERIAL (Specify)	CODES:	AG = Ambe	Glass; CG	= Clear Glass	; PE = 1	Polyethylene; P	P = Polypropyler	ne; S = Silico	ne; T=T	eflon; O = Oth	er		
		EQUIPMENT		APP = After Pe	ristaltic Pum	p; B=	Baller; BP = B	ladder Pump;	ESP = Electric					
NOTE:	S: 1. The abo	ove do not		RFPP = Reven			; SM = Straw M Chapter 62-160.	lethod (Tubing G	ravity Drain);		r (Specify)			

The above do not constitute an of the information required by Chapter 62-100, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NAME: TRAIL RIDGE LOCATION: JACKSONVILLE FL														
	TE 07/20/20/0													
PURGING DATA	7 7 7 7 7 7													
	PURGE PUMP TYPE													
	OR BAILER: BP													
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY	2													
(only fill out if applicable)  = ( feet - feet) X gallons/foot =	galions													
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME	•													
(only fill out if applicable)  = 0.3 gallons + (0.00 6 gallons/foot X / 5.50 feet) + 0.05 gallons	ons =0 · 44 gallons													
INITIAL PUMP OR TUBING 13 SO FINAL PUMP OR TUBING 13 SO PURGING ENDED AT: 0814	TOTAL VOLUME 4 - 08													
CUMUL. DEPTH COND. DISSOLVED	PURGED (gallons):													
TIME VOLUME VOLUME PURGE TO Standard (circle units) PURGED PURGED RATE WATER (standard units) (CC) (circle units) (CIRCLE unit	RP COLOR ODOR													
76 Saturatori	3.5													
0805 0.51 2.55 0.17 6.50 6.50 23.3 76 0.10 17.6 -32														
0808 0, 51 3,06 017 6:50 6:50 23:3 76 0:10 15:4 -32														
0811 0:51 3:57 0:17 6:50 6:50 23,3 76 0:10 13:3 -35:														
0814 0:51 4:08 0:17 6:50 6:50 23:3 76 0:10: 12:8 -33	3.1 NONE													
WELL CARACITY (Callogs Per Ecoty), 0.75% = 0.02; 10% = 0.04; 1.25% = 0.02; 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00														
WELL CAPACITY (Galions Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.08; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016														
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016  PURGING EQUIPMENT CODES: B = Baller, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)														
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLED BY (PRINT) / AFFILIATION:														
BEN RANJEWAN / PRO-TECH Ben Rangeawa . SAMPLING INITIATED AT: 0815	SAMPLING ENDED AT: NR													
PUMP OR TUBING TUBING TUBING FIELD-FILTERED: Y	FILTER SIZE:													
Filtration Equipment Type:	***************************************													
FIELD DECONTAMINATION: PUMP Y TUBING Y (Nigeplaced)  DUPLICATE: Y	<u> </u>													
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED PUMP	SAMPLING EQUIPMENT													
SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL METHOD (mL per id code containers code volume used added in Field (mL) ah minute)	CODE													
ID CODE CONTAINERS CODE VOLUME USED ADDED IN FIELD (mL) pH minute)														
* SEE SAMPLE C-D-C AND BOTTLE DROER WORKSHEET														
REMARKS:														
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = (Specify)	= Teflon; O = Other													
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submer RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Oi	ersible Pump; other (Specify)													
NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.  2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)														

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RIDO	58				SITE LOCATION:	SACKSOF	121110	E,				
WELL NO:	MINB			SAMPLE	ID:	<del></del>			,	DATE:	07/20/2	2010		
<u> </u>					·	PUR	GING DATA	<u> </u>		i	-, -,	2076		
WELL	R (inches): 2	TUBING	TTP //ach1	310 WE	LL SCREEN	INTERVAL	feet TO WATE	DEPTH (L.7		PU	RGE PUMP TYP	Έ		
	R (inches):		ER (inches): 28.63	18 DE	THESE S TO	set to 62.5	ROUNDWATER E	ER (feet): T			BAILER: B	<u>6</u>		
	-				TH - STA	TIC DEPTI	HTO WATER) X	WELL CAPAC	(TY 123	93				
(only fill ou	t if applicable)		= (		feet -		feet) X		gallons/foot	_				
EQUIPME	NT VOLUME P	URGE: 1 EQU	•	= PUMP VOL		SING CAPA	· · ·	UBING LENGTH	-		gallon	S		
(only fill ou	t if applicable)						allons/foot X 62		)+ 0.02		A 777			
	JMP OR TUBIN	G	FINAL PUM	P OR TUBINO	3					gallons	=0 73 gallons			
DEPTH IN	WELL (feet):	^G 57.50	DEPTH IN V	VELL (feet):	57, SC	INITIA	ING TED AT: 0822	ENDED AT:	0842		TOTAL VOLU PURGED (gal	lons):		
TIME	VOLUME	CUMUL. VOLUME	PURGE	DEPTH	pН	TEMP.	COND. (circle units)	DISSOLVED OXYGEN	TURBIDITY	ORP	COLOR	0000		
IIMC	PURGED (gallons)	PURGED (gallons)	(gpm)	WATER (feet)	(standard units)	(°C)	μmhos/cm or μS/cm	(circle units) mg/L_ <u>or</u>	(NTUs)	(mV)	COLOR	ODOR		
0.830	1.60	1160	0.50	4.81	5.54	23.9	47	% saturation	4 00	1				
0839		2.40	0.50	4.80	5.55	24.1	48	2'0	999	-118		<del> </del>		
0838		3.20	0.50	4.81	5.59	z41	48	0.5	0.71	-121		<b></b>		
0842		4,00	0.50	4.81	5.61	24.	48	5.0	0.65	-122	HONE			
							,							
										<u> </u>				
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88													
· · · · · · · · · · · · · · · · · · ·	TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016													
	Lovomor	-WOILHITH! O	JULG. B	- Danet, I	ar - Diegge		LING DATA		);	istaltic Pum	p; 0 = Othe	r (Specify)		
	BY (PRINT) / A			SAMPLER(S)	SIGNATUR	E(S):		CAMPING	× 6 × 6	T	SAMPLING			
BEN K	AMJEAN	SAW/PA	O-TECH	Beni	amje	awo	<u>ں :</u>	INITIATED AT	:0843		ENDED AT:	NR		
PUMP OR DEPTH IN	TUBING WELL (feet):	57:50		TUBING MATERIAL CO	ODE: 7			μm	LTERED: Y	(N)	FILTER SIZE	<b>.</b>		
FIELD DEC	CONTAMINATIO	ON: PUMI	<u>I</u>		TUBING	× @	replaced)	Filtration	Equipment Type DUPLICATE:		- Con	<del></del>		
			$\widetilde{}$		100110	. (3)	g epiacou)	<u> </u>		Y MPLE T	<u>(M)</u>			
SAM	PLE CONTAINE	R SPECIFICAT	TON		SAMPLE PR	RESERVATI	ON	INTENDE ANALYSIS AN	D P	JMP V RATE	SAMPLING EQ	UIPMENT		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL		METHO	) (m	L per	CODE			
					ADDE	- IIV FIELU	(mL) pH			nute)				
	X SEE	SAMP	he c	-0-6	AND	70B	TLE OR	DER WI	SRKSHEE					
	•									_				
												-,		
	REMARKS:	<u> </u>			L_									
	1													
	MATERIAL (Specify)	CODES:	AG = Amber G	lass; CG =	Clear Glass	PE=P	olyethylene; Pi	P = Polypropylen	e; S = Silicone	s; T = Te	flon; O = Othe	er		
		EQUIPMENT (		PP = After Per	Istaltic Pumr	: R=1	Baller: BP = BI	adder Pump;	SCD - Clasti	C.4				
			RI	PP = Reverse	Flow Perist	altic Pump;	SM = Straw Mo	ethod (Tubing Gr	ESP = Electric avity Drain);	Submersible O = Other	e Pump; (Specify)			
NOTES	i. i. ine abc	ove ao not co	nsutute all	ot the infon	mation reg	uired by (	Chapter 62-160,	FAC						

2. Stabilization Criteria For range of variation of Last three consecutive readings (see FS 2212, section 3)

pH: ±0.2 units Temperature: ±0.2 °C Specific Conductance: ±5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ±0.2 mg/L or ±10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ±5 NTU or ±10% (whichever is greater)

SITE NAME:	TRAIL	- R10	CE			***************************************	SITE	77						
WELL NO		B 27D		SAMPL	E ID:		LOCATION:	JACKSO	ANILLE,		<u>-</u>	•		
<u> </u>	DUP	***************************************				DHD	GING DAT			DATE:	07/20	2010		
WELL			G	21 W	ELL SCREEN	INTERVAL	STATIC	A	7		· · · · · · · · · · · · · · · · · · ·			
		2 DIAME	G TER (inches)	: 8 DE	PTH: OU : 1	eet to 110	feet TOWAT	TER (feet): 5. I	1	PUF	RGE PUMP TY BAILER: B	PE		
WELL EL	EVATION TOO	(ft NGVD):	28'88			G	ROUNDWATER E	ELEVATION (ft N	GVD): 123		<u> </u>	, 4-		
(only fill o	ut if applicable)	:: 7 WELL VO	LUME = (TC	TAL WELL DE	PTH - ST	ATIC DEPT	H TO WATER)	X WELL CAPAC	ZITY					
EQUIPMI	ENT VOLUME	PURGE: 1 EQ	= ( JIPMENT VO	L = PUMP VO	feet	RING CAPA	feet) )		galions/foot		gallor	15		
(only fill o	ut if applicable)						allons/foot X 11 C	TUBING LENGTH	i) + <b>0'02</b> i) + From Cett					
	UMP OR TUBII WELL (feet):	105.00	FINAL PU	MP OR TUBIN WELL (feet):	^	DUIDO	1010	Dunania		gallons =	TOTAL VOLU			
DEPTHI	A AAETT (1881):	CUMUL	DEPTHIK		100.00	S I INITIA	TED AT: 0851	ENDED AT:	1 160		TOTAL VOLU PURGED (ga	llons): 7Z		
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L_or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR		
0902	2142	2.42	0.55	5.86	5.88	24.3	75	019	0.47	-12.5				
0907	11.10	3.57	0.55		5.82	24.4	71	0'4	0.43	-6519		<del> </del>		
5912	1.10	4.62	0.22		5.85	24.5	70	0.3	0.39	-69.0				
0917	1.10	5.72	0,55	6.00	72	6.5	0.37	-71.1	NONE					
		<u> </u>	<del> </del>				,					ļ		
				<del></del>						-				
										<del> </del>		<b></b>		
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.08; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88													
-	WELL CAP	ACITY (Gallon SIDE DIA, CAF	Per Foot): ACITY (Gal./	0.75" = 0.02; (FL): 1/8" = 0.1	1" = 0.04; 0006: 3/16	1.25" = 0	.06; 2" = 0.16; 1/4" = 0.0026;	3" = 0.37;	4" = 0.65; 5"	= 1.02; <b>6</b>	5" = 1.47; 12	2" = 5.88		
		EQUIPMENT C	- 2		3P = Bladder			5/16" = 0.00 ubmersible Pump		06; 1/2": staltic Pump		8" = 0.016 er (Specify)		
SAMPLED	BY (PRINT) / A	ECHIATION.		011151 55/01		SAMP	LING DATA	A			- O-Oute	ii (Specify)		
	MITANA	_	10-TECH	SAMPLER(S) Ben R			<b>\</b>	SAMPLING INITIATED AT	7912		SAMPLING			
PUMP OR	TURING			TUBING	ange	ewan	<u> </u>				ENDED AT:			
DEPTH IN	WELL (feet):	05,00		MATERIAL CO	DDE:	<b>-</b>		μm	,	(N)	FILTER SIZE	#		
FIELD DEC	CONTAMINATIO	ON: PUMI	YO	>	TUBING	Y (N)	replaced)		Equipment Type: DUPLICATE:	(Y)	N	·		
SAM	PLE CONTAINE	R SPECIFICA	TION		CANDI E DD			1	SAM					
SAMPLE !					SAMPLE PR		, MC	INTENDE ANALYSIS AN	D   PU ID/OR   FLOW	MD I	SAMPLING EQ			
ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (	mL) FINAL	METHOD		рег	CODE	į		
									1		***			
ŀ	* SEE	SAMP	LE	-0-6	AND	BOT	TE OR	DER WE	RKSHEE	7	***************************************			
											<del></del>			
	REMARKS:					<del></del>								
		PLE7E0			Fraun		<u> </u>							
	MATERIAL (Specify)		\G = Amber (		Clear Glass;		lyethylene; PF	= Polypropylene	; S = Silicone;	T = Teflo	n; O = Othe	ır		
	SAMPLING	EQUIPMENT C	ODES: A	PP = After Peri FPP = Reverse	staltic Pump;	B = B:	aller; BP = Bla	adder Pump;	ESP = Electric S	ubmersible	Pump:			
NOTES	: 1. The abo	ve do not co	nstitute all	of the inform	nation regu	ilred by C	SM = Straw Me hapter 62-160.		vity Drain);	0 = Other (S	pecify)			

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	TRAIL	R	068				SITE	~			······································			
WELL N	•	D 31		SAMPL	F ID:		LOCATION:	JACKSO	HVILLEY	, FL	,			
	19(10)	2 31	<u> </u>			DITE	GING DAT	T A		DATE: (	120/7	2010		
WELL			BING	31 W	ELL SCREEN	INTERVAL		C DEPTH 17	<del></del>					
DIAMET	ER (inches):	2 DIA	METER (Inche	er I Q I no	PTH: 119.1	feet to 12	reet TOWA	TER /feet/ (6)	·55	1	GE PUMP TYP BAILER: B	ŽE O		
WELL V	DLUME PURGE	: 1 WELL	156.15	•	חדע הב	G	ROUNDWATER	ELEVATION (ft N	IGVD): 139	60		1		
(only fill c	ut if applicable)			OLYC METT DE		ATIC DEPT	n TO WATER)	X WELL CAPA	CITY			<del></del>		
FOURM	ENT VOLUME	NIDOE. 4	* (	51	feet –		feet)		gallons/foot		gallon	5		
(**************************************	at ii abbileanie)			OL = PUMP VO				TUBING LENGT	H) + FLOW CELL	VOLUME				
INITIAL F	UMP OR TUBI N WELL (feet):	VG A	FINAL P	MIRIT OF THE	gallons + (O	.006 g	allons/foot X   2	29,00 fee	1)+0,05	galions =	1.12 gallon			
DEPTHI	WELL (feet):	1241	DEPTH	UMP OR TUBIN N WELL (feet):	124.00	PURG INITIA	TED AT: 0935	S PURGING ENDED AT	1003		TOTAL VOLU PURGED (gai	ME 5.6		
	VOLUME	CUMUI		DEPTH TO	Hq		COND.	DISSOLVED		<del></del>	FORGED (gai	ions):		
TIME	PURGED (gallons)	PURGE	D RATE	WATER	(standard units)	TEMP.	(circle units) μmhos/cm	(circle units)	TURBIDITY (NTUs)	ORP	COLOR	ODOR		
084.5		(gallons				<b> </b>	or μS/cm	mg/L or % saturation	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(mV)				
0945	1120	3.20				23.7	366	0.1	1.31	-91.6				
0957	1.20	4,40			6.70		359	110	1.21	-94.0				
1003	1.20				6.69	23.7	357	011	1.18	-87:1				
1003 1.20 5.60 0.50 19.05 671 24.0 355 0.1 1.11 -83.8 NONE														
									<del> </del>					
							· · · · · · · · · · · · · · · · · · ·			<del> </del>				
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88													
					7000, 3110	- 0.0014;	.06; 2" = 0.16 1/4" = 0.0026	5; 3" = 0.37; 5; 5/16" = 0.00	4" = 0.65; 5" 4; (3/8) = 0.0	= 1.02; 6'		" = 5.88 " = 0.016		
	PURGING	QUIPMENT	CODES:	B = Baller; I	3P = Bladder		ESP = Electric S	Submersible Pump		staitic Pump;		r (Specify)		
SAMPLED	BY (PRINT) / A			SAMPLER(S)	SIGNATURE	(S):	LING DAT			,				
BENF	AMJEAN	W/1	PRO-TECH	Benk	anjec	rwa		SAMPLING INITIATED AT	:1004		SAMPLING ENDED AT:	NO		
PUMP OR	TUBING WELL (feet):			TUBING	J			FIELD-FI	LTERED: Y		FILTER SIZE			
	CONTAMINATIO	124,		, MATERIAL CO				μm Filtration	Equipment Type:	:				
				<u> </u>	TUBING	<u> </u>	replaced)		DUPLICATE:	Y	D			
SAMI	PLE CONTAINE	R SPÉCIFIC	ATION		SAMPLE PRI	ESERVATIO	N	INTENDE	:D   PU	IPLE MP				
SAMPLE ID CODE	# CONTAINERS	MATERIAL	VOLUME	PRESERVATI		CTAL VOL	FINAL	ANALYSIS AN METHOL	D/OR FLOW	RATE S/	MPLING EQU CODE	IPMENT		
.s 000L	CONTINUENS	CODE		USED	ADDET	OIN FIELD (				ute)				
					_	-								
	* SEE	SAm	PLE	C-D-C	AND	708	7	<del> </del>						
					-101-	_ <u>~~</u>	LE OR	DER WO	DRKSHEE	7	· · · · · · · · · · · · · · · · · · ·			
								<del>  `                                   </del>				-		
	L BEWARKS													
	REMARKS:													
	MATERIAL (	CODES:	AG = Amber	Glass; CG = (	Clear Glass;	PE = Po	lyethylene; Pi	P = Polypropylene	; S = Silicone:	T = Tefloo	: 0 = Other			
	SAMPLING I	QUIPMENT	CODES: /	APP = After Peri	stattle Pumm	B = Ba								
NOTES	ì		R	FPP = Reverse	Flow Decision	He Dume		ladder Pump; ethod (Tubing Gra	ESP = Electric S vity Drain); (	ubmersible P D = Other (Sp	ump; ec/fv)			
	OTTO	ve up not (	consulute all	of the inform	ration requ	ired by Ci	3M = Straw M napter 62-160,	F.A.C.						

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME:	TRAIL	RID	68				SITE LOCATION:	Ackson	11613.100	E1				
WELL NO	MWB	175		SAMPLE	ID:			SACKSON	, , , , , , , , , , , , , , , , , , ,	DATE:	07/20/2	2010		
		•				PUR	GING DATA	<u> </u>			- 11 - 1 -			
WELL		TUBIN	IG ETER (inches):	31 WE	LL SCREEN				1 1	PUR	GE PUMP TYP	E		
	R (inches): 2				7TH:13:3 fe	set to 18 3	feet TO WATE	ER (feet):		OR	BAILER: B	<del>P</del>		
1			138.3		TH - STA	TIC DEPT	ROUNDWATER E	LEVATION (# NG	(D): 13Z	61				
(only fill or	it if applicable)		= (		feet -									
FAUDIVE	NT VOLUME P	IDCE: 4 EO	•	- 500 500		1010 0101	feet) X		gallons/foot		gallon	3		
(only fill ou	nt if applicable)	DRGE: 1 EW	OIFMENT VOL				CITY X T	UBING LENGTH			- 4 4			
INITIAL PO	JMP OR TUBIN WELL (feet):	G, _ a	FINAL PU	P OR TUBINO	3	BUIDO	110		+ 0.05	gallons =	DA6 gallons			
DEPTH IN	WELL (feet):		DEPTH IN	T	15.80	INITIA	TED AT: 10 17	ENDED AT:	1041		TOTAL VOLU PURGED (gai	lons): 408		
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH	рH	TEMP.	COND. (circle units)	DISSOLVED OXYGEN	TUDDIDAY	600	201.00			
TIME	PURGED (gallons)	PURGED (galions)	RATE (gpm)	WATER (feet)	(standard units)	(°C)	μmhos/cm	(circle units) mg/L_or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR		
1079	2.04	2.04		6.81	5.52	26.8	or μS/cm	% saturation	10.0	-/0				
1029	0.51	2.55	0.17	6.83	5:55	26.7	76 78	1.9	14.9	-681				
1035	0.51	3.06		6.84	5.56	26.8	79	1.8	10.0	-68.7 -71.3				
1038	0.51	3.57	0.17	6.86	5.58	267	80	1.8	9-89	-71.6	<u> </u>			
1041	0.51	4.08	0.17	6.89	5.60	26.8	80	1.7	9.56	-73.6	NONE			
	,							······································	7	13.43	NONE			
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88														
	TUBING IN	SIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0.0	0006; 3/16	B" = 0.0014;	1/4" = 0.0026;	5/16" = 0.00	4; $(3/8) = 0.0$			2" = 5.88 3" = 0.016		
	PURGING	QUIPMENT	CODES: B	= Bailer;	3P = Bladder		ESP = Electric St		; PP = Peri	staltic Pump	; 0 = Othe	r (Specify)		
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	SAMP (S):	LING DATA	Taurina		Υ	1			
BEN	RAMIEAN	MU/P					<i>j</i> .	SAMPLING INITIATED AT	: 1042		SAMPLING ENDED AT:	NR		
PUMP OR		15.8		TUBING				FIELD-FI	TERED: Y	(0)	FILTER SIZE			
				MATERIAL CO		65		Filtration	Equipment Type	:				
FIELD DE	CONTAMINATIO	ON: PUI	AP Y CO	<b>)</b>	TUBING	YW	replaced)		DUPLICATE:	Y	(N)			
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	RESERVATI	ON	INTENDE	D PL	APLE JMP	SAMPLING EQ	HOMENT		
SAMPLE		MATERIAL	VOLUME	PRESERVAT		OTAL VOL	FINAL	ANALYSIS AN METHOD		/ RATE	CODE			
ID CODE	CONTAINERS	CODE	TOLOME	USED	ADDE	D IN FIELD	(mL) pH	<u> </u>		rute)				
					_	······································								
	* SEE	SAm		- D - C	71.2	2	7.	-						
	9 366	341,4	115	<u> </u>	AND	708	TIE ORI	heir Ms	ock ands		<del></del>			
					1							<del>,                                      </del>		
	REMARKS:							<u> </u>						
	MATERIAL	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = P	olyethylene; PF	P = Polypropylene	: S = Silicone	r Teres	on: O = Othe			
	(Specify)	EOUDVE:	CODER	DD - AA C								an		
		EQUIPMENT	R	PP = After Pe FPP = Revers	a Flow Perist	altic Pump;	SM = Straw Me	adder Pump; ethod (Tubing Gr	ESP = Electric :	Submersible O = Other (	Pump;			
NOTES	: 1. The abo	ve do not	onstitute all	of the infor	nation req	ulred by C	Chapter 62-160,	FAC		O - Outel (	opediy)			

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE														
WELL NO:	MWB	17D		SAMPLE	E ID:					DATE: 7	7/20/	2010		
				· · · · · · · · · · · · · · · · · · ·		PUR	GING DATA	\			211-9	20/0		
WELL	R (inches): 2	TUBING	3 TER (inches):	3) 8 WE	LL SCREEN	INTERVAL	STATIC D		12		SE PUMP TYP			
	VATION TOC		38,52	10100	-+111 11 No	G	ROUNDWATER EL	are (100c).		ORB	AILER: B	b		
WELL VO	LUME PURGE:				TH - STA	TIC DEPTI	HTO WATER) X	WELL CAPAC	ITY	10				
(only fill ou	t if applicable)		<b>**</b> (		feet -		feet) X		gallons/foot	=	gallon			
EQUIPME	NT VOLUME P	URGE: 1 EQL	IPMENT VOL	. = PUMP VOI	UME + (TUB	ING CAPA	CITY X TO	JBING LENGTH	•			-		
(only fill ou	t if applicable)			= 0.39	ailons + ( <b>0</b> .	006 gi	alions/foot X /Z 7			galions =	(   gallons			
	MP OR TUBIN	G 22.32	FINAL PUN	IP OR TUBING WELL (feet):	3	DUDG		T DI IDONIO	1114		TOTAL VOLU	ME dian		
DEPTHIN	WELL (feet):	CUMUL.	DEPTHIN	DEPTH	102132	- INITIA	COND.	DISSOLVED	1119		PURGED (gal	lons):		
TIME	VOLUME PURGED	VOLUME	PURGE RATE	то	pH (standard	TEMP.	(circle units)	OXYGEN (circle units)	TURBIDITY		COLOR	ODOR		
	(gallons)	PURGED (gallons)	(gpm)	WATER (feet)	units)	(°C)	μmhos/cm or μS/cm	mg/L <u>or</u> % saturation	(NTUs)	(mV)				
1056	1.60	1160	0.50	7.35	5.56	27.1	51	0.1	0.44	-65.1	<del> </del>			
1102	1-20	2,80	0.50	7-43	5.56	26.8	50	011	0.40	-70 4		<u> </u>		
1108	1.20	4.00	02,0	7,47		26.8	50	0.1	0.38	-71.5				
1114	1.50	4.20	0.20	7.50	5,55	26.9	50	<u> </u>	0.31	-72.4	NONE			
										<u> </u>				
						·								
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; (3/8) = 0.008; 1/2" = 0.010; 5/8" = 0.016														
PURGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)														
SAMPLED	BY (PRINT) / A	FFILIATION:	1	SAMPLER(S)	SIGNATURE		LING DATA	T		·	<del>                                     </del>			
I	AMJEANA		RO-TECH	Beni			. د	SAMPLING INITIATED AT	: 1115		SAMPLING ENDED AT:	NR		
PUMP OR				TUBING	<u> </u>			•	LTERED: Y	<u>_</u> @	FILTER SIZI			
DEPTH IN	WELL (feet):	· · · · · · · · · · · · · · · ·		MATERIAL C	ODE:			μm Filtration	Equipment Typ	e:	_			
FIELD DEC	CONTAMINATIO	ON: PUM	PYO	<u> </u>	TUBING	Y (1)	replaced)		DUPLICATE:	Y	<b>(A)</b>			
SAM	PLE CONTAINE	ER SPECIFICA	TION		SAMPLE PR	ESERVAT	ION	INTENDE	D P	MPLE UMP .	SAMBLESO TO	u lima ara ra		
SAMPLE		MATERIAL	VOLUME	PRESERVAT	IVE   T	OTAL VOL	FINAL	ANALYSIS AN METHOL		W RATE	SAMPLING EC CODI			
ID CODE	CONTAINERS	CODE	VOLUME	USED		O IN FIELD				inute)				
<b></b>						***************************************		<u> </u>						
	* SEE	SAM	0, 5	- D-C	AND	τοδ	7	1000						
	<u> </u>	3011	<u> </u>	<u> </u>	700	<u> </u>	TIE ORG	hele M	DUKSHE	<u> </u>				
												· · · · · · · · · · · · · · · · · · ·		
	REMARKS:									L	·			
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	· Clear Glass;	PE = F	Polyethylene; PF	Polypropylen	e; S = Silicor	ne; T = Tefic	on; 0 = Oth	er		
		EQUIPMENT		APP = After Pe			Bailer; BP = Bla	adder Pump;	ESP = Electric	: Submersible	Pump;			
NOTES	: 1 The abo	ove do not o		of the infor			SM = Straw Me Chapter 62-160,	ethod (Tubing Gr	avity Drain);	O = Other (	Specify)			

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NAME: TRAIL RIDG	AME: TRAIL RIDGE LOCATION: JACKSONVILLE FL													
WELL NO: MWB 17I		*	E-GATITION C	TICKS ON	VICER !	DATE:	7/20	2010						
		PUR	GING DATA	1	·····	1	211001	2010						
WELL TUBING DIAMETER (inches): 2 DIAMET	ER (Inches): 3) 8 WELL S				2	PUR	GE PUMP TYP	E						
DIAMETER (inches): 2 DIAMET WELL ELEVATION TOC (ft NGVD): 13	ER (Inches): 18 DEPTH	1:50 1   Seet to 6 0   ]	Sfeet   TO WATE	ER (feet): < 'T	2	OR	BAILER: B	ρ						
WELL VOLUME PURGE: 1 WELL VOL	UME = (TOTAL WELL DEPTH	I - STATIC DEPTH	ROUNDWATER EL	WELL CAPACE	136°	01								
(only fill out if applicable)		et	feet) X											
EQUIPMENT VOLUME PURGE: 1 EQUI	•		•	UBING LENGTH)	gallons/foot		gallons							
(only fill out if applicable)							5.71							
INITIAL PUMP OR TUBING	FINAL PUMP OR TUBING DEPTH IN WELL (feet):					gallons =	0.7/ gallons							
DEPTH IN WELL (feet): 55-13	1 1	NILLY.	TED AT: 1120	DISSOLVED	1148	<u>                                      </u>	TOTAL VOLUI PURGED (gall	ons)5132						
TIME VOLUME VOLUME	PURGE TO (e	pH TEMP.	COND. (circle units)	OXYGEN	TURBIDITY	ORP	COLOR	ODOR						
PURGED PURGED (gallons)		units) (°C)	μmhos/cm or μS/cm	(circle units) mg/L <u>or</u>	(NTUs)	(mV)	Jozon	ODOR						
1132 228 228	0.19 2.42 5	11 27.2	28	% saturation	1.86	-75.6								
1736 0.76 3.04		27.2	27	01	1.10	-78:1	'							
1140 0.76 3.80	0.19 2.42 5	11 26.9	27	0.1	1,00	-805								
1144 0.76 4.56	0.19 2.42 5	12 26.6	27	D' l	0.89	-81.9								
1148 0.76 5.32	0.19 2.42 5	5.11 26.9	27	01	0.81	-81.4	NONE							
					-									
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 7/78" = 0.006: 1/2" = 0.010; 5/6" = 0.016														
PURGING EQUIPMENT CO		5; 3/16" = 0.0014; = Bladder Pump;	1/4" = 0.0026; ESP = Electric Su			06; 1/2" staltic Pump		" = 0.016 r (Specify)						
		SAMP	LING DATA		71 - 1 0118	statue r unitp	, 0-01118	і (Зресігу)						
SAMPLED BY (PRINT) / AFFILIATION:	SAMPLER(S) SIG	inature(s): empawa		SAMPLING	111.0		SAMPLING	_						
DI IMP OP TURING		empawo	<del>ك ;</del>	INITIATED AT:		<b>/18</b>	ENDED AT:							
DEPTH IN WELL (feet): 55 13	TUBING MATERIAL CODE	T		μm		Ø	FILTER SIZE	•						
FIELD DECONTAMINATION: PUMP	Y 👀 T	UBING Y (N	replaced)		quipment Type: DUPLICATE:	Y	<b>(3)</b>							
SAMPLE CONTAINED SPECIFICAT	ION CAN				SAN	PLE								
SAMPLE CONTAINER SPECIFICAT		MPLE PRESERVATIO	У	INTENDED ANALYSIS AN			SAMPLING EQ							
SAMPLE # MATERIAL   NOTE:   NO	VOLUME PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD	(mL) FINAL	METHOD	V	per ute)	CODE							
* SEE SAMP	LE K-D-E A	708 au	TIE ORE	DER WO	RKSHEE	7								
		<u> </u>												
REMARKS:		<u> </u>		L										
		i			•			ļ						
	AG = Amber Glass; CG = Cle	ar Glass; PE = Po	olyethylene; PP	= Polypropylene	; S = Silicone	T = Tefic	on; O = Othe	r						
	ODES: APP = After Perista	itic Pump; B = B	aller; BP = Bla	adder Pumn	FSP = Floatric C	Cihmanili-	Dume							
i .	MALERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other  (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)													

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	TRAL	- R10	CF				SITE _	7.						
	MWB		79.6	SAMPL	E ID:		LOCATION:	JACKSO	ANILLE	FL				
	IVIUD	13		SAMPL	c 10,	D115	01110 5 :=			DATE:	07/20/	2010		
WELL		TUBIN	ig.	2 N/E	LL SCREEN		GING DAT							
DIAMETE		2 DIAMI	ETER (inches)	: 18 DE	PTH: 10.01	eet to Zo	STATIC Ofeet TO WAT	TER (feet): 7 · j.	5	PU	RGE PUMP TYPER BAILER: R			
WELL EL	EVATION TOC	(ft NGVD):	23.29	1		G	ROUNDWATER E	LEVATION (ft NO	SVD): (1/	14	BAILER: B	<u> </u>		
(only fill o	LUME PURGE ut if applicable)	: 1 WELL VO	DLUME = (TO	TAL WELL DE	PTH - ST/	ATIC DEPTI	H TO WATER)	WELL CAPAC	ITY TO	<u> </u>				
	•		= (		feet		feet) >	x	gallons/foot	=	galion	ie		
EQUIPME	NT VOLUME F	URGE: 1 EQ	UIPMENT VO	L. = PUMP VO	LUME + (TU	BING CAPA	CITY X T	TUBING LENGTH	-					
(only fill of	ut if applicable)			<b>= 0.3</b> s	allons + ( Q .	. 006 a	allons/foot X ZC		)+ 0,05		-0 · 4-7 gallon			
	UMP OR TUBIN	1615.00	FINAL PU	MP OR TUBIN WELL (feet):	315.62	PURG	ING .		<u> </u>	galions				
DEPIRIN	I WELL (feet):	T	DEPIHIN	1	13.60	INITIA	TED AT: 1213		1031		TOTAL VOLU PURGED (ga	llons): 06		
TIME	VOLUME	VOLUME	PURGE	DEPTH	pН	TEMP.	COND. (circle units)	DISSOLVED OXYGEN	TUDDIDED					
1100	PURGED (gallons)	PURGED (gallons)	(gpm)	WATER (feet)	(standard units)	(°C)	μmhos/cm	(circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR		
1222	1.53			7.28	<u> </u>	227	or μS/cm	% saturation				<u>                                     </u>		
1225	0.51	2.04	0.17		5.31	27.7	160	0.1	15:3	-62.7				
17-28	0.51	2.55	0.17	7.28	5.28 5.29	27.B	156	6:0	14.3	-70 6				
1231	0.51	3.06	0.17	7:28	5.29	27.7	158 158	0.0	144	-76.1				
1001			1001	1,50	5.67	211	156	0.0	14.10	-78	SNONE			
	a- •													
				<del>                                     </del>						-	_	<del> </del>		
			<del> </del>											
	WELL CAP	ACITY (Gallor	s Per Foot):	0.75" = 0.02; FL): 1/8" = 0.0	1" = 0.04;	1.25" = 0	.06; 2" = 0.16; 1/4" = 0.0026;	3" = 0.37;	4" = 0.65; 5'	" = 1.02;	6" = 1.47; 12	2" = 5.88		
		QUIPMENT			3P = Biadder			5/16" = 0.00- ubmersible Pump		06; 1/2 Istaltic Pum	"= 0.010; 5/8	3" = 0.016		
						SAMP	LING DATA	A	, rr-ren	istaluc rum	p; O = Otne	r (Specify)		
	BY (PRINT) / A			SAMPLER(S)	SIGNATURE	(S):		SAMPLING INITIATED AT	1232	<u> </u>	SAMPLING			
	AMJEAN	KN/P	80-TECH		imjea	war	· · · · · · · · · · · · · · · · · · ·				ENDED AT:	NR		
PUMP OR DEPTH IN	TUBING WELL (feet):	15.01	>	TUBING MATERIAL CO	DE: T	-		μm	TERED: Y	(10)	FILTER SIZE			
FIELD DEC	CONTAMINATIO	ON: PUM	PYCN		TUBING	Y (AT)		1	Equipment Type			· · · · · · · · · · · · · · · · · · ·		
			<u> </u>		1001149	' (0)	replaced)	<u> </u>	DUPLICATE:	Y	(N)			
SAM	PLE CONTAINE	R SPECIFICA	TION	,	SAMPLE PR	ESERVATIO	ИС	INTENDE	D   PL	MPLE JMP	54100 NO 50			
SAMPLE	#	MATERIAL	VOLUME	PRESERVATI		OTAL VOL	FINAL	ANALYSIS AN METHOD		/ RATE	SAMPLING EQ CODE			
ID CODE	CONTAINERS	CODE		USED	ADDE	D IN FIELD	(mL) pH			rute)	***			
	X SEE	SAM	2			3		<u> </u>						
	A 316	<u> </u>		- D-C	AND	<u>708</u>	DE ORG	per wo	RKSHEZ	7				
						<del></del>								
					_			<del> </del>						
L	REMARKS:							<u> </u>			<del>,</del>			
	MATERIAL (Specify)	CODES:	AG = Amber (	Glass; CG =	Clear Glass;	PE = Po	lyethylene; PP	> ≖ Polypropylene	; S = Silicone	: T = Tef	lon; O = Othe	,,		
		EQUIPMENT	CODES: A	PP = After Per	etaltic O	D C	- <del> </del>							
			R	FPP = Reverse	Flow Perista	Itic Pumn	SM = Strow Me		ESP = Electric :	Submersible O = Other (	Pump;	/		
NOTES	: 1. The abo	ve do not co	onstitute all	of the inform	nation requ	alred by C	hapter 62-160,	F.A.C.	,,,	Oniel (	орвиту)			

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ±5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NAME: TRA1L R1066   SAMPLE ID:   DATE: 7.20-10													
WELL   TUBING   DIAMETER (inches):   2   DIAMETER (inches):   3   8   DEPTH: (1,5 feet to 24,5 feet   TO WATER (feet):   4,8   5   6   7   8   7   8   7   8   8   8   8   8													
DIAMETER (Inches): 2 DIAMETER (Inches): 3 DEPTH: 14.5 feet to 24.5 fee													
DIAMETER (Inches):													
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)  = (													
Conjy fill out if applicable   EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME													
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable)													
Conly fill out if applicable   = 0.3 gallons + (0.00 & gallons/foot X Z4,50 & feet) + 0.05   gallons = D.5 gallons													
Initial Pump or Tubing   Depth in Well (feet):   Q, SD   Dep													
TIME VOLUME PURGED (gallons) PURGE PURGED (gallons) (gpm) PURGE (feet) PURGED (correct units) PURGED (gallons) PURGED (gpm) PURGED (gpm													
1510 0.54 2.16 0.18 10.20 5.74 27.2 207 0.6 13.77 -71  1513 6.54 2.70 0.18 10.21 5.74 27.2 707 0.6 14.23 -68  1516 0.54 3.24 0.18 10.24 5.74 27.2 707 0.6 15.44 -64  1516 0.54 3.78 0.18 10.23 5.74 27.2 208 0.6 14.41 -62 None													
1513 6.54 2.70 0.18 10.21 5.74 27.2 207 0.6 14.23 -68 1516 0.54 3.24 0.18 10.24 5.74 27.2 207 0.6 15.44 -64 1519 0.54 3.78 0.18 10.23 5.74 27.2 208 0.6 14.71 -62 None													
15 16 0,54 3,24 0,18 10.24 5,74 27.2 207 0,6 15,44 -64 15,19 0,54 3,78 0.18 10,23 5,74 27.2 208 0,6 14,41 -62 None													
1519 6.54 3.78 0.18 10.23 5.74 27.2 208 D.b 14.41 -62 NONE													
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
Yelland Yelland													
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016  PURGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)													
SAMPLING DATA  SAMPLED BY (PRINT) / AFFILIATION:   SAMPLER(S) SIGNATURE(S):   SAMPLING													
SAMPLING SAMPLING													
PUMP OR TUBING TUBING FILTER SIZE:													
DEPTH IN WELL (feet): \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
FIELD DECONTAMINATION: PUMP Y TO TUBING Y (N) TUBING Y (N)													
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED PUMP													
ANALYSIS AND/OR FLOW RATE CODE CODE													
ID CODE CONTAINERS CODE VOLUME USED ADDED IN FIELD (mL) pH (inc per minute)													
* SEE SAMPLE K-D-C AND BOTTLE ORDER WORKSHEET													
REMARKS:													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other													
(Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump;													
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)  NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.													

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE . NAME:	TRAIL	RIDO	SE				FILE TOCATION: 2	ACKSON	victes.	FL		
WELL NO:	MMB	13 I		SAMPLE	ID:						01-05	
	<u> </u>	<u> </u>				PUR	GING DATA	\				
WELL DIAMETER WELL ELE	R (inches): 2		FER (Inches): 「とら、今を	3 8 DEF	L SCREEN	et to 60.	STATIC D feet TO WATE ROUNDWATER EL	R (feet): 17.5	(A) 108	ORB	E PUMP TYPI AILER: B	
					TH - STA	TIC DEPTI	TO WATER) X	WELL CAPACI	TY	, ,0		
	t if applicable)		<b>=</b> (		feet -		feet) X		gallons/foot		gallons	
	NT VOLUME PL t if applicable)	JRGE: 1 EQL	IPMENT VOL				Illons/foot X 60	JBING LENGTH	+ 6,05		の。子 <b>/</b> gallons	
	JMP OR TUBING WELL (feet):	55,40 		IP OR TUBING WELL (feet):		PURG INITIA	ING TED AT: 1540		1602		TOTAL VOLUI PURGED (gall	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
1552	2.75	2.75	0.25	14.81	5.36	56./	39	0.3	3, bla	-172		
1555	0.75	3.50	0.25	17.80	5.35	25.9	39	0.4	15,4	-176		
1228	0.75	4.25	0.25	17,83	5.33	25.9	38	0,3	4.37	1-133		
1601	25.0	5,00	0.25	17.77	5,32	25,9	3.8	<u>0,3</u>	4,46	-175	HOME	
	-		-							<u> </u>		
						ļ			1	1		
				-							<del> </del>	
						<del> </del>				<del> </del>	<del> </del>	
				<del> </del>				<b>-</b>				
			_				<del> </del>		<u> </u>			
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.08; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.0 TUBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006;												2" = 5.88
		SIDE DIA. CA EQUIPMENT (	1.		0006; 3/1 BP = Bladde		; 1/4" = 0.0026; ESP = Electric St			istaltic Pump		3" = 0.016 er (Specify)
L	1			· · · · · · · · · · · · · · · · · · ·			LING DATA	···		······································		
SAMPLED	BY (PRINT) / A			SAMPLER(S)	SIGNATUR	E(S):		SAMPLING	. 11		SAMPLING	
DAN	ARMOUR	<u> </u>	RO-TECH	NZ		·	<del></del>	INITIATED AT: 1602 ENDE				
PUMP OR DEPTH IN	TUBING WELL (feet):	SSIL		TUBING MATERIAL C	ODE:	Г		μm	Equipment Typ	•	FILTER SIZE	<b>-</b>
	CONTAMINATION			is .	TUBING	Y (N	(replaced)	Fill auon	DUPLICATE:	e: Y	<u> </u>	
110000										MPLE	<u> </u>	
SAM	IPLE CONTAINE	ER SPECIFIC	ATION		SAMPLE P	RESERVAT	ION	INTENDI ANALYSIS A		UMP W RATE	SAMPLING EC	
SAMPLE	# 00\T\I\IED0	MATERIAL	VOLUME	PRESERVAT USED		TOTAL VOI		METHO		nL per inute)	CODI	=
ID CODE	CONTAINERS	CODE		USED	TADOS	UN LIEF	>71167   PLI					
	X SEE	SAM	PIE	C- D-C	AND	An	ME OR	DER W	DRKSHE	2-7		
	1			<u> </u>				1 3 2		<del></del>		
												<del>,</del>
	REMARKS										,	
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG	= Clear Glass	s; PE=	Polyethylene; P	PP = Polypropyle	ne; S = Silico	ne; T=Tel	ion; 0 = Oth	ner
		EQUIPMENT		APP = After Pe RFPP = Rever				Bladder Pump; Method (Tubing G	ESP = Electric	Submersibl O = Other		
L-107	0 4 7	aug da nat	annettuta a	ll of the info	mation to	gulrad by	Chapter 62-160	EAC	<del></del>			

2. Stabilization Criteria For range of Variation of Last three consecutive readings (see FS 2212, section 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: TRAIL RIDGE SAMPLE ID:												
WELL NO:	MWBI	3 S		SAMPLE	ID:		,		1	DATE:	7.21.10	
				L		PUR	GING DATA	<u> </u>			1 - 1 0	
WELL.	(inches): 2	TUBING	ER (inches):		L SCREEN		STATIC D	EPTH	10	1	RGE PUMP TYP	
DIAMETER WELL ELE	VATION TOC	e MOMON			111: (6'28 16		ROUNDWATER EL		1/01.		BAILER: B	ρ
	•	•	1 26,06 UME = (TOT	AL WELL DEF	TH - STA		TO WATER) X	•		3.46	·	
(only fill out	if applicable)		<b>=</b> (		feet -		feet) X		gallons/foot	=	gallons	
EQUIPMEN	IT VOLUME PL	JRGE: 1 EQU	IPMENT VOL	. = PUMP VOL	UME + (TUB	ING CAPA	CITY X TO	JBING LENGTH)	•			
	if applicable)						illons/foot X 2 6		+ 0.05		= 0 : 5   gallons	
	MP OR TUBIN	3		IP OR TUBING	3	PURG	ING	PURGING		guilot to	TOTAL VOLU	ME .
DEPTH IN	WELL (feet):	21.56	DEPTHIN	WELL (feet):	21,50	△   INITIA I	TED AT: 0850	DISSOLVED	0409	<u> </u>	PURGED (gall	ons): 3, 23
TIME	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pH (standard	TEMP.	COND. (circle units)	OXYGEN (circle units)	TURBIDITY	ORP	COLOR	ODOR
1 10012	PURGED (gallons)	PURGED (galions)	RATE (gpm)	WATER (feet)	units)	(°C)	μmhos/cm or μS/cm	mg/L <u>or</u>	(NTUs)	(mV)	j	
0859	1,53	1,53	0.17	13.31	5,66	25,9	312	% saturation	16,41	48	_	
0902	0,51	40,5	F1.0	13.28	5.63	25,9	311	111	13.76	45		
0905	0,51	2.55	F1,0	13.33	5,63	25,9	313	1,0	18:31	43		
8080	0,51	3,06	F1.0	13.35	5,62	25,9	312	110	19.32	43	SIT PRO	Cys.
											TINT	
			ļ					······································				
		<u> </u>	<u> </u>	<u> </u>								
			-	-				<del> </del>				
			-				ļ					
				<del></del>		<u> </u>		·				
	WELL CAP	ACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = (	0.06; 2" = 0.16;	3" = 0.37;				2" = 5.88
		QUIPMENT C	<del></del>	Ft.): 1/8" = 0.1 = Baller; 1	3P = Biadder	3" = 0.0014 Pump;	; 1/4" = 0.0026; ESP = Electric St			06; 1/2 staltic Pum		3" = 0.016 or (Specify)
L							LING DATA				,,,	(0,00)
1	BY (PRINT) / A		<b>I</b>	SAMPLER(S)	SIGNATURE	E(S):		SAMPLING			SAMPLING	
	Armour	<u> </u>	RO-TECH	74-2		·		INITIATED AT	ITERED: Y	(N)	ENDED AT:	
PUMP OR DEPTH IN	WELL (feet):	21,5	6	TUBING MATERIAL C	ODE:			μm	Equipment Type	-	THE TER CIZE	
FIELD DEC	CONTAMINATIO	ON: PUM	PYC	>	TUBING	Y (7)	replaced)		DUPLICATE:	Y	(W)	
CA14	PLE CONTAINE	D CDEOIGIOA	TION		CAMPI E DE		1011	4	and the second	APLE		
			TION		SAMPLE PR			ANALYSIS AN	ID/OR   FLOW	/ RATE	SAMPLING EC	
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		OTAL VOL D IN FIELD		METHO		L per nute)	005.	
									, .			
	X SEE	SAm	OLE K	-0-6	AND	<u>rea</u>	TE OR	DER WI	DRKSHEE			
								<u> </u>				
						~						
	REMARKS:	LL			L	·····		1	L	L	· · · · · · · · · · · · · · · · · · ·	
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass	PE=F	Polyethylene; Pi	P = Polypropylen	e; S = Silicone	B; T = Te	ofion; O = Oth	er
		EQUIPMENT	CODES:	APP = After Pe	ristaltic Pump	); B=		adder Pump;	ESP = Electric	Submersib	le Pump:	
NOTES	: 1 The sho	ove do not c		RFPP = Revers			SM = Straw M	ethod (Tubing Gr	avity Drain);	0 = Other	(Specify)	

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME:	TRAI	LRI	NCF				SITE	~~~				
WELL NO	: MWB	225	3	SAMP	I E ID:		LOCATION:	JACKSO	HVILLE	FL		
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			SAMP	LE IU:	Pa C Co				DATE	07/21/	20/1
WELL		TU	BING	2 N	El scace	PUF	RGING DAT	ΓΑ		<del></del>		
DIAMETE	R (inches):	2   DIA	METER (Inch	es): 3)8 N	EPTH:14.9	feet to 19	STATIO	C DEPTH TER (feet): 7/4	50		URGE PUMP TY	
WELL EL	EVATION TO	C (ft NGVD):	1241							00	R BAILER: B	ρ
(only fill or	LUME PURG ut if applicable	E: 1 WELL	VOLUME =	TOTAL WELL DI	PTH - ST	ATIC DEPT	H TO WATER)	X WELL CAPA	CITY	78		
			<b>=</b> (		feet -		feet)		gallons/foot	_		
EQUIPME	NT VOLUME	PURGE: 11	EQUIPMENT	VOL. = PUMP VO	DLUME + (TU	BING CAP	ACITY X	TUBING LENGT			gallor	is
(0/11) 111 00	at it applicable	,		= 0 3	natione ± (A	7. A. L.	allons/foot x 19					
INITIAL PU	UMP OR TUB WELL (feet):	ING 17.4	FINAL	PUMP OR TURIN	19 17,4E	DIID	ZING	7 PURGING	4)+0,05	gallons	=0.47 gallon	
	TVILLE (1660)	CUMUI			T	INITIA	TED AT: 10 F	/ ENDED AT	1108		TOTAL VOLU PURGED (ga	IME 4.0
TIME	VOLUME PURGED	VOLUM	E PUR		pH.	TEMP.	COND. (circle units)	DISSOLVED				1
	(gallons)	PURGE (gallons			(standard units)	(°C)	μmhos/cm	(circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)		ODOR
1059	2104	2.04	- 0:17		C 04	26.3	or μS/cm	% saturation				
1102	0.68	2.72			6.04 6.0B	25:3	450	0.1	5:05	36.9		
1105	0.68	3:40		9.82	6.11	25.5	4-51	0.1	16:7	20.9		
1108	0-6B	4 108		9,84	6.13	25.6 25.7	458	0.1	15.1	2010	2	
				7.07	6.12	CS( )	455	0.1	13.3	20.9	NONE	
						<b>-</b>		<u> </u>				
								<del> </del>				
										<del> </del>		
										<del> </del>		
	I WELL OAT	110/20/10								<del> </del>		
	100mg m	SIDE DIA. C	APACHY (G	0.75" = 0.02; il./Ft.): 1/8" = 0.1	1" = 0.04; 0006: 3/16	1.25" = 0	.06; 2" = 0.16; 1/4" = 0.0026;	3" = 0.37;	4" = 0.65; 5"	= 1.02;	6" = 1.47; 12	" = 5.88
	PURGING	EQUIPMENT	CODES:	B = Baller; I	3P = Bladder		ESP = Electric S		<del>4; 3/8" = 0.0</del>	06; 1/2	" = 0.010; 5/8	= 0.016
SAMPLED E	BY (PRINT) / /	ACCILIATION		1 011101		SAMP	LING DATA	Ą	, rr-ren	staltic Pum	p; 0 = Other	(Specify)
BENRA	MEANA		Pro-Téc,	SAMPLER(S)	SIGNAŢURE	(S):		SAMPLING	11.0	T T	SAMPLING	
PUMP OR T			70- 16 CI	TUBING	ngeau		· ·	INITIATED AT	•		ENDED AT:	NR
DEPTH IN V	VELL (feet):	17.40	>	MATERIAL CO	DE:	-		μm	TERED: Y	<b>M</b>	FILTER SIZE	
FIELD DEC	ONTAMINATIO	ON: PU	MP Y C	N C	TUBING	Y ATE	eplaced)		quipment Type			
SAMO	E CONTAINS		***************************************					<u> </u>	DUPLICATE:	Y	(N)	
	LE CONTAINE	er specific	ATION		SAMPLE PRE	SERVATIO	N	INTENDE	D   PU	IPLE   MP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV		TAL VOL	FINAL	ANALYSIS AN METHOD			SAMPLING EQUI CODE	IPMENT
				USED	AUDED	IN FIELD (	mL) pH		min			
						· · · · · · · · · · · · · · · · · · ·						
	* SEE	SAM	PLE	C-0-C	Anio	3						
		44.			_ درو	<b>3077</b>	re org	per wo	RKKHEZ	7		
					<del>                                     </del>							
	REMARKS:	-										
	MATERIAL (	Onee.	40-4-7									
	(Specify)	ODES:	AG = Amber	Glass; CG = C	lear Glass;	PE = Poly	yethylene; PP	= Polypropylene;	S = Silicone;	T = Tefle	on; O = Other	
	SAMPLING I	QUIPMENT	CODES:	APP = After Peris	taltic Pump:	B = Bai	er. BP = Ris	dder Pump; E	•			
NOTES:	1. The above	ve do not d	onstitute al	RFPP = Reverse	Flow Peristalt		SM = Straw Met	thod (Tubing Grav	SP = Electric Solity Drain); C	ubmersible ) = Other (8	Pump; Specify)	1
	3 0					ieu by Ch	anter 52-160 F	- A C				

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3).
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	. R10	 G <i>E</i>				SITE LOCATION:	SACKSON	136.71.84	5,			
	MWB			SAMPLI	E ID:		2007,71014	IIICKS ON	VICER ,	1	7 1		
<u> </u>	DUPO					PUR	GING DATA	Δ		J DAIL	7-21-10	<u> </u>	
WELL		TUBIN	_	310 WE	LL SCREEN				e	PUR	GE PUMP TYP	F	
	R (inches):		TER (Inches):		PTH:54 · 56fe	et to 64.5	6feet TO WAT	ER (feet): 6' >	0	ORE	AILER: B		
1		• •	124,19		DTU _ STA	GIC DEBT	ROUNDWATER E	LEVATION (ft NG	ND): 118 .:	21			
(only fill or	ut if applicable)	, , , , , , , , , , , , , , , , , , ,		INC WELL DE		CHC DEPH			HY				
			= (		feet -		feet) X		gallons/foot		gallons	1	
(only fill or	NT VOLUME P it if applicable)			= 4 3	allons + / Q.	D06 0	CITY X T	UBING LENGTH	) + Flow CEll ) + <b>ひ, の</b> 5		074 gallons		
INITIAL P	UMP OR TUBIN I WELL (feet):	¹⁶ 59.56	FINAL PUI DEPTH IN	MP OR TUBING WELL (feet):	³ 59.56	T		PURGING ENDED AT:	1218		TOTAL VOLUI PURGED (gall		
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	ТЕМР.	COND. (circle units)	DISSOLVED OXYGEN				·	
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	(standard units)	(SC)	μmhos/cm or μS/cm	(circle units) mg/L <u>or</u>	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR	
1150	6.00	6.00	0.20	6.68	5.44	25.7	39	% saturation	24.3	-4-14			
1154	0.80	6.80	0.20	6.68	5.43	26.0	39	0.4	2215	7:4			
1158	0.80	7:60	0.20	6.68	5,44	26.0	38	0.4	21.3	-11.7			
1202	0.80	8.40	0.20	6.68	5.43	25.5	38	013	181	-121			
1206	0180	9:20	0.20	6.68	5.44	25.6	38	0.3	17.1	-14,4			
1210	0.89	10,00	0 '20	6.48	5.44	25.6	38	<i>6</i> ·3	16.4	-1319			
1214	0.80	10.80	0.50	6.68	5,43	26.0	38	o; 3	15.8	1-14-2	,		
1218	0.80	11.60	8:20	6.68	5,45	25,2	38	013	121	-22.8	Nowé		
	WELL CAP	ACITY (Gallon	s Per Foot):	0.75" = 0.02:	1" = 0.04:	1,25" = 1	0.06; 2" = 0.16;	<b>3"</b> = 0.37;	4" = 0 CE, E	' = 1.02; (	i" = 1.47; 12		
	TUBING IN	SIDE DIA. CAI	ACITY (Gal./	Ft.): 1/8" = 0.	0006; 3/16	3" = 0.0014	; 1/4" = 0.0026;	5/16" = 0.00	4; <b>3/8)</b> = 0.0	06; 1/2*	= 0.010; 5/8	!" = 5.88 !" = 0.016	
	PURGING	EQUIPMENT C	ODES: B	= Baller;	BP = Bladder		ESP = Electric Si	ubmersible Pump	; PP = Per	staltic Pump	0 = Othe	r (Specify)	
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	SAIVIT E(S):	LING DATA	1			T		
BENR	AMSEAN	W/P1	RO-TECH	Ben Ra	meau	حيص	•	SAMPLING INITIATED AT	1219		SAMPLING ENDED AT:	NR	
PUMP OR	TUBING	E0.50		TUBING	0	-		FIELD-FI	LTERED: Y	<b>(b)</b>	FILTER SIZE		
	WELL (feet):		ŀ	MATERIAL C	ODE:			μm Filtration	Equipment Type	):			
FIELD DE	CONTAMINATIO	ON: PUM	PYC	<u> </u>	TUBING	ν ( <u>M</u>	replaced)		DUPLICATE:	0	N		
SAM	PLE CONTAINE	R SPECIFICA	TION		SAMPLE PR	ESERVATI	ON	INTENDE		MPLE JMP			
SAMPLE		MATERIAL		PRESERVAT	IVE I T	OTAL VOL	FINAL	ANALYSIS AN	ID/OR   FLOV	/ RATE	SAMPLING EQ CODE		
ID CODE	CONTAINERS	COLE	VOLUME	USED		D IN FIELD				nute)		·	
	7 55						_	<del> </del>					
	* SEE	SAM	LE C	- D-C	AND	<u>706</u>	DE OR	per us	SCKRHEG	7			
		-						<del>                                     </del>			*		
		<del></del>				·		1					
	REMARKS:			<u> </u>			<u> </u>						
	LOYNF MATERIAL	CODES:	AG = Amber		AB 32 Clear Glass;		olvethylene: Pl	P = Polypropylene	e; S = Silicone	· · · · · · ·			
	(Specify)						organization Pl	- rotypropylent	e, d= dilicone	; I = left	on; O = Othe	er	
	SAMPLING	EQUIPMENT	CODES: A	PP = After Pe FPP = Revers	ristaitic Pump e Flow Perist	; B = i	Saller; BP = BI	iadder Pump; ethod (Tubing Gr	ESP = Electric	Submersible	Pump;		
NOTES	3: 1. The abo	ve do not c					Chapter 62-160.	EAC	avity Drain);	0 = Other (	opecity)		

^{2.} Stabilization Criteria For Range of Variation of Last three consecutive Readings (See FS 2212, Section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME:	TRAIL	RIT	\C. #				SITE _	~			·	
	: FAW B	37-1	7.00.0	SAMPL	EID:		LOCATION: -	SACKSOF	ANILLE	FL		
				Jordan	- IU.	DHE	CINODAT			DATE:	07/21/20	0/0
WELL		TUB	ING	21 W	ELL SCREEN	INTERVAL	GING DAT	A DEDTU				
	R (Inches): EVATION TOC	2 DIAN	ETER (Inches	): 18 DE	PTH: 98-81 f	eet to log .	feet TO WAT	ER (feet): 6 . 8	39	OR	RGE PUMP TYP BAILER: B	PE
WELL VO	LUME PURGE	: 1 WELL \	OLUME = (T	OTAL WELL DE	PTH - ST/	ATIC DEPT	ROUNDWATER E	WELL CARAC	3VD): 11 8.	04		
(only fill or	ut if applicable)		= (		feet -		feet) X					
EQUIPME	NT VOLUME F	VRGE: 1 E	QUIPMENT VO	OL. = PUMP VC	LUME + (TUI	BING CAPA		UBING LENGTH	gallons/foot ) + FLOW CELI		gallon	
	· · · · · · · · · · · · · · · · · · ·		<del></del>	= 0,3	jalions + ( <b>0</b> .	006 g	allons/foot X (O)	8 · 8 / feet	)+ 0,05	galions	= 1.00 gallon	5
DEPTH IN	UMP OR TUBIN WELL (feet):	NG 1 03; &	FINAL PL	JMP OR TUBIN N WELL (feet):	G103'81	PURG INITIA	EING TED AT: 1014	PURGING ENDED AT:	1042		TOTAL VOLU	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUMI PURGEI (gallons	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μπhos/cm or μS/cm	DISSOLVED OXYGEN (circle units) mg/L. or % saturation	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
1024	1-90	1-90		7.12	5.72	26.1	65	1.6	Z·87	2011	<del></del>	
1030	0.76	2.66	0.19	7.14	5.71	26.2	66	1.5	1.40	18.1	1	<u> </u>
1036	0.76	3.42	0.19	7.15		26.3	69	1.5	1:42	18.5		
1042	9.76	4.18	0.19	7.17	5.75	26.5	70	1.5	1.41	18.2	NONE	
			_									
	<del> </del>			-								
						<del> </del>						
	1	<del> </del>						<del> </del>				
Kaase :				<del>                                     </del>								
	WELL CAP	ACITY (Galle	ons Per Foot):	0.75" = 0.02; /FL): 1/8" = 0.	1" = 0.04;	1.25" = (	0.06; 2" = 0.16;	3" = 0.37;	4" = 0.65; 5'	" = 1.02:	6" = 1.47: 1:	2" = 5.88
		EQUIPMENT			3P ≃ Bladder		1/4" = 0.0026; ESP = Electric St	5/16" = 0.00	4;  (3/89 = 0.0)	06; 1/2"	= 0.010; 5/8	3" = 0.016
						SAMP	LING DATA	A	, FF = Fer	istaltic Pump	);	r (Specify)
	BY (PRINT) / A			SAMPLER(S)				SAMPLING INITIATED AT	lad 2		SAMPLING	
PUMP OR		3 / F	RO-TECH	BenRas	yeawo	<u>س</u>	·				ENDED AT:	NR
DEPTH IN	WELL (feet):			TUBING MATERIAL CO	DDE:	****		μm	LTERED: Y Equipment Type	<b>(b)</b>	FILTER SIZE	
FIELD DEC	ONTAMINATIO	ON: PU	MP Y C	<u> </u>	TUBING	Y (D)	replaced)	1	DUPLICATE:	Y	N	<del></del>
SAM	PLE CONTAINE	ER SPECIFIC	ATION		SAMPLE PRI	ESERVATION	ON	INTENDE	D PL	MPLE JMP	SAMPLING EQI	1170 450 5
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI		OTAL VOL	FINAL	ANALYSIS AN METHOE		RATE	CODE	
3000	JOHNS	JULE		USED	ADDE	O IN FIELD	(mL) pH	<del>                                     </del>		nute)		
		-		· · · · · · · · · · · · · · · · · · ·								·····
	X SEE	SAM	PLE	C- D-C	AND	708	7.4 000	DER VIC				
					- 100	~~~	JE OK	ACIO MO	BREHER			
										<del></del>		
	DEMARKS											
	REMARKS:								·		,	
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Po	olyethylene; PF	o = Polypropylene	; S = Silicone	; T = Tefle	on; <b>0</b> = Othe	r
	SAMPLING	EQUIPMENT	CODES:	APP = After Per	Stattle Dume:	B=B						•
NOTES			i	RFPP = Reverse	Flow Perista	Itic Pumo:	SM = Straw Ma		ESP = Electric ! vity Drain);	Submersible O = Other (	Pump; Specify)	
NUIES	. i. ine abo	ve do not d	constitute al	of the inform	nation requ	ilred by C	hapter 62-160,	F.A.C.		(	//	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	TRAIL	- RIC	CF				SITE	7-				· · · · · · · · · · · · · · · · · · ·	
WELL NO				CALIZI			LOCATION:	JACKSO	ANIFLE	FL			
	1900	343	•	SAMPL	E ID:	Post 1 co				DATE:	07/21/2	2010	
WELL		TUBIN	io .	0 . I w	ELL SCREEN	PUK	GING DAT						
DIAMETE		2 DIAM	ETER (inches)	: 19 ns	PTH/\$-36	feet to 18.3	STATIC	TER (feet)	54		RGE PUMP TYP		
WELL EL	EVATION TO	(ft NGVD):	2578	<b>&gt;</b>		G	ROUNDWATER	ELEVATION (# NI	21/01/1/27 - 2	J OR	BAILER: B	b	
(only fill or	LUME PURGI	: 1 WELL VO	DLUME = (TO	TAL WELL DE	PTH - ST	ATIC DEPT	HTO WATER)	X WELL CAPAC	TY YELL	- 4-			
1			= (		feet -	,	feet) )	x	gallons/foot	=	gallon		
EQUIPME (only fill ou	NT VOLUME	PURGE: 1 EQ	UIPMENT VO	L. = PUMP VO	LUME + (TU	IBING CAPA	CITY X	TUBING LENGTH	) + FLOW CELL	VOLUME	8		
				= 0,3	galions + (O	006 g	allons/foot x 18		)+ 0.05		off gallons	_	
	UMP OR TUBI   WELL (feet):	NG 15 B	FINAL PUI	MP OR TUBIN WELL (feet):	G15 86	PURG	SING TED AT:09 33	PURGING	·	ganoris			
		CUMUL.		DEPTH		1 11411124	COND.	DISSOLVED	0958	<u> </u>	TOTAL VOLU PURGED (gall	lons):	
TIME	VOLUME PURGED	VOLUME	PURGE RATE	TO WATER	pH (standard	TEMP.	(circle units)	OXYGEN (circle units)	TURBIDITY	ORP	COLOR	ODOR	
	(gailons)	(gallons)	(gpm)	(feet)	units)	(°C)	μmhos/cm or μS/cm	mg/L or	(NTUs)	(mV)	30201	ODOR	
0946	2.34	2.34	0.18	10.90	6.16	z6·3	968	% saturation	1.36	-71:6			
0949	0.54	2.88	OIB	10.93	6.14	76.7	960	0'0	0,20	-56.7		ļ	
6952	0-54	3,42	0.18	10.95	6.14	26.8	955	0.0	0.62	-54.9	<del> </del>		
0955	0.24	3.96	0 (B	10.98	6.14	26.9	953	0.1	0:39	-49.5			
0958	0:54	4150	0-18	11.01	6:14	26.9	950	0.1	0'33	45.7	Nout		
	-		<b></b>			<u> </u>							
			<del></del>										
	WELL CAP	ACITY (Gallon	s Per Foot); (	).75" = 0.02;	1" = 0.04;	1.25" = 0	.06; 2" = 0.16; 1/4" = 0.0026;	3" = 0.37;	<b>4" =</b> 0.65; 5"	= 1.02; <i>6</i>	3" = 1.47; 12		
	PURGING I	EQUIPMENT C	ODES: B	=1.): 1/8" = 0.0 = Baller: I	0006; 3/16 3P = Bladder	6" = 0.0014;			4; (3/8*)= 0.00	06; 1/2"	= 0.010; 5/8	" = 5.88 " = 0.016	
							ESP = Electric St	uomersible Pump	PP = Peris	staltic Pump	0 = Other	r (Specify)	
	BY (PRINT) / A			SAMPLER(S)		E(S):		SAMPLING			T	· · · · · · · · · · · · · · · · · · ·	
	meen	JAW/PI	RO-TECH	BenR	anjè.	ava	<i>.</i>	INITIATED AT			SAMPLING ENDED AT:	NR	
PUMP OR	TUBING WELL (feet):	15:86		TUBING MATERIAL CO	DDE: T	-		FIELD-FIL	TERED: Y	0	FILTER SIZE		
FIELD DEC	ONTAMINATIO		<u></u>		TUBING	Y ATT	replaced)	Filtration E	quipment Type:				
Pa l			$ \varphi$		TOBING	<u>' @</u>	epiaced)	<u> </u>	DUPLICATE:	Y	(N)		
SAMP	LE CONTAINE	R SPECIFICA	TION	;	SAMPLE PR	ESERVATIO	N	INTENDE	SAM PUI	MP i	ALIDI WA TO		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI		OTAL VOL	FINAL	ANALYSIS AN METHOD	D/OR   FLOW   (mL		IAMPLING EQU CODE		
	- mry control PG			USED	ADDE	D IN FIELD (	mL) pH		mlnu				
								<del> </del>					
	X SEE	SAME	LE E	- D-C	ALD	TOB	2 0 00						
					- 1430 bal	~37	re ore	held MS	RKSHEE	<del></del>			
	DEMARKS:												
	REMARKS:						***************************************	**************************************					
	MATERIAL	CODES:	AG = Amber G	200 CG = 1	Clear Glass;	DF - 5							
	(Specify)						lyethylene; PP	² ≖ Polypropylene;	S = Silicone;	T = Teflo	n; 0 = Other		
4 - 1 Mar 1	SAMPLING	EQUIPMENT (		PP = After Peri PP = Reverse	staltic Pump;	B = Ba	iller; BP = Bla	idder Pump;	SP = Electric S	ubmersible !	Pumo:		
NOTES:	1. The abo	ve do not co	nstitute all	of the Inform	nation requ	alred by Ch	SM = Straw Me napter 62-160, I	thod (Tubing Grav	vity Drain); C	) = Other (S	pecify)		

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:													
				SAMPLE	ID:				1	DATE:	2071.10	····	
	111000	17-4-		I		PUR	GING DATA	<u> </u>		1	7 212 (0		
WELL		TUBING			LL SCREEN	INTERVAL	STATIC	DEPTH	]	PUR	SE PUMP TYP	E	
DIAMETE					7TH:43,95 fe		feet TO WATE		<u> </u>		AILER: B	Р	
	EVATION TOC (	•	25,8 C	) Al Well her	TU _ CTA		ROUNDWATER EL			04,			
	it if applicable)	1 WELL YOU		nc weer per		TIC DEPT	•			£"	•		
			= (		feet -		feet) X		gallons/foot		gallons		
	NT VOLUME PI	JRGE: 1 EQUI	PMENT VOL		-			UBING LENGTH)					
			FIALAL PULL				illons/foot X 53		+ 0.05	T	0,67gallons	~~~~	
	JMP OR TUBIN WELL (feet):	48.95		P OR TUBING VELL (feet):		PURG INITIA	TED AT: 120 2		1228		TOTAL VOLUI PURGED (gall	ME (.24	
	VOLUME	CUMUL.	PURGE	DEPTH TO	рH	TEMP.	COND. (circle units)	DISSOLVED OXYGEN					
TIME	PURGED	PURGED	RATE	WATER	(standard units)	(°C)	μmhos/cm	(circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR	
	(gallons)	(gallons)	(gpm)	(feet)			or μS/cm	% saturation		<u> </u>			
1512	3.12	3,12	0.24	8.38	5,49	57.3	46	0.4	90,00	-135			
15/8	0,72	3,84	७.४५	8.41	5,42		46	0,4	6,50	-132	-		
1221	0.72	4.56	0.24	8,40	5,47	27.3	46	0,4	5,69	-134	-		
1224	6.72	5,28	0.34	8,42	5,48	27,4	46	0,4	5,91	-134			
1207	5F.0	6.00	0124	8.40	3117	· T . C	76	0,4.	4,89	-134	NONE		
	<del>                                     </del>							, , , , , , , , , , , , , , , , , , ,		<del> </del>			
	<del>                                     </del>									<del> </del>			
. *			10	<b>†</b>		· · · · · · · · · · · · · · · · · · ·		<del> </del>					
					·								
							1						
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.8  TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.00													
/		QUIPMENT CO			BP = Bladder		ESP = Electric Si			staltic Pump;		r (Specify)	
							LING DATA	4		******************	***************************************		
	BY (PRINT) / A	_	1	SAMPLER(S)	SIGNATURE	E(S):		SAMPLING INITIATED AT	. 1228		SAMPLING		
	ARMOJA	2 / PR	O-TECH			·	· · · · · · · · · · · · · · · · · · ·	1	TERED: Y	<u>w</u>	ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet):	48,95		TUBING MATERIAL C	ODE:			μm			I ICI CIN SIZE	•	
FIELD DE	CONTAMINATIO			<u> </u>	TUBING	Y (N	replaced)		Equipment Type DUPLICATE:	(A)	N		
			Ī							/PLE			
SAM	PLE CONTAINE	R SPECIFICAT	ON		SAMPLE PR	RESERVATI	ON	INTENDE ANALYSIS AN		IMP S	SAMPLING EQ		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		OTAL VOL		METHO	lm) (mil	par nute)	CODE		
15 COBC	CONTANTERIO			JOLD	7,000	O III I ICCO	Mis) Pi			,			
	X SEE	SAMP	LE C	- D-C	AND	70B	THE OR	DER WIL	ORKBH36	7			
				-									
	REMARKS:		- G. V	. A 58 11	@ ^-	. 123	u r			_			
	MATERIAL	CODES:	AG = Amber (	POLA Glass; CG =				P = Polypropyleni	e: S = Silicone	: T = Tefle	on: O = Othe	er	
	(Specify)			DD - 45									
	SAMPLING	EQUIPMENT		PP = After Pe FPP = Revers	nstaitic Pump e Flow Perisi	o; B.≕ l taltic Pump:	Baller; BP = Bl SM = Straw M	adder Pump; ethod (Tubing Gr	ESP = Electric avity Drain);	Submersible O = Other (5			
NOTE	S: 1 The abo	ove do not co					Chapter 62-160.			Julio (t			

The above do not constitute an of the information required by chapter 52-100, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater)

#### Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE NAME:	TRAIL	RID	68				SITE LOCATION:	Acksop	11/12/10	FL		<del></del>
WELL NO	MWB	34 D		SAMPLE	ID:				1	DATE:	27/21/20	217
L				······································		PUR	GING DATA				112112	<del>2, 0</del>
WELL		TUBIN	3	3)8 WE	LL SCREEN			EPTH .	`	PUF	RGE PUMP TYP	E
		DIAME	TER (inches):	18 DE	77H.90-78f	set to lab 7	Freet TO WATE	R (feet):8'6		OR	BAILER: B	<u>6</u>
WELL ELEVATION TOC (R NGVD): 125.92  WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY												
(only fill ou	nt if applicable)			ine waters		THO DEFT						
	= ( feet – gallons/foot = gallons											
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable)												
## 10   Sqallons   Sqa												
DEPTH IN	WELL (feet):	95.78	DEPTH IN	WELL (feet):	95,78	INITIA	TED AT:0856	PURGING ENDED AT:	0923		TOTAL VOLUI PURGED (gail	ME 5 '67 lons): '67
TIME	VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE RATE	DEPTH TO WATER	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) mg/L or	TURBIDITY (NTUs)	ORP (mV)	COLOR	ODOR
2004	(gallons)	(gallons)	(gpm)	(feet) 8 • 9 2		25,5	or µS/cm	% saturation	1.00	-		
0908	1:05	357	0.21	8.93	7.02	25.6	421	0'	0:41	-22.7		
0918	1.05	4.62	0.21	8.95	7.63	25.4		01	0.37	-2119		
0923	1.05	5.67	0.21	8.97	7:06	25.5	421	01	0.32	-20·5 -21·0		
0,00	1		10.01		1.06	-5-5			0.52	F21.0	NONC	
										1		
							·					
	WELL CAR	ACITY (Gallor	Par Footh	0.75" = 0.021	4" = 0.04:	1 257 -	0.06; 2" = 0.16;	3" = 0.37;	<u> </u>			·
	TUBING IN	SIDE DIA. CA	PACITY (Gal.	/FL): 1/8" = 0.	0006; 3/1	6" = 0.0014	; 1/4" = 0.0026;	5/16" = 0.00				2" = 5.88 3" = 0.016
L	PURGING I	EQUIPMENT	ODES: E	3 = Baller;	BP = Bladde		ESP = Electric St		; PP = Per	istaltic Pum	p; 0 = Othe	r (Specify)
SAMPLED	BY (PRINT) / A	AFFILIATION:		SAMPLER(S)	SIGNATUR		PLING DATA	T		т	<del></del>	
BENR	MISTERN	INN / P	RO-TECH	BenRa			•	SAMPLING INITIATED AT	:0924	Į.	SAMPLING ENDED AT:	NR
PUMP OR DEPTH IN	TUBING WELL (feet):	95.78	}	TUBING MATERIAL C	<i>-</i>	_		μm	LTERED: Y	0	FILTER SIZE	
FIELD DE	CONTAMINATION	ON: PUN	IP Y CT	<b>D</b>	TUBING	Y (N	replaced)	Filuation	Equipment Type DUPLICATE:	): Y	(N)	
244	DI E COLEMNI	- Carolrio		<del></del>				<del> </del>		MPLE	حنب	
SAM	PLE CONTAINE	ER SPECIFICA	MOIT		SAMPLE PI	RESERVAT	ION	INTENDE ANALYSIS AN		JMP V RATE	SAMPLING EQ	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL		METHO		L per nute)	CODE	
					2							
	* SEE	SAm	PLE	C-0-C	AND	ros	THE OR	DER WI	BRSHE	= 1		
		<u> </u>										
	REMARKS:											
	TENNING.	•	•									
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass	; PE=	Polyethylene; PI	P = Polypropylen	e; S = Silicon	e; T = Tel	lon; O = Oth	er
		EQUIPMENT	CODES:	APP = After Pe RFPP = Revers	ristaltic Pum	p; B=	Bailer; BP = BI	adder Pump;	ESP = Electric	Submersibl	e Pump;	
NOTES	S: 1. The abo	ove do not o					Chapter 62-160.	ethod (Tubing Gr	avity Drain);	O = Other	(Specify)	

The above do not constitute an of the finite fraction of LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater)

### Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE NAME:	TRAIL	RIC	<i>S</i> €€				SITE .	JACKSON	1211100	5,	<del></del>	
WELL NO		) BLAN		SAMPLI	E ID:	***************************************			WICCE,	DATE:	J-51-11	^
							GING DAT				1 61-11	0
WELL DIAMETE	R (Inches):	Z DIAM	VG ETER (inches):	3)8 WE	LL SCREEN	INTERVAL	feet TOWA	DEPTH TER (feet): N/A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		RGE PUMP TYP	
1	EVATION TOC	(ft NGVD):				G	ROUNDWATER	ELEVATION (ft NO	SVD);	1 01	BAILER: B	<u> </u>
WELL VO	LUME PURGE ut if applicable)	: 1 WELL V	DLUME = (TO	TAL WELL DE	PTH - STA	ATIC DEPTI	H TO WATER)	X WELL CAPAC	ITY			
	= ( feet – feet) X gallons/foot = gallons.											
(only fill o	EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME  (only fill out if applicable) = 0,3 gallons + (0,006 gallons/foot X NA feet) + 0,05 gallons = gallons											
	UMP OR TUBIN I WELL (feet):	IGNA	FINAL PUI	MP OR TUBING WELL (feet):		PURG		PURGING	NA	gallons	TOTAL VOLU	ME .
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units)  µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	ORP (mV)	PURGED (gai	ODOR
1253	NA	NA	NA	NA	6,58	27.4	3	4,9	0,00		None	
	1							-		<u> </u>		
									<u> </u>	<del> </del>	<del>-  </del>	
								·				
				-						ļ		
										<del> </del>	<del>- </del>	
								<u> </u>		<u> </u>		
	WELLCAR	ACITY (Gallo	ne Per Ecoth	0.75" = 0.02	411 0.04-	4.000 - 0	0.06; 2" = 0.16					·
	TUBING IN	SIDE DIA. CA	PACITY (Gal.)	Ft.): $1/8^{\circ} = 0.0$	0006; 3/16	8" = 0.0014;	1/4" = 0.0026	3; 5/16" = 0.00	4; 3/8" = 0.0	06; 1/2	" = 0.010; 5/8	2" = 5.88 3" = 0.016
	PURGING	EQUIPMENT	CODES: E	= Bailer; I	3P = Bladder		ESP = Electric S	Submersible Pump	; PP = Per	staltic Pum	p; O ≠ Othe	r (Specify)
_	BY (PRINT) / A	_	i	SAMPLER(S)	SIGNATURE	(S):		SAMPLING		T	SAMPLING	
	ARMOI	B / P	RO-TECH	(p)			<del></del>	INITIATED AT	: 1253 LTERED: Y		ENDED AT:	
PUMP OF DEPTH IN	WELL (feet):	NA		TUBING MATERIAL CO	DDE:	_		μm	Equipment Type	80	FILTER SIZE	ii .
FIELD DE	CONTAMINATIO	ON: PU	AP Y CN	>	TUBING	Y (Д)	replaced)		DUPLICATE:	Y	(N)	
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	ESERVATION	ON	INTENDE	D PL	MPLE JMP		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL	(mL) pH	ANALYSIS AN METHOE	) (mi	/ RATE	SAMPLING EQ CODE	
									.//			
	N 55-					_						
	X SEE	SAM	PLE	- D-C	AND	<u>708</u>	JE OR	PER WE	RKINES	7		
											· .	-
	I DEMARKS											
	REMARKS:		SAFI	ELD BLI	ANK Co	>MGLE	TOD WI	TH DIST	).LEA	ATCO	P	Locain
	MATERIAL (Specify)	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Po	plyethylene; P	PP = Polypropylene	S = Silicone	; T = Te	flon; $O = Other$	
		EQUIPMENT	CODES: A	PP = After Per	istaltic Pump	; B≃B	aller, BP = B	ladder Pump;	ESP = Electric	Submersibl	e Pump;	
NOTES	RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)  NOTES: 1. The above do not constitute all of the information required by Chapter 62-160. E.A.C.											

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, Section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

# PROFESSIONAL TECHNICAL SUPPORT SERVICES, INC.

Atlanta (770) 723-9239
Batou Rouge (504) 293-0136
Tecksomyllia (904) 693-3177
Houston (200) 441-7606
Pittaburgh (412) 746-8833

PTH TO WATER EASUREMENTS

FACILITY NAME: TRAIL RIDGE

01-05-F :3TAD

*	5
MONITORING LOCATION	DEPTH TO WATER (ft TOC)
mwass	6.17
ISEMM	7,63
mw3 365	7.39
MWBZES	7.10
1200 B 543 I	3,72
d'inseum	3.96
caseum	6.65
24284111	6.20
IFSEUM	4,70
MUBETO	5.11
MUBZES	6.59
เมศธรรร	7.44
mwarsi	5.14
mw825D	2.53
MUBSHS	6.67
mwชา43	15.88
MUSHI	9,79

MONITORING	DEPTH TO WATER
LOCATION	(ft TOC)
MN3 14D	9.70
MULAZZZ	14.23
MMBI33	12.54
WMB 13I	17.58
mwBzzz	11.24
WMBISS	58,9
ISIOUM	7.30
MUBILD	4.58
mw3115	84.01
mubliz (R)	05.11
mussos	6.84
r f awm	7.15
IFBUM	3.30
MUB 75	7.15 0.78
MW3310	0.78 16.55
MW335	24.5
MWB3I	12.32

# PROFESSIONAL TECHNICAL SUPPORT SERVICES, INC.

Atlanta (770) 723-9239 Baton Rouge (504) 293-0135 Jacksonwille (904) 693-5177 Mouston (208) 441-7606 Fittsburgh (412) 746-8823

PTH TO WATER BASUREMENTS

FACILITY NAME: TRAIL RIDGE

01-05 F :3TAD

MONITORING LOCATION	DEPTH TO WATER (ft TOC)
mw8165	5.70
mwB175	5.71
1418WM	2,42
MWB170	6,43
mwB185	5,64
m 63 19 5	6.06
MMBIAI	6.82
WABIED	6.58
mw8343	8,52
WM 34I	8.38
MWB343	8.63
MWB 335	9,50
2.SEBWM	11.5
ISE 8WM	6.54
MWB3ZD	6.85
mm3512	10.40

MONITORING LOCATION	DEPTH TO WATER (ft TOC)
,	

***********	<b>2000000</b>	. 288		* ***	
7	### W	<b>&amp; 1</b>		<b>**</b>	<b>.</b>
<b>\</b>	# K				****
\$000000	SSSS 18	20000000000000000000000000000000000000	((((((((((((((((((((((((((((((((((((((	********	
3498	49-23-8V	C 38487	88 X 12 X 15	CONTRACTOR OF THE PARTY OF THE	CONTRACT.

	SERVICE TO THE	Site: 186	16 KIDES		·····	Personnel:	DHN HKMOO!	द । इस्य द्वागावस्ताम्म
		Date:	01-25-			Page	of	- · · · · · · · · · · · · · · · · · · ·
Well ID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	Well Yield	Comments/Observations *
128 Eura	<ul><li>✓ OK</li><li>☐ Damaged</li></ul>	CK  Damaged		∑ Yes □ 1%	DEDICACED BLADDER Pomp	Clear Turbid	OK Inadequate	
MUBZI	☐ OK ☐ Damaged	OK  Damaged	<ul><li>✓ OK</li><li>☐ Inadequate</li></ul>	∑ Yes     ☐ No     ☐ No		☑ Clear ☐ Turbid	OK Inadequate	
mwB305	OK  Damaged		<ul><li>☑ OK</li><li>☑ Inadequate</li></ul>	Yes No		Clear Turbid	☑ OK ☐ Inadequate	
mw3 295	OK  Damaged		OK Inadequate	Yes No	1	Clear Turbid	OK Inadequate	
MMBSGI		CK Damaged	OK Inadequate	Yes No		Clear Turbid	OK Inadequate	
MNBSUD	OK Damaged	OK  Damaged	◯ OK Inadequate	Yes No		Clear Turbid	OK Inadequate	
mw8275	OK  Damaged	OK Damaged		Yes No		☑ Clear ☐ Turbid	OK Inadequate	
IFSBWM	OK  Damaged	OK Damaged	OK Inadequate	Yes	()	Clear  Turbid	OK Inadequate	NEWDS A NEW LOCK
MMOSZD	OK  Damaged		OK Inadequate	☐ Yes ☑ No		Clear Turbid	OK Inadequate	NEEDS A HEW LOCK
	<b>К</b> і ок	⊠ ж	Ю ок	KT Yes	1	⊠ Clear	DEL OK	

☐ Damaged ☐ Damaged ☐ Inadequate ☐ No

Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items. Return this form to site manager and/or Complaince Manager/Engineer

*8581338K-	JESTS8153	£		Z	<b>**</b>
<b>1</b>	<b>.</b>	& <b>/</b>		<i>1</i>	
	**************************************	<b>***</b>			<b></b>
18888	∭″'¥		<b>***</b>		
100	# # W	艺 教教教	*Exete	E 8.43	**************************************

THE REAL PROPERTY OF THE PARTY		Site: TRAIL RIDGE				Personnel: DAN ARMOUR BEN RAMJEANAN			
		Date: 7	01-55-	·		Page	of4	-	
Well ID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	Well Yield	Comments/Observations *	
MWB13I	OK  Damaged	OK  Damaged	OK Inadequate	∑ Yes □ No	BEDICATED BLADDER PUMP	.⊠ Clear ☐ Turbid	OK Inadequate		
MWB 175	<ul><li>✓ OK</li><li>☐ Damaged</li></ul>	OK  Damaged	OK Inadequate	Yes No	10	☑ Clear ☐ Turbid	✓ OK ☐ Inadequate		
MWBITT	☑ OK ☐ Damaged	OK  Damaged	OK Inadequate	∑ Yes □ №	, iv	Clear Turbid	OK Inadequate		
MUBITD	OK  Damaged	OK Damaged	OK Inadequate	Yès	· . //	☐ Clear	OK Inadequate		
MUB35	<ul><li>☑ OK</li><li>☑ Damaged</li></ul>	□ Damaged	OK Inadequate	∑ Yes □ No		Clear Turbid	OK Inadequate		
MWBSI	OK  Damaged		□ Inadequate	Yes D No	. 1	Clear Turbid	OK Inadequate		
mw.B31 B	OK  Damaged	OK  Damaged	OK Inadequate	Yes No		Clear Turbid	OK Inadequate		
MWB 345	OK  Damaged	OK Damaged		Yes No	1)	Æ Clear ☐ Turbid	OK		
THEEWM	OK  Damaged	OK Damaged	OK Inadequate	Yes No		Clear Turbid	OK Inadequate		
MWB34D	OK  Damaged	OK  Damaged	OK	⊠ Yes □ No	1	Clear  Turbid	OK Inadequate		

^{*} Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items.

Return this form to site manager and/or Complaince Manager/Engineer

*******	<b>*******</b>		<b>***</b>	
<b>1</b>		1	<b>***</b>	
*****	# W		<b>W</b>	·
1.60	M.200	******	# CER	(XC###

LALESCE TANGEN	enterna.	Site: IRA	IL KIDGE			Personnel:	DHM HRWCO	R BEN RAMJEANAN
		Date: 7	-20-10			Page 3	_of_4	
WellID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	Well Yield	Comments/Observations *
	□ OK □ Damaged		✓ OK ☐ Inadequate	Yes No	DEDICATED BLADDER PUMP	. ☐ Clear	Ø OK ☐ Inadequate	
mwats	OK  Damaged		✓ OK ☐ Inadequate	∑ Yes □ No	11	Clear Turbid	OK Inadequate	
MUBTI	<ul><li>✓ OK</li><li>☐ Damaged</li></ul>	OK  Damaged	<ul><li>○K</li><li>☐ Inadequate</li></ul>	∑ Yes □ No		Clear Turbid		
WMBJD		OK Damaged	OK Inadequate	Yes No	<i>\\</i>	Clear Turbid		· · · · · · · · · · · · · · · · · · ·
mw8195	OK  Damaged		OK Inadequate	Yes No	11 .	Clear  Turbid	OK Inadequate	
WM3167	OK  Damaged	OK  Damaged		Yes No	. 11	☐ Clear☐ Turbid		
MUBIGD	OK  Damaged	OK  Damaged	<ul><li></li></ul>	Yes No	11	☐ Clear☐ Turbid	OK	
MWB325	OK  Damaged	OK  Damaged	OK Inadequate	Yes	L)		OK ☐ Inadequate	
WMB35I	OK  Damaged	<ul><li>✓ OK</li><li>✓ Damaged</li></ul>	<ul><li>☑ OK</li><li>☐ Inadequate</li></ul>	Yes No	11	☐ Clear☐ Turbid	⊠ OK □ Inadequate	SLIGHTLY CLOSBY
MWB 32D	OK Damaged		OK Inadequate	Yes No		☐ Clear	OK Inadequate	

Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items.

Return this form to site manager and/or Complaince Manager/Engineer

******	<i>*</i> ***********************************	. 1	<b>***</b>	
<b>1</b>	<i>1</i>	. <b>I</b>	**************************************	<b>***</b>
• <b>V</b>	- T		1	******
\$686666	8888 <b>4</b> 88		***********	
3536	52° 32° 32.32	I PARISH THE	為從從數	Casa

iniesies kauseni	de receive	Site: TRA	IL RIDGE	<del></del>		Personnel:	DAN ARMOUR	E BEN RAMJEANAN
	w	Date: 7	-20-10			Page	of	
Well ID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	Well Yield	Comments/Observations*
MWB335	OK  Damaged		OK Inadequate	∑ Yes	DEDICATED BLADDER PUMP	☐ Clear☐ Turbid	OK Inadequate	
MWBZ15	OK  Damaged	OK Damaged	OK Inadequate	Yes No	. 12	☑ Clear ☐ Turbid		
mw8125	OK  Damaged	OK  Damaged	OK Inadequate	∑ Yes		Clear Turbid	⊠ OK Inadequate	
MWBIZI	OK Damaged		OK Inadequate	∑ Yes	· \\	Clear  Turbid	OK Inadequate	
ungiso	□ Damaged	□ Damaged	OK Inadequate	Yes 140	11	Clear  Turbid	OK Inadequate	
	OK Damaged	OK Damaged	OK Inadequate	Yes No	,	☐ Clear ☐ Turbid	OK Inadequate	
	OK Damaged	OK Damaged	OK Inadequate	☐ Yes		☐ Clear ☐ Turbid	OK Inadequate	
	OK Damaged	OK Damaged	OK Inadequate	Yes No		☐ Clear ☐ Turbid	OK Inadequate	
	OK Darmaged	☐ OK ☐ Damaged	OK Inadequate	Yes No		Clear Turbid	OK Inadequate	
	OK Damaged	OK Damaged	OK Inadequate	☐ Yes ☐ No		☐ Clear	OK Inadequate	

^{*} Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items.

Return this form to site manager and/or Complaince Manager/Engineer

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) HANNA HI 9825 INSTRUMENT # 725490									
		check only					,		
	IPERATU			TIVITY	SALINITÝ	□рН	☐ ORP		
TUR	RBIDITY		] RESIDUA	rcı 🔯	00 .	☐ OTI	HER	,	
STANDAI values, and	RDS: [S	Specify the ty he standard	/pe(s) of sta Is were prep	andards used for c pared or purchase	alibration, d]	the origin of the	standards, the	standard	
Stand	ard A <u>S</u>	ATURAT	ED AI	R				(5)	
						<del></del>		œ	
	ard C _		······································		ai				
DATE (yy/mm/dd)	TIME (hr:mln)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS	
10/02/20	06.0%	A	8.158	8.09	0.07	18.2	Lilly	DH	
							5		
(इ दिवेड)	0360	A	8.128	8.08	0.05	16.2	CORT	120	
					ļ	,			
				,					
		-							
				******					
		-			120				
ĺ		i							

### DEP-SOP-001/01 FS 2200 Groundwater Sampling

Table FS 2200-2 Dissolved Oxygen Saturation

15.0   10.084   2.017   19.0   9.276   1.855   23.0   8.578   1.716   27.0   7.968   15.1   10.062   2.012   19.1   9.258   1.852   23.1   8.562   1.712   27.1   7.954   15.2   10.040   2.004   19.3   9.239   1.846   23.2   8.546   1.709   27.2   7.940   15.3   10.019   2.004   19.3   9.220   1.844   23.3   8.530   1.706   27.3   7.926   15.4   9.997   1.999   19.4   9.202   1.840   23.4   8.514   1.703   27.4   7.912   15.5   9.976   1.995   19.5   9.184   1.837   23.5   8.498   1.700   27.5   7.898   15.6   9.955   1.991   19.6   9.165   1.833   23.5   8.498   1.700   27.5   7.889   15.7   9.934   1.987   19.7   9.147   1.829   23.7   8.466   1.693   27.7   7.870   15.8   9.912   1.982   19.8   9.129   1.826   23.8   8.450   1.690   27.8   7.856   15.9   9.891   1.976   19.9   9.111   1.822   23.9   8.434   1.687   27.9   7.842   16.0   9.870   1.974   20.0   9.092   1.818   24.0   8.418   1.684   28.0   7.828   16.2   9.829   1.966   20.2   9.055   1.811   24.2   8.387   1.671   28.2   7.800   16.3   9.808   1.962   20.3   9.039   1.808   24.3   8.371   1.674   28.3   7.786   16.4   9.787   1.957   20.4   9.021   1.604   24.4   8.355   1.671   28.4   7.773   16.5   9.767   1.953   20.5   9.003   1.801   24.5   8.340   1.668   28.5   7.759   16.6   9.765   1.945   20.7   8.968   1.790   24.8   8.294   1.659   28.8   7.745   16.7   9.726   1.945   20.7   8.968   1.790   24.8   8.294   1.659   28.8   7.765   17.0   9.655   1.937   20.9   8.932   1.786   24.9   8.294   1.659   28.8   7.718   16.9   9.685   1.937   20.9   8.935   1.760   25.1   8.298   1.760   25.2   8.233   1.647   29.2   7.664   17.3   9.645   1.937   20.9   8.935   1.760   25.5   8.233   1.647   29.2   7.664   17.4   9.645   1.929   21.1   8.898   1.760   25.4   8.203   1.662   28.7   7.755   17.7   9.626   1.905   21.2   8.800   1.776   25.2   8.233   1.647   29.2   7.664   17.7   9.626   1.905   21.2   8.800   1.776   25.2   8.233   1.647   29.2   7.664   17.7   9.626   1.905   21.2   8.800   1.776   25.2   8.233   1.647   29.2   7.598   1	TEMP	D.O,	mg/L	TEMP	D.O.	mg/L	TEMP	D.O.	mg/L	TEMP	D.O.	mg/L
15.1   10.062   2.012   19.1   9.258   1.852   29.1   8.562   1.712   27.1   7.954     15.2   10.040   2.008   19.2   9.239   1.846   23.2   8.546   1.709   27.2   7.940     15.3   10.049   2.004   19.3   9.220   1.844   23.3   8.530   1.706   27.3   7.926     15.4   9.997   1.995   19.4   9.202   1.840   23.4   8.514   1.703   27.4   7.912     15.5   9.976   1.995   19.5   9.184   1.833   23.5   8.498   1.700   27.5   7.888     15.6   9.955   1.991   19.6   9.165   1.833   23.6   8.482   1.696   27.6   7.884     15.7   9.934   1.997   19.7   9.147   1.829   23.7   8.466   1.693   27.7   7.870     15.8   9.912   1.982   19.8   9.129   1.826   23.8   8.450   1.690   27.8   7.856     15.9   9.891   1.976   19.9   9.111   1.822   23.9   8.434   1.687   27.9   7.842     16.0   9.870   1.974   20.0   9.092   1.818   24.0   8.418   1.684   28.0   7.826     16.1   9.849   1.970   20.1   9.074   1.815   24.1   8.403   1.681   28.1   7.814     16.2   9.829   1.966   20.2   9.056   1.811   24.2   8.387   1.674   28.3   7.766     16.3   9.808   1.962   20.3   9.099   1.804   24.4   8.356   1.671   28.4   7.773     16.5   9.767   1.953   20.5   9.003   1.801   24.5   8.340   1.668   28.5   7.759     16.6   9.746   1.949   20.6   8.985   1.797   24.6   8.325   1.665   28.6   7.745     16.9   9.685   1.937   20.9   8.932   1.788   24.9   8.279   1.656   28.9   7.705     17.0   9.685   1.937   20.9   8.932   1.788   24.9   8.279   1.656   28.9   7.705     17.1   9.645   1.929   21.1   8.888   1.760   25.1   8.283   1.647   29.2   7.664     17.3   9.605   1.921   21.3   8.880   1.770   25.2   8.233   1.647   29.2   7.664     17.4   9.545   1.929   21.1   8.888   1.780   25.1   8.283   1.647   29.2   7.664     17.9   9.486   1.997   21.9   8.761   1.762   25.6   8.143   1.629   29.9   7.555   1.779     18.0   9.487   1.998   21.9   8.771   7.755   25.8   8.183   1.620   29.9   7.555   1.7759   1.779   9.486   1.997   21.9   8.761   1.775   25.6   8.143   1.629   29.9   7.555   1.7759   1.779   9.486   1.997   21.9   8.761   1	deg C	SAT.	20%	deg C	SAT.	20%	deg C	SAT.	20%	deg C	SAT.	20%
15.1   10.062   2.012   19.1   9.258   1.852   23.1   8.562   1.774   27.1   7.954     15.2   10.040   2.008   19.2   9.239   1.848   23.2   8.546   1.709   27.3   7.926     15.3   10.049   2.004   19.3   9.220   1.844   23.3   8.530   1.706   27.3   7.926     15.4   9.997   1.999   19.4   9.202   1.840   23.4   8.514   1.703   27.4   7.912     15.5   9.976   1.995   19.5   9.184   1.837   23.5   8.498   1.700   27.5   7.898     15.6   9.955   1.991   19.6   9.165   1.833   23.6   8.482   1.696   27.6   7.884     15.7   9.934   1.987   19.7   9.147   1.829   23.7   8.466   1.693   27.7   7.870     15.8   9.912   1.982   19.8   9.129   1.826   23.8   8.450   1.690   27.8   7.886     15.9   9.891   1.978   19.9   9.111   1.822   23.9   8.434   1.687   27.9   7.842     16.0   9.870   1.974   20.0   9.092   1.818   24.0   8.418   1.684   28.0   7.928     16.1   9.849   1.970   20.1   9.074   1.815   24.1   8.403   1.681   28.1   7.814     16.2   9.829   1.966   20.2   9.056   1.811   24.2   8.387   1.677   28.2   7.760     16.4   9.787   1.957   20.4   9.021   1.804   24.4   8.356   1.671   28.4   7.773     16.5   9.767   1.953   20.5   9.003   1.801   24.5   8.340   1.668   28.5   7.759     16.6   9.746   1.945   20.7   8.968   1.790   24.8   8.294   1.655   28.6   7.745     16.9   9.685   1.937   20.9   8.932   1.766   24.9   8.294   1.655   28.8   7.718     16.9   9.685   1.937   20.9   8.932   1.766   24.9   8.294   1.655   28.9   7.705     17.0   9.665   1.933   21.0   8.915   1.780   25.1   8.248   1.650   29.1   7.678   1.72   9.625   1.925   21.2   8.880   1.776   25.2   8.233   1.647   29.2   7.664   1.77   9.526   1.905   21.1   8.898   1.780   25.1   8.248   1.650   29.1   7.678   1.77   1.75   9.526   1.905   21.1   8.898   1.780   25.1   8.248   1.650   29.9   7.575   1.779   9.486   1.897   21.4   8.846   1.769   25.5   8.185   1.632   29.7   7.598   1.779   9.486   1.897   21.9   8.771   1.755   25.8   8.185   1.632   29.7   7.598   1.779   9.486   1.897   21.9   8.761   1.755   25.8   8.143   1.62	15.0	10.084	2.017	. 19.0	9.276	1.855		8.578	1.716	27.0		1.59
15.3		10.062	2.012	19.1	9.258							1.59
15.4   9.997   1.999   19.4   9.202   1.840   23.4   8.514   1.703   27.4   7.912   15.5   9.976   1.995   19.5   9.184   1.837   23.5   8.488   1.700   27.5   7.898   15.6   9.955   1.991   19.6   9.165   1.833   23.6   8.482   1.696   27.6   7.884   1.577   9.384   1.987   19.7   9.147   1.829   23.7   8.466   1.693   27.7   7.870   15.8   9.912   1.982   19.8   9.129   1.826   23.8   8.450   1.690   27.8   7.856   15.9   9.891   1.976   19.9   9.111   1.822   23.9   8.434   1.667   27.9   7.842   16.0   9.870   1.974   20.0   9.092   1.818   24.0   8.418   1.664   28.0   7.628   16.1   9.849   1.970   20.1   9.074   1.815   24.1   8.403   1.681   28.1   7.814   16.2   9.829   1.966   20.2   9.056   1.811   24.2   8.387   1.677   28.2   7.800   16.3   9.808   1.962   20.3   9.039   1.808   24.3   8.371   1.674   28.3   7.786   16.4   9.767   1.953   20.5   9.003   1.801   24.4   8.356   1.671   28.4   7.773   16.5   9.767   1.953   20.5   9.003   1.801   24.5   8.340   1.668   28.5   7.759   16.6   9.746   1.949   20.6   8.985   1.797   24.6   8.325   1.665   28.6   7.745   16.7   9.726   1.945   20.7   8.968   1.794   24.7   8.309   1.662   28.7   7.732   16.8   9.685   1.937   20.9   8.8932   1.786   24.9   8.294   1.659   28.8   7.718   16.9   9.685   1.933   21.0   8.915   1.783   25.0   8.263   1.653   29.0   7.691   17.1   9.645   1.992   21.1   8.898   1.780   25.1   8.248   1.650   29.1   7.678   17.2   9.625   1.925   21.2   8.880   1.770   25.3   8.248   1.650   29.1   7.678   17.2   9.625   1.991   21.3   8.863   1.770   25.3   8.218   1.644   29.3   7.651   17.7   9.526   1.991   21.8   8.777   1.755   25.8   8.148   1.626   29.9   7.572   17.7   9.526   1.991   21.8   8.777   1.755   25.8   8.148   1.626   29.9   7.572   17.7   9.526   1.991   21.8   8.777   1.755   25.8   8.148   1.626   29.9   7.572   17.7   9.526   1.991   21.8   8.777   1.755   25.8   8.148   1.626   29.9   7.572   17.7   9.526   1.991   21.8   8.777   1.755   25.8   8.148   1.626   29.9   7.572   17.7   9.526   1.991   21.	15.2	10.040	1									1.588
15.5												1.58
15.6												1.582
15.7   9.934   1.987   19.7   9.147   1.829   23.7   8.466   1.693   27.7   7.870     15.8   9.912   1.982   19.8   9.129   1.826   23.8   8.450   1.690   27.8   7.856     15.9   9.891   1.978   19.9   9.111   1.822   23.9   8.434   1.687   27.9   7.842     16.0   9.870   1.974   20.0   9.092   1.816   24.0   8.418   1.684   28.0   7.828     16.1   9.849   1.970   20.1   9.074   1.815   24.1   8.403   1.681   28.1   7.814     16.2   9.829   1.966   20.2   9.056   1.811   24.2   8.387   1.677   28.2   7.800     16.3   9.808   1.962   20.3   9.039   1.808   24.3   8.371   1.674   28.3   7.786     16.4   9.787   1.957   20.4   9.021   1.804   24.4   8.356   1.671   28.4   7.773     16.5   9.767   1.953   20.5   9.003   1.801   24.5   8.340   1.668   28.5   7.745     16.6   9.746   1.949   20.6   8.985   1.797   24.6   8.325   1.665   28.6   7.745     16.8   9.705   1.941   20.8   8.950   1.790   24.8   8.294   1.659   28.8   7.718     16.9   9.685   1.937   20.9   8.932   1.786   24.9   8.279   1.666   28.9   7.705     17.0   9.665   1.933   21.0   8.915   1.780   25.1   8.248   1.650   29.1   7.678     17.2   9.625   1.925   21.2   8.860   1.776   25.2   8.233   1.647   29.2   7.664     17.3   9.605   1.921   21.3   8.863   1.773   25.3   8.218   1.644   29.3   7.651     17.4   9.585   1.917   21.4   8.846   1.769   25.4   8.203   1.641   29.4   7.638     17.5   9.565   1.913   21.6   8.812   1.762   25.5   8.188   1.638   29.5   7.625     17.9   9.486   1.897   21.9   8.761   1.755   25.8   8.181   1.629   29.8   7.555     17.9   9.486   1.897   21.9   8.761   1.755   25.8   8.181   1.629   29.8   7.555     18.1   9.448   1.890   22.1   8.777   1.755   25.8   8.181   1.620   29.9   7.572     18.1   9.448   1.890   22.1   8.777   1.755   25.8   8.181   1.620   29.9   7.572   1.811     18.2   9.428   1.886   22.2   8.710   1.742   26.2   8.084   1.617   30.2   7.533   1.81     18.4   9.390   1.876   22.5   8.667   1.735   26.6   8.026   1.605   30.0   7.559   1.818   1.859   9.371   1.874   22.5   8.667   1.735					-			<del> </del>				1.580
15.8												1.577
15.9	15.7										-	1.574
16.0         9.870         1.974         20.0         9.092         1.818         24.0         8.418         1.664         28.0         7.828           16.1         9.849         1.970         20.1         9.074         1.815         24.1         8.403         1.681         28.1         7.814           16.2         9.829         1.966         20.2         9.056         1.811         24.2         8.387         '1.677         28.2         7.800           16.3         9.808         1.962         20.3         9.039         1.808         24.3         8.371         1.674         28.3         7.786           16.4         9.787         1.957         20.4         9.021         1.804         24.4         8.356         1.671         28.4         7.773           16.5         9.767         1.953         20.5         9.003         1.801         24.5         6.340         1.668         28.5         7.759           16.6         9.746         1.949         20.6         8.985         1.797         24.6         8.325         1.665         28.6         7.745           16.7         9.726         1.941         20.8         8.950         1.790         24.8	15.8	9.912	1.982			1.826			1			1.571
16.1         9.849         1.970         20.1         9.074         1.815         24.1         8.403         1.681         28.1         7.814           16.2         9.829         1.966         20.2         9.056         1.811         24.2         8.387         1.677         28.2         7.800           16.3         9.808         1.962         20.3         9.039         1.808         24.3         8.371         1.674         28.3         7.786           16.4         9.787         1.957         20.4         9.021         1.804         24.4         8.356         1.671         28.4         7.773           16.5         9.767         1.953         20.5         9.003         1.801         24.5         8.340         1.668         28.5         7.7759           16.6         9.746         1.949         20.6         8.985         1.797         24.6         8.325         1.665         28.6         7.745           16.7         9.726         1.949         20.8         8.950         1.790         24.8         8.294         1.662         28.7         7.732           16.8         9.625         1.937         20.9         8.932         1.786         24.9	15.9	9.891			9.111	1.822						1,568
16.2         9.829         1.966         20.2         9.056         1.811         24.2         8.387         '1.677         28.2         7.800           16.3         9.808         1.962         20.3         9.039         1.808         24.3         8.371         1.674         28.3         7.786           16.4         9.787         1.957         20.4         9.021         1.804         24.4         8.356         1.671         28.4         7.773           16.5         9.767         1.953         20.5         9.003         1.801         24.5         8.340         1.668         28.5         7.759           16.6         9.746         1.949         20.6         8.985         1.797         24.6         8.325         1.665         28.6         7.745           16.7         9.726         1.945         20.7         8.968         1.790         24.8         8.294         1.659         28.8         7.718           16.8         9.705         1.941         20.8         8.950         1.790         24.8         8.294         1.659         28.8         7.718           16.9         9.685         1.937         20.9         8.932         1.786         24.9	16.0				<del></del>							1.566
16.3         9.808         1.962         20.3         9.039         1.808         24.3         8.371         1.674         28.3         7.786           16.4         9.787         1.957         20.4         9.021         1.804         24.4         8.356         1.671         28.4         7.773           16.5         9.767         1.953         20.5         9.003         1.801         24.5         8.340         1.668         28.5         7.759           16.6         9.746         1.949         20.6         8.985         1.797         24.6         8.325         1.665         28.6         7.745           16.7         9.726         1.945         20.7         8.968         1.794         24.7         8.309         1.662         28.7         7.732           16.8         9.705         1.941         20.8         8.950         1.790         24.8         8.294         1.659         28.8         7.718           16.9         9.685         1.937         20.9         8.932         1.786         24.9         8.279         1.656         28.9         7.705           17.0         9.665         1.933         21.0         8.915         1.786         24.9												1.563
16.4         9.787         1.957         20.4         9.021         1.804         24.4         8.356         1.671         28.4         7.773           16.5         9.767         1.953         20.5         9.003         1.801         24.5         8.340         1.668         28.5         7.759           16.6         9.746         1.949         20.6         8.985         1.797         24.6         8.325         1.665         28.6         7.745           16.7         9.726         1.945         20.7         8.968         1.794         24.7         8.309         1.662         28.7         7.732           16.8         9.705         1.941         20.8         8.950         1.790         24.8         8.294         1.659         28.8         7.718           16.9         9.685         1.937         20.9         8.932         1.786         24.9         8.279         1.656         28.9         7.705           17.0         9.665         1.933         21.0         8.915         1.780         25.0         8.263         1.656         28.9         7.767           17.1         9.625         1.925         21.1         8.880         1.776         25.2												1.560
16.5         9.767         1.953         20.5         9.003         1.801         24.5         8.340         1.668         28.5         7.759           16.6         9.746         1.949         20.6         8.985         1.797         24.6         8.325         1.665         28.6         7.745           16.7         9.726         1.945         20.7         8.968         1.794         24.7         8.309         1.662         28.7         7.732           16.8         9.705         1.941         20.8         8.950         1.790         24.8         8.294         1.659         28.8         7.718           16.9         9.685         1.937         20.9         8.932         1.786         24.9         8.279         1.656         28.9         7.705           17.0         9.665         1.933         21.0         8.915         1.783         25.0         8.263         1.653         29.0         7.691         1           17.1         9.645         1.929         21.1         8.890         1.776         25.2         8.233         1.647         29.2         7.664         1           17.2         9.625         1.925         21.2         8.880				4.44							<del></del>	1.557
16.6         9.746         1.949         20.6         8.985         1.797         24.6         8.325         1.665         28.6         7.745           16.7         9.726         1.945         20.7         8.968         1.794         24.7         8.309         1.662         28.7         7.732           16.8         9.705         1.941         20.8         8.950         1.790         24.8         8.294         1.659         28.8         7.718           16.9         9.685         1.937         20.9         8.932         1.786         24.9         8.279         1.656         28.9         7.705           17.0         9.665         1.933         21.0         8.915         1.783         25.0         8.263         1.653         29.0         7.691         1           17.1         9.645         1.929         21.1         8.880         1.776         25.2         8.233         1.647         29.2         7.664         1           17.2         9.625         1.925         21.2         8.880         1.776         25.2         8.233         1.647         29.2         7.664         1           17.3         9.655         1.917         21.4											-	1.555
16.7         9.726         1.945         20.7         8.968         1.794         24.7         8.309         1.662         28.7         7.732         1.6.8         9.705         1.941         20.8         8.950         1.790         24.8         8.294         1.659         28.8         7.718         1.6.9         9.685         1.937         20.9         8.932         1.786         24.9         8.279         1.656         28.9         7.705         1.705         1.700         9.665         1.933         21.0         8.915         1.783         25.0         8.263         1.653         29.0         7.691         1.711         9.645         1.929         21.1         8.898         1.780         25.1         8.248         1.650         29.1         7.678         1.767         1.767         25.2         8.233         1.647         29.2         7.664         1.769         25.4         8.233         1.647         29.2         7.664         1.769         25.4         8.203         1.647         29.2         7.664         1.74         9.585         1.917         21.4         8.846         1.769         25.4         8.203         1.641         29.3         7.625         1.759         25.5         8.188         1.6	16.5								1.668	28.5	7.759	1.552
16.8         9.705         1.941         20.8         8,950         1.790         24.8         8.294         1.659         28.8         7.718           16.9         9.685         1.937         20.9         8.932         1.786         24.9         8.279         1.656         28.9         7.705           17.0         9.665         1.933         21.0         8.915         1.783         25.0         8.263         1.653         29.0         7.691         1           17.1         9.645         1.929         21.1         8.898         1.780         25.1         8.248         1.650         29.1         7.678         1           17.2         9.625         1.925         21.2         8.880         1.776         25.2         8.233         1.647         29.2         7.664         1           17.3         9.605         1.921         21.3         8.863         1.773         25.3         8.218         1.644         29.3         7.651         1           17.4         9.585         1.917         21.4         8.846         1.769         25.4         8.203         1.641         29.4         7.638         1           17.5         9.565         1.913 </td <td>16.6</td> <td>9.746</td> <td>1.949</td> <td>20.6</td> <td>8.985</td> <td>1.797</td> <td>24.6</td> <td>8.325</td> <td>1.665</td> <td>28.6</td> <td>7.745</td> <td>1.549</td>	16.6	9.746	1.949	20.6	8.985	1.797	24.6	8.325	1.665	28.6	7.745	1.549
16.9         9.685         1.937         20.9         8.932         1.786         24.9         8.279         1.656         28.9         7.705         17.0         9.665         1.933         21.0         8.915         1.783         25.0         8.263         1.653         29.0         7.691         1           17.1         9.645         1.929         21.1         8.898         1.780         25.1         8.248         1.650         29.1         7.678         1           17.2         9.625         1.925         21.2         8.880         1.776         25.2         8.233         1.647         29.2         7.664         1           17.3         9.605         1.921         21.3         8.863         1.773         25.3         8.218         1.644         29.3         7.651         1           17.4         9.585         1.917         21.4         8.846         1.769         25.4         8.203         1.641         29.4         7.638         1           17.5         9.565         1.913         21.5         8.829         1.766         25.5         8.188         1.638         29.5         7.611         1           17.7         9.526         1.905 </td <td>16.7</td> <td>9.726</td> <td>1.945</td> <td>20.7</td> <td>8.968</td> <td>1:794</td> <td>24.7</td> <td>8.309</td> <td>1.662</td> <td>28.7</td> <td>7.732</td> <td>1.546</td>	16.7	9.726	1.945	20.7	8.968	1:794	24.7	8.309	1.662	28.7	7.732	1.546
17.0         9.665         1.933         21.0         8.915         1.783         25.0         8.263         1.653         29.0         7.691         1           17.1         9.645         1.929         21.1         8.898         1.780         25.1         8.248         1.650         29.1         7.678         1           17.2         9.625         1.925         21.2         8.880         1.776         25.2         8.233         1.647         29.2         7.664         1           17.3         9.605         1.921         21.3         8.863         1.773         25.3         8.218         1.644         29.3         7.651         1           17.4         9.585         1.917         21.4         8.846         1.769         25.4         8.203         1.641         29.4         7.638         1           17.5         9.565         1.913         21.5         8.829         1.766         25.5         8.188         1.638         29.5         7.625         1           17.6         9.545         1.909         21.6         8.812         1.762         25.6         8.173         1.635         29.6         7.611         1           17.7	.16.8	9.705			8,950	1.790	24.8			28.8		1.544
17.1       9.645       1.929       21.1       8.898       1.780       25.1       8.248       1.650       29.1       7.678       1         17.2       9.625       1.925       21.2       8.880       1.776       25.2       8.233       1.647       29.2       7.664       1         17.3       9.605       1.921       21.3       8.863       1.773       25.3       8.218       1.644       29.3       7.651       1         17.4       9.585       1.917       21.4       8.846       1.769       25.4       8.203       1.641       29.4       7.638       1         17.5       9.565       1.913       21.5       8.829       1.766       25.5       8.188       1.638       29.5       7.625       1         17.6       9.545       1.909       21.6       8.812       1.762       25.6       8.173       1.635       29.6       7.611       1         17.7       9.526       1.905       21.7       8.794       1.759       25.7       8.158       1.632       29.7       7.598       1         17.8       9.506       1.901       21.8       8.777       1.755       25.8       8.143       1.629 <td>16.9</td> <td></td> <td>1.541</td>	16.9											1.541
17.2         9.625         1.925         21.2         8.880         1.776         25.2         8.233         1.647         29.2         7.664         1           17.3         9.605         1.921         21.3         8.863         1.773         25.3         8.218         1.644         29.3         7.651         1           17.4         9.585         1.917         21.4         8.846         1.769         25.4         8.203         1.641         29.4         7.638         1           17.5         9.565         1.913         21.5         8.829         1.766         25.5         8.188         1.638         29.5         7.625         1           17.6         9.545         1.909         21.6         8.812         1.762         25.6         8.173         1.635         29.6         7.611         1           17.7         9.526         1.905         21.7         8.794         1.759         25.7         8.158         1.632         29.7         7.598         1           17.8         9.506         1.901         21.8         8.777         1.755         25.8         8.143         1.629         29.8         7.572         1           18.0		-										1.538
17.3       9.605       1.921       21.3       8.863       1.773       25.3       8.218       1.644       29.3       7.651       1         17.4       9.585       1.917       21.4       8.846       1.769       25.4       8.203       1.641       29.4       7.638       1         17.5       9.565       1.913       21.5       8.829       1.766       25.5       8.188       1.638       29.5       7.625       1         17.6       9.545       1.909       21.6       8.812       1.762       25.6       8.173       1.635       29.6       7.611       1         17.7       9.526       1.905       21.7       8.794       1.759       25.7       8.158       1.632       29.7       7.598       1         17.8       9.506       1.901       21.8       8.777       1.755       25.8       8.143       1.629       29.8       7.585       1         17.9       9.486       1.897       21.9       8.761       1.752       25.9       8.128       1.626       29.9       7.572       1         18.0       9.467       1.893       22.0       8.744       1.749       26.0       8.114       1.626 <td></td> <td>1.536</td>												1.536
17.4         9.585         1.917         21.4         8.846         1.769         25.4         8.203         1.641         29.4         7.638         1           17.5         9.565         1.913         21.5         8.829         1.766         25.5         8.188         1.638         29.5         7.625         1           17.6         9.545         1.909         21.6         8.812         1.762         25.6         8.173         1.635         29.6         7.611         1           17.7         9.526         1.905         21.7         8.794         1.759         25.7         8.158         1.632         29.7         7.598         1           17.8         9.506         1.901         21.8         8.777         1.755         25.8         8.143         1.629         29.8         7.585         1           17.9         9.486         1.897         21.9         8.761         1.752         25.9         8.128         1.626         29.9         7.572         1           18.0         9.467         1.893         22.0         8.744         1.749         26.0         8.114         1.623         30.0         7.559         1           18.1											7.664	1.533
17.5       9.565       1.913       21.5       8.829       1.766       25.5       8.188       1.638       29.5       7.625       1         17.6       9.545       1.909       21.6       8.812       1.762       25.6       8.173       1.635       29.6       7.611       1         17.7       9.526       1.905       21.7       8.794       1.759       25.7       8.158       1.632       29.7       7.598       1         17.8       9.506       1.901       21.8       8.777       1.755       25.8       8.143       1.629       29.8       7.585       1         17.9       9.486       1.897       21.9       8.761       1.752       25.9       8.128       1.626       29.9       7.572       1         18.0       9.467       1.893       22.0       8.744       1.749       26.0       8.114       1.623       30.0       7.559       1         18.1       9.428       1.886       22.2       8.710       1.742       26.1       8.099       1.620       30.1       7.546       1         18.3       9.409       1.882       22.3       8.693       1.739       26.3       8.070       1.614 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.773</td> <td>25.3</td> <td>8.218</td> <td>1.644</td> <td>29.3</td> <td>7.651</td> <td>1.530</td>						1.773	25.3	8.218	1.644	29.3	7.651	1.530
17.6         9.545         1.909         21.6         8.812         1.762         25.6         8.173         1.635         29.6         7.611         1           17.7         9.526         1.905         21.7         8.794         1.759         25.7         8.158         1.632         29.7         7.598         1           17.8         9.506         1.901         21.8         8.777         1.755         25.8         8.143         1.629         29.8         7.585         1           17.9         9.486         1.897         21.9         8.761         1.752         25.9         8.128         1.626         29.9         7.572         1           18.0         9.467         1.893         22.0         8.744         1.749         26.0         8.114         1.623         30.0         7.559         1           18.1         9.448         1.890         22.1         8.727         1.745         26.1         8.099         1.620         30.1         7.546         1           18.2         9.428         1.886         22.2         8.710         1.742         26.2         8.084         1.617         30.2         7.533         1           18.3	17.4		1.917		8.846	1.769	25.4	8.203	1.641	29.4	7.638	1.528
17.6       9.545       1.909       21.6       8.812       1.762       25.6       8.173       1.635       29.6       7.611       1         17.7       9.526       1.905       21.7       8.794       1.759       25.7       8.158       1.632       29.7       7.598       1         17.8       9.506       1.901       21.8       8.777       1.755       25.8       8.143       1.629       29.8       7.585       1         17.9       9.486       1.897       21.9       8.761       1.752       25.9       8.128       1.626       29.9       7.572       1         18.0       9.467       1.893       22.0       8.744       1.749       26.0       8.114       1.623       30.0       7.559       1         18.1       9.448       1.890       22.1       8.727       1.745       26.1       8.099       1.620       30.1       7.546       1         18.2       9.428       1.886       22.2       8.710       1.742       26.2       8.084       1.617       30.2       7.533       1         18.3       9.409       1.882       22.3       8.693       1.739       26.3       8.070       1.614 <td>17.5</td> <td></td> <td>1.913</td> <td>21.5</td> <td>8.829</td> <td>1.766</td> <td>25.5</td> <td>8.188</td> <td>1.638.</td> <td>29.5</td> <td>7.625</td> <td>1.525</td>	17.5		1.913	21.5	8.829	1.766	25.5	8.188	1.638.	29.5	7.625	1.525
17.8         9.506         1.901         21.8         8.777         1.755         25.8         8.143         1.629         29.8         7.585         1           17.9         9.486         1.897         21.9         8.761         1.752         25.9         8.128         1.626         29.9         7.572         1           18.0         9.467         1.893         22.0         8.744         1.749         26.0         8.114         1.623         30.0         7.559         1           18.1         9.448         1.890         22.1         8.727         1.745         26.1         8.099         1.620         30.1         7.546         1           18.2         9.428         1.886         22.2         8.710         1.742         26.2         8.084         1.617         30.2         7.533         1           18.3         9.409         1.882         22.3         8.693         1.739         26.3         8.070         1.614         30.3         7.520         1           18.4         9.390         1.878         22.4         8.677         1.735         26.4         8.055         1.611         30.4         7.507         1           18.5	17.6	9.545	1.909		8.812	1.762	25.6	8.173	1.635	29.6		1.522
17.9       9.486       1.897       21.9       8.761       1.752       25.9       8.128       1.626       29.9       7.572       1         18.0       9.467       1.893       22.0       8.744       1.749       26.0       8.114       1.623       30.0       7.559       1         18.1       9.448       1.890       22.1       8.727       1.745       26.1       8.099       1.620       30.1       7.546       1         18.2       9.428       1.886       22.2       8.710       1.742       26.2       8.084       1.617       30.2       7.533       1         18.3       9.409       1.882       22.3       8.693       1.739       26.3       8.070       1.614       30.3       7.520       1         18.4       9.390       1.878       22.4       8.677       1.735       26.4       8.055       1.611       30.4       7.507       1         18.5       9.371       1.874       22.5       8.660       1.732       26.5       8.040       1.608       30.5       7.494       1         18.6       9.352       1.870       22.6       8.644       1.729       26.6       8.026       1.605 <td></td> <td>9.526</td> <td></td> <td></td> <td>8.794</td> <td>1.759</td> <td></td> <td>8.158</td> <td>1.632</td> <td>29.7</td> <td>7.598</td> <td>1.520</td>		9.526			8.794	1.759		8.158	1.632	29.7	7.598	1.520
18.0         9.467         1.893         22.0         8.744         1.749         26.0         8.114         1.623         30.0         7.559         1           18.1         9.448         1.890         22.1         8.727         1.745         26.1         8.099         1.620         30.1         7.546         1           18.2         9.428         1.886         22.2         8.710         1.742         26.2         8.084         1.617         30.2         7.533         1           18.3         9.409         1.882         22.3         8.693         1.739         26.3         8.070         1.614         30.3         7.520         1           18.4         9.390         1.878         22.4         8.677         1.735         26.4         8.055         1.611         30.4         7.507         1           18.5         9.371         1.874         22.5         8.660         1.732         26.5         8.040         1.608         30.5         7.494         1           18.6         9.352         1.870         22.6         8.644         1.729         26.6         8.026         1.605         30.6         7.481         1           18.7									1.629	29.8	7.585	1.517
18.1     9.448     1.890     22.1     8.727     1.745     26.1     8.099     1.620     30.1     7.546     1       18.2     9.428     1.886     22.2     8.710     1.742     26.2     8.084     1.617     30.2     7.533     1       18.3     9.409     1.882     22.3     8.693     1.739     26.3     8.070     1.614     30.3     7.520     1       18.4     9.390     1.878     22.4     8.677     1.735     26.4     8.055     1.611     30.4     7.507     1       18.5     9.371     1.874     22.5     8.660     1.732     26.5     8.040     1.608     30.5     7.494     1       18.6     9.352     1.870     22.6     8.644     1.729     26.6     8.026     1.605     30.6     7.481     1       18.7     9.333     1.867     22.7     8.627     1.725     26.7     8.012     1.602     30.7     7.468     1									1.626	29.9	7.572	1.514
18.2     9.428     1.886     22.2     8.710     1.742     26.2     8.084     1.617     30.2     7.533     1       18.3     9.409     1.882     22.3     8.693     1.739     26.3     8.070     1.614     30.3     7.520     1       18.4     9.390     1.878     22.4     8.677     1.735     26.4     8.055     1.611     30.4     7.507     1       18.5     9.371     1.874     22.5     8.660     1.732     26.5     8.040     1.608     30.5     7.494     1       18.6     9.352     1.870     22.6     8.644     1.729     26.6     8.026     1.605     30.6     7.481     1       18.7     9.333     1.867     22.7     8.627     1.725     26.7     8.012     1.602     30.7     7.468     1						1.749	26.0	8.114	1.623	30.0	7.559	1.512
18.2     9.428     1.886     22.2     8.710     1.742     26.2     8.084     1.617     30.2     7.533     1       18.3     9.409     1.882     22.3     8.693     1.739     26.3     8.070     1.614     30.3     7.520     1       18.4     9.390     1.878     22.4     8.677     1.735     26.4     8.055     1.611     30.4     7.507     1       18.5     9.371     1.874     22.5     8.660     1.732     26.5     8.040     1.608     30.5     7.494     1       18.6     9.352     1.870     22.6     8.644     1.729     26.6     8.026     1.605     30.6     7.481     1       18.7     9.333     1.867     22.7     8.627     1.725     26.7     8.012     1.602     30.7     7.468     1		9,448			8.727	1.745	26.1	8.099	1.620	30.1	7.546	1.509
18.3     9.409     1.882     22.3     8.693     1.739     26.3     8.070     1.614     30.3     7.520     1       18.4     9.390     1.878     22.4     8.677     1.735     26.4     8.055     1.611     30.4     7.507     1       18.5     9.371     1.874     22.5     8.660     1.732     26.5     8.040     1.608     30.5     7.494     1       18.6     9.352     1.870     22.6     8.644     1.729     26.6     8.026     1.605     30.6     7.481     1       18.7     9.333     1.867     22.7     8.627     1.725     26.7     8.012     1.602     30.7     7.468     1	18.2	9.428	1.886		8.710	1.742	26.2	8.084	1.617	30.2	7.533	1.507
18.4     9.390     1.878     22.4     8.677     1.735     26.4     8.055     1.611     30.4     7.507     1       18.5     9.371     1.874     22.5     8.660     1.732     26.5     8.040     1.608     30.5     7.494     1       18.6     9.352     1.870     22.6     8.644     1.729     26.6     8.026     1.605     30.6     7.481     1       18.7     9.333     1.867     22.7     8.627     1.725     26.7     8.012     1.602     30.7     7.468     1	18.3	9.409	1.882	22.3	8.693	1.739	26.3	8.070	1.614			1.504
18.5     9.371     1.874     22.5     8.660     1.732     26.5     8.040     1.608     30.5     7.494     1.       18.6     9.352     1.870     22.6     8.644     1.729     26.6     8.026     1.605     30.6     7.481     1.       18.7     9.333     1.867     22.7     8.627     1.725     26.7     8.012     1.602     30.7     7.468     1.	18.4	9.390	1.878	22.4	8.677	1.735	26.4	-				1.501
18.6     9.352     1.870     22.6     8.644     1.729     26.6     8.026     1.605     30.6     7.481     1.       18.7     9.333     1.867     22.7     8.627     1.725     26.7     8.012     1.602     30.7     7.468     1.       18.8     1.8     1.8     1.8     1.8     1.8     1.8     1.8	18.5	9.371	1.874	22.5	8.660							1.499
18.7 9.333 1.867 22.7 8.627 1.725 26.7 8.012 1.602 30.7 7.468 1.	18.6	9.352	1.870	22.6	8.644							1.496
100 0011 1000 000 0001	18.7	9.333	1.867		8.627	1.725						1.494
			1.863	22.8	8.611	1.722	26.8	7.997				1:491
19.0   0.205   1.950   22.0   9.505   1.712   02.0   -0.00	18.9	9.295	1.859	22.9	8.595	1.719	26.9					1.489

Derived using the formula in Standard Methods for the Examination of Water and Wastewater, Page 4-101, 18th Edition, 1992

### Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS

INSTRUMENT (MAKE/MODEL#) HFSGIENTIFIC FUCKO TPI INSTRUMENT # 200710329 PARAMETER: [check only one] I SALINITY ... □ pH ☐ ORP ☐ TEMPERATURE ☐ CONDUCTIVITY ☐ RESIDUAL CI OTHER_ TURBIDITY STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A LOCONTO HESCIENTIFIC LATE 90504 EXP! NOV 2010 LOT# 90534 EXP! NOV 2010 Standard B 10.0 NTO HESCIENTIFIC

Standard C DICZ HTD HESCIENTIFIC LOTH 90501 EXP: NOV 2010

				HTIPIC LOT	7036	SI BYP; NO		
DATE (yy/mm/dd)	TIME (hr:min)	STD (A B C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
10/07/20	0600	· A	1000	AUTO CALIB	ng P	Asa	INIT	ÚSÁ
and the second	A COLUMN TO THE TOTAL THE TOTAL TO THE TOTAL	B .	10	13		433	Tim	294
		6	0.02	3 %	uh.	YE	TAIT	000
							,	
10/07/31	65F6	A	1000	Auto Creio		Y83	Cont	D34
	1	B	10	4 3		YE 3	- Co.i7	DET
		6	0.32	4.2	· .	Y€ 5	GAT	0%
4:		1						
		V I						
								ŀ
						•		
:								
					·.			
						<del></del>		

	Forn	n FD 9000	-8: FIEL	D INSTRUME	ENT CAL	IBRATION R	ECORDS	
INSTRUM	ENT (M.	AKE/MOD	EL#)	HANNA H	1587 It	INSTRUM	ENT # 72	5490
PARAME	TER: [c	heck only	one]					
☐ TEM	PERATUR	RE 🔀	CONDUCT	TIVITY	SALINITÝ	□рН	☐ ORP	
☐ TUR	BIDITY		RESIDUAL	L CI	DO	☐ OTH	IER	
STANDAF	RDS: [S]	pecify the typ	e(s) of sta	ndards used for o	calibration,	the origin of the	standards, the	standard
		- 4		ared or purchase				
	ard A 🙎	A.		The pay most v		<del></del>		¥
Standa	ard B	113 NE/EM	PIME E	HVIROLIMEN	Take	<del></del>	*	
Standa	ard C						1	
DATE (yy/mm/dd)	TIME (hr.min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
10/09/20	Obec	A	F3	AutoCAL	~	Y & 3	INIT	00
0/04/20	S(00)	ß	1413	11	45,544	X5.2	Tut	DtA .
					, l			2
10/07/21	1400	A	84	Auto CAL	******	183	Contr	D8Q
		~	11. 19	• 1		V s	1	The same

	Form FD	9000-8: FIELD INSTI	RUMENT CALIB	RATION RECORDS	
INS	TRUMENT (MAKE		11 7828	INSTRUMENT # 7254	10
	RAMETER: [check			£ .	
	TEMPERATURE	CONDUCTIVITY	SALINITY	pH □ ORP	
	☐ TURBIDITY	RESIDUAL CI	□ po	OTHER	
\$T/	NDARDS: [Specify	ndards were prepared or pu	rcnaseaj	origin of the standards, the stan	dard
	Standard A HANN	A CAL, SOLUTION	7,01 (std)	EXP. 04/2013	
	Standard B HANNA	CAL SOLVEION 4.0	(S+d) EXP: (	2013	
	Standard C Наина	CAL SOLUTION 10.	01 (219) EXD: 0.	1/2013	v.v.ev.e=1200

DATE	TIME	STD	STD	INSTRUMENT		CALIBRATED	TYPE	SAMPLER
(yyimmidd)		(A, B, C)	VALUE	RESPONSE	% DEV	(YES, NO)	(INIT, CONT)	INITIALS Doc
10/03/20	2600	A	10.4	Auto Car	e and	165	Zall.	
		B	1.0.1			Yes	Tur	2004
	-	6	18.01	)		YES .	INIT	000
1		<u> </u>				<u> </u>		
10/27/21	0700	A	7.01	AUTO CAL	يعقفنن	185	Contr	DE11
ALL COLOR	3.07.00	B	4.01			Y&3	Copt.	D87
l	1	C	10.01		AUPT	Y 53	CONT.	DCA.
÷								
<del></del>				,				
··						<del></del>		
7	,							
				<u> </u>				
:	_,					<del>-</del>		
<u></u>	· · · · · · · · · · · · · · · · · · ·					<del>-</del>		
·							<del>  </del>	
								a 31
						:		

						NOTON		
		1		<u>HI982</u>	6	INSTRUI	MENT # <u>0</u> '	<u> </u>
	•	check only		8				9.6
	MPERATU			TIVITY [			¥	
	RBIDITY		RESIDUA		<b>∑</b> DO		HER	, , , , , , , , , , , , , , , , , , , ,
STANDA values, and	RDS: [S	Specify the ty the standards	pe(s) of sta s were prep	ndards used fo ared or purcha	or calibration, ased]	the origin of the	e standards, t	he standard
Stand	iard A 🚣	SATURAT	TED AI	R				
Stand	ard B _			<del> </del>				ä
Stand	ard C			1			**	
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMEN RESPONSE	IT % DEV	CALIBRATED (YES NO)	TYPE (INIT, CONT	SAMPLER INITIALS
10/05/20	C600	A	831.8	8.09	0.10	X8.2	TAIT	BR
		4						
10/05/21	0400	A	8,173	8.12	0,05	Y83	(2007	R
(6)07)								
				<del></del>		·	ļ	
c								
							,	
				·				
		,		· · · · · · · · · · · · · · · · · · ·				
	,							
								·
				·				-
				·			<del></del>	
				· · · · · · · · · · · · · · · · · · ·				
					1 1			1 1

Form FD	9000-8: FIELD INS	STRUMENT CALIB	RATION RECORDS	
INSTRUMENT (MAKE	MODEL#) HENNE	858PIH 1	INSTRUMENT # 08	5428018
PARAMETER: [check	only one]			
☐ TEMPERATURE	☐ CONDUCTIVITY	SALINITY	<b>⋈</b> pH □ ORP	
☐ TURBIDITY	☐ RESIDUAL CI		OTHER	<del></del>
STANDARDS: [Specify values, and the date the sta	the type(s) of standards ndards were prepared or	used for calibration, the purchased]	origin of the standards, the	standard
Standard A HANN	A 7.01 (s+6)	Exp: 04/201	3	6.
Standard B HANN				•
Standard C HANK	A 10.01 (std)	Exp: 04/20	13	

DATE TIME STD STD INSTRUMENT (CALIBRATED (YES NO)) (INIT CONT) INITIALS (YES NO) (YES N		1000		.013	1 -	STAT EXT	(C) OIC	MUNH	ara C <u>-</u>	Staria
10/04/20 06 00 A 7.01 AUTOCAL YES INIT BR  10/05/21 0700 A 7.01 AUTOCAL - YES CONT BR  10/05/21 0700 A 7.01 AUTOCAL - YES CONT BR  10/05/21 0700 A 7.01 AUTOCAL - YES CONT BR  10/05/21 0700 A 7.01 AUTOCAL - YES CONT BR	AMPLER NITIALS	E S ONT) I	TYPE (INIT, CO)	CALIBRATED (YES, NO)	% DEV	INSTRUMENT RESPONSE	STD VALUE	STD (A, B, C)		
B   A.01   - YES INIT   BR	38	4	力心	Yas	gandina	AUTOGAL	7.01	A	obec	10/04/20
10,01	38	jein	l l	753	لديج			B	1,47000	
10/05/21 0700 A 3.01 AUTO CAL - YES CONT BR  1	R	1.6	INIT		343		18,01	L		-
B 4.01 - YES CONT BR C 10.01 - YES CONT BR				(8)						
1 B 4.01 - YES CONT BR C 10.01 - YES CONT BR	38	9	CONT	783		AUTO CAL	7.01		0700	10 00 21
	R	3	(2)47	YES		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.01	B	, pe (Tame	
	3R	- A	Lest	Yes	.190000	\	10,61	e.	and the second	And the second second
				0.						
								··		
				<i>∞</i>						
	. 1 .									

### Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS

INSTRUMENT (MAKE/M	MODEL#) HESCIENTIF	IL FINCKO THOIN	STRUMEN	Γ#
PARAMETER: [check o	nly one]	TEN		
☐ TEMPERATURE	CONDUCTIVITY	☐ SALINITÝ	□ рН	☐ ORP
TURBIDITY	RESIDUAL CI	□ DO	OTHER_	· .
STANDARDS: [Specify the values, and the date the stand			nin of the stand	dards, the standard
Standard A 1000 N°	TO HESCIENTIFIC L	OT# 90504 6	S VOM : 91	010
Standard B 10.0 N	TO HASCIENTIAL L	et# 90534 E	FL: MON S	ò10 .·
Chandard C D = 2 11	# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ATT GASALE	was klaw a	A . A

		IN Z NTO		HTIPIC LOT							
DATE (yy/mm/dd)	TIME (hrimin)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS			
उड़िक वा	0600	A	1000	AUTOCALIO		16.2	TNIT	BR			
	* Chestalities	В	10			Y43	INIT	BR			
	on to be the	<u> </u>	かいひと		•	Y33	Jain	8			
10/04/21	0700	A	(000	Auto CALID	, pre.	A5.2	Contr	BR			
		R	10			Yes	Carlo	PR.			
	approximation of the second	<u> </u>	0.02		, asser	163	Cont	DR.			
								-			
.:											
				¥							
.00		. 1									
					53						
-											

#### Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) HANNA HIZ 9828 INSTRUMENT # 08103772 PARAMETER: [check only one] ☐ TEMPERATURE ☑ CONDUCTIVITY ☐ SALINITY ☐ pH ☐ ORP ☐ RESIDUAL CI OTHER_ ☐ TURBIDITY STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A 84 MS ENVIRONMENTAL Standard B 1413 PAE ENVIRONMENTAL Standard C

Staria								
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
10 07 20	0600	A	84	Auto Can	A47613	483	TNIT	BR.
12(00) 20		3	1413	1.1	*385 ₈₈₆	2.5.1	THIT	SK .
								. Acres 10
10/09/21	2010	A	84	Auto CAL	Van.	755	Contr	RK
6/03/21	0400	8	1413	<b>V</b> 6	~	153	CONT	\$R
		-	11					
								·
					l			

# Appendix B

Laboratory Report – Surface Water Sample Points



August 23, 2010

Service Request No: J1003437

Handi Wang
HDR Engineering
200 W. Forsyth Street, Suite 800
Jacksonville, FL 32202

Laboratory Results for: Trail Ridge

Dear Handi:

Enclosed are the results of the sample(s) submitted to our laboratory on July 21, 2010. For your reference, these analyses have been assigned our service request number **J1003437**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Craig Myers

Project Manager

Page 1 of 45

Client:

**HDR** Engineering

Project:

Trail Ridge

Service Request No.: Date Received:

J1003437 7/21/10

Sample Matrix:

Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Three water samples and one trip blank were received for analysis at Columbia Analytical Services on 7/21/10. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at  $4\pm2$ °C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260.

#### **EDB** and **DBCP** by GC-ECD

The samples were analyzed for EDB and DBCP using EPA Method 8011. The following observations were made regarding this delivery group.

#### **Second Source Exceptions**

The upper control criterion was exceeded for the following analytes in the Second Source Verification (SSV): 1,2-Dibromoethane (EDB) and 1,2-Dibromo-3-chloropropane (DBCP). The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

#### **Batch QC Notes and Discussion**

Some quality control samples (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. No problems were observed.

Approved by	Cynfly	Date	8/23/10
	2(		77

#### Batch QC Notes and Discussion

Some quality control samples (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA and Standard Methods. The following observations were made regarding this delivery group.

#### Method Blank Exceptions

Method Blank J1003437-MB contained a low level of Total Phosphorus above the Method Detection Limit (MDL), but less than the Method Reporting Limit (MRL). Some of the samples for project J1003437 exhibited this analyte in approximately the same concentration as the method blank. The data is flagged with a qualifier to indicate the results are estimated values. The method blank results may indicate the potential for a false positive.

Approved by Date 8/23/10

### Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

#### Acronyms

**ASTM** American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

**CARB** California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon **CFU** Colony-Forming Unit

DEC Department of Environmental Conservation DEQ

Department of Environmental Quality DHS Department of Health Services

DOE Department of Ecology

DOH Department of Health

**EPA** U. S. Environmental Protection Agency

**ELAP** Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

**LUFT** Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance allowed in

drinking water as established by the USEPA.

**MDL** Method Detection Limit **MPN** Most Probable Number **MRL** Method Reporting Limit

NA Not Applicable NC Not Calculated

**NCASI** National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

**NIOSH** National Institute for Occupational Safety and Health

**POL** Practical Quantitation Limit

**RCRA** Resource Conservation and Recovery Act

SIM Selected Ion Monitoring TPH

Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the

MDL.

Client:

**Project:** Trail Ridge

Service Request: J1003437

### SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
J1003437-001	SW-1	7/21/10	10:50
J1003437-002	SW-2	7/21/10	10:30
J1003437-003	SW-3	7/21/10	10:10
J1003437-004	Trip Blank	7/21/10	00:00

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water SW-1

Lab Code:

J1003437-001

Service Request: J1003437

Date Collected: 7/21/10 1050

Date Received: 7/21/10 103

Units: μg/L Basis: NA

### Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/27/10 17:58	210050
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 17:58	
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/27/10 17:58	210050
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/27/10 17:58	
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 17:58	
1,1-Dichloroethene (1,1-DCE)	ND		1.00	0.160	<u>l</u>	NA	7/27/10 17:58	210050
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane	ND		2.00	0.420	1	NA	7/27/10 17:58	
(DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 17:58	210050
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 17:58	210050
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 17:58	210050
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 17:58	210050
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 17:58	210050
1,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/27/10 17:58	210050
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 17:58	
2-Hexanone	ND		25.0	2.20	1	NA	7/27/10 17:58	210050
4-Methyl-2-pentanone (MIBK)	ND		25.0	0.650	1	NA	7/27/10 17:58	
Acetone	ND		50.0	5.60	1	NA	7/27/10 17:58	
Acrylonitrile	ND		10.0	1.20	1	NA	7/27/10 17:58	210050
Benzene	ND		1.00	0.210	1	NA	7/27/10 17:58	
Bromochloromethane Bromodichloromethane	ND		5.00	0.270	1	NA	7/27/10 17:58	
the same and the s	ND		1.00	0.170	1	NA	7/27/10 17:58	210050
Bromoform Bromomethane	ND		2.00	0.420	1	NA	7/27/10 17:58	
Carbon Disulfide	ND ND		1.00 10.0	0.220	] 1	NA	7/27/10 17:58	210050
Carbon Tetrachloride			~~~~	2.36	1	NA	7/27/10 17:58	210050
Chlorobenzene	ND ND		1.00 1.00	0.340	1	NA	7/27/10 17:58	210050
Chloroethane	ND ND		5.00	0.160 0.220	1 1	NA NA	7/27/10 17:58 7/27/10 17:58	210050
Chloroform	ND							210050
Chloromethane	ND ND		1.00 1.00	0.350 0.110	1	NA	7/27/10 17:58	210050
cis-1,2-Dichloroethene	ND		1.00	0.110	1	NA NA	7/27/10 17:58 7/27/10 17:58	210050 210050
cis-1,3-Dichloropropene	ND		1.00					
Dibromochloromethane	ND ND		1.00	0.200 0.190	1 1	NA NA	7/27/10 17:58 7/27/10 17:58	
Dibromomethane	ND		5.00	0.130	1		7/27/10 17:58	210050 210050
Ethylbenzene	ND		1.00	0.519	1	NA	7/27/10 17:58	
Iodomethane	ND		5.00	2.68	1	NA NA	7/27/10 17:58	210050 210050
m,p-Xylenes	ND		2.00	1.04	1	NA	7/27/10 17:58	210050
					-			210020

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

SW-1

Sample Name: Lab Code:

J1003437-001

Service Request: J1003437

**Date Collected:** 7/21/10 1050 Date Received: 7/21/10

Units: µg/L

Basis: NA

### Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction An Lot	nalysis Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 17:58	3 21	0050
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 17:58	3 21	0050
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 17:58	3 21	0050
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 17:58		0050
Toluene	0.450	I	1.00	0.190	1	NA	7/27/10 17:58	21	0050
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/27/10 17:58	2.1	0050
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 17:58		0050
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/27/10 17:58		0050
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 17:58	21	0050
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 17:58	21	0050
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/27/10 17:58		0050
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/27/10 17:58	21	0050

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	99	71-122	7/27/10 17:58	
4-Bromofluorobenzene	99	75-120	7/27/10 17:58	
Dibromofluoromethane	99	82-116	7/27/10 17:58	
Toluene-d8	104	88-117	7/27/10 17:58	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

SW-2

Lab Code:

J1003437-002

Service Request: J1003437
Date Collected: 7/21/10 1030

**Date Received:** 7/21/10 10.

Units: μg/L Basis: NA

### Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/27/10 18:26		210050
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA	7/27/10 18:26		210050
1,1,2,2-Tetrachloroethane	ND U	1.00	0.110	1	NA	7/27/10 18:26		210050
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/27/10 18:26		210050
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/27/10 18:26		210050
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/27/10 18:26		210050
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/27/10 18:26		210050
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/27/10 18:26		210050
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/27/10 18:26		210050
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/27/10 18:26		210050
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/27/10 18:26		210050
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/27/10 18:26		210050
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/27/10 18:26		210050
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/27/10 18:26		210050
2-Hexanone	ND U	25.0	2.20	1	NA	7/27/10 18:26		210050
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/27/10 18:26		210050
Acetone	ND U	50.0	5.60	1	NA	7/27/10 18:26		210050
Acrylonitrile	ND U	10.0	1.20	1	NA	7/27/10 18:26		210050
Benzene	ND U	1.00	0.210	1	NA	7/27/10 18:26		210050
Bromochloromethane	ND U	5.00	0.270	1	NA	7/27/10 18:26		210050
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/27/10 18:26		210050
Bromoform	ND U	2.00	0.420	1	NA	7/27/10 18:26		210050
Bromomethane	ND U	1.00	0.220	1	NA	7/27/10 18:26		210050
Carbon Disulfide	ND U	10.0	2.36	1	NA	7/27/10 18:26		210050
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/27/10 18:26		210050
Chloropthan	ND U	1.00	0.160	1	NA	7/27/10 18:26		210050
Chloroethane	ND U	5.00	0.220	1	NA	7/27/10 18:26		210050
Chloroform	ND U	1.00	0.350	1	NA	7/27/10 18:26		210050
Chloromethane	ND U	1.00	0.110	1	NA	7/27/10 18:26		210050
cis-1,2-Dichloroethene	ND U	1.00	0.360	1	NA	7/27/10 18:26		210050
cis-1,3-Dichloropropene	ND U	1.00	0.200	1		7/27/10 18:26		210050
Dibromochloromethane Dibromomethane	ND U	1.00	0.190	1		7/27/10 18:26		210050
	ND U	5.00	0.180	1	NA	7/27/10 18:26		210050
Ethylbenzene	ND U	1.00	0.519	1		7/27/10 18:26		210050
Iodomethane m,p-Xylenes	ND U	5.00	2.68	1		7/27/10 18:26		210050
m,p-Ayteties	ND U	2.00	1.04	1	NA	7/27/10 18:26		210050

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: SW-2

J1003437-002

Service Request: J1003437

**Date Collected:** 7/21/10 1030 **Date Received:** 7/21/10

Units: μg/L Basis: NA

### Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 18:26	210050
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 18:26	210050
Styrene	ND U	1.00	0.291	1	NA	7/27/10 18:26	210050
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 18:26	
Toluene	ND U	1.00	0.190	1	NA	7/27/10 18:26	210050
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 18:26	210050
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 18:26	
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 18:26	
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 18:26	210050
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 18:26	
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 18:26	
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 18:26	210050

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	102	71-122	7/27/10 18:26	
4-Bromofluorobenzene	103	75-120	7/27/10 18:26	
Dibromofluoromethane	100	82-116	7/27/10 18:26	
Toluene-d8	105	88-117	7/27/10 18:26	

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name:

Water

Lab Code:

J1003437-003

SW-3

Service Request: J1003437 **Date Collected:** 7/21/10 1010

Date Received: 7/21/10

Units:  $\mu g/L$ Basis: NA

### Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane	ND ND ND	U	1.00 1.00 1.00	0.180 0.170 0.110	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
1,1,2-Trichloroethane 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE)	ND ND ND	U	1.00 1.00 1.00	0.170 0.130 0.160	1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane (DBCP)	ND ND	U U	2.00 5.00	0.420 2.30	1	NA NA	7/27/10 18:53 7/27/10 18:53		210050 210050 210050
1,2-Dibromoethane (EDB)	ND		1.00	0.170	1	NA	7/27/10 18:53		210050
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	ND ND ND	U	1.00 1.00 1.00	0.478 0.180 0.120	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
1,4-Dichlorobenzene 2-Butanone (MEK) 2-Hexanone	ND ND ND	U	1.00 10.0 25.0	0.100 3.80 2.20	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
4-Methyl-2-pentanone (MIBK) Acetone Acrylonitrile	ND <b>5.74</b> ND	I	25.0 50.0 10.0	0.650 5.60 1.20	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
Benzene Bromochloromethane Bromodichloromethane	ND ND ND	U	1.00 5.00 1.00	0.210 0.270 0.170	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
Bromoform Bromomethane Carbon Disulfide	ND ND ND	U	2.00 1.00 10.0	0.420 0.220 2.36	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
Carbon Tetrachloride Chlorobenzene Chloroethane	ND   ND   ND	U	1.00 1.00 5.00	0.340 0.160 0.220	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
Chloroform Chloromethane cis-1,2-Dichloroethene	ND I ND I ND I	U	1.00 1.00 1.00	0.350 0.110 0.360	1 1 1	NA NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
cis-1,3-Dichloropropene Dibromochloromethane Dibromomethane	ND I ND I ND I	U	1.00 1.00 5.00	0.200 0.190 0.180	1 1 1		7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050
Ethylbenzene Iodomethane m,p-Xylenes	ND I ND I ND I	IJ	1.00 5.00 2.00	0.519 2.68 1.04	1 1 1	NA NA	7/27/10 18:53 7/27/10 18:53 7/27/10 18:53		210050 210050 210050

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name:

Water

Lab Code:

SW-3 J1003437-003

Service Request: J1003437 **Date Collected:** 7/21/10 1010

Date Received: 7/21/10

Units: µg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 18:53	210050
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 18:53	210050
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 18:53	210050
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 18:53	210050
Toluene	ND	U	1.00	0.190	1	NA	7/27/10 18:53	210050
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/27/10 18:53	210050
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 18:53	2.0000
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/27/10 18:53	
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 18:53	210050
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 18:53	
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/27/10 18:53	
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/27/10 18:53	210050

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	102	71-122	7/27/10 18:53	
4-Bromofluorobenzene	103	75-120	7/27/10 18:53	
Dibromofluoromethane	99	82-116	7/27/10 18:53	
Toluene-d8	105	88-117	7/27/10 18:53	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

Trip Blank

Lab Code:

J1003437-004

Service Request: J1003437

Date Collected: 7/21/10 0000

**Date Collected:** 7/21/10 0000 **Date Received:** 7/21/10

Units: μg/L Basis: NA

### Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted		xtraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/27/10 19:20		210050
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.170	1	NA	7/27/10 19:20		210050
1,1,2,2-Tetrachloroethane	ND U	1.00	0.110	1	NA	7/27/10 19:20		210050
1,1,2-Trichloroethane	ND U	1.00	0.170	1	NA	7/27/10 19:20		210050
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.130	1	NA	7/27/10 19:20		210050
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.160	1	NA	7/27/10 19:20		210050
1,2,3-Trichloropropane	ND U	2.00	0.420	1	NA	7/27/10 19:20		210050
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/27/10 19:20		210050
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/27/10 19:20		210050
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/27/10 19:20		210050
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/27/10 19:20		210050
1,2-Dichloropropane	ND U	1.00	0.120	1	NA	7/27/10 19:20		210050
1,4-Dichlorobenzene	ND U	1.00	0.100	1	NA	7/27/10 19:20		210050
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/27/10 19:20		210050
2-Hexanone	ND U	25.0	2.20	1	NA	7/27/10 19:20		210050
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/27/10 19:20		210050
Acetone	ND U	50.0	5.60	1	NA	7/27/10 19:20		210050
Acrylonitrile	ND U	10.0	1.20	1	NA	7/27/10 19:20		210050
Benzene	ND U	1.00	0.210	1	NA	7/27/10 19:20		210050
Bromochloromethane	ND U	5.00	0.270	1	NA	7/27/10 19:20		210050
Bromodichloromethane	ND U	1.00	0.170	1	NA	7/27/10 19:20		210050
Bromoform	ND U	2.00	0.420	1	NA	7/27/10 19:20		210050
Bromomethane Carbon Disulfide	ND U	1.00	0.220	1	NA	7/27/10 19:20		210050
	ND U	10.0	2.36	1	NA	7/27/10 19:20		210050
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/27/10 19:20		210050
Chlorobenzene Chloroethane	ND U	1.00	0.160	1	NA	7/27/10 19:20		210050
	ND U	5.00	0.220	1	NA	7/27/10 19:20		210050
Chloroform	ND U	1.00	0.350	1	NA	7/27/10 19:20		210050
Chloromethane cis-1,2-Dichloroethene	ND U	1.00	0.110	1	NA	7/27/10 19:20		210050
	ND U	1.00	0.360	1	NA	7/27/10 19:20		210050
cis-1,3-Dichloropropene	ND U	1.00	0.200	1	NA	7/27/10 19:20		210050
Dibromochloromethane Dibromomethane	ND U	1.00	0.190	1	NA	7/27/10 19:20		210050
	ND U	5.00	0.180	1	NA	7/27/10 19:20		210050
Ethylbenzene	ND U	1.00	0.519	1		7/27/10 19:20		210050
Iodomethane m,p-Xylenes	ND U	5.00	2.68	1		7/27/10 19:20		210050
m,p-Aylenes	ND U	2.00	1.04	1	NA	7/27/10 19:20		210050

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Trip Blank J1003437-004 Service Request: J1003437

**Date Collected:** 7/21/10 0000 **Date Received:** 7/21/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted		Extraction Analysis Lot Lot
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/27/10 19:20	210050
o-Xylene	ND	U	1.00	0.140	1	NA	7/27/10 19:20	210050
Styrene	ND	U	1.00	0.291	1	NA	7/27/10 19:20	210050
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/27/10 19:20	210050
Toluene	ND	U	1.00	0.190	1	NA	7/27/10 19:20	210050
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/27/10 19:20	210050
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/27/10 19:20	
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/27/10 19:20	
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/27/10 19:20	210050
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/27/10 19:20	
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/27/10 19:20	
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/27/10 19:20	210050

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	100	71-122	7/27/10 19:20		
4-Bromofluorobenzene	101	75-120	7/27/10 19:20		
Dibromofluoromethane	100	82-116	7/27/10 19:20		
Toluene-d8	105	88-117	7/27/10 19:20		

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank JQ1002993-04 Service Request: J1003437

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/27/10 11:50		210050
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/27/10 11:50		210050
1,1,2,2-Tetrachloroethane	ND		1.00	0.110	1	NA	7/27/10 11:50	)	210050
1,1,2-Trichloroethane	ND		1.00	0.170	1	NA	7/27/10 11:50	)	210050
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/27/10 11:50		210050
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/27/10 11:50	)	210050
1,2,3-Trichloropropane	ND		2.00	0.420	1	NA	7/27/10 11:50	)	210050
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/27/10 11:50	)	210050
1,2-Dibromoethane (EDB)	ND	U	1.00	0.170	1	NA	7/27/10 11:50	)	210050
1,2-Dichlorobenzene	ND		1.00	0.478	1	NA	7/27/10 11:50	)	210050
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/27/10 11:50		210050
1,2-Dichloropropane	ND	U	1.00	0.120	1	NA	7/27/10 11:50	)	210050
1,4-Dichlorobenzene	ND		1.00	0.100	1	NA	7/27/10 11:50	)	210050
2-Butanone (MEK)	ND		10.0	3.80	1	NA	7/27/10 11:50		210050
2-Hexanone	ND	U	25.0	2.20	1	NA	7/27/10 11:50	)	210050
4-Methyl-2-pentanone (MIBK)	ND		25.0	0.650	1	NA	7/27/10 11:50	)	210050
Acetone	ND		50.0	5.60	1	NA	7/27/10 11:50		210050
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/27/10 11:50	)	210050
Benzene	ND		1.00	0.210	1	NA	7/27/10 11:50	)	210050
Bromochloromethane	ND		5.00	0.270	1	NA	7/27/10 11:50		210050
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/27/10 11:50	)	210050
Bromoform	ND		2.00	0.420	1	NA	7/27/10 11:50	)	210050
Bromomethane	ND		1.00	0.220	1	NA	7/27/10 11:50		210050
Carbon Disulfide	ND	U	10.0	2.36	1	NA	7/27/10 11:50	)	210050
Carbon Tetrachloride	ND		1.00	0.340	1	NA	7/27/10 11:50		210050
Chlorobenzene	ND		1.00	0.160	1	NA	7/27/10 11:50		210050
Chloroethane	ND	U	5.00	0.220	1	NA	7/27/10 11:50	1	210050
Chloroform	ND		1.00	0.350	1	NA	7/27/10 11:50		210050
Chloromethane	ND		1.00	0.110	1	NA	7/27/10 11:50		210050
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/27/10 11:50		210050
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/27/10 11:50		210050
Dibromochloromethane	ND		1.00	0.190	1	NA	7/27/10 11:50		210050
Dibromomethane	ND	U	5.00	0.180	1	NA	7/27/10 11:50		210050
Ethylbenzene	ND		1.00	0.519	1	NA	7/27/10 11:50		210050
Iodomethane	ND		5.00	2.68	1	NA	7/27/10 11:50		210050
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/27/10 11:50		210050

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank JQ1002993-04 Service Request: J1003437

Date Collected: NA Date Received: NA

> Units:  $\mu g/L$ Basis: NA

#### Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Methylene Chloride	ND U	5.00	0.210	1	NA	7/27/10 11:50	)	210050
o-Xylene	ND U	1.00	0.140	1	NA	7/27/10 11:50	)	210050
Styrene	ND U	1.00	0.291	1	NA	7/27/10 11:50	)	210050
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/27/10 11:50	)	210050
Toluene	ND U	1.00	0.190	1	NA	7/27/10 11:50	)	210050
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/27/10 11:50	)	210050
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/27/10 11:50	···· ·	210050
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/27/10 11:50	)	210050
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/27/10 11:50	)	210050
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/27/10 11:50		210050
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/27/10 11:50		210050
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/27/10 11:50	)	210050

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	98	71-122	7/27/10 11:50	
4-Bromofluorobenzene	99	75-120	7/27/10 11:50	
Dibromofluoromethane	98	82-116	7/27/10 11:50	
Toluene-d8	101	88-117	7/27/10 11:50	

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

SW-1

Lab Code:

J1003437-001

Units: ug/L

Basis: NA

**Extraction Method:** 

**Analysis Method:** 

**METHOD** 

Level: Low

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	134	77-150	07/29/10	Acceptable	,

Comments:

Printed: 07/30/2010 17:01:13 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

**Analytical Results** 

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

### 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

SW-2

Lab Code:

J1003437-002

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	130	77-150	07/29/10	Acceptable	,

Comments:

Printed: 07/30/2010 17:01:16 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

SW-3

Lab Code:

J1003437-003

Units: ug/L Basis: NA

**Extraction Method:** 

**Analysis Method:** 

**METHOD** 

Level: Low

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/29/10	JWG1002568	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0059	1	07/26/10	07/29/10	JWG1002568	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	146	77-150	07/29/10	Acceptable	

**Comments:** 

Printed: 07/30/2010 17:01:19 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Date Collected:** NA **Date Received:** NA

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG1002568-4

Units: ug/L Basis: NA

**Extraction Method:** 

**METHOD** 

Level: Low

**Analysis Method:** 

8011

Level. Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB) 1,2-Dibromo-3-chloropropane (DE	ND UJ ND UJ	0.020 0.020	0.0070 0.0057	1 1	07/26/10 07/26/10		JWG1002568 JWG1002568	` /

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,1,1,2-Tetrachloroethane	110	77-150	07/28/10	Acceptable	

Comments:

Printed: 07/30/2010 17:01:22 p:\Stealth\Crystal.rpt\Form1mNew.rpt

1 of 1

Merged

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

SW-1

J1003437-001

Service Request: J1003437 Date Collected: 7/21/10 1050

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:15
Arsenic, Total	6020	0.42	I	μg/L	0.50	0.14	1	7/28/10	8/2/10 15:15
Barium, Total	6020	32.3		$\mu$ g/L	2.0	0.5	1	7/28/10	8/2/10 15:15
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:15
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/28/10	8/2/10 15:15
Chromium, Total	6020	3.0		$\mu g/L$	2.0	0.6	1	7/28/10	8/2/10 15:15
Cobalt, Total	6020	0.5	I	μg/L	1.0	0.2	1	7/28/10	8/2/10 15:15
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/28/10	8/2/10 15:15
Hardness, Total as CaCO3	SM 2340 B	12.8		mg/L	1.7		1	NA	
Iron, Total	6010B	3450		μg/L	100	10	1	7/29/10	8/1/10 21:50
Lead, Total	6020	1.4		μg/L	1.0	0.3	1	7/28/10	8/2/10 15:15
Mercury, Total	7470A	0.09	I	μg/L	0.50	0.08	1	7/27/10	7/27/10 17:20
Nickel, Total	6020	2.0	I	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:15
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/28/10	8/2/10 15:15
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/28/10	8/2/10 15:15
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/28/10	8/2/10 15:15
Vanadium, Total	6020	1.2	I	μg/L	5.0	1.2	1	7/28/10	8/2/10 15:15
Zinc, Total	6020	8	I	μg/L	10	3	1	7/28/10	8/2/10 15:15

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:
Sample Name:

Water

Lab Code:

SW-2

J1003437-002

Service Request: J1003437

Date Collected: 7/21/10 1030

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result (	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND I	U	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:20
Arsenic, Total	6020	ND I	U	$\mu g/L$	0.50	0.14	1	7/28/10	8/2/10 15:20
Barium, Total	6020	94.6		$\mu$ g/L	2.0	0.5	1	7/28/10	8/2/10 15:20
Beryllium, Total	6020	0.5	I	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:20
Cadmium, Total	6020	ND I	U	μg/L	0.50	0.17	1	7/28/10	8/2/10 15:20
Chromium, Total	6020	1.3	I	$\mu$ g/L	2.0	0.6	1	7/28/10	8/2/10 15:20
Cobalt, Total	6020	ND I	U	μg/L	1.0	0.2	1	7/28/10	8/2/10 15:20
Copper, Total	6020	ND I	U	$\mu g/L$	2.0	0.5	1	7/28/10	8/2/10 15:20
Hardness, Total as CaCO3	SM 2340 B	8.9		mg/L	1.7		1	NA	
Iron, Total	6010B	870		μg/L	100	10	1	7/29/10	8/1/10 21:55
Lead, Total	6020	ND I	U	$\mu g/L$	1.0	0.3	1	7/28/10	8/2/10 15:20
Mercury, Total	7470A	0.09 1	I	μg/L	0.50	0.08	1	7/27/10	7/27/10 17:22
Nickel, Total	6020	0.5 1	I	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:20
Selenium, Total	6020	ND I	U	μg/L	5.0	0.9	1	7/28/10	8/2/10 15:20
Silver, Total	6020	ND U	U	$\mu g/L$	0.50	0.09	1	7/28/10	8/2/10 15:20
Thallium, Total	6020	ND U	U	μg/L	1.0	0.4	1	7/28/10	8/2/10 15:20
Vanadium, Total	6020	2.0 I	[	μg/L	5.0	1.2	1	7/28/10	8/2/10 15:20
Zinc, Total	6020	ND I	U	μg/L	10	3	1	7/28/10	8/2/10 15:20

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

SW-3

J1003437-003

Service Request: J1003437

**Date Collected:** 7/21/10 1010 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	<b>1.6</b> I	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:25
Arsenic, Total	6020	2.47	$\mu g/L$	0.50	0.14	1	7/28/10	8/2/10 15:25
Barium, Total	6020	32.7	$\mu g/L$	2.0	0.5	1	7/28/10	8/2/10 15:25
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:25
Cadmium, Total	6020	ND U	μg/L	0.50	0.17	1	7/28/10	8/2/10 15:25
Chromium, Total	6020	10	$\mu g/L$	2.0	0.6	1	7/28/10	8/2/10 15:25
Cobalt, Total	6020	<b>0.9</b> I	μg/L	1.0	0.2	1	7/28/10	8/2/10 15:25
Copper, Total	6020	8.0	μg/L	2.0	0.5	1	7/28/10	8/2/10 15:25
Hardness, Total as CaCO3	SM 2340 B	144	mg/L	1.7		1	NA	
Iron, Total	6010B	2400	μg/L	100	10	1	7/29/10	8/1/10 21:58
Lead, Total	6020	32.1	μg/L	1.0	0.3	1	7/28/10	8/2/10 15:25
Mercury, Total	7470A	0.15 I	μg/L	0.50	0.08	1	7/27/10	7/27/10 17:23
Nickel, Total	6020	6.8	μg/L	2.0	0.3	1	7/28/10	8/2/10 15:25
Selenium, Total	6020	1.7 I	$\mu g/L$	5.0	0.9	1	7/28/10	8/2/10 15:25
Silver, Total	6020	ND U	$\mu g/L$	0.50	0.09	1	7/28/10	8/2/10 15:25
Thallium, Total	6020	ND U	μg/L	1.0	0.4	1	7/28/10	8/2/10 15:25
Vanadium, Total	6020	14.5	μg/L	5.0	1.2	1	7/28/10	8/2/10 15:25
Zinc, Total	6020	40	μg/L	10	3	1	7/28/10	8/2/10 15:25

Analytical Report

Client:

Jacksonville, City of Trail Ridge

Project:

Sample Matrix:

Water

Sample Name:

Method Blank

Lab Code:

J1003437-MB

Service Request: J1003437

Date Collected: NA Date Received: NA

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND U	μg/L	2.0	0.3	1	7/28/10	8/2/10 13:09
Arsenic, Total	6020	ND U	μg/L	0.50	0.14	1	7/28/10	8/2/10 13:09
Barium, Total	6020	ND U	μg/L	2.0	0.5	1	7/28/10	8/2/10 13:09
Beryllium, Total	6020	ND U	μg/L	1.0	0.3	1	7/28/10	8/2/10 13:09
Cadmium, Total	6020	ND U	$\mu g/L$	0.50	0.17	1	7/28/10	8/2/10 13:09
Chromium, Total	6020	ND U	μg/L	2.0	0.6	1	7/28/10	8/2/10 13:09
Cobalt, Total	6020	ND U	μg/L	1.0	0.2	1	7/28/10	8/2/10 13:09
Copper, Total	6020	ND U	$\mu g/L$	2.0	0.5	1	7/28/10	8/2/10 13:09
Iron, Total	6010B	<b>30</b> I	$\mu g/L$	100	10	1	7/29/10	8/1/10 20:21
Lead, Total	6020	ND U	μg/L	1.0	0.3	1	7/28/10	8/2/10 13:09
Mercury, Total	7470A	ND U	μg/L	0.50	0.08	1	7/27/10	7/27/10 16:40
Nickel, Total	6020	ND U	μg/L	2.0	0.3	1	7/28/10	8/2/10 13:09
Selenium, Total	6020	ND U	μg/L	5.0	0.9	1	7/28/10	8/2/10 13:09
Silver, Total	6020	ND U	μg/L	0.50	0.09	1	7/28/10	8/2/10 13:09
Thallium, Total	6020	ND U	$\mu g/L$	1.0	0.4	1	7/28/10	8/2/10 13:09
Vanadium, Total	6020	ND U	μg/L	5.0	1.2	1	7/28/10	8/2/10 13:09
Zinc, Total	6020	ND U	$\mu g/L$	10	3	1	7/28/10	8/2/10 13:09

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name:

SW-1

Lab Code:

J1003437-001

Service Request: J1003437

**Date Collected:** 7/21/10 1050 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen, Unionized	FL NH3UnCalc DEP12Feb01V2	ND	U	mg/L	0.01		1	NA	7/27/10
Biochemical Oxygen Demand (BOD)	SM 5210 B	ND	U	mg/L	2.0	2.0	1	NA	7/21/10 14:50
Carbon, Total Organic (TOC)	SM 5310 B	51.3		mg/L	1.0	0.3	1	NA	7/29/10 16:21
Chemical Oxygen Demand (COD)	SM 5220 C	143		mg/L	5.0	2.0	1	7/27/10	7/27/10 20:15
Chlorophyll a (Monochromatic)	SM 10200 H	ND	U	$mg/m^3$	5.0	5.0	4.93	7/27/10	7/26/10 19:52
Coliform, Fecal	SM 9222 D	18		CFU/100mL			9	NA	7/21/10 15:50
Conductivity, Field	120.1	93		μMHOS/cm			1	NA	7/21/10 10:50
Dissolved Oxygen, Field	360.1	3.7		ppm			1	NA	7/21/10 10:50
Nitrate as Nitrogen	300.0	ND	U	mg/L	0.20	0.07	1	NA	7/22/10 15:32
Nitrogen, Total as Nitrogen	Calculation	1.23		mg/L	0.1		1	NA	7/28/10
Orthophosphate as Phosphorus	365.1	0.0078		mg/L	0.0050	0.0020	1	NA	7/22/10 14:57
pH, Field	150.1	4.41		pH Units			1	NA	7/21/10 10:50
Phosphorus, Total	365.1	0.0329	V	mg/L	0.0050	0.0030	1	7/21/10	7/22/10 12:04
Solids, Total Dissolved	SM 2540 C	161		mg/L	10	10	1	NA	7/27/10 15:47
Solids, Total Suspended (TSS)	SM 2540 D	5.0		mg/L	5.0	5.0	1	NA	7/27/10 12:30
Temperature, Field	170.1	27.1		deg C			1	NA	7/21/10 10:50
Turbidity, Field	180.1	1.7		NTU			1	NA	7/21/10 10:50

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: SW-2 J1003437-002 Service Request: J1003437

Date Collected: 7/21/10 1030

Date Received: 7/21/10

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen, Unionized	FL NH3UnCalc DEP12Feb01V2	ND	U	mg/L	0.01		1	NA	7/27/10
Biochemical Oxygen Demand (BOD)	SM 5210 B	ND	U	mg/L	2.0	2.0	1	NA	7/21/10 14:50
Carbon, Total Organic (TOC)	SM 5310 B	8.7		mg/L	1.0	0.3	1	NA	7/29/10 16:45
Chemical Oxygen Demand (COD)	SM 5220 C	48.0	V	mg/L	5.0	2.0	1	7/27/10	7/27/10 20:15
Chlorophyll a (Monochromatic)	SM 10200 H	ND	U	mg/m³	1.1	1.1	1.03	7/27/10	7/26/10 19:59
Coliform, Fecal	SM 9222 D	380		CFU/100mL			9	NA	7/21/10 15:50
Conductivity, Field	120.1	61		μMHOS/cm			1	NA	7/21/10 10:30
Dissolved Oxygen, Field	360.1	4.6		ppm			1	NA	7/21/10 10:30
Nitrate as Nitrogen	300.0	ND	U	mg/L	0.20	0.07	1	NA	7/22/10 16:17
Nitrogen, Total as Nitrogen	Calculation	0.21		mg/L	0.1		1	NA	7/28/10
Orthophosphate as Phosphorus	365.1	0.0067		mg/L	0.0050	0.0020	1	NA	7/22/10 14:57
pH, Field	150.1	5.24		pH Units			1	NA	7/21/10 10:30
Phosphorus, Total	365.1	0.0208	V	mg/L	0.0050	0.0030	1	7/21/10	7/22/10 12:08
Solids, Total Dissolved	SM 2540 C	55		mg/L	10	10	1	NA	7/27/10 15:47
Solids, Total Suspended (TSS)	SM 2540 D	20.0		mg/L	5.0	5.0	1	NA	7/27/10 12:30
Temperature, Field	170.1	28.3		deg C			1	NA	7/21/10 10:30
Turbidity, Field	180.1	3.9		NTU			1	NA	7/21/10 10:30

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Sample Name:

Water

Lab Code:

SW-3 J1003437-003 Service Request: J1003437

**Date Collected:** 7/21/10 1010 **Date Received:** 7/21/10

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen, Unionized	FL NH3UnCalc DEP12Feb01V2	0.103	mg/L	0.01		1	NA	7/27/10
Biochemical Oxygen Demand (BOD)	SM 5210 B	8.2	mg/L	2.0	2.0	1	NA	7/21/10 14:50
Carbon, Total Organic (TOC)	SM 5310 B	24.0	mg/L	1.0	0.3	1	NA	7/29/10 17:04
Chemical Oxygen Demand (COD)	SM 5220 C	129	mg/L	5.0	2.0	1	7/27/10	7/27/10 20:15
Chlorophyll a (Monochromatic)	SM 10200 H	335	$mg/m^3$	12	12	11.24	7/27/10	7/26/10 18:41
Coliform, Fecal	SM 9222 D	320	CFU/100mL			9	NA	7/21/10 15:50
Conductivity, Field	120.1	425	μMHOS/cm			1	NA	7/21/10 10:10
Dissolved Oxygen, Field	360.1	6.7	ppm			1	NA	7/21/10 10:10
Nitrate as Nitrogen	300.0	ND U	mg/L	0.20	0.07	1	NA	7/22/10 16:32
Nitrogen, Total as Nitrogen	Calculation	4.06	mg/L	0.1		1	NA	7/28/10
Orthophosphate as Phosphorus	365.1	0.0096	mg/L	0.0050	0.0020	1	NA	7/22/10 14:58
pH, Field	150.1	7.83	pH Units			1	NA	7/21/10 10:10
Phosphorus, Total	365.1	0.390	mg/L	0.0050	0.0030	1	7/21/10	7/22/10 12:09
Solids, Total Dissolved	SM 2540 C	303	mg/L	10	10	1	NA	7/27/10 15:47
Solids, Total Suspended (TSS)	SM 2540 D	112	mg/L	9.1	9.1	1.818	NA	7/27/10 12:30
Temperature, Field	170.1	32.6	deg C			1	NA	7/21/10 10:10
Turbidity, Field	180.1	172.0	NTU			1	NA	7/21/10 10:10

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank J1003437-MB Service Request: J1003437

**Date Collected:** NA **Date Received:** NA

Basis: NA

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Biochemical Oxygen Demand (BOD)	SM 5210 B	ND	U	mg/L	2.0	2.0	1	NA	7/21/10 06:40
Carbon, Total Organic (TOC)	SM 5310 B	0.5	I	mg/L	1.0	0.3	1	NA	7/29/10 12:46
Chemical Oxygen Demand (COD)	SM 5220 C	8.0		mg/L	5.0	2.0	1	NA	7/27/10 20:15
Chlorophyll a (Monochromatic)	SM 10200 H	ND	U	mg/m³	1.0	1.0	1	NA	7/26/10 18:27
Coliform, Fecal	SM 9222 D	< 1		CFU/100mL			1	NA	7/21/10 13:01
Nitrate as Nitrogen	300.0	ND	U	mg/L	0.20	0.07	1	NA	7/22/10 15:02
Orthophosphate as Phosphorus	365.1	ND	U	mg/L	0.0050	0.0020	1	NA	7/22/10 14:55
Phosphorus, Total	365.1	0.0049	I	mg/L	0.0050	0.0030	1	7/21/10	7/22/10 11:53
Solids, Total Dissolved	SM 2540 C	ND	U	mg/L	10	10	1	NA	7/27/10 15:47
Solids, Total Suspended (TSS)	SM 2540 D	ND	U	mg/L	5.0	5.0	1	NA	7/27/10 12:30

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

# Surrogate Recovery Summary Volatile Organic Compounds by GC/MS

**Analytical Method: 8260B** 

Units: Percent

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4
SW-1	J1003437-001	99	99	99	104
SW-2	J1003437-002	102	103	100	105
SW-3	J1003437-003	102	103	99	105
Trip Blank	J1003437-004	100	101	100	105
Method Blank	JQ1002993-04	98	99	98	101
Lab Control Sample	JQ1002993-03	99	98	101	103

# Surrogate Recovery Control Limits (%)

Sur1	= 1,2-Dichloroethane-d4	71 - 122
Sur2	= 4-Bromofluorobenzene	75 - 120
Sur3	<ul> <li>Dibromofluoromethane</li> </ul>	82 - 116
Sur4	= Toluene-d8	88 - 117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437 Date Analyzed: 7/27/10

# **Lab Control Sample Summary** Volatile Organic Compounds by GC/MS

**Analytical Method:** 

8260B

Units: µg/L Basis: NA

Analysis Lot: 210050

Lab Control Sample JQ1002993-03

	3	C=:1	.5	0/ 5
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
	Nesult	Amount	70 KeC	Limits
1,1,1,2-Tetrachloroethane	18.8	20.0	94	85 - 117
1,1,1-Trichloroethane (TCA)	19.2	20.0	96	79 - 124
1,1,2,2-Tetrachloroethane	20.8	20.0	104	83 - 120
1,1,2-Trichloroethane	20.1	20.0	101	86 - 114
1,1-Dichloroethane (1,1-DCA)	19.3	20.0	97	80 - 128
1,1-Dichloroethene (1,1-DCE)	18.8	20.0	94	78 - 130
1,2,3-Trichloropropane	20.6	20.0	103	83 - 123
1,2-Dibromo-3-chloropropane (DBCP)	20.8	20.0	104	62 - 123
1,2-Dibromoethane (EDB)	20.5	20.0	102	88 - 117
1,2-Dichlorobenzene	19.3	20.0	96	84 - 115
1,2-Dichloroethane	19.4	20.0	97	80 - 124
1,2-Dichloropropane	19.5	20.0	98	79 - 123
1,4-Dichlorobenzene	19.3	20.0	96	<del></del>
2-Butanone (MEK)	92.7	20.0 100	96 93	83 - 113
2-Hexanone	92.7 101	100		73 - 127
			101	71 - 138
4-Methyl-2-pentanone (MIBK)	101	100	101	72 - 136
Acetone	90.6	100	91	67 - 133
Acrylonitrile	97.7	100	98	77 - 127
Benzene	18.7	20.0	94	79 - 119
Bromochloromethane	19.4	20.0	97	79 - 129
Bromodichloromethane	19.0	20.0	95	81 - 123
Bromoform	18.7	20.0	94	68 - 129
Bromomethane	18.8	20.0	94 94	79 - 130
Carbon Disulfide	96.9	100	9 <del>4</del> 97	76 - 138
Carbon Tetrachloride	18.1	20.0	90	81 - 125
Chlorobenzene	19.5	20.0	98	86 - 113
Chloroethane	18.5	20.0	92	74 - 126
Chloroform	19.0	20.0	95	83 - 124
Chloromethane	18.1	20.0	90	67 - 135
cis-1,2-Dichloroethene	19.1	20.0	95	80 - 126
cis-1,3-Dichloropropene	19.0	20.0	95	
Dibromochloromethane				86 - 123
Dioromocinoromethane	18.6	20.0	93	82 - 121

#### Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/11/10 15:43

Lab Control Sample Summary

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437 Date Analyzed: 7/27/10

**Lab Control Sample Summary** Volatile Organic Compounds by GC/MS

**Analytical Method:** 

8260B

Units: µg/L Basis: NA

Analysis Lot: 210050

Lab Control Sample JQ1002993-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
Dibromomethane	20.1	20.0	100	83 - 123	
Ethylbenzene	19.4	20.0	97	90 - 118	
Iodomethane	94.8	100	95	68 - 134	
m,p-Xylenes	39.2	40.0	98	86 - 121	 
Methylene Chloride	18.4	20.0	92	72 - 124	
o-Xylene	19.6	20.0	98	89 - 119	
Styrene	19.9	20.0	99	89 - 122	
Tetrachloroethene (PCE)	19.6	20.0	98	80 - 121	
Toluene	19.0	20.0	95	86 - 117	
trans-1,2-Dichloroethene	19.2	20.0	96	77 - 124	
trans-1,3-Dichloropropene	18.9	20.0	95	83 - 124	
trans-1,4-Dichloro-2-butene	22.5	20.0	113	53 - 143	
Trichloroethene (TCE)	18.7	20.0	93	76 - 124	
Trichlorofluoromethane	18.4	20.0	92	74 - 134	
Vinyl Acetate	107	100	107	61 - 148	
Vinyl Chloride	18.7	20.0	93	78 - 132	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

**Client:** 

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Surrogate Recovery Summary** 

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** METHOD

**Analysis Method:** 

8011

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
SW-1	J1003437-001	134
SW-2	J1003437-002	130
SW-3	J1003437-003	146
Method Blank	JWG1002568-4	110
Lab Control Sample	JWG1002568-3	127

Surrogate Recovery Control Limits (%)

Surl = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/30/2010 17:01:26

 $p:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic

 $32_{Page}$  1 of 1

SuperSet Reference: RR35424

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Date Extracted:** 07/26/2010 **Date Analyzed:** 07/29/2010

Lab Control Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

**Analysis Method:** 

8011

2 Dio omocchane and 1,2-Dio omo-5-emoropropane by GC-ECD

Units: ug/L Basis: NA

Basis: NA Level: Low

Extraction Lot: JWG1002568

Lab Control Sample JWG1002568-3

JWG1002568-3 Lab Control Spike

	Lab	Control Spike	e	%Rec
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	0.326	0.250	130	70-130
1,2-Dibromo-3-chloropropane (DBCP	0.318	0.250	127	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/30/2010 17:01:29 p:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

33 Page 1 of 1

SuperSet Reference: RR35424

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix: Water

QA/QC Report

Service Request: J1003437 Date Analyzed: 7/27/10 -

8/2/10

Lab Control Sample Summary Inorganic Parameters

> Units: μg/L Basis: NA

#### Lab Control Sample J1003437-LCS

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits	
Antimony, Total	6020	50.8	50.0	102	80 - 120	
Arsenic, Total	6020	48.7	50.0	97	80 - 120	
Barium, Total	6020	50.8	50.0	102	80 - 120	
Beryllium, Total	6020	46.8	50.0	94	80 - 120	
Cadmium, Total	6020	48.0	50.0	96	80 - 120	
Chromium, Total	6020	52.4	50.0	105	80 - 120	
Cobalt, Total	6020	52.8	50.0	106	80 - 120	
Copper, Total	6020	50.3	50.0	101	80 - 120	
Iron, Total	6010B	2030	2000	102	80 - 120	
Lead, Total	6020	51.4	50.0	103	80 - 120	
Mercury, Total	7470A	4.86	5.00	97	80 - 120	
Nickel, Total	6020	50.7	50.0	101	80 - 120	
Selenium, Total	6020	45.0	50.0	90	80 - 120	
Silver, Total	6020	49.6	50.0	99	80 - 120	
Thallium, Total	6020	52.1	50.0	104	80 - 120	
Vanadium, Total	6020	51.9	50.0	104	80 - 120	
Zinc, Total	6020	94.6	100	95	80 - 120	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

Date Collected: 7/21/10

**Date Received:** 7/21/10 - **Date Analyzed:** 7/22/10 -

7/27/10

Matrix Spike Summary General Chemistry Parameters

Sample Name:

SW-1

Lab Code:

J1003437-001

Units: mg/L Basis: NA

SW-1MS Matrix Spike

Matrix Spike J1003437-MS1

			310	103437-101	31	
A I - 4 - N		Sample	-	Spike		% Rec
Analyte Name	Method	Result	Result	Amount	% Rec	Limits
Chemical Oxygen Demand (COD)	SM 5220 C	143	669	500	105	85 - 115
Nitrate as Nitrogen	300.0	ND	4.85	5.00	97	90 - 110
Phosphorus, Total	365.1	0.0329	0.537	0.500	101	90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Date Collected:** 7/21/10

**Date Received:** 7/21/10 **Date Analyzed:** 7/22/10 -

7/27/10

**Duplicate Sample Summary General Chemistry Parameters** 

Sample Name:

SW-1

Lab Code:

J1003437-001

Units: mg/L Basis: NA

SW-1DUP

Dunlicate Samule

				Sample	•	ie Sampie 37-DUP1		RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Chemical Oxygen Demand (COD)	SM 5220 C	5.0	2.0	143	143	143	<1	20
Nitrate as Nitrogen	300.0	0.20	0.07	ND U	ND U	NC	NC	20
Phosphorus, Total	365.1	0.0050	0.0030	0.0329 V	0.0298	0.0314	10	20
Solids, Total Suspended (TSS)	SM 2540 D	5.0	5.0	5.0	5.5	5.25	10	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

**Sample Matrix:** 

Water

Service Request: J1003437

**Date Collected:** 7/21/10

Date Received: 7/21/10 Date Analyzed: 7/22/10 -

7/27/10

**Duplicate Sample Summary General Chemistry Parameters** 

Sample Name:

SW-1

Lab Code:

J1003437-001

Units: mg/m³ Basis: NA

SW-1DUP

					Duplicat	te Sample		
				Sample	J100343	37-DUP1		RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Chlorophyll a (Monochromatic)	SM 10200 H	5.0	5.0	ND U	ND U	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437

**Date Analyzed:** 7/27/10

Lab Control Sample Summary Total Dissolved Solids Dried at 180 Deg C (TDS) 20th Ed.

> Units: mg/L Basis: NA

Lab Control Sample

**Duplicate Lab Control Sample** 

		J10	03437-LC	S1	J1003	3437-DLC	S1			
Analyte Name	Method	Result	Spike Amount	% Rec	Result	Spike Amount	t % Rec	% Rec Limits	RPD	RPD Limit
Solids, Total Dissolved	SM 2540 C	297	300	99	303	300	101	85 - 115	2	20

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003437 Date Analyzed: 7/21/10 -

7/29/10

Lab Control Sample Summary **General Chemistry Parameters** 

> Units: mg/L Basis: NA

Lab Control Sample J1003437-LCS2

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Biochemical Oxygen Demand (BOD)	SM 5210 B	183	198	93	84.5 - 115.
Carbon, Total Organic (TOC)	SM 5310 B	48.6	50.0	97	90 - 110
Chemical Oxygen Demand (COD)	SM 5220 C	526	500	105	85 - 115
Nitrate as Nitrogen	300.0	4.97	5.00	99	90 - 110
Orthophosphate as Phosphorus	365.1	0.516	0.500	103	90 - 110
Phosphorus, Total	365.1	0.519	0.500	104	90 - 110
Solids, Total Dissolved	SM 2540 C	27.0	30	90	70 - 130
Solids, Total Suspended (TSS)	SM 2540 D	85.0	80.0	106	85 - 115

Results flagged with an asterisk (*) indicate values outside control criteria.



# Columbia Analytical Services, Inc. Cooler Receipt Form

Services *			Cooler	· Receipt Form	1				
Client:	HDR			Service Reque	est #:	5,00	3432		
Project: '	Trail 1	Ridge					$\sim$		
Cooler rec		21.10		and opened on	7.71.1	Oby	2K		
COURIER	.CAS UPS	FEDEX	Client	Other		Airbill #	#		
1	Were custody sea	als on outside of co	ooler?			Yes	No		
	If yes, how many	y and where?				#:\ on	Tid	other	
2	Were seals intact	t and signature and	date cor	rect?		Yes	No	N/A	
3	Were custody pa	pers properly filled	d out?			Yes	No	N/A	
4	Temperature of co	oler(s) upon receipt	(Should b	e > 0°C and $< 6$ °C)	3.4				-
5	Thermometer ID				TIL	2			
6	Temperature Bla	nk Present?				Yes	No		
7	Were Ice or Ice I	Packs present			(	Ice	Ice Pack	(S	No
8	Did all bottles ar	rive in good condit	tion (unb	roken, etc)?	· ·	Yes	No	N/A	
9	Type of packing	material present		bubbles	erap/	note	449		
10	Were all bottle la	abels complete (san	nple ID,	preservation, e	tc)?	Xes	No )	N/A	
11	Did all bottle lab	els and tags agree	with cust	tody papers?		Yes	No	N/A	
12	Were the correct	bottles used for the	e tests ir	ndicated?		Yes	No	N/A	
13		rved bottles received v			_	Yes	No	N/A	
1	HNO3 pH<2 H2	- /	2/NaOH p	H>9 NaOH p	H>12 (HC	Cl pH<2			
14	Were all samples	received within ar	nalysis h	olding times?	(	Yes	No	N/A	
15		cked for absence of air	-	_	low	Yes	No	N/A	
16	Where did the bo	ttles originate?				CAS	Client		
	Sample ID	Reagent		Lot #	ml added	Initials I	Date/Time		
								1	
	***************************************							-	
	ļ							-	
								4	
						-		-	
Additional o	comments and/or e	explanation of all d	iscrepan	cies noted abov	e:				
-									
***									
**								40	
Client appro	oval to run samples	s if discrepancies n	oted:				Date:	70	
1.1	1	1							



Date: 7.21. (O Initials: CP)

Note that pH is check and meets the required pH criterion listed in the column heading unless otherwise noted on the cooler receipt form.

	31	Misc.	MISC.	Ϋ́Z	Ι.	-00	-005	-003	-00-	1 20	3 8	99	-007	-008	600-	-010	-011	-012	-013	-0.14	-0.15	-016	-017	-018	-019	-020	-021	-022	-023	-024	-025	-026	-027	-028	-029	-030	-031	-032	-033	-034	-035	-036	-037	-038	020
		Zipłock	<b>-</b>	øт																																									_
	53	100ml	Sodium	I niosuitate N/A	ŀ	-	_																																						
	78	160z	ם כ	Y/X	ŀ				$\vdash$		$\dagger$	$\dagger$	1																															+	-
		N	פ	Y/N																																								1	
3	-+	40Z	_	A/A				-																																					_
10	52	20Z		X X	L				_	-	1		_										_																					$\downarrow$	
Š	24	7	2	\$ 25	Ľ																																								
- 50	23	7 (	2 3		L																																								
9	22	= 0		¥ Ž	<u>'</u>	_	-	_			L																																		
2	7.7	= 0		3 0	<b> </b> _					_		_																																╛	
L		= 0	-	A/A	_		_	-				_	1									_													$\perp$									$\perp$	
-	6	1500m		N A	Ŀ								_								_																								
ç	2 2	- 500m	CONH POSCH	2	Ľ						_		1																															$\perp$	
Je	7	200m	- 000	<2		_	_	_																																					
Bottle Code	ا اه	200ml	- 3	<2	-																																								
Bott	0	250mL250mL550mL500mL500mL500mL500mL		N/A	-																																								
,	4	250m	ONH HNO3	2																	_																								
12	2 0	E SOUM		N/A	-																																								
5	71	ZSUMI P	l ž	>12	,																																								
-	- 0	T L	ZnAc2	6<																																								T	•
10	2 2	D d	1 %	2	-	_	_																									1		1				1		1		1		$\dagger$	•
0	2	E G	. 700	<2	1							T	1	$\dagger$	1	1											1				1	1			$\dagger$	1	1	+	1	$\dagger$		1	1	+	
α	0 0	E G		A/A	,	1				-		+	+	+		-													-	-	+	+	+	+	+	+	+	+	+	+	-	+	+	+	
-	40ml 425ml 425ml 425ml 425ml 425ml 425ml	CZIIICO G	NO.	2	-		_			-		$\dagger$		+	$\dashv$	+									+			-		$\dashv$		+	+	+	+	+		+	+	+	+	+	+	+	-
9	- T	D d	SO H	<2 <2	,							-	+	1	1	1	-							1								+	+	-	+	+	+	+		+	+	+	+	+	-
7.	1	P d	1 2	22	-	1	_	_			-	+	+	+	+	+	1							-	$\dashv$	-	+	+	-	+	+		+	+	+	+	+	+	+	+	+	+	+	+	_
1	107	Dunc 1		N/A	$\frac{1}{2}$			$\dashv$			-		+	+	-		$\dashv$						-	-	+	-		+	$\dashv$	$\dashv$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
-	7	GIIIL		N/A	$\dashv$	+		-	_		-		+	+	+	+	$\dashv$								+	-	+	-	$\dashv$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
			1	1 1	-		-		_	-		-	+	+	-	-	-							-	+		$\dashv$	$\dashv$	+	$\dashv$	+	+	+	+	+	+	+	+	+	+	+	-	+	$\perp$	-
0	1	<u> -</u>		/A <2	<u> </u>	M		ラ ス	ר	_				+		+	4								$\dashv$		+			-	+		+	-	+	+	+	+	+	+	+	-	-	+	
	Ţ			HO N/A	#6	M	1	1		<u> </u>	L	<u></u>		_		_													_													_		_	-
		Container	Pres	Req. pH	Sample #	-001	-002	-003	-004	-005	900-	-007	100-	800-	600-	-010	-011	-012	-013	-014	-015	-016	-017	-018	-019	-020	-021	-022	-023	-024	-025	-026	-027	-028	620-	-030	-031	-032	-033	-034	ερ 41	-030	-037	9 0	1.5

	Services
Columbia	Analytical
V	J

www.casiab.con

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

**J**/003437 % HS

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

Ą

HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Other RECEIVED BY o+9644667 Printed Name #Od IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration ANALYSIS REQUESTED (Include Method Number and RELINQUISHED BY I. Results Only Printed Name Signature ٥ TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD 928 0 PRESERVATIVE 3 3 CUSTODY SEALS: Y N NUMBER OF CONTAINERS 1 2 RELINQUISHED BY MATRIX 3 3 1050 1030 1010 SAMPLING 000 12.4 Sampler's Printed Name 12-4 DATE とっち STE Ø 30226 35 Email Address FORSYTH ST. FAX# SAMPLE RECEIPT: CONDITION/COOLER TEMP Date/Im 8553 T L SPECIAL INSTRUCTIONS/COMMENTS す 002 JACIUSONYILLE RIDGE CLIENT SAMPLE ID Date/Ting-21-10 1115 Armody BRAD STONE 590 RELINQUISHED BY PRO-TECH 50.3 2-175 1-135 TRIP RAIL TOU See QAPP ZA PZ HOR

Date/Time

Distribution: White - Return to Originator; Yellow.-'Retained by Client

		FIELD INFORMA	TION FORM	
Na	me: TRAIL RIDGE	This form is to be completed, in	d Information Form is Required haddition to any State Forms. The Field Form is	WASTE MANAGEMENT
1	ite o.: Sample Point: Sample   S   W -   1	containers (i.e. with the cooler t	of Custody Forms that accompany the sample that is returned to the laboratory).	Laboratory Use Only/Lab ID:
E	222112			+     +
PURGE	PURGE DATE PURGE TIME (MM DD YY) (2400 Hr Clock) Note: For Passive Sampling, replace "Water Vol in Casing" of	ELAPSED HRS  (hrsemin)  and "Well Vols Pureed" w/ Water Vol in Tu	(Gallons)	L VOL PURGED WELL VOLS (Gallons) PURGED Mark changes record field data below
PLE			ter Device: Y or 0.45 \(\mu\) or 0.45 \(\mu\)	u (circle or fill in)
PURGE/SAMPLE	Purging Device A- Submersible Pump B-Peristaltic Pump C-QED Bladder Pump		A-In-line Disposab B-Pressure	le C-Vacuum X-Other
RGE	Sampling Device F   C-QED Bladder Pump	p F-Dipper/Bottle	A-Tetlon	C-PVC X-Other:
			Tube Type: B-Stainless Steel	D-Polypropylene
144	Well Elevation (at TOC)	Depth to Water (DTW) (from TOC)	Groundwater Eleva (ft) (site datum, from T	
WELL		Stick Up (from ground elevation) al and can be from historical data, unless re		Casing n) Material Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Cond	ductance (SC/EC) Temp. nhos/cm @ 25 °C) (°C)	Turbidity D.O. (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	10:50 NA 1441 14	1.55 89	17 37	1552
al)	2 nd 2 nd			
STABILIZATION DATA (Optional)	3 rd 3 rd			
) A (O	4 th 4 th 4 th			
DAT				
LION		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
LIZA'				
ABII				
ST				
	Suggested range for 3 consec. readings or +/- 0.2 note Permit/State requirements:	+/- 3%	+/- 10%	+/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization by State/Permit/Site. If a Data Logger or other Electronic format	on readings for parameters required by V is used, fill in final readings below and sub	WM, Site, or State). These fields can be used wh mit electronic data separately to Site. <u>If more fiel</u>	ere four (4) field measurements are required ds above are needed, use separate sheet or form
	SAMPLE DATE pH CO	DNDUCTANCE TEMP. nbos/cm @ 25°C) (°C)	TURBIDITY DO (ntu) (mg/L-ppm)	eH/ORP Other: (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measureme	9321		1552
SAN CONTRACTION	Sample Appearance:	Odor:	Color: Amber	Other: No Sheen
	Weather Conditions (required daily, or as conditions cha		Outlook: P.C. 90	Precipitation: Y or N
	Specific Comments (including purge/well volume calc	ulations if required):		
SIN.				
COMMENTS		Aleccador de milho de distribuir de del de manuel que pare para proprio por comunicações a la medio estra com comunicações de medio estra com comunicações de medio estra com comunicações de medio estra comunicações de medio es		
000				
FIELD.				New York Control of the Control of t
	I certify that sampling procedures were in accordance wit	h applicable EPA, State, and WM pro	otocols (if more than one sampler, all should	sign):
	7/21/10 DAN ARMOUR	A		PRO-TEUM
	Date Name	Signature VHITE/OPICINAL Stage with Sample V	C	ompany 43

		NFORM	ATION FORM	
1			ield Information Form is Required I. in addition to any State Forms. The Field Fo	WASTE MANAGEMENT
1			ain of Custody Forms that accompany the sampler that is returned to the laboratory).	Laboratory Use Only/Lab ID:
PURGE	PURGE DATE PURGE TIME ELAP	PSED HRS	WATER VOL IN CASING A	CTUAL VOL PURGED WELL VOLS
	(MM DD YY) (2400 Hr Clock) (h Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Pu	us:min) urged" w/ Water Vol in	(Gallons) Tubing/Flow Cell and Tubing/Flow Cell Vols	(Gallons) PURGED Purged. Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated:  Purging Device A- Submersible Pump D-Bailer	F	Filter Device: Y or N 0.45 µ	or µ (circle or fill in) sposable C-Vacuum
E/SA	Purging Device A- Submersible Pump D-Bailer B-Peristaltic Pump E-Piston P C-QED Bladder Pump F-Dipper/E	,	Filter Type: B-Pressure	X-Other
PUR	X-Other:		le Tube Type: A-Teflon B-Stainless S	C-PVC X-Other: Steel D-Polypropylene
	Well Elevation (at TOC)  Total Well Depth (from TOC)  Wetter Total Well Depth (from ground e	er (DTW)	Groundwate (site datum,	
	Total Well Depth (from TOC)  Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from		Casing ID Casing ID required by Site/Permit. Well Elevation, DT	Casing (in) Material V. and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/E- (2400 Hr Clock) (std) (\(\mu\mhos/cm\) @ 25 °C		Turbidity D.O (mg/L -	
	10:30 NA 14 5. 24 14 61	₹8.3	3,9 4	6 1064
(leuc	2 nd 2 nd			
STABILIZATION DATA (Optional)	3 rd 3 rd 3 rd 4 th 4 th			
ATA				
OND				
ZATI				
ABILI				
ST/				
	Suggested range for 3 consec. readings or +/- 0.2 +/- 3% note Permit/State requirements:		+/- 10	% +/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for p by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in fina.	parameters required b I readings below and s	by WM, Site, or State). These fields can be wubmit electronic data separately to Site. If m	sed where four (4) field measurements are required ore fields above are needed, use separate slieet or forn
	SAMPLE DATE         pH         CONDUCTANCE           (MM DD YY)         (std)         (umhos/cm @ 25°C	Е ТЕМР.	TURBIDITY DO (ntu) (mg/L-p	eH/ORP Other:
FIELD DATA	Final Field Readings are required (i.e. record field measurements, final stabilized)	583	39 4	6 1064
	Sample Appearance:	Odor:	Color: Na	
	Weather Conditions (required daily, or as conditions change):		CALM Outlook: P.C.	90° Precipitation: Y or W
	Specific Comments (including purge/well volume calculations if requ	uired):		
FIELD COMMENTS		millitet in 2 treatment op with an above in our end or in a minimum et en minimum et in efect.		
MMC				
S C				
	1 certify that sampling procedures were in accordance with applicable EP  1 21 10 DAN ARMOVA	A, State, and WM p	protocols (if more than one sampler, all s	should sign):
	7,21,10 DAN ARMOUR			17R0~18CA
	Date Name DISTRIBUTION: WHITE/ORIGINA	Signature  L - Stays with Sampl	e, YELLOW - Returned to Client, PINK - F	Company 44

	FIELD INFORMATION FORM	
Na	ite ine: TRAIL RIDGE This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
1	submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).  Sample 1D	Laboratory Use Only/Lab ID:
PURGE	PURGE DATE (MM DD YY) (2400 Hr Clock) (brs:min) (Gallons) (Gallons)	L VOL PURGED WELL VOLS
	(MM DD 11) (2400 HI Clock) (firshin) (Gations)  Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged.	
MPL	Purging and Sampling Equipment Dedicated: Of or N Filter Device: Y or O.45 µ or Purging Device A-In-line Disposable Pump D-Bailer	μ (circle or fill in) le C-Vacuum
PURGE/SAMPLE	Purging Device A- Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle  A-In-line Disposable B-Pressure A-In-line Disposable B-Pressure A-Teflon	X-Other
PUR	X-Other: Sample Tube Type: A-Teflon B-Stainless Steel	C-PVC X-Other: D-Polypropylene
1	Well Elevation Depth to Water (DTW) Groundwater Eleva (at TOC) (ft) (site datum, from TOC)	
11/151	Well Elevation (at TOC)  Total Well Depth (from TOC)  Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Company of the Permit well and DTW.	
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. (2400 Hr Clock) (std) (µmhos/cm @ 25 °C) (°C) (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	10:10 NA 17831 425 326 1720 67	121
≘	2nd 2nd 2nd 1	
STABILIZATION DATA (Optional)	3 rd 3 rd 1	
A (O)	4 th 4 th 1 4 th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DAT		
NOL		
IZAT		
<b>ABIL</b>		
ST	┝╌┋╌┩┝╌┩┢┵╢┪╟┵╌╢╟┼┼╢	
	Suggested range for 3 consec. readings or +/- 0.2 +/- 3% +/- 10%	+/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used wh	ere four (4) field measurements are required
	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site.    If more field	eH/ORP Other:
FIELD DATA	$(MM DD YY) \qquad (std) \qquad (umhos/cm @ 25^{\circ}C) \qquad ("C) \qquad (ntu) \qquad (mg/L-ppm) \qquad (mg/L-ppm$	J 2 1 Units
Married Colonia	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field para.  Sample Appearance: Color: Rown	Other: No Shan
	Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: P.C. 90"	Precipitation: Y or (N)
	Specific Comments (including purge/well volume calculations if required):	
SIZ		
COMMENTS		
FIELD.		
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should	sign):
	7-21,10 DAN PRAMOUR	RO-1644
	Date Name Signature Co	ompany 45

# Appendix C

Laboratory Report – Leachate



August 23, 2010

Service Request No: J1003442

Handi Wang HDR Engineering 200 W. Forsyth Street, Suite 800 Jacksonville, FL 32202

# Laboratory Results for: Trail Ridge

Dear Handi:

Enclosed are the results of the sample(s) submitted to our laboratory on July 21, 2010. For your reference, these analyses have been assigned our service request number **J1003442**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted.

Columbia Analytical Services, Inc.

Project Manager

Page 1 of 87

Client:

**HDR** Engineering

**Project:** 

Trail Ridge

Sample Matrix:

Water

**Service Request No.:** 

J1003442

Date Received: 7/21/10

#### CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

#### Sample Receipt

Two water samples and one trip blank were received for analysis at Columbia Analytical Services on 7/21/10. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4±2°C upon receipt at the lab except for aqueous samples designated for metals analyses, which were stored at room temperature.

#### **Volatile Organic Compounds by GC-MS**

The samples were analyzed for Volatile Organics using EPA Method 8260. The following observations were made regarding this delivery group.

#### **Elevated Method Reporting Limits**

The reporting limits are elevated for all analytes in samples LDSS and LCS. The samples were diluted prior to instrumental analysis due to the foaming nature of the matrix. The reporting limits are adjusted to reflect the dilution.

#### **EDB** and **DBCP** by **GC-ECD**

The samples were analyzed for EDB and DBCP using EPA Method 8011. The following observations were made regarding this delivery group.

#### Second Source Exceptions

The upper control criterion was exceeded for the following analytes in the Second Source Verification (SSV): 1,2-Dibromoethane (EDB) and 1,2-Dibromo-3-chloropropane (DBCP). The field samples analyzed in this sequence did not contain the analytes in question. Because elevated recovery equates to a potential high bias, the data is not significantly affected. No further corrective action was taken.

# Batch QC Notes and Discussion

Quality control samples (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample. 011 .

Approved by	Cia fly	Date	8/23	lis
	9, 1			•

# Organochlorine Pesticides by GC-ECD

The samples were analyzed for Organochlorine Pesticides using EPA Method 8081. The following observations were made regarding this delivery group.

#### Continuing Calibration Verification Exceptions

The spike recovery of Decachlorobiphenyl for Continuing Calibration Verification (CCV) JWG1002705-2 was outside the upper control criterion (117.5% versus a criterion of 115%). The surrogate in question was passing in all associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

#### Matrix Spike Recovery Exceptions

The matrix spike and duplicate matrix spike recoveries of alpha-BHC and Aldrin and the duplicate matrix spike recoveries of delta-BHC and 4,4'-DDD for sample LDSS were outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

# Relative Percent Difference Exceptions

The Relative Percent Difference (RPD) for the following analyte in the replicate matrix spike analyses of sample LDSS was outside control criteria: delta-BHC. All spike recoveries in the associated Laboratory Control Sample (LCS) were within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

# **Elevated Method Reporting Limits**

The Method Reporting Limit (MRL) is elevated for all target analytes in samples LDSS and LCS. The samples required dilution due to the presence of non-target background components including sulfur that interfered with internal standard quantitation. Copper cleanup was performed but was insufficient alone. The elevated reporting limits are reflected in the final report. No further corrective action was taken.

#### **PCB Aroclors by GC-ECD**

The samples were analyzed for PCB Aroclors using EPA Method 8082. The following observations were made regarding this delivery group.

#### **Elevated Method Reporting Limits**

The Method Reporting Limit (MRL) is elevated for all target analytes in samples LDSS and LCS. The samples required dilution due to the presence of non-target background components including sulfur that interfered with internal standard quantitation. Copper cleanup was performed but was insufficient alone. The elevated reporting limits are reflected in the final report. No further corrective action was taken.

#### Batch QC Notes and Discussion

Quality control samples (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

Approved by	Our Ph	Date	8/23/10	
	0, //		1 1	

#### Semivolatile Organic Compounds by GC-MS

The samples were analyzed for Semivolatile Organics using EPA Method 8270. The following observations were made regarding this delivery group.

#### Second Source Verification Exceptions:

The upper control criterion was exceeded for the following analyte in the Second Source Verification (SSV): N-Nitrosodiphenylamine. The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

#### Surrogate Exceptions

The lower control criterion was exceeded for the following surrogates in Method Blank (MB) JWG1002584: 2-Fluorophenol, Phenol-d6, and 2,4,6-Tribromophenol. No target analyte results were detected in the Method Blank, but the results should be considered biased low. All surrogate recoveries are within control criteria for the associated field samples. The samples could no be re-extracted due to departmental sample load and expired holding times.

#### **Internal Standard Exceptions**

The internal standard recoveries of Phenanthrene-d10 and Perylene-d12 in sample LCS were outside control criteria because of suspected matrix interference (49% and 40% versus a lower criterion of 50%). The surrogates associated with these internal standards had passing recoveries. The sample had no results above the method reporting limit (MRL) for any target analytes associated with these internal standards. The results quantified using this internal standard are flagged to indicate the problem.

#### Matrix Spike Recovery Exceptions

The matrix spike and duplicate matrix spike recoveries of several analytes for sample LCS were outside control criteria. The sample contained elevated levels of target and non-target background components that interfered with spike recovery. No further corrective action was appropriate.

#### Relative Percent Difference Exceptions

The Relative Percent Differences (RPD) for several analytes for sample LCS was outside control criteria. The sample contained elevated levels of target and non-target background components that interfered with spike recovery. No further corrective action was appropriate.

# **Lab Control Sample Exceptions**

The spike recoveries of N-Nitrosodi-n-propylamine, Isophorone, and 2-Nitroaniline for Laboratory Control Samples (LCS) JWG1002584-3 were outside the upper control criterion (106% versus a criterion of 103%, 118% versus a criterion of 106%, and 110% versus a criterion of 94%). The analytes in question were not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

#### **Elevated Method Reporting Limits**

The reporting limits are elevated for all analytes in samples LDSS. The sample extract was diluted prior to instrumental analysis due to relatively high levels of non-target background components. The reporting limits are adjusted to reflect the dilution.

Approved by Date 8/23/10

# Metals by ICP-MS/ICP-OES/CVAA

The samples were analyzed for Total Metals using EPA Methods 6020/6010B/7470A. The following observations were made regarding this delivery group.

#### **Elevated Method Reporting Limits**

The Method Reporting Limit (MRL) is elevated for several analytes in samples LDSS and LCS. The samples required dilution due to the presence of non-target background components that interfered with the analysis, indicated by internal standard failure. The elevated reporting limits are reflected in the final report. No further corrective action was taken.

#### Batch QC Notes and Discussion

Quality control samples (i.e., Dup/Spike or MS/DMS samples) were performed using samples from another sample delivery group (SDG). The frequency requirement for quality control sample analysis was consistent with the project's requirements. Matrix specific quality control results have no bearing on sample data from a different matrix or location. Therefore, control of the batch has been evaluated using the method blank and the laboratory control sample.

#### **General Chemistry Parameters**

The samples were analyzed for Inorganic Parameters using various EPA and Standard Methods. No problems were observed.

#### **Subcontracted Analytical Parameters**

The samples were delivered to ENCO Labs in Jacksonville, FL on 7/23/10 for Organophosphorus Pesticides and Herbicides determination. The certified analytical report has been included in its entirety in Appendix A: Subcontracted Analytical Results.

Approved by	Clas R	the state of the s	Date	8/23/10
	_ ()'	.()		

# Florida DEP Data Qualifiers

- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value (one of the following reasons is discussed in the project case narrative).
  - 1. The result may be inaccurate because the surrogate recovery limits have been exceeded.
  - 2. No known quality control criteria exists for the component.
  - 3. The reported value failed to meet the established quality control criteria for either precision or accuracy.
  - 4. The sample matrix interfered with the ability to make any accurate determination (e.g., primary and confirmation results show greater than 40% RPD).
  - 5. The data is questionable because of improper laboratory or field protocols (e.g., GC/MS Tune did not meet method criteria).
- K Off scale low. The value is less than the lowest calibration standard but greater than the method reporting limit (MRL).
- L Off scale high. The analyte is above the upper limit of the linear calibration range.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified due to matrix interference.
- N Presumptive evidence of the analyte. Confirmation was not performed.
- Q Sample held beyond the accepted holding time.
- T Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only.
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.

# Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance allowed in

drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the

MDL.

Client:

Project:

Trail Ridge

Service Request: J1003442

# SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
J1003442-001	LDSS	7/21/10	08:00
J1003442-002	LCS	7/21/10	08:30
J1003442-003	TRIP	7/21/10	00:00

#### Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix:

Trail Ridge

Sample Name:

Water

Lab Code:

LDSS J1003442-001 Service Request: J1003442
Date Collected: 7/21/10 0800

Date Received: 7/21/10

Units: μg/L Basis: NA

# Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane	ND ND ND	U	4.00 4.00 4.00	0.720 0.680 0.440	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30	)	209799 209799 209799
1,1,2-Trichloroethane 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE)	ND ND ND	U	4.00 4.00 4.00	0.680 0.520 0.640	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30	)	209799 209799 209799
1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ND ND ND	U U	20.0 8.00 40.0	0.480 1.68 0.840	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	20.0	9.20	4	NA	7/25/10 13:30	<u> </u>	209799
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND		4.00 4.00	0.680 1.92	4 4	NA NA	7/25/10 13:30 7/25/10 13:30		209799 209799
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene	ND ND ND	U	4.00 4.00 4.00	0.720 0.480 0.520	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane	ND 7.35 ND		4.00 4.00 4.00	0.600 0.400 0.720	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
2-Butanone (MEK) 2-Hexanone 4-Methyl-2-pentanone (MIBK)	1070 ND 26.8		40.0 100 100	15.2 8.80 2.60	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
Acetone Acetonitrile Acrolein	<b>860</b> ND ND		200 100 200	22.4 72.0 16.8	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
Acrylonitrile Allyl Chloride Benzene	ND ND 1.22	U	40.0 20.0 4.00	4.80 1.56 0.840	4 4 4	NA NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
Bromochloromethane Bromodichloromethane Bromoform	ND ND ND	U	20.0 4.00 8.00	1.08 0.680 1.68	4 4 4	NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
Bromomethane Carbon Disulfide Carbon Tetrachloride	ND ND ND	U	4.00 40.0 4.00	0.880 9.44 1.36	4 4 4	NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799
Chlorobenzene Chloroethane Chloroform	ND ND ND	U	4.00 20.0 4.00	0.640 0.880 1.40	4 4 4	NA NA	7/25/10 13:30 7/25/10 13:30 7/25/10 13:30		209799 209799 209799

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: LDSS J1003442-001 Service Request: J1003442

Date Collected: 7/21/10 0800

Date Received: 7/21/10

Units: μg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Chloromethane	ND		4.00	0.440	4	NA	7/25/10 13:30		209799
Chloroprene	ND	U	4.00	0.00	4	NA	7/25/10 13:30		209799
cis-1,2-Dichloroethene	ND		4.00	1.44	4	NA	7/25/10 13:30		209799
cis-1,3-Dichloropropene	ND		4.00	0.800	4	NA	7/25/10 13:30		209799
Dibromochloromethane	ND	U	4.00	0.760	4	NA	7/25/10 13:30		209799
Dibromomethane	ND		20.0	0.720	4	NA	7/25/10 13:30		209799
Dichlorodifluoromethane	ND		80.0	0.920	4	NA	7/25/10 13:30		209799
Ethyl Methacrylate	ND	U	4.00	0.760	4	NA	7/25/10 13:30		209799
Ethylbenzene	6.65		4.00	2.08	4	NA	7/25/10 13:30		209799
Hexachlorobutadiene	ND	U	40.0	2.40	4	NA	7/25/10 13:30		209799
Iodomethane	ND	U	20.0	10.8	4	NA	7/25/10 13:30		209799
Isobutyl Alcohol	ND	U	400	172	4	NA	7/25/10 13:30		209799
m,p-Xylenes	11.2		8.00	4.13	4	NA	7/25/10 13:30		209799
Methacrylonitrile	ND	U	20.0	6.40	4	NA	7/25/10 13:30		209799
Methyl Methacrylate	ND	U	8.00	1.08	4	NA	7/25/10 13:30		209799
Methylene Chloride	ND	U	20.0	0.840	4	NA	7/25/10 13:30		209799
Naphthalene	3.84	I	40.0	0.960	4	NA	7/25/10 13:30		209799
o-Xylene	6.62		4.00	0.560	4	NA	7/25/10 13:30		209799
Propionitrile	ND	U	100	15.6	4	NA	7/25/10 13:30		209799
Styrene	ND	U	4.00	1.17	4	NA	7/25/10 13:30		209799
Tetrachloroethene (PCE)	ND	U	4.00	0.440	4	NA	7/25/10 13:30		209799
Toluene	7.44		4.00	0.760	4	NA	7/25/10 13:30		209799
trans-1,2-Dichloroethene	ND	U	4.00	0.480	4	NA	7/25/10 13:30		209799
trans-1,3-Dichloropropene	ND	U	4.00	0.920	4	NA	7/25/10 13:30		209799
trans-1,4-Dichloro-2-butene	ND	U	80.0	8.80	4	NA	7/25/10 13:30		209799
Trichloroethene (TCE)	ND	U	4.00	0.640	4	NA	7/25/10 13:30		209799
Trichlorofluoromethane	ND	U	80.0	0.880	4	NA	7/25/10 13:30		209799
Vinyl Acetate	ND	U	40.0	7.60	4	NA	7/25/10 13:30		209799
Vinyl Chloride	ND	U	4.00	0.880	4	NA	7/25/10 13:30		209799

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

LDSS

J1003442-001

Service Request: J1003442

**Date Collected:** 7/21/10 0800 **Date Received:** 7/21/10

Units: Percent

Basis: NA

## Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	89	71-122	7/25/10 13:30	
4-Bromofluorobenzene	102	75-120	7/25/10 13:30	
Dibromofluoromethane	96	82-116	7/25/10 13:30	
Toluene-d8	103	88-117	7/25/10 13:30	

Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name:

LCS

Lab Code:

J1003442-002

Service Request: J1003442 **Date Collected:** 7/21/10 0830

Date Received: 7/21/10

Units: µg/L Basis: NA

# Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane	ND ND ND	U	4.00 4.00 4.00	0.720 0.680	4 4	NA NA	7/25/10 13:57 7/25/10 13:57	1	209799 209799
1,1,2-Trichloroethane	ND		4.00	0.440	4	NA NA	7/25/10 13:57 7/25/10 13:57		209799
1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE)	ND ND		4.00 4.00	0.520 0.640	4 4	NA NA	7/25/10 13:57 7/25/10 13:57		209799 209799
1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ND ND ND	U	20.0 8.00	0.480	4 4	NA NA	7/25/10 13:57 7/25/10 13:57	· · · · · · · · · · · · · · · · · · ·	209799 209799
1,2-Dibromo-3-chloropropane (DBCP)	ND		20.0	0.840 9.20	4	NA NA	7/25/10 13:57 7/25/10 13:57		209799 209799
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND		4.00 4.00	0.680 1.92	4 4	NA NA	7/25/10 13:57 7/25/10 13:57		209799 209799
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene	ND ND ND	U	4.00 4.00 4.00	0.720 0.480 0.520	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57	1	209799 209799 209799
1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane	ND <b>14.7</b> ND		4.00 4.00 4.00	0.600 0.400 0.720	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57		209799 209799 209799
2-Butanone (MEK) 2-Hexanone 4-Methyl-2-pentanone (MIBK)	3630 8.86 43.5		40.0 100 100	15.2 8.80 2.60	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57		209799 209799 209799
Acetone Acetonitrile Acrolein	3580 ND ND		200 100 200	22.4 72.0 16.8	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57		209799 209799 209799
Acrylonitrile Allyl Chloride Benzene	ND ND <b>2.24</b>	U	40.0 20.0 4.00	4.80 1.56 0.840	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57		209799 209799 209799
Bromochloromethane Bromodichloromethane Bromoform	ND ND ND	U	20.0 4.00 8.00	1.08 0.680 1.68	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57		209799 209799 209799
Bromomethane Carbon Disulfide Carbon Tetrachloride	ND ND ND	U	4.00 40.0 4.00	0.880 9.44 1.36	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57		209799 209799 209799
Chlorobenzene Chloroethane Chloroform	ND ND ND	U	4.00 20.0 4.00	0.640 0.880 1.40	4 4 4	NA NA NA	7/25/10 13:57 7/25/10 13:57 7/25/10 13:57		209799 209799 209799

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

LCS

Lab Code:

J1003442-002

Service Request: J1003442 **Date Collected:** 7/21/10 0830

Date Received: 7/21/10

Units: µg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Chloromethane	ND		4.00	0.440	4	NA	7/25/10 13:57		209799
Chloroprene	ND	U	4.00	0.00	4	NA	7/25/10 13:57	•	209799
cis-1,2-Dichloroethene	2.19	I	4.00	1.44	4	NA	7/25/10 13:57		209799
cis-1,3-Dichloropropene	ND	U	4.00	0.800	4	NA	7/25/10 13:57	•	209799
Dibromochloromethane	ND	U	4.00	0.760	4	NA	7/25/10 13:57	•	209799
Dibromomethane	ND	U	20.0	0.720	4	NA	7/25/10 13:57		209799
Dichlorodifluoromethane	ND	U	80.0	0.920	4	NA	7/25/10 13:57		209799
Ethyl Methacrylate	ND	U	4.00	0.760	4	NA	7/25/10 13:57	•	209799
Ethylbenzene	16.4		4.00	2.08	4	NA	7/25/10 13:57	· · · · · · · · · · · · · · · · · · ·	209799
Hexachlorobutadiene	ND	U	40.0	2.40	4	NA	7/25/10 13:57		209799
Iodomethane	ND	U	20.0	10.8	4	NA	7/25/10 13:57		209799
Isobutyl Alcohol	ND	U	400	172	4	NA	7/25/10 13:57		209799
m,p-Xylenes	31.2		8.00	4.13	4	NA	7/25/10 13:57		209799
Methacrylonitrile	ND	U	20.0	6.40	4	NA	7/25/10 13:57		209799
Methyl Methacrylate	ND	U	8.00	1.08	4	NA	7/25/10 13:57		209799
Methylene Chloride	ND	U	20.0	0.840	4	NA	7/25/10 13:57		209799
Naphthalene	9.82	I	40.0	0.960	4	NA	7/25/10 13:57		209799
o-Xylene	16.4		4.00	0.560	4	NA	7/25/10 13:57		209799
Propionitrile	ND	U	100	15.6	4	NA	7/25/10 13:57		209799
Styrene	1.71	I	4.00	1.17	4	NA	7/25/10 13:57		209799
Tetrachloroethene (PCE)	ND	U	4.00	0.440	4	NA	7/25/10 13:57		209799
Toluene	17.0		4.00	0.760	4	NA	7/25/10 13:57		209799
trans-1,2-Dichloroethene	ND	U	4.00	0.480	4	NA	7/25/10 13:57		209799
trans-1,3-Dichloropropene	ND	U	4.00	0.920	4	NA	7/25/10 13:57		209799
trans-1,4-Dichloro-2-butene	ND	U	80.0	8.80	4	NA	7/25/10 13:57		209799
Trichloroethene (TCE)	ND	U	4.00	0.640	4	NA	7/25/10 13:57		209799
Trichlorofluoromethane	ND	U	80.0	0.880	4	NA	7/25/10 13:57		209799
Vinyl Acetate	ND	U	40.0	7.60	4	NA	7/25/10 13:57		209799
Vinyl Chloride	ND	U	4.00	0.880	4	NA	7/25/10 13:57		209799

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

LCS

J1003442-002

Service Request: J1003442

**Date Collected:** 7/21/10 0830 Date Received: 7/21/10

> Units: Percent Basis: NA

## Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	95	71-122	7/25/10 13:57	
4-Bromofluorobenzene	105	75-120	7/25/10 13:57	
Dibromofluoromethane	99	82-116	7/25/10 13:57	
Toluene-d8	106	88-117	7/25/10 13:57	

### Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

TRIP

Lab Code:

J1003442-003

Service Request: J1003442 **Date Collected:** 7/21/10 0000

Date Received: 7/21/10

Units: µg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND		1.00	0.180	1	NA	7/25/10 14:25		209799
1,1,1-Trichloroethane (TCA)	ND		1.00	0.170	1	NA	7/25/10 14:25		209799
1,1,2,2-Tetrachloroethane	ND	U	1.00	0.110	1	NA	7/25/10 14:25		209799
1,1,2-Trichloroethane	ND	U	1.00	0.170	1	NA	7/25/10 14:25		209799
1,1-Dichloroethane (1,1-DCA)	ND		1.00	0.130	1	NA	7/25/10 14:25		209799
1,1-Dichloroethene (1,1-DCE)	ND	U	1.00	0.160	1	NA	7/25/10 14:25		209799
1,1-Dichloropropene	ND	U	5.00	0.120	1	NA	7/25/10 14:25		209799
1,2,3-Trichloropropane	ND	U	2.00	0.420	1	NA	7/25/10 14:25		209799
1,2,4-Trichlorobenzene	ND	U	10.0	0.210	1	NA	7/25/10 14:25		209799
1,2-Dibromo-3-chloropropane (DBCP)	ND	U	5.00	2.30	1	NA	7/25/10 14:25		209799
1,2-Dibromoethane (EDB)	ND		1.00	0.170	1	NA	7/25/10 14:25		209799
1,2-Dichlorobenzene	ND	U	1.00	0.478	1	NA	7/25/10 14:25		209799
1,2-Dichloroethane	ND		1.00	0.180	1	NA	7/25/10 14:25		209799
1,2-Dichloropropane	ND		1.00	$0.120^{-}$	1	NA	7/25/10 14:25		209799
1,3-Dichlorobenzene	ND	U	1.00	0.130	1	NA	7/25/10 14:25		209799
1,3-Dichloropropane	ND	U	1.00	0.150	1	NA	7/25/10 14:25		209799
1,4-Dichlorobenzene	ND	U	1.00	0.100	1	NA	7/25/10 14:25		209799
2,2-Dichloropropane	ND	U	1.00	0.180	1	NA	7/25/10 14:25		209799
2-Butanone (MEK)	ND	U	10.0	3.80	1	NA	7/25/10 14:25		209799
2-Hexanone	ND		25.0	2.20	1	NA	7/25/10 14:25		209799
4-Methyl-2-pentanone (MIBK)	ND	U	25.0	0.650	1	NA	7/25/10 14:25		209799
Acetone	ND	U	50.0	5.60	1	NA	7/25/10 14:25		209799
Acetonitrile	ND	U	25.0	18.0	1	NA	7/25/10 14:25		209799
Acrolein	ND	U	50.0	4.20	1	NA	7/25/10 14:25		209799
Acrylonitrile	ND	U	10.0	1.20	1	NA	7/25/10 14:25		209799
Allyl Chloride	ND	U	5.00	0.390	I	NA	7/25/10 14:25		209799
Benzene	ND	U	1.00	0.210	1	NA	7/25/10 14:25		209799
Bromochloromethane	ND	U	5.00	0.270	1	NA	7/25/10 14:25		209799
Bromodichloromethane	ND	U	1.00	0.170	1	NA	7/25/10 14:25		209799
Bromoform	ND	U	2.00	0.420	1	NA	7/25/10 14:25		209799
Bromomethane	ND	U	1.00	0.220	1	NA	7/25/10 14:25		209799
Carbon Disulfide	ND		10.0	2.36	1	NA	7/25/10 14:25		209799
Carbon Tetrachloride	ND	U	1.00	0.340	1	NA	7/25/10 14:25		209799
Chlorobenzene	ND	U	1.00	0.160	1	NA	7/25/10 14:25		209799
Chloroethane	ND	U	5.00	0.220	1	NA	7/25/10 14:25		209799
Chloroform	ND	U	1.00	0.350	1	NA	7/25/10 14:25		209799

#### Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name:

**TRIP** 

Lab Code:

J1003442-003

Service Request: J1003442 **Date Collected:** 7/21/10 0000

Date Received: 7/21/10

Units: µg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
Chloromethane	ND	U	1.00	0.110	1	NA	7/25/10 14:25	209799
Chloroprene	ND	U	1.00	0.00	1	NA	7/25/10 14:25	209799
cis-1,2-Dichloroethene	ND	U	1.00	0.360	1	NA	7/25/10 14:25	209799
cis-1,3-Dichloropropene	ND	U	1.00	0.200	1	NA	7/25/10 14:25	209799
Dibromochloromethane	ND	U	1.00	0.190	1	NA	7/25/10 14:25	209799
Dibromomethane	ND	U	5.00	0.180	1	NA	7/25/10 14:25	209799
Dichlorodifluoromethane	ND	U	20.0	0.230	1	NA	7/25/10 14:25	
Ethyl Methacrylate	ND	U	1.00	0.190	1	NA	7/25/10 14:25	209799
Ethylbenzene	ND	U	1.00	0.519	1	NA	7/25/10 14:25	209799
Hexachlorobutadiene	ND	U	10.0	0.600	1	NA	7/25/10 14:25	209799
Iodomethane	ND	U	5.00	2.68	1	NA	7/25/10 14:25	209799
Isobutyl Alcohol	ND	U	100	43.0	<u> </u>	NA	7/25/10 14:25	209799
m,p-Xylenes	ND	U	2.00	1.04	1	NA	7/25/10 14:25	209799
Methacrylonitrile	ND	U	5.00	1.60	1	NA	7/25/10 14:25	209799
Methyl Methacrylate	ND	U	2.00	0.270	1	NA	7/25/10 14:25	209799
Methylene Chloride	ND	U	5.00	0.210	1	NA	7/25/10 14:25	209799
Naphthalene	ND	U	10.0	0.240	1	NA	7/25/10 14:25	209799
o-Xylene	ND	U	1.00	0.140	1	NA	7/25/10 14:25	209799
Propionitrile	ND	U	25.0	3.90	1	NA	7/25/10 14:25	209799
Styrene	ND	U	1.00	0.291	1	NA	7/25/10 14:25	209799
Tetrachloroethene (PCE)	ND	U	1.00	0.110	1	NA	7/25/10 14:25	209799
Toluene	ND	U	1.00	0.190	1	NA	7/25/10 14:25	209799
trans-1,2-Dichloroethene	ND	U	1.00	0.120	1	NA	7/25/10 14:25	209799
trans-1,3-Dichloropropene	ND	U	1.00	0.230	1	NA	7/25/10 14:25	209799
trans-1,4-Dichloro-2-butene	ND	U	20.0	2.20	1	NA	7/25/10 14:25	
Trichloroethene (TCE)	ND	U	1.00	0.160	1	NA	7/25/10 14:25	209799
Trichlorofluoromethane	ND	U	20.0	0.220	1	NA	7/25/10 14:25	209799
Vinyl Acetate	ND	U	10.0	1.90	1	NA	7/25/10 14:25	
Vinyl Chloride	ND	U	1.00	0.220	1	NA	7/25/10 14:25	209799

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

TRIP

J1003442-003

Service Request: J1003442

**Date Collected:** 7/21/10 0000 Date Received: 7/21/10

> Units: Percent Basis: NA

## Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	89	71-122	7/25/10 14:25	
4-Bromofluorobenzene	107	75-120	7/25/10 14:25	
Dibromofluoromethane	97	82-116	7/25/10 14:25	
Toluene-d8	104	88-117	7/25/10 14:25	

#### Analytical Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Sample Name: Lab Code:

Method Blank

JQ1002938-02

Service Request: J1003442

Date Collected: NA Date Received: NA

> Units: µg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,1,1,2-Tetrachloroethane	ND U	1.00	0.180	1	NA	7/25/10 11:40		209799
1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane	ND U	1.00	0.170	1	NA	7/25/10 11:40		209799
	ND U	1.00	0.110	1	NA	7/25/10 11:40		209799
1,1,2-Trichloroethane 1,1-Dichloroethane (1,1-DCA)	ND U ND U	1.00 1.00	0.170 0.130	1	NA	7/25/10 11:40		209799
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.130	1	NA NA	7/25/10 11:40 7/25/10 11:40		209799 209799
1,1-Dichloropropene	ND U	5.00	0.120	1	NA	7/25/10 11:40		209799
1,2,3-Trichloropropane	ND U	2.00	0.120	1	NA NA	7/25/10 11:40		209799
1,2,4-Trichlorobenzene	ND U	10.0	0.210	1	NA	7/25/10 11:40		209799
1,2-Dibromo-3-chloropropane (DBCP)	ND U	5.00	2.30	1	NA	7/25/10 11:40	)	209799
1,2-Dibromoethane (EDB)	ND U	1.00	0.170	1	NA	7/25/10 11:40		209799
1,2-Dichlorobenzene	ND U	1.00	0.478	1	NA	7/25/10 11:40	)	209799
1,2-Dichloroethane	ND U	1.00	0.180	1	NA	7/25/10 11:40		209799
1,2-Dichloropropane 1,3-Dichlorobenzene	ND U	1.00	0.120	1	NA	7/25/10 11:40		209799
and the second of the second o	ND U	1.00	0.130	1	NA	7/25/10 11:40		209799
1,3-Dichloropropane 1,4-Dichlorobenzene	ND U ND U	1.00	0.150	1	NA	7/25/10 11:40		209799
2,2-Dichloropropane	ND U	1.00 1.00	0.100 0.180	1 1	NA NA	7/25/10 11:40 7/25/10 11:40		209799 209799
2-Butanone (MEK)	ND U	10.0	3.80	1	NA	7/25/10 11:40		209799
2-Hexanone	ND U	25.0	2.20	1	NA NA	7/25/10 11:40		209799
4-Methyl-2-pentanone (MIBK)	ND U	25.0	0.650	1	NA	7/25/10 11:40		209799
Acetone	ND U	50.0	5.60	1	NA	7/25/10 11:40	)	209799
Acetonitrile	ND U	25.0	18.0	1	NA	7/25/10 11:40		209799
Acrolein	ND U	50.0	4.20	1	NA	7/25/10 11:40	)	209799
Acrylonitrile	ND U	10.0	1.20	1	NA	7/25/10 11:40		209799
Allyl Chloride Benzene	ND U	5.00	0.390	1	NA	7/25/10 11:40		209799
	ND U	1.00	0.210	1	NA	7/25/10 11:40		209799
Bromochloromethane Bromodichloromethane	ND U ND U	5.00 1.00	0.270 0.170	1	NA NA	7/25/10 11:40 7/25/10 11:40		209799
Bromoform	ND U	2.00	0.170	1 1	NA NA	7/25/10 11:40		209799 209799
Bromomethane	ND U	1.00	0.220	1	NA	7/25/10 11:40		209799
Carbon Disulfide	ND U	10.0	2.36	1	NA NA	7/25/10 11:40		209799
Carbon Tetrachloride	ND U	1.00	0.340	1	NA	7/25/10 11:40		209799
Chlorobenzene	ND U	1.00	0.160	1	NA	7/25/10 11:40	·····	209799
Chloroethane	ND U	5.00	0.220	1	NA	7/25/10 11:40		209799
Chloroform	ND U	1.00	0.350	1	NA	7/25/10 11:40	i	209799

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank JQ1002938-02 Service Request: J1003442

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

## Volatile Organic Compounds by GC/MS

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
Chloromethane	ND U		0.110	1	NA	7/25/10 11:40		209799
Chloroprene	ND U	1.00	0.00	1	NA	7/25/10 11:40		209799
cis-1,2-Dichloroethene	ND U		0.360	1	NA	7/25/10 11:40		209799
cis-1,3-Dichloropropene	ND U		0.200	1	NA	7/25/10 11:40		209799
Dibromochloromethane	ND U	1.00	0.190	1	NA	7/25/10 11:40		209799
Dibromomethane	ND U	5.00	0.180	1	NA	7/25/10 11:40		209799
Dichlorodifluoromethane	ND U		0.230	1	NA	7/25/10 11:40		209799
Ethyl Methacrylate	ND U	1.00	0.190	1	NA	7/25/10 11:40		209799
Ethylbenzene	ND U	1.00	0.519	1	NA	7/25/10 11:40		209799
Hexachlorobutadiene	ND U	10.0	0.600	1	NA	7/25/10 11:40		209799
Iodomethane	ND U	5.00	2.68	1	NA	7/25/10 11:40		209799
Isobutyl Alcohol	ND U	100	43.0	1	NA	7/25/10 11:40		209799
m,p-Xylenes	ND U	2.00	1.04	1	NA	7/25/10 11:40		209799
Methacrylonitrile	ND U	5.00	1.60	1	NA	7/25/10 11:40		209799
Methyl Methacrylate	ND U	2.00	0.270	1	NA	7/25/10 11:40		209799
Methylene Chloride	ND U	5.00	0.210	1	NA	7/25/10 11:40		209799
Naphthalene	ND U	10.0	0.240	1	NA	7/25/10 11:40		209799
o-Xylene	ND U	1.00	0.140	1	NA	7/25/10 11:40		209799
Propionitrile	ND U	25.0	3.90	1	NA	7/25/10 11:40		209799
Styrene	ND U	1.00	0.291	1	NA	7/25/10 11:40		209799
Tetrachloroethene (PCE)	ND U	1.00	0.110	1	NA	7/25/10 11:40		209799
Toluene	ND U	1.00	0.190	1	NA	7/25/10 11:40		209799
trans-1,2-Dichloroethene	ND U	1.00	0.120	1	NA	7/25/10 11:40		209799
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	NA	7/25/10 11:40		209799
trans-1,4-Dichloro-2-butene	ND U	20.0	2.20	1	NA	7/25/10 11:40		209799
Trichloroethene (TCE)	ND U	1.00	0.160	1	NA	7/25/10 11:40		209799
Trichlorofluoromethane	ND U	20.0	0.220	1	NA	7/25/10 11:40		209799
Vinyl Acetate	ND U	10.0	1.90	1	NA	7/25/10 11:40		209799
Vinyl Chloride	ND U	1.00	0.220	1	NA	7/25/10 11:40		209799

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name:

Method Blank

Lab Code:

JQ1002938-02

Service Request: J1003442

Date Collected: NA

Date Received: NA

Units: Percent Basis: NA

## Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	101	71-122	7/25/10 11:40	
4-Bromofluorobenzene	102	75-120	7/25/10 11:40	
Dibromofluoromethane	100	82-116	7/25/10 11:40	
Toluene-d8	105	88-117	7/25/10 11:40	

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

# 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

LDSS

Lab Code:

J1003442-001

Units: ug/L Basis: NA

Extraction Method:

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0073	1	07/26/10	07/30/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DE	ND UJ	0.021	0.0060	1	07/26/10	07/30/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	107	77-150	07/30/10	Acceptable

Comments:

Printed: 08/05/2010 17:06:03 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Page 1 of 1

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

LCS

Lab Code:

J1003442-002

Units: ug/L Basis: NA

**Extraction Method:** 

METHOD

Level: Low

Analysis Method:

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.021	0.0072	1	07/26/10	07/30/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.021	0.0058	1	07/26/10	07/30/10	JWG1002570	J(3)

Surrogate Name %R	Control c Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	77-150	07/30/10	Acceptable

**Comments:** 

Printed: 08/05/2010 17:06:06 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Collected: NA

Date Received: NA

## 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG1002570-4

Units: ug/L

**Extraction Method:** 

**METHOD** 

Basis: NA

Analysis Method:

Level: Low

8011

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND UJ	0.020	0.0070	1	07/26/10	07/29/10	JWG1002570	J(3)
1,2-Dibromo-3-chloropropane (DF	ND UJ	0.020	0.0057	1	07/26/10	07/29/10	JWG1002570	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,1,1,2-Tetrachloroethane	118	77-150	07/29/10	Acceptable

Comments:

Printed: 08/05/2010 17:06:09  $p:\Stealth\Crystal.rpt\Form1mNew.rpt$ 

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR35500

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

### Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

**LDSS** 

Lab Code:

J1003442-001

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND	U	53	7.7	10	07/27/10	08/02/10	JWG1002584	
N-Nitrosomethylethylamine	ND	U	53	8.6	10	07/27/10	08/02/10	JWG1002584	
Methyl Methanesulfonate	ND	UJ	53	5.9	10	07/27/10	08/02/10	JWG1002584	J(3)
N-Nitrosodiethylamine	ND	U	53	6.6	10	07/27/10	08/02/10	JWG1002584	
Ethyl Methanesulfonate	ND	U	53	6.8	10	07/27/10	08/02/10	JWG1002584	
Phenol	100		53	4.4	10	07/27/10	08/02/10	JWG1002584	
Bis(2-chloroethyl) Ether	ND	U	53	11	10	07/27/10	08/02/10	JWG1002584	
2-Chlorophenol	ND	U	53	7.9	10	07/27/10	08/02/10	JWG1002584	
1,3-Dichlorobenzene	ND	U	53	7.3	10	07/27/10	08/02/10	JWG1002584	
1,4-Dichlorobenzene	ND	U	53	13	10	07/27/10	08/02/10	JWG1002584	
1,2-Dichlorobenzene	ND		53	7.8	10	07/27/10	08/02/10	JWG1002584	
Bis(2-chloroisopropyl) Ether	ND	U	53	6.0	10	07/27/10	08/02/10	JWG1002584	
Benzyl alcohol	ND	U	53	7.2	10	07/27/10	08/02/10	JWG1002584	
2-Methylphenol	12	I	53	6.7	10	07/27/10	08/02/10	JWG1002584	
Acetophenone	ND	UJ	110	14	10	07/27/10	08/02/10	JWG1002584	J(3)
N-Nitrosopyrrolidine	ND	U	53	7.3	10	07/27/10	08/02/10	JWG1002584	
Hexachloroethane	ND	U	53	9.6	10	07/27/10	08/02/10	JWG1002584	
N-Nitrosodi-n-propylamine	ND	UJ	53	7.1	10	07/27/10	08/02/10	JWG1002584	J(3)
o-Toluidine	ND	U	53	9.3	10	07/27/10	08/02/10	JWG1002584	
4-Methylphenol†	120		53	8.1	10	07/27/10	08/02/10	JWG1002584	
Nitrobenzene	ND	U	53	7.7	10	07/27/10	08/02/10	JWG1002584	
N-Nitrosopiperidine	ND	U	53	17	10	07/27/10	08/02/10	JWG1002584	
Isophorone	ND	UJ	53	8.4	10	07/27/10	08/02/10	JWG1002584	J(3)
2-Nitrophenol	ND	U	210	6.3	10	07/27/10	08/02/10	JWG1002584	
2,4-Dimethylphenol	ND	U	53	8.3	10	07/27/10	08/02/10	JWG1002584	
O,O,O-Triethyl Phosphorothioate	ND	U	210	5.5	10	07/27/10	08/02/10	JWG1002584	
bis(2-Chloroethoxy)methane	ND	U	53	9.3	10	07/27/10	08/02/10	JWG1002584	
2,4-Dichlorophenol	ND	U	53	5.3	10	07/27/10	08/02/10	JWG1002584	
1,2,4-Trichlorobenzene	ND		53	8.2	10	07/27/10	08/02/10	JWG1002584	
Naphthalene	ND	U	53	8.3	10	07/27/10	08/02/10	JWG1002584	
2,6-Dichlorophenol	ND	U	110	7.6	10	07/27/10	08/02/10	JWG1002584	
Hexachloropropene	ND		53	20	10	07/27/10	08/02/10	JWG1002584	
4-Chloroaniline	ND	U	53	5.6	10	07/27/10	08/02/10	JWG1002584	

Comments:

Printed: 08/10/2010 13:19:15

p:\Stealth\Crystal.rpt\Form\ImNew.rpt

Merged

Form 1A - Organic

 24  Pa

of 4

#### Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

**LDSS** 

Lab Code:

J1003442-001

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 8270C

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Hexachlorobutadiene	ND	U	53	6.4	10	07/27/10	08/02/10	JWG1002584	
N-Nitrosodi-n-butylamine	ND		53	7.0	10	07/27/10	08/02/10	JWG1002584	
p-Phenylenediamine	ND	U	210	12	10	07/27/10	08/02/10	JWG1002584	
4-Chloro-3-methylphenol	ND	U	53	7.9	10	07/27/10	08/02/10	JWG1002584	
2-Methylnaphthalene	ND		53	7.8	10	07/27/10	08/02/10	JWG1002584	
Hexachlorocyclopentadiene	ND	U	53	4.3	10	07/27/10	08/02/10	JWG1002584	
1,2,4,5-Tetrachlorobenzene	ND	U	53	5.8	10	07/27/10	08/02/10	JWG1002584	
Safrole	ND	U	53	7.4	10	07/27/10	08/02/10	JWG1002584	
2,4,6-Trichlorophenol	ND	U	53	7.7	10	07/27/10	08/02/10	JWG1002584	
2,4,5-Trichlorophenol	ND	U	53	6.8	10	07/27/10	08/02/10	JWG1002584	
Isosafrole	ND	U	53	7.9	10	07/27/10	08/02/10	JWG1002584	
2-Chloronaphthalene	ND	U	53	7.4	10	07/27/10	08/02/10	JWG1002584	
2-Nitroaniline	ND	UJ	53	5.8	10	07/27/10	08/02/10	JWG1002584	J(3)
1,4-Naphthoquinone†	ND	U	100	100	10	07/27/10	08/02/10	JWG1002584	• •
1,3-Dinitrobenzene	ND	U	110	16	10	07/27/10	08/02/10	JWG1002584	
Acenaphthylene	ND	U	53	6.1	10	07/27/10	08/02/10	JWG1002584	
Dimethyl Phthalate	ND	U	53	8.0	10	07/27/10	08/02/10	JWG1002584	
2,6-Dinitrotoluene	ND	U	53	8.7	10	07/27/10	08/02/10	JWG1002584	
Acenaphthene	ND	U	53	11	10	07/27/10	08/02/10	JWG1002584	
3-Nitroaniline	ND	U	53	7.9	10	07/27/10	08/02/10	JWG1002584	
2,4-Dinitrophenol	ND	U	210	5.7	10	07/27/10	08/02/10	JWG1002584	
Pentachlorobenzene	ND	U	53	26	10	07/27/10	08/02/10	JWG1002584	
Dibenzofuran	ND	U	53	8.3	10	07/27/10	08/02/10	JWG1002584	
4-Nitrophenol	ND	U	210	9.7	10	07/27/10	08/02/10	JWG1002584	
2,4-Dinitrotoluene	ND	U	53	43	10	07/27/10	08/02/10	JWG1002584	
2-Naphthylamine	ND	U	53	12	10	07/27/10	08/02/10	JWG1002584	
2,3,4,6-Tetrachlorophenol	ND	U	53	13	10	07/27/10	08/02/10	JWG1002584	
1-Naphthylamine	ND	U	53	12	10	07/27/10	08/02/10	JWG1002584	
Fluorene	ND	U	53	9.2	10	07/27/10	08/02/10	JWG1002584	
4-Chlorophenyl Phenyl Ether	ND	U	53	6.4	10	07/27/10	08/02/10	JWG1002584	
Thionazin	ND		110	8.5	10	07/27/10	08/02/10	JWG1002584	
Diethyl Phthalate	ND		53	43	10	07/27/10	08/02/10	JWG1002584	
5-Nitro-o-toluidine	ND	U	53	11	10	07/27/10	08/02/10	JWG1002584	

**Comments:** 

Printed: 08/10/2010 13:19:15 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010 **Date Received:** 07/21/2010

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LDSS

Lab Code:

J1003442-001

Extraction Method: EPA 3510C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Nitroaniline	ND		53	9.6	10	07/27/10	08/02/10	JWG1002584	
2-Methyl-4,6-dinitrophenol	ND		210	6.7	10	07/27/10	08/02/10	JWG1002584	
N-Nitrosodiphenylamine†	ND	UJ	53	11	10	07/27/10	08/02/10	JWG1002584	J(3)
Diallate	ND		53	11	10	07/27/10	08/02/10	JWG1002584	
Phorate	ND		53	9.2	10	07/27/10	08/02/10	JWG1002584	J(3)
1,3,5-Trinitrobenzene	ND	U	53	12	10	07/27/10	08/02/10	JWG1002584	
4-Bromophenyl Phenyl Ether	ND	U	53	7.0	10	07/27/10	08/02/10	JWG1002584	
Phenacetin	ND		53	9.3	10	07/27/10	08/02/10	JWG1002584	
Hexachlorobenzene	ND	U	53	6.6	10	07/27/10	08/02/10	JWG1002584	
Dimethoate	ND	U	53	9.4	10	07/27/10	08/02/10	JWG1002584	
4-Aminobiphenyl	ND		53	11	10	07/27/10	08/02/10	JWG1002584	
Pentachlorophenol	ND	U	210	7.0	10	07/27/10	08/02/10	JWG1002584	
Pentachloronitrobenzene	ND	U	53	16	10	07/27/10	08/02/10	JWG1002584	
Pronamide	ND		210	8.9	10	07/27/10	08/02/10	JWG1002584	
Phenanthrene	ND	U	53	7.3	10	07/27/10	08/02/10	JWG1002584	
Disulfoton	ND	U	53	5.5	10	07/27/10	08/02/10	JWG1002584	
Dinoseb	ND	U	110	6.4	10	07/27/10	08/02/10	JWG1002584	
Anthracene	ND	U	53	7.4	10	07/27/10	08/02/10	JWG1002584	
Methyl Parathion	ND	U	110	12	10	07/27/10	08/02/10	JWG1002584	
Di-n-butyl Phthalate	ND		53	11	10	07/27/10	08/02/10	JWG1002584	
Parathion	ND	U	210	9.7	10	07/27/10	08/02/10	JWG1002584	
Methapyrilene	ND	U	53	16	10	07/27/10	08/02/10	JWG1002584	
Isodrin	ND		110	7.4	10	07/27/10	08/02/10	JWG1002584	
Fluoranthene	ND	U	53	6.9	10	07/27/10	08/02/10	JWG1002584	
Pyrene	ND	U	53	8.8	10	07/27/10	08/02/10	JWG1002584	
Chlorobenzilate	ND		110	8.8	10	07/27/10	08/02/10	JWG1002584	
3,3'-Dimethylbenzidine	ND	U	210	24	10	07/27/10	08/02/10	JWG1002584	
Famphur	ND	UJ	110	7.2	10	07/27/10	08/02/10	JWG1002584	J(3)
p-Dimethylaminoazobenzene	ND		53	9.3	10	07/27/10	08/02/10	JWG1002584	, -
Butyl Benzyl Phthalate	ND	U	110	12	10	07/27/10	08/02/10	JWG1002584	
2-Acetylaminofluorene	ND	U	53	9.4	10	07/27/10	08/02/10	JWG1002584	
Kepone	ND		530	44	10	07/27/10	08/02/10	JWG1002584	J(3)
3,3'-Dichlorobenzidine	ND	U	210	9.3	10	07/27/10	08/02/10	JWG1002584	

**Comments:** 

Printed: 08/10/2010 13:19:15  $p:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Merged

 $26_{Page} \quad {}_{3\ of} \quad {}_{4}$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LDSS

Lab Code:

J1003442-001

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benz(a)anthracene	ND U	53	9.0	10	07/27/10	08/02/10	JWG1002584	
Chrysene	ND U	53	9.1	10	07/27/10	08/02/10	JWG1002584	
Bis(2-ethylhexyl) Phthalate	ND U	53	11	10	07/27/10	08/02/10	JWG1002584	
Di-n-octyl Phthalate	ND U	53	9.9	10	07/27/10	08/02/10	JWG1002584	
Benzo(b)fluoranthene	ND U	53	9.1	10	07/27/10	08/02/10	JWG1002584	
Benzo(k)fluoranthene	ND U	53	5.7	10	07/27/10	08/02/10	JWG1002584	
7,12-Dimethylbenz(a)anthracene	ND U	53	9.1	10	07/27/10	08/02/10	JWG1002584	
Benzo(a)pyrene	ND U	53	6.6	10	07/27/10	08/02/10	JWG1002584	
3-Methylcholanthrene	ND U	53	11	10	07/27/10	08/02/10	JWG1002584	
Indeno(1,2,3-cd)pyrene	ND U	53	5.8	10	07/27/10	08/02/10	JWG1002584	
Dibenz(a,h)anthracene	ND U	53	6.5	10	07/27/10	08/02/10	JWG1002584	
Benzo(g,h,i)perylene	ND U	53	9.5	10	07/27/10	08/02/10	JWG1002584	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	30	10-77	08/02/10	Acceptable	
Phenol-d6	12	10-51	08/02/10	Acceptable	
Nitrobenzene-d5	102	32-106	08/02/10	Acceptable	
2-Fluorobiphenyl	57	30-102	08/02/10	Acceptable	
2,4,6-Tribromophenol	84	30-143	08/02/10	Acceptable	
Terphenyl-d14	73	23-165	08/02/10	Acceptable	

#### † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

1,4-Naphthoquinone

Analyte searched for as a tentatively identified compound.

N-Nitrosodiphenylamine This analyte can not be separated from Diphenylamine.

Merged

Comments:

Printed: 08/10/2010 13:19:15 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

 $27_{\text{Page}}$ 

4 of 4

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Water Sample Matrix:

Service Request: J1003442

**Date Collected:** 07/21/2010 **Date Received:** 07/21/2010

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LCS

Lab Code:

J1003442-002

**Extraction Method:** EPA 3510C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND	U	5.2	0.76	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosomethylethylamine	ND	U	5.2	0.85	1	07/27/10	08/02/10	JWG1002584	
Methyl Methanesulfonate	ND	UJ	5.2	0.58	1	07/27/10	08/02/10	JWG1002584	J(3)
N-Nitrosodiethylamine	ND	U	5.2	0.65	1	07/27/10	08/02/10	JWG1002584	
Ethyl Methanesulfonate	ND	U	5.2	0.68	1	07/27/10	08/02/10	JWG1002584	
Phenol	610		52	4.4	10	07/27/10	08/03/10	JWG1002584	
Bis(2-chloroethyl) Ether	ND	U	5.2	0.99	1	07/27/10	08/02/10	JWG1002584	
2-Chlorophenol	ND	U	5.2	0.78	1	07/27/10	08/02/10	JWG1002584	
1,3-Dichlorobenzene	ND	U	5.2	0.73	1	07/27/10	08/02/10	JWG1002584	
1,4-Dichlorobenzene	8.5		5.2	1.3	1	07/27/10	08/02/10	JWG1002584	
1,2-Dichlorobenzene	ND		5.2	0.77	1	07/27/10	08/02/10	JWG1002584	
Bis(2-chloroisopropyl) Ether	ND	U	5.2	0.59	1	07/27/10	08/02/10	JWG1002584	
Benzyl alcohol	ND	U	5.2	0.72	1	07/27/10	08/02/10	JWG1002584	
2-Methylphenol	13		5.2	0.66	1	07/27/10	08/02/10	JWG1002584	
Acetophenone	ND	UJ	11	1.4	1	07/27/10	08/02/10	JWG1002584	J(3)
N-Nitrosopyrrolidine	ND		5.2	0.73	1	07/27/10	08/02/10	JWG1002584	
Hexachloroethane	ND		5.2	0.95	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosodi-n-propylamine	ND	UJ	5.2	0.71	1	07/27/10	08/02/10	JWG1002584	J(3)
o-Toluidine	ND	U	5.2	0.92	1	07/27/10	08/02/10	JWG1002584	
4-Methylphenol†	480		52	8.0	10	07/27/10	08/03/10	JWG1002584	
Nitrobenzene	ND	U	5.2	0.76	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosopiperidine	ND	U	5.2	1.7	1	07/27/10	08/02/10	JWG1002584	
Isophorone	ND		5.2	0.83	1	07/27/10	08/02/10	JWG1002584	J(3)
2-Nitrophenol	ND	U	21	0.62	1	07/27/10	08/02/10	JWG1002584	
2,4-Dimethylphenol	ND		5.2	0.82	1	07/27/10	08/02/10	JWG1002584	
O,O,O-Triethyl Phosphorothioate	ND		21	0.54	1	07/27/10	08/02/10	JWG1002584	
bis(2-Chloroethoxy)methane	ND	U	5.2	0.92	1	07/27/10	08/02/10	JWG1002584	
2,4-Dichlorophenol	ND		5.2	0.52	1	07/27/10	08/02/10	JWG1002584	
1,2,4-Trichlorobenzene	ND	U	5.2	0.81	1	07/27/10	08/02/10	JWG1002584	
Naphthalene	8.2	11 to 20	5.2	0.82	1	07/27/10	08/02/10	JWG1002584	
2,6-Dichlorophenol	ND		11	0.75	1	07/27/10	08/02/10	JWG1002584	
Hexachloropropene	ND		5.2	2.0	1	07/27/10	08/02/10	JWG1002584	
4-Chloroaniline	ND	U	5.2	0.55	1	07/27/10	08/02/10	JWG1002584	

Com	ma	nte.	
COM	HILL	HU.	

Printed: 08/10/2010 13:19:19  $p:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A - Organic

28 Page

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LCS

Lab Code:

J1003442-002

**Extraction Method: Analysis Method:** 

EPA 3510C 8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q M	1RL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Hexachlorobutadiene	ND		5.2	0.63	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosodi-n-butylamine	ND	U :	5.2	0.70	1	07/27/10	08/02/10	JWG1002584	
p-Phenylenediamine	ND	U	21	1.2	1	07/27/10	08/02/10	JWG1002584	
4-Chloro-3-methylphenol	ND	U .	5.2	0.78	1	07/27/10	08/02/10	JWG1002584	
2-Methylnaphthalene	ND	U .	5.2	0.77	1	07/27/10	08/02/10	JWG1002584	
Hexachlorocyclopentadiene	ND	U .	5.2	0.43	1	07/27/10	08/02/10	JWG1002584	
1,2,4,5-Tetrachlorobenzene	ND		5.2	0.57	1	07/27/10	08/02/10	JWG1002584	
Safrole	ND		5.2	0.74	1	07/27/10	08/02/10	JWG1002584	
2,4,6-Trichlorophenol	ND	U .	5.2	0.76	1	07/27/10	08/02/10	JWG1002584	
2,4,5-Trichlorophenol	ND	U	5.2	0.68	1	07/27/10	08/02/10	JWG1002584	
Isosafrole	ND	U	5.2	0.78	1	07/27/10	08/02/10	JWG1002584	
2-Chloronaphthalene	ND	U	5.2	0.74	1	07/27/10	08/02/10	JWG1002584	
2-Nitroaniline	ND	UJ	5.2	0.57	1	07/27/10	08/02/10	JWG1002584	J(3)
1,4-Naphthoquinone†	ND	U	10	10	1	07/27/10	08/02/10	JWG1002584	
1,3-Dinitrobenzene	ND	U	11	1.6	1	07/27/10	08/02/10	JWG1002584	
Acenaphthylene	ND		5.2	0.60	1	07/27/10	08/02/10	JWG1002584	
Dimethyl Phthalate	ND		5.2	0.79	1	07/27/10	08/02/10	JWG1002584	
2,6-Dinitrotoluene	ND	U	5.2	0.86	1	07/27/10	08/02/10	JWG1002584	
Acenaphthene	ND		5.2	1.1	1	07/27/10	08/02/10	JWG1002584	
3-Nitroaniline	ND		5.2	0.78	1	07/27/10	08/02/10	JWG1002584	
2,4-Dinitrophenol	ND	U	21	0.56	1	07/27/10	08/02/10	JWG1002584	
Pentachlorobenzene	ND		5.2	2.5	1	07/27/10	08/02/10	JWG1002584	
Dibenzofuran	ND		5.2	0.82	1	07/27/10	08/02/10	JWG1002584	
4-Nitrophenol	ND	U	21	0.96	1	07/27/10	08/02/10	JWG1002584	
2,4-Dinitrotoluene	ND		5.2	4.3	1	07/27/10	08/02/10	JWG1002584	
2-Naphthylamine	ND		5.2	1.2	1	07/27/10	08/02/10	JWG1002584	
2,3,4,6-Tetrachlorophenol	ND	U	5.2	1.3	1	07/27/10	08/02/10	JWG1002584	
1-Naphthylamine	ND		5.2	1.2	1	07/27/10	08/02/10	JWG1002584	
Fluorene	ND		5.2	0.91	1	07/27/10	08/02/10	JWG1002584	
4-Chlorophenyl Phenyl Ether	ND	U	5.2	0.63	1	07/27/10	08/02/10	JWG1002584	
Thionazin	ND		11	0.84	1	07/27/10	08/02/10	JWG1002584	
Diethyl Phthalate	ND		5.2	4.3	1	07/27/10	08/02/10	JWG1002584	
5-Nitro-o-toluidine	ND	U	5.2	1.1	1	07/27/10	08/02/10	JWG1002584	

-			
Co	mn	nei	its:

Printed: 08/10/2010 13:19:19  $p:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010 **Date Received:** 07/21/2010

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LCS

Lab Code:

J1003442-002

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	• •
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Nitroaniline	ND U	5.2	0.95	1	07/27/10	08/02/10	JWG1002584	_,_,
2-Methyl-4,6-dinitrophenol	ND UJ	21	0.66	1	07/27/10	08/02/10	JWG1002584	J(3)
N-Nitrosodiphenylamine†	ND UJ	5.2	0.99	1	07/27/10	08/02/10	JWG1002584	J(3)
Diallate	ND UJ	5.2	1.1	1	07/27/10	08/02/10	JWG1002584	J(3)
Phorate	ND UJ	5.2	0.91	1	07/27/10	08/02/10	JWG1002584	J(3)
1,3,5-Trinitrobenzene	ND UJ	5.2	1.2	1	07/27/10	08/02/10	JWG1002584	J(3)
4-Bromophenyl Phenyl Ether	ND UJ	5.2	0.70	1	07/27/10	08/02/10	JWG1002584	J(3)
Phenacetin	ND UJ	5.2	0.92	1	07/27/10	08/02/10	JWG1002584	J(3)
Hexachlorobenzene	ND UJ	5.2	0.65	1	07/27/10	08/02/10	JWG1002584	J(3)
Dimethoate	ND UJ	5.2	0.93	1	07/27/10	08/02/10	JWG1002584	J(3)
4-Aminobiphenyl	ND UJ	5.2	1.1	1	07/27/10	08/02/10	JWG1002584	J(3)
Pentachlorophenol	ND UJ	21	0.70	1	07/27/10	08/02/10	JWG1002584	J(3)
Pentachloronitrobenzene	ND UJ	5.2	1.6	1	07/27/10	08/02/10	JWG1002584	J(3)
Pronamide	ND UJ	21	0.88	1	07/27/10	08/02/10	JWG1002584	J(3)
Phenanthrene	ND UJ	5.2	0.73	1	07/27/10	08/02/10	JWG1002584	J(3)
Disulfoton	ND UJ	5.2	0.54	1	07/27/10	08/02/10	JWG1002584	J(3)
Dinoseb	ND UJ	11	0.63	1	07/27/10	08/02/10	JWG1002584	J(3)
Anthracene	ND UJ	5.2	0.74	1	07/27/10	08/02/10	JWG1002584	J(3)
Methyl Parathion	ND UJ	11	1.2	1	07/27/10	08/02/10	JWG1002584	J(3)
Di-n-butyl Phthalate	<b>2.4</b> I	5.2	1.0	1	07/27/10	08/02/10	JWG1002584	
Parathion	ND UJ	21	0.96	1	07/27/10	08/02/10	JWG1002584	J(3)
Methapyrilene	ND UJ	5.2	1.6	1	07/27/10	08/02/10	JWG1002584	J(3)
Isodrin	ND UJ	11	0.74	1	07/27/10	08/02/10	JWG1002584	J(3)
Fluoranthene	ND UJ	5.2	0.69	1	07/27/10	08/02/10	JWG1002584	J(3)
Pyrene	ND U	5.2	0.87	I	07/27/10	08/02/10	JWG1002584	
Chlorobenzilate	ND U	11	0.87	1	07/27/10	08/02/10	JWG1002584	
3,3'-Dimethylbenzidine	ND U	21	2.4	1	07/27/10	08/02/10	JWG1002584	
Famphur	ND UJ	11	0.72	1	07/27/10	08/02/10	JWG1002584	J(3)
p-Dimethylaminoazobenzene	ND U	5.2	0.92	1	07/27/10	08/02/10	JWG1002584	
Butyl Benzyl Phthalate	ND U	11	1.2	1	07/27/10	08/02/10	JWG1002584	
2-Acetylaminofluorene	ND U	5.2	0.93	1	07/27/10	08/02/10	JWG1002584	
Kepone	ND UJ	52	4.4	1	07/27/10	08/02/10	JWG1002584	J(3)
3,3'-Dichlorobenzidine	ND U	21	0.92	1	07/27/10	08/02/10	JWG1002584	

**Comments:** 

Printed: 08/10/2010 13:19:19

 $p:\Stealth\Crystal.rpt\Form\ImNew.rpt$ 

Form 1A - Organic

Analytical Results

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Collected:** 07/21/2010 **Date Received:** 07/21/2010

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LCS

Lab Code:

J1003442-002

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benz(a)anthracene	ND U	5.2	0.89	1	07/27/10	08/02/10	JWG1002584	~ ~ ~ ~ ~ ~ ~
Chrysene	ND U	5.2	0.90	1	07/27/10	08/02/10	JWG1002584	
Bis(2-ethylhexyl) Phthalate	<b>3.5</b> I	5.2	1.1	1	07/27/10	08/02/10	JWG1002584	
Di-n-octyl Phthalate	ND U	5.2	0.98	1	07/27/10	08/02/10	JWG1002584	
Benzo(b)fluoranthene	ND U.	5.2	0.90	1	07/27/10	08/02/10	JWG1002584	J(3)
Benzo(k)fluoranthene	ND UJ	J 5.2	0.56	1	07/27/10	08/02/10	JWG1002584	J(3)
7,12-Dimethylbenz(a)anthracene	ND U	5.2	0.90	1	07/27/10	08/02/10	JWG1002584	
Benzo(a)pyrene	ND U	J 5.2	0.65	1	07/27/10	08/02/10	JWG1002584	J(3)
3-Methylcholanthrene	ND U	5.2	1.0	1	07/27/10	08/02/10	JWG1002584	
Indeno(1,2,3-cd)pyrene	ND U.	J 5.2	0.57	1	07/27/10	08/02/10	JWG1002584	J(3)
Dibenz(a,h)anthracene	ND U.	J 5.2	0.64	1	07/27/10	08/02/10	JWG1002584	J(3)
Benzo(g,h,i)perylene	ND U.	J 5.2	0.94	1	07/27/10	08/02/10	JWG1002584	J(3)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	39	10-77	08/02/10	Acceptable	
Phenol-d6	49	10-51	08/02/10	Acceptable	
Nitrobenzene-d5	108	32-106	08/02/10	Outside Control Limits	
2-Fluorobiphenyl	54	30-102	08/02/10	Acceptable	
2,4,6-Tribromophenol	102	30-143	08/02/10	Acceptable	
Terphenyl-d14	58	23-165	08/02/10	Acceptable	

#### † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

1,4-Naphthoquinone

Analyte searched for as a tentatively identified compound.

N-Nitrosodiphenylamine This analyte can not be separated from Diphenylamine.

Comments:

Printed: 08/10/2010 13:19:19 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

31 Page

RR35556

SuperSet Reference:

4 of 4

#### Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Service Request: J1003442 Date Collected: NA

Units: ug/L

Basis: NA

Level: Low

Date Received: NA

### Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Method Blank JWG1002584-4

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND	U	5.0	0.73	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosomethylethylamine	ND	U	5.0	0.82	1	07/27/10	08/02/10	JWG1002584	
Methyl Methanesulfonate	ND	UJ	5.0	0.56	1	07/27/10	08/02/10	JWG1002584	J(3)
N-Nitrosodiethylamine	ND	U	5.0	0.63	1	07/27/10	08/02/10	JWG1002584	
Ethyl Methanesulfonate	ND		5.0	0.65	1	07/27/10	08/02/10	JWG1002584	
Phenol	ND	U	5.0	0.42	1	07/27/10	08/02/10	JWG1002584	
Bis(2-chloroethyl) Ether	ND		5.0	0.96	1	07/27/10	08/02/10	JWG1002584	
2-Chlorophenol	ND		5.0	0.75	1	07/27/10	08/02/10	JWG1002584	
1,3-Dichlorobenzene	ND	U	5.0	0.70	1	07/27/10	08/02/10	JWG1002584	
1,4-Dichlorobenzene	ND	U	5.0	1.2	1	07/27/10	08/02/10	JWG1002584	
1,2-Dichlorobenzene	ND	U	5.0	0.74	1	07/27/10	08/02/10	JWG1002584	
Bis(2-chloroisopropyl) Ether	ND	U	5.0	0.57	1	07/27/10	08/02/10	JWG1002584	
Benzyl alcohol	ND	U	5.0	0.69	1	07/27/10	08/02/10	JWG1002584	
2-Methylphenol	ND	U	5.0	0.64	1	07/27/10	08/02/10	JWG1002584	
Acetophenone	ND	UJ	10	1.3	1	07/27/10	08/02/10	JWG1002584	J(3)
N-Nitrosopyrrolidine	ND	U	5.0	0.70	1	07/27/10	08/02/10	JWG1002584	
Hexachloroethane	ND	U	5.0	0.92	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosodi-n-propylamine	ND	UJ	5.0	0.68	1	07/27/10	08/02/10	JWG1002584	J(3)
o-Toluidine	ND	U	5.0	0.89	1	07/27/10	08/02/10	JWG1002584	
4-Methylphenol†	ND		5.0	0.77	1	07/27/10	08/02/10	JWG1002584	
Nitrobenzene	ND	U	5.0	0.73	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosopiperidine	ND	U	5.0	1.6	1	07/27/10	08/02/10	JWG1002584	
Isophorone	ND	UJ	5.0	0.80	1	07/27/10	08/02/10	JWG1002584	J(3)
2-Nitrophenol	ND	U	20	0.60	1	07/27/10	08/02/10	JWG1002584	
2,4-Dimethylphenol	ND	U	5.0	0.79	1	07/27/10	08/02/10	JWG1002584	
O,O,O-Triethyl Phosphorothioate	ND		20	0.52	1	07/27/10	08/02/10	JWG1002584	
bis(2-Chloroethoxy)methane	ND	U	5.0	0.89	1	07/27/10	08/02/10	JWG1002584	
2,4-Dichlorophenol	ND	U	5.0	0.50	1	07/27/10	08/02/10	JWG1002584	
1,2,4-Trichlorobenzene	ND	U	5.0	0.78	1	07/27/10	08/02/10	JWG1002584	
Naphthalene	ND	U	5.0	0.79	1	07/27/10	08/02/10	JWG1002584	
2,6-Dichlorophenol	ND	U	10	0.72	1	07/27/10	08/02/10	JWG1002584	
Hexachloropropene	ND	U	5.0	1.9	1	07/27/10	08/02/10	JWG1002584	
4-Chloroaniline	ND	U	5.0	0.53	1	07/27/10	08/02/10	JWG1002584	

**Comments:** 

Printed: 08/10/2010 13:19:23 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

 $32_{Page}$  1 of 4

#### Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Collected: NA Date Received: NA

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Method Blank JWG1002584-4

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

W-4------

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Hexachlorobutadiene	ND	U	5.0	0.61	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosodi-n-butylamine	ND	U	5.0	0.67	1	07/27/10	08/02/10	JWG1002584	
p-Phenylenediamine	ND	U	20	1.1	1	07/27/10	08/02/10	JWG1002584	
4-Chloro-3-methylphenol	ND	U	5.0	0.75	1	07/27/10	08/02/10	JWG1002584	
2-Methylnaphthalene	ND	U	5.0	0.74	1	07/27/10	08/02/10	JWG1002584	
Hexachlorocyclopentadiene	ND	U	5.0	0.41	1	07/27/10	08/02/10	JWG1002584	
1,2,4,5-Tetrachlorobenzene	ND	U	5.0	0.55	1	07/27/10	08/02/10	JWG1002584	
Safrole	ND	U	5.0	0.71	1	07/27/10	08/02/10	JWG1002584	
2,4,6-Trichlorophenol	ND	U	5.0	0.73	1	07/27/10	08/02/10	JWG1002584	
2,4,5-Trichlorophenol	ND	U	5.0	0.65	1	07/27/10	08/02/10	JWG1002584	
Isosafrole	ND	U	5.0	0.75	1	07/27/10	08/02/10	JWG1002584	
2-Chloronaphthalene	ND	U	5.0	0.71	1	07/27/10	08/02/10	JWG1002584	
2-Nitroaniline	ND	UJ	5.0	0.55	1	07/27/10	08/02/10	JWG1002584	J(3)
1,4-Naphthoquinone†	ND	U	10	10	1	07/27/10	08/02/10	JWG1002584	
1,3-Dinitrobenzene	ND	U	10	1.5	1	07/27/10	08/02/10	JWG1002584	
Acenaphthylene	ND	U	5.0	0.58	1	07/27/10	08/02/10	JWG1002584	
Dimethyl Phthalate	ND	U	5.0	0.76	1	07/27/10	08/02/10	JWG1002584	
2,6-Dinitrotoluene	ND	U	5.0	0.83	1	07/27/10	08/02/10	JWG1002584	
Acenaphthene	ND		5.0	0.99	1	07/27/10	08/02/10	JWG1002584	
3-Nitroaniline	ND		5.0	0.75	1	07/27/10	08/02/10	JWG1002584	
2,4-Dinitrophenol	ND	U	20	0.54	1	07/27/10	08/02/10	JWG1002584	
Pentachlorobenzene	ND		5.0	2.4	l	07/27/10	08/02/10	JWG1002584	
Dibenzofuran	ND		5.0	0.79	1	07/27/10	08/02/10	JWG1002584	
4-Nitrophenol	ND	U	20	0.93	1	07/27/10	08/02/10	JWG1002584	
2,4-Dinitrotoluene	ND		5.0	4.1	1	07/27/10	08/02/10	JWG1002584	
2-Naphthylamine	ND		5.0	1.1	1	07/27/10	08/02/10	JWG1002584	
2,3,4,6-Tetrachlorophenol	ND	U	5.0	1.2	1	07/27/10	08/02/10	JWG1002584	
1-Naphthylamine	ND		5.0	1.1	1	07/27/10	08/02/10	JWG1002584	
Fluorene	ND		5.0	0.88	1	07/27/10	08/02/10	JWG1002584	
4-Chlorophenyl Phenyl Ether	ND	U	5.0	0.61	1	07/27/10	08/02/10	JWG1002584	
Thionazin	ND		10	0.81	1	07/27/10	08/02/10	JWG1002584	
Diethyl Phthalate		U	5.0	4.1	1	07/27/10	08/02/10	JWG1002584	
5-Nitro-o-toluidine	ND	U	5.0	1.0	1	07/27/10	08/02/10	JWG1002584	

Comments:

Printed: 08/10/2010 13:19:23  $p:\label{lem:p:stealth} \label{lem:p:stealth} Porm \ lim \ New.rpt$ 

Merged

Form 1A - Organic

SuperSet Reference:

2 of 4 RR35556

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Collected: NA Date Received: NA

## Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name: Lab Code:

Method Blank

**Extraction Method:** 

JWG1002584-4

**Analysis Method:** 

8270C

EPA 3510C

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Nitroaniline	ND	U	5.0	0.92	1	07/27/10	08/02/10	JWG1002584	
2-Methyl-4,6-dinitrophenol	ND	U	20	0.64	1	07/27/10	08/02/10	JWG1002584	
N-Nitrosodiphenylamine†	ND	UJ	5.0	0.96	1	07/27/10	08/02/10	JWG1002584	J(3)
Diallate	ND	U	5.0	1.0	1	07/27/10	08/02/10	JWG1002584	
Phorate	ND	UJ	5.0	0.88	1	07/27/10	08/02/10	JWG1002584	J(3)
1,3,5-Trinitrobenzene	ND	U	5.0	1.1	1	07/27/10	08/02/10	JWG1002584	
4-Bromophenyl Phenyl Ether	ND	U	5.0	0.67	1	07/27/10	08/02/10	JWG1002584	
Phenacetin	ND	U	5.0	0.89	1	07/27/10	08/02/10	JWG1002584	
Hexachlorobenzene	ND	U	5.0	0.63	1	07/27/10	08/02/10	JWG1002584	
Dimethoate	ND	U	5.0	0.90	1	07/27/10	08/02/10	JWG1002584	
4-Aminobiphenyl	ND	U	5.0	0.99	1	07/27/10	08/02/10	JWG1002584	
Pentachlorophenol	ND	U	20	0.67	1	07/27/10	08/02/10	JWG1002584	
Pentachloronitrobenzene	ND	U	5.0	1.5	1	07/27/10	08/02/10	JWG1002584	
Pronamide	ND		20	0.85	1	07/27/10	08/02/10	JWG1002584	
Phenanthrene	ND	U	5.0	0.70	1	07/27/10	08/02/10	JWG1002584	
Disulfoton	ND	U	5.0	0.52	1	07/27/10	08/02/10	JWG1002584	
Dinoseb	ND	U	10	0.61	1	07/27/10	08/02/10	JWG1002584	
Anthracene	ND	U	5.0	0.71	1	07/27/10	08/02/10	JWG1002584	
Methyl Parathion	ND	U	10	1.1	1	07/27/10	08/02/10	JWG1002584	
Di-n-butyl Phthalate	ND	U	5.0	0.97	1	07/27/10	08/02/10	JWG1002584	
Parathion	ND	U	20	0.93	1	07/27/10	08/02/10	JWG1002584	
Methapyrilene	ND	U	5.0	1.5	1	07/27/10	08/02/10	JWG1002584	
Isodrin	ND	U	10	0.71	1	07/27/10	08/02/10	JWG1002584	
Fluoranthene	ND	U	5.0	0.66	1	07/27/10	08/02/10	JWG1002584	
Pyrene	ND	U	5.0	0.84	1	07/27/10	08/02/10	JWG1002584	
Chlorobenzilate	ND	U	10	0.84	1	07/27/10	08/02/10	JWG1002584	
3,3'-Dimethylbenzidine	ND	U	20	2.3	1	07/27/10	08/02/10	JWG1002584	
Famphur	ND	UJ	10	0.69	1	07/27/10	08/02/10	JWG1002584	J(3)
p-Dimethylaminoazobenzene	ND	U	5.0	0.89	1	07/27/10	08/02/10	JWG1002584	
Butyl Benzyl Phthalate	ND	U	10	1.1	1	07/27/10	08/02/10	JWG1002584	
2-Acetylaminofluorene	ND	U	5.0	0.90	1	07/27/10	08/02/10	JWG1002584	
Kepone		UJ	50	4.2	1	07/27/10	08/02/10	JWG1002584	J(3)
3,3'-Dichlorobenzidine	ND	U	20	0.89	1	07/27/10	08/02/10	JWG1002584	

Comments:

Printed: 08/10/2010 13:19:23 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

34 Page

#### Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Collected: NA Date Received: NA

### Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

Method Blank

Lab Code:

JWG1002584-4

Units: ug/L Basis: NA

**Extraction Method:** 

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

EPA 3510C

Level: Low

JWG1002584

JWG1002584

JWG1002584

**Analysis Method:** 

8270C

Dilution Date Date Extraction Analyzed Lot Note MRL **MDL Factor** Extracted **Analyte Name** Result Q JWG1002584 ND U 5.0 07/27/10 08/02/10 Benz(a)anthracene 0.86 ND U JWG1002584 Chrysene 5.0 0.87 1 07/27/10 08/02/10 JWG1002584 Bis(2-ethylhexyl) Phthalate ND U 5.0 0.98 07/27/10 08/02/10 JWG1002584 0.95 08/02/10 Di-n-octyl Phthalate ND U 5.0 1 07/27/10 07/27/10 08/02/10 JWG1002584 Benzo(b)fluoranthene ND U 5.0 0.87 1 JWG1002584 08/02/10 Benzo(k)fluoranthene ND U 5.0 0.54 1 07/27/10 JWG1002584 7,12-Dimethylbenz(a)anthracene ND U 5.0 0.87 1 07/27/10 08/02/10 JWG1002584 Benzo(a)pyrene ND U 5.0 0.63 1 07/27/10 08/02/10 07/27/10 08/02/10 JWG1002584 3-Methylcholanthrene ND U 5.0 0.97 1

5.0

5.0

5.0

0.55

0.62

0.91

1

1

1

07/27/10

07/27/10

07/27/10

08/02/10

08/02/10

08/02/10

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	2	10-77	08/02/10	Outside Control Limits	
Phenol-d6	9	10-51	08/02/10	Outside Control Limits	
Nitrobenzene-d5	72	32-106	08/02/10	Acceptable	
2-Fluorobiphenyl	40	30-102	08/02/10	Acceptable	
2,4,6-Tribromophenol	14	30-143	08/02/10	Outside Control Limits	
Terphenyl-d14	81	23-165	08/02/10	Acceptable	

#### † Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

1,4-Naphthoquinone N-Nitrosodiphenylamine Analyte searched for as a tentatively identified compound.

This analyte can not be separated from Diphenylamine.

Comments:

35 Page 4 of 4 Form 1A - Organic

ND U

ND U

ND U

RR35556

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge Water

Service Request: J1003442 **Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

## Organochlorine Pesticides by GC-ECD

Sample Name:

LDSS

Lab Code:

J1003442-001

**Extraction Method:** 

EPA 3510C

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8081A

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.083	0.033	4	07/27/10	08/04/10	JWG1002581	
gamma-BHC (Lindane)	ND	U	0.083	0.034	4	07/27/10	08/04/10	JWG1002581	
beta-BHC	ND	U	0.083	0.036	4	07/27/10	08/04/10	JWG1002581	
delta-BHC	ND	U	0.083	0.046	4	07/27/10	08/04/10	JWG1002581	
Heptachlor	ND	U	0.083	0.040	4	07/27/10	08/04/10	JWG1002581	
Aldrin	ND	U	0.083	0.029	4	07/27/10	08/04/10	JWG1002581	
Heptachlor Epoxide	ND	U	0.083	0.033	4	07/27/10	08/04/10	JWG1002581	
gamma-Chlordane	ND	U	0.083	0.031	4	07/27/10	08/04/10	JWG1002581	
alpha-Chlordane	ND	U	0.083	0.028	4	07/27/10	08/04/10	JWG1002581	
4,4'-DDE	ND	U	0.083	0.035	4	07/27/10	08/04/10	JWG1002581	
Endosulfan I	ND	U	0.083	0.037	4	07/27/10	08/04/10	JWG1002581	
Dieldrin	ND	U	0.083	0.031	4	07/27/10	08/04/10	JWG1002581	
Endrin	ND	U	0.083	0.038	4	07/27/10	08/04/10	JWG1002581	
4,4'-DDD	ND	U	0.083	0.033	4	07/27/10	08/04/10	JWG1002581	
Endosulfan II	ND	U	0.083	0.027	4	07/27/10	08/04/10	JWG1002581	
4,4'-DDT	ND	U	0.083	0.054	4	07/27/10	08/04/10	JWG1002581	
Endrin Aldehyde	ND	U	0.083	0.036	4	07/27/10	08/04/10	JWG1002581	
Methoxychlor	ND	U	0.17	0.046	4	07/27/10	08/04/10	JWG1002581	
Endosulfan Sulfate	ND	U	0.083	0.038	4	07/27/10	08/04/10	JWG1002581	
Endrin Ketone	ND	U	0.083	0.022	4	07/27/10	08/04/10	JWG1002581	
Toxaphene	ND	U	2.1	2.1	4	07/27/10	08/04/10	JWG1002581	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	41	32-92	08/04/10	Acceptable
Decachlorobiphenyl	56	13-104	08/04/10	Acceptable

**Comments:** 

Analytical Results

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Collected: 07/21/2010

**Date Received:** 07/21/2010

# Organochlorine Pesticides by GC-ECD

Sample Name:

LCS

Lab Code:

J1003442-002

Extraction Method:

EPA 3510C

Analysis Method:

8081A

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND	U	0.080	0.032	4	07/27/10	08/04/10	JWG1002581	
gamma-BHC (Lindane)	ND	U	0.080	0.033	4	07/27/10	08/04/10	JWG1002581	
beta-BHC	ND	U	0.080	0.034	4	07/27/10	08/04/10	JWG1002581	
delta-BHC	ND	U	0.080	0.044	4	07/27/10	08/04/10	JWG1002581	
Heptachlor	ND	U	0.080	0.039	4	07/27/10	08/04/10	JWG1002581	
Aldrin	ND	U	0.080	0.028	4	07/27/10	08/04/10	JWG1002581	
Heptachlor Epoxide	ND	U	0.080	0.032	4	07/27/10	08/04/10	JWG1002581	
gamma-Chlordane	ND	U	0.080	0.030	4	07/27/10	08/04/10	JWG1002581	
alpha-Chlordane	ND	U	0.080	0.027	4	07/27/10	08/04/10	JWG1002581	
4,4'-DDE	ND	U	0.080	0.034	4	07/27/10	08/04/10	JWG1002581	
Endosulfan I	ND	U	0.080	0.036	4	07/27/10	08/04/10	JWG1002581	
Dieldrin	ND	U	0.080	0.030	4	07/27/10	08/04/10	JWG1002581	
Endrin	ND	U	0.080	0.036	4	07/27/10	08/04/10	JWG1002581	
4,4'-DDD	ND	U	0.080	0.032	4	07/27/10	08/04/10	JWG1002581	
Endosulfan II	ND	U	0.080	0.026	4	07/27/10	08/04/10	JWG1002581	
4,4'-DDT	. ND	U	0.080	0.052	4	07/27/10	08/04/10	JWG1002581	
Endrin Aldehyde	ND	U	0.080	0.034	4	07/27/10	08/04/10	JWG1002581	
Methoxychlor	ND	U	0.16	0.044	4	07/27/10	08/04/10	JWG1002581	
Endosulfan Sulfate	ND		0.080	0.037	4	07/27/10	08/04/10	JWG1002581	
Endrin Ketone	ND	U	0.080	0.022	4	07/27/10	08/04/10	JWG1002581	
Toxaphene	ND	U	2.0	2.0	4	07/27/10	08/04/10	JWG1002581	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tetrachloro-m-xylene	84	32-92	08/04/10	Acceptable
Decachlorobiphenyl	38	13-104	08/04/10	Acceptable

Comments:

Analytical Results

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge Water

Service Request: J1003442 Date Collected: NA Date Received: NA

## Organochlorine Pesticides by GC-ECD

Sample Name: Lab Code:

Method Blank

JWG1002581-4

**Extraction Method:** EPA 3510C

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8081A

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
alpha-BHC	ND U	0.020	0.0079	1	07/27/10	08/02/10	JWG1002581	
gamma-BHC (Lindane)	ND U	0.020	0.0082	1	07/27/10	08/02/10	JWG1002581	
beta-BHC	ND U	0.020	0.0085	1	07/27/10	08/02/10	JWG1002581	
delta-BHC	ND U	0.020	0.011	1	07/27/10	08/02/10	JWG1002581	
Heptachlor	ND U	0.020	0.0096	1	07/27/10	08/02/10	JWG1002581	
Aldrin	ND U	0.020	0.0068	1	07/27/10	08/02/10	JWG1002581	
Heptachlor Epoxide	ND U	0.020	0.0079	1	07/27/10	08/02/10	JWG1002581	
gamma-Chlordane	ND U	0.020	0.0075	1	07/27/10	08/02/10	JWG1002581	
alpha-Chlordane	ND U	0.020	0.0066	1	07/27/10	08/02/10	JWG1002581	
4,4'-DDE	ND U	0.020	0.0084	1	07/27/10	08/02/10	JWG1002581	
Endosulfan I	ND U	0.020	0.0089	1	07/27/10	08/02/10	JWG1002581	
Dieldrin	ND U	0.020	0.0073	1	07/27/10	08/02/10	JWG1002581	
Endrin	ND U	0.020	0.0090	1	07/27/10	08/02/10	JWG1002581	
4,4'-DDD	ND U	0.020	0.0079	1	07/27/10	08/02/10	JWG1002581	
Endosulfan II	ND U	0.020	0.0064	1	07/27/10	08/02/10	JWG1002581	
4,4'-DDT	ND U	0.020	0.013	1	07/27/10	08/02/10	JWG1002581	
Endrin Aldehyde	ND U	0.020	0.0085	1	07/27/10	08/02/10	JWG1002581	
Methoxychlor	ND U	0.040	0.011	1	07/27/10	08/02/10	JWG1002581	
Endosulfan Sulfate	ND U	0.020	0.0092	1	07/27/10	08/02/10	JWG1002581	
Endrin Ketone	ND U	0.020	0.0053	1	07/27/10	08/02/10	JWG1002581	
Toxaphene	ND U	0.50	0.50	1	07/27/10	08/02/10	JWG1002581	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
achloro-m-xylene	47	32-92	08/02/10	Acceptable	
Decachlorobiphenyl	83	13-104	08/02/10	Acceptable	

Comments:

Printed: 08/05/2010 17:05:02 p:\Stealth\Crystal.rpt\Form1mNew.rpt

1 of 1

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003442

**Date Collected:** 07/21/2010

**Date Received:** 07/21/2010

# Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

LDSS

Lab Code:

J1003442-001

Extraction Method: EPA 3510C

Analysis Method:

8082

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	2.1	0.54	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1221	ND U	2.1	0.91	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1232	ND U	2.1	0.95	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1242	ND U	2.1	0.50	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1248	ND U	2.1	1.1	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1254	ND U	2.1	1.6	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1260	ND U	2.1	0.71	4	07/27/10	08/04/10	JWG1002582	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	56	24-120	08/04/10	Acceptable	

Comments:

 $\begin{array}{lll} Printed: & 08/05/2010 & 17;03:02 \\ p:\Stealth\Crystal.rpt\Form\ImNew.rpt & \end{array}$ 

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003442

**Date Collected:** 07/21/2010 **Date Received:** 07/21/2010

# Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

LCS

Lab Code:

J1003442-002

Units: ug/L Basis: NA

**Extraction Method:** 

EPA 3510C

Level: Low

**Analysis Method:** 

8082

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	2.0	0.52	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1221	ND U	2.0	0.88	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1232	ND U	2.0	0.92	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1242	ND U	2.0	0.48	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1248	ND U	2.0	1.1	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1254	ND U	2.0	1.5	4	07/27/10	08/04/10	JWG1002582	
Aroclor 1260	ND U	2.0	0.68	4	07/27/10	08/04/10	JWG1002582	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	44	24-120	08/04/10	Acceptable	

Comments:

Printed: 08/05/2010 17:03:05 p:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003442

Date Collected: NA
Date Received: NA

## Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Sample Name:

Method Blank

Lab Code:

JWG1002582-2

Extraction Method: Analysis Method:

EPA 3510C 8082 Units: ug/L Basis: NA

Dasis. IVA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.50	0.13	1	07/27/10	08/02/10	JWG1002582	
Aroclor 1221	ND U	0.50	0.22	1	07/27/10	08/02/10	JWG1002582	
Aroclor 1232	ND U	0.50	0.23	1	07/27/10	08/02/10	JWG1002582	
Aroclor 1242	ND U	0.50	0.12	1	07/27/10	08/02/10	JWG1002582	
Aroclor 1248	ND U	0.50	0.26	1	07/27/10	08/02/10	JWG1002582	
Aroclor 1254	ND U	0.50	0.37	1	07/27/10	08/02/10	JWG1002582	
Aroclor 1260	ND U	0.50	0.17	1	07/27/10	08/02/10	JWG1002582	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	85	24-120	08/02/10	Acceptable	

Comments:

Printed: 08/05/2010 17:03:08 p:\Stealth\Crystal.rpt\Form\m\New.rpt

41 Page 1 of 1

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

LDSS

J1003442-001

**Service Request:** J1003442 **Date Collected:** 7/21/10 0800

Date Received: 7/21/10

Basis: NA

## **Inorganic Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	47	μg/L	20	3	10	7/29/10	7/29/10 21:26
Arsenic, Total	6020	169	μg/L	5.0	1.5	10	7/29/10	7/29/10 21:26
Barium, Total	6020	153	μg/L	20	5	10	7/29/10	7/29/10 21:26
Beryllium, Total	6020	ND U	μg/L	10	3	10	7/29/10	7/29/10 21:26
Cadmium, Total	6020	ND U	μg/L	5.0	1.8	10	7/29/10	7/29/10 21:26
Chromium, Total	6020	141	μg/L	20	6	10	7/29/10	7/29/10 21:26
Cobalt, Total	6020	40	μg/L	10	2	10	7/29/10	7/29/10 21:26
Copper, Total	6020	25	μg/L	20	5	10	7/29/10	7/29/10 21:26
Iron, Total	6010B	7010	μg/L	100	10	1	7/23/10	7/28/10 00:57
Lead, Total	6020	ND U	μg/L	10	3	10	7/29/10	7/29/10 21:26
Mercury, Total	7470A	<b>0.14</b> I	μg/L	0.50	0.08	1	7/27/10	7/28/10 11:48
Nickel, Total	6020	173	μg/L	20	3	10	7/29/10	7/29/10 21:26
Selenium, Total	6020	58	μg/L	50	9	10	7/29/10	7/29/10 21:26
Silver, Total	6020	ND U	μg/L	5.0	0.9	10	7/29/10	7/29/10 21:26
Sodium, Total	6010B	1630	mg/L	5.0	0.2	10	7/23/10	7/28/10 16:05
Thallium, Total	6020	ND U	μg/L	10	4	10	7/29/10	7/29/10 21:26
Tin, Total	6010B	44	μg/L	40	3	1	7/23/10	7/28/10 00:57
Vanadium, Total	6020	74	μg/L	50	12	10	7/29/10	7/29/10 21:26
Zinc, Total	6020	<b>40</b> I	μg/L	100	30	10	7/29/10	7/29/10 21:26

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: LCS

J1003442-002

**Service Request:** J1003442 **Date Collected:** 7/21/10 0830

Date Received: 7/21/10

Basis: NA

## **Inorganic Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	67	μg/L	20	3	10	7/29/10	7/29/10 21:31
Arsenic, Total	6020	185	μg/L	5.0	1.5	10	7/29/10	7/29/10 21:31
Barium, Total	6020	146	μg/L	20	5	10	7/29/10	7/29/10 21:31
Beryllium, Total	6020	ND U	μg/L	10	3	10	7/29/10	7/29/10 21:31
Cadmium, Total	6020	5.8	μg/L	5.0	1.8	10	7/29/10	7/29/10 21:31
Chromium, Total	6020	164	$\mu$ g/L	20	6	10	7/29/10	7/29/10 21:31
Cobalt, Total	6020	41	μg/L	10	2	10	7/29/10	7/29/10 21:31
Copper, Total	6020	15 I	μg/L	20	5	10	7/29/10	7/29/10 21:31
Iron, Total	6010B	6990	$\mu$ g/L	100	10	1	7/23/10	7/28/10 01:03
Lead, Total	6020	ND U	μg/L	10	3	10	7/29/10	7/29/10 21:31
Mercury, Total	7470A	<b>0.18</b> I	μg/L	0.50	0.08	1	7/27/10	7/28/10 11:49
Nickel, Total	6020	190	μg/L	20	3	10	7/29/10	7/29/10 21:31
Selenium, Total	6020	60	μg/L	50	9	10	7/29/10	7/29/10 21:31
Silver, Total	6020	ND U	μg/L	5.0	0.9	10	7/29/10	7/29/10 21:31
Sodium, Total	6010B	1800	mg/L	5.0	0.2	10	7/23/10	7/28/10 16:13
Thallium, Total	6020	ND U	μg/L	10	4	10	7/29/10	7/29/10 21:31
Tin, Total	6010B	54	μg/L	40	3	1	7/23/10	7/28/10 01:04
Vanadium, Total	6020	79	μg/L	50	12	10	7/29/10	7/29/10 21:31
Zinc, Total	6020	50 I	μg/L	100	30	10	7/29/10	7/29/10 21:31

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank J1003442-MB Service Request: J1003442

Date Collected: NA Date Received: NA

Basis: NA

## **Inorganic Parameters**

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Antimony, Total	6020	ND	U	μg/L	2.0	0.3	1	7/29/10	7/29/10 19:00
Arsenic, Total	6020	0.18	I	μg/L	0.50	0.14	1	7/29/10	7/29/10 19:00
Barium, Total	6020	ND	U	μg/L	2.0	0.5	1	7/29/10	7/29/10 19:00
Beryllium, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	7/29/10 19:00
Cadmium, Total	6020	ND	U	μg/L	0.50	0.17	1	7/29/10	7/29/10 19:00
Chromium, Total	6020	ND	U	$\mu$ g/L	2.0	0.6	1	7/29/10	7/29/10 19:00
Cobalt, Total	6020	ND	U	μg/L	1.0	0.2	1	7/29/10	7/29/10 19:00
Copper, Total	6020	ND	U	μg/L	2.0	0.5	1	7/29/10	7/29/10 19:00
Iron, Total	6010B	ND	U	μg/L	100	10	1	7/23/10	7/27/10 23:25
Lead, Total	6020	ND	U	μg/L	1.0	0.3	1	7/29/10	7/29/10 19:00
Mercury, Total	7470A	ND	U	μg/L	0.50	0.08	1	7/27/10	7/28/10 11:08
Nickel, Total	6020	ND	U	$\mu$ g/L	2.0	0.3	1	7/29/10	7/29/10 19:00
Selenium, Total	6020	ND	U	μg/L	5.0	0.9	1	7/29/10	7/29/10 19:00
Silver, Total	6020	ND	U	μg/L	0.50	0.09	1	7/29/10	7/29/10 19:00
Sodium, Total	6010B	ND	U	mg/L	0.50	0.02	1	7/23/10	7/28/10 16:55
Thallium, Total	6020	ND	U	μg/L	1.0	0.4	1	7/29/10	7/29/10 19:00
Tin, Total	6010B	ND	U	μg/L	40	3	1	7/23/10	7/27/10 23:25
Vanadium, Total	6020	ND	U	μg/L	5.0	1.2	1	7/29/10	7/29/10 19:00
Zinc, Total	6020	ND	U	μg/L	10	3	1	7/29/10	7/29/10 19:00

Analytical Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code:

LDSS

J1003442-001

Service Request: J1003442 **Date Collected:** 7/21/10 0800

Date Received: 7/21/10

Basis: NA

### **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	4790	mg/L	25	25	5	NA	7/24/10 05:32
Ammonia as Nitrogen	350.1	844	mg/L	2.0	0.8	200	NA	7/26/10 16:45
Bicarbonate Alkalinity as CaCO3	SM 2320 B	4790	mg/L	25	25	5	NA	7/24/10 05:32
Carbonate Alkalinity as CaCO3	SM 2320 B	ND U	mg/L	25	25	5	NA	7/24/10 05:32
Chloride	300.0	1890	mg/L	5.0	0.9	10	NA	7/22/10 16:47
Conductivity, Field	120.1	17140	μMHOS/cm			1	NA	7/21/10 08:00
Cyanide, Total	335.4	12	μg/L	10	5	1	7/27/10	7/27/10 17:22
Dissolved Oxygen, Field	360.1	0.2	ppm			1	NA	7/21/10 08:00
Nitrate as Nitrogen	300.0	<b>1.8</b> I	mg/L	2.0	0.8	10	NA	7/22/10 16:47
pH, Field	150.1	8.08	pH Units			1	NA	7/21/10 08:00
Solids, Total Dissolved	SM 2540 C	6820	mg/L	200	200	20	NA	7/27/10 15:47
Sulfide, Total	SM 4500-S2- F	9 I	mg/L	16	4	8.0	NA	7/26/10 15:50
Temperature, Field	170.1	29.8	deg C			1	NA	7/21/10 08:00
Turbidity, Field	180.1	416.7	NTU			1	NA	7/21/10 08:00

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix: Sample Name: Water

Lab Code:

LCS J1003442-002 Service Request: J1003442

Date Collected: 7/21/10 0830

Date Collected: 7/21/10 C Date Received: 7/21/10

Basis: NA

### **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	5100	mg/L	25	25	5	NA	7/24/10 06:10
Ammonia as Nitrogen	350.1	912	mg/L	2.0	0.8	200	NA	7/26/10 16:47
Bicarbonate Alkalinity as CaCO3	SM 2320 B	5100	mg/L	25	25	5	NA	7/24/10 06:10
Carbonate Alkalinity as CaCO3	SM 2320 B	ND U	mg/L	25	25	5	NA	7/24/10 06:10
Chloride	300.0	1980	mg/L	5.0	0.9	10	NA	7/22/10 17:02
Conductivity, Field	120.1	19750	μMHOS/cm			1	NA	7/21/10 08:30
Cyanide, Total	335.4	22	μg/L	10	5	1	7/27/10	7/27/10 17:23
Dissolved Oxygen, Field	360.1	0.2	ppm			1	NA	7/21/10 08:30
Nitrate as Nitrogen	300.0	3.0	mg/L	2.0	0.8	10	NA	7/22/10 17:02
pH, Field	150.1	7.60	pH Units			1	NA	7/21/10 08:30
Solids, Total Dissolved	SM 2540 C	7820	mg/L	200	200	20	NA	7/27/10 15:47
Sulfide, Total	SM 4500-S2- F	ND U	mg/L	16	4	8	NA	7/26/10 15:50
Temperature, Field	170.1	28.2	deg C			1	NA	7/21/10 08:30
Turbidity, Field	180.1	13.4	NTU			1	NA	7/21/10 08:30

Analytical Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank

J1003442-MB

Service Request: J1003442

Date Collected: NA
Date Received: NA

Basis: NA

### **General Chemistry Parameters**

Analyte Name	Method	Result	Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	ND	U	mg/L	5.0	5.0	1	NA	7/24/10 03:08
Ammonia as Nitrogen	350.1	ND	U	mg/L	0.010	0.004	1	NA	7/26/10 16:40
Bicarbonate Alkalinity as CaCO3	SM 2320 B	ND	U	mg/L	5.0	5.0	1	NA	7/24/10 03:08
Carbonate Alkalinity as CaCO3	SM 2320 B	ND	U	mg/L	5.0	5.0	1	NA	7/24/10 03:08
Chloride	300.0	ND	U	mg/L	0.50	0.09	1	NA	7/22/10 15:02
Cyanide, Total	335.4	ND	U	μg/L	10	5	1	7/27/10	7/27/10 17:02
Nitrate as Nitrogen	300.0	ND	U	mg/L	0.20	0.07	1	NA	7/22/10 15:02
Solids, Total Dissolved	SM 2540 C	ND	U	mg/L	10	10	1	NA	7/27/10 15:47
Sulfide, Total	SM 4500-S2- F	ND	U	mg/L	2.0	0.4	1	NA	7/26/10 15:50

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

# Surrogate Recovery Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: Percent

Sample Name	Lab Code	Sur1	Sur2	Sur3	<u>Sur4</u>
LDSS	J1003442-001	89	102	96	103
LCS	J1003442-002	95	105	99	106
TRIP	J1003442-003	89	107	97	104
Method Blank	JQ1002938-02	101	102	100	105
Lab Control Sample	JQ1002938-01	99	98	100	102

### Surrogate Recovery Control Limits (%)

Sur1	= 1,2-Dichloroethane-d4	71 - 122
Sur2	= 4-Bromofluorobenzene	75 - 120
Sur3	= Dibromofluoromethane	82 - 116
Sur4	= Toluene-d8	88 - 117

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Service Request: J1003442 Date Analyzed: 7/25/10

Sample Matrix:

Water

Lab Control Sample Summary
Volatile Organic Compounds by GC/MS

Analytical Method:

8260B

Units: μg/L Basis: NA

Analysis Lot: 209799

## Lab Control Sample

JQ1002938-01

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
1,1,1,2-Tetrachloroethane	18.6	20.0	93	85 - 117	
1,1,1-Trichloroethane (TCA)	18.9	20.0	94	79 - 124	
1,1,2,2-Tetrachloroethane	19.4	20.0	97	83 - 120	
1,1,2-Trichloroethane	19.6	20.0	98	86 - 114	
1,1-Dichloroethane (1,1-DCA)	19.4	20.0	97	80 - 128	
1,1-Dichloroethene (1,1-DCE)	19.2	20.0	96	78 - 130	
1,1-Dichloropropene	19.0	20.0	95	85 - 124	
1,2,3-Trichloropropane	19.8	20.0	99	83 - 123	
1,2,4-Trichlorobenzene	18.6	20.0	93	72 - 123	
1,2-Dibromo-3-chloropropane (DBCP)	17.5	20.0	87	62 - 123	
1,2-Dibromoethane (EDB)	19.6	20.0	98	88 - 117	
1,2-Dichlorobenzene	18.8	20.0	94	84 - 115	
1,2-Dichloroethane	19.4	20.0	97	80 - 124	
1,2-Dichloropropane	19.4	20.0	97	79 - 123	
1,3-Dichlorobenzene	18.7	20.0	94	83 - 112	
1,3-Dichloropropane	19.8	20.0	99	88 - 117	
1,4-Dichlorobenzene	18.9	20.0	94	83 - 113	
2,2-Dichloropropane	18.2	20.0	91	72 - 136	
2-Butanone (MEK)	89.3	100	89	73 - 127	
2-Hexanone	101	100	101	71 - 138	
4-Methyl-2-pentanone (MIBK)	99.2	100	99	72 - 136	
Acetone	95.1	100	95	67 - 133	
Acetonitrile	89.0	100	89	67 - 132	
Acrolein	96.1	100	96	61 - 137	
Acrylonitrile	98.0	100	98	77 - 127	
Allyl Chloride	18.7	20.0	94	68 - 128	
Benzene	19.0	20.0	95	79 - 119	
Bromochloromethane	19.5	20.0	97	79 - 129	
Bromodichloromethane	18.5	20.0	92	81 - 123	
Bromoform	17.7	20.0	88	68 - 129	
Bromomethane	19.8	20.0	99	70 120	
	17.0	20.0	99	79 - 130	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix:

Trail Ridge

Water

Service Request: J1003442

Date Analyzed: 7/25/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: μg/L Basis: NA

Analysis Lot: 209799

Lab Control Sample

JQ1002938-01

Analyte Name         Result         Amount         % Rec Limits           Carbon Tetrachloride         18.0         20.0         90         81 - 125           Chlorobenzene         19.7         20.0         98         86 - 113           Chloroethane         19.5         20.0         97         74 - 126           Chloroform         19.1         20.0         96         83 - 124           Chloromethane         19.5         20.0         98         67 - 135           Chloroprene         20.4         20.0         98         67 - 135           Chloroprene         19.4         20.0         97         80 - 126           cis-1,2-Dichloroethene         19.4         20.0         97         80 - 126           cis-1,3-Dichloropropene         19.0         20.0         95         86 - 123           Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3
Chlorobenzene         19.7         20.0         98         86 - 113           Chloroethane         19.5         20.0         97         74 - 126           Chloroform         19.1         20.0         96         83 - 124           Chloromethane         19.5         20.0         98         67 - 135           Chloroprene         20.4         20.0         98         67 - 135           Chloroprene         19.4         20.0         97         80 - 126           cis-1,2-Dichloroethene         19.0         20.0         95         86 - 123           Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Chlorobenzene       19.7       20.0       98       86 - 113         Chloroethane       19.5       20.0       97       74 - 126         Chloroform       19.1       20.0       96       83 - 124         Chloromethane       19.5       20.0       98       67 - 135         Chloroprene       20.4       20.0       98       67 - 135         Chloroprene       20.4       20.0       97       80 - 126         cis-1,2-Dichloroethene       19.0       20.0       95       86 - 123         Dibromochloropropene       19.0       20.0       95       86 - 123         Dibromomethane       18.2       20.0       91       82 - 121         Dibromomethane       19.0       20.0       95       83 - 123         Dichlorodifluoromethane       18.4       20.0       92       69 - 138         Ethyl Methacrylate       20.6       20.0       103       78 - 127         Ethylbenzene       19.3       20.0       96       90 - 118         Hexachlorobutadiene       18.8       20.0       94       73 - 140
Chloroethane         19.5         20.0         97         74 - 126           Chloroform         19.1         20.0         96         83 - 124           Chloromethane         19.5         20.0         98         67 - 135           Chloroprene         20.4         20.0         102         81 - 132           cis-1,2-Dichloroethene         19.4         20.0         97         80 - 126           cis-1,3-Dichloropropene         19.0         20.0         95         86 - 123           Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Chloromethane         19.5         20.0         98         67 - 135           Chloroprene         20.4         20.0         102         81 - 132           cis-1,2-Dichloroethene         19.4         20.0         97         80 - 126           cis-1,3-Dichloropropene         19.0         20.0         95         86 - 123           Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Chloroprene         20.4         20.0         102         81 - 132           cis-1,2-Dichloroethene         19.4         20.0         97         80 - 126           cis-1,3-Dichloropropene         19.0         20.0         95         86 - 123           Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Chloroprene         20.4         20.0         102         81 - 132           cis-1,2-Dichloroethene         19.4         20.0         97         80 - 126           cis-1,3-Dichloropropene         19.0         20.0         95         86 - 123           Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
cis-1,3-Dichloropropene         19.0         20.0         95         86 - 123           Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Dibromochloromethane         18.2         20.0         91         82 - 121           Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Dibromomethane         19.0         20.0         95         83 - 123           Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Dichlorodifluoromethane         18.4         20.0         92         69 - 138           Ethyl Methacrylate         20.6         20.0         103         78 - 127           Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Ethyl Methacrylate       20.6       20.0       103       78 - 127         Ethylbenzene       19.3       20.0       96       90 - 118         Hexachlorobutadiene       18.8       20.0       94       73 - 140
Ethylbenzene         19.3         20.0         96         90 - 118           Hexachlorobutadiene         18.8         20.0         94         73 - 140
Hexachlorobutadiene <b>18.8</b> 20.0 94 73 - 140
20.0 74 75-140
Iodomethane 96.5 100 07 68 124
70.5 100 97 08-134
Isobutyl Alcohol <b>391</b> 400 98 62 - 139
m,p-Xylenes 39.3 40.0 98 86 - 121
Methacrylonitrile         20.0         20.0         100         77 - 129
Methyl Methacrylate 19.8 20.0 99 79 - 128
Methylene Chloride <b>18.7</b> 20.0 93 72 - 124
Naphthalene         17.0         20.0         85         59 - 135
o-Xylene <b>19.6</b> 20.0 98 89 - 119
Propionitrile <b>98.2</b> 100 98 77 - 131
Styrene <b>20.0</b> 20.0 100 89 - 122
Tetrachloroethene (PCE) 19.4 20.0 97 80 - 121
Toluene 19.3 20.0 97 86 - 117
<u>trans-1,2-Dichloroethene</u> <b>19.6</b> 20.0 98 77 - 124
trans-1,3-Dichloropropene <b>18.6</b> 20.0 93 83 - 124
trans-1,4-Dichloro-2-butene <b>12.1</b> 20.0 60 53 - 143
Trichloroethene (TCE) 19.6 20.0 98 76 - 124
Trichlorofluoromethane <b>20.0</b> 20.0 100 74 - 134
Vinyl Acetate <b>98.0</b> 100 98 61 - 148

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Analyzed: 7/25/10

Lab Control Sample Summary

**Analytical Method:** 

8260B

Volatile Organic Compounds by GC/MS

Units: µg/L Basis: NA

Analysis Lot: 209799

Lab Control Sample

JQ1002938-01

Spike

% Rec

**Analyte Name** 

Result **Amount**  % Rec

Limits

Vinyl Chloride

19.8

20.0 99 78 - 132

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Surrogate Recovery Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

Units: PERCENT

Service Request: J1003442

**Analysis Method:** 

8011

Level: Low

Sample Name	Lab Code	Sur1
LDSS	J1003442-001	107
LCS	J1003442-002	91
Method Blank	JWG1002570-4	118
Lab Control Sample	JWG1002570-3	115

Surrogate Recovery Control Limits (%)

Sur1 = 1,1,1,2-Tetrachloroethane

77-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/05/2010 17:06:12

 $p:\Stealth\Crystal.rpt\Form2.rpt$ 

Form 2A - Organic

 $^{)}$   $^{\perp}$  Page

of

SuperSet Reference: RR3550

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Extracted:** 07/26/2010

**Date Analyzed:** 07/29/2010

Lab Control Spike Summary

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane by GC-ECD

**Extraction Method:** 

**METHOD** 

Analysis Method:

8011

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: JWG1002570

Lab Control Sample JWG1002570-3 Lab Control Spike

Lab Control Spike				%Rec
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	0.229	0.250	92	70-130
1,2-Dibromo-3-chloropropane (DBCP	0.325	0.250	130	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/05/2010 17:06:15 p:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

SuperSet Reference: RR35500

QA/QC Report

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge

Water

Service Request: J1003442

**Surrogate Recovery Summary** 

Semi-Volatile Organic Compounds by GC/MS (Appendix II)

**Extraction Method:** EPA 3510C **Analysis Method:** 

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1		Sur2		Sur3		Sur4		<u>Sur5</u>		Sur6	
LDSS	J1003442-001	30 D	30 D		12 D		102 D		57 D		84 D		)
LCS	J1003442-002	39	#	49	#	108	#	54	#	102	#	58	#
Method Blank	JWG1002584-4	2	#	9	#	72		40		14	#	81	
LCSMS	JWG1002584-1	49		53	#	101		63		101		71	
LCSDMS	JWG1002584-2	52		54	#	4	#	71		115		82	
Lab Control Sample	JWG1002584-3	40		24		92		64		85		91	

### Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	10-77	Sur5 = 2,4,6-Tribromophenol	30-143
Sur2 = Phenol-d6	10-51	Sur6 = Terphenyl-d14	23-165
Sur3 = Nitrobenzene-d5	32-106		
Sur4 = 2-Fluorobiphenyl	30-102		

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/10/2010 13:19:29

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

54 Page 1 of 1

RR35556

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003442

**Date Extracted:** 07/27/2010 Date Analyzed: 08/02/2010 -

08/03/2010

### Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LCS

Lab Code:

J1003442-002

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L

Basis: NA

Level: Low Extraction Lot: JWG1002584

**LCSMS** JWG1002584-1

**LCSDMS** JWG1002584-2

	Sample	JWG1002584-1 Matrix Spike				VG1002584-2 cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
N-Nitrosodimethylamine	ND	46.5	102	46	45.3	102	44	27-66	3	30
Phenol	610	752	102	138 #	851	102	236 #	10-70	12	30
Bis(2-chloroethyl) Ether	ND	ND	102	0 *	ND	102	0 *	45-90		30
2-Chlorophenol	ND	62.7	102	61	72.7	102	71	19-113	15	30
1,3-Dichlorobenzene	ND	33.2	102	33	35.5	102	35	30-119	7	30
1,4-Dichlorobenzene	8.5	45.8	102	37	49.6	102	40	31-119	8	30
1,2-Dichlorobenzene	ND	40.1	102	39	45.2	102	44	32-123	12	30
Bis(2-chloroisopropyl) Ether	ND	77.6	102	76	67.5	102	66	46-83	14	30
Benzyl alcohol	ND	ND	102	0 *	ND	102	0 *	39-96		30
2-Methylphenol	13	80.2	102	66	84.4	102	70	32-96	5	30
Hexachloroethane	ND	40.8	102	40	51.9	102	51	33-99	24	30
N-Nitrosodi-n-propylamine	ND	159	102	156 *	90.3	102	88	47-89	55 *	30
4-Methylphenol	480	551	153	46	594	153	74	12-106	7	30
Nitrobenzene	ND	110	102	108	160	102	157 *	35-109	37 *	30
Isophorone	ND	ND	102	0 *	ND	102	0 *	47-97		30
2-Nitrophenol	ND	105	102	103	92.8	102	91	16-133	12	30
2,4-Dimethylphenol	ND	101	102	99 *	105	102	103 *	35-88	4	30
bis(2-Chloroethoxy)methane	ND	104	102	102 *	98.7	102	97 *	48-90	5	30
2,4-Dichlorophenol	ND	88.8	102	87	83.5	102	82	21-122	6	30
1,2,4-Trichlorobenzene	ND	44.1	102	43	42.7	102	42	32-123	3	30
Naphthalene	8.2	69.2	102	60	75.6	102	66	41-93	9	30
4-Chloroaniline	ND	ND	102	0 *	ND	102	0 *	10-94		30
Hexachlorobutadiene	ND	56.5	102	55	58.9	102	58	35-95	4	30
4-Chloro-3-methylphenol	ND	181	102	178 *	ND	102	0 *	28-115	200 *	30
2-Methylnaphthalene	ND	59.5	102	58	58.8	102	58	48-91	1	30
Hexachlorocyclopentadiene	ND	24.2	102	24	34.4	102	34	23-112	35 *	30
2,4,6-Trichlorophenol	ND	78.7	102	77	96.2	102	94	10-141	20	30
2,4,5-Trichlorophenol	ND	94.7	102	93	105	102	103	18-135	11	30
2-Chloronaphthalene	ND	53.1	102	52	64.9	102	64	49-100	20	30
2-Nitroaniline	ND	202	102	198 *	152	102	149 *	26-107	28	30
Acenaphthylene	ND	56.6	102	55	72.5	102	71	46-95	25	30
Dimethyl Phthalate	ND	78.6	102	77	92.4	102	91	38-111	16	30
2,6-Dinitrotoluene	ND	77.4	102	76	90.7	102	89	43-125	16	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/10/2010 13:19:32 p:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

55 Page

SuperSet Reference: RR35556

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Date Extracted:** 07/27/2010

Date Analyzed: 08/02/2010 -08/03/2010

### Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS (Appendix II)

Sample Name:

LCS

Lab Code:

J1003442-002

**Extraction Method:** Analysis Method:

EPA 3510C

8270C

Units: ug/L Basis: NA

Level: Low Extraction Lot: JWG1002584

**LCSMS** JWG1002584-1

LCSDMS JWG1002584-2

	Sample	JWG1002584-1  Matrix Spike				VG1002584-2 cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Acenaphthene	ND	64.1	102	63	73.5	102	72	48-96	14	30
3-Nitroaniline	ND	ND	102	0 *	ND	102	0 *	23-84		30
2,4-Dinitrophenol	ND	96.1	102	94	92.0	102	90	10-150	4	30
Dibenzofuran	ND	61.0	102	60	75.2	102	74	49-101	21	30
4-Nitrophenol	ND	ND	102	0 *	ND	102	0 *	10-101		30
2,4-Dinitrotoluene	ND	79.3	102	78	97.5	102	96	48-126	21	30
2,3,4,6-Tetrachlorophenol	ND	94.6	102	93	107	102	105	50-150	12	30
Fluorene	ND	72.7	102	71	91.8	102	90	54-95	23	30
4-Chlorophenyl Phenyl Ether	ND	70.4	102	69	85.3	102	84	56-103	19	30
Diethyl Phthalate	ND	116	102	114 *	150	102	147 *	59-103	25	30
4-Nitroaniline	ND	ND	102	0 *	ND	102	0 *	14-119		30
2-Methyl-4,6-dinitrophenol	ND	83.4	102	82	82.2	102	81	10-141	1	30
N-Nitrosodiphenylamine	ND	67.9	102	67	73.0	102	72	30-118	7	30
4-Bromophenyl Phenyl Ether	ND	86.4	102	85	94.0	102	92	62-122	8	30
Hexachlorobenzene	ND	77.2	102	76	87.6	102	86	56-110	13	30
Pentachlorophenol	ND	132	102	129	130	102	128	18-141	1	30
Phenanthrene	ND	70.3	102	69	79.8	102	78	49-95	13	30
Anthracene	ND	70.6	102	69	84.6	102	83	50-101	18	30
Di-n-butyl Phthalate	2.4	91.4	102	87	105	102	101	61-109	14	30
Fluoranthene	ND	63.6	102	62	74.3	102	73	48-103	15	30
Pyrene	ND	74.8	102	73	81.4	102	80	49-103	8	30
Butyl Benzyl Phthalate	ND	100	102	98	110	102	108	51-111	9	30
Benz(a)anthracene	ND	63.2	102	62	74.1	102	73	40-104	16	30
Chrysene	ND	_* 63.9	102	63	72.5	102	71	47-105	13	30
Bis(2-ethylhexyl) Phthalate	3.5	102	102	97	124	102	118 *	49-114	20	30
Di-n-octyl Phthalate	ND	85.1	102	83	95.0	102	93	43-119	11	30
Benzo(b)fluoranthene	ND	73.8	102	72	83.4	102	82	54-105	12	30
Benzo(k)fluoranthene	ND	66.3	102	65	84.2	102	82	50-101	24	30
Benzo(a)pyrene	ND	60.2	102	59	69.0	102	68	48-100	14	30
Indeno(1,2,3-cd)pyrene	ND	84.6	102	83	92.4	102	91	50-115	9	30
Dibenz(a,h)anthracene	ND	88.7	102	87	105	102	103	44-124	17	30
Benzo(g,h,i)perylene	ND	83.0	102	81	94.0	102	92	51-114	12	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/10/2010 13:19:32 p:\Stealth\Crystal.rpt\Form3DMS.rpt

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Extracted: 07/27/2010

**Date Extracted:** 07/27/2010 **Date Analyzed:** 08/02/2010

# Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

**Extraction Method:** 

EPA 3510C

**Analysis Method:** 

8270C

Semi-Volatile Organic Compounds by GC/MS

Units: ug/L

Basis: NA

Level: Low Extraction Lot: JWG1002584

Lab Control Sample JWG1002584-3

Lab Control Spike %Rec Limits **Analyte Name** Result **Expected** %Rec Bis(2-chloroethyl) Ether 31.5 50.0 41-99 63 Phenol 14.2 50.0 28 12-54 2-Chlorophenol 32.0 50.0 64 35-101 1,3-Dichlorobenzene 23.4 50.0 47 30-119 1,4-Dichlorobenzene 25.8 50.0 52 31-119 1,2-Dichlorobenzene 26.2 50.0 52 32-123 Bis(2-chloroisopropyl) Ether 33.0 50.0 66 31-94 Benzyl alcohol 32.4 50.0 65 32-110 2-Methylphenol 32.0 50.0 64 21-100 Hexachloroethane 28.1 50.0 56 19-113 N-Nitrosodi-n-propylamine 106 * 53.1 50.0 43-103 4-Methylphenol 27.2 75.0 36 15-95 Nitrobenzene 46.1 50.0 92 36-116 Isophorone 59.1 50.0 118 * 46-106 2-Nitrophenol 44.0 50.0 88 40-120 2.4-Dimethylphenol 40.3 50.0 81 38-110 bis(2-Chloroethoxy)methane 30.7 50.0 61 47-100 2,4-Dichlorophenol 46.3 50.0 93 36-117 1,2,4-Trichlorobenzene 26.9 50.0 54 50-120 Naphthalene 33.0 50.0 66 40-97 4-Chloroaniline 35.7 50.0 71 39-110 Hexachlorobutadiene 38.6 50.0 77 20-110 4-Chloro-3-methylphenol 55.9 50.0 112 36-117 2-Methylnaphthalene 36.5 50.0 73 46-110 Hexachlorocyclopentadiene 27.7 50.0 55 23-115 2,4,6-Trichlorophenol 44.0 50.0 88 41-115 2,4,5-Trichlorophenol 44.3 50.0 89 47-113 2-Chloronaphthalene 29.9 50.0 60 47-106 2-Nitroaniline 54.9 50.0 110 * 33-94 Acenaphthylene 36.7 50.0 73 45-99 Dimethyl Phthalate 43.7 50.0 87 32-119 2,6-Dinitrotoluene 45.0 50.0 90 55-121 Acenaphthene 30.7 50.0 42-106 61 3-Nitroaniline 36.1 50.0 72 25-91 2,4-Dinitrophenol 47.6 50.0 95 27-128

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/10/2010 13:19:35 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

Client:

Jacksonville, City of

**Project:** 

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442 Date Extracted: 07/27/2010

**Date Analyzed:** 08/02/2010

### Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

**Extraction Method:** EPA 3510C

**Analysis Method:** 

8270C

Units: ug/L Basis: NA

Level: Low

Extraction Lot: JWG1002584

Lab Control Sample JWG1002584-3 Lab Control Spike

Lab Control Spike			%Rec
Result	Expected	%Rec	Limits
32.5	50.0	65	49-103
			10-86
47.1	50.0	94	54-121
36.4	50.0		54-97
32.0	50.0	64	53-108
49.0	50.0	98	56-108
38.3	50.0		44-102
44.9			46-117
34.0			30-122
			63-123
41.7			55-110
52.2	50.0	104	35-120
38.2	50.0	76	49-110
34.5	50.0	69	50-104
39.3	50.0	79	48-118
43.2	50.0	86	57-118
35.9	50.0	72	48-110
43.5	50.0	87	35-110
51.7	50.0	103	40-117
43.0	50.0	86	42-114
44.1	50.0	88	50-113
51.9	50.0	104	41-127
49.0	50.0	98	35-139
43.8	50.0	88	56-110
43.4	50.0	87	48-110
39.6	50.0	79	46-110
41.9	50.0	84	54-115
46.4	50.0	93	51-125
46.7	50.0	93	53-116
	32.5 32.6 47.1 36.4 32.0 49.0 38.3 44.9 34.0 38.9 41.7 52.2 38.2 34.5 39.3 43.2 35.9 43.5 51.7 43.0 44.1 51.9 49.0 43.8 43.4 39.6 41.9 46.4	Result         Expected           32.5         50.0           32.6         50.0           47.1         50.0           36.4         50.0           32.0         50.0           49.0         50.0           38.3         50.0           34.9         50.0           38.9         50.0           38.9         50.0           38.2         50.0           38.2         50.0           39.3         50.0           39.3         50.0           43.2         50.0           35.9         50.0           43.5         50.0           51.7         50.0           43.0         50.0           44.1         50.0           43.8         50.0           43.4         50.0           43.4         50.0           41.9         50.0           46.4         50.0	32.5

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/10/2010 13:19:35 p:\Stealth\Crystal.rpt\Form3LCS.rpt

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

**Surrogate Recovery Summary** Organochlorine Pesticides by GC-ECD

Extraction Method:

EPA 3510C

Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
LDSS	J1003442-001	41 D	56 D
LCS	J1003442-002	84 D	38 D
Method Blank	JWG1002581-4	47	83
LDSSMS	JWG1002581-1	57 D	51 D
LDSSDMS	JWG1002581-2	51 D	52 D
Lab Control Sample	JWG1002581-3	60	81

Surrogate Recovery Control Limits (%)

Sur1 = Tetrachloro-m-xylene 32-92 Sur2 = Decachlorobiphenyl 13-104

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/05/2010 17:05:06 p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR35499

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Extracted: 07/27/2010 **Date Analyzed:** 08/04/2010

### Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides by GC-ECD

Sample Name:

LDSS

Lab Code:

J1003442-001

**Extraction Method:** 

EPA 3510C

Analysis Method:

8081A

Units: ug/L Basis: NA

Level: Low

Extraction Lot: JWG1002581

LDSSMS JWG1002581-1

**LDSSDMS** JWG1002581-2

	Sample	7	Matrix Spike		Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
alpha-BHC	ND	0.306	0.851	36 *	0.298	0.851	35 *	39-108	3	30
gamma-BHC (Lindane)	ND	0.868	0.851	102	0.783	0.851	92	41-105	10	30
beta-BHC	ND	0.426	0.851	50	0.451	0.851	53	32-115	6	30
delta-BHC	ND	0.570	0.851	67	1.09	0.851	128 *	23-106	63 *	30
Heptachlor	ND	0.400	0.851	47	0.417	0.851	49	28-111	4	30
Aldrin	ND	ND	0.851	0 *	ND	0.851	0 *	24-110		30
Heptachlor Epoxide	ND	0.528	0.851	62	0.621	0.851	73	40-111	16	30
gamma-Chlordane	ND	0.519	0.851	61	0.519	0.851	61	28-109	0	30
alpha-Chlordane	ND	0.528	0.851	62	0.519	0.851	61	32-104	2	30
4,4'-DDE	ND	0.502	0.851	59	0.511	0.851	60	26-117	2	30
Endosulfan I	ND	0.545	0.851	64	0.545	0.851	64	40-108	0	30
Dieldrin	ND	0.570	0.851	67	0.562	0.851	66	37-116	2	30
Endrin	ND	0.511	0.851	60	0.485	0.851	57	35-127	5	30
4,4'-DDD	ND	0.357	0.851	42	0.306	0.851	36 *	41-110	15	30
Endosulfan II	ND	0.511	0.851	60	0.511	0.851	60	42-110	0	30
4,4'-DDT	ND	0.477	0.851	56	0.485	0.851	57	27-115	2	30
Endrin Aldehyde	ND	0.221	0.851	26	0.255	0.851	30	20-116	14	30
Endosulfan Sulfate	ND	0.562	0.851	66	0.553	0.851	65	41-109	2	30
Endrin Ketone	ND	0.553	0.851	65	0.545	0.851	64	38-108	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/05/2010 17:05:09 p:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

SuperSet Reference: RR35499

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003442

Date Extracted: 07/27/2010

**Date Analyzed:** 08/02/2010

### Lab Control Spike Summary Organochlorine Pesticides by GC-ECD

**Extraction Method:** EPA 3510C

Analysis Method:

8081A

Units: ug/L

Basis: NA

Level: Low Extraction Lot: JWG1002581

Lab Control Sample JWG1002581-3 Lab Control Spike

	Lau	Control Spik	e	%Rec
Analyte Name	Result	Expected	%Rec	Limits
alpha-BHC	0.310	0.400	78	56-104
gamma-BHC (Lindane)	0.310	0.400	78	57-101
beta-BHC	0.332	0.400	83	55-97
delta-BHC	0.368	0.400	92	31-105
Heptachlor	0.303	0.400	76	52-100
Aldrin	0.304	0.400	76	45-108
Heptachlor Epoxide	0.314	0.400	79	59-103
gamma-Chlordane	0.362	0.400	91	53-107
alpha-Chlordane	0.354	0.400	89	54-104
4,4'-DDE	0.354	0.400	89	58-114
Endosulfan I	0.348	0.400	87	61-104
Dieldrin	0.356	0.400	89	57-111
Endrin	0.332	0.400	83	57-117
4,4'-DDD	0.244	0.400	61	56-116
Endosulfan II	0.348	0.400	87	50-106
4,4'-DDT	0.412	0.400	103	41-115
Endrin Aldehyde	0.340	0.400	85	51-108
Methoxychlor	0.347	0.400	87	43-123
Endosulfan Sulfate	0.358	0.400	90	56-107
Endrin Ketone	0.357	0.400	89	46-101

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/05/2010 17:05:12 p:\Stealth\Crystal.rpt\Form3LCS.rpt

RR35499

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

**Surrogate Recovery Summary** 

Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

**Extraction Method:** 

EPA 3510C

Service Request: J1003442

Units: PERCENT

Analysis Method:

8082

Level: Low

Lab Code	Sur1
J1003442-001	56 D
J1003442-002	44 D
JWG1002582-2	85
JWG1002582-1	80
	J1003442-001 J1003442-002 JWG1002582-2

Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

24-120

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/05/2010 17:03:12 p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR35498

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Extracted: 07/27/2010

**Date Analyzed:** 08/02/2010

Lab Control Spike Summary

**Extraction Method:** 

EPA 3510C

Analysis Method:

8082

Polychlorinated Biphenyls (PCB Aroclors) by GC-ECD

Units: ug/L

Basis: NA

Extraction Lot: JWG1002582

Level: Low

Lab Control Sample JWG1002582-1

Lab Control Spike %Rec **Analyte Name** Limits Result **Expected** %Rec Aroclor 1016 3.06 4.00 77 39-116 Aroclor 1260 3.20 4.00 80 41-118

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/05/2010 17:03:15  $p:\Stealth\Crystal.rpt\Form3LCS.rpt$ 

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003442 Date Analyzed: 7/28/10 -

7/29/10

### Lab Control Sample Summary Inorganic Parameters

Units: μg/L Basis: NA

### Lab Control Sample J1003442-LCS2

			Spike			
Analyte Name	Method	Result	Amount	% Rec	Limits	
Antimony, Total	6020	48.8	50.0	98	80 - 120	
Arsenic, Total	6020	46.7	50.0	93	80 - 120	
Barium, Total	6020	50.5	50.0	101	80 - 120	
Beryllium, Total	6020	47.7	50.0	95	80 - 120	
Cadmium, Total	6020	46.5	50.0	93	80 - 120	
Chromium, Total	6020	51.4	50.0	103	80 - 120	
Cobalt, Total	6020	50.7	50.0	101	80 - 120	 
Copper, Total	6020	49.3	50.0	99	80 - 120	
Lead, Total	6020	50.8	50.0	102	80 - 120	
Mercury, Total	7470A	5.36	5.00	107	80 - 120	
Nickel, Total	6020	48.2	50.0	96	80 - 120	
Selenium, Total	6020	43.5	50.0	87	80 - 120	
Silver, Total	6020	49.7	50.0	99	80 - 120	
Thallium, Total	6020	49.6	50.0	99	80 - 120	
Vanadium, Total	6020	51.8	50.0	104	80 - 120	
Zinc, Total	6020	89.4	100	89	80 - 120	 

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

**Service Request:** J1003442 **Date Analyzed:** 7/27/10 -

7/28/10

Lab Control Sample Summary Inorganic Parameters

> Units: μg/L Basis: NA

Lab Control Sample

**Duplicate Lab Control Sample** 

J1003442-LCS1

J1003442-DLCS1

Ameliote Nicor	**	Spike			Spike			% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Iron, Total	6010B	2030	2000	102	2020	2000	101	80 - 120	1	20
Tin, Total	6010B	5100	5000	102	5050	5000	101	80 - 120	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442 Date Analyzed: 7/27/10 -

7/28/10

Lab Control Sample Summary **Inorganic Parameters** 

> Units: mg/L Basis: NA

Lab Control Sample

**Duplicate Lab Control Sample** 

		J100	03442-LCS	J1003	3442-DLC	'S1					
Analyte Name	Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit	
Sodium, Total	6010B	10.1	10.0	101	10.2	10.0	102	80 - 120	1	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:

Jacksonville, City of

Project: Sample Matrix: Trail Ridge

Water

Service Request: J1003442

Date Collected: 7/21/10 Date Received: 7/21/10 Date Analyzed: 7/24/10

**Duplicate Sample Summary Alkalinity Titration 20th Ed.** 

Sample Name:

**LDSS** 

Lab Code:

J1003442-001

Units: mg/L Basis: NA

LDSSDUP

				Sample	-	te Sample 42-DUP		RPD
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	Limit
Alkalinity as CaCO3, Total	SM 2320 B	25	25	4790	4730	4760	ţ.	20
Bicarbonate Alkalinity as CaCO3	SM 2320 B	25	25	4790	4730	4760	1	20
Carbonate Alkalinity as CaCO3	SM 2320 B	25	25	ND U	ND U	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

Jacksonville, City of

**Project:** Sample Matrix: Trail Ridge

Water

Service Request: J1003442

Date Analyzed: 7/26/10 -

7/27/10

**Lab Control Sample Summary** General Chemistry Parameters

> Units: mg/L Basis: NA

		Lab Control Sample J1003442-LCS1			Duplicate Lab Control Sample J1003442-DLCS1					
Analyte Name	Method	Result	Spike Amount	% Rec	Result	Spike Amount	t % Rec	% Rec Limits	RPD	RPD Limit
Solids, Total Dissolved	SM 2540 C	297	300	99	303	300	101	85 - 115	2	20
Sulfide, Total	SM 4500-S2- F	20.1	20.0	101	20.2	20.0	101	85 - 115	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

SuperSet Reference:

QA/QC Report

Client:

Jacksonville, City of

Project:

Trail Ridge

Sample Matrix:

Water

Service Request: J1003442

Date Analyzed: 7/22/10 -

7/27/10

**Lab Control Sample Summary General Chemistry Parameters** 

Units: mg/L Basis: NA

Lab Control Sample J1003442-LCS2

% Rec Spike **Analyte Name** Method Amount % Rec Limits Result Ammonia as Nitrogen 350.1 0.957 1.00 96 90 - 110Chloride 300.0 50.0 105 90 - 110 52.6 300.0 5.00 99 90 - 110 Nitrate as Nitrogen 4.97 Solids, Total Dissolved SM 2540 C 27.0 30 90 70 - 130

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client: Project: Jacksonville, City of

Sample Matrix:

Trail Ridge Water

Service Request: J1003442

Date Analyzed: 7/22/10 -

7/27/10

**Lab Control Sample Summary General Chemistry Parameters** 

> Units: µg/L Basis: NA

Lab Control Sample J1003442-LCS2

% Rec Spike Method Amount % Rec Limits **Analyte Name** Result Cyanide, Total 335.4 105 100 105 90 - 110

Results flagged with an asterisk (*) indicate values outside control criteria.



### Columbia Analytical Services, Inc. Cooler Receipt Form

Services*	Cooler Receipt Form				
Client: Project:	Trail Ridge Service Request #: Leachere		J1003442	<b>)</b>	
Cooler recei	ved on 7/21/10 and opened on 7/21/	10 by	50		
COURIER:	(CAS) UPS FEDEX Client Other	Airb	oill #		
1	Were custody seals on outside of cooler?	<b>v</b> es)	No		
	If yes, how many and where?	#:_[	on lid	other	
2	Were seals intact and signature and date correct?	Yes	No	N/A	
3	Were custody papers properly filled out?	Yes	No	N/A	
4	Temperature of cooler(s) upon receipt (Should be $> 0^{\circ}$ C and $< 6^{\circ}$ C)	0.3	THE PLANTAGE STATE	NAME OF THE PROPERTY AND THE PROPERTY AN	***************
5	Thermometer ID Tr3	773			Advisor - Our - Inches
6	Temperature Blank Present?	(C)s	No		
7	Were Ice or Ice Packs present	(Ice)	Ice Pack	s N	Vo
8	Did all bottles arrive in good condition (unbroken, etc)?	(C)	No	N/A	
9	Type of packing material present	bu	bble wrop		
10	Were all bottle labels complete (sample ID, preservation, etc)?	YES	No	N/A	
11	Did all bottle labels and tags agree with custody papers?	Yes	No	N/A	
12	Were the correct bottles used for the tests indicated?	<u> </u>	No	N/A	
(	Were all of the preserved bottles received with the appropriate preservative?  HNO3 pH<2 H2SO4 pH<2 ZnAc2/NaOH pH>9 NaOH pH>12  Preservative additions noted below	Yes HCl pH<2	RO	N/A	
14	Were all samples received within analysis holding times?	e es	No	N/A	
15	Were VOA vials checked for absence of air bubbles? If present, note below	A) s	No	N/A	
16	Where did the bottles originate?	EAS	Client		
[	Sample ID Reagent Lot # ml a	dded Initia	als Date/Time	]	

Sample ID	Reagent	Lot #	ml added	Initials Date/Time
LDSS	H2504	GenR18-63E	LO	SL 7/21/10 1500
LCS	H2509	Gen R18-63E	[v]	Carpenter
LD53	HNOS	Met-1-83H	4.0	
LCS	HN03	Met-1-8314	4,0	
LDSS	NAOH	Smol-k	4 peffets	
LCS	NAOH	SM01-40	4 pellets	
4055	ZNACZ	3m0160	2.50005	
LCS	ZIACI	5mol-60	250005	
			,	V

Additional comments and/or explanation of all discrepancies noted above:	
Unable to bring cyanide & sulfide to proper p4	
	7/1

Client approval to run samples if discrepancies noted:

Date:

Columbia Analytical Services.

SR #: J 003442

Initials. Note that pH is check and meets the required pH criterion listed in the column heading unless otherwise noted on the cooler receipt form.

Sodium Misc.
9 9 9
9 9 9
G HNO3
HCI H2SO4HNO3
NaOH HNO3 × 12 N/A <2 N
H2SO4 HNO3 NaOH Ni <2 <2 >9 >
HCI H2SO4HNO3 H28
NA2SZ03 HCI H24
g Z

**S** Columbia Analytical Services

www.castab.com

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

CAS Contact

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE

R

NāOH Zn. Acetate MeOH NaHSO₄ ALTERNATE DESCRIPTION INVOICE INFORMATION RECEIVED BY ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Time Signature BILL TO: Film IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report å (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration II. Results + QC Summaries Yes I. Results Only 0 Printed Name 0 ( 노 TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE  $\sim$ REQUESTED FAX DATE X STANDARD 0 1708 PRESERVATIVE Œ  $\langle \gamma \rangle$ (1) 0 9 ගු NUMBER OF CONTAINERS CUSTODY SEALS: LEACH MATRIX LEACH 3 0830 0800 SAMPLING 00 DAN ARMOUR 7.5 7 7 7 DATE SAR Sampler's Printed Name 32262 Email Address 200 M. FORSYTH ST. LAB ID FAX# SAMPLE RECEIPT: CONDITION/COOLER TEMP: JACKSONVILLS FL 8553 SPECIAL INSTRUCTIONS/COMMENTS **CLIENT SAMPLE ID** RIBE Storier RELINQUISHED BY ARMOJA 598 1R/P PB. Taga L 035 Date/Time ر. ال الـ DKAD TRAIL JOO See QAPP HDR Inted Name Signature

Distribution: White - Return to Originator; Yellow - Retained by Client

	FIELD INFORMATION FORM	
Na Na	1 This Waste Management Field Information Form is Required	
S	Sample Sample Submitted along with the Chain of Custody Forms that accompany the sample Laboratory Use Only/Lab ID:	
	Sample ID	
GE	072110 0800 +	
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED	ļ
	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.	
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: or N Filter Device: Y or M [0.45 µ] or µ (circle or fill in)  Purging Device A-In-line Disposable C-Vacuum	
E/SA	B-Peristaltic Pump E-Piston Pump Filter Type: B-Pressure X-Other	
URG	Sampling Device X C-QED Bladder Pump F-Dipper/Bottle  X-Other: Sample Post on leachet System   Sample Tube Type: B-Stainless Steel D-Polypropylene	
	Well Elevation Depth to Water (DTW) Groundwater Elevation	
	(at TOC) (ft/msl) (from TOC) (ft/msl) (from TOC)	.)
	Total Well Depth (from TOC) Stick Up Casing (fit) (from ground elevation) (fit) ID Casing (in) Material	
-	Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.	
	Sample Time         Rate/Unit         pH         Conductance (SC/EC)         Temp.         Turbidity         D.O.         eH/ORP         DTW           (2400 Hr Clock)	
	218 F121140 298 4167 612	_
aF)		_
otion	3 ⁷⁰ 3 ⁷⁰ 3 ⁷⁰	_
(O)		_
DAT		
ON		
STABILIZATION DATA (Optional)		
BILL		
STA		
	aggésted range for 3 consec. readings or +/- 0.2 +/- 3% +/- 10% +/- 25 mV Stabilize	
	tabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM. Site, or State). These fields can be used where four (4) field measurements are require State/Permit/Site. If a Data Logger or other Electronic format is used. fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate slieet or	d <u>form</u>
ATA	SAMPLE DATE         pH         CONDUCTANCE         TEMP.         TURBIDITY         DO         eH/ORP         Other:           (MM DD YY)         (std)         (umhos/cm @ 25°C)         (°C)         (ntu)         (mg/L-ppm)         (mV)         Units	-
FIELD DATA	72110 808 17140 298 4167 02	
Process Collect	inal Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.	
	ample Appearance: Color: BLACK Other:	
	Veather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: Form 85 °C Precipitation: Y or M	
	pecific Comments (including purge/well volume calculations if required):	consister
SIZ		MANAGES.
AME		MANAGE-
CO		
FIELD COMMENTS		AND SEC
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	.neversions
	7/21/10 Day Armour Pro-Torce	
	The say	
	Date Name Signature Company 74	

	FIELD INFORMATION FORM	
Na	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	
1	submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).  Laboratory Use Only/Lab ID:	
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLs  (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED  Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" wt Water Vol in TubingtFlow Cell and TubingtFlow Cell Vols Purged. Mark changes, record field data, below.	
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Or N Filter Device: Y or O 0.45 \( 0.45 \text{0.45 \text{0	
L.		
T. C. L.	Total Well Depth (from TOC)  Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by SitelPermit. Well Elevation, DTW, and Groundwater Elevation must be current.	
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW (2400 Hr Clock) (std) (umhos/cm@25 °C) (°C) (ntu) (mg/L - ppm) (mV) (ft)	
Optional)	0 5 3 b NA 1 ^M 7 6 b 1 ^M 1 9 7 5 b 2 8 2 1 3 4 0 2	
STABILIZATION DATA (Optional)		-
STABILIZ		
	suggested range for 3 consec. readings or +/- 0.2 +/- 3% +/- 10% +/- 25 mV Stabilize of tabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required	
zoromuco.	y State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or formation of the state of the stat	<u>rm.</u>
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV) Units  O 7 2 1 1 0 4 5 0 2 8 2 1 3 4 6 7 7 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
nicovin/sca <b>š</b> s	Sample Appearance: Sto Color: Amber Brown Other:	-
	Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: F33 85 F Precipitation: Y of M	_
	Composite OF LEACHATE TANKS TAROUGH #5.	-
SING.	COMPOSITION OF COMMINING (MAK) (MAKO)	-
COMMENTS		-
PIELD		-
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):  7/21/19  7/21/19  7/21/19  7/21/19	
	The least	-
	Date Name Signature Company / 5  DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample VELLOW - Returned to Client PINK - Field Conv.	-



Columbia Analytical Services 9143 Philips Highway, Suite 200 Jacksonville, FL 32256 Tel 904-739-2277 Fax 904-739-2011

# **Appendix A**Subcontracted Analytical Results

### **Environmental Conservation Laboratories, Inc.**

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314

FAX: 407.850.6945



Monday, August 2, 2010

Columbia Analytical Svcs. (CO009)

Attn: Craig Myers

9143 Philips Highway, Suite 200

Jacksonville, FL 32256

RE: Laboratory Results for

Project Number: J1003442, Project Name/Desc: J1003442

ENCO Workorder: A003994

Dear Craig Myers,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Friday, July 23, 2010.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Ronald Wambles

Project Manager

Enclosure(s)

WILL CO



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: LDSS		Lab ID: A0039	194-01 Sampled	l: 07/21/10 08:00 Received: 07/23/10 08:00
Parameter	Hold Date/Tin	ne(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8141B	07/28/10	09/05/10	07/27/10 08:49	7/30/2010 13:32
EPA 8151A	07/28/10	09/04/10	07/26/10 17:06	7/28/2010 23:40

Client ID: LCS		Lab ID: A0039	94-02 Samp	pled: 07/21/10 08:30 Received: 07/23/10 08:00
Parameter	Hold Date/Time	e(s)	Prep Date/Time(s	s) Analysis Date/Time(s)
EPA 8141B	07/28/10	09/05/10	07/27/10 08:49	7/30/2010 15:28
EPA 8151A	07/28/10	09/04/10	07/26/10 17:06	7/29/2010 00:04



### **SAMPLE DETECTION SUMMARY**

No positive results detected.



### **ANALYTICAL RESULTS**

Description: LDSS

Lab Sample ID: A003994-01

Received: 07/23/10 08:00

Matrix: Water

Sampled: 07/21/10 08:00

Work Order: A003994

Project: J1003442

Sampled By:

### Chlorinated Herbicides by GC

Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	POL	Batch	Method	Analyzed	Ву	Notes
2,4,5-T [93-76-5] ^	0.053	U	ug/L	1	0.053	0.50	0G26044	EPA 8151A	07/28/10 23:40	JJB	NOUS
2,4,5-TP (Silvex) [93-72-1] ^	0.056	U	ug/L	1	0.056	0.50	0G26044	EPA 8151A	07/28/10 23:40	JJB	
2,4-D [94-75-7] ^	0.091	U	ug/L	1	0.091	0.50	0G26044	EPA 8151A	07/28/10 23:40	IJВ	
Dinoseb [88-85-7] ^	0.28	U	ug/L	1	0.28	0.50	0G26044	EPA 8151A	07/28/10 23:40	JJB	
Pentachlorophenol [87-86-5] ^	0.043	U	ug/L	1	0.043	0.50	0G26044	EPA 8151A	07/28/10 23:40	JJB	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
2,4-DCAA	3.9	1	2.00	196 %	68	139	0G26044	EPA 8151A	07/28/10 23:40	IJВ	QS-06



**Description:** LDSS

Matrix: Water
Project: J1003442

**Lab Sample ID:** A003994-01

Sampled: 07/21/10 08:00

Sampled By:

Received: 07/23/10 08:00

Work Order: A003994

### **Organophosphorus Compounds by GC**

Analyte [CAS Number]	Results	Flag	Units	DF	MDL	POL	<u>Batch</u>	Method	Analyzed	Ву	Notes
Azinphos-methyl [86-50-0] ^	0.15	υ	ug/L	1	0.15	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	Hotes
Bolstar [35400-43-2] ^	0.096	U	ug/L	1	0.096	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Chlorpyrifos [2921-88-2] ^	0.078	U	ug/L	1	0.078	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Coumaphos [56-72-4] ^	0.15	U	ug/L	1	0.15	1.0	0G27005	EPA 8141B	07/30/10 13:32	33B	
Demeton [8065-48-3]	0.064	U	ug/L	1	0.064	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Diazinon [333-41-5] ^	0.065	U	ug/L	1	0.065	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Dichlorofenthion [97-17-6] ^	0.071	U	ug/L	1	0.071	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Dichlorvos [62-73-7] ^	0.17	U	ug/L	1	0.17	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Dimethoate [60-51-5] ^	0.12	U	ug/L	1	0.12	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Disulfoton [298-04-4] ^	0.054	U	ug/L	1	0.054	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
EPN [2104-64-5] ^	0.14	U	ug/L	1	0.14	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Ethion [563-12-2] ^	0.12	υ	ug/L	1	0.12	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Ethoprop [13194-48-4] ^	0.066	υ	ug/L	1	0.066	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Ethyl Parathion [56-38-2] ^	0.11	U	ug/L	1	0.11	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Fensulfothion [115-90-2] ^	0.11	U	ug/L	1	0.11	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Fenthion [55-38-9] ^	0.097	U	ug/L	1	0.097	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Malathion [121-75-5] ^	0.10	U	ug/L	1	0.10	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	•
Merphos [150-50-5] ^	0.26	U	ug/L	1	0.26	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Methyl parathion [298-00-0] ^	0.11	U	ug/L	1	0.11	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Mevinphos [7786-34-7] ^	0.19	U	ug/L	1	0.19	1.0	0G27005	EPA 8141B	07/30/10 13:32	IJВ	
Monocrotophos [6923-22-4] ^	0.060	U	ug/L	1	0.060	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Naled [300-76-5] ^	0.24	U	ug/L	1	0.24	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Phorate [298-02-2] ^	0.054	U	ug/L	1	0.054	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Ronnel [299-84-3] ^	0.087	U	ug/L	1	0.087	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Stirophos (Tetrachlorvinphos) [22248-79-9]	0.091	U	ug/L	1	0.091	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Sulfotep [3689-24-5] ^	0.080	υ	ug/L	1	0.080	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
TEPP [107-49-3] ^	0.18	U	ug/L	1	0.18	1.0	0G27005	EPA 8141B	07/30/10 13:32	IJВ	
Tokuthion (Prothiofos) [34643-46-4] ^	0.092	U	ug/L	1	0.092	1.0	0G27005	EPA 8141B	07/30/10 13:32	JJB	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
Tributyl Phosphate	3.0	1	4.00	76 %	17-	139	0G27005	EPA 8141B	07/30/10 13:32	IJΒ	
Triphenyl phosphate	2.4	1	4.00	60 %	22-	165	0G27005	EPA 8141B	07/30/10 13:32	JJB	



Description: LCS

Lab Sample ID: A003994-02

Received: 07/23/10 08:00

Matrix: Water

Sampled: 07/21/10 08:30

Work Order: A003994

Project: J1003442

Sampled By:

### Chlorinated Herbicides by GC

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	POL	Batch	Method	Analyzed	Ву	Notes
2,4,5-T [93-76-5] ^	0.053	U	ug/L	1	0.053	0.50	0G26044	EPA 8151A	07/29/10 00:04	JJB	
2,4,5-TP (Silvex) [93-72-1] ^	0.056	U	ug/L	1	0.056	0.50	0G26044	EPA 8151A	07/29/10 00:04	JJB	
2,4-D [94-75-7] ^	0.091	U	ug/L	1	0.091	0.50	0G26044	EPA 8151A	07/29/10 00:04	JJB	
Dinoseb [88-85-7] ^	0.28	U	ug/L	1	0.28	0.50	0G26044	EPA 8151A	07/29/10 00:04	JJB	
Pentachlorophenol [87-86-5] ^	0.043	U	ug/L	1	0.043	0.50	0G26044	EPA 8151A	07/29/10 00:04	ЗЭВ	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
2,4-DCAA	3.5	1	2.00	174 %	68-	139	0G26044	EPA 8151A	07/29/10 00:04	JJB	QS-06



Description: LCS

Matrix: Water
Project: J1003442

Lab Sample ID: A003994-02

Sampled: 07/21/10 08:30

Sampled By:

Received: 07/23/10 08:00

Work Order: A003994

### Organophosphorus Compounds by GC

Analyte [CAS Number]	Results	Flag	<u>Units</u>	DE	MDL	POL	Batch	Method	Analyzed	Ву	Notes
Azinphos-methyl [86-50-0] ^	0.15	U	ug/L	1	0.15	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Bolstar [35400-43-2] ^	0.096	υ	ug/L	1	0.096	1.0	0G27005	EPA 8141B	07/30/10 15:28	) ЈЈВ	
Chlorpyrifos [2921-88-2] ^	0.078	U	ug/L	1	0.078	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Coumaphos [56-72-4] ^	0.15	U	ug/L	1	0.15	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Demeton [8065-48-3]	0.064	U	ug/L	1	0.064	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Diazinon [333-41-5] ^	0.065	U	ug/L	1	0.065	1.0	0G27005	EPA 8141B	07/30/10 15:28	IJВ	
Dichlorofenthion [97-17-6] ^	0.071	U.	ug/L	1	0.071	1.0	0G27005	EPA 8141B	07/30/10 15:28	IJВ	
Dichlorvos [62-73-7] ^	0.17	U	ug/L	1	0.17	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJВ	
Dimethoate [60-51-5] ^	0.12	U	ug/L	1	0.12	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Disulfoton [298-04-4] ^	0.054	U	ug/L	1	0.054	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
EPN [2104-64-5] ^	0.14	U	ug/L	1	0.14	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Ethion [563-12-2] ^	0.12	U	ug/L	1	0.12	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Ethoprop [13194-48-4] ^	0.066	U	ug/L	1	0.066	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Ethyl Parathion [56-38-2] ^	0.11	U	ug/L	1	0.11	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Fensulfothion [115-90-2] ^	0.11	U	ug/L	1	0.11	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Fenthion [55-38-9] ^	0.097	U	ug/L	1	0.097	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Malathion [121-75-5] ^	0.10	U	ug/L	1	0.10	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Merphos [150-50-5] ^	0.26	U	ug/L	1	0.26	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJВ	
Methyl parathion [298-00-0] ^	0.11	Ü	ug/L	1	0.11	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Mevinphos [7786-34-7] ^	0.19	U	ug/L	1	0.19	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Monocrotophos [6923-22-4] ^	0.060	U	ug/L	1	0.060	1.0	0G27005	EPA 8141B	07/30/10 15:28	ЗЗΒ	
Naled [300-76-5] ^	0.24	U	ug/L	1	0.24	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Phorate [298-02-2] ^	0.054	U	ug/L	1	0.054	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Ronnel [299-84-3] ^	0.087	U	ug/L	1	0.087	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Stirophos (Tetrachlorvinphos) [22248-79-9]	0.091	U	ug/L	1	0.091	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Sulfotep [3689-24-5] ^	0.080	U	ug/L	1	0.080	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
TEPP [107-49-3] ^	0.18	U	ug/L	1	0.18	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Tokuthion (Prothiofos) [34643-46-4] ^	0.092	U	ug/L	1	0.092	1.0	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	By	Notes
Tributyl Phosphate	2.3	1	4.00	58 %	17-	139	0G27005	EPA 8141B	07/30/10 15:28	JJB	
Triphenyl phosphate	1.8	1	4.00	46 %	22	165	0G27005	EPA 8141B	07/30/10 15:28	JJB	



### **QUALITY CONTROL**

### **Chlorinated Herbicides by GC - Quality Control**

Batch 0G26044 - EPA 3510C

Blank (0G26044-BLK1)

Prepared: 07/26/2010 17:06 Analyzed: 07/28/2010 17:58

Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
2,4,5-T	0.053	U	0.50	ug/L							
2,4,5-TP (Silvex)	0.056	U	0.50	ug/L							
2,4-D	0.091	U	0.50	ug/L							
Dinoseb	0.28	U	0.50	ug/L							
Pentachlorophenol	0.043	U	0.50	ug/L							
Surrogate: 2,4-DCAA	2.1			ug/L	2.00		105	68-139			

LCS (0G26044-BS1)

Prepared: 07/26/2010 17:06 Analyzed: 07/28/2010 18:47

Analyte	Result Flag	PQL	Units	Spike Level	Source Result %REC	%REC Limits RPD	RPD Limit Notes
2,4,5-TP (Silvex)	1.8	0.50	ug/L	2.00	90	68-154	
2,4-D	1.9	0.50	ug/L	2.00	94	62-144	
Surrogate: 2,4-DCAA	2.1		ug/L	2.00	103	68-139	

Matrix Spike (0G26044-MS1)

Source: A003983-05

Prepared: 07/26/2010 17:06 Analyzed: 07/28/2010 18:22

Analyte	Result Flag	POL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Limit Notes
2,4,5-TP (Silvex)	2.1	0.50	ug/L	2.00	0.056 U	104	68-154	in D Chine Holes
2;4-D	2.2	0.50	ug/L	2.00	0.091 U	110	62-144	
Surrogate: 2,4-DCAA	2.2		ug/L	2.00		112	68-139	

Matrix Spike Dup (0G26044-MSD1)

Source: A003983-05

Prepared: 07/26/2010 17:06 Analyzed: 07/28/2010 19:11

	100			Spike	Source		%REC		RPD	
Analyte	Result Flag	g PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
2,4,5-TP (Silvex)	2.0	0.50	ug/L	2.00	0.056 U	101	68-154	3	15	
2,4-D	2.2	0.50	ug/L	2.00	0.091 U	110	62-144	0.4	33	
Surrogate: 2,4-DCAA	2.2		ug/L	2.00		112	68-139			

### Organophosphorus Compounds by GC - Quality Control

Batch 0G27005 - EPA 3510C

Blank (0G27005-BLK1)

Prepared: 07/27/2010 08:49 Analyzed: 07/30/2010 11:28

					Trepared: 07/27/2010 08:49 Alialyzed: 07/30/2010 11:20								
Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Azinphos-methyl	0.15	U	1.0	ug/L									
Bolstar	0.096	U	1.0	ug/L									
Chlorpyrifos	0.078	บ	1.0	ug/L									
Coumaphos	0.15	U	1.0	ug/L									
Demeton	0.064	U	1.0	ug/L									
Diazinon	0.065	U	1.0	ug/L									
Dichlorofenthion	0.071	U	1.0	ug/L									
Dichlorvos	0.17	U	1.0	ug/L									
Dimethoate	0.12	U	1.0	ug/L									
Disulfoton	0.054	U	1.0	ug/L									

Page 8 of 11



### **QUALITY CONTROL**

### Organophosphorus Compounds by GC - Quality Control

Batch 0G27005 - EPA 3510C

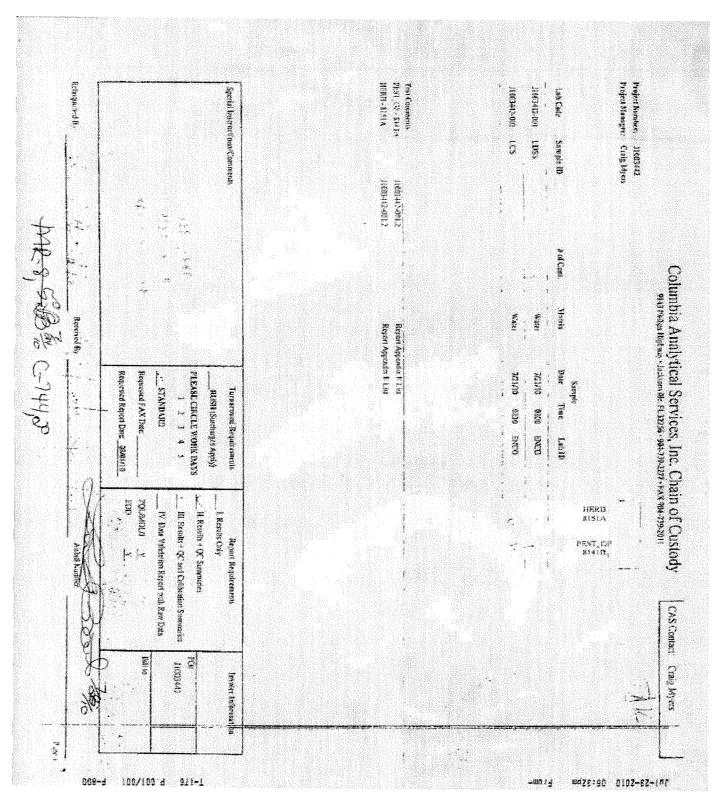
Blank (0G27005-BLK1) Continued

Prepared: 07/27/2010 08:49 Analyzed: 07/30/2010 11:28

		discount of the same of the sa									
Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
EPN	0.14	U	1.0	ug/L			,,,,,			Little	HOLES
Ethion	0.12	U	1.0	ug/L							
Ethoprop	0.066	U	1.0	ug/L							
Ethyl Parathion	0.11	U	1.0	ug/L							
Fensulfothion	0.11	U	1.0	ug/L							
Fenthion	0.097	U	1.0	ug/L							
Malathion	0.10	U	1.0	ug/L							
Merphos	0.26	U	1.0	ug/L							
Methyl parathion	0.11	U	1.0	ug/L							
Mevinphos	0.19	U	1.0	ug/L							
Monocrotophos	0.060	U	1.0	ug/L							
Naled	0.24	U	1.0	ug/L							
Phorate	0.054	U	1.0	ug/L							
Ronnel	0.087	U	1.0	ug/L							
Stirophos (Tetrachlorvinphos)	0.091	U	1.0	ug/L							
Sulfotep	0.080	U	1.0	ug/L							
TEPP	0.18	U	1.0	ug/L							
Tokuthion (Prothiofos)	0.092	U	1.0	ug/L							
Surrogate: Tributyl Phosphate	2.4			ug/L	4.00		59	17-139			
Surrogate: Triphenyl phosphate	2.5			ug/L	4.00		62	22-165			

LCS (0G27005-BS1)

Prepared: 07/27/2010 08:49 Analyzed: 07/30/2010 12:30


Inalyte	Result Fla	g PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Dimethoate	3.0	1.0	ug/L	4.00		74	10-171			
EPN	2.3	1.0	ug/L	4.00		58	10-168			
<b>d</b> alathion	2.7	1.0	ug/L	4.00		67	17-167			
TEPP	3.3	1.0	ug/L	4.00		83	50-106			
urrogate: Tributyl Phosphate	2.6		ug/L	4.00		66	17-139			
Surrogate: Triphenyl phosphate	2.5		ug/L	4.00		64	22-165			



### FLAGS/NOTES AND DEFINITIONS

PQL	PQL: Practical Quantitation Limit.
В	Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
I	The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
J	Estimated value. The associated sample note or project narrative indicate the causative reason.
K	Off-scale low; Actual value is known to be less than the value given.
L	Off-scale high; Actual value is known to be greater than value given.
М	Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
N	Presumptive evidence of presence of material.
0	Sampled, but analysis lost or not performed.
Q	Sample exceeded the accepted holding time.
T	Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
U	Indicates that the compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.
Υ	The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
Z	Too many colonies were present (TNTC); the numeric value represents the filtration volume.
?	Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
*	Not reported due to interference.
QS-06	Surrogate recovery exceeded acceptance criteria due to the presence of a coeluting compound. This is a confirmed matrix effect.





# Appendix D

EDD Files – Field Data; Laboratory Data, and Error Logs (CD Files)